X86ISelLowering.cpp revision 2ea4cdb81f0f69f89d93f4726f25e849216ac973
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VariadicFunction.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/CallSite.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetOptions.h"
55using namespace llvm;
56using namespace dwarf;
57
58STATISTIC(NumTailCalls, "Number of tail calls");
59
60// Forward declarations.
61static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
62                       SDValue V2);
63
64static SDValue Insert128BitVector(SDValue Result,
65                                  SDValue Vec,
66                                  SDValue Idx,
67                                  SelectionDAG &DAG,
68                                  DebugLoc dl);
69
70static SDValue Extract128BitVector(SDValue Vec,
71                                   SDValue Idx,
72                                   SelectionDAG &DAG,
73                                   DebugLoc dl);
74
75/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
76/// sets things up to match to an AVX VEXTRACTF128 instruction or a
77/// simple subregister reference.  Idx is an index in the 128 bits we
78/// want.  It need not be aligned to a 128-bit bounday.  That makes
79/// lowering EXTRACT_VECTOR_ELT operations easier.
80static SDValue Extract128BitVector(SDValue Vec,
81                                   SDValue Idx,
82                                   SelectionDAG &DAG,
83                                   DebugLoc dl) {
84  EVT VT = Vec.getValueType();
85  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
86  EVT ElVT = VT.getVectorElementType();
87  int Factor = VT.getSizeInBits()/128;
88  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
89                                  VT.getVectorNumElements()/Factor);
90
91  // Extract from UNDEF is UNDEF.
92  if (Vec.getOpcode() == ISD::UNDEF)
93    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
94
95  if (isa<ConstantSDNode>(Idx)) {
96    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
97
98    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
99    // we can match to VEXTRACTF128.
100    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
101
102    // This is the index of the first element of the 128-bit chunk
103    // we want.
104    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
105                                 * ElemsPerChunk);
106
107    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
108    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
109                                 VecIdx);
110
111    return Result;
112  }
113
114  return SDValue();
115}
116
117/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
118/// sets things up to match to an AVX VINSERTF128 instruction or a
119/// simple superregister reference.  Idx is an index in the 128 bits
120/// we want.  It need not be aligned to a 128-bit bounday.  That makes
121/// lowering INSERT_VECTOR_ELT operations easier.
122static SDValue Insert128BitVector(SDValue Result,
123                                  SDValue Vec,
124                                  SDValue Idx,
125                                  SelectionDAG &DAG,
126                                  DebugLoc dl) {
127  if (isa<ConstantSDNode>(Idx)) {
128    EVT VT = Vec.getValueType();
129    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
130
131    EVT ElVT = VT.getVectorElementType();
132    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
133    EVT ResultVT = Result.getValueType();
134
135    // Insert the relevant 128 bits.
136    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
137
138    // This is the index of the first element of the 128-bit chunk
139    // we want.
140    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
141                                 * ElemsPerChunk);
142
143    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
144    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
145                         VecIdx);
146    return Result;
147  }
148
149  return SDValue();
150}
151
152static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
153  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
154  bool is64Bit = Subtarget->is64Bit();
155
156  if (Subtarget->isTargetEnvMacho()) {
157    if (is64Bit)
158      return new X8664_MachoTargetObjectFile();
159    return new TargetLoweringObjectFileMachO();
160  }
161
162  if (Subtarget->isTargetELF())
163    return new TargetLoweringObjectFileELF();
164  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
165    return new TargetLoweringObjectFileCOFF();
166  llvm_unreachable("unknown subtarget type");
167}
168
169X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
170  : TargetLowering(TM, createTLOF(TM)) {
171  Subtarget = &TM.getSubtarget<X86Subtarget>();
172  X86ScalarSSEf64 = Subtarget->hasXMMInt();
173  X86ScalarSSEf32 = Subtarget->hasXMM();
174  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
175
176  RegInfo = TM.getRegisterInfo();
177  TD = getTargetData();
178
179  // Set up the TargetLowering object.
180  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
181
182  // X86 is weird, it always uses i8 for shift amounts and setcc results.
183  setBooleanContents(ZeroOrOneBooleanContent);
184  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
185  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
186
187  // For 64-bit since we have so many registers use the ILP scheduler, for
188  // 32-bit code use the register pressure specific scheduling.
189  if (Subtarget->is64Bit())
190    setSchedulingPreference(Sched::ILP);
191  else
192    setSchedulingPreference(Sched::RegPressure);
193  setStackPointerRegisterToSaveRestore(X86StackPtr);
194
195  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
196    // Setup Windows compiler runtime calls.
197    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
198    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
199    setLibcallName(RTLIB::SREM_I64, "_allrem");
200    setLibcallName(RTLIB::UREM_I64, "_aullrem");
201    setLibcallName(RTLIB::MUL_I64, "_allmul");
202    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
203    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
204    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
207    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
208    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
209    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
210    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
211  }
212
213  if (Subtarget->isTargetDarwin()) {
214    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
215    setUseUnderscoreSetJmp(false);
216    setUseUnderscoreLongJmp(false);
217  } else if (Subtarget->isTargetMingw()) {
218    // MS runtime is weird: it exports _setjmp, but longjmp!
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(false);
221  } else {
222    setUseUnderscoreSetJmp(true);
223    setUseUnderscoreLongJmp(true);
224  }
225
226  // Set up the register classes.
227  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
228  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
229  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
230  if (Subtarget->is64Bit())
231    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
232
233  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
234
235  // We don't accept any truncstore of integer registers.
236  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
237  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
238  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
239  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
240  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
241  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
242
243  // SETOEQ and SETUNE require checking two conditions.
244  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
247  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
248  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
249  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
250
251  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
252  // operation.
253  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
254  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
255  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
256
257  if (Subtarget->is64Bit()) {
258    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
259    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
260  } else if (!TM.Options.UseSoftFloat) {
261    // We have an algorithm for SSE2->double, and we turn this into a
262    // 64-bit FILD followed by conditional FADD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
264    // We have an algorithm for SSE2, and we turn this into a 64-bit
265    // FILD for other targets.
266    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
267  }
268
269  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
270  // this operation.
271  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
272  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
273
274  if (!TM.Options.UseSoftFloat) {
275    // SSE has no i16 to fp conversion, only i32
276    if (X86ScalarSSEf32) {
277      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
278      // f32 and f64 cases are Legal, f80 case is not
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    } else {
281      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
282      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
283    }
284  } else {
285    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
286    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
287  }
288
289  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
290  // are Legal, f80 is custom lowered.
291  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
292  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
293
294  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
295  // this operation.
296  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
297  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
298
299  if (X86ScalarSSEf32) {
300    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
301    // f32 and f64 cases are Legal, f80 case is not
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  } else {
304    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
305    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
306  }
307
308  // Handle FP_TO_UINT by promoting the destination to a larger signed
309  // conversion.
310  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
311  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
312  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
313
314  if (Subtarget->is64Bit()) {
315    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
316    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
317  } else if (!TM.Options.UseSoftFloat) {
318    // Since AVX is a superset of SSE3, only check for SSE here.
319    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
320      // Expand FP_TO_UINT into a select.
321      // FIXME: We would like to use a Custom expander here eventually to do
322      // the optimal thing for SSE vs. the default expansion in the legalizer.
323      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
324    else
325      // With SSE3 we can use fisttpll to convert to a signed i64; without
326      // SSE, we're stuck with a fistpll.
327      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
328  }
329
330  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
331  if (!X86ScalarSSEf64) {
332    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
333    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
334    if (Subtarget->is64Bit()) {
335      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
336      // Without SSE, i64->f64 goes through memory.
337      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
338    }
339  }
340
341  // Scalar integer divide and remainder are lowered to use operations that
342  // produce two results, to match the available instructions. This exposes
343  // the two-result form to trivial CSE, which is able to combine x/y and x%y
344  // into a single instruction.
345  //
346  // Scalar integer multiply-high is also lowered to use two-result
347  // operations, to match the available instructions. However, plain multiply
348  // (low) operations are left as Legal, as there are single-result
349  // instructions for this in x86. Using the two-result multiply instructions
350  // when both high and low results are needed must be arranged by dagcombine.
351  for (unsigned i = 0, e = 4; i != e; ++i) {
352    MVT VT = IntVTs[i];
353    setOperationAction(ISD::MULHS, VT, Expand);
354    setOperationAction(ISD::MULHU, VT, Expand);
355    setOperationAction(ISD::SDIV, VT, Expand);
356    setOperationAction(ISD::UDIV, VT, Expand);
357    setOperationAction(ISD::SREM, VT, Expand);
358    setOperationAction(ISD::UREM, VT, Expand);
359
360    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
361    setOperationAction(ISD::ADDC, VT, Custom);
362    setOperationAction(ISD::ADDE, VT, Custom);
363    setOperationAction(ISD::SUBC, VT, Custom);
364    setOperationAction(ISD::SUBE, VT, Custom);
365  }
366
367  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
368  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
369  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
370  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
371  if (Subtarget->is64Bit())
372    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
373  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
374  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
375  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
376  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
377  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
378  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
379  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
380  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
381
382  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Expand);
383  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i16  , Expand);
384  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
385  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i64  , Expand);
386  if (Subtarget->hasBMI()) {
387    setOperationAction(ISD::CTTZ           , MVT::i8   , Promote);
388  } else {
389    setOperationAction(ISD::CTTZ           , MVT::i8   , Custom);
390    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
391    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
392    if (Subtarget->is64Bit())
393      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
394  }
395
396  setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i8   , Expand);
397  setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i16  , Expand);
398  setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
399  setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i64  , Expand);
400  if (Subtarget->hasLZCNT()) {
401    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
402  } else {
403    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
404    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
405    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
406    if (Subtarget->is64Bit())
407      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
408  }
409
410  if (Subtarget->hasPOPCNT()) {
411    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
412  } else {
413    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
414    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
415    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
416    if (Subtarget->is64Bit())
417      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
418  }
419
420  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
421  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
422
423  // These should be promoted to a larger select which is supported.
424  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
425  // X86 wants to expand cmov itself.
426  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
427  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
428  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
429  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
430  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
431  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
432  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
433  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
434  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
435  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
436  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
437  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
438  if (Subtarget->is64Bit()) {
439    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
440    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
441  }
442  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
443
444  // Darwin ABI issue.
445  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
446  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
447  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
448  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
449  if (Subtarget->is64Bit())
450    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
451  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
452  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
453  if (Subtarget->is64Bit()) {
454    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
455    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
456    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
457    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
458    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
459  }
460  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
461  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
462  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
463  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
464  if (Subtarget->is64Bit()) {
465    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
466    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
467    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
468  }
469
470  if (Subtarget->hasXMM())
471    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
472
473  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
474  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
475
476  // On X86 and X86-64, atomic operations are lowered to locked instructions.
477  // Locked instructions, in turn, have implicit fence semantics (all memory
478  // operations are flushed before issuing the locked instruction, and they
479  // are not buffered), so we can fold away the common pattern of
480  // fence-atomic-fence.
481  setShouldFoldAtomicFences(true);
482
483  // Expand certain atomics
484  for (unsigned i = 0, e = 4; i != e; ++i) {
485    MVT VT = IntVTs[i];
486    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
487    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
488    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
489  }
490
491  if (!Subtarget->is64Bit()) {
492    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
493    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
494    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
495    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
496    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
497    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
498    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
499    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
500  }
501
502  if (Subtarget->hasCmpxchg16b()) {
503    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
504  }
505
506  // FIXME - use subtarget debug flags
507  if (!Subtarget->isTargetDarwin() &&
508      !Subtarget->isTargetELF() &&
509      !Subtarget->isTargetCygMing()) {
510    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
511  }
512
513  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
514  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
515  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
516  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
517  if (Subtarget->is64Bit()) {
518    setExceptionPointerRegister(X86::RAX);
519    setExceptionSelectorRegister(X86::RDX);
520  } else {
521    setExceptionPointerRegister(X86::EAX);
522    setExceptionSelectorRegister(X86::EDX);
523  }
524  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
525  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
526
527  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
528  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
529
530  setOperationAction(ISD::TRAP, MVT::Other, Legal);
531
532  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
533  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
534  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
535  if (Subtarget->is64Bit()) {
536    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
537    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
538  } else {
539    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
540    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
541  }
542
543  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
544  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
545
546  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
547    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
548                       MVT::i64 : MVT::i32, Custom);
549  else if (TM.Options.EnableSegmentedStacks)
550    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
551                       MVT::i64 : MVT::i32, Custom);
552  else
553    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
554                       MVT::i64 : MVT::i32, Expand);
555
556  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
557    // f32 and f64 use SSE.
558    // Set up the FP register classes.
559    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
560    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
561
562    // Use ANDPD to simulate FABS.
563    setOperationAction(ISD::FABS , MVT::f64, Custom);
564    setOperationAction(ISD::FABS , MVT::f32, Custom);
565
566    // Use XORP to simulate FNEG.
567    setOperationAction(ISD::FNEG , MVT::f64, Custom);
568    setOperationAction(ISD::FNEG , MVT::f32, Custom);
569
570    // Use ANDPD and ORPD to simulate FCOPYSIGN.
571    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
572    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
573
574    // Lower this to FGETSIGNx86 plus an AND.
575    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
576    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
577
578    // We don't support sin/cos/fmod
579    setOperationAction(ISD::FSIN , MVT::f64, Expand);
580    setOperationAction(ISD::FCOS , MVT::f64, Expand);
581    setOperationAction(ISD::FSIN , MVT::f32, Expand);
582    setOperationAction(ISD::FCOS , MVT::f32, Expand);
583
584    // Expand FP immediates into loads from the stack, except for the special
585    // cases we handle.
586    addLegalFPImmediate(APFloat(+0.0)); // xorpd
587    addLegalFPImmediate(APFloat(+0.0f)); // xorps
588  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
589    // Use SSE for f32, x87 for f64.
590    // Set up the FP register classes.
591    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
592    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
593
594    // Use ANDPS to simulate FABS.
595    setOperationAction(ISD::FABS , MVT::f32, Custom);
596
597    // Use XORP to simulate FNEG.
598    setOperationAction(ISD::FNEG , MVT::f32, Custom);
599
600    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
601
602    // Use ANDPS and ORPS to simulate FCOPYSIGN.
603    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
604    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
605
606    // We don't support sin/cos/fmod
607    setOperationAction(ISD::FSIN , MVT::f32, Expand);
608    setOperationAction(ISD::FCOS , MVT::f32, Expand);
609
610    // Special cases we handle for FP constants.
611    addLegalFPImmediate(APFloat(+0.0f)); // xorps
612    addLegalFPImmediate(APFloat(+0.0)); // FLD0
613    addLegalFPImmediate(APFloat(+1.0)); // FLD1
614    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
615    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
616
617    if (!TM.Options.UnsafeFPMath) {
618      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
619      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
620    }
621  } else if (!TM.Options.UseSoftFloat) {
622    // f32 and f64 in x87.
623    // Set up the FP register classes.
624    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
625    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
626
627    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
628    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
629    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
630    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
631
632    if (!TM.Options.UnsafeFPMath) {
633      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
634      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
635    }
636    addLegalFPImmediate(APFloat(+0.0)); // FLD0
637    addLegalFPImmediate(APFloat(+1.0)); // FLD1
638    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
639    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
640    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
641    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
642    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
643    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
644  }
645
646  // We don't support FMA.
647  setOperationAction(ISD::FMA, MVT::f64, Expand);
648  setOperationAction(ISD::FMA, MVT::f32, Expand);
649
650  // Long double always uses X87.
651  if (!TM.Options.UseSoftFloat) {
652    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
653    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
654    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
655    {
656      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
657      addLegalFPImmediate(TmpFlt);  // FLD0
658      TmpFlt.changeSign();
659      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
660
661      bool ignored;
662      APFloat TmpFlt2(+1.0);
663      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
664                      &ignored);
665      addLegalFPImmediate(TmpFlt2);  // FLD1
666      TmpFlt2.changeSign();
667      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
668    }
669
670    if (!TM.Options.UnsafeFPMath) {
671      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
672      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
673    }
674
675    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
676    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
677    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
678    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
679    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
680    setOperationAction(ISD::FMA, MVT::f80, Expand);
681  }
682
683  // Always use a library call for pow.
684  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
685  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
686  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
687
688  setOperationAction(ISD::FLOG, MVT::f80, Expand);
689  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
690  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
691  setOperationAction(ISD::FEXP, MVT::f80, Expand);
692  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
693
694  // First set operation action for all vector types to either promote
695  // (for widening) or expand (for scalarization). Then we will selectively
696  // turn on ones that can be effectively codegen'd.
697  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
698       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
699    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
702    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
703    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
714    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
716    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
717    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
751    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
756    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
757         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
758      setTruncStoreAction((MVT::SimpleValueType)VT,
759                          (MVT::SimpleValueType)InnerVT, Expand);
760    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
761    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
762    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
763  }
764
765  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
766  // with -msoft-float, disable use of MMX as well.
767  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
768    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
769    // No operations on x86mmx supported, everything uses intrinsics.
770  }
771
772  // MMX-sized vectors (other than x86mmx) are expected to be expanded
773  // into smaller operations.
774  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
775  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
776  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
777  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
778  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
779  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
780  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
781  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
782  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
783  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
784  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
785  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
786  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
787  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
788  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
789  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
790  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
791  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
792  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
793  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
794  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
795  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
796  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
797  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
798  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
799  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
800  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
801  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
802  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
803
804  if (!TM.Options.UseSoftFloat && Subtarget->hasXMM()) {
805    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
806
807    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
808    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
809    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
810    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
811    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
812    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
813    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
814    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
815    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
816    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
817    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
818    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
819  }
820
821  if (!TM.Options.UseSoftFloat && Subtarget->hasXMMInt()) {
822    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
823
824    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
825    // registers cannot be used even for integer operations.
826    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
827    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
828    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
829    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
830
831    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
832    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
833    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
834    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
835    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
836    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
837    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
838    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
839    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
840    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
841    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
842    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
843    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
844    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
845    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
846    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
847
848    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
849    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
850    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
851    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
852
853    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
854    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
855    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
856    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
857    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
858
859    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
860    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
861    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
862    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
863    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
864
865    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
866    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
867      EVT VT = (MVT::SimpleValueType)i;
868      // Do not attempt to custom lower non-power-of-2 vectors
869      if (!isPowerOf2_32(VT.getVectorNumElements()))
870        continue;
871      // Do not attempt to custom lower non-128-bit vectors
872      if (!VT.is128BitVector())
873        continue;
874      setOperationAction(ISD::BUILD_VECTOR,
875                         VT.getSimpleVT().SimpleTy, Custom);
876      setOperationAction(ISD::VECTOR_SHUFFLE,
877                         VT.getSimpleVT().SimpleTy, Custom);
878      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
879                         VT.getSimpleVT().SimpleTy, Custom);
880    }
881
882    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
883    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
884    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
885    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
886    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
887    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
888
889    if (Subtarget->is64Bit()) {
890      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
891      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
892    }
893
894    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
895    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
896      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
897      EVT VT = SVT;
898
899      // Do not attempt to promote non-128-bit vectors
900      if (!VT.is128BitVector())
901        continue;
902
903      setOperationAction(ISD::AND,    SVT, Promote);
904      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
905      setOperationAction(ISD::OR,     SVT, Promote);
906      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
907      setOperationAction(ISD::XOR,    SVT, Promote);
908      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
909      setOperationAction(ISD::LOAD,   SVT, Promote);
910      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
911      setOperationAction(ISD::SELECT, SVT, Promote);
912      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
913    }
914
915    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
916
917    // Custom lower v2i64 and v2f64 selects.
918    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
919    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
920    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
921    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
922
923    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
924    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
925  }
926
927  if (Subtarget->hasSSE41orAVX()) {
928    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
929    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
930    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
931    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
932    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
933    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
934    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
935    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
936    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
937    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
938
939    // FIXME: Do we need to handle scalar-to-vector here?
