X86ISelLowering.cpp revision 2e6496026f41d2c05ff038d14df9972f8a27fb94
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/CallSite.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54using namespace llvm;
55using namespace dwarf;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58
59// Forward declarations.
60static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
61                       SDValue V2);
62
63static SDValue Insert128BitVector(SDValue Result,
64                                  SDValue Vec,
65                                  SDValue Idx,
66                                  SelectionDAG &DAG,
67                                  DebugLoc dl);
68
69static SDValue Extract128BitVector(SDValue Vec,
70                                   SDValue Idx,
71                                   SelectionDAG &DAG,
72                                   DebugLoc dl);
73
74static SDValue ConcatVectors(SDValue Lower, SDValue Upper, SelectionDAG &DAG);
75
76
77/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
78/// sets things up to match to an AVX VEXTRACTF128 instruction or a
79/// simple subregister reference.  Idx is an index in the 128 bits we
80/// want.  It need not be aligned to a 128-bit bounday.  That makes
81/// lowering EXTRACT_VECTOR_ELT operations easier.
82static SDValue Extract128BitVector(SDValue Vec,
83                                   SDValue Idx,
84                                   SelectionDAG &DAG,
85                                   DebugLoc dl) {
86  EVT VT = Vec.getValueType();
87  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
88
89  EVT ElVT = VT.getVectorElementType();
90
91  int Factor = VT.getSizeInBits() / 128;
92
93  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(),
94                                  ElVT,
95                                  VT.getVectorNumElements() / Factor);
96
97  // Extract from UNDEF is UNDEF.
98  if (Vec.getOpcode() == ISD::UNDEF)
99    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
100
101  if (isa<ConstantSDNode>(Idx)) {
102    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
103
104    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
105    // we can match to VEXTRACTF128.
106    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
107
108    // This is the index of the first element of the 128-bit chunk
109    // we want.
110    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
111                                 * ElemsPerChunk);
112
113    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
114
115    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
116                                 VecIdx);
117
118    return Result;
119  }
120
121  return SDValue();
122}
123
124/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
125/// sets things up to match to an AVX VINSERTF128 instruction or a
126/// simple superregister reference.  Idx is an index in the 128 bits
127/// we want.  It need not be aligned to a 128-bit bounday.  That makes
128/// lowering INSERT_VECTOR_ELT operations easier.
129static SDValue Insert128BitVector(SDValue Result,
130                                  SDValue Vec,
131                                  SDValue Idx,
132                                  SelectionDAG &DAG,
133                                  DebugLoc dl) {
134  if (isa<ConstantSDNode>(Idx)) {
135    EVT VT = Vec.getValueType();
136    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
137
138    EVT ElVT = VT.getVectorElementType();
139
140    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
141
142    EVT ResultVT = Result.getValueType();
143
144    // Insert the relevant 128 bits.
145    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
146
147    // This is the index of the first element of the 128-bit chunk
148    // we want.
149    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
150                                 * ElemsPerChunk);
151
152    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
153
154    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
155                         VecIdx);
156    return Result;
157  }
158
159  return SDValue();
160}
161
162/// Given two vectors, concat them.
163static SDValue ConcatVectors(SDValue Lower, SDValue Upper, SelectionDAG &DAG) {
164  DebugLoc dl = Lower.getDebugLoc();
165
166  assert(Lower.getValueType() == Upper.getValueType() && "Mismatched vectors!");
167
168  EVT VT = EVT::getVectorVT(*DAG.getContext(),
169                            Lower.getValueType().getVectorElementType(),
170                            Lower.getValueType().getVectorNumElements() * 2);
171
172  // TODO: Generalize to arbitrary vector length (this assumes 256-bit vectors).
173  assert(VT.getSizeInBits() == 256 && "Unsupported vector concat!");
174
175  // Insert the upper subvector.
176  SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Upper,
177                                   DAG.getConstant(
178                                     // This is half the length of the result
179                                     // vector.  Start inserting the upper 128
180                                     // bits here.
181                                     Lower.getValueType().getVectorNumElements(),
182                                     MVT::i32),
183                                   DAG, dl);
184
185  // Insert the lower subvector.
186  Vec = Insert128BitVector(Vec, Lower, DAG.getConstant(0, MVT::i32), DAG, dl);
187  return Vec;
188}
189
190static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
191  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
192  bool is64Bit = Subtarget->is64Bit();
193
194  if (Subtarget->isTargetEnvMacho()) {
195    if (is64Bit)
196      return new X8664_MachoTargetObjectFile();
197    return new TargetLoweringObjectFileMachO();
198  }
199
200  if (Subtarget->isTargetELF()) {
201    if (is64Bit)
202      return new X8664_ELFTargetObjectFile(TM);
203    return new X8632_ELFTargetObjectFile(TM);
204  }
205  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
206    return new TargetLoweringObjectFileCOFF();
207  llvm_unreachable("unknown subtarget type");
208}
209
210X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
211  : TargetLowering(TM, createTLOF(TM)) {
212  Subtarget = &TM.getSubtarget<X86Subtarget>();
213  X86ScalarSSEf64 = Subtarget->hasXMMInt();
214  X86ScalarSSEf32 = Subtarget->hasXMM();
215  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
216
217  RegInfo = TM.getRegisterInfo();
218  TD = getTargetData();
219
220  // Set up the TargetLowering object.
221  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
222
223  // X86 is weird, it always uses i8 for shift amounts and setcc results.
224  setBooleanContents(ZeroOrOneBooleanContent);
225
226  // For 64-bit since we have so many registers use the ILP scheduler, for
227  // 32-bit code use the register pressure specific scheduling.
228  if (Subtarget->is64Bit())
229    setSchedulingPreference(Sched::ILP);
230  else
231    setSchedulingPreference(Sched::RegPressure);
232  setStackPointerRegisterToSaveRestore(X86StackPtr);
233
234  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
235    // Setup Windows compiler runtime calls.
236    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
237    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
238    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
239    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
240    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
241    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
242    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
243    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
244  }
245
246  if (Subtarget->isTargetDarwin()) {
247    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
248    setUseUnderscoreSetJmp(false);
249    setUseUnderscoreLongJmp(false);
250  } else if (Subtarget->isTargetMingw()) {
251    // MS runtime is weird: it exports _setjmp, but longjmp!
252    setUseUnderscoreSetJmp(true);
253    setUseUnderscoreLongJmp(false);
254  } else {
255    setUseUnderscoreSetJmp(true);
256    setUseUnderscoreLongJmp(true);
257  }
258
259  // Set up the register classes.
260  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
261  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
262  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
263  if (Subtarget->is64Bit())
264    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
265
266  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
267
268  // We don't accept any truncstore of integer registers.
269  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
270  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
271  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
272  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
273  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
274  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
275
276  // SETOEQ and SETUNE require checking two conditions.
277  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
278  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
279  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
280  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
281  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
282  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
283
284  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
285  // operation.
286  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
287  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
288  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
289
290  if (Subtarget->is64Bit()) {
291    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
292    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
293  } else if (!UseSoftFloat) {
294    // We have an algorithm for SSE2->double, and we turn this into a
295    // 64-bit FILD followed by conditional FADD for other targets.
296    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
297    // We have an algorithm for SSE2, and we turn this into a 64-bit
298    // FILD for other targets.
299    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
300  }
301
302  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
303  // this operation.
304  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
305  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
306
307  if (!UseSoftFloat) {
308    // SSE has no i16 to fp conversion, only i32
309    if (X86ScalarSSEf32) {
310      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
311      // f32 and f64 cases are Legal, f80 case is not
312      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
313    } else {
314      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
315      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
316    }
317  } else {
318    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
319    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
320  }
321
322  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
323  // are Legal, f80 is custom lowered.
324  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
325  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
326
327  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
328  // this operation.
329  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
330  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
331
332  if (X86ScalarSSEf32) {
333    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
334    // f32 and f64 cases are Legal, f80 case is not
335    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
336  } else {
337    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
338    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
339  }
340
341  // Handle FP_TO_UINT by promoting the destination to a larger signed
342  // conversion.
343  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
344  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
345  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
346
347  if (Subtarget->is64Bit()) {
348    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
349    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
350  } else if (!UseSoftFloat) {
351    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
352      // Expand FP_TO_UINT into a select.
353      // FIXME: We would like to use a Custom expander here eventually to do
354      // the optimal thing for SSE vs. the default expansion in the legalizer.
355      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
356    else
357      // With SSE3 we can use fisttpll to convert to a signed i64; without
358      // SSE, we're stuck with a fistpll.
359      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
360  }
361
362  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
363  if (!X86ScalarSSEf64) {
364    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
365    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
366    if (Subtarget->is64Bit()) {
367      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
368      // Without SSE, i64->f64 goes through memory.
369      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
370    }
371  }
372
373  // Scalar integer divide and remainder are lowered to use operations that
374  // produce two results, to match the available instructions. This exposes
375  // the two-result form to trivial CSE, which is able to combine x/y and x%y
376  // into a single instruction.
377  //
378  // Scalar integer multiply-high is also lowered to use two-result
379  // operations, to match the available instructions. However, plain multiply
380  // (low) operations are left as Legal, as there are single-result
381  // instructions for this in x86. Using the two-result multiply instructions
382  // when both high and low results are needed must be arranged by dagcombine.
383  for (unsigned i = 0, e = 4; i != e; ++i) {
384    MVT VT = IntVTs[i];
385    setOperationAction(ISD::MULHS, VT, Expand);
386    setOperationAction(ISD::MULHU, VT, Expand);
387    setOperationAction(ISD::SDIV, VT, Expand);
388    setOperationAction(ISD::UDIV, VT, Expand);
389    setOperationAction(ISD::SREM, VT, Expand);
390    setOperationAction(ISD::UREM, VT, Expand);
391
392    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
393    setOperationAction(ISD::ADDC, VT, Custom);
394    setOperationAction(ISD::ADDE, VT, Custom);
395    setOperationAction(ISD::SUBC, VT, Custom);
396    setOperationAction(ISD::SUBE, VT, Custom);
397  }
398
399  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
400  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
401  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
402  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
403  if (Subtarget->is64Bit())
404    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
405  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
406  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
407  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
408  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
409  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
410  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
411  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
412  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
413
414  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
415  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
416  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
417  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
418  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
419  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
420  if (Subtarget->is64Bit()) {
421    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
422    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
423  }
424
425  if (Subtarget->hasPOPCNT()) {
426    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
427  } else {
428    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
429    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
430    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
431    if (Subtarget->is64Bit())
432      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
433  }
434
435  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
436  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
437
438  // These should be promoted to a larger select which is supported.
439  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
440  // X86 wants to expand cmov itself.
441  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
442  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
443  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
444  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
445  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
446  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
447  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
448  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
450  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
451  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
452  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
453  if (Subtarget->is64Bit()) {
454    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
455    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
456  }
457  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
458
459  // Darwin ABI issue.
460  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
461  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
462  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
463  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
464  if (Subtarget->is64Bit())
465    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
466  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
467  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
468  if (Subtarget->is64Bit()) {
469    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
470    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
471    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
472    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
473    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
474  }
475  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
476  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
477  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
478  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
479  if (Subtarget->is64Bit()) {
480    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
481    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
482    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
483  }
484
485  if (Subtarget->hasXMM())
486    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
487
488  // We may not have a libcall for MEMBARRIER so we should lower this.
489  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
490
491  // On X86 and X86-64, atomic operations are lowered to locked instructions.
492  // Locked instructions, in turn, have implicit fence semantics (all memory
493  // operations are flushed before issuing the locked instruction, and they
494  // are not buffered), so we can fold away the common pattern of
495  // fence-atomic-fence.
496  setShouldFoldAtomicFences(true);
497
498  // Expand certain atomics
499  for (unsigned i = 0, e = 4; i != e; ++i) {
500    MVT VT = IntVTs[i];
501    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
502    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
503  }
504
505  if (!Subtarget->is64Bit()) {
506    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
511    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
512    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
513  }
514
515  // FIXME - use subtarget debug flags
516  if (!Subtarget->isTargetDarwin() &&
517      !Subtarget->isTargetELF() &&
518      !Subtarget->isTargetCygMing()) {
519    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
520  }
521
522  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
523  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
524  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
525  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
526  if (Subtarget->is64Bit()) {
527    setExceptionPointerRegister(X86::RAX);
528    setExceptionSelectorRegister(X86::RDX);
529  } else {
530    setExceptionPointerRegister(X86::EAX);
531    setExceptionSelectorRegister(X86::EDX);
532  }
533  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
534  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
535
536  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
537
538  setOperationAction(ISD::TRAP, MVT::Other, Legal);
539
540  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
541  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
542  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
543  if (Subtarget->is64Bit()) {
544    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
545    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
546  } else {
547    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
548    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
549  }
550
551  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
552  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
553  setOperationAction(ISD::DYNAMIC_STACKALLOC,
554                     (Subtarget->is64Bit() ? MVT::i64 : MVT::i32),
555                     (Subtarget->isTargetCOFF()
556                      && !Subtarget->isTargetEnvMacho()
557                      ? Custom : Expand));
558
559  if (!UseSoftFloat && X86ScalarSSEf64) {
560    // f32 and f64 use SSE.
561    // Set up the FP register classes.
562    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
563    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
564
565    // Use ANDPD to simulate FABS.
566    setOperationAction(ISD::FABS , MVT::f64, Custom);
567    setOperationAction(ISD::FABS , MVT::f32, Custom);
568
569    // Use XORP to simulate FNEG.
570    setOperationAction(ISD::FNEG , MVT::f64, Custom);
571    setOperationAction(ISD::FNEG , MVT::f32, Custom);
572
573    // Use ANDPD and ORPD to simulate FCOPYSIGN.
574    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
575    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
576
577    // We don't support sin/cos/fmod
578    setOperationAction(ISD::FSIN , MVT::f64, Expand);
579    setOperationAction(ISD::FCOS , MVT::f64, Expand);
580    setOperationAction(ISD::FSIN , MVT::f32, Expand);
581    setOperationAction(ISD::FCOS , MVT::f32, Expand);
582
583    // Expand FP immediates into loads from the stack, except for the special
584    // cases we handle.
585    addLegalFPImmediate(APFloat(+0.0)); // xorpd
586    addLegalFPImmediate(APFloat(+0.0f)); // xorps
587  } else if (!UseSoftFloat && X86ScalarSSEf32) {
588    // Use SSE for f32, x87 for f64.
589    // Set up the FP register classes.
590    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
591    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
592
593    // Use ANDPS to simulate FABS.
594    setOperationAction(ISD::FABS , MVT::f32, Custom);
595
596    // Use XORP to simulate FNEG.
597    setOperationAction(ISD::FNEG , MVT::f32, Custom);
598
599    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
600
601    // Use ANDPS and ORPS to simulate FCOPYSIGN.
602    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
603    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
604
605    // We don't support sin/cos/fmod
606    setOperationAction(ISD::FSIN , MVT::f32, Expand);
607    setOperationAction(ISD::FCOS , MVT::f32, Expand);
608
609    // Special cases we handle for FP constants.
610    addLegalFPImmediate(APFloat(+0.0f)); // xorps
611    addLegalFPImmediate(APFloat(+0.0)); // FLD0
612    addLegalFPImmediate(APFloat(+1.0)); // FLD1
613    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
614    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
615
616    if (!UnsafeFPMath) {
617      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
618      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
619    }
620  } else if (!UseSoftFloat) {
621    // f32 and f64 in x87.
622    // Set up the FP register classes.
623    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
624    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
625
626    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
627    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
628    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
629    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
630
631    if (!UnsafeFPMath) {
632      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
633      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
634    }
635    addLegalFPImmediate(APFloat(+0.0)); // FLD0
636    addLegalFPImmediate(APFloat(+1.0)); // FLD1
637    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
638    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
639    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
640    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
641    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
642    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
643  }
644
645  // Long double always uses X87.
646  if (!UseSoftFloat) {
647    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
648    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
649    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
650    {
651      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
652      addLegalFPImmediate(TmpFlt);  // FLD0
653      TmpFlt.changeSign();
654      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
655
656      bool ignored;
657      APFloat TmpFlt2(+1.0);
658      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
659                      &ignored);
660      addLegalFPImmediate(TmpFlt2);  // FLD1
661      TmpFlt2.changeSign();
662      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
663    }
664
665    if (!UnsafeFPMath) {
666      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
667      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
668    }
669  }
670
671  // Always use a library call for pow.
672  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
673  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
674  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
675
676  setOperationAction(ISD::FLOG, MVT::f80, Expand);
677  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
678  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
679  setOperationAction(ISD::FEXP, MVT::f80, Expand);
680  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
681
682  // First set operation action for all vector types to either promote
683  // (for widening) or expand (for scalarization). Then we will selectively
684  // turn on ones that can be effectively codegen'd.
685  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
686       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
687    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
691    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
694    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
702    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
703    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
704    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
705    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
737    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
741    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
742         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
743      setTruncStoreAction((MVT::SimpleValueType)VT,
744                          (MVT::SimpleValueType)InnerVT, Expand);
745    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
746    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
747    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
748  }
749
750  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
751  // with -msoft-float, disable use of MMX as well.
752  if (!UseSoftFloat && Subtarget->hasMMX()) {
753    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
754    // No operations on x86mmx supported, everything uses intrinsics.
755  }
756
757  // MMX-sized vectors (other than x86mmx) are expected to be expanded
758  // into smaller operations.
759  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
760  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
761  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
762  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
763  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
764  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
765  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
766  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
767  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
768  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
769  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
770  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
771  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
772  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
773  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
774  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
775  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
776  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
777  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
778  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
779  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
780  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
781  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
782  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
783  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
784  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
785  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
786  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
787  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
788
789  if (!UseSoftFloat && Subtarget->hasXMM()) {
790    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
791
792    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
793    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
794    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
795    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
796    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
797    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
798    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
799    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
800    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
801    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
802    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
803    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
804  }
805
806  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
807    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
808
809    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
810    // registers cannot be used even for integer operations.
811    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
812    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
813    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
814    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
815
816    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
817    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
818    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
819    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
820    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
821    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
822    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
823    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
824    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
825    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
826    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
827    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
828    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
829    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
830    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
831    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
832
833    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
834    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
835    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
836    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
837
838    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
839    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
840    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
841    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
842    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
843
844    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
845    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
846    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
847    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
848    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
849
850    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
851    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
852      EVT VT = (MVT::SimpleValueType)i;
853      // Do not attempt to custom lower non-power-of-2 vectors
854      if (!isPowerOf2_32(VT.getVectorNumElements()))
855        continue;
856      // Do not attempt to custom lower non-128-bit vectors
857      if (!VT.is128BitVector())
858        continue;
859      setOperationAction(ISD::BUILD_VECTOR,
860                         VT.getSimpleVT().SimpleTy, Custom);
861      setOperationAction(ISD::VECTOR_SHUFFLE,
862                         VT.getSimpleVT().SimpleTy, Custom);
863      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
864                         VT.getSimpleVT().SimpleTy, Custom);
865    }
866
867    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
868    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
869    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
870    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
871    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
872    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
873
874    if (Subtarget->is64Bit()) {
875      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
876      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
877    }
878
879    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
880    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
881      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
882      EVT VT = SVT;
883
884      // Do not attempt to promote non-128-bit vectors
885      if (!VT.is128BitVector())
886        continue;
887
888      setOperationAction(ISD::AND,    SVT, Promote);
889      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
890      setOperationAction(ISD::OR,     SVT, Promote);
891      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
892      setOperationAction(ISD::XOR,    SVT, Promote);
893      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
894      setOperationAction(ISD::LOAD,   SVT, Promote);
895      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
896      setOperationAction(ISD::SELECT, SVT, Promote);
897      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
898    }
899
900    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
901
902    // Custom lower v2i64 and v2f64 selects.
903    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
904    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
905    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
906    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
907
908    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
909    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
910  }
911
912  if (Subtarget->hasSSE41()) {
913    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
914    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
915    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
916    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
917    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
918    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
919    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
920    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
921    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
922    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
923
924    // FIXME: Do we need to handle scalar-to-vector here?
925    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
926
927    // Can turn SHL into an integer multiply.
928    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
929    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
930
931    // i8 and i16 vectors are custom , because the source register and source
932    // source memory operand types are not the same width.  f32 vectors are
933    // custom since the immediate controlling the insert encodes additional
934    // information.
935    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
936    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
937    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
938    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
939
940    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
941    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
942    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
943    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
944
945    if (Subtarget->is64Bit()) {
946      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
947      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
948    }
949  }
950
951  if (Subtarget->hasSSE2()) {
952    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
953    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
954    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
955
956    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
957    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
958    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
959
960    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
961    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
962  }
963
964  if (Subtarget->hasSSE42())
965    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
966
967  if (!UseSoftFloat && Subtarget->hasAVX()) {
968    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
969    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
970    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
971    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
972    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
973
974    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
975    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
976    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
977    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
978
979    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
980    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
981    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
982    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
983    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
984    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
985
986    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
987    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
988    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
989    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
990    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
991    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
992
993    // Custom lower build_vector, vector_shuffle, scalar_to_vector,
994    // insert_vector_elt extract_subvector and extract_vector_elt for
995    // 256-bit types.
996    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
997         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE;
998         ++i) {
999      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
1000      // Do not attempt to custom lower non-256-bit vectors
1001      if (!isPowerOf2_32(MVT(VT).getVectorNumElements())
1002          || (MVT(VT).getSizeInBits() < 256))
1003        continue;
1004      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1005      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1006      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1007      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1008      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1009    }
1010    // Custom-lower insert_subvector and extract_subvector based on
1011    // the result type.
1012    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1013         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE;
1014         ++i) {
1015      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
1016      // Do not attempt to custom lower non-256-bit vectors
1017      if (!isPowerOf2_32(MVT(VT).getVectorNumElements()))
1018        continue;
1019
1020      if (MVT(VT).getSizeInBits() == 128) {
1021        setOperationAction(ISD::EXTRACT_SUBVECTOR,  VT, Custom);
1022      }
1023      else if (MVT(VT).getSizeInBits() == 256) {
1024        setOperationAction(ISD::INSERT_SUBVECTOR,  VT, Custom);
1025      }
1026    }
1027
1028    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1029    // Don't promote loads because we need them for VPERM vector index versions.
1030
1031    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1032         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE;
1033         VT++) {
1034      if (!isPowerOf2_32(MVT((MVT::SimpleValueType)VT).getVectorNumElements())
1035          || (MVT((MVT::SimpleValueType)VT).getSizeInBits() < 256))
1036        continue;
1037      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
1038      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v4i64);
1039      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
1040      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v4i64);
1041      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
1042      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v4i64);
1043      //setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
1044      //AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v4i64);
1045      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
1046      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v4i64);
1047    }
1048  }
1049
1050  // We want to custom lower some of our intrinsics.
1051  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1052
1053
1054  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1055  // handle type legalization for these operations here.
1056  //
1057  // FIXME: We really should do custom legalization for addition and
1058  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1059  // than generic legalization for 64-bit multiplication-with-overflow, though.
1060  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1061    // Add/Sub/Mul with overflow operations are custom lowered.
1062    MVT VT = IntVTs[i];
1063    setOperationAction(ISD::SADDO, VT, Custom);
1064    setOperationAction(ISD::UADDO, VT, Custom);
1065    setOperationAction(ISD::SSUBO, VT, Custom);
1066    setOperationAction(ISD::USUBO, VT, Custom);
1067    setOperationAction(ISD::SMULO, VT, Custom);
1068    setOperationAction(ISD::UMULO, VT, Custom);
1069  }
1070
1071  // There are no 8-bit 3-address imul/mul instructions
1072  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1073  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1074
1075  if (!Subtarget->is64Bit()) {
1076    // These libcalls are not available in 32-bit.
1077    setLibcallName(RTLIB::SHL_I128, 0);
1078    setLibcallName(RTLIB::SRL_I128, 0);
1079    setLibcallName(RTLIB::SRA_I128, 0);
1080  }
1081
1082  // We have target-specific dag combine patterns for the following nodes:
1083  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1084  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1085  setTargetDAGCombine(ISD::BUILD_VECTOR);
1086  setTargetDAGCombine(ISD::SELECT);
1087  setTargetDAGCombine(ISD::SHL);
1088  setTargetDAGCombine(ISD::SRA);
1089  setTargetDAGCombine(ISD::SRL);
1090  setTargetDAGCombine(ISD::OR);
1091  setTargetDAGCombine(ISD::AND);
1092  setTargetDAGCombine(ISD::ADD);
1093  setTargetDAGCombine(ISD::SUB);
1094  setTargetDAGCombine(ISD::STORE);
1095  setTargetDAGCombine(ISD::ZERO_EXTEND);
1096  if (Subtarget->is64Bit())
1097    setTargetDAGCombine(ISD::MUL);
1098
1099  computeRegisterProperties();
1100
1101  // On Darwin, -Os means optimize for size without hurting performance,
1102  // do not reduce the limit.
1103  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1104  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1105  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1106  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1107  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1108  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1109  setPrefLoopAlignment(16);
1110  benefitFromCodePlacementOpt = true;
1111
1112  setPrefFunctionAlignment(4);
1113}
1114
1115
1116MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1117  return MVT::i8;
1118}
1119
1120
1121/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1122/// the desired ByVal argument alignment.
1123static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1124  if (MaxAlign == 16)
1125    return;
1126  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1127    if (VTy->getBitWidth() == 128)
1128      MaxAlign = 16;
1129  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1130    unsigned EltAlign = 0;
1131    getMaxByValAlign(ATy->getElementType(), EltAlign);
1132    if (EltAlign > MaxAlign)
1133      MaxAlign = EltAlign;
1134  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1135    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1136      unsigned EltAlign = 0;
1137      getMaxByValAlign(STy->getElementType(i), EltAlign);
1138      if (EltAlign > MaxAlign)
1139        MaxAlign = EltAlign;
1140      if (MaxAlign == 16)
1141        break;
1142    }
1143  }
1144  return;
1145}
1146
1147/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1148/// function arguments in the caller parameter area. For X86, aggregates
1149/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1150/// are at 4-byte boundaries.
1151unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1152  if (Subtarget->is64Bit()) {
1153    // Max of 8 and alignment of type.
1154    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1155    if (TyAlign > 8)
1156      return TyAlign;
1157    return 8;
1158  }
1159
1160  unsigned Align = 4;
1161  if (Subtarget->hasXMM())
1162    getMaxByValAlign(Ty, Align);
1163  return Align;
1164}
1165
1166/// getOptimalMemOpType - Returns the target specific optimal type for load
1167/// and store operations as a result of memset, memcpy, and memmove
1168/// lowering. If DstAlign is zero that means it's safe to destination
1169/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1170/// means there isn't a need to check it against alignment requirement,
1171/// probably because the source does not need to be loaded. If
1172/// 'NonScalarIntSafe' is true, that means it's safe to return a
1173/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1174/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1175/// constant so it does not need to be loaded.
1176/// It returns EVT::Other if the type should be determined using generic
1177/// target-independent logic.
1178EVT
1179X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1180                                       unsigned DstAlign, unsigned SrcAlign,
1181                                       bool NonScalarIntSafe,
1182                                       bool MemcpyStrSrc,
1183                                       MachineFunction &MF) const {
1184  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1185  // linux.  This is because the stack realignment code can't handle certain
1186  // cases like PR2962.  This should be removed when PR2962 is fixed.
1187  const Function *F = MF.getFunction();
1188  if (NonScalarIntSafe &&
1189      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1190    if (Size >= 16 &&
1191        (Subtarget->isUnalignedMemAccessFast() ||
1192         ((DstAlign == 0 || DstAlign >= 16) &&
1193          (SrcAlign == 0 || SrcAlign >= 16))) &&
1194        Subtarget->getStackAlignment() >= 16) {
1195      if (Subtarget->hasSSE2())
1196        return MVT::v4i32;
1197      if (Subtarget->hasSSE1())
1198        return MVT::v4f32;
1199    } else if (!MemcpyStrSrc && Size >= 8 &&
1200               !Subtarget->is64Bit() &&
1201               Subtarget->getStackAlignment() >= 8 &&
1202               Subtarget->hasXMMInt()) {
1203      // Do not use f64 to lower memcpy if source is string constant. It's
1204      // better to use i32 to avoid the loads.
1205      return MVT::f64;
1206    }
1207  }
1208  if (Subtarget->is64Bit() && Size >= 8)
1209    return MVT::i64;
1210  return MVT::i32;
1211}
1212
1213/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1214/// current function.  The returned value is a member of the
1215/// MachineJumpTableInfo::JTEntryKind enum.
1216unsigned X86TargetLowering::getJumpTableEncoding() const {
1217  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1218  // symbol.
1219  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1220      Subtarget->isPICStyleGOT())
1221    return MachineJumpTableInfo::EK_Custom32;
1222
1223  // Otherwise, use the normal jump table encoding heuristics.
1224  return TargetLowering::getJumpTableEncoding();
1225}
1226
1227const MCExpr *
1228X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1229                                             const MachineBasicBlock *MBB,
1230                                             unsigned uid,MCContext &Ctx) const{
1231  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1232         Subtarget->isPICStyleGOT());
1233  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1234  // entries.
1235  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1236                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1237}
1238
1239/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1240/// jumptable.
1241SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1242                                                    SelectionDAG &DAG) const {
1243  if (!Subtarget->is64Bit())
1244    // This doesn't have DebugLoc associated with it, but is not really the
1245    // same as a Register.
1246    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1247  return Table;
1248}
1249
1250/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1251/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1252/// MCExpr.
1253const MCExpr *X86TargetLowering::
1254getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1255                             MCContext &Ctx) const {
1256  // X86-64 uses RIP relative addressing based on the jump table label.
1257  if (Subtarget->isPICStyleRIPRel())
1258    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1259
1260  // Otherwise, the reference is relative to the PIC base.
1261  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1262}
1263
1264// FIXME: Why this routine is here? Move to RegInfo!
1265std::pair<const TargetRegisterClass*, uint8_t>
1266X86TargetLowering::findRepresentativeClass(EVT VT) const{
1267  const TargetRegisterClass *RRC = 0;
1268  uint8_t Cost = 1;
1269  switch (VT.getSimpleVT().SimpleTy) {
1270  default:
1271    return TargetLowering::findRepresentativeClass(VT);
1272  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1273    RRC = (Subtarget->is64Bit()
1274           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1275    break;
1276  case MVT::x86mmx:
1277    RRC = X86::VR64RegisterClass;
1278    break;
1279  case MVT::f32: case MVT::f64:
1280  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1281  case MVT::v4f32: case MVT::v2f64:
1282  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1283  case MVT::v4f64:
1284    RRC = X86::VR128RegisterClass;
1285    break;
1286  }
1287  return std::make_pair(RRC, Cost);
1288}
1289
1290bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1291                                               unsigned &Offset) const {
1292  if (!Subtarget->isTargetLinux())
1293    return false;
1294
1295  if (Subtarget->is64Bit()) {
1296    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1297    Offset = 0x28;
1298    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1299      AddressSpace = 256;
1300    else
1301      AddressSpace = 257;
1302  } else {
1303    // %gs:0x14 on i386
1304    Offset = 0x14;
1305    AddressSpace = 256;
1306  }
1307  return true;
1308}
1309
1310
1311//===----------------------------------------------------------------------===//
1312//               Return Value Calling Convention Implementation
1313//===----------------------------------------------------------------------===//
1314
1315#include "X86GenCallingConv.inc"
1316
1317bool
1318X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1319                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1320                        LLVMContext &Context) const {
1321  SmallVector<CCValAssign, 16> RVLocs;
1322  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1323                 RVLocs, Context);
1324  return CCInfo.CheckReturn(Outs, RetCC_X86);
1325}
1326
1327SDValue
1328X86TargetLowering::LowerReturn(SDValue Chain,
1329                               CallingConv::ID CallConv, bool isVarArg,
1330                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1331                               const SmallVectorImpl<SDValue> &OutVals,
1332                               DebugLoc dl, SelectionDAG &DAG) const {
1333  MachineFunction &MF = DAG.getMachineFunction();
1334  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1335
1336  SmallVector<CCValAssign, 16> RVLocs;
1337  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1338                 RVLocs, *DAG.getContext());
1339  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1340
1341  // Add the regs to the liveout set for the function.
1342  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1343  for (unsigned i = 0; i != RVLocs.size(); ++i)
1344    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1345      MRI.addLiveOut(RVLocs[i].getLocReg());
1346
1347  SDValue Flag;
1348
1349  SmallVector<SDValue, 6> RetOps;
1350  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1351  // Operand #1 = Bytes To Pop
1352  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1353                   MVT::i16));
1354
1355  // Copy the result values into the output registers.
1356  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1357    CCValAssign &VA = RVLocs[i];
1358    assert(VA.isRegLoc() && "Can only return in registers!");
1359    SDValue ValToCopy = OutVals[i];
1360    EVT ValVT = ValToCopy.getValueType();
1361
1362    // If this is x86-64, and we disabled SSE, we can't return FP values,
1363    // or SSE or MMX vectors.
1364    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1365         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1366          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1367      report_fatal_error("SSE register return with SSE disabled");
1368    }
1369    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1370    // llvm-gcc has never done it right and no one has noticed, so this
1371    // should be OK for now.
1372    if (ValVT == MVT::f64 &&
1373        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1374      report_fatal_error("SSE2 register return with SSE2 disabled");
1375
1376    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1377    // the RET instruction and handled by the FP Stackifier.
1378    if (VA.getLocReg() == X86::ST0 ||
1379        VA.getLocReg() == X86::ST1) {
1380      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1381      // change the value to the FP stack register class.
1382      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1383        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1384      RetOps.push_back(ValToCopy);
1385      // Don't emit a copytoreg.
1386      continue;
1387    }
1388
1389    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1390    // which is returned in RAX / RDX.
1391    if (Subtarget->is64Bit()) {
1392      if (ValVT == MVT::x86mmx) {
1393        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1394          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1395          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1396                                  ValToCopy);
1397          // If we don't have SSE2 available, convert to v4f32 so the generated
1398          // register is legal.
1399          if (!Subtarget->hasSSE2())
1400            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1401        }
1402      }
1403    }
1404
1405    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1406    Flag = Chain.getValue(1);
1407  }
1408
1409  // The x86-64 ABI for returning structs by value requires that we copy
1410  // the sret argument into %rax for the return. We saved the argument into
1411  // a virtual register in the entry block, so now we copy the value out
1412  // and into %rax.
1413  if (Subtarget->is64Bit() &&
1414      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1415    MachineFunction &MF = DAG.getMachineFunction();
1416    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1417    unsigned Reg = FuncInfo->getSRetReturnReg();
1418    assert(Reg &&
1419           "SRetReturnReg should have been set in LowerFormalArguments().");
1420    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1421
1422    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1423    Flag = Chain.getValue(1);
1424
1425    // RAX now acts like a return value.
1426    MRI.addLiveOut(X86::RAX);
1427  }
1428
1429  RetOps[0] = Chain;  // Update chain.
1430
1431  // Add the flag if we have it.
1432  if (Flag.getNode())
1433    RetOps.push_back(Flag);
1434
1435  return DAG.getNode(X86ISD::RET_FLAG, dl,
1436                     MVT::Other, &RetOps[0], RetOps.size());
1437}
1438
1439bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1440  if (N->getNumValues() != 1)
1441    return false;
1442  if (!N->hasNUsesOfValue(1, 0))
1443    return false;
1444
1445  SDNode *Copy = *N->use_begin();
1446  if (Copy->getOpcode() != ISD::CopyToReg &&
1447      Copy->getOpcode() != ISD::FP_EXTEND)
1448    return false;
1449
1450  bool HasRet = false;
1451  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1452       UI != UE; ++UI) {
1453    if (UI->getOpcode() != X86ISD::RET_FLAG)
1454      return false;
1455    HasRet = true;
1456  }
1457
1458  return HasRet;
1459}
1460
1461EVT
1462X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1463                                            ISD::NodeType ExtendKind) const {
1464  MVT ReturnMVT;
1465  // TODO: Is this also valid on 32-bit?
1466  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1467    ReturnMVT = MVT::i8;
1468  else
1469    ReturnMVT = MVT::i32;
1470
1471  EVT MinVT = getRegisterType(Context, ReturnMVT);
1472  return VT.bitsLT(MinVT) ? MinVT : VT;
1473}
1474
1475/// LowerCallResult - Lower the result values of a call into the
1476/// appropriate copies out of appropriate physical registers.
1477///
1478SDValue
1479X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1480                                   CallingConv::ID CallConv, bool isVarArg,
1481                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1482                                   DebugLoc dl, SelectionDAG &DAG,
1483                                   SmallVectorImpl<SDValue> &InVals) const {
1484
1485  // Assign locations to each value returned by this call.
1486  SmallVector<CCValAssign, 16> RVLocs;
1487  bool Is64Bit = Subtarget->is64Bit();
1488  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1489                 RVLocs, *DAG.getContext());
1490  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1491
1492  // Copy all of the result registers out of their specified physreg.
1493  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1494    CCValAssign &VA = RVLocs[i];
1495    EVT CopyVT = VA.getValVT();
1496
1497    // If this is x86-64, and we disabled SSE, we can't return FP values
1498    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1499        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1500      report_fatal_error("SSE register return with SSE disabled");
1501    }
1502
1503    SDValue Val;
1504
1505    // If this is a call to a function that returns an fp value on the floating
1506    // point stack, we must guarantee the the value is popped from the stack, so
1507    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1508    // if the return value is not used. We use the FpGET_ST0 instructions
1509    // instead.
1510    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1511      // If we prefer to use the value in xmm registers, copy it out as f80 and
1512      // use a truncate to move it from fp stack reg to xmm reg.
1513      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1514      bool isST0 = VA.getLocReg() == X86::ST0;
1515      unsigned Opc = 0;
1516      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1517      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1518      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1519      SDValue Ops[] = { Chain, InFlag };
1520      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Glue,
1521                                         Ops, 2), 1);
1522      Val = Chain.getValue(0);
1523
1524      // Round the f80 to the right size, which also moves it to the appropriate
1525      // xmm register.
1526      if (CopyVT != VA.getValVT())
1527        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1528                          // This truncation won't change the value.
1529                          DAG.getIntPtrConstant(1));
1530    } else {
1531      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1532                                 CopyVT, InFlag).getValue(1);
1533      Val = Chain.getValue(0);
1534    }
1535    InFlag = Chain.getValue(2);
1536    InVals.push_back(Val);
1537  }
1538
1539  return Chain;
1540}
1541
1542
1543//===----------------------------------------------------------------------===//
1544//                C & StdCall & Fast Calling Convention implementation
1545//===----------------------------------------------------------------------===//
1546//  StdCall calling convention seems to be standard for many Windows' API
1547//  routines and around. It differs from C calling convention just a little:
1548//  callee should clean up the stack, not caller. Symbols should be also
1549//  decorated in some fancy way :) It doesn't support any vector arguments.
1550//  For info on fast calling convention see Fast Calling Convention (tail call)
1551//  implementation LowerX86_32FastCCCallTo.
1552
1553/// CallIsStructReturn - Determines whether a call uses struct return
1554/// semantics.
1555static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1556  if (Outs.empty())
1557    return false;
1558
1559  return Outs[0].Flags.isSRet();
1560}
1561
1562/// ArgsAreStructReturn - Determines whether a function uses struct
1563/// return semantics.
1564static bool
1565ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1566  if (Ins.empty())
1567    return false;
1568
1569  return Ins[0].Flags.isSRet();
1570}
1571
1572/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1573/// by "Src" to address "Dst" with size and alignment information specified by
1574/// the specific parameter attribute. The copy will be passed as a byval
1575/// function parameter.
1576static SDValue
1577CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1578                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1579                          DebugLoc dl) {
1580  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1581
1582  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1583                       /*isVolatile*/false, /*AlwaysInline=*/true,
1584                       MachinePointerInfo(), MachinePointerInfo());
1585}
1586
1587/// IsTailCallConvention - Return true if the calling convention is one that
1588/// supports tail call optimization.
1589static bool IsTailCallConvention(CallingConv::ID CC) {
1590  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1591}
1592
1593bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1594  if (!CI->isTailCall())
1595    return false;
1596
1597  CallSite CS(CI);
1598  CallingConv::ID CalleeCC = CS.getCallingConv();
1599  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1600    return false;
1601
1602  return true;
1603}
1604
1605/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1606/// a tailcall target by changing its ABI.
1607static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1608  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1609}
1610
1611SDValue
1612X86TargetLowering::LowerMemArgument(SDValue Chain,
1613                                    CallingConv::ID CallConv,
1614                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1615                                    DebugLoc dl, SelectionDAG &DAG,
1616                                    const CCValAssign &VA,
1617                                    MachineFrameInfo *MFI,
1618                                    unsigned i) const {
1619  // Create the nodes corresponding to a load from this parameter slot.
1620  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1621  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1622  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1623  EVT ValVT;
1624
1625  // If value is passed by pointer we have address passed instead of the value
1626  // itself.
1627  if (VA.getLocInfo() == CCValAssign::Indirect)
1628    ValVT = VA.getLocVT();
1629  else
1630    ValVT = VA.getValVT();
1631
1632  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1633  // changed with more analysis.
1634  // In case of tail call optimization mark all arguments mutable. Since they
1635  // could be overwritten by lowering of arguments in case of a tail call.
1636  if (Flags.isByVal()) {
1637    unsigned Bytes = Flags.getByValSize();
1638    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1639    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1640    return DAG.getFrameIndex(FI, getPointerTy());
1641  } else {
1642    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1643                                    VA.getLocMemOffset(), isImmutable);
1644    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1645    return DAG.getLoad(ValVT, dl, Chain, FIN,
1646                       MachinePointerInfo::getFixedStack(FI),
1647                       false, false, 0);
1648  }
1649}
1650
1651SDValue
1652X86TargetLowering::LowerFormalArguments(SDValue Chain,
1653                                        CallingConv::ID CallConv,
1654                                        bool isVarArg,
1655                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1656                                        DebugLoc dl,
1657                                        SelectionDAG &DAG,
1658                                        SmallVectorImpl<SDValue> &InVals)
1659                                          const {
1660  MachineFunction &MF = DAG.getMachineFunction();
1661  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1662
1663  const Function* Fn = MF.getFunction();
1664  if (Fn->hasExternalLinkage() &&
1665      Subtarget->isTargetCygMing() &&
1666      Fn->getName() == "main")
1667    FuncInfo->setForceFramePointer(true);
1668
1669  MachineFrameInfo *MFI = MF.getFrameInfo();
1670  bool Is64Bit = Subtarget->is64Bit();
1671  bool IsWin64 = Subtarget->isTargetWin64();
1672
1673  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1674         "Var args not supported with calling convention fastcc or ghc");
1675
1676  // Assign locations to all of the incoming arguments.
1677  SmallVector<CCValAssign, 16> ArgLocs;
1678  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1679                 ArgLocs, *DAG.getContext());
1680
1681  // Allocate shadow area for Win64
1682  if (IsWin64) {
1683    CCInfo.AllocateStack(32, 8);
1684  }
1685
1686  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1687
1688  unsigned LastVal = ~0U;
1689  SDValue ArgValue;
1690  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1691    CCValAssign &VA = ArgLocs[i];
1692    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1693    // places.
1694    assert(VA.getValNo() != LastVal &&
1695           "Don't support value assigned to multiple locs yet");
1696    LastVal = VA.getValNo();
1697
1698    if (VA.isRegLoc()) {
1699      EVT RegVT = VA.getLocVT();
1700      TargetRegisterClass *RC = NULL;
1701      if (RegVT == MVT::i32)
1702        RC = X86::GR32RegisterClass;
1703      else if (Is64Bit && RegVT == MVT::i64)
1704        RC = X86::GR64RegisterClass;
1705      else if (RegVT == MVT::f32)
1706        RC = X86::FR32RegisterClass;
1707      else if (RegVT == MVT::f64)
1708        RC = X86::FR64RegisterClass;
1709      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1710        RC = X86::VR256RegisterClass;
1711      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1712        RC = X86::VR128RegisterClass;
1713      else if (RegVT == MVT::x86mmx)
1714        RC = X86::VR64RegisterClass;
1715      else
1716        llvm_unreachable("Unknown argument type!");
1717
1718      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1719      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1720
1721      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1722      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1723      // right size.
1724      if (VA.getLocInfo() == CCValAssign::SExt)
1725        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1726                               DAG.getValueType(VA.getValVT()));
1727      else if (VA.getLocInfo() == CCValAssign::ZExt)
1728        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1729                               DAG.getValueType(VA.getValVT()));
1730      else if (VA.getLocInfo() == CCValAssign::BCvt)
1731        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1732
1733      if (VA.isExtInLoc()) {
1734        // Handle MMX values passed in XMM regs.
1735        if (RegVT.isVector()) {
1736          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1737                                 ArgValue);
1738        } else
1739          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1740      }
1741    } else {
1742      assert(VA.isMemLoc());
1743      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1744    }
1745
1746    // If value is passed via pointer - do a load.
1747    if (VA.getLocInfo() == CCValAssign::Indirect)
1748      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1749                             MachinePointerInfo(), false, false, 0);
1750
1751    InVals.push_back(ArgValue);
1752  }
1753
1754  // The x86-64 ABI for returning structs by value requires that we copy
1755  // the sret argument into %rax for the return. Save the argument into
1756  // a virtual register so that we can access it from the return points.
1757  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1758    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1759    unsigned Reg = FuncInfo->getSRetReturnReg();
1760    if (!Reg) {
1761      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1762      FuncInfo->setSRetReturnReg(Reg);
1763    }
1764    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1765    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1766  }
1767
1768  unsigned StackSize = CCInfo.getNextStackOffset();
1769  // Align stack specially for tail calls.
1770  if (FuncIsMadeTailCallSafe(CallConv))
1771    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1772
1773  // If the function takes variable number of arguments, make a frame index for
1774  // the start of the first vararg value... for expansion of llvm.va_start.
1775  if (isVarArg) {
1776    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1777                    CallConv != CallingConv::X86_ThisCall)) {
1778      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1779    }
1780    if (Is64Bit) {
1781      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1782
1783      // FIXME: We should really autogenerate these arrays
1784      static const unsigned GPR64ArgRegsWin64[] = {
1785        X86::RCX, X86::RDX, X86::R8,  X86::R9
1786      };
1787      static const unsigned GPR64ArgRegs64Bit[] = {
1788        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1789      };
1790      static const unsigned XMMArgRegs64Bit[] = {
1791        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1792        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1793      };
1794      const unsigned *GPR64ArgRegs;
1795      unsigned NumXMMRegs = 0;
1796
1797      if (IsWin64) {
1798        // The XMM registers which might contain var arg parameters are shadowed
1799        // in their paired GPR.  So we only need to save the GPR to their home
1800        // slots.
1801        TotalNumIntRegs = 4;
1802        GPR64ArgRegs = GPR64ArgRegsWin64;
1803      } else {
1804        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1805        GPR64ArgRegs = GPR64ArgRegs64Bit;
1806
1807        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1808      }
1809      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1810                                                       TotalNumIntRegs);
1811
1812      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1813      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1814             "SSE register cannot be used when SSE is disabled!");
1815      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1816             "SSE register cannot be used when SSE is disabled!");
1817      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1818        // Kernel mode asks for SSE to be disabled, so don't push them
1819        // on the stack.
1820        TotalNumXMMRegs = 0;
1821
1822      if (IsWin64) {
1823        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1824        // Get to the caller-allocated home save location.  Add 8 to account
1825        // for the return address.
1826        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1827        FuncInfo->setRegSaveFrameIndex(
1828          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1829        // Fixup to set vararg frame on shadow area (4 x i64).
1830        if (NumIntRegs < 4)
1831          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1832      } else {
1833        // For X86-64, if there are vararg parameters that are passed via
1834        // registers, then we must store them to their spots on the stack so they
1835        // may be loaded by deferencing the result of va_next.
1836        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1837        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1838        FuncInfo->setRegSaveFrameIndex(
1839          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1840                               false));
1841      }
1842
1843      // Store the integer parameter registers.
1844      SmallVector<SDValue, 8> MemOps;
1845      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1846                                        getPointerTy());
1847      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1848      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1849        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1850                                  DAG.getIntPtrConstant(Offset));
1851        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1852                                     X86::GR64RegisterClass);
1853        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1854        SDValue Store =
1855          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1856                       MachinePointerInfo::getFixedStack(
1857                         FuncInfo->getRegSaveFrameIndex(), Offset),
1858                       false, false, 0);
1859        MemOps.push_back(Store);
1860        Offset += 8;
1861      }
1862
1863      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1864        // Now store the XMM (fp + vector) parameter registers.
1865        SmallVector<SDValue, 11> SaveXMMOps;
1866        SaveXMMOps.push_back(Chain);
1867
1868        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1869        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1870        SaveXMMOps.push_back(ALVal);
1871
1872        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1873                               FuncInfo->getRegSaveFrameIndex()));
1874        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1875                               FuncInfo->getVarArgsFPOffset()));
1876
1877        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1878          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1879                                       X86::VR128RegisterClass);
1880          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1881          SaveXMMOps.push_back(Val);
1882        }
1883        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1884                                     MVT::Other,
1885                                     &SaveXMMOps[0], SaveXMMOps.size()));
1886      }
1887
1888      if (!MemOps.empty())
1889        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1890                            &MemOps[0], MemOps.size());
1891    }
1892  }
1893
1894  // Some CCs need callee pop.
1895  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1896    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1897  } else {
1898    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1899    // If this is an sret function, the return should pop the hidden pointer.
1900    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1901      FuncInfo->setBytesToPopOnReturn(4);
1902  }
1903
1904  if (!Is64Bit) {
1905    // RegSaveFrameIndex is X86-64 only.