940    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
941
942    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
943    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
944    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
945    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
946    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
947
948    // i8 and i16 vectors are custom , because the source register and source
949    // source memory operand types are not the same width.  f32 vectors are
950    // custom since the immediate controlling the insert encodes additional
951    // information.
952    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
953    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
954    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
955    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
956
957    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
958    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
959    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
960    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
961
962    // FIXME: these should be Legal but thats only for the case where
963    // the index is constant.  For now custom expand to deal with that
964    if (Subtarget->is64Bit()) {
965      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
966      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
967    }
968  }
969
970  if (Subtarget->hasXMMInt()) {
971    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
972    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
973
974    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
975    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
976
977    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
978    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
979
980    if (Subtarget->hasAVX2()) {
981      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
982      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
983
984      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
985      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
986
987      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
988    } else {
989      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
990      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
991
992      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
993      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
994
995      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
996    }
997  }
998
999  if (Subtarget->hasSSE42orAVX())
1000    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1001
1002  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1003    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
1004    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1005    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
1006    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
1007    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
1008    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
1009
1010    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1011    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1012    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1013
1014    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1015    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1016    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1017    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1018    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1019    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1020
1021    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1022    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1023    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1024    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1025    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1026    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1027
1028    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1029    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1030    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1031
1032    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1033    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1034    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1035    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1036    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1037    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1038
1039    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1040    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1041
1042    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1043    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1044
1045    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1046    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1047
1048    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1049    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1050    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1051    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1052
1053    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1054    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1055    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1056
1057    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1058    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1059    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1060    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1061
1062    if (Subtarget->hasAVX2()) {
1063      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1064      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1065      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1066      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1067
1068      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1069      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1070      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1071      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1072
1073      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1074      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1075      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1076      // Don't lower v32i8 because there is no 128-bit byte mul
1077
1078      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1079
1080      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1081      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1082
1083      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1084      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1085
1086      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1087    } else {
1088      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1089      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1090      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1091      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1092
1093      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1094      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1095      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1096      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1097
1098      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1099      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1100      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1101      // Don't lower v32i8 because there is no 128-bit byte mul
1102
1103      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1104      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1105
1106      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1107      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1108
1109      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1110    }
1111
1112    // Custom lower several nodes for 256-bit types.
1113    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1114                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1115      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1116      EVT VT = SVT;
1117
1118      // Extract subvector is special because the value type
1119      // (result) is 128-bit but the source is 256-bit wide.
1120      if (VT.is128BitVector())
1121        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1122
1123      // Do not attempt to custom lower other non-256-bit vectors
1124      if (!VT.is256BitVector())
1125        continue;
1126
1127      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1128      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1129      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1130      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1131      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1132      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1133    }
1134
1135    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1136    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1137      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1138      EVT VT = SVT;
1139
1140      // Do not attempt to promote non-256-bit vectors
1141      if (!VT.is256BitVector())
1142        continue;
1143
1144      setOperationAction(ISD::AND,    SVT, Promote);
1145      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1146      setOperationAction(ISD::OR,     SVT, Promote);
1147      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1148      setOperationAction(ISD::XOR,    SVT, Promote);
1149      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1150      setOperationAction(ISD::LOAD,   SVT, Promote);
1151      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1152      setOperationAction(ISD::SELECT, SVT, Promote);
1153      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1154    }
1155  }
1156
1157  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1158  // of this type with custom code.
1159  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1160         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1161    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1162  }
1163
1164  // We want to custom lower some of our intrinsics.
1165  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1166
1167
1168  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1169  // handle type legalization for these operations here.
1170  //
1171  // FIXME: We really should do custom legalization for addition and
1172  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1173  // than generic legalization for 64-bit multiplication-with-overflow, though.
1174  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1175    // Add/Sub/Mul with overflow operations are custom lowered.
1176    MVT VT = IntVTs[i];
1177    setOperationAction(ISD::SADDO, VT, Custom);
1178    setOperationAction(ISD::UADDO, VT, Custom);
1179    setOperationAction(ISD::SSUBO, VT, Custom);
1180    setOperationAction(ISD::USUBO, VT, Custom);
1181    setOperationAction(ISD::SMULO, VT, Custom);
1182    setOperationAction(ISD::UMULO, VT, Custom);
1183  }
1184
1185  // There are no 8-bit 3-address imul/mul instructions
1186  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1187  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1188
1189  if (!Subtarget->is64Bit()) {
1190    // These libcalls are not available in 32-bit.
1191    setLibcallName(RTLIB::SHL_I128, 0);
1192    setLibcallName(RTLIB::SRL_I128, 0);
1193    setLibcallName(RTLIB::SRA_I128, 0);
1194  }
1195
1196  // We have target-specific dag combine patterns for the following nodes:
1197  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1198  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1199  setTargetDAGCombine(ISD::BUILD_VECTOR);
1200  setTargetDAGCombine(ISD::VSELECT);
1201  setTargetDAGCombine(ISD::SELECT);
1202  setTargetDAGCombine(ISD::SHL);
1203  setTargetDAGCombine(ISD::SRA);
1204  setTargetDAGCombine(ISD::SRL);
1205  setTargetDAGCombine(ISD::OR);
1206  setTargetDAGCombine(ISD::AND);
1207  setTargetDAGCombine(ISD::ADD);
1208  setTargetDAGCombine(ISD::FADD);
1209  setTargetDAGCombine(ISD::FSUB);
1210  setTargetDAGCombine(ISD::SUB);
1211  setTargetDAGCombine(ISD::LOAD);
1212  setTargetDAGCombine(ISD::STORE);
1213  setTargetDAGCombine(ISD::ZERO_EXTEND);
1214  setTargetDAGCombine(ISD::SINT_TO_FP);
1215  if (Subtarget->is64Bit())
1216    setTargetDAGCombine(ISD::MUL);
1217  if (Subtarget->hasBMI())
1218    setTargetDAGCombine(ISD::XOR);
1219
1220  computeRegisterProperties();
1221
1222  // On Darwin, -Os means optimize for size without hurting performance,
1223  // do not reduce the limit.
1224  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1225  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1226  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1227  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1228  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1229  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1230  setPrefLoopAlignment(4); // 2^4 bytes.
1231  benefitFromCodePlacementOpt = true;
1232
1233  setPrefFunctionAlignment(4); // 2^4 bytes.
1234}
1235
1236
1237EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1238  if (!VT.isVector()) return MVT::i8;
1239  return VT.changeVectorElementTypeToInteger();
1240}
1241
1242
1243/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1244/// the desired ByVal argument alignment.
1245static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1246  if (MaxAlign == 16)
1247    return;
1248  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1249    if (VTy->getBitWidth() == 128)
1250      MaxAlign = 16;
1251  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1252    unsigned EltAlign = 0;
1253    getMaxByValAlign(ATy->getElementType(), EltAlign);
1254    if (EltAlign > MaxAlign)
1255      MaxAlign = EltAlign;
1256  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1257    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1258      unsigned EltAlign = 0;
1259      getMaxByValAlign(STy->getElementType(i), EltAlign);
1260      if (EltAlign > MaxAlign)
1261        MaxAlign = EltAlign;
1262      if (MaxAlign == 16)
1263        break;
1264    }
1265  }
1266  return;
1267}
1268
1269/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1270/// function arguments in the caller parameter area. For X86, aggregates
1271/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1272/// are at 4-byte boundaries.
1273unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1274  if (Subtarget->is64Bit()) {
1275    // Max of 8 and alignment of type.
1276    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1277    if (TyAlign > 8)
1278      return TyAlign;
1279    return 8;
1280  }
1281
1282  unsigned Align = 4;
1283  if (Subtarget->hasXMM())
1284    getMaxByValAlign(Ty, Align);
1285  return Align;
1286}
1287
1288/// getOptimalMemOpType - Returns the target specific optimal type for load
1289/// and store operations as a result of memset, memcpy, and memmove
1290/// lowering. If DstAlign is zero that means it's safe to destination
1291/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1292/// means there isn't a need to check it against alignment requirement,
1293/// probably because the source does not need to be loaded. If
1294/// 'IsZeroVal' is true, that means it's safe to return a
1295/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1296/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1297/// constant so it does not need to be loaded.
1298/// It returns EVT::Other if the type should be determined using generic
1299/// target-independent logic.
1300EVT
1301X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1302                                       unsigned DstAlign, unsigned SrcAlign,
1303                                       bool IsZeroVal,
1304                                       bool MemcpyStrSrc,
1305                                       MachineFunction &MF) const {
1306  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1307  // linux.  This is because the stack realignment code can't handle certain
1308  // cases like PR2962.  This should be removed when PR2962 is fixed.
1309  const Function *F = MF.getFunction();
1310  if (IsZeroVal &&
1311      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1312    if (Size >= 16 &&
1313        (Subtarget->isUnalignedMemAccessFast() ||
1314         ((DstAlign == 0 || DstAlign >= 16) &&
1315          (SrcAlign == 0 || SrcAlign >= 16))) &&
1316        Subtarget->getStackAlignment() >= 16) {
1317      if (Subtarget->hasAVX() &&
1318          Subtarget->getStackAlignment() >= 32)
1319        return MVT::v8f32;
1320      if (Subtarget->hasXMMInt())
1321        return MVT::v4i32;
1322      if (Subtarget->hasXMM())
1323        return MVT::v4f32;
1324    } else if (!MemcpyStrSrc && Size >= 8 &&
1325               !Subtarget->is64Bit() &&
1326               Subtarget->getStackAlignment() >= 8 &&
1327               Subtarget->hasXMMInt()) {
1328      // Do not use f64 to lower memcpy if source is string constant. It's
1329      // better to use i32 to avoid the loads.
1330      return MVT::f64;
1331    }
1332  }
1333  if (Subtarget->is64Bit() && Size >= 8)
1334    return MVT::i64;
1335  return MVT::i32;
1336}
1337
1338/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1339/// current function.  The returned value is a member of the
1340/// MachineJumpTableInfo::JTEntryKind enum.
1341unsigned X86TargetLowering::getJumpTableEncoding() const {
1342  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1343  // symbol.
1344  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1345      Subtarget->isPICStyleGOT())
1346    return MachineJumpTableInfo::EK_Custom32;
1347
1348  // Otherwise, use the normal jump table encoding heuristics.
1349  return TargetLowering::getJumpTableEncoding();
1350}
1351
1352const MCExpr *
1353X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1354                                             const MachineBasicBlock *MBB,
1355                                             unsigned uid,MCContext &Ctx) const{
1356  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1357         Subtarget->isPICStyleGOT());
1358  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1359  // entries.
1360  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1361                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1362}
1363
1364/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1365/// jumptable.
1366SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1367                                                    SelectionDAG &DAG) const {
1368  if (!Subtarget->is64Bit())
1369    // This doesn't have DebugLoc associated with it, but is not really the
1370    // same as a Register.
1371    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1372  return Table;
1373}
1374
1375/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1376/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1377/// MCExpr.
1378const MCExpr *X86TargetLowering::
1379getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1380                             MCContext &Ctx) const {
1381  // X86-64 uses RIP relative addressing based on the jump table label.
1382  if (Subtarget->isPICStyleRIPRel())
1383    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1384
1385  // Otherwise, the reference is relative to the PIC base.
1386  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1387}
1388
1389// FIXME: Why this routine is here? Move to RegInfo!
1390std::pair<const TargetRegisterClass*, uint8_t>
1391X86TargetLowering::findRepresentativeClass(EVT VT) const{
1392  const TargetRegisterClass *RRC = 0;
1393  uint8_t Cost = 1;
1394  switch (VT.getSimpleVT().SimpleTy) {
1395  default:
1396    return TargetLowering::findRepresentativeClass(VT);
1397  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1398    RRC = (Subtarget->is64Bit()
1399           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1400    break;
1401  case MVT::x86mmx:
1402    RRC = X86::VR64RegisterClass;
1403    break;
1404  case MVT::f32: case MVT::f64:
1405  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1406  case MVT::v4f32: case MVT::v2f64:
1407  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1408  case MVT::v4f64:
1409    RRC = X86::VR128RegisterClass;
1410    break;
1411  }
1412  return std::make_pair(RRC, Cost);
1413}
1414
1415bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1416                                               unsigned &Offset) const {
1417  if (!Subtarget->isTargetLinux())
1418    return false;
1419
1420  if (Subtarget->is64Bit()) {
1421    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1422    Offset = 0x28;
1423    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1424      AddressSpace = 256;
1425    else
1426      AddressSpace = 257;
1427  } else {
1428    // %gs:0x14 on i386
1429    Offset = 0x14;
1430    AddressSpace = 256;
1431  }
1432  return true;
1433}
1434
1435
1436//===----------------------------------------------------------------------===//
1437//               Return Value Calling Convention Implementation
1438//===----------------------------------------------------------------------===//
1439
1440#include "X86GenCallingConv.inc"
1441
1442bool
1443X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1444				  MachineFunction &MF, bool isVarArg,
1445                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1446                        LLVMContext &Context) const {
1447  SmallVector<CCValAssign, 16> RVLocs;
1448  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1449                 RVLocs, Context);
1450  return CCInfo.CheckReturn(Outs, RetCC_X86);
1451}
1452
1453SDValue
1454X86TargetLowering::LowerReturn(SDValue Chain,
1455                               CallingConv::ID CallConv, bool isVarArg,
1456                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1457                               const SmallVectorImpl<SDValue> &OutVals,
1458                               DebugLoc dl, SelectionDAG &DAG) const {
1459  MachineFunction &MF = DAG.getMachineFunction();
1460  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1461
1462  SmallVector<CCValAssign, 16> RVLocs;
1463  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1464                 RVLocs, *DAG.getContext());
1465  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1466
1467  // Add the regs to the liveout set for the function.
1468  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1469  for (unsigned i = 0; i != RVLocs.size(); ++i)
1470    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1471      MRI.addLiveOut(RVLocs[i].getLocReg());
1472
1473  SDValue Flag;
1474
1475  SmallVector<SDValue, 6> RetOps;
1476  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1477  // Operand #1 = Bytes To Pop
1478  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1479                   MVT::i16));
1480
1481  // Copy the result values into the output registers.
1482  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1483    CCValAssign &VA = RVLocs[i];
1484    assert(VA.isRegLoc() && "Can only return in registers!");
1485    SDValue ValToCopy = OutVals[i];
1486    EVT ValVT = ValToCopy.getValueType();
1487
1488    // If this is x86-64, and we disabled SSE, we can't return FP values,
1489    // or SSE or MMX vectors.
1490    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1491         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1492          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1493      report_fatal_error("SSE register return with SSE disabled");
1494    }
1495    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1496    // llvm-gcc has never done it right and no one has noticed, so this
1497    // should be OK for now.
1498    if (ValVT == MVT::f64 &&
1499        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1500      report_fatal_error("SSE2 register return with SSE2 disabled");
1501
1502    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1503    // the RET instruction and handled by the FP Stackifier.
1504    if (VA.getLocReg() == X86::ST0 ||
1505        VA.getLocReg() == X86::ST1) {
1506      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1507      // change the value to the FP stack register class.
1508      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1509        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1510      RetOps.push_back(ValToCopy);
1511      // Don't emit a copytoreg.
1512      continue;
1513    }
1514
1515    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1516    // which is returned in RAX / RDX.
1517    if (Subtarget->is64Bit()) {
1518      if (ValVT == MVT::x86mmx) {
1519        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1520          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1521          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1522                                  ValToCopy);
1523          // If we don't have SSE2 available, convert to v4f32 so the generated
1524          // register is legal.
1525          if (!Subtarget->hasXMMInt())
1526            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1527        }
1528      }
1529    }
1530
1531    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1532    Flag = Chain.getValue(1);
1533  }
1534
1535  // The x86-64 ABI for returning structs by value requires that we copy
1536  // the sret argument into %rax for the return. We saved the argument into
1537  // a virtual register in the entry block, so now we copy the value out
1538  // and into %rax.
1539  if (Subtarget->is64Bit() &&
1540      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1541    MachineFunction &MF = DAG.getMachineFunction();
1542    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1543    unsigned Reg = FuncInfo->getSRetReturnReg();
1544    assert(Reg &&
1545           "SRetReturnReg should have been set in LowerFormalArguments().");
1546    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1547
1548    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1549    Flag = Chain.getValue(1);
1550
1551    // RAX now acts like a return value.
1552    MRI.addLiveOut(X86::RAX);
1553  }
1554
1555  RetOps[0] = Chain;  // Update chain.
1556
1557  // Add the flag if we have it.
1558  if (Flag.getNode())
1559    RetOps.push_back(Flag);
1560
1561  return DAG.getNode(X86ISD::RET_FLAG, dl,
1562                     MVT::Other, &RetOps[0], RetOps.size());
1563}
1564
1565bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1566  if (N->getNumValues() != 1)
1567    return false;
1568  if (!N->hasNUsesOfValue(1, 0))
1569    return false;
1570
1571  SDNode *Copy = *N->use_begin();
1572  if (Copy->getOpcode() != ISD::CopyToReg &&
1573      Copy->getOpcode() != ISD::FP_EXTEND)
1574    return false;
1575
1576  bool HasRet = false;
1577  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1578       UI != UE; ++UI) {
1579    if (UI->getOpcode() != X86ISD::RET_FLAG)
1580      return false;
1581    HasRet = true;
1582  }
1583
1584  return HasRet;
1585}
1586
1587EVT
1588X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1589                                            ISD::NodeType ExtendKind) const {
1590  MVT ReturnMVT;
1591  // TODO: Is this also valid on 32-bit?
1592  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1593    ReturnMVT = MVT::i8;
1594  else
1595    ReturnMVT = MVT::i32;
1596
1597  EVT MinVT = getRegisterType(Context, ReturnMVT);
1598  return VT.bitsLT(MinVT) ? MinVT : VT;
1599}
1600
1601/// LowerCallResult - Lower the result values of a call into the
1602/// appropriate copies out of appropriate physical registers.
1603///
1604SDValue
1605X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1606                                   CallingConv::ID CallConv, bool isVarArg,
1607                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1608                                   DebugLoc dl, SelectionDAG &DAG,
1609                                   SmallVectorImpl<SDValue> &InVals) const {
1610
1611  // Assign locations to each value returned by this call.
1612  SmallVector<CCValAssign, 16> RVLocs;
1613  bool Is64Bit = Subtarget->is64Bit();
1614  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1615		 getTargetMachine(), RVLocs, *DAG.getContext());
1616  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1617
1618  // Copy all of the result registers out of their specified physreg.
1619  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1620    CCValAssign &VA = RVLocs[i];
1621    EVT CopyVT = VA.getValVT();
1622
1623    // If this is x86-64, and we disabled SSE, we can't return FP values
1624    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1625        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1626      report_fatal_error("SSE register return with SSE disabled");
1627    }
1628
1629    SDValue Val;
1630
1631    // If this is a call to a function that returns an fp value on the floating
1632    // point stack, we must guarantee the the value is popped from the stack, so
1633    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1634    // if the return value is not used. We use the FpPOP_RETVAL instruction
1635    // instead.
1636    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1637      // If we prefer to use the value in xmm registers, copy it out as f80 and
1638      // use a truncate to move it from fp stack reg to xmm reg.
1639      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1640      SDValue Ops[] = { Chain, InFlag };
1641      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1642                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1643      Val = Chain.getValue(0);
1644
1645      // Round the f80 to the right size, which also moves it to the appropriate
1646      // xmm register.
1647      if (CopyVT != VA.getValVT())
1648        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1649                          // This truncation won't change the value.
1650                          DAG.getIntPtrConstant(1));
1651    } else {
1652      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1653                                 CopyVT, InFlag).getValue(1);
1654      Val = Chain.getValue(0);
1655    }
1656    InFlag = Chain.getValue(2);
1657    InVals.push_back(Val);
1658  }
1659
1660  return Chain;
1661}
1662
1663
1664//===----------------------------------------------------------------------===//
1665//                C & StdCall & Fast Calling Convention implementation
1666//===----------------------------------------------------------------------===//
1667//  StdCall calling convention seems to be standard for many Windows' API
1668//  routines and around. It differs from C calling convention just a little:
1669//  callee should clean up the stack, not caller. Symbols should be also
1670//  decorated in some fancy way :) It doesn't support any vector arguments.
1671//  For info on fast calling convention see Fast Calling Convention (tail call)
1672//  implementation LowerX86_32FastCCCallTo.
1673
1674/// CallIsStructReturn - Determines whether a call uses struct return
1675/// semantics.
1676static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1677  if (Outs.empty())
1678    return false;
1679
1680  return Outs[0].Flags.isSRet();
1681}
1682
1683/// ArgsAreStructReturn - Determines whether a function uses struct
1684/// return semantics.
1685static bool
1686ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1687  if (Ins.empty())
1688    return false;
1689
1690  return Ins[0].Flags.isSRet();
1691}
1692
1693/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1694/// by "Src" to address "Dst" with size and alignment information specified by
1695/// the specific parameter attribute. The copy will be passed as a byval
1696/// function parameter.
1697static SDValue
1698CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1699                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1700                          DebugLoc dl) {
1701  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1702
1703  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1704                       /*isVolatile*/false, /*AlwaysInline=*/true,
1705                       MachinePointerInfo(), MachinePointerInfo());
1706}
1707
1708/// IsTailCallConvention - Return true if the calling convention is one that
1709/// supports tail call optimization.
1710static bool IsTailCallConvention(CallingConv::ID CC) {
1711  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1712}
1713
1714bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1715  if (!CI->isTailCall())
1716    return false;
1717
1718  CallSite CS(CI);
1719  CallingConv::ID CalleeCC = CS.getCallingConv();
1720  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1721    return false;
1722
1723  return true;
1724}
1725
1726/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1727/// a tailcall target by changing its ABI.
1728static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1729                                   bool GuaranteedTailCallOpt) {
1730  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1731}
1732
1733SDValue
1734X86TargetLowering::LowerMemArgument(SDValue Chain,
1735                                    CallingConv::ID CallConv,
1736                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1737                                    DebugLoc dl, SelectionDAG &DAG,
1738                                    const CCValAssign &VA,
1739                                    MachineFrameInfo *MFI,
1740                                    unsigned i) const {
1741  // Create the nodes corresponding to a load from this parameter slot.
1742  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1743  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1744                              getTargetMachine().Options.GuaranteedTailCallOpt);
1745  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1746  EVT ValVT;
1747
1748  // If value is passed by pointer we have address passed instead of the value
1749  // itself.
1750  if (VA.getLocInfo() == CCValAssign::Indirect)
1751    ValVT = VA.getLocVT();
1752  else
1753    ValVT = VA.getValVT();
1754
1755  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1756  // changed with more analysis.
1757  // In case of tail call optimization mark all arguments mutable. Since they
1758  // could be overwritten by lowering of arguments in case of a tail call.
1759  if (Flags.isByVal()) {
1760    unsigned Bytes = Flags.getByValSize();
1761    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1762    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1763    return DAG.getFrameIndex(FI, getPointerTy());
1764  } else {
1765    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1766                                    VA.getLocMemOffset(), isImmutable);
1767    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1768    return DAG.getLoad(ValVT, dl, Chain, FIN,
1769                       MachinePointerInfo::getFixedStack(FI),
1770                       false, false, false, 0);
1771  }
1772}
1773
1774SDValue
1775X86TargetLowering::LowerFormalArguments(SDValue Chain,
1776                                        CallingConv::ID CallConv,
1777                                        bool isVarArg,
1778                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1779                                        DebugLoc dl,
1780                                        SelectionDAG &DAG,
1781                                        SmallVectorImpl<SDValue> &InVals)
1782                                          const {
1783  MachineFunction &MF = DAG.getMachineFunction();
1784  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1785
1786  const Function* Fn = MF.getFunction();
1787  if (Fn->hasExternalLinkage() &&
1788      Subtarget->isTargetCygMing() &&
1789      Fn->getName() == "main")
1790    FuncInfo->setForceFramePointer(true);
1791
1792  MachineFrameInfo *MFI = MF.getFrameInfo();
1793  bool Is64Bit = Subtarget->is64Bit();
1794  bool IsWin64 = Subtarget->isTargetWin64();
1795
1796  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1797         "Var args not supported with calling convention fastcc or ghc");
1798
1799  // Assign locations to all of the incoming arguments.
1800  SmallVector<CCValAssign, 16> ArgLocs;
1801  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1802                 ArgLocs, *DAG.getContext());
1803
1804  // Allocate shadow area for Win64
1805  if (IsWin64) {
1806    CCInfo.AllocateStack(32, 8);
1807  }
1808
1809  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1810
1811  unsigned LastVal = ~0U;
1812  SDValue ArgValue;
1813  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1814    CCValAssign &VA = ArgLocs[i];
1815    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1816    // places.
1817    assert(VA.getValNo() != LastVal &&
1818           "Don't support value assigned to multiple locs yet");
1819    (void)LastVal;
1820    LastVal = VA.getValNo();
1821
1822    if (VA.isRegLoc()) {
1823      EVT RegVT = VA.getLocVT();
1824      TargetRegisterClass *RC = NULL;
1825      if (RegVT == MVT::i32)
1826        RC = X86::GR32RegisterClass;
1827      else if (Is64Bit && RegVT == MVT::i64)
1828        RC = X86::GR64RegisterClass;
1829      else if (RegVT == MVT::f32)
1830        RC = X86::FR32RegisterClass;
1831      else if (RegVT == MVT::f64)
1832        RC = X86::FR64RegisterClass;
1833      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1834        RC = X86::VR256RegisterClass;
1835      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1836        RC = X86::VR128RegisterClass;
1837      else if (RegVT == MVT::x86mmx)
1838        RC = X86::VR64RegisterClass;
1839      else
1840        llvm_unreachable("Unknown argument type!");
1841
1842      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1843      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1844
1845      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1846      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1847      // right size.
1848      if (VA.getLocInfo() == CCValAssign::SExt)
1849        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1850                               DAG.getValueType(VA.getValVT()));
1851      else if (VA.getLocInfo() == CCValAssign::ZExt)
1852        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1853                               DAG.getValueType(VA.getValVT()));
1854      else if (VA.getLocInfo() == CCValAssign::BCvt)
1855        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1856
1857      if (VA.isExtInLoc()) {
1858        // Handle MMX values passed in XMM regs.
1859        if (RegVT.isVector()) {
1860          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1861                                 ArgValue);
1862        } else
1863          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1864      }
1865    } else {
1866      assert(VA.isMemLoc());
1867      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1868    }
1869
1870    // If value is passed via pointer - do a load.
1871    if (VA.getLocInfo() == CCValAssign::Indirect)
1872      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1873                             MachinePointerInfo(), false, false, false, 0);
1874
1875    InVals.push_back(ArgValue);
1876  }
1877
1878  // The x86-64 ABI for returning structs by value requires that we copy
1879  // the sret argument into %rax for the return. Save the argument into
1880  // a virtual register so that we can access it from the return points.
1881  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1882    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1883    unsigned Reg = FuncInfo->getSRetReturnReg();
1884    if (!Reg) {
1885      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1886      FuncInfo->setSRetReturnReg(Reg);
1887    }
1888    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1889    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1890  }
1891
1892  unsigned StackSize = CCInfo.getNextStackOffset();
1893  // Align stack specially for tail calls.
1894  if (FuncIsMadeTailCallSafe(CallConv,
1895                             MF.getTarget().Options.GuaranteedTailCallOpt))
1896    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1897
1898  // If the function takes variable number of arguments, make a frame index for
1899  // the start of the first vararg value... for expansion of llvm.va_start.
1900  if (isVarArg) {
1901    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1902                    CallConv != CallingConv::X86_ThisCall)) {
1903      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1904    }
1905    if (Is64Bit) {
1906      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1907
1908      // FIXME: We should really autogenerate these arrays
1909      static const unsigned GPR64ArgRegsWin64[] = {
1910        X86::RCX, X86::RDX, X86::R8,  X86::R9
1911      };
1912      static const unsigned GPR64ArgRegs64Bit[] = {
1913        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1914      };
1915      static const unsigned XMMArgRegs64Bit[] = {
1916        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1917        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1918      };
1919      const unsigned *GPR64ArgRegs;
1920      unsigned NumXMMRegs = 0;
1921
1922      if (IsWin64) {
1923        // The XMM registers which might contain var arg parameters are shadowed
1924        // in their paired GPR.  So we only need to save the GPR to their home
1925        // slots.
1926        TotalNumIntRegs = 4;
1927        GPR64ArgRegs = GPR64ArgRegsWin64;
1928      } else {
1929        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1930        GPR64ArgRegs = GPR64ArgRegs64Bit;
1931
1932        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1933      }
1934      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1935                                                       TotalNumIntRegs);
1936
1937      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1938      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1939             "SSE register cannot be used when SSE is disabled!");
1940      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1941               NoImplicitFloatOps) &&
1942             "SSE register cannot be used when SSE is disabled!");
1943      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1944          !Subtarget->hasXMM())
1945        // Kernel mode asks for SSE to be disabled, so don't push them
1946        // on the stack.
1947        TotalNumXMMRegs = 0;
1948
1949      if (IsWin64) {
1950        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1951        // Get to the caller-allocated home save location.  Add 8 to account
1952        // for the return address.
1953        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1954        FuncInfo->setRegSaveFrameIndex(
1955          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1956        // Fixup to set vararg frame on shadow area (4 x i64).
1957        if (NumIntRegs < 4)
1958          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1959      } else {
1960        // For X86-64, if there are vararg parameters that are passed via
1961        // registers, then we must store them to their spots on the stack so they
1962        // may be loaded by deferencing the result of va_next.
1963        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1964        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1965        FuncInfo->setRegSaveFrameIndex(
1966          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1967                               false));
1968      }
1969
1970      // Store the integer parameter registers.
1971      SmallVector<SDValue, 8> MemOps;
1972      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1973                                        getPointerTy());
1974      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1975      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1976        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1977                                  DAG.getIntPtrConstant(Offset));
1978        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1979                                     X86::GR64RegisterClass);
1980        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1981        SDValue Store =
1982          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1983                       MachinePointerInfo::getFixedStack(
1984                         FuncInfo->getRegSaveFrameIndex(), Offset),
1985                       false, false, 0);
1986        MemOps.push_back(Store);
1987        Offset += 8;
1988      }
1989
1990      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1991        // Now store the XMM (fp + vector) parameter registers.
1992        SmallVector<SDValue, 11> SaveXMMOps;
1993        SaveXMMOps.push_back(Chain);
1994
1995        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1996        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1997        SaveXMMOps.push_back(ALVal);
1998
1999        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2000                               FuncInfo->getRegSaveFrameIndex()));
2001        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2002                               FuncInfo->getVarArgsFPOffset()));
2003
2004        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2005          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2006                                       X86::VR128RegisterClass);
2007          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2008          SaveXMMOps.push_back(Val);
2009        }
2010        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2011                                     MVT::Other,
2012                                     &SaveXMMOps[0], SaveXMMOps.size()));
2013      }
2014
2015      if (!MemOps.empty())
2016        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2017                            &MemOps[0], MemOps.size());
2018    }
2019  }
2020
2021  // Some CCs need callee pop.
2022  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2023                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2024    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2025  } else {
2026    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2027    // If this is an sret function, the return should pop the hidden pointer.
2028    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
2029      FuncInfo->setBytesToPopOnReturn(4);
2030  }
2031
2032  if (!Is64Bit) {
2033    // RegSaveFrameIndex is X86-64 only.
2034    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2035    if (CallConv == CallingConv::X86_FastCall ||
2036        CallConv == CallingConv::X86_ThisCall)
2037      // fastcc functions can't have varargs.
2038      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2039  }
2040
2041  FuncInfo->setArgumentStackSize(StackSize);
2042
2043  return Chain;
2044}
2045
2046SDValue
2047X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2048                                    SDValue StackPtr, SDValue Arg,
2049                                    DebugLoc dl, SelectionDAG &DAG,
2050                                    const CCValAssign &VA,
2051                                    ISD::ArgFlagsTy Flags) const {
2052  unsigned LocMemOffset = VA.getLocMemOffset();
2053  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2054  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2055  if (Flags.isByVal())
2056    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2057
2058  return DAG.getStore(Chain, dl, Arg, PtrOff,
2059                      MachinePointerInfo::getStack(LocMemOffset),
2060                      false, false, 0);
2061}
2062
2063/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2064/// optimization is performed and it is required.
2065SDValue
2066X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2067                                           SDValue &OutRetAddr, SDValue Chain,
2068                                           bool IsTailCall, bool Is64Bit,
2069                                           int FPDiff, DebugLoc dl) const {
2070  // Adjust the Return address stack slot.
2071  EVT VT = getPointerTy();
2072  OutRetAddr = getReturnAddressFrameIndex(DAG);
2073
2074  // Load the "old" Return address.
2075  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2076                           false, false, false, 0);
2077  return SDValue(OutRetAddr.getNode(), 1);
2078}
2079
2080/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2081/// optimization is performed and it is required (FPDiff!=0).
2082static SDValue
2083EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2084                         SDValue Chain, SDValue RetAddrFrIdx,
2085                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2086  // Store the return address to the appropriate stack slot.
2087  if (!FPDiff) return Chain;
2088  // Calculate the new stack slot for the return address.
2089  int SlotSize = Is64Bit ? 8 : 4;
2090  int NewReturnAddrFI =
2091    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2092  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2093  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2094  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2095                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2096                       false, false, 0);
2097  return Chain;
2098}
2099
2100SDValue
2101X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2102                             CallingConv::ID CallConv, bool isVarArg,
2103                             bool &isTailCall,
2104                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2105                             const SmallVectorImpl<SDValue> &OutVals,
2106                             const SmallVectorImpl<ISD::InputArg> &Ins,
2107                             DebugLoc dl, SelectionDAG &DAG,
2108                             SmallVectorImpl<SDValue> &InVals) const {
2109  MachineFunction &MF = DAG.getMachineFunction();
2110  bool Is64Bit        = Subtarget->is64Bit();
2111  bool IsWin64        = Subtarget->isTargetWin64();
2112  bool IsStructRet    = CallIsStructReturn(Outs);
2113  bool IsSibcall      = false;
2114
2115  if (isTailCall) {
2116    // Check if it's really possible to do a tail call.
2117    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2118                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2119                                                   Outs, OutVals, Ins, DAG);
2120
2121    // Sibcalls are automatically detected tailcalls which do not require
2122    // ABI changes.
2123    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2124      IsSibcall = true;
2125
2126    if (isTailCall)
2127      ++NumTailCalls;
2128  }
2129
2130  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2131         "Var args not supported with calling convention fastcc or ghc");
2132
2133  // Analyze operands of the call, assigning locations to each operand.
2134  SmallVector<CCValAssign, 16> ArgLocs;
2135  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2136                 ArgLocs, *DAG.getContext());
2137
2138  // Allocate shadow area for Win64
2139  if (IsWin64) {
2140    CCInfo.AllocateStack(32, 8);
2141  }
2142
2143  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2144
2145  // Get a count of how many bytes are to be pushed on the stack.
2146  unsigned NumBytes = CCInfo.getNextStackOffset();
2147  if (IsSibcall)
2148    // This is a sibcall. The memory operands are available in caller's
2149    // own caller's stack.
2150    NumBytes = 0;
2151  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2152           IsTailCallConvention(CallConv))
2153    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2154
2155  int FPDiff = 0;
2156  if (isTailCall && !IsSibcall) {
2157    // Lower arguments at fp - stackoffset + fpdiff.
2158    unsigned NumBytesCallerPushed =
2159      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2160    FPDiff = NumBytesCallerPushed - NumBytes;
2161
2162    // Set the delta of movement of the returnaddr stackslot.
2163    // But only set if delta is greater than previous delta.
2164    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2165      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2166  }
2167
2168  if (!IsSibcall)
2169    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2170
2171  SDValue RetAddrFrIdx;
2172  // Load return address for tail calls.
2173  if (isTailCall && FPDiff)
2174    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2175                                    Is64Bit, FPDiff, dl);
2176
2177  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2178  SmallVector<SDValue, 8> MemOpChains;
2179  SDValue StackPtr;
2180
2181  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2182  // of tail call optimization arguments are handle later.
2183  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2184    CCValAssign &VA = ArgLocs[i];
2185    EVT RegVT = VA.getLocVT();
2186    SDValue Arg = OutVals[i];
2187    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2188    bool isByVal = Flags.isByVal();
2189
2190    // Promote the value if needed.
2191    switch (VA.getLocInfo()) {
2192    default: llvm_unreachable("Unknown loc info!");
2193    case CCValAssign::Full: break;
2194    case CCValAssign::SExt:
2195      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2196      break;
2197    case CCValAssign::ZExt:
2198      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2199      break;
2200    case CCValAssign::AExt:
2201      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2202        // Special case: passing MMX values in XMM registers.
2203        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2204        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2205        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2206      } else
2207        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2208      break;
2209    case CCValAssign::BCvt:
2210      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2211      break;
2212    case CCValAssign::Indirect: {
2213      // Store the argument.
2214      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2215      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2216      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2217                           MachinePointerInfo::getFixedStack(FI),
2218                           false, false, 0);
2219      Arg = SpillSlot;
2220      break;
2221    }
2222    }
2223
2224    if (VA.isRegLoc()) {
2225      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2226      if (isVarArg && IsWin64) {
2227        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2228        // shadow reg if callee is a varargs function.
2229        unsigned ShadowReg = 0;
2230        switch (VA.getLocReg()) {
2231        case X86::XMM0: ShadowReg = X86::RCX; break;
2232        case X86::XMM1: ShadowReg = X86::RDX; break;
2233        case X86::XMM2: ShadowReg = X86::R8; break;
2234        case X86::XMM3: ShadowReg = X86::R9; break;
2235        }
2236        if (ShadowReg)
2237          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2238      }
2239    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2240      assert(VA.isMemLoc());
2241      if (StackPtr.getNode() == 0)
2242        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2243      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2244                                             dl, DAG, VA, Flags));
2245    }
2246  }
2247
2248  if (!MemOpChains.empty())
2249    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2250                        &MemOpChains[0], MemOpChains.size());
2251
2252  // Build a sequence of copy-to-reg nodes chained together with token chain
2253  // and flag operands which copy the outgoing args into registers.
2254  SDValue InFlag;
2255  // Tail call byval lowering might overwrite argument registers so in case of
2256  // tail call optimization the copies to registers are lowered later.
2257  if (!isTailCall)
2258    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2259      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2260                               RegsToPass[i].second, InFlag);
2261      InFlag = Chain.getValue(1);
2262    }
2263
2264  if (Subtarget->isPICStyleGOT()) {
2265    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2266    // GOT pointer.
2267    if (!isTailCall) {
2268      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2269                               DAG.getNode(X86ISD::GlobalBaseReg,
2270                                           DebugLoc(), getPointerTy()),
2271                               InFlag);
2272      InFlag = Chain.getValue(1);
2273    } else {
2274      // If we are tail calling and generating PIC/GOT style code load the
2275      // address of the callee into ECX. The value in ecx is used as target of
2276      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2277      // for tail calls on PIC/GOT architectures. Normally we would just put the
2278      // address of GOT into ebx and then call target@PLT. But for tail calls
2279      // ebx would be restored (since ebx is callee saved) before jumping to the
2280      // target@PLT.
2281
2282      // Note: The actual moving to ECX is done further down.