1906    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1907    if (CallConv == CallingConv::X86_FastCall ||
1908        CallConv == CallingConv::X86_ThisCall)
1909      // fastcc functions can't have varargs.
1910      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1911  }
1912
1913  return Chain;
1914}
1915
1916SDValue
1917X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1918                                    SDValue StackPtr, SDValue Arg,
1919                                    DebugLoc dl, SelectionDAG &DAG,
1920                                    const CCValAssign &VA,
1921                                    ISD::ArgFlagsTy Flags) const {
1922  unsigned LocMemOffset = VA.getLocMemOffset();
1923  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1924  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1925  if (Flags.isByVal())
1926    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1927
1928  return DAG.getStore(Chain, dl, Arg, PtrOff,
1929                      MachinePointerInfo::getStack(LocMemOffset),
1930                      false, false, 0);
1931}
1932
1933/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1934/// optimization is performed and it is required.
1935SDValue
1936X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1937                                           SDValue &OutRetAddr, SDValue Chain,
1938                                           bool IsTailCall, bool Is64Bit,
1939                                           int FPDiff, DebugLoc dl) const {
1940  // Adjust the Return address stack slot.
1941  EVT VT = getPointerTy();
1942  OutRetAddr = getReturnAddressFrameIndex(DAG);
1943
1944  // Load the "old" Return address.
1945  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1946                           false, false, 0);
1947  return SDValue(OutRetAddr.getNode(), 1);
1948}
1949
1950/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
1951/// optimization is performed and it is required (FPDiff!=0).
1952static SDValue
1953EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1954                         SDValue Chain, SDValue RetAddrFrIdx,
1955                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1956  // Store the return address to the appropriate stack slot.
1957  if (!FPDiff) return Chain;
1958  // Calculate the new stack slot for the return address.
1959  int SlotSize = Is64Bit ? 8 : 4;
1960  int NewReturnAddrFI =
1961    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1962  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1963  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1964  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1965                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1966                       false, false, 0);
1967  return Chain;
1968}
1969
1970SDValue
1971X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1972                             CallingConv::ID CallConv, bool isVarArg,
1973                             bool &isTailCall,
1974                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1975                             const SmallVectorImpl<SDValue> &OutVals,
1976                             const SmallVectorImpl<ISD::InputArg> &Ins,
1977                             DebugLoc dl, SelectionDAG &DAG,
1978                             SmallVectorImpl<SDValue> &InVals) const {
1979  MachineFunction &MF = DAG.getMachineFunction();
1980  bool Is64Bit        = Subtarget->is64Bit();
1981  bool IsWin64        = Subtarget->isTargetWin64();
1982  bool IsStructRet    = CallIsStructReturn(Outs);
1983  bool IsSibcall      = false;
1984
1985  if (isTailCall) {
1986    // Check if it's really possible to do a tail call.
1987    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1988                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1989                                                   Outs, OutVals, Ins, DAG);
1990
1991    // Sibcalls are automatically detected tailcalls which do not require
1992    // ABI changes.
1993    if (!GuaranteedTailCallOpt && isTailCall)
1994      IsSibcall = true;
1995
1996    if (isTailCall)
1997      ++NumTailCalls;
1998  }
1999
2000  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2001         "Var args not supported with calling convention fastcc or ghc");
2002
2003  // Analyze operands of the call, assigning locations to each operand.
2004  SmallVector<CCValAssign, 16> ArgLocs;
2005  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
2006                 ArgLocs, *DAG.getContext());
2007
2008  // Allocate shadow area for Win64
2009  if (IsWin64) {
2010    CCInfo.AllocateStack(32, 8);
2011  }
2012
2013  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2014
2015  // Get a count of how many bytes are to be pushed on the stack.
2016  unsigned NumBytes = CCInfo.getNextStackOffset();
2017  if (IsSibcall)
2018    // This is a sibcall. The memory operands are available in caller's
2019    // own caller's stack.
2020    NumBytes = 0;
2021  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2022    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2023
2024  int FPDiff = 0;
2025  if (isTailCall && !IsSibcall) {
2026    // Lower arguments at fp - stackoffset + fpdiff.
2027    unsigned NumBytesCallerPushed =
2028      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2029    FPDiff = NumBytesCallerPushed - NumBytes;
2030
2031    // Set the delta of movement of the returnaddr stackslot.
2032    // But only set if delta is greater than previous delta.
2033    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2034      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2035  }
2036
2037  if (!IsSibcall)
2038    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2039
2040  SDValue RetAddrFrIdx;
2041  // Load return address for tail calls.
2042  if (isTailCall && FPDiff)
2043    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2044                                    Is64Bit, FPDiff, dl);
2045
2046  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2047  SmallVector<SDValue, 8> MemOpChains;
2048  SDValue StackPtr;
2049
2050  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2051  // of tail call optimization arguments are handle later.
2052  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2053    CCValAssign &VA = ArgLocs[i];
2054    EVT RegVT = VA.getLocVT();
2055    SDValue Arg = OutVals[i];
2056    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2057    bool isByVal = Flags.isByVal();
2058
2059    // Promote the value if needed.
2060    switch (VA.getLocInfo()) {
2061    default: llvm_unreachable("Unknown loc info!");
2062    case CCValAssign::Full: break;
2063    case CCValAssign::SExt:
2064      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2065      break;
2066    case CCValAssign::ZExt:
2067      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2068      break;
2069    case CCValAssign::AExt:
2070      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2071        // Special case: passing MMX values in XMM registers.
2072        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2073        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2074        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2075      } else
2076        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2077      break;
2078    case CCValAssign::BCvt:
2079      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2080      break;
2081    case CCValAssign::Indirect: {
2082      // Store the argument.
2083      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2084      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2085      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2086                           MachinePointerInfo::getFixedStack(FI),
2087                           false, false, 0);
2088      Arg = SpillSlot;
2089      break;
2090    }
2091    }
2092
2093    if (VA.isRegLoc()) {
2094      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2095      if (isVarArg && IsWin64) {
2096        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2097        // shadow reg if callee is a varargs function.
2098        unsigned ShadowReg = 0;
2099        switch (VA.getLocReg()) {
2100        case X86::XMM0: ShadowReg = X86::RCX; break;
2101        case X86::XMM1: ShadowReg = X86::RDX; break;
2102        case X86::XMM2: ShadowReg = X86::R8; break;
2103        case X86::XMM3: ShadowReg = X86::R9; break;
2104        }
2105        if (ShadowReg)
2106          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2107      }
2108    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2109      assert(VA.isMemLoc());
2110      if (StackPtr.getNode() == 0)
2111        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2112      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2113                                             dl, DAG, VA, Flags));
2114    }
2115  }
2116
2117  if (!MemOpChains.empty())
2118    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2119                        &MemOpChains[0], MemOpChains.size());
2120
2121  // Build a sequence of copy-to-reg nodes chained together with token chain
2122  // and flag operands which copy the outgoing args into registers.
2123  SDValue InFlag;
2124  // Tail call byval lowering might overwrite argument registers so in case of
2125  // tail call optimization the copies to registers are lowered later.
2126  if (!isTailCall)
2127    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2128      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2129                               RegsToPass[i].second, InFlag);
2130      InFlag = Chain.getValue(1);
2131    }
2132
2133  if (Subtarget->isPICStyleGOT()) {
2134    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2135    // GOT pointer.
2136    if (!isTailCall) {
2137      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2138                               DAG.getNode(X86ISD::GlobalBaseReg,
2139                                           DebugLoc(), getPointerTy()),
2140                               InFlag);
2141      InFlag = Chain.getValue(1);
2142    } else {
2143      // If we are tail calling and generating PIC/GOT style code load the
2144      // address of the callee into ECX. The value in ecx is used as target of
2145      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2146      // for tail calls on PIC/GOT architectures. Normally we would just put the
2147      // address of GOT into ebx and then call target@PLT. But for tail calls
2148      // ebx would be restored (since ebx is callee saved) before jumping to the
2149      // target@PLT.
2150
2151      // Note: The actual moving to ECX is done further down.
2152      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2153      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2154          !G->getGlobal()->hasProtectedVisibility())
2155        Callee = LowerGlobalAddress(Callee, DAG);
2156      else if (isa<ExternalSymbolSDNode>(Callee))
2157        Callee = LowerExternalSymbol(Callee, DAG);
2158    }
2159  }
2160
2161  if (Is64Bit && isVarArg && !IsWin64) {
2162    // From AMD64 ABI document:
2163    // For calls that may call functions that use varargs or stdargs
2164    // (prototype-less calls or calls to functions containing ellipsis (...) in
2165    // the declaration) %al is used as hidden argument to specify the number
2166    // of SSE registers used. The contents of %al do not need to match exactly
2167    // the number of registers, but must be an ubound on the number of SSE
2168    // registers used and is in the range 0 - 8 inclusive.
2169
2170    // Count the number of XMM registers allocated.
2171    static const unsigned XMMArgRegs[] = {
2172      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2173      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2174    };
2175    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2176    assert((Subtarget->hasXMM() || !NumXMMRegs)
2177           && "SSE registers cannot be used when SSE is disabled");
2178
2179    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2180                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2181    InFlag = Chain.getValue(1);
2182  }
2183
2184
2185  // For tail calls lower the arguments to the 'real' stack slot.
2186  if (isTailCall) {
2187    // Force all the incoming stack arguments to be loaded from the stack
2188    // before any new outgoing arguments are stored to the stack, because the
2189    // outgoing stack slots may alias the incoming argument stack slots, and
2190    // the alias isn't otherwise explicit. This is slightly more conservative
2191    // than necessary, because it means that each store effectively depends
2192    // on every argument instead of just those arguments it would clobber.
2193    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2194
2195    SmallVector<SDValue, 8> MemOpChains2;
2196    SDValue FIN;
2197    int FI = 0;
2198    // Do not flag preceding copytoreg stuff together with the following stuff.
2199    InFlag = SDValue();
2200    if (GuaranteedTailCallOpt) {
2201      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2202        CCValAssign &VA = ArgLocs[i];
2203        if (VA.isRegLoc())
2204          continue;
2205        assert(VA.isMemLoc());
2206        SDValue Arg = OutVals[i];
2207        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2208        // Create frame index.
2209        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2210        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2211        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2212        FIN = DAG.getFrameIndex(FI, getPointerTy());
2213
2214        if (Flags.isByVal()) {
2215          // Copy relative to framepointer.
2216          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2217          if (StackPtr.getNode() == 0)
2218            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2219                                          getPointerTy());
2220          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2221
2222          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2223                                                           ArgChain,
2224                                                           Flags, DAG, dl));
2225        } else {
2226          // Store relative to framepointer.
2227          MemOpChains2.push_back(
2228            DAG.getStore(ArgChain, dl, Arg, FIN,
2229                         MachinePointerInfo::getFixedStack(FI),
2230                         false, false, 0));
2231        }
2232      }
2233    }
2234
2235    if (!MemOpChains2.empty())
2236      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2237                          &MemOpChains2[0], MemOpChains2.size());
2238
2239    // Copy arguments to their registers.
2240    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2241      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2242                               RegsToPass[i].second, InFlag);
2243      InFlag = Chain.getValue(1);
2244    }
2245    InFlag =SDValue();
2246
2247    // Store the return address to the appropriate stack slot.
2248    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2249                                     FPDiff, dl);
2250  }
2251
2252  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2253    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2254    // In the 64-bit large code model, we have to make all calls
2255    // through a register, since the call instruction's 32-bit
2256    // pc-relative offset may not be large enough to hold the whole
2257    // address.
2258  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2259    // If the callee is a GlobalAddress node (quite common, every direct call
2260    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2261    // it.
2262
2263    // We should use extra load for direct calls to dllimported functions in
2264    // non-JIT mode.
2265    const GlobalValue *GV = G->getGlobal();
2266    if (!GV->hasDLLImportLinkage()) {
2267      unsigned char OpFlags = 0;
2268
2269      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2270      // external symbols most go through the PLT in PIC mode.  If the symbol
2271      // has hidden or protected visibility, or if it is static or local, then
2272      // we don't need to use the PLT - we can directly call it.
2273      if (Subtarget->isTargetELF() &&
2274          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2275          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2276        OpFlags = X86II::MO_PLT;
2277      } else if (Subtarget->isPICStyleStubAny() &&
2278                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2279                 (!Subtarget->getTargetTriple().isMacOSX() ||
2280                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2281        // PC-relative references to external symbols should go through $stub,
2282        // unless we're building with the leopard linker or later, which
2283        // automatically synthesizes these stubs.
2284        OpFlags = X86II::MO_DARWIN_STUB;
2285      }
2286
2287      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2288                                          G->getOffset(), OpFlags);
2289    }
2290  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2291    unsigned char OpFlags = 0;
2292
2293    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2294    // external symbols should go through the PLT.
2295    if (Subtarget->isTargetELF() &&
2296        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2297      OpFlags = X86II::MO_PLT;
2298    } else if (Subtarget->isPICStyleStubAny() &&
2299               (!Subtarget->getTargetTriple().isMacOSX() ||
2300                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2301      // PC-relative references to external symbols should go through $stub,
2302      // unless we're building with the leopard linker or later, which
2303      // automatically synthesizes these stubs.
2304      OpFlags = X86II::MO_DARWIN_STUB;
2305    }
2306
2307    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2308                                         OpFlags);
2309  }
2310
2311  // Returns a chain & a flag for retval copy to use.
2312  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2313  SmallVector<SDValue, 8> Ops;
2314
2315  if (!IsSibcall && isTailCall) {
2316    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2317                           DAG.getIntPtrConstant(0, true), InFlag);
2318    InFlag = Chain.getValue(1);
2319  }
2320
2321  Ops.push_back(Chain);
2322  Ops.push_back(Callee);
2323
2324  if (isTailCall)
2325    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2326
2327  // Add argument registers to the end of the list so that they are known live
2328  // into the call.
2329  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2330    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2331                                  RegsToPass[i].second.getValueType()));
2332
2333  // Add an implicit use GOT pointer in EBX.
2334  if (!isTailCall && Subtarget->isPICStyleGOT())
2335    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2336
2337  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2338  if (Is64Bit && isVarArg && !IsWin64)
2339    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2340
2341  if (InFlag.getNode())
2342    Ops.push_back(InFlag);
2343
2344  if (isTailCall) {
2345    // We used to do:
2346    //// If this is the first return lowered for this function, add the regs
2347    //// to the liveout set for the function.
2348    // This isn't right, although it's probably harmless on x86; liveouts
2349    // should be computed from returns not tail calls.  Consider a void
2350    // function making a tail call to a function returning int.
2351    return DAG.getNode(X86ISD::TC_RETURN, dl,
2352                       NodeTys, &Ops[0], Ops.size());
2353  }
2354
2355  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2356  InFlag = Chain.getValue(1);
2357
2358  // Create the CALLSEQ_END node.
2359  unsigned NumBytesForCalleeToPush;
2360  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2361    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2362  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2363    // If this is a call to a struct-return function, the callee
2364    // pops the hidden struct pointer, so we have to push it back.
2365    // This is common for Darwin/X86, Linux & Mingw32 targets.
2366    NumBytesForCalleeToPush = 4;
2367  else
2368    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2369
2370  // Returns a flag for retval copy to use.
2371  if (!IsSibcall) {
2372    Chain = DAG.getCALLSEQ_END(Chain,
2373                               DAG.getIntPtrConstant(NumBytes, true),
2374                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2375                                                     true),
2376                               InFlag);
2377    InFlag = Chain.getValue(1);
2378  }
2379
2380  // Handle result values, copying them out of physregs into vregs that we
2381  // return.
2382  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2383                         Ins, dl, DAG, InVals);
2384}
2385
2386
2387//===----------------------------------------------------------------------===//
2388//                Fast Calling Convention (tail call) implementation
2389//===----------------------------------------------------------------------===//
2390
2391//  Like std call, callee cleans arguments, convention except that ECX is
2392//  reserved for storing the tail called function address. Only 2 registers are
2393//  free for argument passing (inreg). Tail call optimization is performed
2394//  provided:
2395//                * tailcallopt is enabled
2396//                * caller/callee are fastcc
2397//  On X86_64 architecture with GOT-style position independent code only local
2398//  (within module) calls are supported at the moment.
2399//  To keep the stack aligned according to platform abi the function
2400//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2401//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2402//  If a tail called function callee has more arguments than the caller the
2403//  caller needs to make sure that there is room to move the RETADDR to. This is
2404//  achieved by reserving an area the size of the argument delta right after the
2405//  original REtADDR, but before the saved framepointer or the spilled registers
2406//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2407//  stack layout:
2408//    arg1
2409//    arg2
2410//    RETADDR
2411//    [ new RETADDR
2412//      move area ]
2413//    (possible EBP)
2414//    ESI
2415//    EDI
2416//    local1 ..
2417
2418/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2419/// for a 16 byte align requirement.
2420unsigned
2421X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2422                                               SelectionDAG& DAG) const {
2423  MachineFunction &MF = DAG.getMachineFunction();
2424  const TargetMachine &TM = MF.getTarget();
2425  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2426  unsigned StackAlignment = TFI.getStackAlignment();
2427  uint64_t AlignMask = StackAlignment - 1;
2428  int64_t Offset = StackSize;
2429  uint64_t SlotSize = TD->getPointerSize();
2430  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2431    // Number smaller than 12 so just add the difference.
2432    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2433  } else {
2434    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2435    Offset = ((~AlignMask) & Offset) + StackAlignment +
2436      (StackAlignment-SlotSize);
2437  }
2438  return Offset;
2439}
2440
2441/// MatchingStackOffset - Return true if the given stack call argument is
2442/// already available in the same position (relatively) of the caller's
2443/// incoming argument stack.
2444static
2445bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2446                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2447                         const X86InstrInfo *TII) {
2448  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2449  int FI = INT_MAX;
2450  if (Arg.getOpcode() == ISD::CopyFromReg) {
2451    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2452    if (!TargetRegisterInfo::isVirtualRegister(VR))
2453      return false;
2454    MachineInstr *Def = MRI->getVRegDef(VR);
2455    if (!Def)
2456      return false;
2457    if (!Flags.isByVal()) {
2458      if (!TII->isLoadFromStackSlot(Def, FI))
2459        return false;
2460    } else {
2461      unsigned Opcode = Def->getOpcode();
2462      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2463          Def->getOperand(1).isFI()) {
2464        FI = Def->getOperand(1).getIndex();
2465        Bytes = Flags.getByValSize();
2466      } else
2467        return false;
2468    }
2469  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2470    if (Flags.isByVal())
2471      // ByVal argument is passed in as a pointer but it's now being
2472      // dereferenced. e.g.
2473      // define @foo(%struct.X* %A) {
2474      //   tail call @bar(%struct.X* byval %A)
2475      // }
2476      return false;
2477    SDValue Ptr = Ld->getBasePtr();
2478    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2479    if (!FINode)
2480      return false;
2481    FI = FINode->getIndex();
2482  } else
2483    return false;
2484
2485  assert(FI != INT_MAX);
2486  if (!MFI->isFixedObjectIndex(FI))
2487    return false;
2488  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2489}
2490
2491/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2492/// for tail call optimization. Targets which want to do tail call
2493/// optimization should implement this function.
2494bool
2495X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2496                                                     CallingConv::ID CalleeCC,
2497                                                     bool isVarArg,
2498                                                     bool isCalleeStructRet,
2499                                                     bool isCallerStructRet,
2500                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2501                                    const SmallVectorImpl<SDValue> &OutVals,
2502                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2503                                                     SelectionDAG& DAG) const {
2504  if (!IsTailCallConvention(CalleeCC) &&
2505      CalleeCC != CallingConv::C)
2506    return false;
2507
2508  // If -tailcallopt is specified, make fastcc functions tail-callable.
2509  const MachineFunction &MF = DAG.getMachineFunction();
2510  const Function *CallerF = DAG.getMachineFunction().getFunction();
2511  CallingConv::ID CallerCC = CallerF->getCallingConv();
2512  bool CCMatch = CallerCC == CalleeCC;
2513
2514  if (GuaranteedTailCallOpt) {
2515    if (IsTailCallConvention(CalleeCC) && CCMatch)
2516      return true;
2517    return false;
2518  }
2519
2520  // Look for obvious safe cases to perform tail call optimization that do not
2521  // require ABI changes. This is what gcc calls sibcall.
2522
2523  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2524  // emit a special epilogue.
2525  if (RegInfo->needsStackRealignment(MF))
2526    return false;
2527
2528  // Also avoid sibcall optimization if either caller or callee uses struct
2529  // return semantics.
2530  if (isCalleeStructRet || isCallerStructRet)
2531    return false;
2532
2533  // Do not sibcall optimize vararg calls unless all arguments are passed via
2534  // registers
2535  if (isVarArg && !Outs.empty()) {
2536    SmallVector<CCValAssign, 16> ArgLocs;
2537    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2538                   ArgLocs, *DAG.getContext());
2539
2540    // Allocate shadow area for Win64
2541    if (Subtarget->isTargetWin64()) {
2542      CCInfo.AllocateStack(32, 8);
2543    }
2544
2545    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2546    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2547      if (!ArgLocs[i].isRegLoc())
2548        return false;
2549  }
2550
2551  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2552  // Therefore if it's not used by the call it is not safe to optimize this into
2553  // a sibcall.
2554  bool Unused = false;
2555  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2556    if (!Ins[i].Used) {
2557      Unused = true;
2558      break;
2559    }
2560  }
2561  if (Unused) {
2562    SmallVector<CCValAssign, 16> RVLocs;
2563    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2564                   RVLocs, *DAG.getContext());
2565    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2566    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2567      CCValAssign &VA = RVLocs[i];
2568      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2569        return false;
2570    }
2571  }
2572
2573  // If the calling conventions do not match, then we'd better make sure the
2574  // results are returned in the same way as what the caller expects.
2575  if (!CCMatch) {
2576    SmallVector<CCValAssign, 16> RVLocs1;
2577    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2578                    RVLocs1, *DAG.getContext());
2579    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2580
2581    SmallVector<CCValAssign, 16> RVLocs2;
2582    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2583                    RVLocs2, *DAG.getContext());
2584    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2585
2586    if (RVLocs1.size() != RVLocs2.size())
2587      return false;
2588    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2589      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2590        return false;
2591      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2592        return false;
2593      if (RVLocs1[i].isRegLoc()) {
2594        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2595          return false;
2596      } else {
2597        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2598          return false;
2599      }
2600    }
2601  }
2602
2603  // If the callee takes no arguments then go on to check the results of the
2604  // call.
2605  if (!Outs.empty()) {
2606    // Check if stack adjustment is needed. For now, do not do this if any
2607    // argument is passed on the stack.
2608    SmallVector<CCValAssign, 16> ArgLocs;
2609    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2610                   ArgLocs, *DAG.getContext());
2611
2612    // Allocate shadow area for Win64
2613    if (Subtarget->isTargetWin64()) {
2614      CCInfo.AllocateStack(32, 8);
2615    }
2616
2617    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2618    if (CCInfo.getNextStackOffset()) {
2619      MachineFunction &MF = DAG.getMachineFunction();
2620      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2621        return false;
2622
2623      // Check if the arguments are already laid out in the right way as
2624      // the caller's fixed stack objects.
2625      MachineFrameInfo *MFI = MF.getFrameInfo();
2626      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2627      const X86InstrInfo *TII =
2628        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2629      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2630        CCValAssign &VA = ArgLocs[i];
2631        SDValue Arg = OutVals[i];
2632        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2633        if (VA.getLocInfo() == CCValAssign::Indirect)
2634          return false;
2635        if (!VA.isRegLoc()) {
2636          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2637                                   MFI, MRI, TII))
2638            return false;
2639        }
2640      }
2641    }
2642
2643    // If the tailcall address may be in a register, then make sure it's
2644    // possible to register allocate for it. In 32-bit, the call address can
2645    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2646    // callee-saved registers are restored. These happen to be the same
2647    // registers used to pass 'inreg' arguments so watch out for those.
2648    if (!Subtarget->is64Bit() &&
2649        !isa<GlobalAddressSDNode>(Callee) &&
2650        !isa<ExternalSymbolSDNode>(Callee)) {
2651      unsigned NumInRegs = 0;
2652      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2653        CCValAssign &VA = ArgLocs[i];
2654        if (!VA.isRegLoc())
2655          continue;
2656        unsigned Reg = VA.getLocReg();
2657        switch (Reg) {
2658        default: break;
2659        case X86::EAX: case X86::EDX: case X86::ECX:
2660          if (++NumInRegs == 3)
2661            return false;
2662          break;
2663        }
2664      }
2665    }
2666  }
2667
2668  // An stdcall caller is expected to clean up its arguments; the callee
2669  // isn't going to do that.
2670  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2671    return false;
2672
2673  return true;
2674}
2675
2676FastISel *
2677X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2678  return X86::createFastISel(funcInfo);
2679}
2680
2681
2682//===----------------------------------------------------------------------===//
2683//                           Other Lowering Hooks
2684//===----------------------------------------------------------------------===//
2685
2686static bool MayFoldLoad(SDValue Op) {
2687  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2688}
2689
2690static bool MayFoldIntoStore(SDValue Op) {
2691  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2692}
2693
2694static bool isTargetShuffle(unsigned Opcode) {
2695  switch(Opcode) {
2696  default: return false;
2697  case X86ISD::PSHUFD:
2698  case X86ISD::PSHUFHW:
2699  case X86ISD::PSHUFLW:
2700  case X86ISD::SHUFPD:
2701  case X86ISD::PALIGN:
2702  case X86ISD::SHUFPS:
2703  case X86ISD::MOVLHPS:
2704  case X86ISD::MOVLHPD:
2705  case X86ISD::MOVHLPS:
2706  case X86ISD::MOVLPS:
2707  case X86ISD::MOVLPD:
2708  case X86ISD::MOVSHDUP:
2709  case X86ISD::MOVSLDUP:
2710  case X86ISD::MOVDDUP:
2711  case X86ISD::MOVSS:
2712  case X86ISD::MOVSD:
2713  case X86ISD::UNPCKLPS:
2714  case X86ISD::UNPCKLPD:
2715  case X86ISD::VUNPCKLPS:
2716  case X86ISD::VUNPCKLPD:
2717  case X86ISD::VUNPCKLPSY:
2718  case X86ISD::VUNPCKLPDY:
2719  case X86ISD::PUNPCKLWD:
2720  case X86ISD::PUNPCKLBW:
2721  case X86ISD::PUNPCKLDQ:
2722  case X86ISD::PUNPCKLQDQ:
2723  case X86ISD::UNPCKHPS:
2724  case X86ISD::UNPCKHPD:
2725  case X86ISD::PUNPCKHWD:
2726  case X86ISD::PUNPCKHBW:
2727  case X86ISD::PUNPCKHDQ:
2728  case X86ISD::PUNPCKHQDQ:
2729    return true;
2730  }
2731  return false;
2732}
2733
2734static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2735                                               SDValue V1, SelectionDAG &DAG) {
2736  switch(Opc) {
2737  default: llvm_unreachable("Unknown x86 shuffle node");
2738  case X86ISD::MOVSHDUP:
2739  case X86ISD::MOVSLDUP:
2740  case X86ISD::MOVDDUP:
2741    return DAG.getNode(Opc, dl, VT, V1);
2742  }
2743
2744  return SDValue();
2745}
2746
2747static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2748                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2749  switch(Opc) {
2750  default: llvm_unreachable("Unknown x86 shuffle node");
2751  case X86ISD::PSHUFD:
2752  case X86ISD::PSHUFHW:
2753  case X86ISD::PSHUFLW:
2754    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2755  }
2756
2757  return SDValue();
2758}
2759
2760static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2761               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2762  switch(Opc) {
2763  default: llvm_unreachable("Unknown x86 shuffle node");
2764  case X86ISD::PALIGN:
2765  case X86ISD::SHUFPD:
2766  case X86ISD::SHUFPS:
2767    return DAG.getNode(Opc, dl, VT, V1, V2,
2768                       DAG.getConstant(TargetMask, MVT::i8));
2769  }
2770  return SDValue();
2771}
2772
2773static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2774                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2775  switch(Opc) {
2776  default: llvm_unreachable("Unknown x86 shuffle node");
2777  case X86ISD::MOVLHPS:
2778  case X86ISD::MOVLHPD:
2779  case X86ISD::MOVHLPS:
2780  case X86ISD::MOVLPS:
2781  case X86ISD::MOVLPD:
2782  case X86ISD::MOVSS:
2783  case X86ISD::MOVSD:
2784  case X86ISD::UNPCKLPS:
2785  case X86ISD::UNPCKLPD:
2786  case X86ISD::VUNPCKLPS:
2787  case X86ISD::VUNPCKLPD:
2788  case X86ISD::VUNPCKLPSY:
2789  case X86ISD::VUNPCKLPDY:
2790  case X86ISD::PUNPCKLWD:
2791  case X86ISD::PUNPCKLBW:
2792  case X86ISD::PUNPCKLDQ:
2793  case X86ISD::PUNPCKLQDQ:
2794  case X86ISD::UNPCKHPS:
2795  case X86ISD::UNPCKHPD:
2796  case X86ISD::PUNPCKHWD:
2797  case X86ISD::PUNPCKHBW:
2798  case X86ISD::PUNPCKHDQ:
2799  case X86ISD::PUNPCKHQDQ:
2800    return DAG.getNode(Opc, dl, VT, V1, V2);
2801  }
2802  return SDValue();
2803}
2804
2805SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2806  MachineFunction &MF = DAG.getMachineFunction();
2807  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2808  int ReturnAddrIndex = FuncInfo->getRAIndex();
2809
2810  if (ReturnAddrIndex == 0) {
2811    // Set up a frame object for the return address.
2812    uint64_t SlotSize = TD->getPointerSize();
2813    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2814                                                           false);
2815    FuncInfo->setRAIndex(ReturnAddrIndex);
2816  }
2817
2818  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2819}
2820
2821
2822bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2823                                       bool hasSymbolicDisplacement) {
2824  // Offset should fit into 32 bit immediate field.
2825  if (!isInt<32>(Offset))
2826    return false;
2827
2828  // If we don't have a symbolic displacement - we don't have any extra
2829  // restrictions.
2830  if (!hasSymbolicDisplacement)
2831    return true;
2832
2833  // FIXME: Some tweaks might be needed for medium code model.
2834  if (M != CodeModel::Small && M != CodeModel::Kernel)
2835    return false;
2836
2837  // For small code model we assume that latest object is 16MB before end of 31
2838  // bits boundary. We may also accept pretty large negative constants knowing
2839  // that all objects are in the positive half of address space.
2840  if (M == CodeModel::Small && Offset < 16*1024*1024)
2841    return true;
2842
2843  // For kernel code model we know that all object resist in the negative half
2844  // of 32bits address space. We may not accept negative offsets, since they may
2845  // be just off and we may accept pretty large positive ones.
2846  if (M == CodeModel::Kernel && Offset > 0)
2847    return true;
2848
2849  return false;
2850}
2851
2852/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2853/// specific condition code, returning the condition code and the LHS/RHS of the
2854/// comparison to make.
2855static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2856                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2857  if (!isFP) {
2858    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2859      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2860        // X > -1   -> X == 0, jump !sign.
2861        RHS = DAG.getConstant(0, RHS.getValueType());
2862        return X86::COND_NS;
2863      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2864        // X < 0   -> X == 0, jump on sign.
2865        return X86::COND_S;
2866      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2867        // X < 1   -> X <= 0
2868        RHS = DAG.getConstant(0, RHS.getValueType());
2869        return X86::COND_LE;
2870      }
2871    }
2872
2873    switch (SetCCOpcode) {
2874    default: llvm_unreachable("Invalid integer condition!");
2875    case ISD::SETEQ:  return X86::COND_E;
2876    case ISD::SETGT:  return X86::COND_G;
2877    case ISD::SETGE:  return X86::COND_GE;
2878    case ISD::SETLT:  return X86::COND_L;
2879    case ISD::SETLE:  return X86::COND_LE;
2880    case ISD::SETNE:  return X86::COND_NE;
2881    case ISD::SETULT: return X86::COND_B;
2882    case ISD::SETUGT: return X86::COND_A;
2883    case ISD::SETULE: return X86::COND_BE;
2884    case ISD::SETUGE: return X86::COND_AE;
2885    }
2886  }
2887
2888  // First determine if it is required or is profitable to flip the operands.
2889
2890  // If LHS is a foldable load, but RHS is not, flip the condition.
2891  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
2892      !ISD::isNON_EXTLoad(RHS.getNode())) {
2893    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2894    std::swap(LHS, RHS);
2895  }
2896
2897  switch (SetCCOpcode) {
2898  default: break;
2899  case ISD::SETOLT:
2900  case ISD::SETOLE:
2901  case ISD::SETUGT:
2902  case ISD::SETUGE:
2903    std::swap(LHS, RHS);
2904    break;
2905  }
2906
2907  // On a floating point condition, the flags are set as follows:
2908  // ZF  PF  CF   op
2909  //  0 | 0 | 0 | X > Y
2910  //  0 | 0 | 1 | X < Y
2911  //  1 | 0 | 0 | X == Y
2912  //  1 | 1 | 1 | unordered
2913  switch (SetCCOpcode) {
2914  default: llvm_unreachable("Condcode should be pre-legalized away");
2915  case ISD::SETUEQ:
2916  case ISD::SETEQ:   return X86::COND_E;
2917  case ISD::SETOLT:              // flipped
2918  case ISD::SETOGT:
2919  case ISD::SETGT:   return X86::COND_A;
2920  case ISD::SETOLE:              // flipped
2921  case ISD::SETOGE:
2922  case ISD::SETGE:   return X86::COND_AE;
2923  case ISD::SETUGT:              // flipped
2924  case ISD::SETULT:
2925  case ISD::SETLT:   return X86::COND_B;
2926  case ISD::SETUGE:              // flipped
2927  case ISD::SETULE:
2928  case ISD::SETLE:   return X86::COND_BE;
2929  case ISD::SETONE:
2930  case ISD::SETNE:   return X86::COND_NE;
2931  case ISD::SETUO:   return X86::COND_P;
2932  case ISD::SETO:    return X86::COND_NP;
2933  case ISD::SETOEQ:
2934  case ISD::SETUNE:  return X86::COND_INVALID;
2935  }
2936}
2937
2938/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2939/// code. Current x86 isa includes the following FP cmov instructions:
2940/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2941static bool hasFPCMov(unsigned X86CC) {
2942  switch (X86CC) {
2943  default:
2944    return false;
2945  case X86::COND_B:
2946  case X86::COND_BE:
2947  case X86::COND_E:
2948  case X86::COND_P:
2949  case X86::COND_A:
2950  case X86::COND_AE:
2951  case X86::COND_NE:
2952  case X86::COND_NP:
2953    return true;
2954  }
2955}
2956
2957/// isFPImmLegal - Returns true if the target can instruction select the
2958/// specified FP immediate natively. If false, the legalizer will
2959/// materialize the FP immediate as a load from a constant pool.
2960bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2961  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2962    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2963      return true;
2964  }
2965  return false;
2966}
2967
2968/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2969/// the specified range (L, H].
2970static bool isUndefOrInRange(int Val, int Low, int Hi) {
2971  return (Val < 0) || (Val >= Low && Val < Hi);
2972}
2973
2974/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2975/// specified value.
2976static bool isUndefOrEqual(int Val, int CmpVal) {
2977  if (Val < 0 || Val == CmpVal)
2978    return true;
2979  return false;
2980}
2981
2982/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2983/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2984/// the second operand.
2985static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2986  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
2987    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2988  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2989    return (Mask[0] < 2 && Mask[1] < 2);
2990  return false;
2991}
2992
2993bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2994  SmallVector<int, 8> M;
2995  N->getMask(M);
2996  return ::isPSHUFDMask(M, N->getValueType(0));
2997}
2998
2999/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3000/// is suitable for input to PSHUFHW.
3001static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3002  if (VT != MVT::v8i16)
3003    return false;
3004
3005  // Lower quadword copied in order or undef.
3006  for (int i = 0; i != 4; ++i)
3007    if (Mask[i] >= 0 && Mask[i] != i)
3008      return false;
3009
3010  // Upper quadword shuffled.
3011  for (int i = 4; i != 8; ++i)
3012    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3013      return false;
3014
3015  return true;
3016}
3017
3018bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3019  SmallVector<int, 8> M;
3020  N->getMask(M);
3021  return ::isPSHUFHWMask(M, N->getValueType(0));
3022}
3023
3024/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3025/// is suitable for input to PSHUFLW.
3026static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3027  if (VT != MVT::v8i16)
3028    return false;
3029
3030  // Upper quadword copied in order.
3031  for (int i = 4; i != 8; ++i)
3032    if (Mask[i] >= 0 && Mask[i] != i)
3033      return false;
3034
3035  // Lower quadword shuffled.
3036  for (int i = 0; i != 4; ++i)
3037    if (Mask[i] >= 4)
3038      return false;
3039
3040  return true;
3041}
3042
3043bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3044  SmallVector<int, 8> M;
3045  N->getMask(M);
3046  return ::isPSHUFLWMask(M, N->getValueType(0));
3047}
3048
3049/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3050/// is suitable for input to PALIGNR.
3051static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3052                          bool hasSSSE3) {
3053  int i, e = VT.getVectorNumElements();
3054
3055  // Do not handle v2i64 / v2f64 shuffles with palignr.
3056  if (e < 4 || !hasSSSE3)
3057    return false;
3058
3059  for (i = 0; i != e; ++i)
3060    if (Mask[i] >= 0)
3061      break;
3062
3063  // All undef, not a palignr.
3064  if (i == e)
3065    return false;
3066
3067  // Determine if it's ok to perform a palignr with only the LHS, since we
3068  // don't have access to the actual shuffle elements to see if RHS is undef.
3069  bool Unary = Mask[i] < (int)e;
3070  bool NeedsUnary = false;
3071
3072  int s = Mask[i] - i;
3073
3074  // Check the rest of the elements to see if they are consecutive.
3075  for (++i; i != e; ++i) {
3076    int m = Mask[i];
3077    if (m < 0)
3078      continue;
3079
3080    Unary = Unary && (m < (int)e);
3081    NeedsUnary = NeedsUnary || (m < s);
3082
3083    if (NeedsUnary && !Unary)
3084      return false;
3085    if (Unary && m != ((s+i) & (e-1)))
3086      return false;
3087    if (!Unary && m != (s+i))
3088      return false;
3089  }
3090  return true;
3091}
3092
3093bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
3094  SmallVector<int, 8> M;
3095  N->getMask(M);
3096  return ::isPALIGNRMask(M, N->getValueType(0), true);
3097}
3098
3099/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3100/// specifies a shuffle of elements that is suitable for input to SHUFP*.
3101static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3102  int NumElems = VT.getVectorNumElements();
3103  if (NumElems != 2 && NumElems != 4)
3104    return false;
3105
3106  int Half = NumElems / 2;
3107  for (int i = 0; i < Half; ++i)
3108    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3109      return false;
3110  for (int i = Half; i < NumElems; ++i)
3111    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3112      return false;
3113
3114  return true;
3115}
3116
3117bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3118  SmallVector<int, 8> M;
3119  N->getMask(M);
3120  return ::isSHUFPMask(M, N->getValueType(0));
3121}
3122
3123/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3124/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3125/// half elements to come from vector 1 (which would equal the dest.) and
3126/// the upper half to come from vector 2.
3127static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3128  int NumElems = VT.getVectorNumElements();
3129
3130  if (NumElems != 2 && NumElems != 4)
3131    return false;
3132
3133  int Half = NumElems / 2;
3134  for (int i = 0; i < Half; ++i)
3135    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3136      return false;
3137  for (int i = Half; i < NumElems; ++i)
3138    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3139      return false;
3140  return true;
3141}
3142
3143static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3144  SmallVector<int, 8> M;
3145  N->getMask(M);
3146  return isCommutedSHUFPMask(M, N->getValueType(0));
3147}
3148
3149/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3150/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3151bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3152  if (N->getValueType(0).getVectorNumElements() != 4)
3153    return false;
3154
3155  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3156  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3157         isUndefOrEqual(N->getMaskElt(1), 7) &&
3158         isUndefOrEqual(N->getMaskElt(2), 2) &&
3159         isUndefOrEqual(N->getMaskElt(3), 3);
3160}
3161
3162/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3163/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3164/// <2, 3, 2, 3>
3165bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3166  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3167
3168  if (NumElems != 4)
3169    return false;
3170
3171  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3172  isUndefOrEqual(N->getMaskElt(1), 3) &&
3173  isUndefOrEqual(N->getMaskElt(2), 2) &&
3174  isUndefOrEqual(N->getMaskElt(3), 3);
3175}
3176
3177/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3178/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3179bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3180  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3181
3182  if (NumElems != 2 && NumElems != 4)
3183    return false;
3184
3185  for (unsigned i = 0; i < NumElems/2; ++i)
3186    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3187      return false;
3188
3189  for (unsigned i = NumElems/2; i < NumElems; ++i)
3190    if (!isUndefOrEqual(N->getMaskElt(i), i))
3191      return false;
3192
3193  return true;
3194}
3195
3196/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3197/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3198bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3199  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3200
3201  if ((NumElems != 2 && NumElems != 4)
3202      || N->getValueType(0).getSizeInBits() > 128)
3203    return false;
3204
3205  for (unsigned i = 0; i < NumElems/2; ++i)
3206    if (!isUndefOrEqual(N->getMaskElt(i), i))
3207      return false;
3208
3209  for (unsigned i = 0; i < NumElems/2; ++i)
3210    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3211      return false;
3212
3213  return true;
3214}
3215
3216/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3217/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3218static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3219                         bool V2IsSplat = false) {
3220  int NumElts = VT.getVectorNumElements();
3221  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3222    return false;
3223
3224  // Handle vector lengths > 128 bits.  Define a "section" as a set of
3225  // 128 bits.  AVX defines UNPCK* to operate independently on 128-bit
3226  // sections.
3227  unsigned NumSections = VT.getSizeInBits() / 128;
3228  if (NumSections == 0 ) NumSections = 1;  // Handle MMX
3229  unsigned NumSectionElts = NumElts / NumSections;
3230
3231  unsigned Start = 0;
3232  unsigned End = NumSectionElts;
3233  for (unsigned s = 0; s < NumSections; ++s) {
3234    for (unsigned i = Start, j = s * NumSectionElts;
3235         i != End;
3236         i += 2, ++j) {
3237      int BitI  = Mask[i];
3238      int BitI1 = Mask[i+1];
3239      if (!isUndefOrEqual(BitI, j))
3240        return false;
3241      if (V2IsSplat) {
3242        if (!isUndefOrEqual(BitI1, NumElts))
3243          return false;
3244      } else {
3245        if (!isUndefOrEqual(BitI1, j + NumElts))
3246          return false;
3247      }
3248    }
3249    // Process the next 128 bits.
3250    Start += NumSectionElts;
3251    End += NumSectionElts;
3252  }
3253
3254  return true;
3255}
3256
3257bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3258  SmallVector<int, 8> M;
3259  N->getMask(M);
3260  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3261}
3262
3263/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3264/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3265static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3266                         bool V2IsSplat = false) {
3267  int NumElts = VT.getVectorNumElements();
3268  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3269    return false;
3270
3271  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3272    int BitI  = Mask[i];
3273    int BitI1 = Mask[i+1];
3274    if (!isUndefOrEqual(BitI, j + NumElts/2))
3275      return false;
3276    if (V2IsSplat) {
3277      if (isUndefOrEqual(BitI1, NumElts))
3278        return false;
3279    } else {
3280      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3281        return false;
3282    }
3283  }
3284  return true;
3285}
3286
3287bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3288  SmallVector<int, 8> M;
3289  N->getMask(M);
3290  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3291}
3292
3293/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3294/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3295/// <0, 0, 1, 1>
3296static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3297  int NumElems = VT.getVectorNumElements();
3298  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3299    return false;
3300
3301  // Handle vector lengths > 128 bits.  Define a "section" as a set of
3302  // 128 bits.  AVX defines UNPCK* to operate independently on 128-bit
3303  // sections.
3304  unsigned NumSections = VT.getSizeInBits() / 128;
3305  if (NumSections == 0 ) NumSections = 1;  // Handle MMX
3306  unsigned NumSectionElts = NumElems / NumSections;
3307
3308  for (unsigned s = 0; s < NumSections; ++s) {
3309    for (unsigned i = s * NumSectionElts, j = s * NumSectionElts;
3310         i != NumSectionElts * (s + 1);
3311         i += 2, ++j) {
3312      int BitI  = Mask[i];
3313      int BitI1 = Mask[i+1];
3314
3315      if (!isUndefOrEqual(BitI, j))
3316        return false;
3317      if (!isUndefOrEqual(BitI1, j))
3318        return false;
3319    }
3320  }
3321
3322  return true;
3323}
3324
3325bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3326  SmallVector<int, 8> M;
3327  N->getMask(M);
3328  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3329}
3330
3331/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3332/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3333/// <2, 2, 3, 3>
3334static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3335  int NumElems = VT.getVectorNumElements();
3336  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3337    return false;
3338
3339  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3340    int BitI  = Mask[i];
3341    int BitI1 = Mask[i+1];
3342    if (!isUndefOrEqual(BitI, j))
3343      return false;
3344    if (!isUndefOrEqual(BitI1, j))
3345      return false;
3346  }
3347  return true;
3348}
3349
3350bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3351  SmallVector<int, 8> M;
3352  N->getMask(M);
3353  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3354}
3355
3356/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3357/// specifies a shuffle of elements that is suitable for input to MOVSS,
3358/// MOVSD, and MOVD, i.e. setting the lowest element.
3359static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3360  if (VT.getVectorElementType().getSizeInBits() < 32)
3361    return false;
3362
3363  int NumElts = VT.getVectorNumElements();
3364
3365  if (!isUndefOrEqual(Mask[0], NumElts))
3366    return false;
3367
3368  for (int i = 1; i < NumElts; ++i)
3369    if (!isUndefOrEqual(Mask[i], i))
3370      return false;
3371
3372  return true;
3373}
3374
3375bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3376  SmallVector<int, 8> M;
3377  N->getMask(M);
3378  return ::isMOVLMask(M, N->getValueType(0));
3379}
3380
3381/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3382/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3383/// element of vector 2 and the other elements to come from vector 1 in order.
3384static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3385                               bool V2IsSplat = false, bool V2IsUndef = false) {
3386  int NumOps = VT.getVectorNumElements();
3387  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3388    return false;
3389
3390  if (!isUndefOrEqual(Mask[0], 0))
3391    return false;
3392
3393  for (int i = 1; i < NumOps; ++i)
3394    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3395          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3396          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3397      return false;
3398
3399  return true;
3400}
3401
3402static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3403                           bool V2IsUndef = false) {
3404  SmallVector<int, 8> M;
3405  N->getMask(M);
3406  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3407}
3408
3409/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3410/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3411bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3412  if (N->getValueType(0).getVectorNumElements() != 4)
3413    return false;
3414
3415  // Expect 1, 1, 3, 3
3416  for (unsigned i = 0; i < 2; ++i) {
3417    int Elt = N->getMaskElt(i);
3418    if (Elt >= 0 && Elt != 1)
3419      return false;
3420  }
3421
3422  bool HasHi = false;
3423  for (unsigned i = 2; i < 4; ++i) {
3424    int Elt = N->getMaskElt(i);
3425    if (Elt >= 0 && Elt != 3)
3426      return false;
3427    if (Elt == 3)
3428      HasHi = true;
3429  }
3430  // Don't use movshdup if it can be done with a shufps.
3431  // FIXME: verify that matching u, u, 3, 3 is what we want.
3432  return HasHi;
3433}
3434
3435/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3436/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3437bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3438  if (N->getValueType(0).getVectorNumElements() != 4)
3439    return false;
3440
3441  // Expect 0, 0, 2, 2
3442  for (unsigned i = 0; i < 2; ++i)
3443    if (N->getMaskElt(i) > 0)
3444      return false;
3445
3446  bool HasHi = false;
3447  for (unsigned i = 2; i < 4; ++i) {
3448    int Elt = N->getMaskElt(i);
3449    if (Elt >= 0 && Elt != 2)
3450      return false;
3451    if (Elt == 2)
3452      HasHi = true;
3453  }
3454  // Don't use movsldup if it can be done with a shufps.
3455  return HasHi;
3456}
3457
3458/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3459/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3460bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3461  int e = N->getValueType(0).getVectorNumElements() / 2;
3462
3463  for (int i = 0; i < e; ++i)
3464    if (!isUndefOrEqual(N->getMaskElt(i), i))
3465      return false;
3466  for (int i = 0; i < e; ++i)
3467    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3468      return false;
3469  return true;
3470}
3471
3472/// isVEXTRACTF128Index - Return true if the specified
3473/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3474/// suitable for input to VEXTRACTF128.
3475bool X86::isVEXTRACTF128Index(SDNode *N) {
3476  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3477    return false;
3478
3479  // The index should be aligned on a 128-bit boundary.
3480  uint64_t Index =
3481    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3482
3483  unsigned VL = N->getValueType(0).getVectorNumElements();
3484  unsigned VBits = N->getValueType(0).getSizeInBits();
3485  unsigned ElSize = VBits / VL;
3486  bool Result = (Index * ElSize) % 128 == 0;
3487
3488  return Result;
3489}
3490
3491/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3492/// operand specifies a subvector insert that is suitable for input to
3493/// VINSERTF128.
3494bool X86::isVINSERTF128Index(SDNode *N) {
3495  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3496    return false;
3497
3498  // The index should be aligned on a 128-bit boundary.