2283      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2284      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2285          !G->getGlobal()->hasProtectedVisibility())
2286        Callee = LowerGlobalAddress(Callee, DAG);
2287      else if (isa<ExternalSymbolSDNode>(Callee))
2288        Callee = LowerExternalSymbol(Callee, DAG);
2289    }
2290  }
2291
2292  if (Is64Bit && isVarArg && !IsWin64) {
2293    // From AMD64 ABI document:
2294    // For calls that may call functions that use varargs or stdargs
2295    // (prototype-less calls or calls to functions containing ellipsis (...) in
2296    // the declaration) %al is used as hidden argument to specify the number
2297    // of SSE registers used. The contents of %al do not need to match exactly
2298    // the number of registers, but must be an ubound on the number of SSE
2299    // registers used and is in the range 0 - 8 inclusive.
2300
2301    // Count the number of XMM registers allocated.
2302    static const unsigned XMMArgRegs[] = {
2303      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2304      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2305    };
2306    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2307    assert((Subtarget->hasXMM() || !NumXMMRegs)
2308           && "SSE registers cannot be used when SSE is disabled");
2309
2310    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2311                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2312    InFlag = Chain.getValue(1);
2313  }
2314
2315
2316  // For tail calls lower the arguments to the 'real' stack slot.
2317  if (isTailCall) {
2318    // Force all the incoming stack arguments to be loaded from the stack
2319    // before any new outgoing arguments are stored to the stack, because the
2320    // outgoing stack slots may alias the incoming argument stack slots, and
2321    // the alias isn't otherwise explicit. This is slightly more conservative
2322    // than necessary, because it means that each store effectively depends
2323    // on every argument instead of just those arguments it would clobber.
2324    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2325
2326    SmallVector<SDValue, 8> MemOpChains2;
2327    SDValue FIN;
2328    int FI = 0;
2329    // Do not flag preceding copytoreg stuff together with the following stuff.
2330    InFlag = SDValue();
2331    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2332      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2333        CCValAssign &VA = ArgLocs[i];
2334        if (VA.isRegLoc())
2335          continue;
2336        assert(VA.isMemLoc());
2337        SDValue Arg = OutVals[i];
2338        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2339        // Create frame index.
2340        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2341        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2342        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2343        FIN = DAG.getFrameIndex(FI, getPointerTy());
2344
2345        if (Flags.isByVal()) {
2346          // Copy relative to framepointer.
2347          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2348          if (StackPtr.getNode() == 0)
2349            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2350                                          getPointerTy());
2351          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2352
2353          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2354                                                           ArgChain,
2355                                                           Flags, DAG, dl));
2356        } else {
2357          // Store relative to framepointer.
2358          MemOpChains2.push_back(
2359            DAG.getStore(ArgChain, dl, Arg, FIN,
2360                         MachinePointerInfo::getFixedStack(FI),
2361                         false, false, 0));
2362        }
2363      }
2364    }
2365
2366    if (!MemOpChains2.empty())
2367      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2368                          &MemOpChains2[0], MemOpChains2.size());
2369
2370    // Copy arguments to their registers.
2371    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2372      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2373                               RegsToPass[i].second, InFlag);
2374      InFlag = Chain.getValue(1);
2375    }
2376    InFlag =SDValue();
2377
2378    // Store the return address to the appropriate stack slot.
2379    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2380                                     FPDiff, dl);
2381  }
2382
2383  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2384    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2385    // In the 64-bit large code model, we have to make all calls
2386    // through a register, since the call instruction's 32-bit
2387    // pc-relative offset may not be large enough to hold the whole
2388    // address.
2389  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2390    // If the callee is a GlobalAddress node (quite common, every direct call
2391    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2392    // it.
2393
2394    // We should use extra load for direct calls to dllimported functions in
2395    // non-JIT mode.
2396    const GlobalValue *GV = G->getGlobal();
2397    if (!GV->hasDLLImportLinkage()) {
2398      unsigned char OpFlags = 0;
2399      bool ExtraLoad = false;
2400      unsigned WrapperKind = ISD::DELETED_NODE;
2401
2402      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2403      // external symbols most go through the PLT in PIC mode.  If the symbol
2404      // has hidden or protected visibility, or if it is static or local, then
2405      // we don't need to use the PLT - we can directly call it.
2406      if (Subtarget->isTargetELF() &&
2407          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2408          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2409        OpFlags = X86II::MO_PLT;
2410      } else if (Subtarget->isPICStyleStubAny() &&
2411                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2412                 (!Subtarget->getTargetTriple().isMacOSX() ||
2413                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2414        // PC-relative references to external symbols should go through $stub,
2415        // unless we're building with the leopard linker or later, which
2416        // automatically synthesizes these stubs.
2417        OpFlags = X86II::MO_DARWIN_STUB;
2418      } else if (Subtarget->isPICStyleRIPRel() &&
2419                 isa<Function>(GV) &&
2420                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2421        // If the function is marked as non-lazy, generate an indirect call
2422        // which loads from the GOT directly. This avoids runtime overhead
2423        // at the cost of eager binding (and one extra byte of encoding).
2424        OpFlags = X86II::MO_GOTPCREL;
2425        WrapperKind = X86ISD::WrapperRIP;
2426        ExtraLoad = true;
2427      }
2428
2429      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2430                                          G->getOffset(), OpFlags);
2431
2432      // Add a wrapper if needed.
2433      if (WrapperKind != ISD::DELETED_NODE)
2434        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2435      // Add extra indirection if needed.
2436      if (ExtraLoad)
2437        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2438                             MachinePointerInfo::getGOT(),
2439                             false, false, false, 0);
2440    }
2441  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2442    unsigned char OpFlags = 0;
2443
2444    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2445    // external symbols should go through the PLT.
2446    if (Subtarget->isTargetELF() &&
2447        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2448      OpFlags = X86II::MO_PLT;
2449    } else if (Subtarget->isPICStyleStubAny() &&
2450               (!Subtarget->getTargetTriple().isMacOSX() ||
2451                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2452      // PC-relative references to external symbols should go through $stub,
2453      // unless we're building with the leopard linker or later, which
2454      // automatically synthesizes these stubs.
2455      OpFlags = X86II::MO_DARWIN_STUB;
2456    }
2457
2458    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2459                                         OpFlags);
2460  }
2461
2462  // Returns a chain & a flag for retval copy to use.
2463  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2464  SmallVector<SDValue, 8> Ops;
2465
2466  if (!IsSibcall && isTailCall) {
2467    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2468                           DAG.getIntPtrConstant(0, true), InFlag);
2469    InFlag = Chain.getValue(1);
2470  }
2471
2472  Ops.push_back(Chain);
2473  Ops.push_back(Callee);
2474
2475  if (isTailCall)
2476    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2477
2478  // Add argument registers to the end of the list so that they are known live
2479  // into the call.
2480  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2481    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2482                                  RegsToPass[i].second.getValueType()));
2483
2484  // Add an implicit use GOT pointer in EBX.
2485  if (!isTailCall && Subtarget->isPICStyleGOT())
2486    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2487
2488  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2489  if (Is64Bit && isVarArg && !IsWin64)
2490    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2491
2492  if (InFlag.getNode())
2493    Ops.push_back(InFlag);
2494
2495  if (isTailCall) {
2496    // We used to do:
2497    //// If this is the first return lowered for this function, add the regs
2498    //// to the liveout set for the function.
2499    // This isn't right, although it's probably harmless on x86; liveouts
2500    // should be computed from returns not tail calls.  Consider a void
2501    // function making a tail call to a function returning int.
2502    return DAG.getNode(X86ISD::TC_RETURN, dl,
2503                       NodeTys, &Ops[0], Ops.size());
2504  }
2505
2506  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2507  InFlag = Chain.getValue(1);
2508
2509  // Create the CALLSEQ_END node.
2510  unsigned NumBytesForCalleeToPush;
2511  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2512                       getTargetMachine().Options.GuaranteedTailCallOpt))
2513    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2514  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2515    // If this is a call to a struct-return function, the callee
2516    // pops the hidden struct pointer, so we have to push it back.
2517    // This is common for Darwin/X86, Linux & Mingw32 targets.
2518    NumBytesForCalleeToPush = 4;
2519  else
2520    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2521
2522  // Returns a flag for retval copy to use.
2523  if (!IsSibcall) {
2524    Chain = DAG.getCALLSEQ_END(Chain,
2525                               DAG.getIntPtrConstant(NumBytes, true),
2526                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2527                                                     true),
2528                               InFlag);
2529    InFlag = Chain.getValue(1);
2530  }
2531
2532  // Handle result values, copying them out of physregs into vregs that we
2533  // return.
2534  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2535                         Ins, dl, DAG, InVals);
2536}
2537
2538
2539//===----------------------------------------------------------------------===//
2540//                Fast Calling Convention (tail call) implementation
2541//===----------------------------------------------------------------------===//
2542
2543//  Like std call, callee cleans arguments, convention except that ECX is
2544//  reserved for storing the tail called function address. Only 2 registers are
2545//  free for argument passing (inreg). Tail call optimization is performed
2546//  provided:
2547//                * tailcallopt is enabled
2548//                * caller/callee are fastcc
2549//  On X86_64 architecture with GOT-style position independent code only local
2550//  (within module) calls are supported at the moment.
2551//  To keep the stack aligned according to platform abi the function
2552//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2553//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2554//  If a tail called function callee has more arguments than the caller the
2555//  caller needs to make sure that there is room to move the RETADDR to. This is
2556//  achieved by reserving an area the size of the argument delta right after the
2557//  original REtADDR, but before the saved framepointer or the spilled registers
2558//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2559//  stack layout:
2560//    arg1
2561//    arg2
2562//    RETADDR
2563//    [ new RETADDR
2564//      move area ]
2565//    (possible EBP)
2566//    ESI
2567//    EDI
2568//    local1 ..
2569
2570/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2571/// for a 16 byte align requirement.
2572unsigned
2573X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2574                                               SelectionDAG& DAG) const {
2575  MachineFunction &MF = DAG.getMachineFunction();
2576  const TargetMachine &TM = MF.getTarget();
2577  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2578  unsigned StackAlignment = TFI.getStackAlignment();
2579  uint64_t AlignMask = StackAlignment - 1;
2580  int64_t Offset = StackSize;
2581  uint64_t SlotSize = TD->getPointerSize();
2582  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2583    // Number smaller than 12 so just add the difference.
2584    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2585  } else {
2586    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2587    Offset = ((~AlignMask) & Offset) + StackAlignment +
2588      (StackAlignment-SlotSize);
2589  }
2590  return Offset;
2591}
2592
2593/// MatchingStackOffset - Return true if the given stack call argument is
2594/// already available in the same position (relatively) of the caller's
2595/// incoming argument stack.
2596static
2597bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2598                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2599                         const X86InstrInfo *TII) {
2600  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2601  int FI = INT_MAX;
2602  if (Arg.getOpcode() == ISD::CopyFromReg) {
2603    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2604    if (!TargetRegisterInfo::isVirtualRegister(VR))
2605      return false;
2606    MachineInstr *Def = MRI->getVRegDef(VR);
2607    if (!Def)
2608      return false;
2609    if (!Flags.isByVal()) {
2610      if (!TII->isLoadFromStackSlot(Def, FI))
2611        return false;
2612    } else {
2613      unsigned Opcode = Def->getOpcode();
2614      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2615          Def->getOperand(1).isFI()) {
2616        FI = Def->getOperand(1).getIndex();
2617        Bytes = Flags.getByValSize();
2618      } else
2619        return false;
2620    }
2621  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2622    if (Flags.isByVal())
2623      // ByVal argument is passed in as a pointer but it's now being
2624      // dereferenced. e.g.
2625      // define @foo(%struct.X* %A) {
2626      //   tail call @bar(%struct.X* byval %A)
2627      // }
2628      return false;
2629    SDValue Ptr = Ld->getBasePtr();
2630    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2631    if (!FINode)
2632      return false;
2633    FI = FINode->getIndex();
2634  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2635    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2636    FI = FINode->getIndex();
2637    Bytes = Flags.getByValSize();
2638  } else
2639    return false;
2640
2641  assert(FI != INT_MAX);
2642  if (!MFI->isFixedObjectIndex(FI))
2643    return false;
2644  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2645}
2646
2647/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2648/// for tail call optimization. Targets which want to do tail call
2649/// optimization should implement this function.
2650bool
2651X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2652                                                     CallingConv::ID CalleeCC,
2653                                                     bool isVarArg,
2654                                                     bool isCalleeStructRet,
2655                                                     bool isCallerStructRet,
2656                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2657                                    const SmallVectorImpl<SDValue> &OutVals,
2658                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2659                                                     SelectionDAG& DAG) const {
2660  if (!IsTailCallConvention(CalleeCC) &&
2661      CalleeCC != CallingConv::C)
2662    return false;
2663
2664  // If -tailcallopt is specified, make fastcc functions tail-callable.
2665  const MachineFunction &MF = DAG.getMachineFunction();
2666  const Function *CallerF = DAG.getMachineFunction().getFunction();
2667  CallingConv::ID CallerCC = CallerF->getCallingConv();
2668  bool CCMatch = CallerCC == CalleeCC;
2669
2670  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2671    if (IsTailCallConvention(CalleeCC) && CCMatch)
2672      return true;
2673    return false;
2674  }
2675
2676  // Look for obvious safe cases to perform tail call optimization that do not
2677  // require ABI changes. This is what gcc calls sibcall.
2678
2679  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2680  // emit a special epilogue.
2681  if (RegInfo->needsStackRealignment(MF))
2682    return false;
2683
2684  // Also avoid sibcall optimization if either caller or callee uses struct
2685  // return semantics.
2686  if (isCalleeStructRet || isCallerStructRet)
2687    return false;
2688
2689  // An stdcall caller is expected to clean up its arguments; the callee
2690  // isn't going to do that.
2691  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2692    return false;
2693
2694  // Do not sibcall optimize vararg calls unless all arguments are passed via
2695  // registers.
2696  if (isVarArg && !Outs.empty()) {
2697
2698    // Optimizing for varargs on Win64 is unlikely to be safe without
2699    // additional testing.
2700    if (Subtarget->isTargetWin64())
2701      return false;
2702
2703    SmallVector<CCValAssign, 16> ArgLocs;
2704    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2705		   getTargetMachine(), ArgLocs, *DAG.getContext());
2706
2707    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2708    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2709      if (!ArgLocs[i].isRegLoc())
2710        return false;
2711  }
2712
2713  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2714  // Therefore if it's not used by the call it is not safe to optimize this into
2715  // a sibcall.
2716  bool Unused = false;
2717  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2718    if (!Ins[i].Used) {
2719      Unused = true;
2720      break;
2721    }
2722  }
2723  if (Unused) {
2724    SmallVector<CCValAssign, 16> RVLocs;
2725    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2726		   getTargetMachine(), RVLocs, *DAG.getContext());
2727    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2728    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2729      CCValAssign &VA = RVLocs[i];
2730      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2731        return false;
2732    }
2733  }
2734
2735  // If the calling conventions do not match, then we'd better make sure the
2736  // results are returned in the same way as what the caller expects.
2737  if (!CCMatch) {
2738    SmallVector<CCValAssign, 16> RVLocs1;
2739    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2740		    getTargetMachine(), RVLocs1, *DAG.getContext());
2741    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2742
2743    SmallVector<CCValAssign, 16> RVLocs2;
2744    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2745		    getTargetMachine(), RVLocs2, *DAG.getContext());
2746    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2747
2748    if (RVLocs1.size() != RVLocs2.size())
2749      return false;
2750    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2751      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2752        return false;
2753      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2754        return false;
2755      if (RVLocs1[i].isRegLoc()) {
2756        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2757          return false;
2758      } else {
2759        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2760          return false;
2761      }
2762    }
2763  }
2764
2765  // If the callee takes no arguments then go on to check the results of the
2766  // call.
2767  if (!Outs.empty()) {
2768    // Check if stack adjustment is needed. For now, do not do this if any
2769    // argument is passed on the stack.
2770    SmallVector<CCValAssign, 16> ArgLocs;
2771    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2772		   getTargetMachine(), ArgLocs, *DAG.getContext());
2773
2774    // Allocate shadow area for Win64
2775    if (Subtarget->isTargetWin64()) {
2776      CCInfo.AllocateStack(32, 8);
2777    }
2778
2779    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2780    if (CCInfo.getNextStackOffset()) {
2781      MachineFunction &MF = DAG.getMachineFunction();
2782      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2783        return false;
2784
2785      // Check if the arguments are already laid out in the right way as
2786      // the caller's fixed stack objects.
2787      MachineFrameInfo *MFI = MF.getFrameInfo();
2788      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2789      const X86InstrInfo *TII =
2790        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2791      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2792        CCValAssign &VA = ArgLocs[i];
2793        SDValue Arg = OutVals[i];
2794        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2795        if (VA.getLocInfo() == CCValAssign::Indirect)
2796          return false;
2797        if (!VA.isRegLoc()) {
2798          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2799                                   MFI, MRI, TII))
2800            return false;
2801        }
2802      }
2803    }
2804
2805    // If the tailcall address may be in a register, then make sure it's
2806    // possible to register allocate for it. In 32-bit, the call address can
2807    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2808    // callee-saved registers are restored. These happen to be the same
2809    // registers used to pass 'inreg' arguments so watch out for those.
2810    if (!Subtarget->is64Bit() &&
2811        !isa<GlobalAddressSDNode>(Callee) &&
2812        !isa<ExternalSymbolSDNode>(Callee)) {
2813      unsigned NumInRegs = 0;
2814      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2815        CCValAssign &VA = ArgLocs[i];
2816        if (!VA.isRegLoc())
2817          continue;
2818        unsigned Reg = VA.getLocReg();
2819        switch (Reg) {
2820        default: break;
2821        case X86::EAX: case X86::EDX: case X86::ECX:
2822          if (++NumInRegs == 3)
2823            return false;
2824          break;
2825        }
2826      }
2827    }
2828  }
2829
2830  return true;
2831}
2832
2833FastISel *
2834X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2835  return X86::createFastISel(funcInfo);
2836}
2837
2838
2839//===----------------------------------------------------------------------===//
2840//                           Other Lowering Hooks
2841//===----------------------------------------------------------------------===//
2842
2843static bool MayFoldLoad(SDValue Op) {
2844  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2845}
2846
2847static bool MayFoldIntoStore(SDValue Op) {
2848  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2849}
2850
2851static bool isTargetShuffle(unsigned Opcode) {
2852  switch(Opcode) {
2853  default: return false;
2854  case X86ISD::PSHUFD:
2855  case X86ISD::PSHUFHW:
2856  case X86ISD::PSHUFLW:
2857  case X86ISD::SHUFPD:
2858  case X86ISD::PALIGN:
2859  case X86ISD::SHUFPS:
2860  case X86ISD::MOVLHPS:
2861  case X86ISD::MOVLHPD:
2862  case X86ISD::MOVHLPS:
2863  case X86ISD::MOVLPS:
2864  case X86ISD::MOVLPD:
2865  case X86ISD::MOVSHDUP:
2866  case X86ISD::MOVSLDUP:
2867  case X86ISD::MOVDDUP:
2868  case X86ISD::MOVSS:
2869  case X86ISD::MOVSD:
2870  case X86ISD::UNPCKL:
2871  case X86ISD::UNPCKH:
2872  case X86ISD::VPERMILP:
2873  case X86ISD::VPERM2X128:
2874    return true;
2875  }
2876  return false;
2877}
2878
2879static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2880                                               SDValue V1, SelectionDAG &DAG) {
2881  switch(Opc) {
2882  default: llvm_unreachable("Unknown x86 shuffle node");
2883  case X86ISD::MOVSHDUP:
2884  case X86ISD::MOVSLDUP:
2885  case X86ISD::MOVDDUP:
2886    return DAG.getNode(Opc, dl, VT, V1);
2887  }
2888
2889  return SDValue();
2890}
2891
2892static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2893                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2894  switch(Opc) {
2895  default: llvm_unreachable("Unknown x86 shuffle node");
2896  case X86ISD::PSHUFD:
2897  case X86ISD::PSHUFHW:
2898  case X86ISD::PSHUFLW:
2899  case X86ISD::VPERMILP:
2900    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2901  }
2902
2903  return SDValue();
2904}
2905
2906static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2907               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2908  switch(Opc) {
2909  default: llvm_unreachable("Unknown x86 shuffle node");
2910  case X86ISD::PALIGN:
2911  case X86ISD::SHUFPD:
2912  case X86ISD::SHUFPS:
2913  case X86ISD::VPERM2X128:
2914    return DAG.getNode(Opc, dl, VT, V1, V2,
2915                       DAG.getConstant(TargetMask, MVT::i8));
2916  }
2917  return SDValue();
2918}
2919
2920static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2921                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2922  switch(Opc) {
2923  default: llvm_unreachable("Unknown x86 shuffle node");
2924  case X86ISD::MOVLHPS:
2925  case X86ISD::MOVLHPD:
2926  case X86ISD::MOVHLPS:
2927  case X86ISD::MOVLPS:
2928  case X86ISD::MOVLPD:
2929  case X86ISD::MOVSS:
2930  case X86ISD::MOVSD:
2931  case X86ISD::UNPCKL:
2932  case X86ISD::UNPCKH:
2933    return DAG.getNode(Opc, dl, VT, V1, V2);
2934  }
2935  return SDValue();
2936}
2937
2938SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2939  MachineFunction &MF = DAG.getMachineFunction();
2940  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2941  int ReturnAddrIndex = FuncInfo->getRAIndex();
2942
2943  if (ReturnAddrIndex == 0) {
2944    // Set up a frame object for the return address.