3499  uint64_t Index =
3500    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3501
3502  unsigned VL = N->getValueType(0).getVectorNumElements();
3503  unsigned VBits = N->getValueType(0).getSizeInBits();
3504  unsigned ElSize = VBits / VL;
3505  bool Result = (Index * ElSize) % 128 == 0;
3506
3507  return Result;
3508}
3509
3510/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3511/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3512unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3513  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3514  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3515
3516  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3517  unsigned Mask = 0;
3518  for (int i = 0; i < NumOperands; ++i) {
3519    int Val = SVOp->getMaskElt(NumOperands-i-1);
3520    if (Val < 0) Val = 0;
3521    if (Val >= NumOperands) Val -= NumOperands;
3522    Mask |= Val;
3523    if (i != NumOperands - 1)
3524      Mask <<= Shift;
3525  }
3526  return Mask;
3527}
3528
3529/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3530/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3531unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3532  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3533  unsigned Mask = 0;
3534  // 8 nodes, but we only care about the last 4.
3535  for (unsigned i = 7; i >= 4; --i) {
3536    int Val = SVOp->getMaskElt(i);
3537    if (Val >= 0)
3538      Mask |= (Val - 4);
3539    if (i != 4)
3540      Mask <<= 2;
3541  }
3542  return Mask;
3543}
3544
3545/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3546/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3547unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3548  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3549  unsigned Mask = 0;
3550  // 8 nodes, but we only care about the first 4.
3551  for (int i = 3; i >= 0; --i) {
3552    int Val = SVOp->getMaskElt(i);
3553    if (Val >= 0)
3554      Mask |= Val;
3555    if (i != 0)
3556      Mask <<= 2;
3557  }
3558  return Mask;
3559}
3560
3561/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3562/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3563unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3564  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3565  EVT VVT = N->getValueType(0);
3566  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3567  int Val = 0;
3568
3569  unsigned i, e;
3570  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3571    Val = SVOp->getMaskElt(i);
3572    if (Val >= 0)
3573      break;
3574  }
3575  return (Val - i) * EltSize;
3576}
3577
3578/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3579/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3580/// instructions.
3581unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3582  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3583    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3584
3585  uint64_t Index =
3586    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3587
3588  EVT VecVT = N->getOperand(0).getValueType();
3589  EVT ElVT = VecVT.getVectorElementType();
3590
3591  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3592
3593  return Index / NumElemsPerChunk;
3594}
3595
3596/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3597/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3598/// instructions.
3599unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3600  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3601    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3602
3603  uint64_t Index =
3604    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3605
3606  EVT VecVT = N->getValueType(0);
3607  EVT ElVT = VecVT.getVectorElementType();
3608
3609  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3610
3611  return Index / NumElemsPerChunk;
3612}
3613
3614/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3615/// constant +0.0.
3616bool X86::isZeroNode(SDValue Elt) {
3617  return ((isa<ConstantSDNode>(Elt) &&
3618           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3619          (isa<ConstantFPSDNode>(Elt) &&
3620           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3621}
3622
3623/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3624/// their permute mask.
3625static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3626                                    SelectionDAG &DAG) {
3627  EVT VT = SVOp->getValueType(0);
3628  unsigned NumElems = VT.getVectorNumElements();
3629  SmallVector<int, 8> MaskVec;
3630
3631  for (unsigned i = 0; i != NumElems; ++i) {
3632    int idx = SVOp->getMaskElt(i);
3633    if (idx < 0)
3634      MaskVec.push_back(idx);
3635    else if (idx < (int)NumElems)
3636      MaskVec.push_back(idx + NumElems);
3637    else
3638      MaskVec.push_back(idx - NumElems);
3639  }
3640  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3641                              SVOp->getOperand(0), &MaskVec[0]);
3642}
3643
3644/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3645/// the two vector operands have swapped position.
3646static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3647  unsigned NumElems = VT.getVectorNumElements();
3648  for (unsigned i = 0; i != NumElems; ++i) {
3649    int idx = Mask[i];
3650    if (idx < 0)
3651      continue;
3652    else if (idx < (int)NumElems)
3653      Mask[i] = idx + NumElems;
3654    else
3655      Mask[i] = idx - NumElems;
3656  }
3657}
3658
3659/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3660/// match movhlps. The lower half elements should come from upper half of
3661/// V1 (and in order), and the upper half elements should come from the upper
3662/// half of V2 (and in order).
3663static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3664  if (Op->getValueType(0).getVectorNumElements() != 4)
3665    return false;
3666  for (unsigned i = 0, e = 2; i != e; ++i)
3667    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3668      return false;
3669  for (unsigned i = 2; i != 4; ++i)
3670    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3671      return false;
3672  return true;
3673}
3674
3675/// isScalarLoadToVector - Returns true if the node is a scalar load that
3676/// is promoted to a vector. It also returns the LoadSDNode by reference if
3677/// required.
3678static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3679  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3680    return false;
3681  N = N->getOperand(0).getNode();
3682  if (!ISD::isNON_EXTLoad(N))
3683    return false;
3684  if (LD)
3685    *LD = cast<LoadSDNode>(N);
3686  return true;
3687}
3688
3689/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3690/// match movlp{s|d}. The lower half elements should come from lower half of
3691/// V1 (and in order), and the upper half elements should come from the upper
3692/// half of V2 (and in order). And since V1 will become the source of the
3693/// MOVLP, it must be either a vector load or a scalar load to vector.
3694static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3695                               ShuffleVectorSDNode *Op) {
3696  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3697    return false;
3698  // Is V2 is a vector load, don't do this transformation. We will try to use
3699  // load folding shufps op.
3700  if (ISD::isNON_EXTLoad(V2))
3701    return false;
3702
3703  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3704
3705  if (NumElems != 2 && NumElems != 4)
3706    return false;
3707  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3708    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3709      return false;
3710  for (unsigned i = NumElems/2; i != NumElems; ++i)
3711    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3712      return false;
3713  return true;
3714}
3715
3716/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3717/// all the same.
3718static bool isSplatVector(SDNode *N) {
3719  if (N->getOpcode() != ISD::BUILD_VECTOR)
3720    return false;
3721
3722  SDValue SplatValue = N->getOperand(0);
3723  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3724    if (N->getOperand(i) != SplatValue)
3725      return false;
3726  return true;
3727}
3728
3729/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3730/// to an zero vector.
3731/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3732static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3733  SDValue V1 = N->getOperand(0);
3734  SDValue V2 = N->getOperand(1);
3735  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3736  for (unsigned i = 0; i != NumElems; ++i) {
3737    int Idx = N->getMaskElt(i);
3738    if (Idx >= (int)NumElems) {
3739      unsigned Opc = V2.getOpcode();
3740      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3741        continue;
3742      if (Opc != ISD::BUILD_VECTOR ||
3743          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3744        return false;
3745    } else if (Idx >= 0) {
3746      unsigned Opc = V1.getOpcode();
3747      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3748        continue;
3749      if (Opc != ISD::BUILD_VECTOR ||
3750          !X86::isZeroNode(V1.getOperand(Idx)))
3751        return false;
3752    }
3753  }
3754  return true;
3755}
3756
3757/// getZeroVector - Returns a vector of specified type with all zero elements.
3758///
3759static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3760                             DebugLoc dl) {
3761  assert(VT.isVector() && "Expected a vector type");
3762
3763  // Always build SSE zero vectors as <4 x i32> bitcasted
3764  // to their dest type. This ensures they get CSE'd.
3765  SDValue Vec;
3766  if (VT.getSizeInBits() == 128) {  // SSE
3767    if (HasSSE2) {  // SSE2
3768      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3769      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3770    } else { // SSE1
3771      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3772      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3773    }
3774  } else if (VT.getSizeInBits() == 256) { // AVX
3775    // 256-bit logic and arithmetic instructions in AVX are
3776    // all floating-point, no support for integer ops. Default
3777    // to emitting fp zeroed vectors then.
3778    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3779    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3780    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3781  }
3782  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3783}
3784
3785/// getOnesVector - Returns a vector of specified type with all bits set.
3786///
3787static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3788  assert(VT.isVector() && "Expected a vector type");
3789
3790  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3791  // type.  This ensures they get CSE'd.
3792  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3793  SDValue Vec;
3794  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3795  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3796}
3797
3798
3799/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3800/// that point to V2 points to its first element.
3801static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3802  EVT VT = SVOp->getValueType(0);
3803  unsigned NumElems = VT.getVectorNumElements();
3804
3805  bool Changed = false;
3806  SmallVector<int, 8> MaskVec;
3807  SVOp->getMask(MaskVec);
3808
3809  for (unsigned i = 0; i != NumElems; ++i) {
3810    if (MaskVec[i] > (int)NumElems) {
3811      MaskVec[i] = NumElems;
3812      Changed = true;
3813    }
3814  }
3815  if (Changed)
3816    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3817                                SVOp->getOperand(1), &MaskVec[0]);
3818  return SDValue(SVOp, 0);
3819}
3820
3821/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3822/// operation of specified width.
3823static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3824                       SDValue V2) {
3825  unsigned NumElems = VT.getVectorNumElements();
3826  SmallVector<int, 8> Mask;
3827  Mask.push_back(NumElems);
3828  for (unsigned i = 1; i != NumElems; ++i)
3829    Mask.push_back(i);
3830  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3831}
3832
3833/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3834static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3835                          SDValue V2) {
3836  unsigned NumElems = VT.getVectorNumElements();
3837  SmallVector<int, 8> Mask;
3838  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3839    Mask.push_back(i);
3840    Mask.push_back(i + NumElems);
3841  }
3842  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3843}
3844
3845/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3846static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3847                          SDValue V2) {
3848  unsigned NumElems = VT.getVectorNumElements();
3849  unsigned Half = NumElems/2;
3850  SmallVector<int, 8> Mask;
3851  for (unsigned i = 0; i != Half; ++i) {
3852    Mask.push_back(i + Half);
3853    Mask.push_back(i + NumElems + Half);
3854  }
3855  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3856}
3857
3858/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3859static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3860  EVT PVT = MVT::v4f32;
3861  EVT VT = SV->getValueType(0);
3862  DebugLoc dl = SV->getDebugLoc();
3863  SDValue V1 = SV->getOperand(0);
3864  int NumElems = VT.getVectorNumElements();
3865  int EltNo = SV->getSplatIndex();
3866
3867  // unpack elements to the correct location
3868  while (NumElems > 4) {
3869    if (EltNo < NumElems/2) {
3870      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3871    } else {
3872      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3873      EltNo -= NumElems/2;
3874    }
3875    NumElems >>= 1;
3876  }
3877
3878  // Perform the splat.
3879  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3880  V1 = DAG.getNode(ISD::BITCAST, dl, PVT, V1);
3881  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3882  return DAG.getNode(ISD::BITCAST, dl, VT, V1);
3883}
3884
3885/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3886/// vector of zero or undef vector.  This produces a shuffle where the low
3887/// element of V2 is swizzled into the zero/undef vector, landing at element
3888/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3889static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3890                                             bool isZero, bool HasSSE2,
3891                                             SelectionDAG &DAG) {
3892  EVT VT = V2.getValueType();
3893  SDValue V1 = isZero
3894    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3895  unsigned NumElems = VT.getVectorNumElements();
3896  SmallVector<int, 16> MaskVec;
3897  for (unsigned i = 0; i != NumElems; ++i)
3898    // If this is the insertion idx, put the low elt of V2 here.
3899    MaskVec.push_back(i == Idx ? NumElems : i);
3900  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3901}
3902
3903/// getShuffleScalarElt - Returns the scalar element that will make up the ith
3904/// element of the result of the vector shuffle.
3905static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
3906                                   unsigned Depth) {
3907  if (Depth == 6)
3908    return SDValue();  // Limit search depth.
3909
3910  SDValue V = SDValue(N, 0);
3911  EVT VT = V.getValueType();
3912  unsigned Opcode = V.getOpcode();
3913
3914  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
3915  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
3916    Index = SV->getMaskElt(Index);
3917
3918    if (Index < 0)
3919      return DAG.getUNDEF(VT.getVectorElementType());
3920
3921    int NumElems = VT.getVectorNumElements();
3922    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
3923    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
3924  }
3925
3926  // Recurse into target specific vector shuffles to find scalars.
3927  if (isTargetShuffle(Opcode)) {
3928    int NumElems = VT.getVectorNumElements();
3929    SmallVector<unsigned, 16> ShuffleMask;
3930    SDValue ImmN;
3931
3932    switch(Opcode) {
3933    case X86ISD::SHUFPS:
3934    case X86ISD::SHUFPD:
3935      ImmN = N->getOperand(N->getNumOperands()-1);
3936      DecodeSHUFPSMask(NumElems,
3937                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
3938                       ShuffleMask);
3939      break;
3940    case X86ISD::PUNPCKHBW:
3941    case X86ISD::PUNPCKHWD:
3942    case X86ISD::PUNPCKHDQ:
3943    case X86ISD::PUNPCKHQDQ:
3944      DecodePUNPCKHMask(NumElems, ShuffleMask);
3945      break;
3946    case X86ISD::UNPCKHPS:
3947    case X86ISD::UNPCKHPD:
3948      DecodeUNPCKHPMask(NumElems, ShuffleMask);
3949      break;
3950    case X86ISD::PUNPCKLBW:
3951    case X86ISD::PUNPCKLWD:
3952    case X86ISD::PUNPCKLDQ:
3953    case X86ISD::PUNPCKLQDQ:
3954      DecodePUNPCKLMask(VT, ShuffleMask);
3955      break;
3956    case X86ISD::UNPCKLPS:
3957    case X86ISD::UNPCKLPD:
3958    case X86ISD::VUNPCKLPS:
3959    case X86ISD::VUNPCKLPD:
3960    case X86ISD::VUNPCKLPSY:
3961    case X86ISD::VUNPCKLPDY:
3962      DecodeUNPCKLPMask(VT, ShuffleMask);
3963      break;
3964    case X86ISD::MOVHLPS:
3965      DecodeMOVHLPSMask(NumElems, ShuffleMask);
3966      break;
3967    case X86ISD::MOVLHPS:
3968      DecodeMOVLHPSMask(NumElems, ShuffleMask);
3969      break;
3970    case X86ISD::PSHUFD:
3971      ImmN = N->getOperand(N->getNumOperands()-1);
3972      DecodePSHUFMask(NumElems,
3973                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
3974                      ShuffleMask);
3975      break;
3976    case X86ISD::PSHUFHW:
3977      ImmN = N->getOperand(N->getNumOperands()-1);
3978      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3979                        ShuffleMask);
3980      break;
3981    case X86ISD::PSHUFLW:
3982      ImmN = N->getOperand(N->getNumOperands()-1);
3983      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3984                        ShuffleMask);
3985      break;
3986    case X86ISD::MOVSS:
3987    case X86ISD::MOVSD: {
3988      // The index 0 always comes from the first element of the second source,
3989      // this is why MOVSS and MOVSD are used in the first place. The other
3990      // elements come from the other positions of the first source vector.
3991      unsigned OpNum = (Index == 0) ? 1 : 0;
3992      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
3993                                 Depth+1);
3994    }
3995    default:
3996      assert("not implemented for target shuffle node");
3997      return SDValue();
3998    }
3999
4000    Index = ShuffleMask[Index];
4001    if (Index < 0)
4002      return DAG.getUNDEF(VT.getVectorElementType());
4003
4004    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4005    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4006                               Depth+1);
4007  }
4008
4009  // Actual nodes that may contain scalar elements
4010  if (Opcode == ISD::BITCAST) {
4011    V = V.getOperand(0);
4012    EVT SrcVT = V.getValueType();
4013    unsigned NumElems = VT.getVectorNumElements();
4014
4015    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4016      return SDValue();
4017  }
4018
4019  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4020    return (Index == 0) ? V.getOperand(0)
4021                          : DAG.getUNDEF(VT.getVectorElementType());
4022
4023  if (V.getOpcode() == ISD::BUILD_VECTOR)
4024    return V.getOperand(Index);
4025
4026  return SDValue();
4027}
4028
4029/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4030/// shuffle operation which come from a consecutively from a zero. The
4031/// search can start in two different directions, from left or right.
4032static
4033unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4034                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4035  int i = 0;
4036
4037  while (i < NumElems) {
4038    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4039    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4040    if (!(Elt.getNode() &&
4041         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4042      break;
4043    ++i;
4044  }
4045
4046  return i;
4047}
4048
4049/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4050/// MaskE correspond consecutively to elements from one of the vector operands,
4051/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4052static
4053bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4054                              int OpIdx, int NumElems, unsigned &OpNum) {
4055  bool SeenV1 = false;
4056  bool SeenV2 = false;
4057
4058  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4059    int Idx = SVOp->getMaskElt(i);
4060    // Ignore undef indicies
4061    if (Idx < 0)
4062      continue;
4063
4064    if (Idx < NumElems)
4065      SeenV1 = true;
4066    else
4067      SeenV2 = true;
4068
4069    // Only accept consecutive elements from the same vector
4070    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4071      return false;
4072  }
4073
4074  OpNum = SeenV1 ? 0 : 1;
4075  return true;
4076}
4077
4078/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4079/// logical left shift of a vector.
4080static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4081                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4082  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4083  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4084              false /* check zeros from right */, DAG);
4085  unsigned OpSrc;
4086
4087  if (!NumZeros)
4088    return false;
4089
4090  // Considering the elements in the mask that are not consecutive zeros,
4091  // check if they consecutively come from only one of the source vectors.
4092  //
4093  //               V1 = {X, A, B, C}     0
4094  //                         \  \  \    /
4095  //   vector_shuffle V1, V2 <1, 2, 3, X>
4096  //
4097  if (!isShuffleMaskConsecutive(SVOp,
4098            0,                   // Mask Start Index
4099            NumElems-NumZeros-1, // Mask End Index
4100            NumZeros,            // Where to start looking in the src vector
4101            NumElems,            // Number of elements in vector
4102            OpSrc))              // Which source operand ?
4103    return false;
4104
4105  isLeft = false;
4106  ShAmt = NumZeros;
4107  ShVal = SVOp->getOperand(OpSrc);
4108  return true;
4109}
4110
4111/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4112/// logical left shift of a vector.
4113static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4114                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4115  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4116  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4117              true /* check zeros from left */, DAG);
4118  unsigned OpSrc;
4119
4120  if (!NumZeros)
4121    return false;
4122
4123  // Considering the elements in the mask that are not consecutive zeros,
4124  // check if they consecutively come from only one of the source vectors.
4125  //
4126  //                           0    { A, B, X, X } = V2
4127  //                          / \    /  /
4128  //   vector_shuffle V1, V2 <X, X, 4, 5>
4129  //
4130  if (!isShuffleMaskConsecutive(SVOp,
4131            NumZeros,     // Mask Start Index
4132            NumElems-1,   // Mask End Index
4133            0,            // Where to start looking in the src vector
4134            NumElems,     // Number of elements in vector
4135            OpSrc))       // Which source operand ?
4136    return false;
4137
4138  isLeft = true;
4139  ShAmt = NumZeros;
4140  ShVal = SVOp->getOperand(OpSrc);
4141  return true;
4142}
4143
4144/// isVectorShift - Returns true if the shuffle can be implemented as a
4145/// logical left or right shift of a vector.
4146static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4147                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4148  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4149      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4150    return true;
4151
4152  return false;
4153}
4154
4155/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4156///
4157static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4158                                       unsigned NumNonZero, unsigned NumZero,
4159                                       SelectionDAG &DAG,
4160                                       const TargetLowering &TLI) {
4161  if (NumNonZero > 8)
4162    return SDValue();
4163
4164  DebugLoc dl = Op.getDebugLoc();
4165  SDValue V(0, 0);
4166  bool First = true;
4167  for (unsigned i = 0; i < 16; ++i) {
4168    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4169    if (ThisIsNonZero && First) {
4170      if (NumZero)
4171        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4172      else
4173        V = DAG.getUNDEF(MVT::v8i16);
4174      First = false;
4175    }
4176
4177    if ((i & 1) != 0) {
4178      SDValue ThisElt(0, 0), LastElt(0, 0);
4179      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4180      if (LastIsNonZero) {
4181        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4182                              MVT::i16, Op.getOperand(i-1));
4183      }
4184      if (ThisIsNonZero) {
4185        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4186        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4187                              ThisElt, DAG.getConstant(8, MVT::i8));
4188        if (LastIsNonZero)
4189          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4190      } else
4191        ThisElt = LastElt;
4192
4193      if (ThisElt.getNode())
4194        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4195                        DAG.getIntPtrConstant(i/2));
4196    }
4197  }
4198
4199  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4200}
4201
4202/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4203///
4204static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4205                                     unsigned NumNonZero, unsigned NumZero,
4206                                     SelectionDAG &DAG,
4207                                     const TargetLowering &TLI) {
4208  if (NumNonZero > 4)
4209    return SDValue();
4210
4211  DebugLoc dl = Op.getDebugLoc();
4212  SDValue V(0, 0);
4213  bool First = true;
4214  for (unsigned i = 0; i < 8; ++i) {
4215    bool isNonZero = (NonZeros & (1 << i)) != 0;
4216    if (isNonZero) {
4217      if (First) {
4218        if (NumZero)
4219          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4220        else
4221          V = DAG.getUNDEF(MVT::v8i16);
4222        First = false;
4223      }
4224      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4225                      MVT::v8i16, V, Op.getOperand(i),
4226                      DAG.getIntPtrConstant(i));
4227    }
4228  }
4229
4230  return V;
4231}
4232
4233/// getVShift - Return a vector logical shift node.
4234///
4235static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4236                         unsigned NumBits, SelectionDAG &DAG,
4237                         const TargetLowering &TLI, DebugLoc dl) {
4238  EVT ShVT = MVT::v2i64;
4239  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4240  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4241  return DAG.getNode(ISD::BITCAST, dl, VT,
4242                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4243                             DAG.getConstant(NumBits,
4244                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4245}
4246
4247SDValue
4248X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4249                                          SelectionDAG &DAG) const {
4250
4251  // Check if the scalar load can be widened into a vector load. And if
4252  // the address is "base + cst" see if the cst can be "absorbed" into
4253  // the shuffle mask.
4254  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4255    SDValue Ptr = LD->getBasePtr();
4256    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4257      return SDValue();
4258    EVT PVT = LD->getValueType(0);
4259    if (PVT != MVT::i32 && PVT != MVT::f32)
4260      return SDValue();
4261
4262    int FI = -1;
4263    int64_t Offset = 0;
4264    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4265      FI = FINode->getIndex();
4266      Offset = 0;
4267    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4268               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4269      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4270      Offset = Ptr.getConstantOperandVal(1);
4271      Ptr = Ptr.getOperand(0);
4272    } else {
4273      return SDValue();
4274    }
4275
4276    SDValue Chain = LD->getChain();
4277    // Make sure the stack object alignment is at least 16.
4278    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4279    if (DAG.InferPtrAlignment(Ptr) < 16) {
4280      if (MFI->isFixedObjectIndex(FI)) {
4281        // Can't change the alignment. FIXME: It's possible to compute
4282        // the exact stack offset and reference FI + adjust offset instead.
4283        // If someone *really* cares about this. That's the way to implement it.
4284        return SDValue();
4285      } else {
4286        MFI->setObjectAlignment(FI, 16);
4287      }
4288    }
4289
4290    // (Offset % 16) must be multiple of 4. Then address is then
4291    // Ptr + (Offset & ~15).
4292    if (Offset < 0)
4293      return SDValue();
4294    if ((Offset % 16) & 3)
4295      return SDValue();
4296    int64_t StartOffset = Offset & ~15;
4297    if (StartOffset)
4298      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4299                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4300
4301    int EltNo = (Offset - StartOffset) >> 2;
4302    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4303    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4304    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
4305                             LD->getPointerInfo().getWithOffset(StartOffset),
4306                             false, false, 0);
4307    // Canonicalize it to a v4i32 shuffle.
4308    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
4309    return DAG.getNode(ISD::BITCAST, dl, VT,
4310                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4311                                            DAG.getUNDEF(MVT::v4i32),&Mask[0]));
4312  }
4313
4314  return SDValue();
4315}
4316
4317/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4318/// vector of type 'VT', see if the elements can be replaced by a single large
4319/// load which has the same value as a build_vector whose operands are 'elts'.
4320///
4321/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4322///
4323/// FIXME: we'd also like to handle the case where the last elements are zero
4324/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4325/// There's even a handy isZeroNode for that purpose.
4326static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4327                                        DebugLoc &DL, SelectionDAG &DAG) {
4328  EVT EltVT = VT.getVectorElementType();
4329  unsigned NumElems = Elts.size();
4330
4331  LoadSDNode *LDBase = NULL;
4332  unsigned LastLoadedElt = -1U;
4333
4334  // For each element in the initializer, see if we've found a load or an undef.
4335  // If we don't find an initial load element, or later load elements are
4336  // non-consecutive, bail out.
4337  for (unsigned i = 0; i < NumElems; ++i) {
4338    SDValue Elt = Elts[i];
4339
4340    if (!Elt.getNode() ||
4341        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4342      return SDValue();
4343    if (!LDBase) {
4344      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4345        return SDValue();
4346      LDBase = cast<LoadSDNode>(Elt.getNode());
4347      LastLoadedElt = i;
4348      continue;
4349    }
4350    if (Elt.getOpcode() == ISD::UNDEF)
4351      continue;
4352
4353    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4354    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4355      return SDValue();
4356    LastLoadedElt = i;
4357  }
4358
4359  // If we have found an entire vector of loads and undefs, then return a large
4360  // load of the entire vector width starting at the base pointer.  If we found
4361  // consecutive loads for the low half, generate a vzext_load node.
4362  if (LastLoadedElt == NumElems - 1) {
4363    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4364      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4365                         LDBase->getPointerInfo(),
4366                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4367    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4368                       LDBase->getPointerInfo(),
4369                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4370                       LDBase->getAlignment());
4371  } else if (NumElems == 4 && LastLoadedElt == 1) {
4372    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4373    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4374    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4375                                              Ops, 2, MVT::i32,
4376                                              LDBase->getMemOperand());
4377    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4378  }
4379  return SDValue();
4380}
4381
4382SDValue
4383X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4384  DebugLoc dl = Op.getDebugLoc();
4385
4386  EVT VT = Op.getValueType();
4387  EVT ExtVT = VT.getVectorElementType();
4388
4389  unsigned NumElems = Op.getNumOperands();
4390
4391  // For AVX-length vectors, build the individual 128-bit pieces and
4392  // use shuffles to put them in place.
4393  if (VT.getSizeInBits() > 256 &&
4394      Subtarget->hasAVX() &&
4395      !ISD::isBuildVectorAllZeros(Op.getNode())) {
4396    SmallVector<SDValue, 8> V;
4397    V.resize(NumElems);
4398    for (unsigned i = 0; i < NumElems; ++i) {
4399      V[i] = Op.getOperand(i);
4400    }
4401
4402    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
4403
4404    // Build the lower subvector.
4405    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
4406    // Build the upper subvector.
4407    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
4408                                NumElems/2);
4409
4410    return ConcatVectors(Lower, Upper, DAG);
4411  }
4412
4413  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
4414  // All one's are handled with pcmpeqd. In AVX, zero's are handled with
4415  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
4416  // is present, so AllOnes is ignored.
4417  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4418      (Op.getValueType().getSizeInBits() != 256 &&
4419       ISD::isBuildVectorAllOnes(Op.getNode()))) {
4420    // Canonicalize this to <4 x i32> (SSE) to
4421    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4422    // eliminated on x86-32 hosts.
4423    if (Op.getValueType() == MVT::v4i32)
4424      return Op;
4425
4426    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4427      return getOnesVector(Op.getValueType(), DAG, dl);
4428    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4429  }
4430
4431  unsigned EVTBits = ExtVT.getSizeInBits();
4432
4433  unsigned NumZero  = 0;
4434  unsigned NumNonZero = 0;
4435  unsigned NonZeros = 0;
4436  bool IsAllConstants = true;
4437  SmallSet<SDValue, 8> Values;
4438  for (unsigned i = 0; i < NumElems; ++i) {
4439    SDValue Elt = Op.getOperand(i);
4440    if (Elt.getOpcode() == ISD::UNDEF)
4441      continue;
4442    Values.insert(Elt);
4443    if (Elt.getOpcode() != ISD::Constant &&
4444        Elt.getOpcode() != ISD::ConstantFP)
4445      IsAllConstants = false;
4446    if (X86::isZeroNode(Elt))
4447      NumZero++;
4448    else {
4449      NonZeros |= (1 << i);
4450      NumNonZero++;
4451    }
4452  }
4453
4454  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4455  if (NumNonZero == 0)
4456    return DAG.getUNDEF(VT);
4457
4458  // Special case for single non-zero, non-undef, element.
4459  if (NumNonZero == 1) {
4460    unsigned Idx = CountTrailingZeros_32(NonZeros);
4461    SDValue Item = Op.getOperand(Idx);
4462
4463    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4464    // the value are obviously zero, truncate the value to i32 and do the
4465    // insertion that way.  Only do this if the value is non-constant or if the
4466    // value is a constant being inserted into element 0.  It is cheaper to do
4467    // a constant pool load than it is to do a movd + shuffle.
4468    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4469        (!IsAllConstants || Idx == 0)) {
4470      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4471        // Handle SSE only.
4472        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4473        EVT VecVT = MVT::v4i32;
4474        unsigned VecElts = 4;
4475
4476        // Truncate the value (which may itself be a constant) to i32, and
4477        // convert it to a vector with movd (S2V+shuffle to zero extend).
4478        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4479        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4480        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4481                                           Subtarget->hasSSE2(), DAG);
4482
4483        // Now we have our 32-bit value zero extended in the low element of
4484        // a vector.  If Idx != 0, swizzle it into place.
4485        if (Idx != 0) {
4486          SmallVector<int, 4> Mask;
4487          Mask.push_back(Idx);
4488          for (unsigned i = 1; i != VecElts; ++i)
4489            Mask.push_back(i);
4490          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4491                                      DAG.getUNDEF(Item.getValueType()),
4492                                      &Mask[0]);
4493        }
4494        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
4495      }
4496    }
4497
4498    // If we have a constant or non-constant insertion into the low element of
4499    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4500    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4501    // depending on what the source datatype is.
4502    if (Idx == 0) {
4503      if (NumZero == 0) {
4504        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4505      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4506          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4507        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4508        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4509        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4510                                           DAG);
4511      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4512        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4513        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4514        EVT MiddleVT = MVT::v4i32;
4515        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4516        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4517                                           Subtarget->hasSSE2(), DAG);
4518        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
4519      }
4520    }
4521
4522    // Is it a vector logical left shift?
4523    if (NumElems == 2 && Idx == 1 &&
4524        X86::isZeroNode(Op.getOperand(0)) &&
4525        !X86::isZeroNode(Op.getOperand(1))) {
4526      unsigned NumBits = VT.getSizeInBits();
4527      return getVShift(true, VT,
4528                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4529                                   VT, Op.getOperand(1)),
4530                       NumBits/2, DAG, *this, dl);
4531    }
4532
4533    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4534      return SDValue();
4535
4536    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4537    // is a non-constant being inserted into an element other than the low one,
4538    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4539    // movd/movss) to move this into the low element, then shuffle it into
4540    // place.
4541    if (EVTBits == 32) {
4542      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4543
4544      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4545      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4546                                         Subtarget->hasSSE2(), DAG);
4547      SmallVector<int, 8> MaskVec;
4548      for (unsigned i = 0; i < NumElems; i++)
4549        MaskVec.push_back(i == Idx ? 0 : 1);
4550      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4551    }
4552  }
4553
4554  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4555  if (Values.size() == 1) {
4556    if (EVTBits == 32) {
4557      // Instead of a shuffle like this:
4558      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4559      // Check if it's possible to issue this instead.
4560      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4561      unsigned Idx = CountTrailingZeros_32(NonZeros);
4562      SDValue Item = Op.getOperand(Idx);
4563      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4564        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4565    }
4566    return SDValue();
4567  }
4568
4569  // A vector full of immediates; various special cases are already
4570  // handled, so this is best done with a single constant-pool load.
4571  if (IsAllConstants)
4572    return SDValue();
4573
4574  // Let legalizer expand 2-wide build_vectors.
4575  if (EVTBits == 64) {
4576    if (NumNonZero == 1) {
4577      // One half is zero or undef.
4578      unsigned Idx = CountTrailingZeros_32(NonZeros);
4579      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4580                                 Op.getOperand(Idx));
4581      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4582                                         Subtarget->hasSSE2(), DAG);
4583    }
4584    return SDValue();
4585  }
4586
4587  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4588  if (EVTBits == 8 && NumElems == 16) {
4589    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4590                                        *this);
4591    if (V.getNode()) return V;
4592  }
4593
4594  if (EVTBits == 16 && NumElems == 8) {
4595    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4596                                      *this);
4597    if (V.getNode()) return V;
4598  }
4599
4600  // If element VT is == 32 bits, turn it into a number of shuffles.
4601  SmallVector<SDValue, 8> V;
4602  V.resize(NumElems);
4603  if (NumElems == 4 && NumZero > 0) {
4604    for (unsigned i = 0; i < 4; ++i) {
4605      bool isZero = !(NonZeros & (1 << i));
4606      if (isZero)
4607        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4608      else
4609        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4610    }
4611
4612    for (unsigned i = 0; i < 2; ++i) {
4613      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4614        default: break;
4615        case 0:
4616          V[i] = V[i*2];  // Must be a zero vector.
4617          break;
4618        case 1:
4619          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4620          break;
4621        case 2:
4622          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4623          break;
4624        case 3:
4625          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4626          break;
4627      }
4628    }
4629
4630    SmallVector<int, 8> MaskVec;
4631    bool Reverse = (NonZeros & 0x3) == 2;
4632    for (unsigned i = 0; i < 2; ++i)
4633      MaskVec.push_back(Reverse ? 1-i : i);
4634    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4635    for (unsigned i = 0; i < 2; ++i)
4636      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4637    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4638  }
4639
4640  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4641    // Check for a build vector of consecutive loads.
4642    for (unsigned i = 0; i < NumElems; ++i)
4643      V[i] = Op.getOperand(i);
4644
4645    // Check for elements which are consecutive loads.
4646    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4647    if (LD.getNode())
4648      return LD;
4649
4650    // For SSE 4.1, use insertps to put the high elements into the low element.
4651    if (getSubtarget()->hasSSE41()) {
4652      SDValue Result;
4653      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4654        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4655      else
4656        Result = DAG.getUNDEF(VT);
4657
4658      for (unsigned i = 1; i < NumElems; ++i) {
4659        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4660        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4661                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4662      }
4663      return Result;
4664    }
4665
4666    // Otherwise, expand into a number of unpckl*, start by extending each of
4667    // our (non-undef) elements to the full vector width with the element in the
4668    // bottom slot of the vector (which generates no code for SSE).
4669    for (unsigned i = 0; i < NumElems; ++i) {
4670      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4671        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4672      else
4673        V[i] = DAG.getUNDEF(VT);
4674    }
4675
4676    // Next, we iteratively mix elements, e.g. for v4f32:
4677    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4678    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4679    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4680    unsigned EltStride = NumElems >> 1;
4681    while (EltStride != 0) {
4682      for (unsigned i = 0; i < EltStride; ++i) {
4683        // If V[i+EltStride] is undef and this is the first round of mixing,
4684        // then it is safe to just drop this shuffle: V[i] is already in the
4685        // right place, the one element (since it's the first round) being
4686        // inserted as undef can be dropped.  This isn't safe for successive
4687        // rounds because they will permute elements within both vectors.
4688        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4689            EltStride == NumElems/2)
4690          continue;
4691
4692        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4693      }
4694      EltStride >>= 1;
4695    }
4696    return V[0];
4697  }
4698  return SDValue();
4699}
4700
4701SDValue
4702X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4703  // We support concatenate two MMX registers and place them in a MMX
4704  // register.  This is better than doing a stack convert.
4705  DebugLoc dl = Op.getDebugLoc();
4706  EVT ResVT = Op.getValueType();
4707  assert(Op.getNumOperands() == 2);
4708  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4709         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4710  int Mask[2];
4711  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
4712  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4713  InVec = Op.getOperand(1);
4714  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4715    unsigned NumElts = ResVT.getVectorNumElements();
4716    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4717    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4718                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4719  } else {
4720    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
4721    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4722    Mask[0] = 0; Mask[1] = 2;
4723    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4724  }
4725  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4726}
4727
4728// v8i16 shuffles - Prefer shuffles in the following order:
4729// 1. [all]   pshuflw, pshufhw, optional move
4730// 2. [ssse3] 1 x pshufb
4731// 3. [ssse3] 2 x pshufb + 1 x por
4732// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4733SDValue
4734X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4735                                            SelectionDAG &DAG) const {
4736  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4737  SDValue V1 = SVOp->getOperand(0);
4738  SDValue V2 = SVOp->getOperand(1);
4739  DebugLoc dl = SVOp->getDebugLoc();
4740  SmallVector<int, 8> MaskVals;
4741
4742  // Determine if more than 1 of the words in each of the low and high quadwords
4743  // of the result come from the same quadword of one of the two inputs.  Undef
4744  // mask values count as coming from any quadword, for better codegen.
4745  SmallVector<unsigned, 4> LoQuad(4);
4746  SmallVector<unsigned, 4> HiQuad(4);
4747  BitVector InputQuads(4);
4748  for (unsigned i = 0; i < 8; ++i) {
4749    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4750    int EltIdx = SVOp->getMaskElt(i);
4751    MaskVals.push_back(EltIdx);
4752    if (EltIdx < 0) {
4753      ++Quad[0];
4754      ++Quad[1];
4755      ++Quad[2];
4756      ++Quad[3];
4757      continue;
4758    }
4759    ++Quad[EltIdx / 4];
4760    InputQuads.set(EltIdx / 4);
4761  }
4762
4763  int BestLoQuad = -1;
4764  unsigned MaxQuad = 1;
4765  for (unsigned i = 0; i < 4; ++i) {
4766    if (LoQuad[i] > MaxQuad) {
4767      BestLoQuad = i;
4768      MaxQuad = LoQuad[i];
4769    }
4770  }
4771
4772  int BestHiQuad = -1;
4773  MaxQuad = 1;
4774  for (unsigned i = 0; i < 4; ++i) {
4775    if (HiQuad[i] > MaxQuad) {
4776      BestHiQuad = i;
4777      MaxQuad = HiQuad[i];
4778    }
4779  }
4780
4781  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4782  // of the two input vectors, shuffle them into one input vector so only a
4783  // single pshufb instruction is necessary. If There are more than 2 input
4784  // quads, disable the next transformation since it does not help SSSE3.
4785  bool V1Used = InputQuads[0] || InputQuads[1];
4786  bool V2Used = InputQuads[2] || InputQuads[3];
4787  if (Subtarget->hasSSSE3()) {
4788    if (InputQuads.count() == 2 && V1Used && V2Used) {
4789      BestLoQuad = InputQuads.find_first();
4790      BestHiQuad = InputQuads.find_next(BestLoQuad);
4791    }
4792    if (InputQuads.count() > 2) {
4793      BestLoQuad = -1;
4794      BestHiQuad = -1;
4795    }
4796  }
4797
4798  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4799  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4800  // words from all 4 input quadwords.
4801  SDValue NewV;
4802  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4803    SmallVector<int, 8> MaskV;
4804    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4805    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4806    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4807                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
4808                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
4809    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
4810
4811    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4812    // source words for the shuffle, to aid later transformations.
4813    bool AllWordsInNewV = true;
4814    bool InOrder[2] = { true, true };
4815    for (unsigned i = 0; i != 8; ++i) {
4816      int idx = MaskVals[i];
4817      if (idx != (int)i)
4818        InOrder[i/4] = false;
4819      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4820        continue;
4821      AllWordsInNewV = false;
4822      break;
4823    }
4824
4825    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4826    if (AllWordsInNewV) {
4827      for (int i = 0; i != 8; ++i) {
4828        int idx = MaskVals[i];
4829        if (idx < 0)
4830          continue;
4831        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4832        if ((idx != i) && idx < 4)
4833          pshufhw = false;
4834        if ((idx != i) && idx > 3)
4835          pshuflw = false;
4836      }
4837      V1 = NewV;
4838      V2Used = false;
4839      BestLoQuad = 0;
4840      BestHiQuad = 1;
4841    }
4842
4843    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4844    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4845    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4846      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4847      unsigned TargetMask = 0;
4848      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4849                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4850      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4851                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4852      V1 = NewV.getOperand(0);
4853      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4854    }
4855  }
4856
4857  // If we have SSSE3, and all words of the result are from 1 input vector,
4858  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4859  // is present, fall back to case 4.
4860  if (Subtarget->hasSSSE3()) {
4861    SmallVector<SDValue,16> pshufbMask;
4862
4863    // If we have elements from both input vectors, set the high bit of the
4864    // shuffle mask element to zero out elements that come from V2 in the V1
4865    // mask, and elements that come from V1 in the V2 mask, so that the two
4866    // results can be OR'd together.
4867    bool TwoInputs = V1Used && V2Used;
4868    for (unsigned i = 0; i != 8; ++i) {
4869      int EltIdx = MaskVals[i] * 2;
4870      if (TwoInputs && (EltIdx >= 16)) {
4871        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4872        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4873        continue;
4874      }
4875      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4876      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4877    }
4878    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
4879    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4880                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4881                                 MVT::v16i8, &pshufbMask[0], 16));
4882    if (!TwoInputs)
4883      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4884
4885    // Calculate the shuffle mask for the second input, shuffle it, and
4886    // OR it with the first shuffled input.
4887    pshufbMask.clear();
4888    for (unsigned i = 0; i != 8; ++i) {
4889      int EltIdx = MaskVals[i] * 2;
4890      if (EltIdx < 16) {
4891        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4892        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4893        continue;
4894      }
4895      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4896      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4897    }
4898    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
4899    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4900                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4901                                 MVT::v16i8, &pshufbMask[0], 16));
4902    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4903    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4904  }
4905
4906  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4907  // and update MaskVals with new element order.
4908  BitVector InOrder(8);
4909  if (BestLoQuad >= 0) {
4910    SmallVector<int, 8> MaskV;
4911    for (int i = 0; i != 4; ++i) {
4912      int idx = MaskVals[i];
4913      if (idx < 0) {
4914        MaskV.push_back(-1);
4915        InOrder.set(i);
4916      } else if ((idx / 4) == BestLoQuad) {
4917        MaskV.push_back(idx & 3);
4918        InOrder.set(i);
4919      } else {
4920        MaskV.push_back(-1);
4921      }
4922    }
4923    for (unsigned i = 4; i != 8; ++i)
4924      MaskV.push_back(i);
4925    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4926                                &MaskV[0]);
4927
4928    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4929      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4930                               NewV.getOperand(0),
4931                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4932                               DAG);
4933  }
4934
4935  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4936  // and update MaskVals with the new element order.
4937  if (BestHiQuad >= 0) {
4938    SmallVector<int, 8> MaskV;
4939    for (unsigned i = 0; i != 4; ++i)
4940      MaskV.push_back(i);
4941    for (unsigned i = 4; i != 8; ++i) {
4942      int idx = MaskVals[i];
4943      if (idx < 0) {
4944        MaskV.push_back(-1);
4945        InOrder.set(i);
4946      } else if ((idx / 4) == BestHiQuad) {
4947        MaskV.push_back((idx & 3) + 4);
4948        InOrder.set(i);
4949      } else {
4950        MaskV.push_back(-1);
4951      }
4952    }
4953    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4954                                &MaskV[0]);
4955
4956    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4957      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4958                              NewV.getOperand(0),
4959                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4960                              DAG);
4961  }
4962
4963  // In case BestHi & BestLo were both -1, which means each quadword has a word
4964  // from each of the four input quadwords, calculate the InOrder bitvector now
4965  // before falling through to the insert/extract cleanup.
4966  if (BestLoQuad == -1 && BestHiQuad == -1) {
4967    NewV = V1;
4968    for (int i = 0; i != 8; ++i)
4969      if (MaskVals[i] < 0 || MaskVals[i] == i)
4970        InOrder.set(i);
4971  }
4972
4973  // The other elements are put in the right place using pextrw and pinsrw.
4974  for (unsigned i = 0; i != 8; ++i) {
4975    if (InOrder[i])
4976      continue;
4977    int EltIdx = MaskVals[i];
4978    if (EltIdx < 0)
4979      continue;
4980    SDValue ExtOp = (EltIdx < 8)
4981    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4982                  DAG.getIntPtrConstant(EltIdx))
4983    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4984                  DAG.getIntPtrConstant(EltIdx - 8));
4985    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4986                       DAG.getIntPtrConstant(i));
4987  }
4988  return NewV;
4989}
4990
4991// v16i8 shuffles - Prefer shuffles in the following order:
4992// 1. [ssse3] 1 x pshufb
4993// 2. [ssse3] 2 x pshufb + 1 x por
4994// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4995static
4996SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4997                                 SelectionDAG &DAG,
4998                                 const X86TargetLowering &TLI) {
4999  SDValue V1 = SVOp->getOperand(0);
5000  SDValue V2 = SVOp->getOperand(1);
5001  DebugLoc dl = SVOp->getDebugLoc();
5002  SmallVector<int, 16> MaskVals;
5003  SVOp->getMask(MaskVals);
5004
5005  // If we have SSSE3, case 1 is generated when all result bytes come from
5006  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5007  // present, fall back to case 3.
5008  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5009  bool V1Only = true;
5010  bool V2Only = true;
5011  for (unsigned i = 0; i < 16; ++i) {
5012    int EltIdx = MaskVals[i];
5013    if (EltIdx < 0)
5014      continue;
5015    if (EltIdx < 16)
5016      V2Only = false;
5017    else
5018      V1Only = false;
5019  }
5020
5021  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5022  if (TLI.getSubtarget()->hasSSSE3()) {
5023    SmallVector<SDValue,16> pshufbMask;
5024
5025    // If all result elements are from one input vector, then only translate
5026    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5027    //
5028    // Otherwise, we have elements from both input vectors, and must zero out
5029    // elements that come from V2 in the first mask, and V1 in the second mask
5030    // so that we can OR them together.
5031    bool TwoInputs = !(V1Only || V2Only);
5032    for (unsigned i = 0; i != 16; ++i) {
5033      int EltIdx = MaskVals[i];
5034      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5035        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5036        continue;
5037      }
5038      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5039    }
5040    // If all the elements are from V2, assign it to V1 and return after
5041    // building the first pshufb.
5042    if (V2Only)
5043      V1 = V2;
5044    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5045                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5046                                 MVT::v16i8, &pshufbMask[0], 16));
5047    if (!TwoInputs)
5048      return V1;
5049
5050    // Calculate the shuffle mask for the second input, shuffle it, and
5051    // OR it with the first shuffled input.
5052    pshufbMask.clear();
5053    for (unsigned i = 0; i != 16; ++i) {
5054      int EltIdx = MaskVals[i];
5055      if (EltIdx < 16) {
5056        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5057        continue;
5058      }
5059      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5060    }
5061    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5062                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5063                                 MVT::v16i8, &pshufbMask[0], 16));
5064    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5065  }
5066
5067  // No SSSE3 - Calculate in place words and then fix all out of place words
5068  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5069  // the 16 different words that comprise the two doublequadword input vectors.
5070  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5071  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5072  SDValue NewV = V2Only ? V2 : V1;
5073  for (int i = 0; i != 8; ++i) {
5074    int Elt0 = MaskVals[i*2];
5075    int Elt1 = MaskVals[i*2+1];
5076
5077    // This word of the result is all undef, skip it.
5078    if (Elt0 < 0 && Elt1 < 0)
5079      continue;
5080
5081    // This word of the result is already in the correct place, skip it.
5082    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5083      continue;
5084    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5085      continue;
5086
5087    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5088    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5089    SDValue InsElt;
5090
5091    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5092    // using a single extract together, load it and store it.
5093    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5094      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5095                           DAG.getIntPtrConstant(Elt1 / 2));
5096      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5097                        DAG.getIntPtrConstant(i));
5098      continue;
5099    }
5100
5101    // If Elt1 is defined, extract it from the appropriate source.  If the
5102    // source byte is not also odd, shift the extracted word left 8 bits
5103    // otherwise clear the bottom 8 bits if we need to do an or.
5104    if (Elt1 >= 0) {
5105      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5106                           DAG.getIntPtrConstant(Elt1 / 2));
5107      if ((Elt1 & 1) == 0)
5108        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5109                             DAG.getConstant(8,
5110                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5111      else if (Elt0 >= 0)
5112        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5113                             DAG.getConstant(0xFF00, MVT::i16));
5114    }
5115    // If Elt0 is defined, extract it from the appropriate source.  If the
5116    // source byte is not also even, shift the extracted word right 8 bits. If
5117    // Elt1 was also defined, OR the extracted values together before
5118    // inserting them in the result.
5119    if (Elt0 >= 0) {
5120      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5121                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5122      if ((Elt0 & 1) != 0)
5123        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5124                              DAG.getConstant(8,
5125                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5126      else if (Elt1 >= 0)
5127        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5128                             DAG.getConstant(0x00FF, MVT::i16));
5129      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5130                         : InsElt0;
5131    }
5132    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5133                       DAG.getIntPtrConstant(i));
5134  }
5135  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5136}
5137
5138/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5139/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5140/// done when every pair / quad of shuffle mask elements point to elements in
5141/// the right sequence. e.g.
5142/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5143static
5144SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5145                                 SelectionDAG &DAG, DebugLoc dl) {
5146  EVT VT = SVOp->getValueType(0);
5147  SDValue V1 = SVOp->getOperand(0);
5148  SDValue V2 = SVOp->getOperand(1);
5149  unsigned NumElems = VT.getVectorNumElements();
5150  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5151  EVT NewVT;
5152  switch (VT.getSimpleVT().SimpleTy) {
5153  default: assert(false && "Unexpected!");
5154  case MVT::v4f32: NewVT = MVT::v2f64; break;
5155  case MVT::v4i32: NewVT = MVT::v2i64; break;
5156  case MVT::v8i16: NewVT = MVT::v4i32; break;
5157  case MVT::v16i8: NewVT = MVT::v4i32; break;
5158  }
5159
5160  int Scale = NumElems / NewWidth;
5161  SmallVector<int, 8> MaskVec;
5162  for (unsigned i = 0; i < NumElems; i += Scale) {
5163    int StartIdx = -1;
5164    for (int j = 0; j < Scale; ++j) {
5165      int EltIdx = SVOp->getMaskElt(i+j);
5166      if (EltIdx < 0)
5167        continue;
5168      if (StartIdx == -1)
5169        StartIdx = EltIdx - (EltIdx % Scale);
5170      if (EltIdx != StartIdx + j)
5171        return SDValue();
5172    }
5173    if (StartIdx == -1)
5174      MaskVec.push_back(-1);
5175    else
5176      MaskVec.push_back(StartIdx / Scale);
5177  }
5178
5179  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5180  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5181  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5182}
5183
5184/// getVZextMovL - Return a zero-extending vector move low node.
5185///
5186static SDValue getVZextMovL(EVT VT, EVT OpVT,
5187                            SDValue SrcOp, SelectionDAG &DAG,
5188                            const X86Subtarget *Subtarget, DebugLoc dl) {
5189  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5190    LoadSDNode *LD = NULL;
5191    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5192      LD = dyn_cast<LoadSDNode>(SrcOp);
5193    if (!LD) {
5194      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5195      // instead.
5196      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5197      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5198          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5199          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5200          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5201        // PR2108
5202        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5203        return DAG.getNode(ISD::BITCAST, dl, VT,
5204                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5205                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5206                                                   OpVT,
5207                                                   SrcOp.getOperand(0)
5208                                                          .getOperand(0))));
5209      }
5210    }
5211  }
5212
5213  return DAG.getNode(ISD::BITCAST, dl, VT,
5214                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5215                                 DAG.getNode(ISD::BITCAST, dl,
5216                                             OpVT, SrcOp)));
5217}
5218
5219/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
5220/// shuffles.
5221static SDValue
5222LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5223  SDValue V1 = SVOp->getOperand(0);
5224  SDValue V2 = SVOp->getOperand(1);
5225  DebugLoc dl = SVOp->getDebugLoc();
5226  EVT VT = SVOp->getValueType(0);
5227
5228  SmallVector<std::pair<int, int>, 8> Locs;
5229  Locs.resize(4);
5230  SmallVector<int, 8> Mask1(4U, -1);
5231  SmallVector<int, 8> PermMask;
5232  SVOp->getMask(PermMask);
5233
5234  unsigned NumHi = 0;
5235  unsigned NumLo = 0;
5236  for (unsigned i = 0; i != 4; ++i) {
5237    int Idx = PermMask[i];
5238    if (Idx < 0) {
5239      Locs[i] = std::make_pair(-1, -1);
5240    } else {
5241      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5242      if (Idx < 4) {
5243        Locs[i] = std::make_pair(0, NumLo);
5244        Mask1[NumLo] = Idx;
5245        NumLo++;
5246      } else {
5247        Locs[i] = std::make_pair(1, NumHi);
5248        if (2+NumHi < 4)
5249          Mask1[2+NumHi] = Idx;
5250        NumHi++;
5251      }
5252    }
5253  }
5254
5255  if (NumLo <= 2 && NumHi <= 2) {
5256    // If no more than two elements come from either vector. This can be
5257    // implemented with two shuffles. First shuffle gather the elements.
5258    // The second shuffle, which takes the first shuffle as both of its
5259    // vector operands, put the elements into the right order.
5260    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5261
5262    SmallVector<int, 8> Mask2(4U, -1);
5263
5264    for (unsigned i = 0; i != 4; ++i) {
5265      if (Locs[i].first == -1)
5266        continue;
5267      else {
5268        unsigned Idx = (i < 2) ? 0 : 4;
5269        Idx += Locs[i].first * 2 + Locs[i].second;
5270        Mask2[i] = Idx;
5271      }
5272    }
5273
5274    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
5275  } else if (NumLo == 3 || NumHi == 3) {
5276    // Otherwise, we must have three elements from one vector, call it X, and
5277    // one element from the other, call it Y.  First, use a shufps to build an
5278    // intermediate vector with the one element from Y and the element from X
5279    // that will be in the same half in the final destination (the indexes don't
5280    // matter). Then, use a shufps to build the final vector, taking the half
5281    // containing the element from Y from the intermediate, and the other half
5282    // from X.
5283    if (NumHi == 3) {
5284      // Normalize it so the 3 elements come from V1.
5285      CommuteVectorShuffleMask(PermMask, VT);
5286      std::swap(V1, V2);
5287    }
5288
5289    // Find the element from V2.
5290    unsigned HiIndex;
5291    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5292      int Val = PermMask[HiIndex];
5293      if (Val < 0)
5294        continue;
5295      if (Val >= 4)
5296        break;
5297    }
5298
5299    Mask1[0] = PermMask[HiIndex];
5300    Mask1[1] = -1;
5301    Mask1[2] = PermMask[HiIndex^1];
5302    Mask1[3] = -1;
5303    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5304
5305    if (HiIndex >= 2) {
5306      Mask1[0] = PermMask[0];
5307      Mask1[1] = PermMask[1];
5308      Mask1[2] = HiIndex & 1 ? 6 : 4;
5309      Mask1[3] = HiIndex & 1 ? 4 : 6;
5310      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5311    } else {
5312      Mask1[0] = HiIndex & 1 ? 2 : 0;
5313      Mask1[1] = HiIndex & 1 ? 0 : 2;
5314      Mask1[2] = PermMask[2];
5315      Mask1[3] = PermMask[3];
5316      if (Mask1[2] >= 0)
5317        Mask1[2] += 4;
5318      if (Mask1[3] >= 0)
5319        Mask1[3] += 4;
5320      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5321    }
5322  }
5323
5324  // Break it into (shuffle shuffle_hi, shuffle_lo).
5325  Locs.clear();
5326  Locs.resize(4);
5327  SmallVector<int,8> LoMask(4U, -1);
5328  SmallVector<int,8> HiMask(4U, -1);
5329
5330  SmallVector<int,8> *MaskPtr = &LoMask;
5331  unsigned MaskIdx = 0;
5332  unsigned LoIdx = 0;
5333  unsigned HiIdx = 2;
5334  for (unsigned i = 0; i != 4; ++i) {
5335    if (i == 2) {
5336      MaskPtr = &HiMask;
5337      MaskIdx = 1;
5338      LoIdx = 0;
5339      HiIdx = 2;
5340    }
5341    int Idx = PermMask[i];
5342    if (Idx < 0) {
5343      Locs[i] = std::make_pair(-1, -1);
5344    } else if (Idx < 4) {
5345      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5346      (*MaskPtr)[LoIdx] = Idx;
5347      LoIdx++;
5348    } else {
5349      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5350      (*MaskPtr)[HiIdx] = Idx;
5351      HiIdx++;
5352    }
5353  }
5354
5355  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5356  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5357  SmallVector<int, 8> MaskOps;
5358  for (unsigned i = 0; i != 4; ++i) {
5359    if (Locs[i].first == -1) {
5360      MaskOps.push_back(-1);
5361    } else {
5362      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5363      MaskOps.push_back(Idx);
5364    }
5365  }
5366  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5367}
5368
5369static bool MayFoldVectorLoad(SDValue V) {
5370  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5371    V = V.getOperand(0);
5372  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5373    V = V.getOperand(0);
5374  if (MayFoldLoad(V))
5375    return true;
5376  return false;
5377}
5378
5379// FIXME: the version above should always be used. Since there's
5380// a bug where several vector shuffles can't be folded because the
5381// DAG is not updated during lowering and a node claims to have two
5382// uses while it only has one, use this version, and let isel match
5383// another instruction if the load really happens to have more than
5384// one use. Remove this version after this bug get fixed.
5385// rdar://8434668, PR8156
5386static bool RelaxedMayFoldVectorLoad(SDValue V) {
5387  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5388    V = V.getOperand(0);
5389  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5390    V = V.getOperand(0);
5391  if (ISD::isNormalLoad(V.getNode()))
5392    return true;
5393  return false;
5394}
5395
5396/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5397/// a vector extract, and if both can be later optimized into a single load.
5398/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5399/// here because otherwise a target specific shuffle node is going to be
5400/// emitted for this shuffle, and the optimization not done.
5401/// FIXME: This is probably not the best approach, but fix the problem
5402/// until the right path is decided.
5403static
5404bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5405                                         const TargetLowering &TLI) {
5406  EVT VT = V.getValueType();
5407  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5408
5409  // Be sure that the vector shuffle is present in a pattern like this:
5410  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5411  if (!V.hasOneUse())
5412    return false;
5413
5414  SDNode *N = *V.getNode()->use_begin();
5415  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5416    return false;
5417
5418  SDValue EltNo = N->getOperand(1);
5419  if (!isa<ConstantSDNode>(EltNo))
5420    return false;
5421
5422  // If the bit convert changed the number of elements, it is unsafe
5423  // to examine the mask.
5424  bool HasShuffleIntoBitcast = false;
5425  if (V.getOpcode() == ISD::BITCAST) {
5426    EVT SrcVT = V.getOperand(0).getValueType();
5427    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5428      return false;
5429    V = V.getOperand(0);
5430    HasShuffleIntoBitcast = true;
5431  }
5432
5433  // Select the input vector, guarding against out of range extract vector.
5434  unsigned NumElems = VT.getVectorNumElements();
5435  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5436  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5437  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5438
5439  // Skip one more bit_convert if necessary
5440  if (V.getOpcode() == ISD::BITCAST)
5441    V = V.getOperand(0);
5442
5443  if (ISD::isNormalLoad(V.getNode())) {
5444    // Is the original load suitable?
5445    LoadSDNode *LN0 = cast<LoadSDNode>(V);
5446
5447    // FIXME: avoid the multi-use bug that is preventing lots of
5448    // of foldings to be detected, this is still wrong of course, but
5449    // give the temporary desired behavior, and if it happens that
5450    // the load has real more uses, during isel it will not fold, and
5451    // will generate poor code.
5452    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5453      return false;
5454
5455    if (!HasShuffleIntoBitcast)
5456      return true;
5457
5458    // If there's a bitcast before the shuffle, check if the load type and
5459    // alignment is valid.
5460    unsigned Align = LN0->getAlignment();
5461    unsigned NewAlign =
5462      TLI.getTargetData()->getABITypeAlignment(
5463                                    VT.getTypeForEVT(*DAG.getContext()));
5464
5465    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5466      return false;
5467  }
5468
5469  return true;
5470}
5471
5472static
5473SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5474  EVT VT = Op.getValueType();
5475
5476  // Canonizalize to v2f64.
5477  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
5478  return DAG.getNode(ISD::BITCAST, dl, VT,
5479                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5480                                          V1, DAG));
5481}
5482
5483static
5484SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5485                        bool HasSSE2) {
5486  SDValue V1 = Op.getOperand(0);
5487  SDValue V2 = Op.getOperand(1);
5488  EVT VT = Op.getValueType();
5489
5490  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5491
5492  if (HasSSE2 && VT == MVT::v2f64)
5493    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5494
5495  // v4f32 or v4i32
5496  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5497}
5498
5499static
5500SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5501  SDValue V1 = Op.getOperand(0);
5502  SDValue V2 = Op.getOperand(1);
5503  EVT VT = Op.getValueType();
5504
5505  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5506         "unsupported shuffle type");
5507
5508  if (V2.getOpcode() == ISD::UNDEF)
5509    V2 = V1;
5510
5511  // v4i32 or v4f32
5512  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5513}
5514
5515static
5516SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5517  SDValue V1 = Op.getOperand(0);
5518  SDValue V2 = Op.getOperand(1);
5519  EVT VT = Op.getValueType();
5520  unsigned NumElems = VT.getVectorNumElements();
5521
5522  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5523  // operand of these instructions is only memory, so check if there's a
5524  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5525  // same masks.
5526  bool CanFoldLoad = false;
5527
5528  // Trivial case, when V2 comes from a load.
5529  if (MayFoldVectorLoad(V2))
5530    CanFoldLoad = true;
5531
5532  // When V1 is a load, it can be folded later into a store in isel, example:
5533  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5534  //    turns into:
5535  //  (MOVLPSmr addr:$src1, VR128:$src2)
5536  // So, recognize this potential and also use MOVLPS or MOVLPD
5537  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5538    CanFoldLoad = true;
5539
5540  // Both of them can't be memory operations though.
5541  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
5542    CanFoldLoad = false;
5543
5544  if (CanFoldLoad) {
5545    if (HasSSE2 && NumElems == 2)
5546      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5547
5548    if (NumElems == 4)
5549      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5550  }
5551
5552  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5553  // movl and movlp will both match v2i64, but v2i64 is never matched by
5554  // movl earlier because we make it strict to avoid messing with the movlp load
5555  // folding logic (see the code above getMOVLP call). Match it here then,
5556  // this is horrible, but will stay like this until we move all shuffle
5557  // matching to x86 specific nodes. Note that for the 1st condition all
5558  // types are matched with movsd.
5559  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5560    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5561  else if (HasSSE2)
5562    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5563
5564
5565  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5566
5567  // Invert the operand order and use SHUFPS to match it.
5568  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5569                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5570}
5571
5572static inline unsigned getUNPCKLOpcode(EVT VT, const X86Subtarget *Subtarget) {
5573  switch(VT.getSimpleVT().SimpleTy) {
5574  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5575  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5576  case MVT::v4f32:
5577    return Subtarget->hasAVX() ? X86ISD::VUNPCKLPS : X86ISD::UNPCKLPS;
5578  case MVT::v2f64:
5579    return Subtarget->hasAVX() ? X86ISD::VUNPCKLPD : X86ISD::UNPCKLPD;
5580  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
5581  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
5582  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5583  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5584  default:
5585    llvm_unreachable("Unknown type for unpckl");
5586  }
5587  return 0;
5588}
5589
5590static inline unsigned getUNPCKHOpcode(EVT VT) {
5591  switch(VT.getSimpleVT().SimpleTy) {
5592  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5593  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5594  case MVT::v4f32: return X86ISD::UNPCKHPS;
5595  case MVT::v2f64: return X86ISD::UNPCKHPD;
5596  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5597  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5598  default:
5599    llvm_unreachable("Unknown type for unpckh");
5600  }
5601  return 0;
5602}
5603
5604static
5605SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5606                               const TargetLowering &TLI,
5607                               const X86Subtarget *Subtarget) {
5608  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5609  EVT VT = Op.getValueType();
5610  DebugLoc dl = Op.getDebugLoc();
5611  SDValue V1 = Op.getOperand(0);
5612  SDValue V2 = Op.getOperand(1);
5613
5614  if (isZeroShuffle(SVOp))
5615    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5616
5617  // Handle splat operations
5618  if (SVOp->isSplat()) {
5619    // Special case, this is the only place now where it's
5620    // allowed to return a vector_shuffle operation without
5621    // using a target specific node, because *hopefully* it
5622    // will be optimized away by the dag combiner.
5623    if (VT.getVectorNumElements() <= 4 &&
5624        CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
5625      return Op;
5626
5627    // Handle splats by matching through known masks
5628    if (VT.getVectorNumElements() <= 4)
5629      return SDValue();
5630
5631    // Canonicalize all of the remaining to v4f32.
5632    return PromoteSplat(SVOp, DAG);
5633  }
5634
5635  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5636  // do it!
5637  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5638    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5639    if (NewOp.getNode())
5640      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
5641  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5642    // FIXME: Figure out a cleaner way to do this.
5643    // Try to make use of movq to zero out the top part.
5644    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5645      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5646      if (NewOp.getNode()) {
5647        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5648          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5649                              DAG, Subtarget, dl);
5650      }
5651    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5652      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5653      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5654        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5655                            DAG, Subtarget, dl);
5656    }
5657  }
5658  return SDValue();
5659}
5660
5661SDValue
5662X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5663  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5664  SDValue V1 = Op.getOperand(0);
5665  SDValue V2 = Op.getOperand(1);
5666  EVT VT = Op.getValueType();
5667  DebugLoc dl = Op.getDebugLoc();
5668  unsigned NumElems = VT.getVectorNumElements();
5669  bool isMMX = VT.getSizeInBits() == 64;
5670  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5671  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5672  bool V1IsSplat = false;
5673  bool V2IsSplat = false;
5674  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5675  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5676  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
5677  MachineFunction &MF = DAG.getMachineFunction();
5678  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5679
5680  // Shuffle operations on MMX not supported.
5681  if (isMMX)
5682    return Op;
5683
5684  // Vector shuffle lowering takes 3 steps:
5685  //
5686  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
5687  //    narrowing and commutation of operands should be handled.
5688  // 2) Matching of shuffles with known shuffle masks to x86 target specific
5689  //    shuffle nodes.
5690  // 3) Rewriting of unmatched masks into new generic shuffle operations,
5691  //    so the shuffle can be broken into other shuffles and the legalizer can
5692  //    try the lowering again.
5693  //
5694  // The general ideia is that no vector_shuffle operation should be left to
5695  // be matched during isel, all of them must be converted to a target specific
5696  // node here.
5697
5698  // Normalize the input vectors. Here splats, zeroed vectors, profitable
5699  // narrowing and commutation of operands should be handled. The actual code
5700  // doesn't include all of those, work in progress...
5701  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
5702  if (NewOp.getNode())
5703    return NewOp;
5704
5705  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5706  // unpckh_undef). Only use pshufd if speed is more important than size.
5707  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
5708    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5709      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()), dl, VT, V1, V1, DAG);
5710  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
5711    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5712      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5713
5714  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
5715      RelaxedMayFoldVectorLoad(V1))
5716    return getMOVDDup(Op, dl, V1, DAG);
5717
5718  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
5719    return getMOVHighToLow(Op, dl, DAG);
5720
5721  // Use to match splats
5722  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
5723      (VT == MVT::v2f64 || VT == MVT::v2i64))
5724    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5725
5726  if (X86::isPSHUFDMask(SVOp)) {
5727    // The actual implementation will match the mask in the if above and then
5728    // during isel it can match several different instructions, not only pshufd
5729    // as its name says, sad but true, emulate the behavior for now...
5730    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5731        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5732
5733    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5734
5735    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5736      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5737
5738    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5739      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5740                                  TargetMask, DAG);
5741
5742    if (VT == MVT::v4f32)
5743      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5744                                  TargetMask, DAG);
5745  }
5746
5747  // Check if this can be converted into a logical shift.
5748  bool isLeft = false;
5749  unsigned ShAmt = 0;
5750  SDValue ShVal;
5751  bool isShift = getSubtarget()->hasSSE2() &&
5752    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5753  if (isShift && ShVal.hasOneUse()) {
5754    // If the shifted value has multiple uses, it may be cheaper to use
5755    // v_set0 + movlhps or movhlps, etc.
5756    EVT EltVT = VT.getVectorElementType();
5757    ShAmt *= EltVT.getSizeInBits();
5758    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5759  }
5760
5761  if (X86::isMOVLMask(SVOp)) {
5762    if (V1IsUndef)
5763      return V2;
5764    if (ISD::isBuildVectorAllZeros(V1.getNode()))
5765      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5766    if (!X86::isMOVLPMask(SVOp)) {
5767      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5768        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5769
5770      if (VT == MVT::v4i32 || VT == MVT::v4f32)
5771        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5772    }
5773  }
5774
5775  // FIXME: fold these into legal mask.
5776  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5777    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5778
5779  if (X86::isMOVHLPSMask(SVOp))
5780    return getMOVHighToLow(Op, dl, DAG);
5781
5782  if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5783    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
5784
5785  if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5786    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
5787
5788  if (X86::isMOVLPMask(SVOp))
5789    return getMOVLP(Op, dl, DAG, HasSSE2);
5790
5791  if (ShouldXformToMOVHLPS(SVOp) ||
5792      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5793    return CommuteVectorShuffle(SVOp, DAG);
5794
5795  if (isShift) {
5796    // No better options. Use a vshl / vsrl.
5797    EVT EltVT = VT.getVectorElementType();
5798    ShAmt *= EltVT.getSizeInBits();
5799    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5800  }
5801
5802  bool Commuted = false;
5803  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
5804  // 1,1,1,1 -> v8i16 though.
5805  V1IsSplat = isSplatVector(V1.getNode());
5806  V2IsSplat = isSplatVector(V2.getNode());
5807
5808  // Canonicalize the splat or undef, if present, to be on the RHS.
5809  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
5810    Op = CommuteVectorShuffle(SVOp, DAG);
5811    SVOp = cast<ShuffleVectorSDNode>(Op);
5812    V1 = SVOp->getOperand(0);
5813    V2 = SVOp->getOperand(1);
5814    std::swap(V1IsSplat, V2IsSplat);
5815    std::swap(V1IsUndef, V2IsUndef);
5816    Commuted = true;
5817  }
5818
5819  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
5820    // Shuffling low element of v1 into undef, just return v1.
5821    if (V2IsUndef)
5822      return V1;
5823    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5824    // the instruction selector will not match, so get a canonical MOVL with
5825    // swapped operands to undo the commute.
5826    return getMOVL(DAG, dl, VT, V2, V1);
5827  }
5828
5829  if (X86::isUNPCKLMask(SVOp))
5830    return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5831                                dl, VT, V1, V2, DAG);
5832
5833  if (X86::isUNPCKHMask(SVOp))
5834    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
5835
5836  if (V2IsSplat) {
5837    // Normalize mask so all entries that point to V2 points to its first
5838    // element then try to match unpck{h|l} again. If match, return a
5839    // new vector_shuffle with the corrected mask.
5840    SDValue NewMask = NormalizeMask(SVOp, DAG);
5841    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
5842    if (NSVOp != SVOp) {
5843      if (X86::isUNPCKLMask(NSVOp, true)) {
5844        return NewMask;
5845      } else if (X86::isUNPCKHMask(NSVOp, true)) {
5846        return NewMask;
5847      }
5848    }
5849  }
5850
5851  if (Commuted) {
5852    // Commute is back and try unpck* again.
5853    // FIXME: this seems wrong.
5854    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5855    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5856
5857    if (X86::isUNPCKLMask(NewSVOp))
5858      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5859                                  dl, VT, V2, V1, DAG);
5860
5861    if (X86::isUNPCKHMask(NewSVOp))
5862      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
5863  }
5864
5865  // Normalize the node to match x86 shuffle ops if needed
5866  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5867    return CommuteVectorShuffle(SVOp, DAG);
5868
5869  // The checks below are all present in isShuffleMaskLegal, but they are
5870  // inlined here right now to enable us to directly emit target specific
5871  // nodes, and remove one by one until they don't return Op anymore.
5872  SmallVector<int, 16> M;
5873  SVOp->getMask(M);
5874
5875  if (isPALIGNRMask(M, VT, HasSSSE3))
5876    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
5877                                X86::getShufflePALIGNRImmediate(SVOp),
5878                                DAG);
5879
5880  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
5881      SVOp->getSplatIndex() == 0 && V2IsUndef) {
5882    if (VT == MVT::v2f64) {
5883      X86ISD::NodeType Opcode =
5884        getSubtarget()->hasAVX() ? X86ISD::VUNPCKLPD : X86ISD::UNPCKLPD;
5885      return getTargetShuffleNode(Opcode, dl, VT, V1, V1, DAG);
5886    }
5887    if (VT == MVT::v2i64)
5888      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
5889  }
5890
5891  if (isPSHUFHWMask(M, VT))
5892    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
5893                                X86::getShufflePSHUFHWImmediate(SVOp),
5894                                DAG);
5895
5896  if (isPSHUFLWMask(M, VT))
5897    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
5898                                X86::getShufflePSHUFLWImmediate(SVOp),
5899                                DAG);
5900
5901  if (isSHUFPMask(M, VT)) {
5902    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5903    if (VT == MVT::v4f32 || VT == MVT::v4i32)
5904      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
5905                                  TargetMask, DAG);
5906    if (VT == MVT::v2f64 || VT == MVT::v2i64)
5907      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
5908                                  TargetMask, DAG);
5909  }
5910
5911  if (X86::isUNPCKL_v_undef_Mask(SVOp))
5912    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5913      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5914                                  dl, VT, V1, V1, DAG);
5915  if (X86::isUNPCKH_v_undef_Mask(SVOp))
5916    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5917      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5918
5919  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5920  if (VT == MVT::v8i16) {
5921    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5922    if (NewOp.getNode())
5923      return NewOp;
5924  }
5925
5926  if (VT == MVT::v16i8) {
5927    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5928    if (NewOp.getNode())
5929      return NewOp;
5930  }
5931
5932  // Handle all 4 wide cases with a number of shuffles.
5933  if (NumElems == 4)
5934    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5935
5936  return SDValue();
5937}
5938
5939SDValue
5940X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5941                                                SelectionDAG &DAG) const {
5942  EVT VT = Op.getValueType();
5943  DebugLoc dl = Op.getDebugLoc();
5944  if (VT.getSizeInBits() == 8) {
5945    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5946                                    Op.getOperand(0), Op.getOperand(1));
5947    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5948                                    DAG.getValueType(VT));
5949    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5950  } else if (VT.getSizeInBits() == 16) {
5951    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5952    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5953    if (Idx == 0)
5954      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5955                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5956                                     DAG.getNode(ISD::BITCAST, dl,
5957                                                 MVT::v4i32,
5958                                                 Op.getOperand(0)),
5959                                     Op.getOperand(1)));
5960    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5961                                    Op.getOperand(0), Op.getOperand(1));
5962    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5963                                    DAG.getValueType(VT));
5964    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5965  } else if (VT == MVT::f32) {
5966    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5967    // the result back to FR32 register. It's only worth matching if the
5968    // result has a single use which is a store or a bitcast to i32.  And in
5969    // the case of a store, it's not worth it if the index is a constant 0,
5970    // because a MOVSSmr can be used instead, which is smaller and faster.
5971    if (!Op.hasOneUse())
5972      return SDValue();
5973    SDNode *User = *Op.getNode()->use_begin();
5974    if ((User->getOpcode() != ISD::STORE ||
5975         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5976          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5977        (User->getOpcode() != ISD::BITCAST ||
5978         User->getValueType(0) != MVT::i32))
5979      return SDValue();
5980    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5981                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
5982                                              Op.getOperand(0)),
5983                                              Op.getOperand(1));
5984    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
5985  } else if (VT == MVT::i32) {
5986    // ExtractPS works with constant index.
5987    if (isa<ConstantSDNode>(Op.getOperand(1)))
5988      return Op;
5989  }
5990  return SDValue();
5991}
5992
5993
5994SDValue
5995X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5996                                           SelectionDAG &DAG) const {
5997  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5998    return SDValue();
5999
6000  SDValue Vec = Op.getOperand(0);
6001  EVT VecVT = Vec.getValueType();
6002
6003  // If this is a 256-bit vector result, first extract the 128-bit
6004  // vector and then extract from the 128-bit vector.
6005  if (VecVT.getSizeInBits() > 128) {
6006    DebugLoc dl = Op.getNode()->getDebugLoc();
6007    unsigned NumElems = VecVT.getVectorNumElements();
6008    SDValue Idx = Op.getOperand(1);
6009
6010    if (!isa<ConstantSDNode>(Idx))
6011      return SDValue();
6012
6013    unsigned ExtractNumElems = NumElems / (VecVT.getSizeInBits() / 128);
6014    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6015
6016    // Get the 128-bit vector.
6017    bool Upper = IdxVal >= ExtractNumElems;
6018    Vec = Extract128BitVector(Vec, Idx, DAG, dl);
6019
6020    // Extract from it.
6021    SDValue ScaledIdx = Idx;
6022    if (Upper)
6023      ScaledIdx = DAG.getNode(ISD::SUB, dl, Idx.getValueType(), Idx,
6024                              DAG.getConstant(ExtractNumElems,
6025                                              Idx.getValueType()));
6026    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6027                       ScaledIdx);
6028  }
6029
6030  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6031
6032  if (Subtarget->hasSSE41()) {
6033    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6034    if (Res.getNode())
6035      return Res;
6036  }
6037
6038  EVT VT = Op.getValueType();
6039  DebugLoc dl = Op.getDebugLoc();
6040  // TODO: handle v16i8.
6041  if (VT.getSizeInBits() == 16) {
6042    SDValue Vec = Op.getOperand(0);
6043    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6044    if (Idx == 0)
6045      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6046                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6047                                     DAG.getNode(ISD::BITCAST, dl,
6048                                                 MVT::v4i32, Vec),
6049                                     Op.getOperand(1)));
6050    // Transform it so it match pextrw which produces a 32-bit result.
6051    EVT EltVT = MVT::i32;
6052    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6053                                    Op.getOperand(0), Op.getOperand(1));
6054    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6055                                    DAG.getValueType(VT));
6056    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6057  } else if (VT.getSizeInBits() == 32) {
6058    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6059    if (Idx == 0)
6060      return Op;
6061
6062    // SHUFPS the element to the lowest double word, then movss.
6063    int Mask[4] = { Idx, -1, -1, -1 };
6064    EVT VVT = Op.getOperand(0).getValueType();
6065    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6066                                       DAG.getUNDEF(VVT), Mask);
6067    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6068                       DAG.getIntPtrConstant(0));
6069  } else if (VT.getSizeInBits() == 64) {
6070    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6071    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6072    //        to match extract_elt for f64.
6073    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6074    if (Idx == 0)
6075      return Op;
6076
6077    // UNPCKHPD the element to the lowest double word, then movsd.
6078    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6079    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6080    int Mask[2] = { 1, -1 };
6081    EVT VVT = Op.getOperand(0).getValueType();
6082    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6083                                       DAG.getUNDEF(VVT), Mask);
6084    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6085                       DAG.getIntPtrConstant(0));
6086  }
6087
6088  return SDValue();
6089}
6090
6091SDValue
6092X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6093                                               SelectionDAG &DAG) const {
6094  EVT VT = Op.getValueType();
6095  EVT EltVT = VT.getVectorElementType();
6096  DebugLoc dl = Op.getDebugLoc();
6097
6098  SDValue N0 = Op.getOperand(0);
6099  SDValue N1 = Op.getOperand(1);
6100  SDValue N2 = Op.getOperand(2);
6101
6102  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6103      isa<ConstantSDNode>(N2)) {
6104    unsigned Opc;
6105    if (VT == MVT::v8i16)
6106      Opc = X86ISD::PINSRW;
6107    else if (VT == MVT::v16i8)
6108      Opc = X86ISD::PINSRB;
6109    else
6110      Opc = X86ISD::PINSRB;
6111
6112    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6113    // argument.
6114    if (N1.getValueType() != MVT::i32)
6115      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6116    if (N2.getValueType() != MVT::i32)
6117      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6118    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6119  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6120    // Bits [7:6] of the constant are the source select.  This will always be
6121    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6122    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6123    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6124    // Bits [5:4] of the constant are the destination select.  This is the
6125    //  value of the incoming immediate.
6126    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6127    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6128    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6129    // Create this as a scalar to vector..
6130    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6131    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6132  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
6133    // PINSR* works with constant index.
6134    return Op;
6135  }
6136  return SDValue();
6137}
6138
6139SDValue
6140X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6141  EVT VT = Op.getValueType();
6142  EVT EltVT = VT.getVectorElementType();
6143
6144  DebugLoc dl = Op.getDebugLoc();
6145  SDValue N0 = Op.getOperand(0);
6146  SDValue N1 = Op.getOperand(1);
6147  SDValue N2 = Op.getOperand(2);
6148
6149  // If this is a 256-bit vector result, first insert into a 128-bit
6150  // vector and then insert into the 256-bit vector.
6151  if (VT.getSizeInBits() > 128) {
6152    if (!isa<ConstantSDNode>(N2))
6153      return SDValue();
6154
6155    // Get the 128-bit vector.
6156    unsigned NumElems = VT.getVectorNumElements();
6157    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6158    bool Upper = IdxVal >= NumElems / 2;
6159
6160    SDValue SubN0 = Extract128BitVector(N0, N2, DAG, dl);
6161
6162    // Insert into it.
6163    SDValue ScaledN2 = N2;
6164    if (Upper)
6165      ScaledN2 = DAG.getNode(ISD::SUB, dl, N2.getValueType(), N2,
6166                             DAG.getConstant(NumElems /
6167                                             (VT.getSizeInBits() / 128),
6168                                             N2.getValueType()));
6169    Op = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubN0.getValueType(), SubN0,
6170                     N1, ScaledN2);
6171
6172    // Insert the 128-bit vector
6173    // FIXME: Why UNDEF?
6174    return Insert128BitVector(N0, Op, N2, DAG, dl);
6175  }
6176
6177  if (Subtarget->hasSSE41())
6178    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6179
6180  if (EltVT == MVT::i8)
6181    return SDValue();
6182
6183  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6184    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6185    // as its second argument.
6186    if (N1.getValueType() != MVT::i32)
6187      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6188    if (N2.getValueType() != MVT::i32)
6189      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6190    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6191  }
6192  return SDValue();
6193}
6194
6195SDValue
6196X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6197  LLVMContext *Context = DAG.getContext();
6198  DebugLoc dl = Op.getDebugLoc();
6199  EVT OpVT = Op.getValueType();
6200
6201  // If this is a 256-bit vector result, first insert into a 128-bit
6202  // vector and then insert into the 256-bit vector.
6203  if (OpVT.getSizeInBits() > 128) {
6204    // Insert into a 128-bit vector.
6205    EVT VT128 = EVT::getVectorVT(*Context,
6206                                 OpVT.getVectorElementType(),
6207                                 OpVT.getVectorNumElements() / 2);
6208
6209    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6210
6211    // Insert the 128-bit vector.
6212    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6213                              DAG.getConstant(0, MVT::i32),
6214                              DAG, dl);
6215  }
6216
6217  if (Op.getValueType() == MVT::v1i64 &&
6218      Op.getOperand(0).getValueType() == MVT::i64)
6219    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6220
6221  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6222  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6223         "Expected an SSE type!");
6224  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6225                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6226}
6227
6228// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6229// a simple subregister reference or explicit instructions to grab
6230// upper bits of a vector.
6231SDValue
6232X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6233  if (Subtarget->hasAVX()) {
6234    DebugLoc dl = Op.getNode()->getDebugLoc();
6235    SDValue Vec = Op.getNode()->getOperand(0);
6236    SDValue Idx = Op.getNode()->getOperand(1);
6237
6238    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6239        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6240        return Extract128BitVector(Vec, Idx, DAG, dl);
6241    }
6242  }
6243  return SDValue();
6244}
6245
6246// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6247// simple superregister reference or explicit instructions to insert
6248// the upper bits of a vector.
6249SDValue
6250X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6251  if (Subtarget->hasAVX()) {
6252    DebugLoc dl = Op.getNode()->getDebugLoc();
6253    SDValue Vec = Op.getNode()->getOperand(0);
6254    SDValue SubVec = Op.getNode()->getOperand(1);
6255    SDValue Idx = Op.getNode()->getOperand(2);
6256
6257    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6258        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6259      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6260    }
6261  }
6262  return SDValue();
6263}
6264
6265// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
6266// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
6267// one of the above mentioned nodes. It has to be wrapped because otherwise
6268// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
6269// be used to form addressing mode. These wrapped nodes will be selected
6270// into MOV32ri.
6271SDValue
6272X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
6273  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
6274
6275  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6276  // global base reg.
6277  unsigned char OpFlag = 0;
6278  unsigned WrapperKind = X86ISD::Wrapper;
6279  CodeModel::Model M = getTargetMachine().getCodeModel();
6280
6281  if (Subtarget->isPICStyleRIPRel() &&
6282      (M == CodeModel::Small || M == CodeModel::Kernel))
6283    WrapperKind = X86ISD::WrapperRIP;
6284  else if (Subtarget->isPICStyleGOT())
6285    OpFlag = X86II::MO_GOTOFF;
6286  else if (Subtarget->isPICStyleStubPIC())
6287    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6288
6289  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
6290                                             CP->getAlignment(),
6291                                             CP->getOffset(), OpFlag);
6292  DebugLoc DL = CP->getDebugLoc();
6293  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6294  // With PIC, the address is actually $g + Offset.
6295  if (OpFlag) {
6296    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6297                         DAG.getNode(X86ISD::GlobalBaseReg,
6298                                     DebugLoc(), getPointerTy()),
6299                         Result);
6300  }
6301
6302  return Result;
6303}
6304
6305SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
6306  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
6307
6308  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6309  // global base reg.
6310  unsigned char OpFlag = 0;
6311  unsigned WrapperKind = X86ISD::Wrapper;
6312  CodeModel::Model M = getTargetMachine().getCodeModel();
6313
6314  if (Subtarget->isPICStyleRIPRel() &&
6315      (M == CodeModel::Small || M == CodeModel::Kernel))
6316    WrapperKind = X86ISD::WrapperRIP;
6317  else if (Subtarget->isPICStyleGOT())
6318    OpFlag = X86II::MO_GOTOFF;
6319  else if (Subtarget->isPICStyleStubPIC())
6320    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6321
6322  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
6323                                          OpFlag);
6324  DebugLoc DL = JT->getDebugLoc();
6325  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6326
6327  // With PIC, the address is actually $g + Offset.
6328  if (OpFlag)
6329    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6330                         DAG.getNode(X86ISD::GlobalBaseReg,
6331                                     DebugLoc(), getPointerTy()),
6332                         Result);
6333
6334  return Result;
6335}
6336
6337SDValue
6338X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
6339  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
6340
6341  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6342  // global base reg.
6343  unsigned char OpFlag = 0;
6344  unsigned WrapperKind = X86ISD::Wrapper;
6345  CodeModel::Model M = getTargetMachine().getCodeModel();
6346
6347  if (Subtarget->isPICStyleRIPRel() &&
6348      (M == CodeModel::Small || M == CodeModel::Kernel))
6349    WrapperKind = X86ISD::WrapperRIP;
6350  else if (Subtarget->isPICStyleGOT())
6351    OpFlag = X86II::MO_GOTOFF;
6352  else if (Subtarget->isPICStyleStubPIC())
6353    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6354
6355  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
6356
6357  DebugLoc DL = Op.getDebugLoc();
6358  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6359
6360
6361  // With PIC, the address is actually $g + Offset.
6362  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
6363      !Subtarget->is64Bit()) {
6364    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6365                         DAG.getNode(X86ISD::GlobalBaseReg,
6366                                     DebugLoc(), getPointerTy()),
6367                         Result);
6368  }
6369
6370  return Result;
6371}
6372
6373SDValue
6374X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
6375  // Create the TargetBlockAddressAddress node.
6376  unsigned char OpFlags =
6377    Subtarget->ClassifyBlockAddressReference();
6378  CodeModel::Model M = getTargetMachine().getCodeModel();
6379  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
6380  DebugLoc dl = Op.getDebugLoc();
6381  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
6382                                       /*isTarget=*/true, OpFlags);
6383
6384  if (Subtarget->isPICStyleRIPRel() &&
6385      (M == CodeModel::Small || M == CodeModel::Kernel))
6386    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6387  else
6388    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6389
6390  // With PIC, the address is actually $g + Offset.
6391  if (isGlobalRelativeToPICBase(OpFlags)) {
6392    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6393                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6394                         Result);
6395  }
6396
6397  return Result;
6398}
6399
6400SDValue
6401X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
6402                                      int64_t Offset,
6403                                      SelectionDAG &DAG) const {
6404  // Create the TargetGlobalAddress node, folding in the constant
6405  // offset if it is legal.
6406  unsigned char OpFlags =
6407    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
6408  CodeModel::Model M = getTargetMachine().getCodeModel();
6409  SDValue Result;
6410  if (OpFlags == X86II::MO_NO_FLAG &&
6411      X86::isOffsetSuitableForCodeModel(Offset, M)) {
6412    // A direct static reference to a global.
6413    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
6414    Offset = 0;
6415  } else {
6416    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
6417  }
6418
6419  if (Subtarget->isPICStyleRIPRel() &&
6420      (M == CodeModel::Small || M == CodeModel::Kernel))
6421    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6422  else
6423    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6424
6425  // With PIC, the address is actually $g + Offset.
6426  if (isGlobalRelativeToPICBase(OpFlags)) {
6427    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6428                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6429                         Result);
6430  }
6431
6432  // For globals that require a load from a stub to get the address, emit the
6433  // load.
6434  if (isGlobalStubReference(OpFlags))
6435    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
6436                         MachinePointerInfo::getGOT(), false, false, 0);
6437
6438  // If there was a non-zero offset that we didn't fold, create an explicit
6439  // addition for it.
6440  if (Offset != 0)
6441    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6442                         DAG.getConstant(Offset, getPointerTy()));
6443
6444  return Result;
6445}
6446
6447SDValue
6448X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6449  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6450  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6451  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6452}
6453
6454static SDValue
6455GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6456           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6457           unsigned char OperandFlags) {
6458  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6459  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6460  DebugLoc dl = GA->getDebugLoc();
6461  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6462                                           GA->getValueType(0),
6463                                           GA->getOffset(),
6464                                           OperandFlags);
6465  if (InFlag) {
6466    SDValue Ops[] = { Chain,  TGA, *InFlag };
6467    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6468  } else {
6469    SDValue Ops[]  = { Chain, TGA };
6470    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6471  }
6472
6473  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6474  MFI->setAdjustsStack(true);
6475
6476  SDValue Flag = Chain.getValue(1);
6477  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6478}
6479
6480// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6481static SDValue
6482LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6483                                const EVT PtrVT) {
6484  SDValue InFlag;
6485  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
6486  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6487                                     DAG.getNode(X86ISD::GlobalBaseReg,
6488                                                 DebugLoc(), PtrVT), InFlag);
6489  InFlag = Chain.getValue(1);
6490
6491  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6492}
6493
6494// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6495static SDValue
6496LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6497                                const EVT PtrVT) {
6498  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6499                    X86::RAX, X86II::MO_TLSGD);
6500}
6501
6502// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6503// "local exec" model.
6504static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6505                                   const EVT PtrVT, TLSModel::Model model,
6506                                   bool is64Bit) {
6507  DebugLoc dl = GA->getDebugLoc();
6508
6509  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6510  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6511                                                         is64Bit ? 257 : 256));
6512
6513  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6514                                      DAG.getIntPtrConstant(0),
6515                                      MachinePointerInfo(Ptr), false, false, 0);
6516
6517  unsigned char OperandFlags = 0;
6518  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6519  // initialexec.
6520  unsigned WrapperKind = X86ISD::Wrapper;
6521  if (model == TLSModel::LocalExec) {
6522    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6523  } else if (is64Bit) {
6524    assert(model == TLSModel::InitialExec);
6525    OperandFlags = X86II::MO_GOTTPOFF;
6526    WrapperKind = X86ISD::WrapperRIP;
6527  } else {
6528    assert(model == TLSModel::InitialExec);
6529    OperandFlags = X86II::MO_INDNTPOFF;
6530  }
6531
6532  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6533  // exec)
6534  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6535                                           GA->getValueType(0),
6536                                           GA->getOffset(), OperandFlags);
6537  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6538
6539  if (model == TLSModel::InitialExec)
6540    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6541                         MachinePointerInfo::getGOT(), false, false, 0);
6542
6543  // The address of the thread local variable is the add of the thread
6544  // pointer with the offset of the variable.
6545  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6546}
6547
6548SDValue
6549X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6550
6551  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6552  const GlobalValue *GV = GA->getGlobal();
6553
6554  if (Subtarget->isTargetELF()) {
6555    // TODO: implement the "local dynamic" model
6556    // TODO: implement the "initial exec"model for pic executables
6557
6558    // If GV is an alias then use the aliasee for determining
6559    // thread-localness.
6560    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6561      GV = GA->resolveAliasedGlobal(false);
6562
6563    TLSModel::Model model
6564      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6565
6566    switch (model) {
6567      case TLSModel::GeneralDynamic:
6568      case TLSModel::LocalDynamic: // not implemented
6569        if (Subtarget->is64Bit())
6570          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6571        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6572
6573      case TLSModel::InitialExec:
6574      case TLSModel::LocalExec:
6575        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6576                                   Subtarget->is64Bit());
6577    }
6578  } else if (Subtarget->isTargetDarwin()) {
6579    // Darwin only has one model of TLS.  Lower to that.
6580    unsigned char OpFlag = 0;
6581    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6582                           X86ISD::WrapperRIP : X86ISD::Wrapper;
6583
6584    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6585    // global base reg.
6586    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6587                  !Subtarget->is64Bit();
6588    if (PIC32)
6589      OpFlag = X86II::MO_TLVP_PIC_BASE;
6590    else
6591      OpFlag = X86II::MO_TLVP;
6592    DebugLoc DL = Op.getDebugLoc();
6593    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6594                                                GA->getValueType(0),
6595                                                GA->getOffset(), OpFlag);
6596    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6597
6598    // With PIC32, the address is actually $g + Offset.
6599    if (PIC32)
6600      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6601                           DAG.getNode(X86ISD::GlobalBaseReg,
6602                                       DebugLoc(), getPointerTy()),
6603                           Offset);
6604
6605    // Lowering the machine isd will make sure everything is in the right
6606    // location.
6607    SDValue Chain = DAG.getEntryNode();
6608    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6609    SDValue Args[] = { Chain, Offset };
6610    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
6611
6612    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6613    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6614    MFI->setAdjustsStack(true);
6615
6616    // And our return value (tls address) is in the standard call return value
6617    // location.
6618    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
6619    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
6620  }
6621
6622  assert(false &&
6623         "TLS not implemented for this target.");
6624
6625  llvm_unreachable("Unreachable");
6626  return SDValue();
6627}
6628
6629
6630/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
6631/// take a 2 x i32 value to shift plus a shift amount.
6632SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
6633  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6634  EVT VT = Op.getValueType();
6635  unsigned VTBits = VT.getSizeInBits();
6636  DebugLoc dl = Op.getDebugLoc();
6637  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
6638  SDValue ShOpLo = Op.getOperand(0);
6639  SDValue ShOpHi = Op.getOperand(1);
6640  SDValue ShAmt  = Op.getOperand(2);
6641  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6642                                     DAG.getConstant(VTBits - 1, MVT::i8))
6643                       : DAG.getConstant(0, VT);
6644
6645  SDValue Tmp2, Tmp3;
6646  if (Op.getOpcode() == ISD::SHL_PARTS) {
6647    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6648    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6649  } else {
6650    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6651    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6652  }
6653
6654  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6655                                DAG.getConstant(VTBits, MVT::i8));
6656  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6657                             AndNode, DAG.getConstant(0, MVT::i8));
6658
6659  SDValue Hi, Lo;
6660  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6661  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6662  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6663
6664  if (Op.getOpcode() == ISD::SHL_PARTS) {
6665    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6666    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6667  } else {
6668    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6669    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6670  }
6671
6672  SDValue Ops[2] = { Lo, Hi };
6673  return DAG.getMergeValues(Ops, 2, dl);
6674}
6675
6676SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6677                                           SelectionDAG &DAG) const {
6678  EVT SrcVT = Op.getOperand(0).getValueType();
6679
6680  if (SrcVT.isVector())
6681    return SDValue();
6682
6683  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6684         "Unknown SINT_TO_FP to lower!");
6685
6686  // These are really Legal; return the operand so the caller accepts it as
6687  // Legal.
6688  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6689    return Op;
6690  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6691      Subtarget->is64Bit()) {
6692    return Op;
6693  }
6694
6695  DebugLoc dl = Op.getDebugLoc();
6696  unsigned Size = SrcVT.getSizeInBits()/8;
6697  MachineFunction &MF = DAG.getMachineFunction();
6698  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6699  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6700  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6701                               StackSlot,
6702                               MachinePointerInfo::getFixedStack(SSFI),
6703                               false, false, 0);
6704  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
6705}
6706
6707SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
6708                                     SDValue StackSlot,
6709                                     SelectionDAG &DAG) const {
6710  // Build the FILD
6711  DebugLoc DL = Op.getDebugLoc();
6712  SDVTList Tys;
6713  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
6714  if (useSSE)
6715    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
6716  else
6717    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
6718
6719  unsigned ByteSize = SrcVT.getSizeInBits()/8;
6720
6721  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6722  MachineMemOperand *MMO =
6723    DAG.getMachineFunction()
6724    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6725                          MachineMemOperand::MOLoad, ByteSize, ByteSize);
6726
6727  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
6728  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
6729                                           X86ISD::FILD, DL,
6730                                           Tys, Ops, array_lengthof(Ops),
6731                                           SrcVT, MMO);
6732
6733  if (useSSE) {
6734    Chain = Result.getValue(1);
6735    SDValue InFlag = Result.getValue(2);
6736
6737    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6738    // shouldn't be necessary except that RFP cannot be live across
6739    // multiple blocks. When stackifier is fixed, they can be uncoupled.
6740    MachineFunction &MF = DAG.getMachineFunction();
6741    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
6742    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
6743    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6744    Tys = DAG.getVTList(MVT::Other);
6745    SDValue Ops[] = {
6746      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
6747    };
6748    MachineMemOperand *MMO =
6749      DAG.getMachineFunction()
6750      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6751                            MachineMemOperand::MOStore, SSFISize, SSFISize);
6752
6753    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
6754                                    Ops, array_lengthof(Ops),
6755                                    Op.getValueType(), MMO);
6756    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
6757                         MachinePointerInfo::getFixedStack(SSFI),
6758                         false, false, 0);
6759  }
6760
6761  return Result;
6762}
6763
6764// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6765SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
6766                                               SelectionDAG &DAG) const {
6767  // This algorithm is not obvious. Here it is in C code, more or less:
6768  /*
6769    double uint64_to_double( uint32_t hi, uint32_t lo ) {
6770      static const __m128i exp = { 0x4330000045300000ULL, 0 };
6771      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6772
6773      // Copy ints to xmm registers.