2945    uint64_t SlotSize = TD->getPointerSize();
2946    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2947                                                           false);
2948    FuncInfo->setRAIndex(ReturnAddrIndex);
2949  }
2950
2951  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2952}
2953
2954
2955bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2956                                       bool hasSymbolicDisplacement) {
2957  // Offset should fit into 32 bit immediate field.
2958  if (!isInt<32>(Offset))
2959    return false;
2960
2961  // If we don't have a symbolic displacement - we don't have any extra
2962  // restrictions.
2963  if (!hasSymbolicDisplacement)
2964    return true;
2965
2966  // FIXME: Some tweaks might be needed for medium code model.
2967  if (M != CodeModel::Small && M != CodeModel::Kernel)
2968    return false;
2969
2970  // For small code model we assume that latest object is 16MB before end of 31
2971  // bits boundary. We may also accept pretty large negative constants knowing
2972  // that all objects are in the positive half of address space.
2973  if (M == CodeModel::Small && Offset < 16*1024*1024)
2974    return true;
2975
2976  // For kernel code model we know that all object resist in the negative half
2977  // of 32bits address space. We may not accept negative offsets, since they may
2978  // be just off and we may accept pretty large positive ones.
2979  if (M == CodeModel::Kernel && Offset > 0)
2980    return true;
2981
2982  return false;
2983}
2984
2985/// isCalleePop - Determines whether the callee is required to pop its
2986/// own arguments. Callee pop is necessary to support tail calls.
2987bool X86::isCalleePop(CallingConv::ID CallingConv,
2988                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
2989  if (IsVarArg)
2990    return false;
2991
2992  switch (CallingConv) {
2993  default:
2994    return false;
2995  case CallingConv::X86_StdCall:
2996    return !is64Bit;
2997  case CallingConv::X86_FastCall:
2998    return !is64Bit;
2999  case CallingConv::X86_ThisCall:
3000    return !is64Bit;
3001  case CallingConv::Fast:
3002    return TailCallOpt;
3003  case CallingConv::GHC:
3004    return TailCallOpt;
3005  }
3006}
3007
3008/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3009/// specific condition code, returning the condition code and the LHS/RHS of the
3010/// comparison to make.
3011static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3012                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3013  if (!isFP) {
3014    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3015      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3016        // X > -1   -> X == 0, jump !sign.
3017        RHS = DAG.getConstant(0, RHS.getValueType());
3018        return X86::COND_NS;
3019      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3020        // X < 0   -> X == 0, jump on sign.
3021        return X86::COND_S;
3022      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3023        // X < 1   -> X <= 0
3024        RHS = DAG.getConstant(0, RHS.getValueType());
3025        return X86::COND_LE;
3026      }
3027    }
3028
3029    switch (SetCCOpcode) {
3030    default: llvm_unreachable("Invalid integer condition!");
3031    case ISD::SETEQ:  return X86::COND_E;
3032    case ISD::SETGT:  return X86::COND_G;
3033    case ISD::SETGE:  return X86::COND_GE;
3034    case ISD::SETLT:  return X86::COND_L;
3035    case ISD::SETLE:  return X86::COND_LE;
3036    case ISD::SETNE:  return X86::COND_NE;
3037    case ISD::SETULT: return X86::COND_B;
3038    case ISD::SETUGT: return X86::COND_A;
3039    case ISD::SETULE: return X86::COND_BE;
3040    case ISD::SETUGE: return X86::COND_AE;
3041    }
3042  }
3043
3044  // First determine if it is required or is profitable to flip the operands.
3045
3046  // If LHS is a foldable load, but RHS is not, flip the condition.
3047  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3048      !ISD::isNON_EXTLoad(RHS.getNode())) {
3049    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3050    std::swap(LHS, RHS);
3051  }
3052
3053  switch (SetCCOpcode) {
3054  default: break;
3055  case ISD::SETOLT:
3056  case ISD::SETOLE:
3057  case ISD::SETUGT:
3058  case ISD::SETUGE:
3059    std::swap(LHS, RHS);
3060    break;
3061  }
3062
3063  // On a floating point condition, the flags are set as follows:
3064  // ZF  PF  CF   op
3065  //  0 | 0 | 0 | X > Y
3066  //  0 | 0 | 1 | X < Y
3067  //  1 | 0 | 0 | X == Y
3068  //  1 | 1 | 1 | unordered
3069  switch (SetCCOpcode) {
3070  default: llvm_unreachable("Condcode should be pre-legalized away");
3071  case ISD::SETUEQ:
3072  case ISD::SETEQ:   return X86::COND_E;
3073  case ISD::SETOLT:              // flipped
3074  case ISD::SETOGT:
3075  case ISD::SETGT:   return X86::COND_A;
3076  case ISD::SETOLE:              // flipped
3077  case ISD::SETOGE:
3078  case ISD::SETGE:   return X86::COND_AE;
3079  case ISD::SETUGT:              // flipped
3080  case ISD::SETULT:
3081  case ISD::SETLT:   return X86::COND_B;
3082  case ISD::SETUGE:              // flipped
3083  case ISD::SETULE:
3084  case ISD::SETLE:   return X86::COND_BE;
3085  case ISD::SETONE:
3086  case ISD::SETNE:   return X86::COND_NE;
3087  case ISD::SETUO:   return X86::COND_P;
3088  case ISD::SETO:    return X86::COND_NP;
3089  case ISD::SETOEQ:
3090  case ISD::SETUNE:  return X86::COND_INVALID;
3091  }
3092}
3093
3094/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3095/// code. Current x86 isa includes the following FP cmov instructions:
3096/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3097static bool hasFPCMov(unsigned X86CC) {
3098  switch (X86CC) {
3099  default:
3100    return false;
3101  case X86::COND_B:
3102  case X86::COND_BE:
3103  case X86::COND_E:
3104  case X86::COND_P:
3105  case X86::COND_A:
3106  case X86::COND_AE:
3107  case X86::COND_NE:
3108  case X86::COND_NP:
3109    return true;
3110  }
3111}
3112
3113/// isFPImmLegal - Returns true if the target can instruction select the
3114/// specified FP immediate natively. If false, the legalizer will
3115/// materialize the FP immediate as a load from a constant pool.
3116bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3117  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3118    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3119      return true;
3120  }
3121  return false;
3122}
3123
3124/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3125/// the specified range (L, H].
3126static bool isUndefOrInRange(int Val, int Low, int Hi) {
3127  return (Val < 0) || (Val >= Low && Val < Hi);
3128}
3129
3130/// isUndefOrInRange - Return true if every element in Mask, begining
3131/// from position Pos and ending in Pos+Size, falls within the specified
3132/// range (L, L+Pos]. or is undef.
3133static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
3134                             int Pos, int Size, int Low, int Hi) {
3135  for (int i = Pos, e = Pos+Size; i != e; ++i)
3136    if (!isUndefOrInRange(Mask[i], Low, Hi))
3137      return false;
3138  return true;
3139}
3140
3141/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3142/// specified value.
3143static bool isUndefOrEqual(int Val, int CmpVal) {
3144  if (Val < 0 || Val == CmpVal)
3145    return true;
3146  return false;
3147}
3148
3149/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3150/// from position Pos and ending in Pos+Size, falls within the specified
3151/// sequential range (L, L+Pos]. or is undef.
3152static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
3153                                       int Pos, int Size, int Low) {
3154  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3155    if (!isUndefOrEqual(Mask[i], Low))
3156      return false;
3157  return true;
3158}
3159
3160/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3161/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3162/// the second operand.
3163static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3164  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3165    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3166  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3167    return (Mask[0] < 2 && Mask[1] < 2);
3168  return false;
3169}
3170
3171bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3172  SmallVector<int, 8> M;
3173  N->getMask(M);
3174  return ::isPSHUFDMask(M, N->getValueType(0));
3175}
3176
3177/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3178/// is suitable for input to PSHUFHW.
3179static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3180  if (VT != MVT::v8i16)
3181    return false;
3182
3183  // Lower quadword copied in order or undef.
3184  for (int i = 0; i != 4; ++i)
3185    if (Mask[i] >= 0 && Mask[i] != i)
3186      return false;
3187
3188  // Upper quadword shuffled.
3189  for (int i = 4; i != 8; ++i)
3190    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3191      return false;
3192
3193  return true;
3194}
3195
3196bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3197  SmallVector<int, 8> M;
3198  N->getMask(M);
3199  return ::isPSHUFHWMask(M, N->getValueType(0));
3200}
3201
3202/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3203/// is suitable for input to PSHUFLW.
3204static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3205  if (VT != MVT::v8i16)
3206    return false;
3207
3208  // Upper quadword copied in order.
3209  for (int i = 4; i != 8; ++i)
3210    if (Mask[i] >= 0 && Mask[i] != i)
3211      return false;
3212
3213  // Lower quadword shuffled.
3214  for (int i = 0; i != 4; ++i)
3215    if (Mask[i] >= 4)
3216      return false;
3217
3218  return true;
3219}
3220
3221bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3222  SmallVector<int, 8> M;
3223  N->getMask(M);
3224  return ::isPSHUFLWMask(M, N->getValueType(0));
3225}
3226
3227/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3228/// is suitable for input to PALIGNR.
3229static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3230                          bool hasSSSE3OrAVX) {
3231  int i, e = VT.getVectorNumElements();
3232  if (VT.getSizeInBits() != 128)
3233    return false;
3234
3235  // Do not handle v2i64 / v2f64 shuffles with palignr.
3236  if (e < 4 || !hasSSSE3OrAVX)
3237    return false;
3238
3239  for (i = 0; i != e; ++i)
3240    if (Mask[i] >= 0)
3241      break;
3242
3243  // All undef, not a palignr.
3244  if (i == e)
3245    return false;
3246
3247  // Make sure we're shifting in the right direction.
3248  if (Mask[i] <= i)
3249    return false;
3250
3251  int s = Mask[i] - i;
3252
3253  // Check the rest of the elements to see if they are consecutive.
3254  for (++i; i != e; ++i) {
3255    int m = Mask[i];
3256    if (m >= 0 && m != s+i)
3257      return false;
3258  }
3259  return true;
3260}
3261
3262/// isVSHUFPYMask - Return true if the specified VECTOR_SHUFFLE operand
3263/// specifies a shuffle of elements that is suitable for input to 256-bit
3264/// VSHUFPSY.
3265static bool isVSHUFPYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3266                          bool HasAVX, bool Commuted = false) {
3267  int NumElems = VT.getVectorNumElements();
3268
3269  if (!HasAVX || VT.getSizeInBits() != 256)
3270    return false;
3271
3272  if (NumElems != 4 && NumElems != 8)
3273    return false;
3274
3275  // VSHUFPSY divides the resulting vector into 4 chunks.
3276  // The sources are also splitted into 4 chunks, and each destination
3277  // chunk must come from a different source chunk.
3278  //
3279  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3280  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3281  //
3282  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3283  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3284  //
3285  // VSHUFPDY divides the resulting vector into 4 chunks.
3286  // The sources are also splitted into 4 chunks, and each destination
3287  // chunk must come from a different source chunk.
3288  //
3289  //  SRC1 =>      X3       X2       X1       X0
3290  //  SRC2 =>      Y3       Y2       Y1       Y0
3291  //
3292  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3293  //
3294  unsigned QuarterSize = NumElems/4;
3295  unsigned HalfSize = QuarterSize*2;
3296  for (unsigned l = 0; l != 2; ++l) {
3297    unsigned LaneStart = l*HalfSize;
3298    for (unsigned s = 0; s != 2; ++s) {
3299      unsigned QuarterStart = s*QuarterSize;
3300      unsigned Src = (Commuted) ? (1-s) : s;
3301      unsigned SrcStart = Src*NumElems + LaneStart;
3302      for (unsigned i = 0; i != QuarterSize; ++i) {
3303        int Idx = Mask[i+QuarterStart+LaneStart];
3304        if (!isUndefOrInRange(Idx, SrcStart, SrcStart+HalfSize))
3305          return false;
3306        // For VSHUFPSY, the mask of the second half must be the same as the first
3307        // but with the appropriate offsets. This works in the same way as
3308        // VPERMILPS works with masks.
3309        if (NumElems == 4 || l == 0 || Mask[i+QuarterStart] < 0)
3310          continue;
3311        if (!isUndefOrEqual(Idx, Mask[i+QuarterStart]+HalfSize))
3312          return false;
3313      }
3314    }
3315  }
3316
3317  return true;
3318}
3319
3320/// getShuffleVSHUFPYImmediate - Return the appropriate immediate to shuffle
3321/// the specified VECTOR_MASK mask with VSHUFPSY/VSHUFPDY instructions.
3322static unsigned getShuffleVSHUFPYImmediate(SDNode *N) {
3323  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3324  EVT VT = SVOp->getValueType(0);
3325  int NumElems = VT.getVectorNumElements();
3326
3327  assert(VT.getSizeInBits() == 256 && "Only supports 256-bit types");
3328  assert((NumElems == 4 || NumElems == 8) && "Only supports v4 and v8 types");
3329
3330  int HalfSize = NumElems/2;
3331  unsigned Mul = (NumElems == 8) ? 2 : 1;
3332  unsigned Mask = 0;
3333  for (int i = 0; i != NumElems; ++i) {
3334    int Elt = SVOp->getMaskElt(i);
3335    if (Elt < 0)
3336      continue;
3337    Elt %= HalfSize;
3338    unsigned Shamt = i;
3339    // For VSHUFPSY, the mask of the first half must be equal to the second one.
3340    if (NumElems == 8) Shamt %= HalfSize;
3341    Mask |= Elt << (Shamt*Mul);
3342  }
3343
3344  return Mask;
3345}
3346
3347/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3348/// the two vector operands have swapped position.
3349static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3350                                     unsigned NumElems) {
3351  for (unsigned i = 0; i != NumElems; ++i) {
3352    int idx = Mask[i];
3353    if (idx < 0)
3354      continue;
3355    else if (idx < (int)NumElems)
3356      Mask[i] = idx + NumElems;
3357    else
3358      Mask[i] = idx - NumElems;
3359  }
3360}
3361
3362/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3363/// specifies a shuffle of elements that is suitable for input to 128-bit
3364/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3365/// reverse of what x86 shuffles want.
3366static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT,
3367                        bool Commuted = false) {
3368  unsigned NumElems = VT.getVectorNumElements();
3369
3370  if (VT.getSizeInBits() != 128)
3371    return false;
3372
3373  if (NumElems != 2 && NumElems != 4)
3374    return false;
3375
3376  unsigned Half = NumElems / 2;
3377  unsigned SrcStart = Commuted ? NumElems : 0;
3378  for (unsigned i = 0; i != Half; ++i)
3379    if (!isUndefOrInRange(Mask[i], SrcStart, SrcStart+NumElems))
3380      return false;
3381  SrcStart = Commuted ? 0 : NumElems;
3382  for (unsigned i = Half; i != NumElems; ++i)
3383    if (!isUndefOrInRange(Mask[i], SrcStart, SrcStart+NumElems))
3384      return false;
3385
3386  return true;
3387}
3388
3389bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3390  SmallVector<int, 8> M;
3391  N->getMask(M);
3392  return ::isSHUFPMask(M, N->getValueType(0));
3393}
3394
3395/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3396/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3397bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3398  EVT VT = N->getValueType(0);
3399  unsigned NumElems = VT.getVectorNumElements();
3400
3401  if (VT.getSizeInBits() != 128)
3402    return false;
3403
3404  if (NumElems != 4)
3405    return false;
3406
3407  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3408  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3409         isUndefOrEqual(N->getMaskElt(1), 7) &&
3410         isUndefOrEqual(N->getMaskElt(2), 2) &&
3411         isUndefOrEqual(N->getMaskElt(3), 3);
3412}
3413
3414/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3415/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3416/// <2, 3, 2, 3>
3417bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3418  EVT VT = N->getValueType(0);
3419  unsigned NumElems = VT.getVectorNumElements();
3420
3421  if (VT.getSizeInBits() != 128)
3422    return false;
3423
3424  if (NumElems != 4)
3425    return false;
3426
3427  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3428         isUndefOrEqual(N->getMaskElt(1), 3) &&
3429         isUndefOrEqual(N->getMaskElt(2), 2) &&
3430         isUndefOrEqual(N->getMaskElt(3), 3);
3431}
3432
3433/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3434/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3435bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3436  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3437
3438  if (NumElems != 2 && NumElems != 4)
3439    return false;
3440
3441  for (unsigned i = 0; i < NumElems/2; ++i)
3442    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3443      return false;
3444
3445  for (unsigned i = NumElems/2; i < NumElems; ++i)
3446    if (!isUndefOrEqual(N->getMaskElt(i), i))
3447      return false;
3448
3449  return true;
3450}
3451
3452/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3453/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3454bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3455  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3456
3457  if ((NumElems != 2 && NumElems != 4)
3458      || N->getValueType(0).getSizeInBits() > 128)
3459    return false;
3460
3461  for (unsigned i = 0; i < NumElems/2; ++i)
3462    if (!isUndefOrEqual(N->getMaskElt(i), i))
3463      return false;
3464
3465  for (unsigned i = 0; i < NumElems/2; ++i)
3466    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3467      return false;
3468
3469  return true;
3470}
3471
3472/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3473/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3474static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3475                         bool HasAVX2, bool V2IsSplat = false) {
3476  unsigned NumElts = VT.getVectorNumElements();
3477
3478  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3479         "Unsupported vector type for unpckh");
3480
3481  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3482      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3483    return false;
3484
3485  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3486  // independently on 128-bit lanes.
3487  unsigned NumLanes = VT.getSizeInBits()/128;
3488  unsigned NumLaneElts = NumElts/NumLanes;
3489
3490  for (unsigned l = 0; l != NumLanes; ++l) {
3491    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3492         i != (l+1)*NumLaneElts;
3493         i += 2, ++j) {
3494      int BitI  = Mask[i];
3495      int BitI1 = Mask[i+1];
3496      if (!isUndefOrEqual(BitI, j))
3497        return false;
3498      if (V2IsSplat) {
3499        if (!isUndefOrEqual(BitI1, NumElts))
3500          return false;
3501      } else {
3502        if (!isUndefOrEqual(BitI1, j + NumElts))
3503          return false;
3504      }
3505    }
3506  }
3507
3508  return true;
3509}
3510
3511bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3512  SmallVector<int, 8> M;
3513  N->getMask(M);
3514  return ::isUNPCKLMask(M, N->getValueType(0), HasAVX2, V2IsSplat);
3515}
3516
3517/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3518/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3519static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3520                         bool HasAVX2, bool V2IsSplat = false) {
3521  unsigned NumElts = VT.getVectorNumElements();
3522
3523  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3524         "Unsupported vector type for unpckh");
3525
3526  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3527      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3528    return false;
3529
3530  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3531  // independently on 128-bit lanes.