6774      __m128i xh = _mm_cvtsi32_si128( hi );
6775      __m128i xl = _mm_cvtsi32_si128( lo );
6776
6777      // Combine into low half of a single xmm register.
6778      __m128i x = _mm_unpacklo_epi32( xh, xl );
6779      __m128d d;
6780      double sd;
6781
6782      // Merge in appropriate exponents to give the integer bits the right
6783      // magnitude.
6784      x = _mm_unpacklo_epi32( x, exp );
6785
6786      // Subtract away the biases to deal with the IEEE-754 double precision
6787      // implicit 1.
6788      d = _mm_sub_pd( (__m128d) x, bias );
6789
6790      // All conversions up to here are exact. The correctly rounded result is
6791      // calculated using the current rounding mode using the following
6792      // horizontal add.
6793      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
6794      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
6795                                // store doesn't really need to be here (except
6796                                // maybe to zero the other double)
6797      return sd;
6798    }
6799  */
6800
6801  DebugLoc dl = Op.getDebugLoc();
6802  LLVMContext *Context = DAG.getContext();
6803
6804  // Build some magic constants.
6805  std::vector<Constant*> CV0;
6806  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
6807  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
6808  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6809  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6810  Constant *C0 = ConstantVector::get(CV0);
6811  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
6812
6813  std::vector<Constant*> CV1;
6814  CV1.push_back(
6815    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
6816  CV1.push_back(
6817    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
6818  Constant *C1 = ConstantVector::get(CV1);
6819  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
6820
6821  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6822                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6823                                        Op.getOperand(0),
6824                                        DAG.getIntPtrConstant(1)));
6825  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6826                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6827                                        Op.getOperand(0),
6828                                        DAG.getIntPtrConstant(0)));
6829  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
6830  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
6831                              MachinePointerInfo::getConstantPool(),
6832                              false, false, 16);
6833  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
6834  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
6835  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
6836                              MachinePointerInfo::getConstantPool(),
6837                              false, false, 16);
6838  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
6839
6840  // Add the halves; easiest way is to swap them into another reg first.
6841  int ShufMask[2] = { 1, -1 };
6842  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
6843                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
6844  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
6845  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
6846                     DAG.getIntPtrConstant(0));
6847}
6848
6849// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6850SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
6851                                               SelectionDAG &DAG) const {
6852  DebugLoc dl = Op.getDebugLoc();
6853  // FP constant to bias correct the final result.
6854  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
6855                                   MVT::f64);
6856
6857  // Load the 32-bit value into an XMM register.
6858  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6859                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6860                                         Op.getOperand(0),
6861                                         DAG.getIntPtrConstant(0)));
6862
6863  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6864                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
6865                     DAG.getIntPtrConstant(0));
6866
6867  // Or the load with the bias.
6868  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
6869                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6870                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6871                                                   MVT::v2f64, Load)),
6872                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6873                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6874                                                   MVT::v2f64, Bias)));
6875  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6876                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
6877                   DAG.getIntPtrConstant(0));
6878
6879  // Subtract the bias.
6880  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
6881
6882  // Handle final rounding.
6883  EVT DestVT = Op.getValueType();
6884
6885  if (DestVT.bitsLT(MVT::f64)) {
6886    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
6887                       DAG.getIntPtrConstant(0));
6888  } else if (DestVT.bitsGT(MVT::f64)) {
6889    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
6890  }
6891
6892  // Handle final rounding.
6893  return Sub;
6894}
6895
6896SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
6897                                           SelectionDAG &DAG) const {
6898  SDValue N0 = Op.getOperand(0);
6899  DebugLoc dl = Op.getDebugLoc();
6900
6901  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
6902  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
6903  // the optimization here.
6904  if (DAG.SignBitIsZero(N0))
6905    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
6906
6907  EVT SrcVT = N0.getValueType();
6908  EVT DstVT = Op.getValueType();
6909  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
6910    return LowerUINT_TO_FP_i64(Op, DAG);
6911  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
6912    return LowerUINT_TO_FP_i32(Op, DAG);
6913
6914  // Make a 64-bit buffer, and use it to build an FILD.
6915  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
6916  if (SrcVT == MVT::i32) {
6917    SDValue WordOff = DAG.getConstant(4, getPointerTy());
6918    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
6919                                     getPointerTy(), StackSlot, WordOff);
6920    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6921                                  StackSlot, MachinePointerInfo(),
6922                                  false, false, 0);
6923    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
6924                                  OffsetSlot, MachinePointerInfo(),
6925                                  false, false, 0);
6926    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
6927    return Fild;
6928  }
6929
6930  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
6931  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6932                                StackSlot, MachinePointerInfo(),
6933                               false, false, 0);
6934  // For i64 source, we need to add the appropriate power of 2 if the input
6935  // was negative.  This is the same as the optimization in
6936  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
6937  // we must be careful to do the computation in x87 extended precision, not
6938  // in SSE. (The generic code can't know it's OK to do this, or how to.)
6939  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6940  MachineMemOperand *MMO =
6941    DAG.getMachineFunction()
6942    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6943                          MachineMemOperand::MOLoad, 8, 8);
6944
6945  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
6946  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
6947  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
6948                                         MVT::i64, MMO);
6949
6950  APInt FF(32, 0x5F800000ULL);
6951
6952  // Check whether the sign bit is set.
6953  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
6954                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
6955                                 ISD::SETLT);
6956
6957  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
6958  SDValue FudgePtr = DAG.getConstantPool(
6959                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
6960                                         getPointerTy());
6961
6962  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
6963  SDValue Zero = DAG.getIntPtrConstant(0);
6964  SDValue Four = DAG.getIntPtrConstant(4);
6965  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
6966                               Zero, Four);
6967  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
6968
6969  // Load the value out, extending it from f32 to f80.
6970  // FIXME: Avoid the extend by constructing the right constant pool?
6971  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
6972                                 FudgePtr, MachinePointerInfo::getConstantPool(),
6973                                 MVT::f32, false, false, 4);
6974  // Extend everything to 80 bits to force it to be done on x87.
6975  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
6976  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
6977}
6978
6979std::pair<SDValue,SDValue> X86TargetLowering::
6980FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
6981  DebugLoc DL = Op.getDebugLoc();
6982
6983  EVT DstTy = Op.getValueType();
6984
6985  if (!IsSigned) {
6986    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
6987    DstTy = MVT::i64;
6988  }
6989
6990  assert(DstTy.getSimpleVT() <= MVT::i64 &&
6991         DstTy.getSimpleVT() >= MVT::i16 &&
6992         "Unknown FP_TO_SINT to lower!");
6993
6994  // These are really Legal.
6995  if (DstTy == MVT::i32 &&
6996      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6997    return std::make_pair(SDValue(), SDValue());
6998  if (Subtarget->is64Bit() &&
6999      DstTy == MVT::i64 &&
7000      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7001    return std::make_pair(SDValue(), SDValue());
7002
7003  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7004  // stack slot.
7005  MachineFunction &MF = DAG.getMachineFunction();
7006  unsigned MemSize = DstTy.getSizeInBits()/8;
7007  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7008  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7009
7010
7011
7012  unsigned Opc;
7013  switch (DstTy.getSimpleVT().SimpleTy) {
7014  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7015  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7016  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7017  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7018  }
7019
7020  SDValue Chain = DAG.getEntryNode();
7021  SDValue Value = Op.getOperand(0);
7022  EVT TheVT = Op.getOperand(0).getValueType();
7023  if (isScalarFPTypeInSSEReg(TheVT)) {
7024    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7025    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7026                         MachinePointerInfo::getFixedStack(SSFI),
7027                         false, false, 0);
7028    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7029    SDValue Ops[] = {
7030      Chain, StackSlot, DAG.getValueType(TheVT)
7031    };
7032
7033    MachineMemOperand *MMO =
7034      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7035                              MachineMemOperand::MOLoad, MemSize, MemSize);
7036    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7037                                    DstTy, MMO);
7038    Chain = Value.getValue(1);
7039    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7040    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7041  }
7042
7043  MachineMemOperand *MMO =
7044    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7045                            MachineMemOperand::MOStore, MemSize, MemSize);
7046
7047  // Build the FP_TO_INT*_IN_MEM
7048  SDValue Ops[] = { Chain, Value, StackSlot };
7049  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7050                                         Ops, 3, DstTy, MMO);
7051
7052  return std::make_pair(FIST, StackSlot);
7053}
7054
7055SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7056                                           SelectionDAG &DAG) const {
7057  if (Op.getValueType().isVector())
7058    return SDValue();
7059
7060  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7061  SDValue FIST = Vals.first, StackSlot = Vals.second;
7062  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7063  if (FIST.getNode() == 0) return Op;
7064
7065  // Load the result.
7066  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7067                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7068}
7069
7070SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7071                                           SelectionDAG &DAG) const {
7072  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7073  SDValue FIST = Vals.first, StackSlot = Vals.second;
7074  assert(FIST.getNode() && "Unexpected failure");
7075
7076  // Load the result.
7077  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7078                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7079}
7080
7081SDValue X86TargetLowering::LowerFABS(SDValue Op,
7082                                     SelectionDAG &DAG) const {
7083  LLVMContext *Context = DAG.getContext();
7084  DebugLoc dl = Op.getDebugLoc();
7085  EVT VT = Op.getValueType();
7086  EVT EltVT = VT;
7087  if (VT.isVector())
7088    EltVT = VT.getVectorElementType();
7089  std::vector<Constant*> CV;
7090  if (EltVT == MVT::f64) {
7091    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7092    CV.push_back(C);
7093    CV.push_back(C);
7094  } else {
7095    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7096    CV.push_back(C);
7097    CV.push_back(C);
7098    CV.push_back(C);
7099    CV.push_back(C);
7100  }
7101  Constant *C = ConstantVector::get(CV);
7102  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7103  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7104                             MachinePointerInfo::getConstantPool(),
7105                             false, false, 16);
7106  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7107}
7108
7109SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7110  LLVMContext *Context = DAG.getContext();
7111  DebugLoc dl = Op.getDebugLoc();
7112  EVT VT = Op.getValueType();
7113  EVT EltVT = VT;
7114  if (VT.isVector())
7115    EltVT = VT.getVectorElementType();
7116  std::vector<Constant*> CV;
7117  if (EltVT == MVT::f64) {
7118    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7119    CV.push_back(C);
7120    CV.push_back(C);
7121  } else {
7122    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7123    CV.push_back(C);
7124    CV.push_back(C);
7125    CV.push_back(C);
7126    CV.push_back(C);
7127  }
7128  Constant *C = ConstantVector::get(CV);
7129  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7130  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7131                             MachinePointerInfo::getConstantPool(),
7132                             false, false, 16);
7133  if (VT.isVector()) {
7134    return DAG.getNode(ISD::BITCAST, dl, VT,
7135                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
7136                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7137                                Op.getOperand(0)),
7138                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
7139  } else {
7140    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7141  }
7142}
7143
7144SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7145  LLVMContext *Context = DAG.getContext();
7146  SDValue Op0 = Op.getOperand(0);
7147  SDValue Op1 = Op.getOperand(1);
7148  DebugLoc dl = Op.getDebugLoc();
7149  EVT VT = Op.getValueType();
7150  EVT SrcVT = Op1.getValueType();
7151
7152  // If second operand is smaller, extend it first.
7153  if (SrcVT.bitsLT(VT)) {
7154    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7155    SrcVT = VT;
7156  }
7157  // And if it is bigger, shrink it first.
7158  if (SrcVT.bitsGT(VT)) {
7159    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7160    SrcVT = VT;
7161  }
7162
7163  // At this point the operands and the result should have the same
7164  // type, and that won't be f80 since that is not custom lowered.
7165
7166  // First get the sign bit of second operand.
7167  std::vector<Constant*> CV;
7168  if (SrcVT == MVT::f64) {
7169    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7170    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7171  } else {
7172    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7173    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7174    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7175    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7176  }
7177  Constant *C = ConstantVector::get(CV);
7178  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7179  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7180                              MachinePointerInfo::getConstantPool(),
7181                              false, false, 16);
7182  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7183
7184  // Shift sign bit right or left if the two operands have different types.
7185  if (SrcVT.bitsGT(VT)) {
7186    // Op0 is MVT::f32, Op1 is MVT::f64.
7187    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7188    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7189                          DAG.getConstant(32, MVT::i32));
7190    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7191    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7192                          DAG.getIntPtrConstant(0));
7193  }
7194
7195  // Clear first operand sign bit.
7196  CV.clear();
7197  if (VT == MVT::f64) {
7198    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7199    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7200  } else {
7201    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7202    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7203    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7204    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7205  }
7206  C = ConstantVector::get(CV);
7207  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7208  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7209                              MachinePointerInfo::getConstantPool(),
7210                              false, false, 16);
7211  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7212
7213  // Or the value with the sign bit.
7214  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7215}
7216
7217/// Emit nodes that will be selected as "test Op0,Op0", or something
7218/// equivalent.
7219SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
7220                                    SelectionDAG &DAG) const {
7221  DebugLoc dl = Op.getDebugLoc();
7222
7223  // CF and OF aren't always set the way we want. Determine which
7224  // of these we need.
7225  bool NeedCF = false;
7226  bool NeedOF = false;
7227  switch (X86CC) {
7228  default: break;
7229  case X86::COND_A: case X86::COND_AE:
7230  case X86::COND_B: case X86::COND_BE:
7231    NeedCF = true;
7232    break;
7233  case X86::COND_G: case X86::COND_GE:
7234  case X86::COND_L: case X86::COND_LE:
7235  case X86::COND_O: case X86::COND_NO:
7236    NeedOF = true;
7237    break;
7238  }
7239
7240  // See if we can use the EFLAGS value from the operand instead of
7241  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
7242  // we prove that the arithmetic won't overflow, we can't use OF or CF.
7243  if (Op.getResNo() != 0 || NeedOF || NeedCF)
7244    // Emit a CMP with 0, which is the TEST pattern.
7245    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7246                       DAG.getConstant(0, Op.getValueType()));
7247
7248  unsigned Opcode = 0;
7249  unsigned NumOperands = 0;
7250  switch (Op.getNode()->getOpcode()) {
7251  case ISD::ADD:
7252    // Due to an isel shortcoming, be conservative if this add is likely to be
7253    // selected as part of a load-modify-store instruction. When the root node
7254    // in a match is a store, isel doesn't know how to remap non-chain non-flag
7255    // uses of other nodes in the match, such as the ADD in this case. This
7256    // leads to the ADD being left around and reselected, with the result being
7257    // two adds in the output.  Alas, even if none our users are stores, that
7258    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
7259    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
7260    // climbing the DAG back to the root, and it doesn't seem to be worth the
7261    // effort.
7262    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7263           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7264      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
7265        goto default_case;
7266
7267    if (ConstantSDNode *C =
7268        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
7269      // An add of one will be selected as an INC.
7270      if (C->getAPIntValue() == 1) {
7271        Opcode = X86ISD::INC;
7272        NumOperands = 1;
7273        break;
7274      }
7275
7276      // An add of negative one (subtract of one) will be selected as a DEC.
7277      if (C->getAPIntValue().isAllOnesValue()) {
7278        Opcode = X86ISD::DEC;
7279        NumOperands = 1;
7280        break;
7281      }
7282    }
7283
7284    // Otherwise use a regular EFLAGS-setting add.
7285    Opcode = X86ISD::ADD;
7286    NumOperands = 2;
7287    break;
7288  case ISD::AND: {
7289    // If the primary and result isn't used, don't bother using X86ISD::AND,
7290    // because a TEST instruction will be better.
7291    bool NonFlagUse = false;
7292    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7293           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
7294      SDNode *User = *UI;
7295      unsigned UOpNo = UI.getOperandNo();
7296      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
7297        // Look pass truncate.
7298        UOpNo = User->use_begin().getOperandNo();
7299        User = *User->use_begin();
7300      }
7301
7302      if (User->getOpcode() != ISD::BRCOND &&
7303          User->getOpcode() != ISD::SETCC &&
7304          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
7305        NonFlagUse = true;
7306        break;
7307      }
7308    }
7309
7310    if (!NonFlagUse)
7311      break;
7312  }
7313    // FALL THROUGH
7314  case ISD::SUB:
7315  case ISD::OR:
7316  case ISD::XOR:
7317    // Due to the ISEL shortcoming noted above, be conservative if this op is
7318    // likely to be selected as part of a load-modify-store instruction.
7319    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7320           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7321      if (UI->getOpcode() == ISD::STORE)
7322        goto default_case;
7323
7324    // Otherwise use a regular EFLAGS-setting instruction.
7325    switch (Op.getNode()->getOpcode()) {
7326    default: llvm_unreachable("unexpected operator!");
7327    case ISD::SUB: Opcode = X86ISD::SUB; break;
7328    case ISD::OR:  Opcode = X86ISD::OR;  break;
7329    case ISD::XOR: Opcode = X86ISD::XOR; break;
7330    case ISD::AND: Opcode = X86ISD::AND; break;
7331    }
7332
7333    NumOperands = 2;
7334    break;
7335  case X86ISD::ADD:
7336  case X86ISD::SUB:
7337  case X86ISD::INC:
7338  case X86ISD::DEC:
7339  case X86ISD::OR:
7340  case X86ISD::XOR:
7341  case X86ISD::AND:
7342    return SDValue(Op.getNode(), 1);
7343  default:
7344  default_case:
7345    break;
7346  }
7347
7348  if (Opcode == 0)
7349    // Emit a CMP with 0, which is the TEST pattern.
7350    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7351                       DAG.getConstant(0, Op.getValueType()));
7352
7353  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
7354  SmallVector<SDValue, 4> Ops;
7355  for (unsigned i = 0; i != NumOperands; ++i)
7356    Ops.push_back(Op.getOperand(i));
7357
7358  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
7359  DAG.ReplaceAllUsesWith(Op, New);
7360  return SDValue(New.getNode(), 1);
7361}
7362
7363/// Emit nodes that will be selected as "cmp Op0,Op1", or something
7364/// equivalent.
7365SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
7366                                   SelectionDAG &DAG) const {
7367  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
7368    if (C->getAPIntValue() == 0)
7369      return EmitTest(Op0, X86CC, DAG);
7370
7371  DebugLoc dl = Op0.getDebugLoc();
7372  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
7373}
7374
7375/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
7376/// if it's possible.
7377SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
7378                                     DebugLoc dl, SelectionDAG &DAG) const {
7379  SDValue Op0 = And.getOperand(0);
7380  SDValue Op1 = And.getOperand(1);
7381  if (Op0.getOpcode() == ISD::TRUNCATE)
7382    Op0 = Op0.getOperand(0);
7383  if (Op1.getOpcode() == ISD::TRUNCATE)
7384    Op1 = Op1.getOperand(0);
7385
7386  SDValue LHS, RHS;
7387  if (Op1.getOpcode() == ISD::SHL)
7388    std::swap(Op0, Op1);
7389  if (Op0.getOpcode() == ISD::SHL) {
7390    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
7391      if (And00C->getZExtValue() == 1) {
7392        // If we looked past a truncate, check that it's only truncating away
7393        // known zeros.
7394        unsigned BitWidth = Op0.getValueSizeInBits();
7395        unsigned AndBitWidth = And.getValueSizeInBits();
7396        if (BitWidth > AndBitWidth) {
7397          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
7398          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
7399          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
7400            return SDValue();
7401        }
7402        LHS = Op1;
7403        RHS = Op0.getOperand(1);
7404      }
7405  } else if (Op1.getOpcode() == ISD::Constant) {
7406    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
7407    SDValue AndLHS = Op0;
7408    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
7409      LHS = AndLHS.getOperand(0);
7410      RHS = AndLHS.getOperand(1);
7411    }
7412  }
7413
7414  if (LHS.getNode()) {
7415    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
7416    // instruction.  Since the shift amount is in-range-or-undefined, we know
7417    // that doing a bittest on the i32 value is ok.  We extend to i32 because
7418    // the encoding for the i16 version is larger than the i32 version.
7419    // Also promote i16 to i32 for performance / code size reason.
7420    if (LHS.getValueType() == MVT::i8 ||
7421        LHS.getValueType() == MVT::i16)
7422      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
7423
7424    // If the operand types disagree, extend the shift amount to match.  Since
7425    // BT ignores high bits (like shifts) we can use anyextend.
7426    if (LHS.getValueType() != RHS.getValueType())
7427      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
7428
7429    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
7430    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
7431    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7432                       DAG.getConstant(Cond, MVT::i8), BT);
7433  }
7434
7435  return SDValue();
7436}
7437
7438SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
7439  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
7440  SDValue Op0 = Op.getOperand(0);
7441  SDValue Op1 = Op.getOperand(1);
7442  DebugLoc dl = Op.getDebugLoc();
7443  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7444
7445  // Optimize to BT if possible.
7446  // Lower (X & (1 << N)) == 0 to BT(X, N).
7447  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7448  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7449  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
7450      Op1.getOpcode() == ISD::Constant &&
7451      cast<ConstantSDNode>(Op1)->isNullValue() &&
7452      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7453    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7454    if (NewSetCC.getNode())
7455      return NewSetCC;
7456  }
7457
7458  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
7459  // these.
7460  if (Op1.getOpcode() == ISD::Constant &&
7461      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7462       cast<ConstantSDNode>(Op1)->isNullValue()) &&
7463      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7464
7465    // If the input is a setcc, then reuse the input setcc or use a new one with
7466    // the inverted condition.
7467    if (Op0.getOpcode() == X86ISD::SETCC) {
7468      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7469      bool Invert = (CC == ISD::SETNE) ^
7470        cast<ConstantSDNode>(Op1)->isNullValue();
7471      if (!Invert) return Op0;
7472
7473      CCode = X86::GetOppositeBranchCondition(CCode);
7474      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7475                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7476    }
7477  }
7478
7479  bool isFP = Op1.getValueType().isFloatingPoint();
7480  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7481  if (X86CC == X86::COND_INVALID)
7482    return SDValue();
7483
7484  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
7485  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7486                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
7487}
7488
7489SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7490  SDValue Cond;
7491  SDValue Op0 = Op.getOperand(0);
7492  SDValue Op1 = Op.getOperand(1);
7493  SDValue CC = Op.getOperand(2);
7494  EVT VT = Op.getValueType();
7495  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7496  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7497  DebugLoc dl = Op.getDebugLoc();
7498
7499  if (isFP) {
7500    unsigned SSECC = 8;
7501    EVT VT0 = Op0.getValueType();
7502    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
7503    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7504    bool Swap = false;
7505
7506    switch (SetCCOpcode) {
7507    default: break;
7508    case ISD::SETOEQ:
7509    case ISD::SETEQ:  SSECC = 0; break;
7510    case ISD::SETOGT:
7511    case ISD::SETGT: Swap = true; // Fallthrough
7512    case ISD::SETLT:
7513    case ISD::SETOLT: SSECC = 1; break;
7514    case ISD::SETOGE:
7515    case ISD::SETGE: Swap = true; // Fallthrough
7516    case ISD::SETLE:
7517    case ISD::SETOLE: SSECC = 2; break;
7518    case ISD::SETUO:  SSECC = 3; break;
7519    case ISD::SETUNE:
7520    case ISD::SETNE:  SSECC = 4; break;
7521    case ISD::SETULE: Swap = true;
7522    case ISD::SETUGE: SSECC = 5; break;
7523    case ISD::SETULT: Swap = true;
7524    case ISD::SETUGT: SSECC = 6; break;
7525    case ISD::SETO:   SSECC = 7; break;
7526    }
7527    if (Swap)
7528      std::swap(Op0, Op1);
7529
7530    // In the two special cases we can't handle, emit two comparisons.
7531    if (SSECC == 8) {
7532      if (SetCCOpcode == ISD::SETUEQ) {
7533        SDValue UNORD, EQ;
7534        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7535        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7536        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7537      }
7538      else if (SetCCOpcode == ISD::SETONE) {
7539        SDValue ORD, NEQ;
7540        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7541        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7542        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7543      }
7544      llvm_unreachable("Illegal FP comparison");
7545    }
7546    // Handle all other FP comparisons here.
7547    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7548  }
7549
7550  // We are handling one of the integer comparisons here.  Since SSE only has
7551  // GT and EQ comparisons for integer, swapping operands and multiple
7552  // operations may be required for some comparisons.
7553  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7554  bool Swap = false, Invert = false, FlipSigns = false;
7555
7556  switch (VT.getSimpleVT().SimpleTy) {
7557  default: break;
7558  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7559  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7560  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7561  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7562  }
7563
7564  switch (SetCCOpcode) {
7565  default: break;
7566  case ISD::SETNE:  Invert = true;
7567  case ISD::SETEQ:  Opc = EQOpc; break;
7568  case ISD::SETLT:  Swap = true;
7569  case ISD::SETGT:  Opc = GTOpc; break;
7570  case ISD::SETGE:  Swap = true;
7571  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
7572  case ISD::SETULT: Swap = true;
7573  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
7574  case ISD::SETUGE: Swap = true;
7575  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
7576  }
7577  if (Swap)
7578    std::swap(Op0, Op1);
7579
7580  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
7581  // bits of the inputs before performing those operations.
7582  if (FlipSigns) {
7583    EVT EltVT = VT.getVectorElementType();
7584    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
7585                                      EltVT);
7586    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
7587    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
7588                                    SignBits.size());
7589    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
7590    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
7591  }
7592
7593  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
7594
7595  // If the logical-not of the result is required, perform that now.
7596  if (Invert)
7597    Result = DAG.getNOT(dl, Result, VT);
7598
7599  return Result;
7600}
7601
7602// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7603static bool isX86LogicalCmp(SDValue Op) {
7604  unsigned Opc = Op.getNode()->getOpcode();
7605  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
7606    return true;
7607  if (Op.getResNo() == 1 &&
7608      (Opc == X86ISD::ADD ||
7609       Opc == X86ISD::SUB ||
7610       Opc == X86ISD::ADC ||
7611       Opc == X86ISD::SBB ||
7612       Opc == X86ISD::SMUL ||
7613       Opc == X86ISD::UMUL ||
7614       Opc == X86ISD::INC ||
7615       Opc == X86ISD::DEC ||
7616       Opc == X86ISD::OR ||
7617       Opc == X86ISD::XOR ||
7618       Opc == X86ISD::AND))
7619    return true;
7620
7621  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
7622    return true;
7623
7624  return false;
7625}
7626
7627static bool isZero(SDValue V) {
7628  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7629  return C && C->isNullValue();
7630}
7631
7632static bool isAllOnes(SDValue V) {
7633  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7634  return C && C->isAllOnesValue();
7635}
7636
7637SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7638  bool addTest = true;
7639  SDValue Cond  = Op.getOperand(0);
7640  SDValue Op1 = Op.getOperand(1);
7641  SDValue Op2 = Op.getOperand(2);
7642  DebugLoc DL = Op.getDebugLoc();
7643  SDValue CC;
7644
7645  if (Cond.getOpcode() == ISD::SETCC) {
7646    SDValue NewCond = LowerSETCC(Cond, DAG);
7647    if (NewCond.getNode())
7648      Cond = NewCond;
7649  }
7650
7651  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
7652  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
7653  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
7654  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
7655  if (Cond.getOpcode() == X86ISD::SETCC &&
7656      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
7657      isZero(Cond.getOperand(1).getOperand(1))) {
7658    SDValue Cmp = Cond.getOperand(1);
7659
7660    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
7661
7662    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
7663        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
7664      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
7665
7666      SDValue CmpOp0 = Cmp.getOperand(0);
7667      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
7668                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
7669
7670      SDValue Res =   // Res = 0 or -1.
7671        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7672                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
7673
7674      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
7675        Res = DAG.getNOT(DL, Res, Res.getValueType());
7676
7677      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
7678      if (N2C == 0 || !N2C->isNullValue())
7679        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
7680      return Res;
7681    }
7682  }
7683
7684  // Look past (and (setcc_carry (cmp ...)), 1).
7685  if (Cond.getOpcode() == ISD::AND &&
7686      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7687    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7688    if (C && C->getAPIntValue() == 1)
7689      Cond = Cond.getOperand(0);
7690  }
7691
7692  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7693  // setting operand in place of the X86ISD::SETCC.
7694  if (Cond.getOpcode() == X86ISD::SETCC ||
7695      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7696    CC = Cond.getOperand(0);
7697
7698    SDValue Cmp = Cond.getOperand(1);
7699    unsigned Opc = Cmp.getOpcode();
7700    EVT VT = Op.getValueType();
7701
7702    bool IllegalFPCMov = false;
7703    if (VT.isFloatingPoint() && !VT.isVector() &&
7704        !isScalarFPTypeInSSEReg(VT))  // FPStack?
7705      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
7706
7707    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
7708        Opc == X86ISD::BT) { // FIXME
7709      Cond = Cmp;
7710      addTest = false;
7711    }
7712  }
7713
7714  if (addTest) {
7715    // Look pass the truncate.
7716    if (Cond.getOpcode() == ISD::TRUNCATE)
7717      Cond = Cond.getOperand(0);
7718
7719    // We know the result of AND is compared against zero. Try to match
7720    // it to BT.
7721    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7722      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
7723      if (NewSetCC.getNode()) {
7724        CC = NewSetCC.getOperand(0);
7725        Cond = NewSetCC.getOperand(1);
7726        addTest = false;
7727      }
7728    }
7729  }
7730
7731  if (addTest) {
7732    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7733    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7734  }
7735
7736  // a <  b ? -1 :  0 -> RES = ~setcc_carry
7737  // a <  b ?  0 : -1 -> RES = setcc_carry
7738  // a >= b ? -1 :  0 -> RES = setcc_carry
7739  // a >= b ?  0 : -1 -> RES = ~setcc_carry
7740  if (Cond.getOpcode() == X86ISD::CMP) {
7741    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
7742
7743    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
7744        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
7745      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7746                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
7747      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
7748        return DAG.getNOT(DL, Res, Res.getValueType());
7749      return Res;
7750    }
7751  }
7752
7753  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
7754  // condition is true.
7755  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
7756  SDValue Ops[] = { Op2, Op1, CC, Cond };
7757  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
7758}
7759
7760// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7761// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7762// from the AND / OR.
7763static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
7764  Opc = Op.getOpcode();
7765  if (Opc != ISD::OR && Opc != ISD::AND)
7766    return false;
7767  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7768          Op.getOperand(0).hasOneUse() &&
7769          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
7770          Op.getOperand(1).hasOneUse());
7771}
7772
7773// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7774// 1 and that the SETCC node has a single use.
7775static bool isXor1OfSetCC(SDValue Op) {
7776  if (Op.getOpcode() != ISD::XOR)
7777    return false;
7778  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7779  if (N1C && N1C->getAPIntValue() == 1) {
7780    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7781      Op.getOperand(0).hasOneUse();
7782  }
7783  return false;
7784}
7785
7786SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
7787  bool addTest = true;
7788  SDValue Chain = Op.getOperand(0);
7789  SDValue Cond  = Op.getOperand(1);
7790  SDValue Dest  = Op.getOperand(2);
7791  DebugLoc dl = Op.getDebugLoc();
7792  SDValue CC;
7793
7794  if (Cond.getOpcode() == ISD::SETCC) {
7795    SDValue NewCond = LowerSETCC(Cond, DAG);
7796    if (NewCond.getNode())
7797      Cond = NewCond;
7798  }
7799#if 0
7800  // FIXME: LowerXALUO doesn't handle these!!
7801  else if (Cond.getOpcode() == X86ISD::ADD  ||
7802           Cond.getOpcode() == X86ISD::SUB  ||
7803           Cond.getOpcode() == X86ISD::SMUL ||
7804           Cond.getOpcode() == X86ISD::UMUL)
7805    Cond = LowerXALUO(Cond, DAG);
7806#endif
7807
7808  // Look pass (and (setcc_carry (cmp ...)), 1).
7809  if (Cond.getOpcode() == ISD::AND &&
7810      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7811    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7812    if (C && C->getAPIntValue() == 1)
7813      Cond = Cond.getOperand(0);
7814  }
7815
7816  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7817  // setting operand in place of the X86ISD::SETCC.
7818  if (Cond.getOpcode() == X86ISD::SETCC ||
7819      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7820    CC = Cond.getOperand(0);
7821
7822    SDValue Cmp = Cond.getOperand(1);
7823    unsigned Opc = Cmp.getOpcode();
7824    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
7825    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
7826      Cond = Cmp;
7827      addTest = false;
7828    } else {
7829      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
7830      default: break;
7831      case X86::COND_O:
7832      case X86::COND_B:
7833        // These can only come from an arithmetic instruction with overflow,
7834        // e.g. SADDO, UADDO.
7835        Cond = Cond.getNode()->getOperand(1);
7836        addTest = false;
7837        break;
7838      }
7839    }
7840  } else {
7841    unsigned CondOpc;
7842    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
7843      SDValue Cmp = Cond.getOperand(0).getOperand(1);
7844      if (CondOpc == ISD::OR) {
7845        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
7846        // two branches instead of an explicit OR instruction with a
7847        // separate test.
7848        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7849            isX86LogicalCmp(Cmp)) {
7850          CC = Cond.getOperand(0).getOperand(0);
7851          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7852                              Chain, Dest, CC, Cmp);
7853          CC = Cond.getOperand(1).getOperand(0);
7854          Cond = Cmp;
7855          addTest = false;
7856        }
7857      } else { // ISD::AND
7858        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
7859        // two branches instead of an explicit AND instruction with a
7860        // separate test. However, we only do this if this block doesn't
7861        // have a fall-through edge, because this requires an explicit
7862        // jmp when the condition is false.
7863        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7864            isX86LogicalCmp(Cmp) &&
7865            Op.getNode()->hasOneUse()) {
7866          X86::CondCode CCode =
7867            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7868          CCode = X86::GetOppositeBranchCondition(CCode);
7869          CC = DAG.getConstant(CCode, MVT::i8);
7870          SDNode *User = *Op.getNode()->use_begin();
7871          // Look for an unconditional branch following this conditional branch.
7872          // We need this because we need to reverse the successors in order
7873          // to implement FCMP_OEQ.
7874          if (User->getOpcode() == ISD::BR) {
7875            SDValue FalseBB = User->getOperand(1);
7876            SDNode *NewBR =
7877              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
7878            assert(NewBR == User);
7879            (void)NewBR;
7880            Dest = FalseBB;
7881
7882            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7883                                Chain, Dest, CC, Cmp);
7884            X86::CondCode CCode =
7885              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
7886            CCode = X86::GetOppositeBranchCondition(CCode);
7887            CC = DAG.getConstant(CCode, MVT::i8);
7888            Cond = Cmp;
7889            addTest = false;
7890          }
7891        }
7892      }
7893    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
7894      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
7895      // It should be transformed during dag combiner except when the condition
7896      // is set by a arithmetics with overflow node.
7897      X86::CondCode CCode =
7898        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7899      CCode = X86::GetOppositeBranchCondition(CCode);
7900      CC = DAG.getConstant(CCode, MVT::i8);
7901      Cond = Cond.getOperand(0).getOperand(1);
7902      addTest = false;
7903    }
7904  }
7905
7906  if (addTest) {
7907    // Look pass the truncate.
7908    if (Cond.getOpcode() == ISD::TRUNCATE)
7909      Cond = Cond.getOperand(0);
7910
7911    // We know the result of AND is compared against zero. Try to match
7912    // it to BT.
7913    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7914      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7915      if (NewSetCC.getNode()) {
7916        CC = NewSetCC.getOperand(0);
7917        Cond = NewSetCC.getOperand(1);
7918        addTest = false;
7919      }
7920    }
7921  }
7922
7923  if (addTest) {
7924    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7925    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7926  }
7927  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7928                     Chain, Dest, CC, Cond);
7929}
7930
7931
7932// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
7933// Calls to _alloca is needed to probe the stack when allocating more than 4k
7934// bytes in one go. Touching the stack at 4K increments is necessary to ensure
7935// that the guard pages used by the OS virtual memory manager are allocated in
7936// correct sequence.
7937SDValue
7938X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7939                                           SelectionDAG &DAG) const {
7940  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
7941         "This should be used only on Windows targets");
7942  assert(!Subtarget->isTargetEnvMacho());
7943  DebugLoc dl = Op.getDebugLoc();
7944
7945  // Get the inputs.
7946  SDValue Chain = Op.getOperand(0);
7947  SDValue Size  = Op.getOperand(1);
7948  // FIXME: Ensure alignment here
7949
7950  SDValue Flag;
7951
7952  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
7953  unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
7954
7955  Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
7956  Flag = Chain.getValue(1);
7957
7958  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7959
7960  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
7961  Flag = Chain.getValue(1);
7962
7963  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
7964
7965  SDValue Ops1[2] = { Chain.getValue(0), Chain };
7966  return DAG.getMergeValues(Ops1, 2, dl);
7967}
7968
7969SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
7970  MachineFunction &MF = DAG.getMachineFunction();
7971  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
7972
7973  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7974  DebugLoc DL = Op.getDebugLoc();
7975
7976  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
7977    // vastart just stores the address of the VarArgsFrameIndex slot into the
7978    // memory location argument.
7979    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7980                                   getPointerTy());
7981    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
7982                        MachinePointerInfo(SV), false, false, 0);
7983  }
7984
7985  // __va_list_tag:
7986  //   gp_offset         (0 - 6 * 8)
7987  //   fp_offset         (48 - 48 + 8 * 16)
7988  //   overflow_arg_area (point to parameters coming in memory).
7989  //   reg_save_area
7990  SmallVector<SDValue, 8> MemOps;
7991  SDValue FIN = Op.getOperand(1);
7992  // Store gp_offset
7993  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
7994                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
7995                                               MVT::i32),
7996                               FIN, MachinePointerInfo(SV), false, false, 0);
7997  MemOps.push_back(Store);
7998
7999  // Store fp_offset
8000  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8001                    FIN, DAG.getIntPtrConstant(4));
8002  Store = DAG.getStore(Op.getOperand(0), DL,
8003                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
8004                                       MVT::i32),
8005                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
8006  MemOps.push_back(Store);
8007
8008  // Store ptr to overflow_arg_area
8009  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8010                    FIN, DAG.getIntPtrConstant(4));
8011  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8012                                    getPointerTy());
8013  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
8014                       MachinePointerInfo(SV, 8),
8015                       false, false, 0);
8016  MemOps.push_back(Store);
8017
8018  // Store ptr to reg_save_area.
8019  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8020                    FIN, DAG.getIntPtrConstant(8));
8021  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
8022                                    getPointerTy());
8023  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
8024                       MachinePointerInfo(SV, 16), false, false, 0);
8025  MemOps.push_back(Store);
8026  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
8027                     &MemOps[0], MemOps.size());
8028}
8029
8030SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
8031  assert(Subtarget->is64Bit() &&
8032         "LowerVAARG only handles 64-bit va_arg!");
8033  assert((Subtarget->isTargetLinux() ||
8034          Subtarget->isTargetDarwin()) &&
8035          "Unhandled target in LowerVAARG");
8036  assert(Op.getNode()->getNumOperands() == 4);
8037  SDValue Chain = Op.getOperand(0);
8038  SDValue SrcPtr = Op.getOperand(1);
8039  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8040  unsigned Align = Op.getConstantOperandVal(3);
8041  DebugLoc dl = Op.getDebugLoc();
8042
8043  EVT ArgVT = Op.getNode()->getValueType(0);
8044  const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
8045  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
8046  uint8_t ArgMode;
8047
8048  // Decide which area this value should be read from.
8049  // TODO: Implement the AMD64 ABI in its entirety. This simple
8050  // selection mechanism works only for the basic types.
8051  if (ArgVT == MVT::f80) {
8052    llvm_unreachable("va_arg for f80 not yet implemented");
8053  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
8054    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
8055  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
8056    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
8057  } else {
8058    llvm_unreachable("Unhandled argument type in LowerVAARG");
8059  }
8060
8061  if (ArgMode == 2) {
8062    // Sanity Check: Make sure using fp_offset makes sense.
8063    assert(!UseSoftFloat &&
8064           !(DAG.getMachineFunction()
8065                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
8066           Subtarget->hasXMM());
8067  }
8068
8069  // Insert VAARG_64 node into the DAG
8070  // VAARG_64 returns two values: Variable Argument Address, Chain
8071  SmallVector<SDValue, 11> InstOps;
8072  InstOps.push_back(Chain);
8073  InstOps.push_back(SrcPtr);
8074  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
8075  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
8076  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
8077  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
8078  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
8079                                          VTs, &InstOps[0], InstOps.size(),
8080                                          MVT::i64,
8081                                          MachinePointerInfo(SV),
8082                                          /*Align=*/0,
8083                                          /*Volatile=*/false,
8084                                          /*ReadMem=*/true,
8085                                          /*WriteMem=*/true);
8086  Chain = VAARG.getValue(1);
8087
8088  // Load the next argument and return it
8089  return DAG.getLoad(ArgVT, dl,
8090                     Chain,
8091                     VAARG,
8092                     MachinePointerInfo(),
8093                     false, false, 0);
8094}
8095
8096SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
8097  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
8098  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
8099  SDValue Chain = Op.getOperand(0);
8100  SDValue DstPtr = Op.getOperand(1);
8101  SDValue SrcPtr = Op.getOperand(2);
8102  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
8103  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8104  DebugLoc DL = Op.getDebugLoc();
8105
8106  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
8107                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
8108                       false,
8109                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
8110}
8111
8112SDValue
8113X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
8114  DebugLoc dl = Op.getDebugLoc();
8115  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8116  switch (IntNo) {
8117  default: return SDValue();    // Don't custom lower most intrinsics.
8118  // Comparison intrinsics.
8119  case Intrinsic::x86_sse_comieq_ss:
8120  case Intrinsic::x86_sse_comilt_ss:
8121  case Intrinsic::x86_sse_comile_ss:
8122  case Intrinsic::x86_sse_comigt_ss:
8123  case Intrinsic::x86_sse_comige_ss:
8124  case Intrinsic::x86_sse_comineq_ss:
8125  case Intrinsic::x86_sse_ucomieq_ss:
8126  case Intrinsic::x86_sse_ucomilt_ss:
8127  case Intrinsic::x86_sse_ucomile_ss:
8128  case Intrinsic::x86_sse_ucomigt_ss:
8129  case Intrinsic::x86_sse_ucomige_ss:
8130  case Intrinsic::x86_sse_ucomineq_ss:
8131  case Intrinsic::x86_sse2_comieq_sd:
8132  case Intrinsic::x86_sse2_comilt_sd:
8133  case Intrinsic::x86_sse2_comile_sd:
8134  case Intrinsic::x86_sse2_comigt_sd:
8135  case Intrinsic::x86_sse2_comige_sd:
8136  case Intrinsic::x86_sse2_comineq_sd:
8137  case Intrinsic::x86_sse2_ucomieq_sd:
8138  case Intrinsic::x86_sse2_ucomilt_sd:
8139  case Intrinsic::x86_sse2_ucomile_sd:
8140  case Intrinsic::x86_sse2_ucomigt_sd:
8141  case Intrinsic::x86_sse2_ucomige_sd:
8142  case Intrinsic::x86_sse2_ucomineq_sd: {
8143    unsigned Opc = 0;
8144    ISD::CondCode CC = ISD::SETCC_INVALID;
8145    switch (IntNo) {
8146    default: break;
8147    case Intrinsic::x86_sse_comieq_ss:
8148    case Intrinsic::x86_sse2_comieq_sd:
8149      Opc = X86ISD::COMI;
8150      CC = ISD::SETEQ;
8151      break;
8152    case Intrinsic::x86_sse_comilt_ss:
8153    case Intrinsic::x86_sse2_comilt_sd:
8154      Opc = X86ISD::COMI;
8155      CC = ISD::SETLT;
8156      break;
8157    case Intrinsic::x86_sse_comile_ss:
8158    case Intrinsic::x86_sse2_comile_sd:
8159      Opc = X86ISD::COMI;
8160      CC = ISD::SETLE;
8161      break;
8162    case Intrinsic::x86_sse_comigt_ss:
8163    case Intrinsic::x86_sse2_comigt_sd:
8164      Opc = X86ISD::COMI;
8165      CC = ISD::SETGT;
8166      break;
8167    case Intrinsic::x86_sse_comige_ss:
8168    case Intrinsic::x86_sse2_comige_sd:
8169      Opc = X86ISD::COMI;
8170      CC = ISD::SETGE;
8171      break;
8172    case Intrinsic::x86_sse_comineq_ss:
8173    case Intrinsic::x86_sse2_comineq_sd:
8174      Opc = X86ISD::COMI;
8175      CC = ISD::SETNE;
8176      break;
8177    case Intrinsic::x86_sse_ucomieq_ss:
8178    case Intrinsic::x86_sse2_ucomieq_sd:
8179      Opc = X86ISD::UCOMI;
8180      CC = ISD::SETEQ;
8181      break;
8182    case Intrinsic::x86_sse_ucomilt_ss:
8183    case Intrinsic::x86_sse2_ucomilt_sd:
8184      Opc = X86ISD::UCOMI;
8185      CC = ISD::SETLT;
8186      break;
8187    case Intrinsic::x86_sse_ucomile_ss:
8188    case Intrinsic::x86_sse2_ucomile_sd:
8189      Opc = X86ISD::UCOMI;
8190      CC = ISD::SETLE;
8191      break;
8192    case Intrinsic::x86_sse_ucomigt_ss:
8193    case Intrinsic::x86_sse2_ucomigt_sd:
8194      Opc = X86ISD::UCOMI;
8195      CC = ISD::SETGT;
8196      break;
8197    case Intrinsic::x86_sse_ucomige_ss:
8198    case Intrinsic::x86_sse2_ucomige_sd:
8199      Opc = X86ISD::UCOMI;
8200      CC = ISD::SETGE;
8201      break;
8202    case Intrinsic::x86_sse_ucomineq_ss:
8203    case Intrinsic::x86_sse2_ucomineq_sd:
8204      Opc = X86ISD::UCOMI;
8205      CC = ISD::SETNE;
8206      break;
8207    }
8208
8209    SDValue LHS = Op.getOperand(1);
8210    SDValue RHS = Op.getOperand(2);
8211    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
8212    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
8213    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
8214    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8215                                DAG.getConstant(X86CC, MVT::i8), Cond);
8216    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8217  }
8218  // ptest and testp intrinsics. The intrinsic these come from are designed to
8219  // return an integer value, not just an instruction so lower it to the ptest
8220  // or testp pattern and a setcc for the result.
8221  case Intrinsic::x86_sse41_ptestz:
8222  case Intrinsic::x86_sse41_ptestc:
8223  case Intrinsic::x86_sse41_ptestnzc:
8224  case Intrinsic::x86_avx_ptestz_256:
8225  case Intrinsic::x86_avx_ptestc_256:
8226  case Intrinsic::x86_avx_ptestnzc_256:
8227  case Intrinsic::x86_avx_vtestz_ps:
8228  case Intrinsic::x86_avx_vtestc_ps:
8229  case Intrinsic::x86_avx_vtestnzc_ps:
8230  case Intrinsic::x86_avx_vtestz_pd:
8231  case Intrinsic::x86_avx_vtestc_pd:
8232  case Intrinsic::x86_avx_vtestnzc_pd:
8233  case Intrinsic::x86_avx_vtestz_ps_256:
8234  case Intrinsic::x86_avx_vtestc_ps_256:
8235  case Intrinsic::x86_avx_vtestnzc_ps_256:
8236  case Intrinsic::x86_avx_vtestz_pd_256:
8237  case Intrinsic::x86_avx_vtestc_pd_256:
8238  case Intrinsic::x86_avx_vtestnzc_pd_256: {
8239    bool IsTestPacked = false;
8240    unsigned X86CC = 0;
8241    switch (IntNo) {
8242    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
8243    case Intrinsic::x86_avx_vtestz_ps:
8244    case Intrinsic::x86_avx_vtestz_pd:
8245    case Intrinsic::x86_avx_vtestz_ps_256:
8246    case Intrinsic::x86_avx_vtestz_pd_256:
8247      IsTestPacked = true; // Fallthrough
8248    case Intrinsic::x86_sse41_ptestz:
8249    case Intrinsic::x86_avx_ptestz_256:
8250      // ZF = 1
8251      X86CC = X86::COND_E;
8252      break;
8253    case Intrinsic::x86_avx_vtestc_ps:
8254    case Intrinsic::x86_avx_vtestc_pd:
8255    case Intrinsic::x86_avx_vtestc_ps_256:
8256    case Intrinsic::x86_avx_vtestc_pd_256:
8257      IsTestPacked = true; // Fallthrough
8258    case Intrinsic::x86_sse41_ptestc:
8259    case Intrinsic::x86_avx_ptestc_256:
8260      // CF = 1
8261      X86CC = X86::COND_B;
8262      break;
8263    case Intrinsic::x86_avx_vtestnzc_ps:
8264    case Intrinsic::x86_avx_vtestnzc_pd:
8265    case Intrinsic::x86_avx_vtestnzc_ps_256:
8266    case Intrinsic::x86_avx_vtestnzc_pd_256:
8267      IsTestPacked = true; // Fallthrough
8268    case Intrinsic::x86_sse41_ptestnzc:
8269    case Intrinsic::x86_avx_ptestnzc_256:
8270      // ZF and CF = 0
8271      X86CC = X86::COND_A;
8272      break;
8273    }
8274
8275    SDValue LHS = Op.getOperand(1);
8276    SDValue RHS = Op.getOperand(2);
8277    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
8278    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
8279    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
8280    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
8281    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8282  }
8283
8284  // Fix vector shift instructions where the last operand is a non-immediate
8285  // i32 value.