3532  unsigned NumLanes = VT.getSizeInBits()/128;
3533  unsigned NumLaneElts = NumElts/NumLanes;
3534
3535  for (unsigned l = 0; l != NumLanes; ++l) {
3536    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3537         i != (l+1)*NumLaneElts; i += 2, ++j) {
3538      int BitI  = Mask[i];
3539      int BitI1 = Mask[i+1];
3540      if (!isUndefOrEqual(BitI, j))
3541        return false;
3542      if (V2IsSplat) {
3543        if (isUndefOrEqual(BitI1, NumElts))
3544          return false;
3545      } else {
3546        if (!isUndefOrEqual(BitI1, j+NumElts))
3547          return false;
3548      }
3549    }
3550  }
3551  return true;
3552}
3553
3554bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3555  SmallVector<int, 8> M;
3556  N->getMask(M);
3557  return ::isUNPCKHMask(M, N->getValueType(0), HasAVX2, V2IsSplat);
3558}
3559
3560/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3561/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3562/// <0, 0, 1, 1>
3563static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3564                                  bool HasAVX2) {
3565  unsigned NumElts = VT.getVectorNumElements();
3566
3567  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3568         "Unsupported vector type for unpckh");
3569
3570  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3571      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3572    return false;
3573
3574  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3575  // FIXME: Need a better way to get rid of this, there's no latency difference
3576  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3577  // the former later. We should also remove the "_undef" special mask.
3578  if (NumElts == 4 && VT.getSizeInBits() == 256)
3579    return false;
3580
3581  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3582  // independently on 128-bit lanes.
3583  unsigned NumLanes = VT.getSizeInBits()/128;
3584  unsigned NumLaneElts = NumElts/NumLanes;
3585
3586  for (unsigned l = 0; l != NumLanes; ++l) {
3587    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3588         i != (l+1)*NumLaneElts;
3589         i += 2, ++j) {
3590      int BitI  = Mask[i];
3591      int BitI1 = Mask[i+1];
3592
3593      if (!isUndefOrEqual(BitI, j))
3594        return false;
3595      if (!isUndefOrEqual(BitI1, j))
3596        return false;
3597    }
3598  }
3599
3600  return true;
3601}
3602
3603bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3604  SmallVector<int, 8> M;
3605  N->getMask(M);
3606  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0), HasAVX2);
3607}
3608
3609/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3610/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3611/// <2, 2, 3, 3>
3612static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3613                                  bool HasAVX2) {
3614  unsigned NumElts = VT.getVectorNumElements();
3615
3616  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3617         "Unsupported vector type for unpckh");
3618
3619  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3620      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3621    return false;
3622
3623  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3624  // independently on 128-bit lanes.
3625  unsigned NumLanes = VT.getSizeInBits()/128;
3626  unsigned NumLaneElts = NumElts/NumLanes;
3627
3628  for (unsigned l = 0; l != NumLanes; ++l) {
3629    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3630         i != (l+1)*NumLaneElts; i += 2, ++j) {
3631      int BitI  = Mask[i];
3632      int BitI1 = Mask[i+1];
3633      if (!isUndefOrEqual(BitI, j))
3634        return false;
3635      if (!isUndefOrEqual(BitI1, j))
3636        return false;
3637    }
3638  }
3639  return true;
3640}
3641
3642bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3643  SmallVector<int, 8> M;
3644  N->getMask(M);
3645  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0), HasAVX2);
3646}
3647
3648/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3649/// specifies a shuffle of elements that is suitable for input to MOVSS,
3650/// MOVSD, and MOVD, i.e. setting the lowest element.
3651static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3652  if (VT.getVectorElementType().getSizeInBits() < 32)
3653    return false;
3654
3655  int NumElts = VT.getVectorNumElements();
3656
3657  if (!isUndefOrEqual(Mask[0], NumElts))
3658    return false;
3659
3660  for (int i = 1; i < NumElts; ++i)
3661    if (!isUndefOrEqual(Mask[i], i))
3662      return false;
3663
3664  return true;
3665}
3666
3667bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3668  SmallVector<int, 8> M;
3669  N->getMask(M);
3670  return ::isMOVLMask(M, N->getValueType(0));
3671}
3672
3673/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3674/// as permutations between 128-bit chunks or halves. As an example: this
3675/// shuffle bellow:
3676///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3677/// The first half comes from the second half of V1 and the second half from the
3678/// the second half of V2.
3679static bool isVPERM2X128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3680                             bool HasAVX) {
3681  if (!HasAVX || VT.getSizeInBits() != 256)
3682    return false;
3683
3684  // The shuffle result is divided into half A and half B. In total the two
3685  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3686  // B must come from C, D, E or F.
3687  int HalfSize = VT.getVectorNumElements()/2;
3688  bool MatchA = false, MatchB = false;
3689
3690  // Check if A comes from one of C, D, E, F.
3691  for (int Half = 0; Half < 4; ++Half) {
3692    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3693      MatchA = true;
3694      break;
3695    }
3696  }
3697
3698  // Check if B comes from one of C, D, E, F.
3699  for (int Half = 0; Half < 4; ++Half) {
3700    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3701      MatchB = true;
3702      break;
3703    }
3704  }
3705
3706  return MatchA && MatchB;
3707}
3708
3709/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3710/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3711static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3712  EVT VT = SVOp->getValueType(0);
3713
3714  int HalfSize = VT.getVectorNumElements()/2;
3715
3716  int FstHalf = 0, SndHalf = 0;
3717  for (int i = 0; i < HalfSize; ++i) {
3718    if (SVOp->getMaskElt(i) > 0) {
3719      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3720      break;
3721    }
3722  }
3723  for (int i = HalfSize; i < HalfSize*2; ++i) {
3724    if (SVOp->getMaskElt(i) > 0) {
3725      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3726      break;
3727    }
3728  }
3729
3730  return (FstHalf | (SndHalf << 4));
3731}
3732
3733/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3734/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3735/// Note that VPERMIL mask matching is different depending whether theunderlying
3736/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3737/// to the same elements of the low, but to the higher half of the source.
3738/// In VPERMILPD the two lanes could be shuffled independently of each other
3739/// with the same restriction that lanes can't be crossed.
3740static bool isVPERMILPMask(const SmallVectorImpl<int> &Mask, EVT VT,
3741                           bool HasAVX) {
3742  int NumElts = VT.getVectorNumElements();
3743  int NumLanes = VT.getSizeInBits()/128;
3744
3745  if (!HasAVX)
3746    return false;
3747
3748  // Only match 256-bit with 32/64-bit types
3749  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3750    return false;
3751
3752  int LaneSize = NumElts/NumLanes;
3753  for (int l = 0; l != NumLanes; ++l) {
3754    int LaneStart = l*LaneSize;
3755    for (int i = 0; i != LaneSize; ++i) {
3756      if (!isUndefOrInRange(Mask[i+LaneStart], LaneStart, LaneStart+LaneSize))
3757        return false;
3758      if (NumElts == 4 || l == 0)
3759        continue;
3760      // VPERMILPS handling
3761      if (Mask[i] < 0)
3762        continue;
3763      if (!isUndefOrEqual(Mask[i+LaneStart], Mask[i]+LaneSize))
3764        return false;
3765    }
3766  }
3767
3768  return true;
3769}
3770
3771/// getShuffleVPERMILPImmediate - Return the appropriate immediate to shuffle
3772/// the specified VECTOR_MASK mask with VPERMILPS/D* instructions.
3773static unsigned getShuffleVPERMILPImmediate(ShuffleVectorSDNode *SVOp) {
3774  EVT VT = SVOp->getValueType(0);
3775
3776  int NumElts = VT.getVectorNumElements();
3777  int NumLanes = VT.getSizeInBits()/128;
3778  int LaneSize = NumElts/NumLanes;
3779
3780  // Although the mask is equal for both lanes do it twice to get the cases
3781  // where a mask will match because the same mask element is undef on the
3782  // first half but valid on the second. This would get pathological cases
3783  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3784  unsigned Shift = (LaneSize == 4) ? 2 : 1;
3785  unsigned Mask = 0;
3786  for (int i = 0; i != NumElts; ++i) {
3787    int MaskElt = SVOp->getMaskElt(i);
3788    if (MaskElt < 0)
3789      continue;
3790    MaskElt %= LaneSize;
3791    unsigned Shamt = i;
3792    // VPERMILPSY, the mask of the first half must be equal to the second one
3793    if (NumElts == 8) Shamt %= LaneSize;
3794    Mask |= MaskElt << (Shamt*Shift);
3795  }
3796
3797  return Mask;
3798}
3799
3800/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3801/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3802/// element of vector 2 and the other elements to come from vector 1 in order.
3803static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3804                               bool V2IsSplat = false, bool V2IsUndef = false) {
3805  int NumOps = VT.getVectorNumElements();
3806  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3807    return false;
3808
3809  if (!isUndefOrEqual(Mask[0], 0))
3810    return false;
3811
3812  for (int i = 1; i < NumOps; ++i)
3813    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3814          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3815          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3816      return false;
3817
3818  return true;
3819}
3820
3821static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3822                           bool V2IsUndef = false) {
3823  SmallVector<int, 8> M;
3824  N->getMask(M);
3825  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3826}
3827
3828/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3829/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3830/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3831bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3832                         const X86Subtarget *Subtarget) {
3833  if (!Subtarget->hasSSE3orAVX())
3834    return false;
3835
3836  // The second vector must be undef
3837  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3838    return false;
3839
3840  EVT VT = N->getValueType(0);
3841  unsigned NumElems = VT.getVectorNumElements();
3842
3843  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3844      (VT.getSizeInBits() == 256 && NumElems != 8))
3845    return false;
3846
3847  // "i+1" is the value the indexed mask element must have
3848  for (unsigned i = 0; i < NumElems; i += 2)
3849    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3850        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3851      return false;
3852
3853  return true;
3854}
3855
3856/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3857/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3858/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3859bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3860                         const X86Subtarget *Subtarget) {
3861  if (!Subtarget->hasSSE3orAVX())
3862    return false;
3863
3864  // The second vector must be undef
3865  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3866    return false;
3867
3868  EVT VT = N->getValueType(0);
3869  unsigned NumElems = VT.getVectorNumElements();
3870
3871  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3872      (VT.getSizeInBits() == 256 && NumElems != 8))
3873    return false;
3874
3875  // "i" is the value the indexed mask element must have
3876  for (unsigned i = 0; i < NumElems; i += 2)
3877    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3878        !isUndefOrEqual(N->getMaskElt(i+1), i))
3879      return false;
3880
3881  return true;
3882}
3883
3884/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3885/// specifies a shuffle of elements that is suitable for input to 256-bit
3886/// version of MOVDDUP.
3887static bool isMOVDDUPYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3888                           bool HasAVX) {
3889  int NumElts = VT.getVectorNumElements();
3890
3891  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3892    return false;
3893
3894  for (int i = 0; i != NumElts/2; ++i)
3895    if (!isUndefOrEqual(Mask[i], 0))
3896      return false;
3897  for (int i = NumElts/2; i != NumElts; ++i)
3898    if (!isUndefOrEqual(Mask[i], NumElts/2))
3899      return false;
3900  return true;
3901}
3902
3903/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3904/// specifies a shuffle of elements that is suitable for input to 128-bit
3905/// version of MOVDDUP.
3906bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3907  EVT VT = N->getValueType(0);
3908
3909  if (VT.getSizeInBits() != 128)
3910    return false;
3911
3912  int e = VT.getVectorNumElements() / 2;
3913  for (int i = 0; i < e; ++i)
3914    if (!isUndefOrEqual(N->getMaskElt(i), i))
3915      return false;
3916  for (int i = 0; i < e; ++i)
3917    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3918      return false;
3919  return true;
3920}
3921
3922/// isVEXTRACTF128Index - Return true if the specified
3923/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3924/// suitable for input to VEXTRACTF128.
3925bool X86::isVEXTRACTF128Index(SDNode *N) {
3926  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3927    return false;
3928
3929  // The index should be aligned on a 128-bit boundary.
3930  uint64_t Index =
3931    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3932
3933  unsigned VL = N->getValueType(0).getVectorNumElements();
3934  unsigned VBits = N->getValueType(0).getSizeInBits();
3935  unsigned ElSize = VBits / VL;
3936  bool Result = (Index * ElSize) % 128 == 0;
3937
3938  return Result;
3939}
3940
3941/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3942/// operand specifies a subvector insert that is suitable for input to
3943/// VINSERTF128.
3944bool X86::isVINSERTF128Index(SDNode *N) {
3945  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3946    return false;
3947
3948  // The index should be aligned on a 128-bit boundary.
3949  uint64_t Index =
3950    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3951
3952  unsigned VL = N->getValueType(0).getVectorNumElements();
3953  unsigned VBits = N->getValueType(0).getSizeInBits();
3954  unsigned ElSize = VBits / VL;
3955  bool Result = (Index * ElSize) % 128 == 0;
3956
3957  return Result;
3958}
3959
3960/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3961/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3962unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3963  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3964  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3965
3966  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3967  unsigned Mask = 0;
3968  for (int i = 0; i < NumOperands; ++i) {
3969    int Val = SVOp->getMaskElt(NumOperands-i-1);
3970    if (Val < 0) Val = 0;
3971    if (Val >= NumOperands) Val -= NumOperands;
3972    Mask |= Val;
3973    if (i != NumOperands - 1)
3974      Mask <<= Shift;
3975  }
3976  return Mask;
3977}
3978
3979/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3980/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3981unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3982  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3983  unsigned Mask = 0;
3984  // 8 nodes, but we only care about the last 4.
3985  for (unsigned i = 7; i >= 4; --i) {
3986    int Val = SVOp->getMaskElt(i);
3987    if (Val >= 0)
3988      Mask |= (Val - 4);
3989    if (i != 4)
3990      Mask <<= 2;
3991  }
3992  return Mask;
3993}
3994
3995/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3996/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3997unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3998  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3999  unsigned Mask = 0;
4000  // 8 nodes, but we only care about the first 4.
4001  for (int i = 3; i >= 0; --i) {
4002    int Val = SVOp->getMaskElt(i);
4003    if (Val >= 0)
4004      Mask |= Val;
4005    if (i != 0)
4006      Mask <<= 2;
4007  }
4008  return Mask;
4009}
4010
4011/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4012/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4013static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4014  EVT VT = SVOp->getValueType(0);
4015  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4016  int Val = 0;
4017
4018  unsigned i, e;
4019  for (i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4020    Val = SVOp->getMaskElt(i);
4021    if (Val >= 0)
4022      break;
4023  }
4024  assert(Val - i > 0 && "PALIGNR imm should be positive");
4025  return (Val - i) * EltSize;
4026}
4027
4028/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4029/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4030/// instructions.
4031unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4032  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4033    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4034
4035  uint64_t Index =
4036    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4037
4038  EVT VecVT = N->getOperand(0).getValueType();
4039  EVT ElVT = VecVT.getVectorElementType();
4040
4041  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4042  return Index / NumElemsPerChunk;
4043}
4044
4045/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4046/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4047/// instructions.
4048unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4049  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4050    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4051
4052  uint64_t Index =
4053    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4054
4055  EVT VecVT = N->getValueType(0);
4056  EVT ElVT = VecVT.getVectorElementType();
4057
4058  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4059  return Index / NumElemsPerChunk;
4060}
4061
4062/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4063/// constant +0.0.
4064bool X86::isZeroNode(SDValue Elt) {
4065  return ((isa<ConstantSDNode>(Elt) &&
4066           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4067          (isa<ConstantFPSDNode>(Elt) &&
4068           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4069}
4070
4071/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4072/// their permute mask.
4073static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4074                                    SelectionDAG &DAG) {
4075  EVT VT = SVOp->getValueType(0);
4076  unsigned NumElems = VT.getVectorNumElements();
4077  SmallVector<int, 8> MaskVec;
4078
4079  for (unsigned i = 0; i != NumElems; ++i) {
4080    int idx = SVOp->getMaskElt(i);
4081    if (idx < 0)
4082      MaskVec.push_back(idx);
4083    else if (idx < (int)NumElems)
4084      MaskVec.push_back(idx + NumElems);
4085    else
4086      MaskVec.push_back(idx - NumElems);
4087  }
4088  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4089                              SVOp->getOperand(0), &MaskVec[0]);
4090}
4091
4092/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4093/// match movhlps. The lower half elements should come from upper half of
4094/// V1 (and in order), and the upper half elements should come from the upper
4095/// half of V2 (and in order).
4096static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4097  EVT VT = Op->getValueType(0);
4098  if (VT.getSizeInBits() != 128)
4099    return false;
4100  if (VT.getVectorNumElements() != 4)
4101    return false;
4102  for (unsigned i = 0, e = 2; i != e; ++i)
4103    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4104      return false;
4105  for (unsigned i = 2; i != 4; ++i)
4106    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4107      return false;
4108  return true;
4109}
4110
4111/// isScalarLoadToVector - Returns true if the node is a scalar load that
4112/// is promoted to a vector. It also returns the LoadSDNode by reference if
4113/// required.
4114static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4115  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4116    return false;
4117  N = N->getOperand(0).getNode();
4118  if (!ISD::isNON_EXTLoad(N))
4119    return false;
4120  if (LD)
4121    *LD = cast<LoadSDNode>(N);
4122  return true;
4123}
4124
4125// Test whether the given value is a vector value which will be legalized
4126// into a load.
4127static bool WillBeConstantPoolLoad(SDNode *N) {
4128  if (N->getOpcode() != ISD::BUILD_VECTOR)
4129    return false;
4130
4131  // Check for any non-constant elements.
4132  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4133    switch (N->getOperand(i).getNode()->getOpcode()) {
4134    case ISD::UNDEF:
4135    case ISD::ConstantFP:
4136    case ISD::Constant:
4137      break;
4138    default:
4139      return false;
4140    }
4141
4142  // Vectors of all-zeros and all-ones are materialized with special
4143  // instructions rather than being loaded.
4144  return !ISD::isBuildVectorAllZeros(N) &&
4145         !ISD::isBuildVectorAllOnes(N);
4146}
4147
4148/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4149/// match movlp{s|d}. The lower half elements should come from lower half of
4150/// V1 (and in order), and the upper half elements should come from the upper
4151/// half of V2 (and in order). And since V1 will become the source of the
4152/// MOVLP, it must be either a vector load or a scalar load to vector.
4153static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4154                               ShuffleVectorSDNode *Op) {
4155  EVT VT = Op->getValueType(0);
4156  if (VT.getSizeInBits() != 128)
4157    return false;
4158
4159  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4160    return false;
4161  // Is V2 is a vector load, don't do this transformation. We will try to use
4162  // load folding shufps op.
4163  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4164    return false;
4165
4166  unsigned NumElems = VT.getVectorNumElements();
4167
4168  if (NumElems != 2 && NumElems != 4)
4169    return false;
4170  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4171    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4172      return false;
4173  for (unsigned i = NumElems/2; i != NumElems; ++i)
4174    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4175      return false;
4176  return true;
4177}
4178
4179/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4180/// all the same.
4181static bool isSplatVector(SDNode *N) {
4182  if (N->getOpcode() != ISD::BUILD_VECTOR)
4183    return false;
4184
4185  SDValue SplatValue = N->getOperand(0);
4186  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4187    if (N->getOperand(i) != SplatValue)
4188      return false;
4189  return true;
4190}
4191
4192/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4193/// to an zero vector.
4194/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4195static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4196  SDValue V1 = N->getOperand(0);
4197  SDValue V2 = N->getOperand(1);
4198  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4199  for (unsigned i = 0; i != NumElems; ++i) {
4200    int Idx = N->getMaskElt(i);
4201    if (Idx >= (int)NumElems) {
4202      unsigned Opc = V2.getOpcode();
4203      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4204        continue;
4205      if (Opc != ISD::BUILD_VECTOR ||
4206          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4207        return false;
4208    } else if (Idx >= 0) {
4209      unsigned Opc = V1.getOpcode();
4210      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4211        continue;
4212      if (Opc != ISD::BUILD_VECTOR ||
4213          !X86::isZeroNode(V1.getOperand(Idx)))
4214        return false;
4215    }
4216  }
4217  return true;
4218}
4219
4220/// getZeroVector - Returns a vector of specified type with all zero elements.
4221///
4222static SDValue getZeroVector(EVT VT, bool HasXMMInt, SelectionDAG &DAG,
4223                             DebugLoc dl) {
4224  assert(VT.isVector() && "Expected a vector type");
4225
4226  // Always build SSE zero vectors as <4 x i32> bitcasted
4227  // to their dest type. This ensures they get CSE'd.
4228  SDValue Vec;
4229  if (VT.getSizeInBits() == 128) {  // SSE
4230    if (HasXMMInt) {  // SSE2
4231      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4232      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4233    } else { // SSE1
4234      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4235      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4236    }
4237  } else if (VT.getSizeInBits() == 256) { // AVX
4238    // 256-bit logic and arithmetic instructions in AVX are
4239    // all floating-point, no support for integer ops. Default
4240    // to emitting fp zeroed vectors then.
4241    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4242    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4243    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4244  }
4245  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4246}
4247
4248/// getOnesVector - Returns a vector of specified type with all bits set.
4249/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4250/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4251/// Then bitcast to their original type, ensuring they get CSE'd.
4252static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4253                             DebugLoc dl) {
4254  assert(VT.isVector() && "Expected a vector type");
4255  assert((VT.is128BitVector() || VT.is256BitVector())
4256         && "Expected a 128-bit or 256-bit vector type");
4257
4258  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4259  SDValue Vec;
4260  if (VT.getSizeInBits() == 256) {
4261    if (HasAVX2) { // AVX2
4262      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4263      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4264    } else { // AVX
4265      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4266      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4267                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4268      Vec = Insert128BitVector(InsV, Vec,
4269                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4270    }
4271  } else {
4272    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4273  }
4274
4275  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4276}
4277
4278/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4279/// that point to V2 points to its first element.
4280static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4281  EVT VT = SVOp->getValueType(0);
4282  unsigned NumElems = VT.getVectorNumElements();
4283
4284  bool Changed = false;
4285  SmallVector<int, 8> MaskVec;
4286  SVOp->getMask(MaskVec);
4287
4288  for (unsigned i = 0; i != NumElems; ++i) {
4289    if (MaskVec[i] > (int)NumElems) {
4290      MaskVec[i] = NumElems;
4291      Changed = true;
4292    }
4293  }
4294  if (Changed)
4295    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4296                                SVOp->getOperand(1), &MaskVec[0]);
4297  return SDValue(SVOp, 0);
4298}
4299
4300/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4301/// operation of specified width.
4302static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4303                       SDValue V2) {
4304  unsigned NumElems = VT.getVectorNumElements();
4305  SmallVector<int, 8> Mask;
4306  Mask.push_back(NumElems);
4307  for (unsigned i = 1; i != NumElems; ++i)
4308    Mask.push_back(i);
4309  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4310}
4311
4312/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4313static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4314                          SDValue V2) {
4315  unsigned NumElems = VT.getVectorNumElements();
4316  SmallVector<int, 8> Mask;
4317  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4318    Mask.push_back(i);
4319    Mask.push_back(i + NumElems);
4320  }
4321  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4322}
4323
4324/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4325static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4326                          SDValue V2) {
4327  unsigned NumElems = VT.getVectorNumElements();
4328  unsigned Half = NumElems/2;
4329  SmallVector<int, 8> Mask;
4330  for (unsigned i = 0; i != Half; ++i) {
4331    Mask.push_back(i + Half);
4332    Mask.push_back(i + NumElems + Half);
4333  }
4334  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4335}
4336
4337// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4338// a generic shuffle instruction because the target has no such instructions.
4339// Generate shuffles which repeat i16 and i8 several times until they can be
4340// represented by v4f32 and then be manipulated by target suported shuffles.
4341static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4342  EVT VT = V.getValueType();
4343  int NumElems = VT.getVectorNumElements();
4344  DebugLoc dl = V.getDebugLoc();
4345
4346  while (NumElems > 4) {
4347    if (EltNo < NumElems/2) {
4348      V = getUnpackl(DAG, dl, VT, V, V);
4349    } else {
4350      V = getUnpackh(DAG, dl, VT, V, V);
4351      EltNo -= NumElems/2;
4352    }
4353    NumElems >>= 1;
4354  }
4355  return V;
4356}
4357
4358/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4359static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4360  EVT VT = V.getValueType();
4361  DebugLoc dl = V.getDebugLoc();
4362  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4363         && "Vector size not supported");
4364
4365  if (VT.getSizeInBits() == 128) {
4366    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4367    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4368    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4369                             &SplatMask[0]);
4370  } else {
4371    // To use VPERMILPS to splat scalars, the second half of indicies must
4372    // refer to the higher part, which is a duplication of the lower one,
4373    // because VPERMILPS can only handle in-lane permutations.
4374    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4375                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4376
4377    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4378    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4379                             &SplatMask[0]);
4380  }
4381
4382  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4383}
4384
4385/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4386static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4387  EVT SrcVT = SV->getValueType(0);
4388  SDValue V1 = SV->getOperand(0);
4389  DebugLoc dl = SV->getDebugLoc();
4390
4391  int EltNo = SV->getSplatIndex();
4392  int NumElems = SrcVT.getVectorNumElements();
4393  unsigned Size = SrcVT.getSizeInBits();
4394
4395  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4396          "Unknown how to promote splat for type");
4397
4398  // Extract the 128-bit part containing the splat element and update
4399  // the splat element index when it refers to the higher register.
4400  if (Size == 256) {
4401    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4402    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4403    if (Idx > 0)
4404      EltNo -= NumElems/2;
4405  }
4406
4407  // All i16 and i8 vector types can't be used directly by a generic shuffle
4408  // instruction because the target has no such instruction. Generate shuffles
4409  // which repeat i16 and i8 several times until they fit in i32, and then can
4410  // be manipulated by target suported shuffles.
4411  EVT EltVT = SrcVT.getVectorElementType();
4412  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4413    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4414
4415  // Recreate the 256-bit vector and place the same 128-bit vector
4416  // into the low and high part. This is necessary because we want
4417  // to use VPERM* to shuffle the vectors
4418  if (Size == 256) {
4419    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4420                         DAG.getConstant(0, MVT::i32), DAG, dl);
4421    V1 = Insert128BitVector(InsV, V1,
4422               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4423  }
4424
4425  return getLegalSplat(DAG, V1, EltNo);
4426}
4427
4428/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4429/// vector of zero or undef vector.  This produces a shuffle where the low
4430/// element of V2 is swizzled into the zero/undef vector, landing at element
4431/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4432static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4433                                           bool isZero, bool HasXMMInt,
4434                                           SelectionDAG &DAG) {
4435  EVT VT = V2.getValueType();
4436  SDValue V1 = isZero
4437    ? getZeroVector(VT, HasXMMInt, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4438  unsigned NumElems = VT.getVectorNumElements();
4439  SmallVector<int, 16> MaskVec;
4440  for (unsigned i = 0; i != NumElems; ++i)
4441    // If this is the insertion idx, put the low elt of V2 here.
4442    MaskVec.push_back(i == Idx ? NumElems : i);
4443  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4444}
4445
4446/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4447/// element of the result of the vector shuffle.
4448static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4449                                   unsigned Depth) {
4450  if (Depth == 6)
4451    return SDValue();  // Limit search depth.
4452
4453  SDValue V = SDValue(N, 0);
4454  EVT VT = V.getValueType();
4455  unsigned Opcode = V.getOpcode();
4456
4457  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4458  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4459    Index = SV->getMaskElt(Index);
4460
4461    if (Index < 0)
4462      return DAG.getUNDEF(VT.getVectorElementType());
4463
4464    int NumElems = VT.getVectorNumElements();
4465    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4466    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4467  }
4468
4469  // Recurse into target specific vector shuffles to find scalars.
4470  if (isTargetShuffle(Opcode)) {
4471    int NumElems = VT.getVectorNumElements();
4472    SmallVector<unsigned, 16> ShuffleMask;
4473    SDValue ImmN;
4474
4475    switch(Opcode) {
4476    case X86ISD::SHUFPS:
4477    case X86ISD::SHUFPD:
4478      ImmN = N->getOperand(N->getNumOperands()-1);
4479      DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4480                      ShuffleMask);
4481      break;
4482    case X86ISD::UNPCKH:
4483      DecodeUNPCKHMask(VT, ShuffleMask);
4484      break;
4485    case X86ISD::UNPCKL:
4486      DecodeUNPCKLMask(VT, ShuffleMask);
4487      break;
4488    case X86ISD::MOVHLPS:
4489      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4490      break;
4491    case X86ISD::MOVLHPS:
4492      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4493      break;
4494    case X86ISD::PSHUFD:
4495      ImmN = N->getOperand(N->getNumOperands()-1);
4496      DecodePSHUFMask(NumElems,
4497                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4498                      ShuffleMask);
4499      break;
4500    case X86ISD::PSHUFHW:
4501      ImmN = N->getOperand(N->getNumOperands()-1);
4502      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4503                        ShuffleMask);
4504      break;
4505    case X86ISD::PSHUFLW:
4506      ImmN = N->getOperand(N->getNumOperands()-1);
4507      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4508                        ShuffleMask);
4509      break;
4510    case X86ISD::MOVSS:
4511    case X86ISD::MOVSD: {
4512      // The index 0 always comes from the first element of the second source,
4513      // this is why MOVSS and MOVSD are used in the first place. The other
4514      // elements come from the other positions of the first source vector.
4515      unsigned OpNum = (Index == 0) ? 1 : 0;
4516      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4517                                 Depth+1);
4518    }
4519    case X86ISD::VPERMILP:
4520      ImmN = N->getOperand(N->getNumOperands()-1);
4521      DecodeVPERMILPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4522                        ShuffleMask);
4523      break;
4524    case X86ISD::VPERM2X128:
4525      ImmN = N->getOperand(N->getNumOperands()-1);
4526      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4527                           ShuffleMask);
4528      break;
4529    case X86ISD::MOVDDUP:
4530    case X86ISD::MOVLHPD:
4531    case X86ISD::MOVLPD:
4532    case X86ISD::MOVLPS:
4533    case X86ISD::MOVSHDUP:
4534    case X86ISD::MOVSLDUP:
4535    case X86ISD::PALIGN:
4536      return SDValue(); // Not yet implemented.
4537    default:
4538      assert(0 && "unknown target shuffle node");
4539      return SDValue();
4540    }
4541
4542    Index = ShuffleMask[Index];
4543    if (Index < 0)
4544      return DAG.getUNDEF(VT.getVectorElementType());
4545
4546    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4547    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4548                               Depth+1);
4549  }
4550
4551  // Actual nodes that may contain scalar elements
4552  if (Opcode == ISD::BITCAST) {
4553    V = V.getOperand(0);
4554    EVT SrcVT = V.getValueType();
4555    unsigned NumElems = VT.getVectorNumElements();
4556
4557    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4558      return SDValue();
4559  }
4560
4561  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4562    return (Index == 0) ? V.getOperand(0)
4563                          : DAG.getUNDEF(VT.getVectorElementType());
4564
4565  if (V.getOpcode() == ISD::BUILD_VECTOR)
4566    return V.getOperand(Index);
4567
4568  return SDValue();
4569}
4570
4571/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4572/// shuffle operation which come from a consecutively from a zero. The
4573/// search can start in two different directions, from left or right.
4574static
4575unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4576                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4577  int i = 0;
4578
4579  while (i < NumElems) {
4580    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4581    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4582    if (!(Elt.getNode() &&
4583         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4584      break;
4585    ++i;
4586  }
4587
4588  return i;
4589}
4590
4591/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4592/// MaskE correspond consecutively to elements from one of the vector operands,
4593/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4594static
4595bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4596                              int OpIdx, int NumElems, unsigned &OpNum) {
4597  bool SeenV1 = false;
4598  bool SeenV2 = false;
4599
4600  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4601    int Idx = SVOp->getMaskElt(i);
4602    // Ignore undef indicies
4603    if (Idx < 0)
4604      continue;
4605
4606    if (Idx < NumElems)
4607      SeenV1 = true;
4608    else
4609      SeenV2 = true;
4610
4611    // Only accept consecutive elements from the same vector
4612    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4613      return false;
4614  }
4615
4616  OpNum = SeenV1 ? 0 : 1;
4617  return true;
4618}
4619
4620/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4621/// logical left shift of a vector.
4622static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4623                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4624  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4625  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4626              false /* check zeros from right */, DAG);
4627  unsigned OpSrc;
4628
4629  if (!NumZeros)
4630    return false;
4631
4632  // Considering the elements in the mask that are not consecutive zeros,
4633  // check if they consecutively come from only one of the source vectors.
4634  //
4635  //               V1 = {X, A, B, C}     0
4636  //                         \  \  \    /
4637  //   vector_shuffle V1, V2 <1, 2, 3, X>
4638  //
4639  if (!isShuffleMaskConsecutive(SVOp,
4640            0,                   // Mask Start Index
4641            NumElems-NumZeros-1, // Mask End Index
4642            NumZeros,            // Where to start looking in the src vector
4643            NumElems,            // Number of elements in vector
4644            OpSrc))              // Which source operand ?
4645    return false;
4646
4647  isLeft = false;
4648  ShAmt = NumZeros;
4649  ShVal = SVOp->getOperand(OpSrc);
4650  return true;
4651}
4652
4653/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4654/// logical left shift of a vector.
4655static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4656                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4657  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4658  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4659              true /* check zeros from left */, DAG);
4660  unsigned OpSrc;
4661
4662  if (!NumZeros)
4663    return false;
4664
4665  // Considering the elements in the mask that are not consecutive zeros,
4666  // check if they consecutively come from only one of the source vectors.
4667  //
4668  //                           0    { A, B, X, X } = V2
4669  //                          / \    /  /
4670  //   vector_shuffle V1, V2 <X, X, 4, 5>
4671  //
4672  if (!isShuffleMaskConsecutive(SVOp,
4673            NumZeros,     // Mask Start Index
4674            NumElems-1,   // Mask End Index
4675            0,            // Where to start looking in the src vector
4676            NumElems,     // Number of elements in vector
4677            OpSrc))       // Which source operand ?
4678    return false;
4679
4680  isLeft = true;
4681  ShAmt = NumZeros;
4682  ShVal = SVOp->getOperand(OpSrc);
4683  return true;
4684}
4685
4686/// isVectorShift - Returns true if the shuffle can be implemented as a
4687/// logical left or right shift of a vector.
4688static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4689                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4690  // Although the logic below support any bitwidth size, there are no
4691  // shift instructions which handle more than 128-bit vectors.
4692  if (SVOp->getValueType(0).getSizeInBits() > 128)
4693    return false;
4694
4695  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4696      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4697    return true;
4698
4699  return false;
4700}
4701
4702/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4703///
4704static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4705                                       unsigned NumNonZero, unsigned NumZero,
4706                                       SelectionDAG &DAG,
4707                                       const TargetLowering &TLI) {
4708  if (NumNonZero > 8)
4709    return SDValue();
4710
4711  DebugLoc dl = Op.getDebugLoc();
4712  SDValue V(0, 0);
4713  bool First = true;
4714  for (unsigned i = 0; i < 16; ++i) {
4715    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4716    if (ThisIsNonZero && First) {
4717      if (NumZero)
4718        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4719      else
4720        V = DAG.getUNDEF(MVT::v8i16);
4721      First = false;
4722    }
4723
4724    if ((i & 1) != 0) {
4725      SDValue ThisElt(0, 0), LastElt(0, 0);
4726      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4727      if (LastIsNonZero) {
4728        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4729                              MVT::i16, Op.getOperand(i-1));
4730      }
4731      if (ThisIsNonZero) {
4732        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4733        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4734                              ThisElt, DAG.getConstant(8, MVT::i8));
4735        if (LastIsNonZero)
4736          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4737      } else
4738        ThisElt = LastElt;
4739
4740      if (ThisElt.getNode())
4741        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4742                        DAG.getIntPtrConstant(i/2));
4743    }
4744  }
4745
4746  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4747}
4748
4749/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4750///
4751static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4752                                     unsigned NumNonZero, unsigned NumZero,
4753                                     SelectionDAG &DAG,
4754                                     const TargetLowering &TLI) {
4755  if (NumNonZero > 4)
4756    return SDValue();
4757
4758  DebugLoc dl = Op.getDebugLoc();
4759  SDValue V(0, 0);
4760  bool First = true;
4761  for (unsigned i = 0; i < 8; ++i) {
4762    bool isNonZero = (NonZeros & (1 << i)) != 0;
4763    if (isNonZero) {
4764      if (First) {
4765        if (NumZero)
4766          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4767        else
4768          V = DAG.getUNDEF(MVT::v8i16);
4769        First = false;
4770      }
4771      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4772                      MVT::v8i16, V, Op.getOperand(i),
4773                      DAG.getIntPtrConstant(i));
4774    }
4775  }
4776
4777  return V;
4778}
4779
4780/// getVShift - Return a vector logical shift node.
4781///
4782static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4783                         unsigned NumBits, SelectionDAG &DAG,
4784                         const TargetLowering &TLI, DebugLoc dl) {
4785  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4786  EVT ShVT = MVT::v2i64;
4787  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4788  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4789  return DAG.getNode(ISD::BITCAST, dl, VT,
4790                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4791                             DAG.getConstant(NumBits,
4792                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4793}
4794
4795SDValue
4796X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4797                                          SelectionDAG &DAG) const {
4798
4799  // Check if the scalar load can be widened into a vector load. And if
4800  // the address is "base + cst" see if the cst can be "absorbed" into
4801  // the shuffle mask.
4802  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4803    SDValue Ptr = LD->getBasePtr();
4804    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4805      return SDValue();
4806    EVT PVT = LD->getValueType(0);
4807    if (PVT != MVT::i32 && PVT != MVT::f32)
4808      return SDValue();
4809
4810    int FI = -1;
4811    int64_t Offset = 0;
4812    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4813      FI = FINode->getIndex();
4814      Offset = 0;
4815    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4816               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4817      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4818      Offset = Ptr.getConstantOperandVal(1);
4819      Ptr = Ptr.getOperand(0);
4820    } else {
4821      return SDValue();
4822    }
4823
4824    // FIXME: 256-bit vector instructions don't require a strict alignment,
4825    // improve this code to support it better.
4826    unsigned RequiredAlign = VT.getSizeInBits()/8;
4827    SDValue Chain = LD->getChain();
4828    // Make sure the stack object alignment is at least 16 or 32.
4829    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4830    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4831      if (MFI->isFixedObjectIndex(FI)) {
4832        // Can't change the alignment. FIXME: It's possible to compute
4833        // the exact stack offset and reference FI + adjust offset instead.
4834        // If someone *really* cares about this. That's the way to implement it.
4835        return SDValue();
4836      } else {
4837        MFI->setObjectAlignment(FI, RequiredAlign);
4838      }
4839    }
4840
4841    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4842    // Ptr + (Offset & ~15).
4843    if (Offset < 0)
4844      return SDValue();
4845    if ((Offset % RequiredAlign) & 3)
4846      return SDValue();
4847    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4848    if (StartOffset)
4849      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4850                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4851
4852    int EltNo = (Offset - StartOffset) >> 2;
4853    int NumElems = VT.getVectorNumElements();
4854
4855    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4856    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4857    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4858                             LD->getPointerInfo().getWithOffset(StartOffset),
4859                             false, false, false, 0);
4860
4861    // Canonicalize it to a v4i32 or v8i32 shuffle.