8286  case Intrinsic::x86_sse2_pslli_w:
8287  case Intrinsic::x86_sse2_pslli_d:
8288  case Intrinsic::x86_sse2_pslli_q:
8289  case Intrinsic::x86_sse2_psrli_w:
8290  case Intrinsic::x86_sse2_psrli_d:
8291  case Intrinsic::x86_sse2_psrli_q:
8292  case Intrinsic::x86_sse2_psrai_w:
8293  case Intrinsic::x86_sse2_psrai_d:
8294  case Intrinsic::x86_mmx_pslli_w:
8295  case Intrinsic::x86_mmx_pslli_d:
8296  case Intrinsic::x86_mmx_pslli_q:
8297  case Intrinsic::x86_mmx_psrli_w:
8298  case Intrinsic::x86_mmx_psrli_d:
8299  case Intrinsic::x86_mmx_psrli_q:
8300  case Intrinsic::x86_mmx_psrai_w:
8301  case Intrinsic::x86_mmx_psrai_d: {
8302    SDValue ShAmt = Op.getOperand(2);
8303    if (isa<ConstantSDNode>(ShAmt))
8304      return SDValue();
8305
8306    unsigned NewIntNo = 0;
8307    EVT ShAmtVT = MVT::v4i32;
8308    switch (IntNo) {
8309    case Intrinsic::x86_sse2_pslli_w:
8310      NewIntNo = Intrinsic::x86_sse2_psll_w;
8311      break;
8312    case Intrinsic::x86_sse2_pslli_d:
8313      NewIntNo = Intrinsic::x86_sse2_psll_d;
8314      break;
8315    case Intrinsic::x86_sse2_pslli_q:
8316      NewIntNo = Intrinsic::x86_sse2_psll_q;
8317      break;
8318    case Intrinsic::x86_sse2_psrli_w:
8319      NewIntNo = Intrinsic::x86_sse2_psrl_w;
8320      break;
8321    case Intrinsic::x86_sse2_psrli_d:
8322      NewIntNo = Intrinsic::x86_sse2_psrl_d;
8323      break;
8324    case Intrinsic::x86_sse2_psrli_q:
8325      NewIntNo = Intrinsic::x86_sse2_psrl_q;
8326      break;
8327    case Intrinsic::x86_sse2_psrai_w:
8328      NewIntNo = Intrinsic::x86_sse2_psra_w;
8329      break;
8330    case Intrinsic::x86_sse2_psrai_d:
8331      NewIntNo = Intrinsic::x86_sse2_psra_d;
8332      break;
8333    default: {
8334      ShAmtVT = MVT::v2i32;
8335      switch (IntNo) {
8336      case Intrinsic::x86_mmx_pslli_w:
8337        NewIntNo = Intrinsic::x86_mmx_psll_w;
8338        break;
8339      case Intrinsic::x86_mmx_pslli_d:
8340        NewIntNo = Intrinsic::x86_mmx_psll_d;
8341        break;
8342      case Intrinsic::x86_mmx_pslli_q:
8343        NewIntNo = Intrinsic::x86_mmx_psll_q;
8344        break;
8345      case Intrinsic::x86_mmx_psrli_w:
8346        NewIntNo = Intrinsic::x86_mmx_psrl_w;
8347        break;
8348      case Intrinsic::x86_mmx_psrli_d:
8349        NewIntNo = Intrinsic::x86_mmx_psrl_d;
8350        break;
8351      case Intrinsic::x86_mmx_psrli_q:
8352        NewIntNo = Intrinsic::x86_mmx_psrl_q;
8353        break;
8354      case Intrinsic::x86_mmx_psrai_w:
8355        NewIntNo = Intrinsic::x86_mmx_psra_w;
8356        break;
8357      case Intrinsic::x86_mmx_psrai_d:
8358        NewIntNo = Intrinsic::x86_mmx_psra_d;
8359        break;
8360      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8361      }
8362      break;
8363    }
8364    }
8365
8366    // The vector shift intrinsics with scalars uses 32b shift amounts but
8367    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
8368    // to be zero.
8369    SDValue ShOps[4];
8370    ShOps[0] = ShAmt;
8371    ShOps[1] = DAG.getConstant(0, MVT::i32);
8372    if (ShAmtVT == MVT::v4i32) {
8373      ShOps[2] = DAG.getUNDEF(MVT::i32);
8374      ShOps[3] = DAG.getUNDEF(MVT::i32);
8375      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
8376    } else {
8377      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
8378// FIXME this must be lowered to get rid of the invalid type.
8379    }
8380
8381    EVT VT = Op.getValueType();
8382    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
8383    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8384                       DAG.getConstant(NewIntNo, MVT::i32),
8385                       Op.getOperand(1), ShAmt);
8386  }
8387  }
8388}
8389
8390SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
8391                                           SelectionDAG &DAG) const {
8392  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8393  MFI->setReturnAddressIsTaken(true);
8394
8395  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8396  DebugLoc dl = Op.getDebugLoc();
8397
8398  if (Depth > 0) {
8399    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
8400    SDValue Offset =
8401      DAG.getConstant(TD->getPointerSize(),
8402                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8403    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8404                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
8405                                   FrameAddr, Offset),
8406                       MachinePointerInfo(), false, false, 0);
8407  }
8408
8409  // Just load the return address.
8410  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
8411  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8412                     RetAddrFI, MachinePointerInfo(), false, false, 0);
8413}
8414
8415SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
8416  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8417  MFI->setFrameAddressIsTaken(true);
8418
8419  EVT VT = Op.getValueType();
8420  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
8421  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8422  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
8423  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
8424  while (Depth--)
8425    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
8426                            MachinePointerInfo(),
8427                            false, false, 0);
8428  return FrameAddr;
8429}
8430
8431SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
8432                                                     SelectionDAG &DAG) const {
8433  return DAG.getIntPtrConstant(2*TD->getPointerSize());
8434}
8435
8436SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
8437  MachineFunction &MF = DAG.getMachineFunction();
8438  SDValue Chain     = Op.getOperand(0);
8439  SDValue Offset    = Op.getOperand(1);
8440  SDValue Handler   = Op.getOperand(2);
8441  DebugLoc dl       = Op.getDebugLoc();
8442
8443  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
8444                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
8445                                     getPointerTy());
8446  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
8447
8448  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
8449                                  DAG.getIntPtrConstant(TD->getPointerSize()));
8450  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
8451  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
8452                       false, false, 0);
8453  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
8454  MF.getRegInfo().addLiveOut(StoreAddrReg);
8455
8456  return DAG.getNode(X86ISD::EH_RETURN, dl,
8457                     MVT::Other,
8458                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
8459}
8460
8461SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
8462                                             SelectionDAG &DAG) const {
8463  SDValue Root = Op.getOperand(0);
8464  SDValue Trmp = Op.getOperand(1); // trampoline
8465  SDValue FPtr = Op.getOperand(2); // nested function
8466  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
8467  DebugLoc dl  = Op.getDebugLoc();
8468
8469  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8470
8471  if (Subtarget->is64Bit()) {
8472    SDValue OutChains[6];
8473
8474    // Large code-model.
8475    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
8476    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
8477
8478    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
8479    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
8480
8481    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
8482
8483    // Load the pointer to the nested function into R11.
8484    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8485    SDValue Addr = Trmp;
8486    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8487                                Addr, MachinePointerInfo(TrmpAddr),
8488                                false, false, 0);
8489
8490    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8491                       DAG.getConstant(2, MVT::i64));
8492    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8493                                MachinePointerInfo(TrmpAddr, 2),
8494                                false, false, 2);
8495
8496    // Load the 'nest' parameter value into R10.
8497    // R10 is specified in X86CallingConv.td
8498    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8499    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8500                       DAG.getConstant(10, MVT::i64));
8501    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8502                                Addr, MachinePointerInfo(TrmpAddr, 10),
8503                                false, false, 0);
8504
8505    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8506                       DAG.getConstant(12, MVT::i64));
8507    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8508                                MachinePointerInfo(TrmpAddr, 12),
8509                                false, false, 2);
8510
8511    // Jump to the nested function.
8512    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8513    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8514                       DAG.getConstant(20, MVT::i64));
8515    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8516                                Addr, MachinePointerInfo(TrmpAddr, 20),
8517                                false, false, 0);
8518
8519    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8520    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8521                       DAG.getConstant(22, MVT::i64));
8522    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8523                                MachinePointerInfo(TrmpAddr, 22),
8524                                false, false, 0);
8525
8526    SDValue Ops[] =
8527      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8528    return DAG.getMergeValues(Ops, 2, dl);
8529  } else {
8530    const Function *Func =
8531      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8532    CallingConv::ID CC = Func->getCallingConv();
8533    unsigned NestReg;
8534
8535    switch (CC) {
8536    default:
8537      llvm_unreachable("Unsupported calling convention");
8538    case CallingConv::C:
8539    case CallingConv::X86_StdCall: {
8540      // Pass 'nest' parameter in ECX.
8541      // Must be kept in sync with X86CallingConv.td
8542      NestReg = X86::ECX;
8543
8544      // Check that ECX wasn't needed by an 'inreg' parameter.
8545      const FunctionType *FTy = Func->getFunctionType();
8546      const AttrListPtr &Attrs = Func->getAttributes();
8547
8548      if (!Attrs.isEmpty() && !Func->isVarArg()) {
8549        unsigned InRegCount = 0;
8550        unsigned Idx = 1;
8551
8552        for (FunctionType::param_iterator I = FTy->param_begin(),
8553             E = FTy->param_end(); I != E; ++I, ++Idx)
8554          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8555            // FIXME: should only count parameters that are lowered to integers.
8556            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8557
8558        if (InRegCount > 2) {
8559          report_fatal_error("Nest register in use - reduce number of inreg"
8560                             " parameters!");
8561        }
8562      }
8563      break;
8564    }
8565    case CallingConv::X86_FastCall:
8566    case CallingConv::X86_ThisCall:
8567    case CallingConv::Fast:
8568      // Pass 'nest' parameter in EAX.
8569      // Must be kept in sync with X86CallingConv.td
8570      NestReg = X86::EAX;
8571      break;
8572    }
8573
8574    SDValue OutChains[4];
8575    SDValue Addr, Disp;
8576
8577    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8578                       DAG.getConstant(10, MVT::i32));
8579    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
8580
8581    // This is storing the opcode for MOV32ri.
8582    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
8583    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
8584    OutChains[0] = DAG.getStore(Root, dl,
8585                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
8586                                Trmp, MachinePointerInfo(TrmpAddr),
8587                                false, false, 0);
8588
8589    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8590                       DAG.getConstant(1, MVT::i32));
8591    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
8592                                MachinePointerInfo(TrmpAddr, 1),
8593                                false, false, 1);
8594
8595    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
8596    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8597                       DAG.getConstant(5, MVT::i32));
8598    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
8599                                MachinePointerInfo(TrmpAddr, 5),
8600                                false, false, 1);
8601
8602    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8603                       DAG.getConstant(6, MVT::i32));
8604    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
8605                                MachinePointerInfo(TrmpAddr, 6),
8606                                false, false, 1);
8607
8608    SDValue Ops[] =
8609      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
8610    return DAG.getMergeValues(Ops, 2, dl);
8611  }
8612}
8613
8614SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8615                                            SelectionDAG &DAG) const {
8616  /*
8617   The rounding mode is in bits 11:10 of FPSR, and has the following
8618   settings:
8619     00 Round to nearest
8620     01 Round to -inf
8621     10 Round to +inf
8622     11 Round to 0
8623
8624  FLT_ROUNDS, on the other hand, expects the following:
8625    -1 Undefined
8626     0 Round to 0
8627     1 Round to nearest
8628     2 Round to +inf
8629     3 Round to -inf
8630
8631  To perform the conversion, we do:
8632    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
8633  */
8634
8635  MachineFunction &MF = DAG.getMachineFunction();
8636  const TargetMachine &TM = MF.getTarget();
8637  const TargetFrameLowering &TFI = *TM.getFrameLowering();
8638  unsigned StackAlignment = TFI.getStackAlignment();
8639  EVT VT = Op.getValueType();
8640  DebugLoc DL = Op.getDebugLoc();
8641
8642  // Save FP Control Word to stack slot
8643  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
8644  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8645
8646
8647  MachineMemOperand *MMO =
8648   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8649                           MachineMemOperand::MOStore, 2, 2);
8650
8651  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
8652  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
8653                                          DAG.getVTList(MVT::Other),
8654                                          Ops, 2, MVT::i16, MMO);
8655
8656  // Load FP Control Word from stack slot
8657  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
8658                            MachinePointerInfo(), false, false, 0);
8659
8660  // Transform as necessary
8661  SDValue CWD1 =
8662    DAG.getNode(ISD::SRL, DL, MVT::i16,
8663                DAG.getNode(ISD::AND, DL, MVT::i16,
8664                            CWD, DAG.getConstant(0x800, MVT::i16)),
8665                DAG.getConstant(11, MVT::i8));
8666  SDValue CWD2 =
8667    DAG.getNode(ISD::SRL, DL, MVT::i16,
8668                DAG.getNode(ISD::AND, DL, MVT::i16,
8669                            CWD, DAG.getConstant(0x400, MVT::i16)),
8670                DAG.getConstant(9, MVT::i8));
8671
8672  SDValue RetVal =
8673    DAG.getNode(ISD::AND, DL, MVT::i16,
8674                DAG.getNode(ISD::ADD, DL, MVT::i16,
8675                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
8676                            DAG.getConstant(1, MVT::i16)),
8677                DAG.getConstant(3, MVT::i16));
8678
8679
8680  return DAG.getNode((VT.getSizeInBits() < 16 ?
8681                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
8682}
8683
8684SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
8685  EVT VT = Op.getValueType();
8686  EVT OpVT = VT;
8687  unsigned NumBits = VT.getSizeInBits();
8688  DebugLoc dl = Op.getDebugLoc();
8689
8690  Op = Op.getOperand(0);
8691  if (VT == MVT::i8) {
8692    // Zero extend to i32 since there is not an i8 bsr.
8693    OpVT = MVT::i32;
8694    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8695  }
8696
8697  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
8698  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8699  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
8700
8701  // If src is zero (i.e. bsr sets ZF), returns NumBits.
8702  SDValue Ops[] = {
8703    Op,
8704    DAG.getConstant(NumBits+NumBits-1, OpVT),
8705    DAG.getConstant(X86::COND_E, MVT::i8),
8706    Op.getValue(1)
8707  };
8708  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8709
8710  // Finally xor with NumBits-1.
8711  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
8712
8713  if (VT == MVT::i8)
8714    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8715  return Op;
8716}
8717
8718SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
8719  EVT VT = Op.getValueType();
8720  EVT OpVT = VT;
8721  unsigned NumBits = VT.getSizeInBits();
8722  DebugLoc dl = Op.getDebugLoc();
8723
8724  Op = Op.getOperand(0);
8725  if (VT == MVT::i8) {
8726    OpVT = MVT::i32;
8727    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8728  }
8729
8730  // Issue a bsf (scan bits forward) which also sets EFLAGS.
8731  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8732  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
8733
8734  // If src is zero (i.e. bsf sets ZF), returns NumBits.
8735  SDValue Ops[] = {
8736    Op,
8737    DAG.getConstant(NumBits, OpVT),
8738    DAG.getConstant(X86::COND_E, MVT::i8),
8739    Op.getValue(1)
8740  };
8741  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8742
8743  if (VT == MVT::i8)
8744    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8745  return Op;
8746}
8747
8748SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
8749  EVT VT = Op.getValueType();
8750  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
8751  DebugLoc dl = Op.getDebugLoc();
8752
8753  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
8754  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
8755  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
8756  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
8757  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
8758  //
8759  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
8760  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
8761  //  return AloBlo + AloBhi + AhiBlo;
8762
8763  SDValue A = Op.getOperand(0);
8764  SDValue B = Op.getOperand(1);
8765
8766  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8767                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8768                       A, DAG.getConstant(32, MVT::i32));
8769  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8770                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8771                       B, DAG.getConstant(32, MVT::i32));
8772  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8773                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8774                       A, B);
8775  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8776                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8777                       A, Bhi);
8778  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8779                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8780                       Ahi, B);
8781  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8782                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8783                       AloBhi, DAG.getConstant(32, MVT::i32));
8784  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8785                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8786                       AhiBlo, DAG.getConstant(32, MVT::i32));
8787  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
8788  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
8789  return Res;
8790}
8791
8792SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
8793
8794  EVT VT = Op.getValueType();
8795  DebugLoc dl = Op.getDebugLoc();
8796  SDValue R = Op.getOperand(0);
8797  SDValue Amt = Op.getOperand(1);
8798
8799  LLVMContext *Context = DAG.getContext();
8800
8801  // Must have SSE2.
8802  if (!Subtarget->hasSSE2()) return SDValue();
8803
8804  // Optimize shl/srl/sra with constant shift amount.
8805  if (isSplatVector(Amt.getNode())) {
8806    SDValue SclrAmt = Amt->getOperand(0);
8807    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
8808      uint64_t ShiftAmt = C->getZExtValue();
8809
8810      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
8811       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8812                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8813                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8814
8815      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
8816       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8817                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8818                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8819
8820      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
8821       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8822                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8823                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8824
8825      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
8826       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8827                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8828                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8829
8830      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
8831       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8832                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8833                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8834
8835      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
8836       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8837                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8838                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8839
8840      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
8841       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8842                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8843                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8844
8845      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
8846       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8847                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8848                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8849    }
8850  }
8851
8852  // Lower SHL with variable shift amount.
8853  // Cannot lower SHL without SSE4.1 or later.
8854  if (!Subtarget->hasSSE41()) return SDValue();
8855
8856  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
8857    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8858                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8859                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
8860
8861    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
8862
8863    std::vector<Constant*> CV(4, CI);
8864    Constant *C = ConstantVector::get(CV);
8865    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8866    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8867                                 MachinePointerInfo::getConstantPool(),
8868                                 false, false, 16);
8869
8870    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
8871    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
8872    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
8873    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
8874  }
8875  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
8876    // a = a << 5;
8877    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8878                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8879                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
8880
8881    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
8882    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
8883
8884    std::vector<Constant*> CVM1(16, CM1);
8885    std::vector<Constant*> CVM2(16, CM2);
8886    Constant *C = ConstantVector::get(CVM1);
8887    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8888    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8889                            MachinePointerInfo::getConstantPool(),
8890                            false, false, 16);
8891
8892    // r = pblendv(r, psllw(r & (char16)15, 4), a);
8893    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8894    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8895                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8896                    DAG.getConstant(4, MVT::i32));
8897    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
8898    // a += a
8899    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8900
8901    C = ConstantVector::get(CVM2);
8902    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8903    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8904                    MachinePointerInfo::getConstantPool(),
8905                    false, false, 16);
8906
8907    // r = pblendv(r, psllw(r & (char16)63, 2), a);
8908    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8909    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8910                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8911                    DAG.getConstant(2, MVT::i32));
8912    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
8913    // a += a
8914    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8915
8916    // return pblendv(r, r+r, a);
8917    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
8918                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
8919    return R;
8920  }
8921  return SDValue();
8922}
8923
8924SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
8925  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
8926  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
8927  // looks for this combo and may remove the "setcc" instruction if the "setcc"
8928  // has only one use.
8929  SDNode *N = Op.getNode();
8930  SDValue LHS = N->getOperand(0);
8931  SDValue RHS = N->getOperand(1);
8932  unsigned BaseOp = 0;
8933  unsigned Cond = 0;
8934  DebugLoc DL = Op.getDebugLoc();
8935  switch (Op.getOpcode()) {
8936  default: llvm_unreachable("Unknown ovf instruction!");
8937  case ISD::SADDO:
8938    // A subtract of one will be selected as a INC. Note that INC doesn't
8939    // set CF, so we can't do this for UADDO.
8940    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
8941      if (C->isOne()) {
8942        BaseOp = X86ISD::INC;
8943        Cond = X86::COND_O;
8944        break;
8945      }
8946    BaseOp = X86ISD::ADD;
8947    Cond = X86::COND_O;
8948    break;
8949  case ISD::UADDO:
8950    BaseOp = X86ISD::ADD;
8951    Cond = X86::COND_B;
8952    break;
8953  case ISD::SSUBO:
8954    // A subtract of one will be selected as a DEC. Note that DEC doesn't
8955    // set CF, so we can't do this for USUBO.
8956    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
8957      if (C->isOne()) {
8958        BaseOp = X86ISD::DEC;
8959        Cond = X86::COND_O;
8960        break;
8961      }
8962    BaseOp = X86ISD::SUB;
8963    Cond = X86::COND_O;
8964    break;
8965  case ISD::USUBO:
8966    BaseOp = X86ISD::SUB;
8967    Cond = X86::COND_B;
8968    break;
8969  case ISD::SMULO:
8970    BaseOp = X86ISD::SMUL;
8971    Cond = X86::COND_O;
8972    break;
8973  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
8974    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
8975                                 MVT::i32);
8976    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
8977
8978    SDValue SetCC =
8979      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8980                  DAG.getConstant(X86::COND_O, MVT::i32),
8981                  SDValue(Sum.getNode(), 2));
8982
8983    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8984    return Sum;
8985  }
8986  }
8987
8988  // Also sets EFLAGS.
8989  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
8990  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
8991
8992  SDValue SetCC =
8993    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
8994                DAG.getConstant(Cond, MVT::i32),
8995                SDValue(Sum.getNode(), 1));
8996
8997  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8998  return Sum;
8999}
9000
9001SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
9002  DebugLoc dl = Op.getDebugLoc();
9003
9004  if (!Subtarget->hasSSE2()) {
9005    SDValue Chain = Op.getOperand(0);
9006    SDValue Zero = DAG.getConstant(0,
9007                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9008    SDValue Ops[] = {
9009      DAG.getRegister(X86::ESP, MVT::i32), // Base
9010      DAG.getTargetConstant(1, MVT::i8),   // Scale
9011      DAG.getRegister(0, MVT::i32),        // Index
9012      DAG.getTargetConstant(0, MVT::i32),  // Disp
9013      DAG.getRegister(0, MVT::i32),        // Segment.
9014      Zero,
9015      Chain
9016    };
9017    SDNode *Res =
9018      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
9019                          array_lengthof(Ops));
9020    return SDValue(Res, 0);
9021  }
9022
9023  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
9024  if (!isDev)
9025    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
9026
9027  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
9028  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
9029  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
9030  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
9031
9032  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
9033  if (!Op1 && !Op2 && !Op3 && Op4)
9034    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
9035
9036  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
9037  if (Op1 && !Op2 && !Op3 && !Op4)
9038    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
9039
9040  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
9041  //           (MFENCE)>;
9042  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
9043}
9044
9045SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
9046  EVT T = Op.getValueType();
9047  DebugLoc DL = Op.getDebugLoc();
9048  unsigned Reg = 0;
9049  unsigned size = 0;
9050  switch(T.getSimpleVT().SimpleTy) {
9051  default:
9052    assert(false && "Invalid value type!");
9053  case MVT::i8:  Reg = X86::AL;  size = 1; break;
9054  case MVT::i16: Reg = X86::AX;  size = 2; break;
9055  case MVT::i32: Reg = X86::EAX; size = 4; break;
9056  case MVT::i64:
9057    assert(Subtarget->is64Bit() && "Node not type legal!");
9058    Reg = X86::RAX; size = 8;
9059    break;
9060  }
9061  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
9062                                    Op.getOperand(2), SDValue());
9063  SDValue Ops[] = { cpIn.getValue(0),
9064                    Op.getOperand(1),
9065                    Op.getOperand(3),
9066                    DAG.getTargetConstant(size, MVT::i8),
9067                    cpIn.getValue(1) };
9068  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9069  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
9070  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
9071                                           Ops, 5, T, MMO);
9072  SDValue cpOut =
9073    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
9074  return cpOut;
9075}
9076
9077SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
9078                                                 SelectionDAG &DAG) const {
9079  assert(Subtarget->is64Bit() && "Result not type legalized?");
9080  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9081  SDValue TheChain = Op.getOperand(0);
9082  DebugLoc dl = Op.getDebugLoc();
9083  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9084  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
9085  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
9086                                   rax.getValue(2));
9087  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
9088                            DAG.getConstant(32, MVT::i8));
9089  SDValue Ops[] = {
9090    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
9091    rdx.getValue(1)
9092  };
9093  return DAG.getMergeValues(Ops, 2, dl);
9094}
9095
9096SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
9097                                            SelectionDAG &DAG) const {
9098  EVT SrcVT = Op.getOperand(0).getValueType();
9099  EVT DstVT = Op.getValueType();
9100  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
9101         Subtarget->hasMMX() && "Unexpected custom BITCAST");
9102  assert((DstVT == MVT::i64 ||
9103          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
9104         "Unexpected custom BITCAST");
9105  // i64 <=> MMX conversions are Legal.
9106  if (SrcVT==MVT::i64 && DstVT.isVector())
9107    return Op;
9108  if (DstVT==MVT::i64 && SrcVT.isVector())
9109    return Op;
9110  // MMX <=> MMX conversions are Legal.
9111  if (SrcVT.isVector() && DstVT.isVector())
9112    return Op;
9113  // All other conversions need to be expanded.
9114  return SDValue();
9115}
9116
9117SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
9118  SDNode *Node = Op.getNode();
9119  DebugLoc dl = Node->getDebugLoc();
9120  EVT T = Node->getValueType(0);
9121  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
9122                              DAG.getConstant(0, T), Node->getOperand(2));
9123  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
9124                       cast<AtomicSDNode>(Node)->getMemoryVT(),
9125                       Node->getOperand(0),
9126                       Node->getOperand(1), negOp,
9127                       cast<AtomicSDNode>(Node)->getSrcValue(),
9128                       cast<AtomicSDNode>(Node)->getAlignment());
9129}
9130
9131static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
9132  EVT VT = Op.getNode()->getValueType(0);
9133
9134  // Let legalize expand this if it isn't a legal type yet.
9135  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9136    return SDValue();
9137
9138  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9139
9140  unsigned Opc;
9141  bool ExtraOp = false;
9142  switch (Op.getOpcode()) {
9143  default: assert(0 && "Invalid code");
9144  case ISD::ADDC: Opc = X86ISD::ADD; break;
9145  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
9146  case ISD::SUBC: Opc = X86ISD::SUB; break;
9147  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
9148  }
9149
9150  if (!ExtraOp)
9151    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9152                       Op.getOperand(1));
9153  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9154                     Op.getOperand(1), Op.getOperand(2));
9155}
9156
9157/// LowerOperation - Provide custom lowering hooks for some operations.
9158///
9159SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9160  switch (Op.getOpcode()) {
9161  default: llvm_unreachable("Should not custom lower this!");
9162  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
9163  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
9164  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
9165  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9166  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
9167  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9168  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9169  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9170  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
9171  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
9172  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9173  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9174  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9175  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9176  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
9177  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9178  case ISD::SHL_PARTS:
9179  case ISD::SRA_PARTS:
9180  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
9181  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
9182  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
9183  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
9184  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
9185  case ISD::FABS:               return LowerFABS(Op, DAG);
9186  case ISD::FNEG:               return LowerFNEG(Op, DAG);
9187  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
9188  case ISD::SETCC:              return LowerSETCC(Op, DAG);
9189  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
9190  case ISD::SELECT:             return LowerSELECT(Op, DAG);
9191  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
9192  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9193  case ISD::VASTART:            return LowerVASTART(Op, DAG);
9194  case ISD::VAARG:              return LowerVAARG(Op, DAG);
9195  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9196  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9197  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9198  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9199  case ISD::FRAME_TO_ARGS_OFFSET:
9200                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
9201  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9202  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
9203  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
9204  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9205  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
9206  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
9207  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
9208  case ISD::SRA:
9209  case ISD::SRL:
9210  case ISD::SHL:                return LowerShift(Op, DAG);
9211  case ISD::SADDO:
9212  case ISD::UADDO:
9213  case ISD::SSUBO:
9214  case ISD::USUBO:
9215  case ISD::SMULO:
9216  case ISD::UMULO:              return LowerXALUO(Op, DAG);
9217  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
9218  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9219  case ISD::ADDC:
9220  case ISD::ADDE:
9221  case ISD::SUBC:
9222  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
9223  }
9224}
9225
9226void X86TargetLowering::
9227ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
9228                        SelectionDAG &DAG, unsigned NewOp) const {
9229  EVT T = Node->getValueType(0);
9230  DebugLoc dl = Node->getDebugLoc();
9231  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
9232
9233  SDValue Chain = Node->getOperand(0);
9234  SDValue In1 = Node->getOperand(1);
9235  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9236                             Node->getOperand(2), DAG.getIntPtrConstant(0));
9237  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9238                             Node->getOperand(2), DAG.getIntPtrConstant(1));
9239  SDValue Ops[] = { Chain, In1, In2L, In2H };
9240  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9241  SDValue Result =
9242    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
9243                            cast<MemSDNode>(Node)->getMemOperand());
9244  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
9245  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9246  Results.push_back(Result.getValue(2));
9247}
9248
9249/// ReplaceNodeResults - Replace a node with an illegal result type
9250/// with a new node built out of custom code.
9251void X86TargetLowering::ReplaceNodeResults(SDNode *N,
9252                                           SmallVectorImpl<SDValue>&Results,
9253                                           SelectionDAG &DAG) const {
9254  DebugLoc dl = N->getDebugLoc();
9255  switch (N->getOpcode()) {
9256  default:
9257    assert(false && "Do not know how to custom type legalize this operation!");
9258    return;
9259  case ISD::ADDC:
9260  case ISD::ADDE:
9261  case ISD::SUBC:
9262  case ISD::SUBE:
9263    // We don't want to expand or promote these.
9264    return;
9265  case ISD::FP_TO_SINT: {
9266    std::pair<SDValue,SDValue> Vals =
9267        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
9268    SDValue FIST = Vals.first, StackSlot = Vals.second;
9269    if (FIST.getNode() != 0) {
9270      EVT VT = N->getValueType(0);
9271      // Return a load from the stack slot.
9272      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
9273                                    MachinePointerInfo(), false, false, 0));
9274    }
9275    return;
9276  }
9277  case ISD::READCYCLECOUNTER: {
9278    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9279    SDValue TheChain = N->getOperand(0);
9280    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9281    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
9282                                     rd.getValue(1));
9283    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
9284                                     eax.getValue(2));
9285    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
9286    SDValue Ops[] = { eax, edx };
9287    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
9288    Results.push_back(edx.getValue(1));
9289    return;
9290  }
9291  case ISD::ATOMIC_CMP_SWAP: {
9292    EVT T = N->getValueType(0);
9293    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
9294    SDValue cpInL, cpInH;
9295    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9296                        DAG.getConstant(0, MVT::i32));
9297    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9298                        DAG.getConstant(1, MVT::i32));
9299    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
9300    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
9301                             cpInL.getValue(1));
9302    SDValue swapInL, swapInH;
9303    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9304                          DAG.getConstant(0, MVT::i32));
9305    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9306                          DAG.getConstant(1, MVT::i32));
9307    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
9308                               cpInH.getValue(1));
9309    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
9310                               swapInL.getValue(1));
9311    SDValue Ops[] = { swapInH.getValue(0),
9312                      N->getOperand(1),
9313                      swapInH.getValue(1) };
9314    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9315    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
9316    SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
9317                                             Ops, 3, T, MMO);
9318    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
9319                                        MVT::i32, Result.getValue(1));
9320    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
9321                                        MVT::i32, cpOutL.getValue(2));
9322    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
9323    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9324    Results.push_back(cpOutH.getValue(1));
9325    return;
9326  }
9327  case ISD::ATOMIC_LOAD_ADD:
9328    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
9329    return;
9330  case ISD::ATOMIC_LOAD_AND:
9331    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
9332    return;
9333  case ISD::ATOMIC_LOAD_NAND:
9334    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
9335    return;
9336  case ISD::ATOMIC_LOAD_OR:
9337    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
9338    return;
9339  case ISD::ATOMIC_LOAD_SUB:
9340    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
9341    return;
9342  case ISD::ATOMIC_LOAD_XOR:
9343    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
9344    return;
9345  case ISD::ATOMIC_SWAP:
9346    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
9347    return;
9348  }
9349}
9350
9351const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
9352  switch (Opcode) {
9353  default: return NULL;
9354  case X86ISD::BSF:                return "X86ISD::BSF";
9355  case X86ISD::BSR:                return "X86ISD::BSR";
9356  case X86ISD::SHLD:               return "X86ISD::SHLD";
9357  case X86ISD::SHRD:               return "X86ISD::SHRD";
9358  case X86ISD::FAND:               return "X86ISD::FAND";
9359  case X86ISD::FOR:                return "X86ISD::FOR";
9360  case X86ISD::FXOR:               return "X86ISD::FXOR";
9361  case X86ISD::FSRL:               return "X86ISD::FSRL";
9362  case X86ISD::FILD:               return "X86ISD::FILD";
9363  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
9364  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
9365  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
9366  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
9367  case X86ISD::FLD:                return "X86ISD::FLD";
9368  case X86ISD::FST:                return "X86ISD::FST";
9369  case X86ISD::CALL:               return "X86ISD::CALL";
9370  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
9371  case X86ISD::BT:                 return "X86ISD::BT";
9372  case X86ISD::CMP:                return "X86ISD::CMP";
9373  case X86ISD::COMI:               return "X86ISD::COMI";
9374  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
9375  case X86ISD::SETCC:              return "X86ISD::SETCC";
9376  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
9377  case X86ISD::CMOV:               return "X86ISD::CMOV";
9378  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
9379  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
9380  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
9381  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
9382  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
9383  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
9384  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
9385  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
9386  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
9387  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
9388  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
9389  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
9390  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
9391  case X86ISD::PANDN:              return "X86ISD::PANDN";
9392  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
9393  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
9394  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
9395  case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB";
9396  case X86ISD::FMAX:               return "X86ISD::FMAX";
9397  case X86ISD::FMIN:               return "X86ISD::FMIN";
9398  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
9399  case X86ISD::FRCP:               return "X86ISD::FRCP";
9400  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
9401  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
9402  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
9403  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
9404  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
9405  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
9406  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
9407  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
9408  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
9409  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
9410  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
9411  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
9412  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
9413  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
9414  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
9415  case X86ISD::VSHL:               return "X86ISD::VSHL";
9416  case X86ISD::VSRL:               return "X86ISD::VSRL";
9417  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
9418  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
9419  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
9420  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
9421  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
9422  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
9423  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
9424  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
9425  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
9426  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
9427  case X86ISD::ADD:                return "X86ISD::ADD";
9428  case X86ISD::SUB:                return "X86ISD::SUB";
9429  case X86ISD::ADC:                return "X86ISD::ADC";
9430  case X86ISD::SBB:                return "X86ISD::SBB";
9431  case X86ISD::SMUL:               return "X86ISD::SMUL";
9432  case X86ISD::UMUL:               return "X86ISD::UMUL";
9433  case X86ISD::INC:                return "X86ISD::INC";
9434  case X86ISD::DEC:                return "X86ISD::DEC";
9435  case X86ISD::OR:                 return "X86ISD::OR";
9436  case X86ISD::XOR:                return "X86ISD::XOR";
9437  case X86ISD::AND:                return "X86ISD::AND";
9438  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
9439  case X86ISD::PTEST:              return "X86ISD::PTEST";
9440  case X86ISD::TESTP:              return "X86ISD::TESTP";
9441  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
9442  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
9443  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
9444  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
9445  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
9446  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
9447  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
9448  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
9449  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
9450  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
9451  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
9452  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
9453  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
9454  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
9455  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
9456  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
9457  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
9458  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
9459  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
9460  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
9461  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
9462  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
9463  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
9464  case X86ISD::VUNPCKLPS:          return "X86ISD::VUNPCKLPS";
9465  case X86ISD::VUNPCKLPD:          return "X86ISD::VUNPCKLPD";
9466  case X86ISD::VUNPCKLPSY:         return "X86ISD::VUNPCKLPSY";
9467  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
9468  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
9469  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
9470  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
9471  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
9472  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
9473  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
9474  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
9475  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
9476  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
9477  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
9478  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
9479  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
9480  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
9481  }
9482}
9483
9484// isLegalAddressingMode - Return true if the addressing mode represented
9485// by AM is legal for this target, for a load/store of the specified type.
9486bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
9487                                              const Type *Ty) const {
9488  // X86 supports extremely general addressing modes.
9489  CodeModel::Model M = getTargetMachine().getCodeModel();
9490  Reloc::Model R = getTargetMachine().getRelocationModel();
9491
9492  // X86 allows a sign-extended 32-bit immediate field as a displacement.
9493  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
9494    return false;
9495
9496  if (AM.BaseGV) {
9497    unsigned GVFlags =
9498      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
9499
9500    // If a reference to this global requires an extra load, we can't fold it.
9501    if (isGlobalStubReference(GVFlags))
9502      return false;
9503
9504    // If BaseGV requires a register for the PIC base, we cannot also have a
9505    // BaseReg specified.
9506    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
9507      return false;
9508
9509    // If lower 4G is not available, then we must use rip-relative addressing.
9510    if ((M != CodeModel::Small || R != Reloc::Static) &&
9511        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
9512      return false;
9513  }
9514
9515  switch (AM.Scale) {
9516  case 0:
9517  case 1:
9518  case 2:
9519  case 4:
9520  case 8:
9521    // These scales always work.
9522    break;
9523  case 3:
9524  case 5:
9525  case 9:
9526    // These scales are formed with basereg+scalereg.  Only accept if there is
9527    // no basereg yet.
9528    if (AM.HasBaseReg)
9529      return false;
9530    break;
9531  default:  // Other stuff never works.
9532    return false;
9533  }
9534
9535  return true;
9536}
9537
9538
9539bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
9540  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
9541    return false;
9542  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
9543  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
9544  if (NumBits1 <= NumBits2)
9545    return false;
9546  return true;
9547}
9548
9549bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
9550  if (!VT1.isInteger() || !VT2.isInteger())
9551    return false;
9552  unsigned NumBits1 = VT1.getSizeInBits();
9553  unsigned NumBits2 = VT2.getSizeInBits();
9554  if (NumBits1 <= NumBits2)
9555    return false;
9556  return true;
9557}
9558
9559bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
9560  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9561  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
9562}
9563
9564bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
9565  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9566  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
9567}
9568
9569bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
9570  // i16 instructions are longer (0x66 prefix) and potentially slower.
9571  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
9572}
9573
9574/// isShuffleMaskLegal - Targets can use this to indicate that they only
9575/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
9576/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
9577/// are assumed to be legal.
9578bool
9579X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
9580                                      EVT VT) const {
9581  // Very little shuffling can be done for 64-bit vectors right now.
9582  if (VT.getSizeInBits() == 64)
9583    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
9584
9585  // FIXME: pshufb, blends, shifts.
9586  return (VT.getVectorNumElements() == 2 ||
9587          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
9588          isMOVLMask(M, VT) ||
9589          isSHUFPMask(M, VT) ||
9590          isPSHUFDMask(M, VT) ||
9591          isPSHUFHWMask(M, VT) ||
9592          isPSHUFLWMask(M, VT) ||
9593          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
9594          isUNPCKLMask(M, VT) ||
9595          isUNPCKHMask(M, VT) ||
9596          isUNPCKL_v_undef_Mask(M, VT) ||
9597          isUNPCKH_v_undef_Mask(M, VT));
9598}
9599
9600bool
9601X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
9602                                          EVT VT) const {
9603  unsigned NumElts = VT.getVectorNumElements();
9604  // FIXME: This collection of masks seems suspect.
9605  if (NumElts == 2)
9606    return true;
9607  if (NumElts == 4 && VT.getSizeInBits() == 128) {
9608    return (isMOVLMask(Mask, VT)  ||
9609            isCommutedMOVLMask(Mask, VT, true) ||
9610            isSHUFPMask(Mask, VT) ||
9611            isCommutedSHUFPMask(Mask, VT));
9612  }
9613  return false;
9614}
9615
9616//===----------------------------------------------------------------------===//
9617//                           X86 Scheduler Hooks
9618//===----------------------------------------------------------------------===//
9619
9620// private utility function
9621MachineBasicBlock *
9622X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
9623                                                       MachineBasicBlock *MBB,
9624                                                       unsigned regOpc,
9625                                                       unsigned immOpc,
9626                                                       unsigned LoadOpc,
9627                                                       unsigned CXchgOpc,
9628                                                       unsigned notOpc,
9629                                                       unsigned EAXreg,
9630                                                       TargetRegisterClass *RC,
9631                                                       bool invSrc) const {
9632  // For the atomic bitwise operator, we generate
9633  //   thisMBB:
9634  //   newMBB:
9635  //     ld  t1 = [bitinstr.addr]
9636  //     op  t2 = t1, [bitinstr.val]
9637  //     mov EAX = t1
9638  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9639  //     bz  newMBB
9640  //     fallthrough -->nextMBB
9641  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9642  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9643  MachineFunction::iterator MBBIter = MBB;
9644  ++MBBIter;
9645
9646  /// First build the CFG
9647  MachineFunction *F = MBB->getParent();
9648  MachineBasicBlock *thisMBB = MBB;
9649  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9650  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9651  F->insert(MBBIter, newMBB);
9652  F->insert(MBBIter, nextMBB);
9653
9654  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9655  nextMBB->splice(nextMBB->begin(), thisMBB,
9656                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9657                  thisMBB->end());
9658  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9659
9660  // Update thisMBB to fall through to newMBB
9661  thisMBB->addSuccessor(newMBB);
9662
9663  // newMBB jumps to itself and fall through to nextMBB
9664  newMBB->addSuccessor(nextMBB);
9665  newMBB->addSuccessor(newMBB);
9666
9667  // Insert instructions into newMBB based on incoming instruction
9668  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9669         "unexpected number of operands");
9670  DebugLoc dl = bInstr->getDebugLoc();
9671  MachineOperand& destOper = bInstr->getOperand(0);
9672  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9673  int numArgs = bInstr->getNumOperands() - 1;
9674  for (int i=0; i < numArgs; ++i)
9675    argOpers[i] = &bInstr->getOperand(i+1);
9676
9677  // x86 address has 4 operands: base, index, scale, and displacement
9678  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9679  int valArgIndx = lastAddrIndx + 1;
9680
9681  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9682  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
9683  for (int i=0; i <= lastAddrIndx; ++i)
9684    (*MIB).addOperand(*argOpers[i]);
9685
9686  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
9687  if (invSrc) {
9688    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
9689  }
9690  else
9691    tt = t1;
9692
9693  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9694  assert((argOpers[valArgIndx]->isReg() ||
9695          argOpers[valArgIndx]->isImm()) &&
9696         "invalid operand");
9697  if (argOpers[valArgIndx]->isReg())
9698    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
9699  else
9700    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
9701  MIB.addReg(tt);
9702  (*MIB).addOperand(*argOpers[valArgIndx]);
9703
9704  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
9705  MIB.addReg(t1);
9706
9707  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
9708  for (int i=0; i <= lastAddrIndx; ++i)
9709    (*MIB).addOperand(*argOpers[i]);
9710  MIB.addReg(t2);
9711  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9712  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9713                    bInstr->memoperands_end());
9714
9715  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9716  MIB.addReg(EAXreg);
9717
9718  // insert branch
9719  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9720
9721  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9722  return nextMBB;
9723}
9724
9725// private utility function:  64 bit atomics on 32 bit host.
9726MachineBasicBlock *
9727X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
9728                                                       MachineBasicBlock *MBB,
9729                                                       unsigned regOpcL,
9730                                                       unsigned regOpcH,
9731                                                       unsigned immOpcL,
9732                                                       unsigned immOpcH,
9733                                                       bool invSrc) const {
9734  // For the atomic bitwise operator, we generate
9735  //   thisMBB (instructions are in pairs, except cmpxchg8b)
9736  //     ld t1,t2 = [bitinstr.addr]
9737  //   newMBB:
9738  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
9739  //     op  t5, t6 <- out1, out2, [bitinstr.val]
9740  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
9741  //     mov ECX, EBX <- t5, t6
9742  //     mov EAX, EDX <- t1, t2
9743  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
9744  //     mov t3, t4 <- EAX, EDX
9745  //     bz  newMBB
9746  //     result in out1, out2
9747  //     fallthrough -->nextMBB
9748
9749  const TargetRegisterClass *RC = X86::GR32RegisterClass;
9750  const unsigned LoadOpc = X86::MOV32rm;
9751  const unsigned NotOpc = X86::NOT32r;
9752  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9753  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9754  MachineFunction::iterator MBBIter = MBB;
9755  ++MBBIter;
9756
9757  /// First build the CFG
9758  MachineFunction *F = MBB->getParent();
9759  MachineBasicBlock *thisMBB = MBB;
9760  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9761  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9762  F->insert(MBBIter, newMBB);
9763  F->insert(MBBIter, nextMBB);
9764
9765  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9766  nextMBB->splice(nextMBB->begin(), thisMBB,
9767                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9768                  thisMBB->end());
9769  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9770
9771  // Update thisMBB to fall through to newMBB
9772  thisMBB->addSuccessor(newMBB);
9773
9774  // newMBB jumps to itself and fall through to nextMBB
9775  newMBB->addSuccessor(nextMBB);
9776  newMBB->addSuccessor(newMBB);
9777
9778  DebugLoc dl = bInstr->getDebugLoc();
9779  // Insert instructions into newMBB based on incoming instruction
9780  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
9781  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
9782         "unexpected number of operands");
9783  MachineOperand& dest1Oper = bInstr->getOperand(0);
9784  MachineOperand& dest2Oper = bInstr->getOperand(1);
9785  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9786  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
9787    argOpers[i] = &bInstr->getOperand(i+2);
9788
9789    // We use some of the operands multiple times, so conservatively just
9790    // clear any kill flags that might be present.
9791    if (argOpers[i]->isReg() && argOpers[i]->isUse())
9792      argOpers[i]->setIsKill(false);
9793  }
9794
9795  // x86 address has 5 operands: base, index, scale, displacement, and segment.
9796  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9797
9798  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9799  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
9800  for (int i=0; i <= lastAddrIndx; ++i)
9801    (*MIB).addOperand(*argOpers[i]);
9802  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9803  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
9804  // add 4 to displacement.
9805  for (int i=0; i <= lastAddrIndx-2; ++i)
9806    (*MIB).addOperand(*argOpers[i]);
9807  MachineOperand newOp3 = *(argOpers[3]);
9808  if (newOp3.isImm())
9809    newOp3.setImm(newOp3.getImm()+4);
9810  else
9811    newOp3.setOffset(newOp3.getOffset()+4);
9812  (*MIB).addOperand(newOp3);
9813  (*MIB).addOperand(*argOpers[lastAddrIndx]);
9814
9815  // t3/4 are defined later, at the bottom of the loop
9816  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
9817  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
9818  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
9819    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
9820  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
9821    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
9822
9823  // The subsequent operations should be using the destination registers of
9824  //the PHI instructions.
9825  if (invSrc) {
9826    t1 = F->getRegInfo().createVirtualRegister(RC);
9827    t2 = F->getRegInfo().createVirtualRegister(RC);
9828    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
9829    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
9830  } else {
9831    t1 = dest1Oper.getReg();
9832    t2 = dest2Oper.getReg();
9833  }
9834
9835  int valArgIndx = lastAddrIndx + 1;
9836  assert((argOpers[valArgIndx]->isReg() ||
9837          argOpers[valArgIndx]->isImm()) &&
9838         "invalid operand");
9839  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
9840  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
9841  if (argOpers[valArgIndx]->isReg())
9842    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
9843  else
9844    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
9845  if (regOpcL != X86::MOV32rr)
9846    MIB.addReg(t1);
9847  (*MIB).addOperand(*argOpers[valArgIndx]);
9848  assert(argOpers[valArgIndx + 1]->isReg() ==
9849         argOpers[valArgIndx]->isReg());
9850  assert(argOpers[valArgIndx + 1]->isImm() ==
9851         argOpers[valArgIndx]->isImm());
9852  if (argOpers[valArgIndx + 1]->isReg())
9853    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
9854  else
9855    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
9856  if (regOpcH != X86::MOV32rr)
9857    MIB.addReg(t2);
9858  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
9859
9860  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9861  MIB.addReg(t1);
9862  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
9863  MIB.addReg(t2);
9864
9865  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
9866  MIB.addReg(t5);
9867  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
9868  MIB.addReg(t6);
9869
9870  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
9871  for (int i=0; i <= lastAddrIndx; ++i)
9872    (*MIB).addOperand(*argOpers[i]);
9873
9874  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9875  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9876                    bInstr->memoperands_end());
9877
9878  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
9879  MIB.addReg(X86::EAX);
9880  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
9881  MIB.addReg(X86::EDX);
9882
9883  // insert branch
9884  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9885
9886  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9887  return nextMBB;
9888}
9889
9890// private utility function
9891MachineBasicBlock *
9892X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
9893                                                      MachineBasicBlock *MBB,
9894                                                      unsigned cmovOpc) const {
9895  // For the atomic min/max operator, we generate
9896  //   thisMBB:
9897  //   newMBB:
9898  //     ld t1 = [min/max.addr]
9899  //     mov t2 = [min/max.val]
9900  //     cmp  t1, t2
9901  //     cmov[cond] t2 = t1
9902  //     mov EAX = t1
9903  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9904  //     bz   newMBB
9905  //     fallthrough -->nextMBB
9906  //
9907  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9908  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9909  MachineFunction::iterator MBBIter = MBB;
9910  ++MBBIter;
9911
9912  /// First build the CFG
9913  MachineFunction *F = MBB->getParent();
9914  MachineBasicBlock *thisMBB = MBB;
9915  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9916  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9917  F->insert(MBBIter, newMBB);
9918  F->insert(MBBIter, nextMBB);
9919
9920  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9921  nextMBB->splice(nextMBB->begin(), thisMBB,
9922                  llvm::next(MachineBasicBlock::iterator(mInstr)),
9923                  thisMBB->end());
9924  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9925
9926  // Update thisMBB to fall through to newMBB
9927  thisMBB->addSuccessor(newMBB);
9928
9929  // newMBB jumps to newMBB and fall through to nextMBB
9930  newMBB->addSuccessor(nextMBB);
9931  newMBB->addSuccessor(newMBB);
9932
9933  DebugLoc dl = mInstr->getDebugLoc();
9934  // Insert instructions into newMBB based on incoming instruction
9935  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9936         "unexpected number of operands");
9937  MachineOperand& destOper = mInstr->getOperand(0);
9938  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9939  int numArgs = mInstr->getNumOperands() - 1;
9940  for (int i=0; i < numArgs; ++i)
9941    argOpers[i] = &mInstr->getOperand(i+1);
9942
9943  // x86 address has 4 operands: base, index, scale, and displacement
9944  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9945  int valArgIndx = lastAddrIndx + 1;
9946
9947  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9948  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
9949  for (int i=0; i <= lastAddrIndx; ++i)
9950    (*MIB).addOperand(*argOpers[i]);
9951
9952  // We only support register and immediate values
9953  assert((argOpers[valArgIndx]->isReg() ||
9954          argOpers[valArgIndx]->isImm()) &&
9955         "invalid operand");
9956
9957  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9958  if (argOpers[valArgIndx]->isReg())
9959    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
9960  else
9961    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
9962  (*MIB).addOperand(*argOpers[valArgIndx]);
9963
9964  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9965  MIB.addReg(t1);
9966
9967  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
9968  MIB.addReg(t1);
9969  MIB.addReg(t2);
9970
9971  // Generate movc
9972  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9973  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
9974  MIB.addReg(t2);
9975  MIB.addReg(t1);
9976
9977  // Cmp and exchange if none has modified the memory location
9978  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
9979  for (int i=0; i <= lastAddrIndx; ++i)
9980    (*MIB).addOperand(*argOpers[i]);
9981  MIB.addReg(t3);
9982  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9983  (*MIB).setMemRefs(mInstr->memoperands_begin(),
9984                    mInstr->memoperands_end());
9985
9986  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9987  MIB.addReg(X86::EAX);
9988
9989  // insert branch
9990  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9991
9992  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
9993  return nextMBB;
9994}
9995
9996// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
9997// or XMM0_V32I8 in AVX all of this code can be replaced with that
9998// in the .td file.
9999MachineBasicBlock *
10000X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
10001                            unsigned numArgs, bool memArg) const {
10002  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
10003         "Target must have SSE4.2 or AVX features enabled");
10004
10005  DebugLoc dl = MI->getDebugLoc();
10006  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10007  unsigned Opc;
10008  if (!Subtarget->hasAVX()) {
10009    if (memArg)
10010      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
10011    else
10012      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
10013  } else {
10014    if (memArg)
10015      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
10016    else
10017      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
10018  }
10019
10020  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
10021  for (unsigned i = 0; i < numArgs; ++i) {
10022    MachineOperand &Op = MI->getOperand(i+1);
10023    if (!(Op.isReg() && Op.isImplicit()))
10024      MIB.addOperand(Op);
10025  }
10026  BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
10027    .addReg(X86::XMM0);
10028
10029  MI->eraseFromParent();
10030  return BB;
10031}
10032
10033MachineBasicBlock *
10034X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
10035  DebugLoc dl = MI->getDebugLoc();
10036  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10037
10038  // Address into RAX/EAX, other two args into ECX, EDX.
10039  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
10040  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
10041  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
10042  for (int i = 0; i < X86::AddrNumOperands; ++i)
10043    MIB.addOperand(MI->getOperand(i));
10044
10045  unsigned ValOps = X86::AddrNumOperands;
10046  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
10047    .addReg(MI->getOperand(ValOps).getReg());
10048  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
10049    .addReg(MI->getOperand(ValOps+1).getReg());
10050
10051  // The instruction doesn't actually take any operands though.
10052  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
10053
10054  MI->eraseFromParent(); // The pseudo is gone now.
10055  return BB;
10056}
10057
10058MachineBasicBlock *
10059X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
10060  DebugLoc dl = MI->getDebugLoc();
10061  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10062
10063  // First arg in ECX, the second in EAX.
10064  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
10065    .addReg(MI->getOperand(0).getReg());
10066  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
10067    .addReg(MI->getOperand(1).getReg());
10068
10069  // The instruction doesn't actually take any operands though.
10070  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
10071
10072  MI->eraseFromParent(); // The pseudo is gone now.
10073  return BB;
10074}
10075
10076MachineBasicBlock *
10077X86TargetLowering::EmitVAARG64WithCustomInserter(
10078                   MachineInstr *MI,
10079                   MachineBasicBlock *MBB) const {
10080  // Emit va_arg instruction on X86-64.
10081
10082  // Operands to this pseudo-instruction:
10083  // 0  ) Output        : destination address (reg)
10084  // 1-5) Input         : va_list address (addr, i64mem)
10085  // 6  ) ArgSize       : Size (in bytes) of vararg type
10086  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
10087  // 8  ) Align         : Alignment of type
10088  // 9  ) EFLAGS (implicit-def)
10089
10090  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
10091  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
10092
10093  unsigned DestReg = MI->getOperand(0).getReg();
10094  MachineOperand &Base = MI->getOperand(1);
10095  MachineOperand &Scale = MI->getOperand(2);
10096  MachineOperand &Index = MI->getOperand(3);
10097  MachineOperand &Disp = MI->getOperand(4);
10098  MachineOperand &Segment = MI->getOperand(5);
10099  unsigned ArgSize = MI->getOperand(6).getImm();
10100  unsigned ArgMode = MI->getOperand(7).getImm();
10101  unsigned Align = MI->getOperand(8).getImm();
10102
10103  // Memory Reference
10104  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
10105  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
10106  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
10107
10108  // Machine Information
10109  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10110  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
10111  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
10112  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
10113  DebugLoc DL = MI->getDebugLoc();
10114
10115  // struct va_list {
10116  //   i32   gp_offset
10117  //   i32   fp_offset
10118  //   i64   overflow_area (address)
10119  //   i64   reg_save_area (address)
10120  // }
10121  // sizeof(va_list) = 24
10122  // alignment(va_list) = 8
10123
10124  unsigned TotalNumIntRegs = 6;
10125  unsigned TotalNumXMMRegs = 8;
10126  bool UseGPOffset = (ArgMode == 1);
10127  bool UseFPOffset = (ArgMode == 2);
10128  unsigned MaxOffset = TotalNumIntRegs * 8 +
10129                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
10130
10131  /* Align ArgSize to a multiple of 8 */
10132  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
10133  bool NeedsAlign = (Align > 8);
10134
10135  MachineBasicBlock *thisMBB = MBB;
10136  MachineBasicBlock *overflowMBB;
10137  MachineBasicBlock *offsetMBB;
10138  MachineBasicBlock *endMBB;
10139
10140  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
10141  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
10142  unsigned OffsetReg = 0;
10143
10144  if (!UseGPOffset && !UseFPOffset) {
10145    // If we only pull from the overflow region, we don't create a branch.
10146    // We don't need to alter control flow.
10147    OffsetDestReg = 0; // unused
10148    OverflowDestReg = DestReg;
10149
10150    offsetMBB = NULL;
10151    overflowMBB = thisMBB;
10152    endMBB = thisMBB;
10153  } else {
10154    // First emit code to check if gp_offset (or fp_offset) is below the bound.
10155    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
10156    // If not, pull from overflow_area. (branch to overflowMBB)
10157    //
10158    //       thisMBB
10159    //         |     .
10160    //         |        .
10161    //     offsetMBB   overflowMBB
10162    //         |        .
10163    //         |     .
10164    //        endMBB
10165
10166    // Registers for the PHI in endMBB
10167    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
10168    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
10169
10170    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10171    MachineFunction *MF = MBB->getParent();
10172    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10173    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10174    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10175
10176    MachineFunction::iterator MBBIter = MBB;
10177    ++MBBIter;
10178
10179    // Insert the new basic blocks
10180    MF->insert(MBBIter, offsetMBB);
10181    MF->insert(MBBIter, overflowMBB);
10182    MF->insert(MBBIter, endMBB);
10183
10184    // Transfer the remainder of MBB and its successor edges to endMBB.
10185    endMBB->splice(endMBB->begin(), thisMBB,
10186                    llvm::next(MachineBasicBlock::iterator(MI)),
10187                    thisMBB->end());
10188    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10189
10190    // Make offsetMBB and overflowMBB successors of thisMBB
10191    thisMBB->addSuccessor(offsetMBB);
10192    thisMBB->addSuccessor(overflowMBB);
10193
10194    // endMBB is a successor of both offsetMBB and overflowMBB
10195    offsetMBB->addSuccessor(endMBB);
10196    overflowMBB->addSuccessor(endMBB);
10197
10198    // Load the offset value into a register
10199    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10200    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
10201      .addOperand(Base)
10202      .addOperand(Scale)
10203      .addOperand(Index)
10204      .addDisp(Disp, UseFPOffset ? 4 : 0)
10205      .addOperand(Segment)
10206      .setMemRefs(MMOBegin, MMOEnd);
10207
10208    // Check if there is enough room left to pull this argument.
10209    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
10210      .addReg(OffsetReg)
10211      .addImm(MaxOffset + 8 - ArgSizeA8);
10212
10213    // Branch to "overflowMBB" if offset >= max
10214    // Fall through to "offsetMBB" otherwise
10215    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
10216      .addMBB(overflowMBB);
10217  }
10218
10219  // In offsetMBB, emit code to use the reg_save_area.
10220  if (offsetMBB) {
10221    assert(OffsetReg != 0);
10222
10223    // Read the reg_save_area address.
10224    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
10225    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
10226      .addOperand(Base)
10227      .addOperand(Scale)
10228      .addOperand(Index)
10229      .addDisp(Disp, 16)
10230      .addOperand(Segment)
10231      .setMemRefs(MMOBegin, MMOEnd);
10232
10233    // Zero-extend the offset
10234    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
10235      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
10236        .addImm(0)
10237        .addReg(OffsetReg)
10238        .addImm(X86::sub_32bit);
10239
10240    // Add the offset to the reg_save_area to get the final address.
10241    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
10242      .addReg(OffsetReg64)
10243      .addReg(RegSaveReg);
10244
10245    // Compute the offset for the next argument
10246    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10247    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
10248      .addReg(OffsetReg)
10249      .addImm(UseFPOffset ? 16 : 8);
10250
10251    // Store it back into the va_list.
10252    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
10253      .addOperand(Base)
10254      .addOperand(Scale)
10255      .addOperand(Index)
10256      .addDisp(Disp, UseFPOffset ? 4 : 0)
10257      .addOperand(Segment)
10258      .addReg(NextOffsetReg)
10259      .setMemRefs(MMOBegin, MMOEnd);
10260
10261    // Jump to endMBB
10262    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
10263      .addMBB(endMBB);
10264  }
10265
10266  //
10267  // Emit code to use overflow area
10268  //
10269
10270  // Load the overflow_area address into a register.
10271  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
10272  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
10273    .addOperand(Base)
10274    .addOperand(Scale)
10275    .addOperand(Index)
10276    .addDisp(Disp, 8)
10277    .addOperand(Segment)
10278    .setMemRefs(MMOBegin, MMOEnd);
10279
10280  // If we need to align it, do so. Otherwise, just copy the address
10281  // to OverflowDestReg.
10282  if (NeedsAlign) {
10283    // Align the overflow address
10284    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
10285    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
10286
10287    // aligned_addr = (addr + (align-1)) & ~(align-1)
10288    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
10289      .addReg(OverflowAddrReg)
10290      .addImm(Align-1);
10291
10292    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
10293      .addReg(TmpReg)
10294      .addImm(~(uint64_t)(Align-1));
10295  } else {
10296    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
10297      .addReg(OverflowAddrReg);
10298  }
10299
10300  // Compute the next overflow address after this argument.
10301  // (the overflow address should be kept 8-byte aligned)
10302  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
10303  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
10304    .addReg(OverflowDestReg)
10305    .addImm(ArgSizeA8);
10306
10307  // Store the new overflow address.
10308  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
10309    .addOperand(Base)
10310    .addOperand(Scale)
10311    .addOperand(Index)
10312    .addDisp(Disp, 8)
10313    .addOperand(Segment)
10314    .addReg(NextAddrReg)
10315    .setMemRefs(MMOBegin, MMOEnd);
10316
10317  // If we branched, emit the PHI to the front of endMBB.
10318  if (offsetMBB) {
10319    BuildMI(*endMBB, endMBB->begin(), DL,
10320            TII->get(X86::PHI), DestReg)
10321      .addReg(OffsetDestReg).addMBB(offsetMBB)
10322      .addReg(OverflowDestReg).addMBB(overflowMBB);
10323  }
10324
10325  // Erase the pseudo instruction
10326  MI->eraseFromParent();
10327
10328  return endMBB;
10329}
10330
10331MachineBasicBlock *
10332X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
10333                                                 MachineInstr *MI,
10334                                                 MachineBasicBlock *MBB) const {
10335  // Emit code to save XMM registers to the stack. The ABI says that the
10336  // number of registers to save is given in %al, so it's theoretically
10337  // possible to do an indirect jump trick to avoid saving all of them,
10338  // however this code takes a simpler approach and just executes all
10339  // of the stores if %al is non-zero. It's less code, and it's probably
10340  // easier on the hardware branch predictor, and stores aren't all that
10341  // expensive anyway.
10342
10343  // Create the new basic blocks. One block contains all the XMM stores,
10344  // and one block is the final destination regardless of whether any
10345  // stores were performed.
10346  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10347  MachineFunction *F = MBB->getParent();
10348  MachineFunction::iterator MBBIter = MBB;
10349  ++MBBIter;
10350  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
10351  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
10352  F->insert(MBBIter, XMMSaveMBB);
10353  F->insert(MBBIter, EndMBB);
10354
10355  // Transfer the remainder of MBB and its successor edges to EndMBB.
10356  EndMBB->splice(EndMBB->begin(), MBB,
10357                 llvm::next(MachineBasicBlock::iterator(MI)),
10358                 MBB->end());
10359  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
10360
10361  // The original block will now fall through to the XMM save block.
10362  MBB->addSuccessor(XMMSaveMBB);
10363  // The XMMSaveMBB will fall through to the end block.
10364  XMMSaveMBB->addSuccessor(EndMBB);
10365
10366  // Now add the instructions.
10367  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10368  DebugLoc DL = MI->getDebugLoc();
10369
10370  unsigned CountReg = MI->getOperand(0).getReg();
10371  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
10372  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
10373
10374  if (!Subtarget->isTargetWin64()) {
10375    // If %al is 0, branch around the XMM save block.
10376    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
10377    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
10378    MBB->addSuccessor(EndMBB);
10379  }
10380
10381  // In the XMM save block, save all the XMM argument registers.
10382  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
10383    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
10384    MachineMemOperand *MMO =
10385      F->getMachineMemOperand(
10386          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
10387        MachineMemOperand::MOStore,
10388        /*Size=*/16, /*Align=*/16);
10389    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
10390      .addFrameIndex(RegSaveFrameIndex)
10391      .addImm(/*Scale=*/1)
10392      .addReg(/*IndexReg=*/0)
10393      .addImm(/*Disp=*/Offset)
10394      .addReg(/*Segment=*/0)
10395      .addReg(MI->getOperand(i).getReg())
10396      .addMemOperand(MMO);
10397  }
10398
10399  MI->eraseFromParent();   // The pseudo instruction is gone now.
10400
10401  return EndMBB;
10402}
10403
10404MachineBasicBlock *
10405X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
10406                                     MachineBasicBlock *BB) const {
10407  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10408  DebugLoc DL = MI->getDebugLoc();
10409
10410  // To "insert" a SELECT_CC instruction, we actually have to insert the
10411  // diamond control-flow pattern.  The incoming instruction knows the
10412  // destination vreg to set, the condition code register to branch on, the
10413  // true/false values to select between, and a branch opcode to use.
10414  const BasicBlock *LLVM_BB = BB->getBasicBlock();
10415  MachineFunction::iterator It = BB;
10416  ++It;
10417
10418  //  thisMBB:
10419  //  ...
10420  //   TrueVal = ...
10421  //   cmpTY ccX, r1, r2
10422  //   bCC copy1MBB
10423  //   fallthrough --> copy0MBB
10424  MachineBasicBlock *thisMBB = BB;
10425  MachineFunction *F = BB->getParent();
10426  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10427  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10428  F->insert(It, copy0MBB);
10429  F->insert(It, sinkMBB);
10430
10431  // If the EFLAGS register isn't dead in the terminator, then claim that it's
10432  // live into the sink and copy blocks.
10433  const MachineFunction *MF = BB->getParent();
10434  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
10435  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
10436
10437  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
10438    const MachineOperand &MO = MI->getOperand(I);
10439    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
10440    unsigned Reg = MO.getReg();
10441    if (Reg != X86::EFLAGS) continue;
10442    copy0MBB->addLiveIn(Reg);
10443    sinkMBB->addLiveIn(Reg);
10444  }
10445
10446  // Transfer the remainder of BB and its successor edges to sinkMBB.
10447  sinkMBB->splice(sinkMBB->begin(), BB,
10448                  llvm::next(MachineBasicBlock::iterator(MI)),
10449                  BB->end());
10450  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10451
10452  // Add the true and fallthrough blocks as its successors.
10453  BB->addSuccessor(copy0MBB);
10454  BB->addSuccessor(sinkMBB);
10455
10456  // Create the conditional branch instruction.
10457  unsigned Opc =
10458    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
10459  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
10460
10461  //  copy0MBB:
10462  //   %FalseValue = ...
10463  //   # fallthrough to sinkMBB
10464  copy0MBB->addSuccessor(sinkMBB);
10465
10466  //  sinkMBB:
10467  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10468  //  ...
10469  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10470          TII->get(X86::PHI), MI->getOperand(0).getReg())
10471    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
10472    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
10473
10474  MI->eraseFromParent();   // The pseudo instruction is gone now.
10475  return sinkMBB;
10476}
10477
10478MachineBasicBlock *
10479X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
10480                                          MachineBasicBlock *BB) const {
10481  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10482  DebugLoc DL = MI->getDebugLoc();
10483
10484  assert(!Subtarget->isTargetEnvMacho());
10485
10486  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
10487  // non-trivial part is impdef of ESP.
10488
10489  if (Subtarget->isTargetWin64()) {
10490    if (Subtarget->isTargetCygMing()) {
10491      // ___chkstk(Mingw64):
10492      // Clobbers R10, R11, RAX and EFLAGS.
10493      // Updates RSP.
10494      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
10495        .addExternalSymbol("___chkstk")
10496        .addReg(X86::RAX, RegState::Implicit)
10497        .addReg(X86::RSP, RegState::Implicit)
10498        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
10499        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
10500        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10501    } else {
10502      // __chkstk(MSVCRT): does not update stack pointer.
10503      // Clobbers R10, R11 and EFLAGS.
10504      // FIXME: RAX(allocated size) might be reused and not killed.
10505      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
10506        .addExternalSymbol("__chkstk")
10507        .addReg(X86::RAX, RegState::Implicit)
10508        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10509      // RAX has the offset to subtracted from RSP.
10510      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
10511        .addReg(X86::RSP)
10512        .addReg(X86::RAX);
10513    }
10514  } else {
10515    const char *StackProbeSymbol =
10516      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
10517
10518    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
10519      .addExternalSymbol(StackProbeSymbol)
10520      .addReg(X86::EAX, RegState::Implicit)
10521      .addReg(X86::ESP, RegState::Implicit)
10522      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
10523      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
10524      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10525  }
10526
10527  MI->eraseFromParent();   // The pseudo instruction is gone now.
10528  return BB;
10529}
10530
10531MachineBasicBlock *
10532X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
10533                                      MachineBasicBlock *BB) const {
10534  // This is pretty easy.  We're taking the value that we received from
10535  // our load from the relocation, sticking it in either RDI (x86-64)
10536  // or EAX and doing an indirect call.  The return value will then
10537  // be in the normal return register.
10538  const X86InstrInfo *TII
10539    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
10540  DebugLoc DL = MI->getDebugLoc();
10541  MachineFunction *F = BB->getParent();
10542
10543  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
10544  assert(MI->getOperand(3).isGlobal() && "This should be a global");
10545
10546  if (Subtarget->is64Bit()) {
10547    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10548                                      TII->get(X86::MOV64rm), X86::RDI)
10549    .addReg(X86::RIP)
10550    .addImm(0).addReg(0)
10551    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10552                      MI->getOperand(3).getTargetFlags())
10553    .addReg(0);
10554    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
10555    addDirectMem(MIB, X86::RDI);
10556  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
10557    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10558                                      TII->get(X86::MOV32rm), X86::EAX)
10559    .addReg(0)
10560    .addImm(0).addReg(0)
10561    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10562                      MI->getOperand(3).getTargetFlags())
10563    .addReg(0);
10564    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10565    addDirectMem(MIB, X86::EAX);
10566  } else {
10567    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10568                                      TII->get(X86::MOV32rm), X86::EAX)
10569    .addReg(TII->getGlobalBaseReg(F))
10570    .addImm(0).addReg(0)
10571    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10572                      MI->getOperand(3).getTargetFlags())
10573    .addReg(0);
10574    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10575    addDirectMem(MIB, X86::EAX);
10576  }
10577
10578  MI->eraseFromParent(); // The pseudo instruction is gone now.
10579  return BB;
10580}
10581
10582MachineBasicBlock *
10583X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
10584                                               MachineBasicBlock *BB) const {
10585  switch (MI->getOpcode()) {
10586  default: assert(false && "Unexpected instr type to insert");
10587  case X86::TAILJMPd64:
10588  case X86::TAILJMPr64:
10589  case X86::TAILJMPm64:
10590    assert(!"TAILJMP64 would not be touched here.");
10591  case X86::TCRETURNdi64:
10592  case X86::TCRETURNri64:
10593  case X86::TCRETURNmi64:
10594    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
10595    // On AMD64, additional defs should be added before register allocation.
10596    if (!Subtarget->isTargetWin64()) {
10597      MI->addRegisterDefined(X86::RSI);
10598      MI->addRegisterDefined(X86::RDI);
10599      MI->addRegisterDefined(X86::XMM6);
10600      MI->addRegisterDefined(X86::XMM7);
10601      MI->addRegisterDefined(X86::XMM8);
10602      MI->addRegisterDefined(X86::XMM9);
10603      MI->addRegisterDefined(X86::XMM10);
10604      MI->addRegisterDefined(X86::XMM11);
10605      MI->addRegisterDefined(X86::XMM12);
10606      MI->addRegisterDefined(X86::XMM13);
10607      MI->addRegisterDefined(X86::XMM14);
10608      MI->addRegisterDefined(X86::XMM15);
10609    }
10610    return BB;
10611  case X86::WIN_ALLOCA:
10612    return EmitLoweredWinAlloca(MI, BB);
10613  case X86::TLSCall_32:
10614  case X86::TLSCall_64:
10615    return EmitLoweredTLSCall(MI, BB);
10616  case X86::CMOV_GR8:
10617  case X86::CMOV_FR32:
10618  case X86::CMOV_FR64:
10619  case X86::CMOV_V4F32:
10620  case X86::CMOV_V2F64:
10621  case X86::CMOV_V2I64:
10622  case X86::CMOV_GR16:
10623  case X86::CMOV_GR32:
10624  case X86::CMOV_RFP32:
10625  case X86::CMOV_RFP64:
10626  case X86::CMOV_RFP80:
10627    return EmitLoweredSelect(MI, BB);
10628
10629  case X86::FP32_TO_INT16_IN_MEM:
10630  case X86::FP32_TO_INT32_IN_MEM:
10631  case X86::FP32_TO_INT64_IN_MEM:
10632  case X86::FP64_TO_INT16_IN_MEM:
10633  case X86::FP64_TO_INT32_IN_MEM:
10634  case X86::FP64_TO_INT64_IN_MEM:
10635  case X86::FP80_TO_INT16_IN_MEM:
10636  case X86::FP80_TO_INT32_IN_MEM:
10637  case X86::FP80_TO_INT64_IN_MEM: {
10638    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10639    DebugLoc DL = MI->getDebugLoc();
10640
10641    // Change the floating point control register to use "round towards zero"
10642    // mode when truncating to an integer value.
10643    MachineFunction *F = BB->getParent();
10644    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
10645    addFrameReference(BuildMI(*BB, MI, DL,
10646                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
10647
10648    // Load the old value of the high byte of the control word...
10649    unsigned OldCW =
10650      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
10651    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
10652                      CWFrameIdx);
10653
10654    // Set the high part to be round to zero...
10655    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
10656      .addImm(0xC7F);
10657
10658    // Reload the modified control word now...
10659    addFrameReference(BuildMI(*BB, MI, DL,
10660                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10661
10662    // Restore the memory image of control word to original value
10663    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
10664      .addReg(OldCW);
10665
10666    // Get the X86 opcode to use.
10667    unsigned Opc;
10668    switch (MI->getOpcode()) {
10669    default: llvm_unreachable("illegal opcode!");
10670    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
10671    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
10672    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
10673    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
10674    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
10675    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
10676    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
10677    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
10678    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
10679    }
10680
10681    X86AddressMode AM;
10682    MachineOperand &Op = MI->getOperand(0);
10683    if (Op.isReg()) {
10684      AM.BaseType = X86AddressMode::RegBase;
10685      AM.Base.Reg = Op.getReg();
10686    } else {
10687      AM.BaseType = X86AddressMode::FrameIndexBase;
10688      AM.Base.FrameIndex = Op.getIndex();
10689    }
10690    Op = MI->getOperand(1);
10691    if (Op.isImm())
10692      AM.Scale = Op.getImm();
10693    Op = MI->getOperand(2);
10694    if (Op.isImm())
10695      AM.IndexReg = Op.getImm();
10696    Op = MI->getOperand(3);
10697    if (Op.isGlobal()) {
10698      AM.GV = Op.getGlobal();
10699    } else {
10700      AM.Disp = Op.getImm();
10701    }
10702    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
10703                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
10704
10705    // Reload the original control word now.
10706    addFrameReference(BuildMI(*BB, MI, DL,
10707                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10708
10709    MI->eraseFromParent();   // The pseudo instruction is gone now.
10710    return BB;
10711  }
10712    // String/text processing lowering.
10713  case X86::PCMPISTRM128REG:
10714  case X86::VPCMPISTRM128REG:
10715    return EmitPCMP(MI, BB, 3, false /* in-mem */);
10716  case X86::PCMPISTRM128MEM:
10717  case X86::VPCMPISTRM128MEM:
10718    return EmitPCMP(MI, BB, 3, true /* in-mem */);
10719  case X86::PCMPESTRM128REG:
10720  case X86::VPCMPESTRM128REG:
10721    return EmitPCMP(MI, BB, 5, false /* in mem */);
10722  case X86::PCMPESTRM128MEM:
10723  case X86::VPCMPESTRM128MEM:
10724    return EmitPCMP(MI, BB, 5, true /* in mem */);
10725
10726    // Thread synchronization.
10727  case X86::MONITOR:
10728    return EmitMonitor(MI, BB);
10729  case X86::MWAIT:
10730    return EmitMwait(MI, BB);
10731
10732    // Atomic Lowering.
10733  case X86::ATOMAND32:
10734    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10735                                               X86::AND32ri, X86::MOV32rm,
10736                                               X86::LCMPXCHG32,
10737                                               X86::NOT32r, X86::EAX,
10738                                               X86::GR32RegisterClass);
10739  case X86::ATOMOR32:
10740    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
10741                                               X86::OR32ri, X86::MOV32rm,
10742                                               X86::LCMPXCHG32,
10743                                               X86::NOT32r, X86::EAX,
10744                                               X86::GR32RegisterClass);
10745  case X86::ATOMXOR32:
10746    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
10747                                               X86::XOR32ri, X86::MOV32rm,
10748                                               X86::LCMPXCHG32,
10749                                               X86::NOT32r, X86::EAX,
10750                                               X86::GR32RegisterClass);
10751  case X86::ATOMNAND32:
10752    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10753                                               X86::AND32ri, X86::MOV32rm,
10754                                               X86::LCMPXCHG32,
10755                                               X86::NOT32r, X86::EAX,
10756                                               X86::GR32RegisterClass, true);
10757  case X86::ATOMMIN32:
10758    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
10759  case X86::ATOMMAX32:
10760    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
10761  case X86::ATOMUMIN32:
10762    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
10763  case X86::ATOMUMAX32:
10764    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
10765
10766  case X86::ATOMAND16:
10767    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10768                                               X86::AND16ri, X86::MOV16rm,
10769                                               X86::LCMPXCHG16,
10770                                               X86::NOT16r, X86::AX,
10771                                               X86::GR16RegisterClass);
10772  case X86::ATOMOR16:
10773    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
10774                                               X86::OR16ri, X86::MOV16rm,
10775                                               X86::LCMPXCHG16,
10776                                               X86::NOT16r, X86::AX,
10777                                               X86::GR16RegisterClass);
10778  case X86::ATOMXOR16:
10779    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
10780                                               X86::XOR16ri, X86::MOV16rm,
10781                                               X86::LCMPXCHG16,
10782                                               X86::NOT16r, X86::AX,
10783                                               X86::GR16RegisterClass);
10784  case X86::ATOMNAND16:
10785    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10786                                               X86::AND16ri, X86::MOV16rm,
10787                                               X86::LCMPXCHG16,
10788                                               X86::NOT16r, X86::AX,
10789                                               X86::GR16RegisterClass, true);
10790  case X86::ATOMMIN16:
10791    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
10792  case X86::ATOMMAX16:
10793    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
10794  case X86::ATOMUMIN16:
10795    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
10796  case X86::ATOMUMAX16:
10797    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
10798
10799  case X86::ATOMAND8:
10800    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10801                                               X86::AND8ri, X86::MOV8rm,
10802                                               X86::LCMPXCHG8,
10803                                               X86::NOT8r, X86::AL,
10804                                               X86::GR8RegisterClass);
10805  case X86::ATOMOR8:
10806    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
10807                                               X86::OR8ri, X86::MOV8rm,
10808                                               X86::LCMPXCHG8,
10809                                               X86::NOT8r, X86::AL,
10810                                               X86::GR8RegisterClass);
10811  case X86::ATOMXOR8:
10812    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
10813                                               X86::XOR8ri, X86::MOV8rm,
10814                                               X86::LCMPXCHG8,
10815                                               X86::NOT8r, X86::AL,
10816                                               X86::GR8RegisterClass);
10817  case X86::ATOMNAND8:
10818    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10819                                               X86::AND8ri, X86::MOV8rm,
10820                                               X86::LCMPXCHG8,
10821                                               X86::NOT8r, X86::AL,
10822                                               X86::GR8RegisterClass, true);
10823  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
10824  // This group is for 64-bit host.
10825  case X86::ATOMAND64:
10826    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10827                                               X86::AND64ri32, X86::MOV64rm,
10828                                               X86::LCMPXCHG64,
10829                                               X86::NOT64r, X86::RAX,
10830                                               X86::GR64RegisterClass);
10831  case X86::ATOMOR64:
10832    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
10833                                               X86::OR64ri32, X86::MOV64rm,
10834                                               X86::LCMPXCHG64,
10835                                               X86::NOT64r, X86::RAX,
10836                                               X86::GR64RegisterClass);
10837  case X86::ATOMXOR64:
10838    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
10839                                               X86::XOR64ri32, X86::MOV64rm,
10840                                               X86::LCMPXCHG64,
10841                                               X86::NOT64r, X86::RAX,
10842                                               X86::GR64RegisterClass);
10843  case X86::ATOMNAND64:
10844    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10845                                               X86::AND64ri32, X86::MOV64rm,
10846                                               X86::LCMPXCHG64,
10847                                               X86::NOT64r, X86::RAX,
10848                                               X86::GR64RegisterClass, true);
10849  case X86::ATOMMIN64:
10850    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
10851  case X86::ATOMMAX64:
10852    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
10853  case X86::ATOMUMIN64:
10854    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
10855  case X86::ATOMUMAX64:
10856    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
10857
10858  // This group does 64-bit operations on a 32-bit host.
10859  case X86::ATOMAND6432:
10860    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10861                                               X86::AND32rr, X86::AND32rr,
10862                                               X86::AND32ri, X86::AND32ri,
10863                                               false);
10864  case X86::ATOMOR6432:
10865    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10866                                               X86::OR32rr, X86::OR32rr,
10867                                               X86::OR32ri, X86::OR32ri,
10868                                               false);
10869  case X86::ATOMXOR6432:
10870    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10871                                               X86::XOR32rr, X86::XOR32rr,
10872                                               X86::XOR32ri, X86::XOR32ri,
10873                                               false);
10874  case X86::ATOMNAND6432:
10875    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10876                                               X86::AND32rr, X86::AND32rr,
10877                                               X86::AND32ri, X86::AND32ri,
10878                                               true);
10879  case X86::ATOMADD6432:
10880    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10881                                               X86::ADD32rr, X86::ADC32rr,
10882                                               X86::ADD32ri, X86::ADC32ri,
10883                                               false);
10884  case X86::ATOMSUB6432:
10885    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10886                                               X86::SUB32rr, X86::SBB32rr,
10887                                               X86::SUB32ri, X86::SBB32ri,
10888                                               false);
10889  case X86::ATOMSWAP6432:
10890    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10891                                               X86::MOV32rr, X86::MOV32rr,
10892                                               X86::MOV32ri, X86::MOV32ri,
10893                                               false);
10894  case X86::VASTART_SAVE_XMM_REGS:
10895    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
10896
10897  case X86::VAARG_64:
10898    return EmitVAARG64WithCustomInserter(MI, BB);
10899  }
10900}
10901
10902//===----------------------------------------------------------------------===//
10903//                           X86 Optimization Hooks
10904//===----------------------------------------------------------------------===//
10905
10906void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
10907                                                       const APInt &Mask,
10908                                                       APInt &KnownZero,
10909                                                       APInt &KnownOne,
10910                                                       const SelectionDAG &DAG,
10911                                                       unsigned Depth) const {
10912  unsigned Opc = Op.getOpcode();
10913  assert((Opc >= ISD::BUILTIN_OP_END ||
10914          Opc == ISD::INTRINSIC_WO_CHAIN ||
10915          Opc == ISD::INTRINSIC_W_CHAIN ||
10916          Opc == ISD::INTRINSIC_VOID) &&
10917         "Should use MaskedValueIsZero if you don't know whether Op"
10918         " is a target node!");
10919
10920  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
10921  switch (Opc) {
10922  default: break;
10923  case X86ISD::ADD:
10924  case X86ISD::SUB:
10925  case X86ISD::ADC:
10926  case X86ISD::SBB:
10927  case X86ISD::SMUL:
10928  case X86ISD::UMUL:
10929  case X86ISD::INC:
10930  case X86ISD::DEC:
10931  case X86ISD::OR:
10932  case X86ISD::XOR:
10933  case X86ISD::AND:
10934    // These nodes' second result is a boolean.
10935    if (Op.getResNo() == 0)
10936      break;
10937    // Fallthrough
10938  case X86ISD::SETCC:
10939    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
10940                                       Mask.getBitWidth() - 1);
10941    break;
10942  }
10943}
10944
10945unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
10946                                                         unsigned Depth) const {
10947  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
10948  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
10949    return Op.getValueType().getScalarType().getSizeInBits();
10950
10951  // Fallback case.
10952  return 1;
10953}
10954
10955/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
10956/// node is a GlobalAddress + offset.
10957bool X86TargetLowering::isGAPlusOffset(SDNode *N,
10958                                       const GlobalValue* &GA,
10959                                       int64_t &Offset) const {
10960  if (N->getOpcode() == X86ISD::Wrapper) {
10961    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
10962      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
10963      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
10964      return true;
10965    }
10966  }
10967  return TargetLowering::isGAPlusOffset(N, GA, Offset);
10968}
10969
10970/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
10971/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
10972/// if the load addresses are consecutive, non-overlapping, and in the right
10973/// order.
10974static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
10975                                     TargetLowering::DAGCombinerInfo &DCI) {
10976  DebugLoc dl = N->getDebugLoc();
10977  EVT VT = N->getValueType(0);
10978
10979  if (VT.getSizeInBits() != 128)
10980    return SDValue();
10981
10982  // Don't create instructions with illegal types after legalize types has run.
10983  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10984  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
10985    return SDValue();
10986
10987  SmallVector<SDValue, 16> Elts;
10988  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
10989    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
10990
10991  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
10992}
10993
10994/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
10995/// generation and convert it from being a bunch of shuffles and extracts
10996/// to a simple store and scalar loads to extract the elements.
10997static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
10998                                                const TargetLowering &TLI) {
10999  SDValue InputVector = N->getOperand(0);
11000
11001  // Only operate on vectors of 4 elements, where the alternative shuffling
11002  // gets to be more expensive.
11003  if (InputVector.getValueType() != MVT::v4i32)
11004    return SDValue();
11005
11006  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
11007  // single use which is a sign-extend or zero-extend, and all elements are
11008  // used.
11009  SmallVector<SDNode *, 4> Uses;
11010  unsigned ExtractedElements = 0;
11011  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
11012       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
11013    if (UI.getUse().getResNo() != InputVector.getResNo())
11014      return SDValue();
11015
11016    SDNode *Extract = *UI;
11017    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11018      return SDValue();
11019
11020    if (Extract->getValueType(0) != MVT::i32)
11021      return SDValue();
11022    if (!Extract->hasOneUse())
11023      return SDValue();
11024    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
11025        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
11026      return SDValue();
11027    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
11028      return SDValue();
11029
11030    // Record which element was extracted.
11031    ExtractedElements |=
11032      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
11033
11034    Uses.push_back(Extract);
11035  }
11036
11037  // If not all the elements were used, this may not be worthwhile.
11038  if (ExtractedElements != 15)
11039    return SDValue();
11040
11041  // Ok, we've now decided to do the transformation.
11042  DebugLoc dl = InputVector.getDebugLoc();
11043
11044  // Store the value to a temporary stack slot.
11045  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
11046  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
11047                            MachinePointerInfo(), false, false, 0);
11048
11049  // Replace each use (extract) with a load of the appropriate element.
11050  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
11051       UE = Uses.end(); UI != UE; ++UI) {
11052    SDNode *Extract = *UI;
11053
11054    // cOMpute the element's address.
11055    SDValue Idx = Extract->getOperand(1);
11056    unsigned EltSize =
11057        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
11058    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
11059    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
11060
11061    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
11062                                     StackPtr, OffsetVal);
11063
11064    // Load the scalar.
11065    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
11066                                     ScalarAddr, MachinePointerInfo(),
11067                                     false, false, 0);
11068
11069    // Replace the exact with the load.
11070    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
11071  }
11072
11073  // The replacement was made in place; don't return anything.
11074  return SDValue();
11075}
11076
11077/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
11078static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
11079                                    const X86Subtarget *Subtarget) {
11080  DebugLoc DL = N->getDebugLoc();
11081  SDValue Cond = N->getOperand(0);
11082  // Get the LHS/RHS of the select.
11083  SDValue LHS = N->getOperand(1);
11084  SDValue RHS = N->getOperand(2);
11085
11086  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
11087  // instructions match the semantics of the common C idiom x<y?x:y but not
11088  // x<=y?x:y, because of how they handle negative zero (which can be
11089  // ignored in unsafe-math mode).
11090  if (Subtarget->hasSSE2() &&
11091      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
11092      Cond.getOpcode() == ISD::SETCC) {
11093    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
11094
11095    unsigned Opcode = 0;
11096    // Check for x CC y ? x : y.
11097    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
11098        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
11099      switch (CC) {
11100      default: break;
11101      case ISD::SETULT:
11102        // Converting this to a min would handle NaNs incorrectly, and swapping
11103        // the operands would cause it to handle comparisons between positive
11104        // and negative zero incorrectly.
11105        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11106          if (!UnsafeFPMath &&
11107              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11108            break;
11109          std::swap(LHS, RHS);
11110        }
11111        Opcode = X86ISD::FMIN;
11112        break;
11113      case ISD::SETOLE:
11114        // Converting this to a min would handle comparisons between positive
11115        // and negative zero incorrectly.
11116        if (!UnsafeFPMath &&
11117            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
11118          break;
11119        Opcode = X86ISD::FMIN;
11120        break;
11121      case ISD::SETULE:
11122        // Converting this to a min would handle both negative zeros and NaNs
11123        // incorrectly, but we can swap the operands to fix both.
11124        std::swap(LHS, RHS);
11125      case ISD::SETOLT:
11126      case ISD::SETLT:
11127      case ISD::SETLE:
11128        Opcode = X86ISD::FMIN;
11129        break;
11130
11131      case ISD::SETOGE:
11132        // Converting this to a max would handle comparisons between positive
11133        // and negative zero incorrectly.
11134        if (!UnsafeFPMath &&
11135            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
11136          break;
11137        Opcode = X86ISD::FMAX;
11138        break;
11139      case ISD::SETUGT:
11140        // Converting this to a max would handle NaNs incorrectly, and swapping
11141        // the operands would cause it to handle comparisons between positive
11142        // and negative zero incorrectly.
11143        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11144          if (!UnsafeFPMath &&
11145              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11146            break;
11147          std::swap(LHS, RHS);
11148        }
11149        Opcode = X86ISD::FMAX;
11150        break;
11151      case ISD::SETUGE:
11152        // Converting this to a max would handle both negative zeros and NaNs
11153        // incorrectly, but we can swap the operands to fix both.
11154        std::swap(LHS, RHS);
11155      case ISD::SETOGT:
11156      case ISD::SETGT:
11157      case ISD::SETGE:
11158        Opcode = X86ISD::FMAX;
11159        break;
11160      }
11161    // Check for x CC y ? y : x -- a min/max with reversed arms.
11162    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
11163               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
11164      switch (CC) {
11165      default: break;
11166      case ISD::SETOGE:
11167        // Converting this to a min would handle comparisons between positive
11168        // and negative zero incorrectly, and swapping the operands would
11169        // cause it to handle NaNs incorrectly.
11170        if (!UnsafeFPMath &&
11171            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
11172          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11173            break;
11174          std::swap(LHS, RHS);
11175        }
11176        Opcode = X86ISD::FMIN;
11177        break;
11178      case ISD::SETUGT:
11179        // Converting this to a min would handle NaNs incorrectly.
11180        if (!UnsafeFPMath &&
11181            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
11182          break;
11183        Opcode = X86ISD::FMIN;
11184        break;
11185      case ISD::SETUGE:
11186        // Converting this to a min would handle both negative zeros and NaNs
11187        // incorrectly, but we can swap the operands to fix both.
11188        std::swap(LHS, RHS);
11189      case ISD::SETOGT:
11190      case ISD::SETGT:
11191      case ISD::SETGE:
11192        Opcode = X86ISD::FMIN;
11193        break;
11194
11195      case ISD::SETULT:
11196        // Converting this to a max would handle NaNs incorrectly.
11197        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11198          break;
11199        Opcode = X86ISD::FMAX;
11200        break;
11201      case ISD::SETOLE:
11202        // Converting this to a max would handle comparisons between positive
11203        // and negative zero incorrectly, and swapping the operands would
11204        // cause it to handle NaNs incorrectly.
11205        if (!UnsafeFPMath &&
11206            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
11207          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11208            break;
11209          std::swap(LHS, RHS);
11210        }
11211        Opcode = X86ISD::FMAX;
11212        break;
11213      case ISD::SETULE:
11214        // Converting this to a max would handle both negative zeros and NaNs
11215        // incorrectly, but we can swap the operands to fix both.
11216        std::swap(LHS, RHS);
11217      case ISD::SETOLT:
11218      case ISD::SETLT:
11219      case ISD::SETLE:
11220        Opcode = X86ISD::FMAX;
11221        break;
11222      }
11223    }
11224
11225    if (Opcode)
11226      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
11227  }
11228
11229  // If this is a select between two integer constants, try to do some
11230  // optimizations.
11231  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
11232    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
11233      // Don't do this for crazy integer types.
11234      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
11235        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
11236        // so that TrueC (the true value) is larger than FalseC.
11237        bool NeedsCondInvert = false;
11238
11239        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
11240            // Efficiently invertible.
11241            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
11242             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
11243              isa<ConstantSDNode>(Cond.getOperand(1))))) {
11244          NeedsCondInvert = true;
11245          std::swap(TrueC, FalseC);
11246        }
11247
11248        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
11249        if (FalseC->getAPIntValue() == 0 &&
11250            TrueC->getAPIntValue().isPowerOf2()) {
11251          if (NeedsCondInvert) // Invert the condition if needed.
11252            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11253                               DAG.getConstant(1, Cond.getValueType()));
11254
11255          // Zero extend the condition if needed.
11256          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
11257
11258          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11259          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
11260                             DAG.getConstant(ShAmt, MVT::i8));
11261        }
11262
11263        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
11264        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11265          if (NeedsCondInvert) // Invert the condition if needed.
11266            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11267                               DAG.getConstant(1, Cond.getValueType()));
11268
11269          // Zero extend the condition if needed.
11270          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11271                             FalseC->getValueType(0), Cond);
11272          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11273                             SDValue(FalseC, 0));
11274        }
11275
11276        // Optimize cases that will turn into an LEA instruction.  This requires
11277        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11278        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11279          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11280          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11281
11282          bool isFastMultiplier = false;
11283          if (Diff < 10) {
11284            switch ((unsigned char)Diff) {
11285              default: break;
11286              case 1:  // result = add base, cond
11287              case 2:  // result = lea base(    , cond*2)
11288              case 3:  // result = lea base(cond, cond*2)
11289              case 4:  // result = lea base(    , cond*4)
11290              case 5:  // result = lea base(cond, cond*4)
11291              case 8:  // result = lea base(    , cond*8)
11292              case 9:  // result = lea base(cond, cond*8)
11293                isFastMultiplier = true;
11294                break;
11295            }
11296          }
11297
11298          if (isFastMultiplier) {
11299            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11300            if (NeedsCondInvert) // Invert the condition if needed.
11301              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11302                                 DAG.getConstant(1, Cond.getValueType()));
11303
11304            // Zero extend the condition if needed.
11305            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11306                               Cond);
11307            // Scale the condition by the difference.
11308            if (Diff != 1)
11309              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11310                                 DAG.getConstant(Diff, Cond.getValueType()));
11311
11312            // Add the base if non-zero.
11313            if (FalseC->getAPIntValue() != 0)
11314              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11315                                 SDValue(FalseC, 0));
11316            return Cond;
11317          }
11318        }
11319      }
11320  }
11321
11322  return SDValue();
11323}
11324
11325/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
11326static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
11327                                  TargetLowering::DAGCombinerInfo &DCI) {
11328  DebugLoc DL = N->getDebugLoc();
11329
11330  // If the flag operand isn't dead, don't touch this CMOV.
11331  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
11332    return SDValue();
11333
11334  // If this is a select between two integer constants, try to do some
11335  // optimizations.  Note that the operands are ordered the opposite of SELECT
11336  // operands.
11337  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
11338    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
11339      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
11340      // larger than FalseC (the false value).
11341      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
11342
11343      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
11344        CC = X86::GetOppositeBranchCondition(CC);
11345        std::swap(TrueC, FalseC);
11346      }
11347
11348      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
11349      // This is efficient for any integer data type (including i8/i16) and
11350      // shift amount.
11351      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
11352        SDValue Cond = N->getOperand(3);
11353        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11354                           DAG.getConstant(CC, MVT::i8), Cond);
11355
11356        // Zero extend the condition if needed.
11357        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
11358
11359        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11360        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
11361                           DAG.getConstant(ShAmt, MVT::i8));
11362        if (N->getNumValues() == 2)  // Dead flag value?
11363          return DCI.CombineTo(N, Cond, SDValue());
11364        return Cond;
11365      }
11366
11367      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
11368      // for any integer data type, including i8/i16.
11369      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11370        SDValue Cond = N->getOperand(3);
11371        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11372                           DAG.getConstant(CC, MVT::i8), Cond);
11373
11374        // Zero extend the condition if needed.
11375        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11376                           FalseC->getValueType(0), Cond);
11377        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11378                           SDValue(FalseC, 0));
11379
11380        if (N->getNumValues() == 2)  // Dead flag value?
11381          return DCI.CombineTo(N, Cond, SDValue());
11382        return Cond;
11383      }
11384
11385      // Optimize cases that will turn into an LEA instruction.  This requires
11386      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11387      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11388        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11389        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11390
11391        bool isFastMultiplier = false;
11392        if (Diff < 10) {
11393          switch ((unsigned char)Diff) {
11394          default: break;
11395          case 1:  // result = add base, cond
11396          case 2:  // result = lea base(    , cond*2)
11397          case 3:  // result = lea base(cond, cond*2)
11398          case 4:  // result = lea base(    , cond*4)
11399          case 5:  // result = lea base(cond, cond*4)
11400          case 8:  // result = lea base(    , cond*8)
11401          case 9:  // result = lea base(cond, cond*8)
11402            isFastMultiplier = true;
11403            break;
11404          }
11405        }
11406
11407        if (isFastMultiplier) {
11408          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11409          SDValue Cond = N->getOperand(3);
11410          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11411                             DAG.getConstant(CC, MVT::i8), Cond);
11412          // Zero extend the condition if needed.
11413          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11414                             Cond);
11415          // Scale the condition by the difference.
11416          if (Diff != 1)
11417            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11418                               DAG.getConstant(Diff, Cond.getValueType()));
11419
11420          // Add the base if non-zero.
11421          if (FalseC->getAPIntValue() != 0)
11422            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11423                               SDValue(FalseC, 0));
11424          if (N->getNumValues() == 2)  // Dead flag value?
11425            return DCI.CombineTo(N, Cond, SDValue());
11426          return Cond;
11427        }
11428      }
11429    }
11430  }
11431  return SDValue();
11432}
11433
11434
11435/// PerformMulCombine - Optimize a single multiply with constant into two
11436/// in order to implement it with two cheaper instructions, e.g.
11437/// LEA + SHL, LEA + LEA.
11438static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
11439                                 TargetLowering::DAGCombinerInfo &DCI) {
11440  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11441    return SDValue();
11442
11443  EVT VT = N->getValueType(0);
11444  if (VT != MVT::i64)
11445    return SDValue();
11446
11447  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11448  if (!C)
11449    return SDValue();
11450  uint64_t MulAmt = C->getZExtValue();
11451  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
11452    return SDValue();
11453
11454  uint64_t MulAmt1 = 0;
11455  uint64_t MulAmt2 = 0;
11456  if ((MulAmt % 9) == 0) {
11457    MulAmt1 = 9;
11458    MulAmt2 = MulAmt / 9;
11459  } else if ((MulAmt % 5) == 0) {
11460    MulAmt1 = 5;
11461    MulAmt2 = MulAmt / 5;
11462  } else if ((MulAmt % 3) == 0) {
11463    MulAmt1 = 3;
11464    MulAmt2 = MulAmt / 3;
11465  }
11466  if (MulAmt2 &&
11467      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
11468    DebugLoc DL = N->getDebugLoc();
11469
11470    if (isPowerOf2_64(MulAmt2) &&
11471        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
11472      // If second multiplifer is pow2, issue it first. We want the multiply by
11473      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
11474      // is an add.
11475      std::swap(MulAmt1, MulAmt2);
11476
11477    SDValue NewMul;
11478    if (isPowerOf2_64(MulAmt1))
11479      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
11480                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
11481    else
11482      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
11483                           DAG.getConstant(MulAmt1, VT));
11484
11485    if (isPowerOf2_64(MulAmt2))
11486      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
11487                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
11488    else
11489      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
11490                           DAG.getConstant(MulAmt2, VT));
11491
11492    // Do not add new nodes to DAG combiner worklist.
11493    DCI.CombineTo(N, NewMul, false);
11494  }
11495  return SDValue();
11496}
11497
11498static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
11499  SDValue N0 = N->getOperand(0);
11500  SDValue N1 = N->getOperand(1);
11501  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
11502  EVT VT = N0.getValueType();
11503
11504  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
11505  // since the result of setcc_c is all zero's or all ones.
11506  if (N1C && N0.getOpcode() == ISD::AND &&
11507      N0.getOperand(1).getOpcode() == ISD::Constant) {
11508    SDValue N00 = N0.getOperand(0);
11509    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
11510        ((N00.getOpcode() == ISD::ANY_EXTEND ||
11511          N00.getOpcode() == ISD::ZERO_EXTEND) &&
11512         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
11513      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
11514      APInt ShAmt = N1C->getAPIntValue();
11515      Mask = Mask.shl(ShAmt);
11516      if (Mask != 0)
11517        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
11518                           N00, DAG.getConstant(Mask, VT));
11519    }
11520  }
11521
11522  return SDValue();
11523}
11524
11525/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
11526///                       when possible.
11527static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
11528                                   const X86Subtarget *Subtarget) {
11529  EVT VT = N->getValueType(0);
11530  if (!VT.isVector() && VT.isInteger() &&
11531      N->getOpcode() == ISD::SHL)
11532    return PerformSHLCombine(N, DAG);
11533
11534  // On X86 with SSE2 support, we can transform this to a vector shift if
11535  // all elements are shifted by the same amount.  We can't do this in legalize
11536  // because the a constant vector is typically transformed to a constant pool
11537  // so we have no knowledge of the shift amount.
11538  if (!Subtarget->hasSSE2())
11539    return SDValue();
11540
11541  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
11542    return SDValue();
11543
11544  SDValue ShAmtOp = N->getOperand(1);
11545  EVT EltVT = VT.getVectorElementType();
11546  DebugLoc DL = N->getDebugLoc();
11547  SDValue BaseShAmt = SDValue();
11548  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
11549    unsigned NumElts = VT.getVectorNumElements();
11550    unsigned i = 0;
11551    for (; i != NumElts; ++i) {
11552      SDValue Arg = ShAmtOp.getOperand(i);
11553      if (Arg.getOpcode() == ISD::UNDEF) continue;
11554      BaseShAmt = Arg;
11555      break;
11556    }
11557    for (; i != NumElts; ++i) {
11558      SDValue Arg = ShAmtOp.getOperand(i);
11559      if (Arg.getOpcode() == ISD::UNDEF) continue;
11560      if (Arg != BaseShAmt) {
11561        return SDValue();
11562      }
11563    }
11564  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
11565             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
11566    SDValue InVec = ShAmtOp.getOperand(0);
11567    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
11568      unsigned NumElts = InVec.getValueType().getVectorNumElements();
11569      unsigned i = 0;
11570      for (; i != NumElts; ++i) {
11571        SDValue Arg = InVec.getOperand(i);
11572        if (Arg.getOpcode() == ISD::UNDEF) continue;
11573        BaseShAmt = Arg;
11574        break;
11575      }
11576    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
11577       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
11578         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
11579         if (C->getZExtValue() == SplatIdx)
11580           BaseShAmt = InVec.getOperand(1);
11581       }
11582    }
11583    if (BaseShAmt.getNode() == 0)
11584      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
11585                              DAG.getIntPtrConstant(0));
11586  } else
11587    return SDValue();
11588
11589  // The shift amount is an i32.
11590  if (EltVT.bitsGT(MVT::i32))
11591    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
11592  else if (EltVT.bitsLT(MVT::i32))
11593    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
11594
11595  // The shift amount is identical so we can do a vector shift.
11596  SDValue  ValOp = N->getOperand(0);
11597  switch (N->getOpcode()) {
11598  default:
11599    llvm_unreachable("Unknown shift opcode!");
11600    break;
11601  case ISD::SHL:
11602    if (VT == MVT::v2i64)
11603      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11604                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
11605                         ValOp, BaseShAmt);
11606    if (VT == MVT::v4i32)
11607      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11608                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
11609                         ValOp, BaseShAmt);
11610    if (VT == MVT::v8i16)
11611      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11612                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
11613                         ValOp, BaseShAmt);
11614    break;
11615  case ISD::SRA:
11616    if (VT == MVT::v4i32)
11617      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11618                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
11619                         ValOp, BaseShAmt);
11620    if (VT == MVT::v8i16)
11621      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11622                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
11623                         ValOp, BaseShAmt);
11624    break;
11625  case ISD::SRL:
11626    if (VT == MVT::v2i64)
11627      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11628                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
11629                         ValOp, BaseShAmt);
11630    if (VT == MVT::v4i32)
11631      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11632                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
11633                         ValOp, BaseShAmt);
11634    if (VT ==  MVT::v8i16)
11635      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11636                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
11637                         ValOp, BaseShAmt);
11638    break;
11639  }
11640  return SDValue();
11641}
11642
11643
11644static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
11645                                 TargetLowering::DAGCombinerInfo &DCI,
11646                                 const X86Subtarget *Subtarget) {
11647  if (DCI.isBeforeLegalizeOps())
11648    return SDValue();
11649
11650  // Want to form PANDN nodes, in the hopes of then easily combining them with
11651  // OR and AND nodes to form PBLEND/PSIGN.
11652  EVT VT = N->getValueType(0);
11653  if (VT != MVT::v2i64)
11654    return SDValue();
11655
11656  SDValue N0 = N->getOperand(0);
11657  SDValue N1 = N->getOperand(1);
11658  DebugLoc DL = N->getDebugLoc();
11659
11660  // Check LHS for vnot
11661  if (N0.getOpcode() == ISD::XOR &&
11662      ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
11663    return DAG.getNode(X86ISD::PANDN, DL, VT, N0.getOperand(0), N1);
11664
11665  // Check RHS for vnot
11666  if (N1.getOpcode() == ISD::XOR &&
11667      ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
11668    return DAG.getNode(X86ISD::PANDN, DL, VT, N1.getOperand(0), N0);
11669
11670  return SDValue();
11671}
11672
11673static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
11674                                TargetLowering::DAGCombinerInfo &DCI,
11675                                const X86Subtarget *Subtarget) {
11676  if (DCI.isBeforeLegalizeOps())
11677    return SDValue();
11678
11679  EVT VT = N->getValueType(0);
11680  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
11681    return SDValue();
11682
11683  SDValue N0 = N->getOperand(0);
11684  SDValue N1 = N->getOperand(1);
11685
11686  // look for psign/blend
11687  if (Subtarget->hasSSSE3()) {
11688    if (VT == MVT::v2i64) {
11689      // Canonicalize pandn to RHS
11690      if (N0.getOpcode() == X86ISD::PANDN)
11691        std::swap(N0, N1);
11692      // or (and (m, x), (pandn m, y))
11693      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::PANDN) {
11694        SDValue Mask = N1.getOperand(0);
11695        SDValue X    = N1.getOperand(1);
11696        SDValue Y;
11697        if (N0.getOperand(0) == Mask)
11698          Y = N0.getOperand(1);
11699        if (N0.getOperand(1) == Mask)
11700          Y = N0.getOperand(0);
11701
11702        // Check to see if the mask appeared in both the AND and PANDN and
11703        if (!Y.getNode())
11704          return SDValue();
11705
11706        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
11707        if (Mask.getOpcode() != ISD::BITCAST ||
11708            X.getOpcode() != ISD::BITCAST ||
11709            Y.getOpcode() != ISD::BITCAST)
11710          return SDValue();
11711
11712        // Look through mask bitcast.
11713        Mask = Mask.getOperand(0);
11714        EVT MaskVT = Mask.getValueType();
11715
11716        // Validate that the Mask operand is a vector sra node.  The sra node
11717        // will be an intrinsic.
11718        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
11719          return SDValue();
11720
11721        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
11722        // there is no psrai.b
11723        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
11724        case Intrinsic::x86_sse2_psrai_w:
11725        case Intrinsic::x86_sse2_psrai_d:
11726          break;
11727        default: return SDValue();
11728        }
11729
11730        // Check that the SRA is all signbits.
11731        SDValue SraC = Mask.getOperand(2);
11732        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
11733        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
11734        if ((SraAmt + 1) != EltBits)
11735          return SDValue();
11736
11737        DebugLoc DL = N->getDebugLoc();
11738
11739        // Now we know we at least have a plendvb with the mask val.  See if
11740        // we can form a psignb/w/d.
11741        // psign = x.type == y.type == mask.type && y = sub(0, x);
11742        X = X.getOperand(0);
11743        Y = Y.getOperand(0);
11744        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
11745            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
11746            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
11747          unsigned Opc = 0;
11748          switch (EltBits) {
11749          case 8: Opc = X86ISD::PSIGNB; break;
11750          case 16: Opc = X86ISD::PSIGNW; break;
11751          case 32: Opc = X86ISD::PSIGND; break;
11752          default: break;
11753          }
11754          if (Opc) {
11755            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
11756            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
11757          }
11758        }
11759        // PBLENDVB only available on SSE 4.1
11760        if (!Subtarget->hasSSE41())
11761          return SDValue();
11762
11763        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
11764        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
11765        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
11766        Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
11767        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
11768      }
11769    }
11770  }
11771
11772  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
11773  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
11774    std::swap(N0, N1);
11775  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
11776    return SDValue();
11777  if (!N0.hasOneUse() || !N1.hasOneUse())
11778    return SDValue();
11779
11780  SDValue ShAmt0 = N0.getOperand(1);
11781  if (ShAmt0.getValueType() != MVT::i8)
11782    return SDValue();
11783  SDValue ShAmt1 = N1.getOperand(1);
11784  if (ShAmt1.getValueType() != MVT::i8)
11785    return SDValue();
11786  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
11787    ShAmt0 = ShAmt0.getOperand(0);
11788  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
11789    ShAmt1 = ShAmt1.getOperand(0);
11790
11791  DebugLoc DL = N->getDebugLoc();
11792  unsigned Opc = X86ISD::SHLD;
11793  SDValue Op0 = N0.getOperand(0);
11794  SDValue Op1 = N1.getOperand(0);
11795  if (ShAmt0.getOpcode() == ISD::SUB) {
11796    Opc = X86ISD::SHRD;
11797    std::swap(Op0, Op1);
11798    std::swap(ShAmt0, ShAmt1);
11799  }
11800
11801  unsigned Bits = VT.getSizeInBits();
11802  if (ShAmt1.getOpcode() == ISD::SUB) {
11803    SDValue Sum = ShAmt1.getOperand(0);
11804    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
11805      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
11806      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
11807        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
11808      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
11809        return DAG.getNode(Opc, DL, VT,
11810                           Op0, Op1,
11811                           DAG.getNode(ISD::TRUNCATE, DL,
11812                                       MVT::i8, ShAmt0));
11813    }
11814  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
11815    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
11816    if (ShAmt0C &&
11817        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
11818      return DAG.getNode(Opc, DL, VT,
11819                         N0.getOperand(0), N1.getOperand(0),
11820                         DAG.getNode(ISD::TRUNCATE, DL,
11821                                       MVT::i8, ShAmt0));
11822  }
11823
11824  return SDValue();
11825}
11826
11827/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
11828static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
11829                                   const X86Subtarget *Subtarget) {
11830  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
11831  // the FP state in cases where an emms may be missing.
11832  // A preferable solution to the general problem is to figure out the right
11833  // places to insert EMMS.  This qualifies as a quick hack.
11834
11835  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
11836  StoreSDNode *St = cast<StoreSDNode>(N);
11837  EVT VT = St->getValue().getValueType();
11838  if (VT.getSizeInBits() != 64)
11839    return SDValue();
11840
11841  const Function *F = DAG.getMachineFunction().getFunction();
11842  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
11843  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
11844    && Subtarget->hasSSE2();
11845  if ((VT.isVector() ||
11846       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
11847      isa<LoadSDNode>(St->getValue()) &&
11848      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
11849      St->getChain().hasOneUse() && !St->isVolatile()) {
11850    SDNode* LdVal = St->getValue().getNode();
11851    LoadSDNode *Ld = 0;
11852    int TokenFactorIndex = -1;
11853    SmallVector<SDValue, 8> Ops;
11854    SDNode* ChainVal = St->getChain().getNode();
11855    // Must be a store of a load.  We currently handle two cases:  the load
11856    // is a direct child, and it's under an intervening TokenFactor.  It is
11857    // possible to dig deeper under nested TokenFactors.
11858    if (ChainVal == LdVal)
11859      Ld = cast<LoadSDNode>(St->getChain());
11860    else if (St->getValue().hasOneUse() &&
11861             ChainVal->getOpcode() == ISD::TokenFactor) {
11862      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
11863        if (ChainVal->getOperand(i).getNode() == LdVal) {
11864          TokenFactorIndex = i;
11865          Ld = cast<LoadSDNode>(St->getValue());
11866        } else
11867          Ops.push_back(ChainVal->getOperand(i));
11868      }
11869    }
11870
11871    if (!Ld || !ISD::isNormalLoad(Ld))
11872      return SDValue();
11873
11874    // If this is not the MMX case, i.e. we are just turning i64 load/store
11875    // into f64 load/store, avoid the transformation if there are multiple
11876    // uses of the loaded value.
11877    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
11878      return SDValue();
11879
11880    DebugLoc LdDL = Ld->getDebugLoc();
11881    DebugLoc StDL = N->getDebugLoc();
11882    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
11883    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
11884    // pair instead.
11885    if (Subtarget->is64Bit() || F64IsLegal) {
11886      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
11887      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
11888                                  Ld->getPointerInfo(), Ld->isVolatile(),
11889                                  Ld->isNonTemporal(), Ld->getAlignment());
11890      SDValue NewChain = NewLd.getValue(1);
11891      if (TokenFactorIndex != -1) {
11892        Ops.push_back(NewChain);
11893        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11894                               Ops.size());
11895      }
11896      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
11897                          St->getPointerInfo(),
11898                          St->isVolatile(), St->isNonTemporal(),
11899                          St->getAlignment());
11900    }
11901
11902    // Otherwise, lower to two pairs of 32-bit loads / stores.
11903    SDValue LoAddr = Ld->getBasePtr();
11904    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
11905                                 DAG.getConstant(4, MVT::i32));
11906
11907    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
11908                               Ld->getPointerInfo(),
11909                               Ld->isVolatile(), Ld->isNonTemporal(),
11910                               Ld->getAlignment());
11911    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
11912                               Ld->getPointerInfo().getWithOffset(4),
11913                               Ld->isVolatile(), Ld->isNonTemporal(),
11914                               MinAlign(Ld->getAlignment(), 4));
11915
11916    SDValue NewChain = LoLd.getValue(1);
11917    if (TokenFactorIndex != -1) {
11918      Ops.push_back(LoLd);
11919      Ops.push_back(HiLd);
11920      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11921                             Ops.size());
11922    }
11923
11924    LoAddr = St->getBasePtr();
11925    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
11926                         DAG.getConstant(4, MVT::i32));
11927
11928    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
11929                                St->getPointerInfo(),
11930                                St->isVolatile(), St->isNonTemporal(),
11931                                St->getAlignment());
11932    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
11933                                St->getPointerInfo().getWithOffset(4),
11934                                St->isVolatile(),
11935                                St->isNonTemporal(),
11936                                MinAlign(St->getAlignment(), 4));
11937    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
11938  }
11939  return SDValue();
11940}
11941
11942/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
11943/// X86ISD::FXOR nodes.
11944static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
11945  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
11946  // F[X]OR(0.0, x) -> x
11947  // F[X]OR(x, 0.0) -> x
11948  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11949    if (C->getValueAPF().isPosZero())
11950      return N->getOperand(1);
11951  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11952    if (C->getValueAPF().isPosZero())
11953      return N->getOperand(0);
11954  return SDValue();
11955}
11956
11957/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
11958static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
11959  // FAND(0.0, x) -> 0.0
11960  // FAND(x, 0.0) -> 0.0
11961  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11962    if (C->getValueAPF().isPosZero())
11963      return N->getOperand(0);
11964  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11965    if (C->getValueAPF().isPosZero())
11966      return N->getOperand(1);
11967  return SDValue();
11968}
11969
11970static SDValue PerformBTCombine(SDNode *N,
11971                                SelectionDAG &DAG,
11972                                TargetLowering::DAGCombinerInfo &DCI) {
11973  // BT ignores high bits in the bit index operand.
11974  SDValue Op1 = N->getOperand(1);
11975  if (Op1.hasOneUse()) {
11976    unsigned BitWidth = Op1.getValueSizeInBits();
11977    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
11978    APInt KnownZero, KnownOne;
11979    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
11980                                          !DCI.isBeforeLegalizeOps());
11981    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11982    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
11983        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
11984      DCI.CommitTargetLoweringOpt(TLO);
11985  }
11986  return SDValue();
11987}
11988
11989static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
11990  SDValue Op = N->getOperand(0);
11991  if (Op.getOpcode() == ISD::BITCAST)
11992    Op = Op.getOperand(0);
11993  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
11994  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
11995      VT.getVectorElementType().getSizeInBits() ==
11996      OpVT.getVectorElementType().getSizeInBits()) {
11997    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
11998  }
11999  return SDValue();
12000}
12001
12002static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
12003  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
12004  //           (and (i32 x86isd::setcc_carry), 1)
12005  // This eliminates the zext. This transformation is necessary because
12006  // ISD::SETCC is always legalized to i8.
12007  DebugLoc dl = N->getDebugLoc();
12008  SDValue N0 = N->getOperand(0);
12009  EVT VT = N->getValueType(0);
12010  if (N0.getOpcode() == ISD::AND &&
12011      N0.hasOneUse() &&
12012      N0.getOperand(0).hasOneUse()) {
12013    SDValue N00 = N0.getOperand(0);
12014    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
12015      return SDValue();
12016    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
12017    if (!C || C->getZExtValue() != 1)
12018      return SDValue();
12019    return DAG.getNode(ISD::AND, dl, VT,
12020                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
12021                                   N00.getOperand(0), N00.getOperand(1)),
12022                       DAG.getConstant(1, VT));
12023  }
12024
12025  return SDValue();
12026}
12027
12028// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
12029static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
12030  unsigned X86CC = N->getConstantOperandVal(0);
12031  SDValue EFLAG = N->getOperand(1);
12032  DebugLoc DL = N->getDebugLoc();
12033
12034  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
12035  // a zext and produces an all-ones bit which is more useful than 0/1 in some
12036  // cases.
12037  if (X86CC == X86::COND_B)
12038    return DAG.getNode(ISD::AND, DL, MVT::i8,
12039                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
12040                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
12041                       DAG.getConstant(1, MVT::i8));
12042
12043  return SDValue();
12044}
12045
12046// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
12047static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
12048                                 X86TargetLowering::DAGCombinerInfo &DCI) {
12049  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
12050  // the result is either zero or one (depending on the input carry bit).
12051  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
12052  if (X86::isZeroNode(N->getOperand(0)) &&
12053      X86::isZeroNode(N->getOperand(1)) &&
12054      // We don't have a good way to replace an EFLAGS use, so only do this when
12055      // dead right now.
12056      SDValue(N, 1).use_empty()) {
12057    DebugLoc DL = N->getDebugLoc();
12058    EVT VT = N->getValueType(0);
12059    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
12060    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
12061                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
12062                                           DAG.getConstant(X86::COND_B,MVT::i8),
12063                                           N->getOperand(2)),
12064                               DAG.getConstant(1, VT));
12065    return DCI.CombineTo(N, Res1, CarryOut);
12066  }
12067
12068  return SDValue();
12069}
12070
12071// fold (add Y, (sete  X, 0)) -> adc  0, Y
12072//      (add Y, (setne X, 0)) -> sbb -1, Y
12073//      (sub (sete  X, 0), Y) -> sbb  0, Y
12074//      (sub (setne X, 0), Y) -> adc -1, Y
12075static SDValue OptimizeConditonalInDecrement(SDNode *N, SelectionDAG &DAG) {
12076  DebugLoc DL = N->getDebugLoc();
12077
12078  // Look through ZExts.
12079  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
12080  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
12081    return SDValue();
12082
12083  SDValue SetCC = Ext.getOperand(0);
12084  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
12085    return SDValue();
12086
12087  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
12088  if (CC != X86::COND_E && CC != X86::COND_NE)
12089    return SDValue();
12090
12091  SDValue Cmp = SetCC.getOperand(1);
12092  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
12093      !X86::isZeroNode(Cmp.getOperand(1)) ||
12094      !Cmp.getOperand(0).getValueType().isInteger())
12095    return SDValue();
12096
12097  SDValue CmpOp0 = Cmp.getOperand(0);
12098  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
12099                               DAG.getConstant(1, CmpOp0.getValueType()));
12100
12101  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
12102  if (CC == X86::COND_NE)
12103    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
12104                       DL, OtherVal.getValueType(), OtherVal,
12105                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
12106  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
12107                     DL, OtherVal.getValueType(), OtherVal,
12108                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
12109}
12110
12111SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
12112                                             DAGCombinerInfo &DCI) const {
12113  SelectionDAG &DAG = DCI.DAG;
12114  switch (N->getOpcode()) {
12115  default: break;
12116  case ISD::EXTRACT_VECTOR_ELT:
12117    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
12118  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
12119  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
12120  case ISD::ADD:
12121  case ISD::SUB:            return OptimizeConditonalInDecrement(N, DAG);
12122  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
12123  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
12124  case ISD::SHL:
12125  case ISD::SRA:
12126  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
12127  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
12128  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
12129  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
12130  case X86ISD::FXOR:
12131  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
12132  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
12133  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
12134  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
12135  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
12136  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
12137  case X86ISD::SHUFPS:      // Handle all target specific shuffles
12138  case X86ISD::SHUFPD:
12139  case X86ISD::PALIGN:
12140  case X86ISD::PUNPCKHBW:
12141  case X86ISD::PUNPCKHWD:
12142  case X86ISD::PUNPCKHDQ:
12143  case X86ISD::PUNPCKHQDQ:
12144  case X86ISD::UNPCKHPS:
12145  case X86ISD::UNPCKHPD:
12146  case X86ISD::PUNPCKLBW:
12147  case X86ISD::PUNPCKLWD:
12148  case X86ISD::PUNPCKLDQ:
12149  case X86ISD::PUNPCKLQDQ:
12150  case X86ISD::UNPCKLPS:
12151  case X86ISD::UNPCKLPD:
12152  case X86ISD::VUNPCKLPS:
12153  case X86ISD::VUNPCKLPD:
12154  case X86ISD::VUNPCKLPSY:
12155  case X86ISD::VUNPCKLPDY:
12156  case X86ISD::MOVHLPS:
12157  case X86ISD::MOVLHPS:
12158  case X86ISD::PSHUFD:
12159  case X86ISD::PSHUFHW:
12160  case X86ISD::PSHUFLW:
12161  case X86ISD::MOVSS:
12162  case X86ISD::MOVSD:
12163  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI);
12164  }
12165
12166  return SDValue();
12167}
12168
12169/// isTypeDesirableForOp - Return true if the target has native support for
12170/// the specified value type and it is 'desirable' to use the type for the
12171/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
12172/// instruction encodings are longer and some i16 instructions are slow.
12173bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
12174  if (!isTypeLegal(VT))
12175    return false;
12176  if (VT != MVT::i16)
12177    return true;
12178
12179  switch (Opc) {
12180  default:
12181    return true;
12182  case ISD::LOAD:
12183  case ISD::SIGN_EXTEND:
12184  case ISD::ZERO_EXTEND:
12185  case ISD::ANY_EXTEND:
12186  case ISD::SHL:
12187  case ISD::SRL:
12188  case ISD::SUB:
12189  case ISD::ADD:
12190  case ISD::MUL:
12191  case ISD::AND:
12192  case ISD::OR:
12193  case ISD::XOR:
12194    return false;
12195  }
12196}
12197
12198/// IsDesirableToPromoteOp - This method query the target whether it is
12199/// beneficial for dag combiner to promote the specified node. If true, it
12200/// should return the desired promotion type by reference.
12201bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
12202  EVT VT = Op.getValueType();
12203  if (VT != MVT::i16)
12204    return false;
12205
12206  bool Promote = false;
12207  bool Commute = false;
12208  switch (Op.getOpcode()) {
12209  default: break;
12210  case ISD::LOAD: {
12211    LoadSDNode *LD = cast<LoadSDNode>(Op);
12212    // If the non-extending load has a single use and it's not live out, then it
12213    // might be folded.
12214    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
12215                                                     Op.hasOneUse()*/) {
12216      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
12217             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
12218        // The only case where we'd want to promote LOAD (rather then it being
12219        // promoted as an operand is when it's only use is liveout.
12220        if (UI->getOpcode() != ISD::CopyToReg)
12221          return false;
12222      }
12223    }
12224    Promote = true;
12225    break;
12226  }
12227  case ISD::SIGN_EXTEND:
12228  case ISD::ZERO_EXTEND:
12229  case ISD::ANY_EXTEND:
12230    Promote = true;
12231    break;
12232  case ISD::SHL:
12233  case ISD::SRL: {
12234    SDValue N0 = Op.getOperand(0);
12235    // Look out for (store (shl (load), x)).
12236    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
12237      return false;
12238    Promote = true;
12239    break;
12240  }
12241  case ISD::ADD:
12242  case ISD::MUL:
12243  case ISD::AND:
12244  case ISD::OR:
12245  case ISD::XOR:
12246    Commute = true;
12247    // fallthrough
12248  case ISD::SUB: {
12249    SDValue N0 = Op.getOperand(0);
12250    SDValue N1 = Op.getOperand(1);
12251    if (!Commute && MayFoldLoad(N1))
12252      return false;
12253    // Avoid disabling potential load folding opportunities.
12254    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
12255      return false;
12256    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
12257      return false;
12258    Promote = true;
12259  }
12260  }
12261
12262  PVT = MVT::i32;
12263  return Promote;
12264}
12265
12266//===----------------------------------------------------------------------===//
12267//                           X86 Inline Assembly Support
12268//===----------------------------------------------------------------------===//
12269
12270bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
12271  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
12272
12273  std::string AsmStr = IA->getAsmString();
12274
12275  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
12276  SmallVector<StringRef, 4> AsmPieces;
12277  SplitString(AsmStr, AsmPieces, ";\n");
12278
12279  switch (AsmPieces.size()) {
12280  default: return false;
12281  case 1:
12282    AsmStr = AsmPieces[0];
12283    AsmPieces.clear();
12284    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
12285
12286    // FIXME: this should verify that we are targeting a 486 or better.  If not,
12287    // we will turn this bswap into something that will be lowered to logical ops
12288    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
12289    // so don't worry about this.
12290    // bswap $0
12291    if (AsmPieces.size() == 2 &&
12292        (AsmPieces[0] == "bswap" ||
12293         AsmPieces[0] == "bswapq" ||
12294         AsmPieces[0] == "bswapl") &&
12295        (AsmPieces[1] == "$0" ||
12296         AsmPieces[1] == "${0:q}")) {
12297      // No need to check constraints, nothing other than the equivalent of
12298      // "=r,0" would be valid here.
12299      const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12300      if (!Ty || Ty->getBitWidth() % 16 != 0)
12301        return false;
12302      return IntrinsicLowering::LowerToByteSwap(CI);
12303    }
12304    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
12305    if (CI->getType()->isIntegerTy(16) &&
12306        AsmPieces.size() == 3 &&
12307        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
12308        AsmPieces[1] == "$$8," &&
12309        AsmPieces[2] == "${0:w}" &&
12310        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
12311      AsmPieces.clear();
12312      const std::string &ConstraintsStr = IA->getConstraintString();
12313      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
12314      std::sort(AsmPieces.begin(), AsmPieces.end());
12315      if (AsmPieces.size() == 4 &&
12316          AsmPieces[0] == "~{cc}" &&
12317          AsmPieces[1] == "~{dirflag}" &&
12318          AsmPieces[2] == "~{flags}" &&
12319          AsmPieces[3] == "~{fpsr}") {
12320        const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12321        if (!Ty || Ty->getBitWidth() % 16 != 0)
12322          return false;
12323        return IntrinsicLowering::LowerToByteSwap(CI);
12324      }
12325    }
12326    break;
12327  case 3:
12328    if (CI->getType()->isIntegerTy(32) &&
12329        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
12330      SmallVector<StringRef, 4> Words;
12331      SplitString(AsmPieces[0], Words, " \t,");
12332      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
12333          Words[2] == "${0:w}") {
12334        Words.clear();
12335        SplitString(AsmPieces[1], Words, " \t,");
12336        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
12337            Words[2] == "$0") {
12338          Words.clear();
12339          SplitString(AsmPieces[2], Words, " \t,");
12340          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
12341              Words[2] == "${0:w}") {
12342            AsmPieces.clear();
12343            const std::string &ConstraintsStr = IA->getConstraintString();
12344            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
12345            std::sort(AsmPieces.begin(), AsmPieces.end());
12346            if (AsmPieces.size() == 4 &&
12347                AsmPieces[0] == "~{cc}" &&
12348                AsmPieces[1] == "~{dirflag}" &&
12349                AsmPieces[2] == "~{flags}" &&
12350                AsmPieces[3] == "~{fpsr}") {
12351              const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12352              if (!Ty || Ty->getBitWidth() % 16 != 0)
12353                return false;
12354              return IntrinsicLowering::LowerToByteSwap(CI);
12355            }
12356          }
12357        }
12358      }
12359    }
12360
12361    if (CI->getType()->isIntegerTy(64)) {
12362      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
12363      if (Constraints.size() >= 2 &&
12364          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
12365          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
12366        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
12367        SmallVector<StringRef, 4> Words;
12368        SplitString(AsmPieces[0], Words, " \t");
12369        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
12370          Words.clear();
12371          SplitString(AsmPieces[1], Words, " \t");
12372          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
12373            Words.clear();
12374            SplitString(AsmPieces[2], Words, " \t,");
12375            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
12376                Words[2] == "%edx") {
12377              const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12378              if (!Ty || Ty->getBitWidth() % 16 != 0)
12379                return false;
12380              return IntrinsicLowering::LowerToByteSwap(CI);
12381            }
12382          }
12383        }
12384      }
12385    }
12386    break;
12387  }
12388  return false;
12389}
12390
12391
12392
12393/// getConstraintType - Given a constraint letter, return the type of
12394/// constraint it is for this target.
12395X86TargetLowering::ConstraintType
12396X86TargetLowering::getConstraintType(const std::string &Constraint) const {
12397  if (Constraint.size() == 1) {
12398    switch (Constraint[0]) {
12399    case 'R':
12400    case 'q':
12401    case 'Q':
12402    case 'f':
12403    case 't':
12404    case 'u':
12405    case 'y':
12406    case 'x':
12407    case 'Y':
12408      return C_RegisterClass;
12409    case 'a':
12410    case 'b':
12411    case 'c':
12412    case 'd':
12413    case 'S':
12414    case 'D':
12415    case 'A':
12416      return C_Register;
12417    case 'I':
12418    case 'J':
12419    case 'K':
12420    case 'L':
12421    case 'M':
12422    case 'N':
12423    case 'G':
12424    case 'C':
12425    case 'e':
12426    case 'Z':
12427      return C_Other;
12428    default:
12429      break;
12430    }
12431  }
12432  return TargetLowering::getConstraintType(Constraint);
12433}
12434
12435/// Examine constraint type and operand type and determine a weight value.
12436/// This object must already have been set up with the operand type
12437/// and the current alternative constraint selected.
12438TargetLowering::ConstraintWeight
12439  X86TargetLowering::getSingleConstraintMatchWeight(
12440    AsmOperandInfo &info, const char *constraint) const {
12441  ConstraintWeight weight = CW_Invalid;
12442  Value *CallOperandVal = info.CallOperandVal;
12443    // If we don't have a value, we can't do a match,
12444    // but allow it at the lowest weight.
12445  if (CallOperandVal == NULL)
12446    return CW_Default;
12447  const Type *type = CallOperandVal->getType();
12448  // Look at the constraint type.
12449  switch (*constraint) {
12450  default:
12451    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
12452  case 'R':
12453  case 'q':
12454  case 'Q':
12455  case 'a':
12456  case 'b':
12457  case 'c':
12458  case 'd':
12459  case 'S':
12460  case 'D':
12461  case 'A':
12462    if (CallOperandVal->getType()->isIntegerTy())
12463      weight = CW_SpecificReg;
12464    break;
12465  case 'f':
12466  case 't':
12467  case 'u':
12468      if (type->isFloatingPointTy())
12469        weight = CW_SpecificReg;
12470      break;
12471  case 'y':
12472      if (type->isX86_MMXTy() && Subtarget->hasMMX())
12473        weight = CW_SpecificReg;
12474      break;
12475  case 'x':
12476  case 'Y':
12477    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
12478      weight = CW_Register;
12479    break;
12480  case 'I':
12481    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
12482      if (C->getZExtValue() <= 31)
12483        weight = CW_Constant;
12484    }
12485    break;
12486  case 'J':
12487    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12488      if (C->getZExtValue() <= 63)
12489        weight = CW_Constant;
12490    }
12491    break;
12492  case 'K':
12493    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12494      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
12495        weight = CW_Constant;
12496    }
12497    break;
12498  case 'L':
12499    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12500      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
12501        weight = CW_Constant;
12502    }
12503    break;
12504  case 'M':
12505    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12506      if (C->getZExtValue() <= 3)
12507        weight = CW_Constant;
12508    }
12509    break;
12510  case 'N':
12511    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12512      if (C->getZExtValue() <= 0xff)
12513        weight = CW_Constant;
12514    }
12515    break;
12516  case 'G':
12517  case 'C':
12518    if (dyn_cast<ConstantFP>(CallOperandVal)) {
12519      weight = CW_Constant;
12520    }
12521    break;
12522  case 'e':
12523    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12524      if ((C->getSExtValue() >= -0x80000000LL) &&
12525          (C->getSExtValue() <= 0x7fffffffLL))
12526        weight = CW_Constant;
12527    }
12528    break;
12529  case 'Z':
12530    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12531      if (C->getZExtValue() <= 0xffffffff)
12532        weight = CW_Constant;
12533    }
12534    break;
12535  }
12536  return weight;
12537}
12538
12539/// LowerXConstraint - try to replace an X constraint, which matches anything,
12540/// with another that has more specific requirements based on the type of the
12541/// corresponding operand.
12542const char *X86TargetLowering::
12543LowerXConstraint(EVT ConstraintVT) const {
12544  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
12545  // 'f' like normal targets.
12546  if (ConstraintVT.isFloatingPoint()) {
12547    if (Subtarget->hasXMMInt())
12548      return "Y";
12549    if (Subtarget->hasXMM())
12550      return "x";
12551  }
12552
12553  return TargetLowering::LowerXConstraint(ConstraintVT);
12554}
12555
12556/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
12557/// vector.  If it is invalid, don't add anything to Ops.
12558void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
12559                                                     char Constraint,
12560                                                     std::vector<SDValue>&Ops,
12561                                                     SelectionDAG &DAG) const {
12562  SDValue Result(0, 0);
12563
12564  switch (Constraint) {
12565  default: break;
12566  case 'I':
12567    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12568      if (C->getZExtValue() <= 31) {
12569        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12570        break;
12571      }
12572    }
12573    return;
12574  case 'J':
12575    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12576      if (C->getZExtValue() <= 63) {
12577        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12578        break;
12579      }
12580    }
12581    return;
12582  case 'K':
12583    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12584      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
12585        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12586        break;
12587      }
12588    }
12589    return;
12590  case 'N':
12591    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12592      if (C->getZExtValue() <= 255) {
12593        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12594        break;
12595      }
12596    }
12597    return;
12598  case 'e': {
12599    // 32-bit signed value
12600    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12601      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
12602                                           C->getSExtValue())) {
12603        // Widen to 64 bits here to get it sign extended.
12604        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
12605        break;
12606      }
12607    // FIXME gcc accepts some relocatable values here too, but only in certain
12608    // memory models; it's complicated.
12609    }
12610    return;
12611  }
12612  case 'Z': {
12613    // 32-bit unsigned value
12614    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12615      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
12616                                           C->getZExtValue())) {
12617        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12618        break;
12619      }
12620    }
12621    // FIXME gcc accepts some relocatable values here too, but only in certain
12622    // memory models; it's complicated.
12623    return;
12624  }
12625  case 'i': {
12626    // Literal immediates are always ok.
12627    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
12628      // Widen to 64 bits here to get it sign extended.
12629      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
12630      break;
12631    }
12632
12633    // In any sort of PIC mode addresses need to be computed at runtime by
12634    // adding in a register or some sort of table lookup.  These can't
12635    // be used as immediates.
12636    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
12637      return;
12638
12639    // If we are in non-pic codegen mode, we allow the address of a global (with
12640    // an optional displacement) to be used with 'i'.
12641    GlobalAddressSDNode *GA = 0;
12642    int64_t Offset = 0;
12643
12644    // Match either (GA), (GA+C), (GA+C1+C2), etc.
12645    while (1) {
12646      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
12647        Offset += GA->getOffset();
12648        break;
12649      } else if (Op.getOpcode() == ISD::ADD) {
12650        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
12651          Offset += C->getZExtValue();
12652          Op = Op.getOperand(0);
12653          continue;
12654        }
12655      } else if (Op.getOpcode() == ISD::SUB) {
12656        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
12657          Offset += -C->getZExtValue();
12658          Op = Op.getOperand(0);
12659          continue;
12660        }
12661      }
12662
12663      // Otherwise, this isn't something we can handle, reject it.
12664      return;
12665    }
12666
12667    const GlobalValue *GV = GA->getGlobal();
12668    // If we require an extra load to get this address, as in PIC mode, we
12669    // can't accept it.
12670    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
12671                                                        getTargetMachine())))
12672      return;
12673
12674    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
12675                                        GA->getValueType(0), Offset);
12676    break;
12677  }
12678  }
12679
12680  if (Result.getNode()) {
12681    Ops.push_back(Result);
12682    return;
12683  }
12684  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12685}
12686
12687std::vector<unsigned> X86TargetLowering::
12688getRegClassForInlineAsmConstraint(const std::string &Constraint,
12689                                  EVT VT) const {
12690  if (Constraint.size() == 1) {
12691    // FIXME: not handling fp-stack yet!
12692    switch (Constraint[0]) {      // GCC X86 Constraint Letters
12693    default: break;  // Unknown constraint letter
12694    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
12695      if (Subtarget->is64Bit()) {
12696        if (VT == MVT::i32)
12697          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
12698                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
12699                                       X86::R10D,X86::R11D,X86::R12D,
12700                                       X86::R13D,X86::R14D,X86::R15D,
12701                                       X86::EBP, X86::ESP, 0);
12702        else if (VT == MVT::i16)
12703          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
12704                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
12705                                       X86::R10W,X86::R11W,X86::R12W,
12706                                       X86::R13W,X86::R14W,X86::R15W,
12707                                       X86::BP,  X86::SP, 0);
12708        else if (VT == MVT::i8)
12709          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
12710                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
12711                                       X86::R10B,X86::R11B,X86::R12B,
12712                                       X86::R13B,X86::R14B,X86::R15B,
12713                                       X86::BPL, X86::SPL, 0);
12714
12715        else if (VT == MVT::i64)
12716          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
12717                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
12718                                       X86::R10, X86::R11, X86::R12,
12719                                       X86::R13, X86::R14, X86::R15,
12720                                       X86::RBP, X86::RSP, 0);
12721
12722        break;
12723      }
12724      // 32-bit fallthrough
12725    case 'Q':   // Q_REGS
12726      if (VT == MVT::i32)
12727        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
12728      else if (VT == MVT::i16)
12729        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
12730      else if (VT == MVT::i8)
12731        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
12732      else if (VT == MVT::i64)
12733        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
12734      break;
12735    }
12736  }
12737
12738  return std::vector<unsigned>();
12739}
12740
12741std::pair<unsigned, const TargetRegisterClass*>
12742X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
12743                                                EVT VT) const {
12744  // First, see if this is a constraint that directly corresponds to an LLVM
12745  // register class.
12746  if (Constraint.size() == 1) {
12747    // GCC Constraint Letters
12748    switch (Constraint[0]) {
12749    default: break;
12750    case 'r':   // GENERAL_REGS
12751    case 'l':   // INDEX_REGS
12752      if (VT == MVT::i8)
12753        return std::make_pair(0U, X86::GR8RegisterClass);
12754      if (VT == MVT::i16)
12755        return std::make_pair(0U, X86::GR16RegisterClass);
12756      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
12757        return std::make_pair(0U, X86::GR32RegisterClass);
12758      return std::make_pair(0U, X86::GR64RegisterClass);
12759    case 'R':   // LEGACY_REGS
12760      if (VT == MVT::i8)
12761        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
12762      if (VT == MVT::i16)
12763        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
12764      if (VT == MVT::i32 || !Subtarget->is64Bit())
12765        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
12766      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
12767    case 'f':  // FP Stack registers.
12768      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
12769      // value to the correct fpstack register class.
12770      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
12771        return std::make_pair(0U, X86::RFP32RegisterClass);
12772      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
12773        return std::make_pair(0U, X86::RFP64RegisterClass);
12774      return std::make_pair(0U, X86::RFP80RegisterClass);
12775    case 'y':   // MMX_REGS if MMX allowed.
12776      if (!Subtarget->hasMMX()) break;
12777      return std::make_pair(0U, X86::VR64RegisterClass);
12778    case 'Y':   // SSE_REGS if SSE2 allowed
12779      if (!Subtarget->hasXMMInt()) break;
12780      // FALL THROUGH.
12781    case 'x':   // SSE_REGS if SSE1 allowed
12782      if (!Subtarget->hasXMM()) break;
12783
12784      switch (VT.getSimpleVT().SimpleTy) {
12785      default: break;
12786      // Scalar SSE types.
12787      case MVT::f32:
12788      case MVT::i32:
12789        return std::make_pair(0U, X86::FR32RegisterClass);
12790      case MVT::f64:
12791      case MVT::i64:
12792        return std::make_pair(0U, X86::FR64RegisterClass);
12793      // Vector types.
12794      case MVT::v16i8:
12795      case MVT::v8i16:
12796      case MVT::v4i32:
12797      case MVT::v2i64:
12798      case MVT::v4f32:
12799      case MVT::v2f64:
12800        return std::make_pair(0U, X86::VR128RegisterClass);
12801      }
12802      break;
12803    }
12804  }
12805
12806  // Use the default implementation in TargetLowering to convert the register
12807  // constraint into a member of a register class.
12808  std::pair<unsigned, const TargetRegisterClass*> Res;
12809  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
12810
12811  // Not found as a standard register?
12812  if (Res.second == 0) {
12813    // Map st(0) -> st(7) -> ST0
12814    if (Constraint.size() == 7 && Constraint[0] == '{' &&
12815        tolower(Constraint[1]) == 's' &&
12816        tolower(Constraint[2]) == 't' &&
12817        Constraint[3] == '(' &&
12818        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
12819        Constraint[5] == ')' &&
12820        Constraint[6] == '}') {
12821
12822      Res.first = X86::ST0+Constraint[4]-'0';
12823      Res.second = X86::RFP80RegisterClass;
12824      return Res;
12825    }
12826
12827    // GCC allows "st(0)" to be called just plain "st".
12828    if (StringRef("{st}").equals_lower(Constraint)) {
12829      Res.first = X86::ST0;
12830      Res.second = X86::RFP80RegisterClass;
12831      return Res;
12832    }
12833
12834    // flags -> EFLAGS
12835    if (StringRef("{flags}").equals_lower(Constraint)) {
12836      Res.first = X86::EFLAGS;
12837      Res.second = X86::CCRRegisterClass;
12838      return Res;
12839    }
12840
12841    // 'A' means EAX + EDX.
12842    if (Constraint == "A") {
12843      Res.first = X86::EAX;
12844      Res.second = X86::GR32_ADRegisterClass;
12845      return Res;
12846    }
12847    return Res;
12848  }
12849
12850  // Otherwise, check to see if this is a register class of the wrong value
12851  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
12852  // turn into {ax},{dx}.
12853  if (Res.second->hasType(VT))
12854    return Res;   // Correct type already, nothing to do.
12855
12856  // All of the single-register GCC register classes map their values onto
12857  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
12858  // really want an 8-bit or 32-bit register, map to the appropriate register
12859  // class and return the appropriate register.
12860  if (Res.second == X86::GR16RegisterClass) {
12861    if (VT == MVT::i8) {
12862      unsigned DestReg = 0;
12863      switch (Res.first) {
12864      default: break;
12865      case X86::AX: DestReg = X86::AL; break;
12866      case X86::DX: DestReg = X86::DL; break;
12867      case X86::CX: DestReg = X86::CL; break;
12868      case X86::BX: DestReg = X86::BL; break;
12869      }
12870      if (DestReg) {
12871        Res.first = DestReg;
12872        Res.second = X86::GR8RegisterClass;
12873      }
12874    } else if (VT == MVT::i32) {
12875      unsigned DestReg = 0;
12876      switch (Res.first) {
12877      default: break;
12878      case X86::AX: DestReg = X86::EAX; break;
12879      case X86::DX: DestReg = X86::EDX; break;
12880      case X86::CX: DestReg = X86::ECX; break;
12881      case X86::BX: DestReg = X86::EBX; break;
12882      case X86::SI: DestReg = X86::ESI; break;
12883      case X86::DI: DestReg = X86::EDI; break;
12884      case X86::BP: DestReg = X86::EBP; break;
12885      case X86::SP: DestReg = X86::ESP; break;
12886      }
12887      if (DestReg) {
12888        Res.first = DestReg;
12889        Res.second = X86::GR32RegisterClass;
12890      }
12891    } else if (VT == MVT::i64) {
12892      unsigned DestReg = 0;
12893      switch (Res.first) {
12894      default: break;
12895      case X86::AX: DestReg = X86::RAX; break;
12896      case X86::DX: DestReg = X86::RDX; break;
12897      case X86::CX: DestReg = X86::RCX; break;
12898      case X86::BX: DestReg = X86::RBX; break;
12899      case X86::SI: DestReg = X86::RSI; break;
12900      case X86::DI: DestReg = X86::RDI; break;
12901      case X86::BP: DestReg = X86::RBP; break;
12902      case X86::SP: DestReg = X86::RSP; break;
12903      }
12904      if (DestReg) {
12905        Res.first = DestReg;
12906        Res.second = X86::GR64RegisterClass;
12907      }
12908    }
12909  } else if (Res.second == X86::FR32RegisterClass ||
12910             Res.second == X86::FR64RegisterClass ||
12911             Res.second == X86::VR128RegisterClass) {
12912    // Handle references to XMM physical registers that got mapped into the
12913    // wrong class.  This can happen with constraints like {xmm0} where the
12914    // target independent register mapper will just pick the first match it can
12915    // find, ignoring the required type.
12916    if (VT == MVT::f32)
12917      Res.second = X86::FR32RegisterClass;
12918    else if (VT == MVT::f64)
12919      Res.second = X86::FR64RegisterClass;
12920    else if (X86::VR128RegisterClass->hasType(VT))
12921      Res.second = X86::VR128RegisterClass;
12922  }
12923
12924  return Res;
12925}
12926