4862    SmallVector<int, 8> Mask;
4863    for (int i = 0; i < NumElems; ++i)
4864      Mask.push_back(EltNo);
4865
4866    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4867    return DAG.getNode(ISD::BITCAST, dl, NVT,
4868                       DAG.getVectorShuffle(CanonVT, dl, V1,
4869                                            DAG.getUNDEF(CanonVT),&Mask[0]));
4870  }
4871
4872  return SDValue();
4873}
4874
4875/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4876/// vector of type 'VT', see if the elements can be replaced by a single large
4877/// load which has the same value as a build_vector whose operands are 'elts'.
4878///
4879/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4880///
4881/// FIXME: we'd also like to handle the case where the last elements are zero
4882/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4883/// There's even a handy isZeroNode for that purpose.
4884static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4885                                        DebugLoc &DL, SelectionDAG &DAG) {
4886  EVT EltVT = VT.getVectorElementType();
4887  unsigned NumElems = Elts.size();
4888
4889  LoadSDNode *LDBase = NULL;
4890  unsigned LastLoadedElt = -1U;
4891
4892  // For each element in the initializer, see if we've found a load or an undef.
4893  // If we don't find an initial load element, or later load elements are
4894  // non-consecutive, bail out.
4895  for (unsigned i = 0; i < NumElems; ++i) {
4896    SDValue Elt = Elts[i];
4897
4898    if (!Elt.getNode() ||
4899        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4900      return SDValue();
4901    if (!LDBase) {
4902      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4903        return SDValue();
4904      LDBase = cast<LoadSDNode>(Elt.getNode());
4905      LastLoadedElt = i;
4906      continue;
4907    }
4908    if (Elt.getOpcode() == ISD::UNDEF)
4909      continue;
4910
4911    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4912    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4913      return SDValue();
4914    LastLoadedElt = i;
4915  }
4916
4917  // If we have found an entire vector of loads and undefs, then return a large
4918  // load of the entire vector width starting at the base pointer.  If we found
4919  // consecutive loads for the low half, generate a vzext_load node.
4920  if (LastLoadedElt == NumElems - 1) {
4921    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4922      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4923                         LDBase->getPointerInfo(),
4924                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4925                         LDBase->isInvariant(), 0);
4926    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4927                       LDBase->getPointerInfo(),
4928                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4929                       LDBase->isInvariant(), LDBase->getAlignment());
4930  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4931             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4932    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4933    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4934    SDValue ResNode =
4935        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4936                                LDBase->getPointerInfo(),
4937                                LDBase->getAlignment(),
4938                                false/*isVolatile*/, true/*ReadMem*/,
4939                                false/*WriteMem*/);
4940    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4941  }
4942  return SDValue();
4943}
4944
4945/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
4946/// a vbroadcast node. We support two patterns:
4947/// 1. A splat BUILD_VECTOR which uses a single scalar load.
4948/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4949/// a scalar load.
4950/// The scalar load node is returned when a pattern is found,
4951/// or SDValue() otherwise.
4952static SDValue isVectorBroadcast(SDValue &Op, bool hasAVX2) {
4953  EVT VT = Op.getValueType();
4954  SDValue V = Op;
4955
4956  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
4957    V = V.getOperand(0);
4958
4959  //A suspected load to be broadcasted.
4960  SDValue Ld;
4961
4962  switch (V.getOpcode()) {
4963    default:
4964      // Unknown pattern found.
4965      return SDValue();
4966
4967    case ISD::BUILD_VECTOR: {
4968      // The BUILD_VECTOR node must be a splat.
4969      if (!isSplatVector(V.getNode()))
4970        return SDValue();
4971
4972      Ld = V.getOperand(0);
4973
4974      // The suspected load node has several users. Make sure that all
4975      // of its users are from the BUILD_VECTOR node.
4976      if (!Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4977        return SDValue();
4978      break;
4979    }
4980
4981    case ISD::VECTOR_SHUFFLE: {
4982      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4983
4984      // Shuffles must have a splat mask where the first element is
4985      // broadcasted.
4986      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4987        return SDValue();
4988
4989      SDValue Sc = Op.getOperand(0);
4990      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
4991        return SDValue();
4992
4993      Ld = Sc.getOperand(0);
4994
4995      // The scalar_to_vector node and the suspected
4996      // load node must have exactly one user.
4997      if (!Sc.hasOneUse() || !Ld.hasOneUse())
4998        return SDValue();
4999      break;
5000    }
5001  }
5002
5003  // The scalar source must be a normal load.
5004  if (!ISD::isNormalLoad(Ld.getNode()))
5005    return SDValue();
5006
5007  bool Is256 = VT.getSizeInBits() == 256;
5008  bool Is128 = VT.getSizeInBits() == 128;
5009  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5010
5011  if (hasAVX2) {
5012    // VBroadcast to YMM
5013    if (Is256 && (ScalarSize == 8  || ScalarSize == 16 ||
5014                  ScalarSize == 32 || ScalarSize == 64 ))
5015      return Ld;
5016
5017    // VBroadcast to XMM
5018    if (Is128 && (ScalarSize ==  8 || ScalarSize == 32 ||
5019                  ScalarSize == 16 || ScalarSize == 64 ))
5020      return Ld;
5021  }
5022
5023  // VBroadcast to YMM
5024  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
5025    return Ld;
5026
5027  // VBroadcast to XMM
5028  if (Is128 && (ScalarSize == 32))
5029    return Ld;
5030
5031
5032  // Unsupported broadcast.
5033  return SDValue();
5034}
5035
5036SDValue
5037X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5038  DebugLoc dl = Op.getDebugLoc();
5039
5040  EVT VT = Op.getValueType();
5041  EVT ExtVT = VT.getVectorElementType();
5042  unsigned NumElems = Op.getNumOperands();
5043
5044  // Vectors containing all zeros can be matched by pxor and xorps later
5045  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5046    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5047    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5048    if (Op.getValueType() == MVT::v4i32 ||
5049        Op.getValueType() == MVT::v8i32)
5050      return Op;
5051
5052    return getZeroVector(Op.getValueType(), Subtarget->hasXMMInt(), DAG, dl);
5053  }
5054
5055  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5056  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5057  // vpcmpeqd on 256-bit vectors.
5058  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5059    if (Op.getValueType() == MVT::v4i32 ||
5060        (Op.getValueType() == MVT::v8i32 && Subtarget->hasAVX2()))
5061      return Op;
5062
5063    return getOnesVector(Op.getValueType(), Subtarget->hasAVX2(), DAG, dl);
5064  }
5065
5066  SDValue LD = isVectorBroadcast(Op, Subtarget->hasAVX2());
5067  if (Subtarget->hasAVX() && LD.getNode())
5068      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
5069
5070  unsigned EVTBits = ExtVT.getSizeInBits();
5071
5072  unsigned NumZero  = 0;
5073  unsigned NumNonZero = 0;
5074  unsigned NonZeros = 0;
5075  bool IsAllConstants = true;
5076  SmallSet<SDValue, 8> Values;
5077  for (unsigned i = 0; i < NumElems; ++i) {
5078    SDValue Elt = Op.getOperand(i);
5079    if (Elt.getOpcode() == ISD::UNDEF)
5080      continue;
5081    Values.insert(Elt);
5082    if (Elt.getOpcode() != ISD::Constant &&
5083        Elt.getOpcode() != ISD::ConstantFP)
5084      IsAllConstants = false;
5085    if (X86::isZeroNode(Elt))
5086      NumZero++;
5087    else {
5088      NonZeros |= (1 << i);
5089      NumNonZero++;
5090    }
5091  }
5092
5093  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5094  if (NumNonZero == 0)
5095    return DAG.getUNDEF(VT);
5096
5097  // Special case for single non-zero, non-undef, element.
5098  if (NumNonZero == 1) {
5099    unsigned Idx = CountTrailingZeros_32(NonZeros);
5100    SDValue Item = Op.getOperand(Idx);
5101
5102    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5103    // the value are obviously zero, truncate the value to i32 and do the
5104    // insertion that way.  Only do this if the value is non-constant or if the
5105    // value is a constant being inserted into element 0.  It is cheaper to do
5106    // a constant pool load than it is to do a movd + shuffle.
5107    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5108        (!IsAllConstants || Idx == 0)) {
5109      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5110        // Handle SSE only.
5111        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5112        EVT VecVT = MVT::v4i32;
5113        unsigned VecElts = 4;
5114
5115        // Truncate the value (which may itself be a constant) to i32, and
5116        // convert it to a vector with movd (S2V+shuffle to zero extend).
5117        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5118        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5119        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5120                                           Subtarget->hasXMMInt(), DAG);
5121
5122        // Now we have our 32-bit value zero extended in the low element of
5123        // a vector.  If Idx != 0, swizzle it into place.
5124        if (Idx != 0) {
5125          SmallVector<int, 4> Mask;
5126          Mask.push_back(Idx);
5127          for (unsigned i = 1; i != VecElts; ++i)
5128            Mask.push_back(i);
5129          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5130                                      DAG.getUNDEF(Item.getValueType()),
5131                                      &Mask[0]);
5132        }
5133        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5134      }
5135    }
5136
5137    // If we have a constant or non-constant insertion into the low element of
5138    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5139    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5140    // depending on what the source datatype is.
5141    if (Idx == 0) {
5142      if (NumZero == 0) {
5143        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5144      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5145          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5146        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5147        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5148        return getShuffleVectorZeroOrUndef(Item, 0, true,Subtarget->hasXMMInt(),
5149                                           DAG);
5150      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5151        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5152        unsigned NumBits = VT.getSizeInBits();
5153        assert((NumBits == 128 || NumBits == 256) &&
5154               "Expected an SSE or AVX value type!");
5155        EVT MiddleVT = NumBits == 128 ? MVT::v4i32 : MVT::v8i32;
5156        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
5157        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5158                                           Subtarget->hasXMMInt(), DAG);
5159        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5160      }
5161    }
5162
5163    // Is it a vector logical left shift?
5164    if (NumElems == 2 && Idx == 1 &&
5165        X86::isZeroNode(Op.getOperand(0)) &&
5166        !X86::isZeroNode(Op.getOperand(1))) {
5167      unsigned NumBits = VT.getSizeInBits();
5168      return getVShift(true, VT,
5169                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5170                                   VT, Op.getOperand(1)),
5171                       NumBits/2, DAG, *this, dl);
5172    }
5173
5174    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5175      return SDValue();
5176
5177    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5178    // is a non-constant being inserted into an element other than the low one,
5179    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5180    // movd/movss) to move this into the low element, then shuffle it into
5181    // place.
5182    if (EVTBits == 32) {
5183      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5184
5185      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5186      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
5187                                         Subtarget->hasXMMInt(), DAG);
5188      SmallVector<int, 8> MaskVec;
5189      for (unsigned i = 0; i < NumElems; i++)
5190        MaskVec.push_back(i == Idx ? 0 : 1);
5191      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5192    }
5193  }
5194
5195  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5196  if (Values.size() == 1) {
5197    if (EVTBits == 32) {
5198      // Instead of a shuffle like this:
5199      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5200      // Check if it's possible to issue this instead.
5201      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5202      unsigned Idx = CountTrailingZeros_32(NonZeros);
5203      SDValue Item = Op.getOperand(Idx);
5204      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5205        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5206    }
5207    return SDValue();
5208  }
5209
5210  // A vector full of immediates; various special cases are already
5211  // handled, so this is best done with a single constant-pool load.
5212  if (IsAllConstants)
5213    return SDValue();
5214
5215  // For AVX-length vectors, build the individual 128-bit pieces and use
5216  // shuffles to put them in place.
5217  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5218    SmallVector<SDValue, 32> V;
5219    for (unsigned i = 0; i < NumElems; ++i)
5220      V.push_back(Op.getOperand(i));
5221
5222    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5223
5224    // Build both the lower and upper subvector.
5225    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5226    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5227                                NumElems/2);
5228
5229    // Recreate the wider vector with the lower and upper part.
5230    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5231                                DAG.getConstant(0, MVT::i32), DAG, dl);
5232    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5233                              DAG, dl);
5234  }
5235
5236  // Let legalizer expand 2-wide build_vectors.
5237  if (EVTBits == 64) {
5238    if (NumNonZero == 1) {
5239      // One half is zero or undef.
5240      unsigned Idx = CountTrailingZeros_32(NonZeros);
5241      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5242                                 Op.getOperand(Idx));
5243      return getShuffleVectorZeroOrUndef(V2, Idx, true,
5244                                         Subtarget->hasXMMInt(), DAG);
5245    }
5246    return SDValue();
5247  }
5248
5249  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5250  if (EVTBits == 8 && NumElems == 16) {
5251    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5252                                        *this);
5253    if (V.getNode()) return V;
5254  }
5255
5256  if (EVTBits == 16 && NumElems == 8) {
5257    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5258                                      *this);
5259    if (V.getNode()) return V;
5260  }
5261
5262  // If element VT is == 32 bits, turn it into a number of shuffles.
5263  SmallVector<SDValue, 8> V;
5264  V.resize(NumElems);
5265  if (NumElems == 4 && NumZero > 0) {
5266    for (unsigned i = 0; i < 4; ++i) {
5267      bool isZero = !(NonZeros & (1 << i));
5268      if (isZero)
5269        V[i] = getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
5270      else
5271        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5272    }
5273
5274    for (unsigned i = 0; i < 2; ++i) {
5275      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5276        default: break;
5277        case 0:
5278          V[i] = V[i*2];  // Must be a zero vector.
5279          break;
5280        case 1:
5281          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5282          break;
5283        case 2:
5284          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5285          break;
5286        case 3:
5287          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5288          break;
5289      }
5290    }
5291
5292    SmallVector<int, 8> MaskVec;
5293    bool Reverse = (NonZeros & 0x3) == 2;
5294    for (unsigned i = 0; i < 2; ++i)
5295      MaskVec.push_back(Reverse ? 1-i : i);
5296    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5297    for (unsigned i = 0; i < 2; ++i)
5298      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5299    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5300  }
5301
5302  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5303    // Check for a build vector of consecutive loads.
5304    for (unsigned i = 0; i < NumElems; ++i)
5305      V[i] = Op.getOperand(i);
5306
5307    // Check for elements which are consecutive loads.
5308    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5309    if (LD.getNode())
5310      return LD;
5311
5312    // For SSE 4.1, use insertps to put the high elements into the low element.
5313    if (getSubtarget()->hasSSE41orAVX()) {
5314      SDValue Result;
5315      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5316        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5317      else
5318        Result = DAG.getUNDEF(VT);
5319
5320      for (unsigned i = 1; i < NumElems; ++i) {
5321        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5322        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5323                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5324      }
5325      return Result;
5326    }
5327
5328    // Otherwise, expand into a number of unpckl*, start by extending each of
5329    // our (non-undef) elements to the full vector width with the element in the
5330    // bottom slot of the vector (which generates no code for SSE).
5331    for (unsigned i = 0; i < NumElems; ++i) {
5332      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5333        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5334      else
5335        V[i] = DAG.getUNDEF(VT);
5336    }
5337
5338    // Next, we iteratively mix elements, e.g. for v4f32:
5339    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5340    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5341    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5342    unsigned EltStride = NumElems >> 1;
5343    while (EltStride != 0) {
5344      for (unsigned i = 0; i < EltStride; ++i) {
5345        // If V[i+EltStride] is undef and this is the first round of mixing,
5346        // then it is safe to just drop this shuffle: V[i] is already in the
5347        // right place, the one element (since it's the first round) being
5348        // inserted as undef can be dropped.  This isn't safe for successive
5349        // rounds because they will permute elements within both vectors.
5350        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5351            EltStride == NumElems/2)
5352          continue;
5353
5354        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5355      }
5356      EltStride >>= 1;
5357    }
5358    return V[0];
5359  }
5360  return SDValue();
5361}
5362
5363// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5364// them in a MMX register.  This is better than doing a stack convert.
5365static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5366  DebugLoc dl = Op.getDebugLoc();
5367  EVT ResVT = Op.getValueType();
5368
5369  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5370         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5371  int Mask[2];
5372  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5373  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5374  InVec = Op.getOperand(1);
5375  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5376    unsigned NumElts = ResVT.getVectorNumElements();
5377    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5378    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5379                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5380  } else {
5381    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5382    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5383    Mask[0] = 0; Mask[1] = 2;
5384    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5385  }
5386  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5387}
5388
5389// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5390// to create 256-bit vectors from two other 128-bit ones.
5391static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5392  DebugLoc dl = Op.getDebugLoc();
5393  EVT ResVT = Op.getValueType();
5394
5395  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5396
5397  SDValue V1 = Op.getOperand(0);
5398  SDValue V2 = Op.getOperand(1);
5399  unsigned NumElems = ResVT.getVectorNumElements();
5400
5401  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5402                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5403  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5404                            DAG, dl);
5405}
5406
5407SDValue
5408X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5409  EVT ResVT = Op.getValueType();
5410
5411  assert(Op.getNumOperands() == 2);
5412  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5413         "Unsupported CONCAT_VECTORS for value type");
5414
5415  // We support concatenate two MMX registers and place them in a MMX register.
5416  // This is better than doing a stack convert.
5417  if (ResVT.is128BitVector())
5418    return LowerMMXCONCAT_VECTORS(Op, DAG);
5419
5420  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5421  // from two other 128-bit ones.
5422  return LowerAVXCONCAT_VECTORS(Op, DAG);
5423}
5424
5425// v8i16 shuffles - Prefer shuffles in the following order:
5426// 1. [all]   pshuflw, pshufhw, optional move
5427// 2. [ssse3] 1 x pshufb
5428// 3. [ssse3] 2 x pshufb + 1 x por
5429// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5430SDValue
5431X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5432                                            SelectionDAG &DAG) const {
5433  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5434  SDValue V1 = SVOp->getOperand(0);
5435  SDValue V2 = SVOp->getOperand(1);
5436  DebugLoc dl = SVOp->getDebugLoc();
5437  SmallVector<int, 8> MaskVals;
5438
5439  // Determine if more than 1 of the words in each of the low and high quadwords
5440  // of the result come from the same quadword of one of the two inputs.  Undef
5441  // mask values count as coming from any quadword, for better codegen.
5442  unsigned LoQuad[] = { 0, 0, 0, 0 };
5443  unsigned HiQuad[] = { 0, 0, 0, 0 };
5444  BitVector InputQuads(4);
5445  for (unsigned i = 0; i < 8; ++i) {
5446    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5447    int EltIdx = SVOp->getMaskElt(i);
5448    MaskVals.push_back(EltIdx);
5449    if (EltIdx < 0) {
5450      ++Quad[0];
5451      ++Quad[1];
5452      ++Quad[2];
5453      ++Quad[3];
5454      continue;
5455    }
5456    ++Quad[EltIdx / 4];
5457    InputQuads.set(EltIdx / 4);
5458  }
5459
5460  int BestLoQuad = -1;
5461  unsigned MaxQuad = 1;
5462  for (unsigned i = 0; i < 4; ++i) {
5463    if (LoQuad[i] > MaxQuad) {
5464      BestLoQuad = i;
5465      MaxQuad = LoQuad[i];
5466    }
5467  }
5468
5469  int BestHiQuad = -1;
5470  MaxQuad = 1;
5471  for (unsigned i = 0; i < 4; ++i) {
5472    if (HiQuad[i] > MaxQuad) {
5473      BestHiQuad = i;
5474      MaxQuad = HiQuad[i];
5475    }
5476  }
5477
5478  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5479  // of the two input vectors, shuffle them into one input vector so only a
5480  // single pshufb instruction is necessary. If There are more than 2 input
5481  // quads, disable the next transformation since it does not help SSSE3.
5482  bool V1Used = InputQuads[0] || InputQuads[1];
5483  bool V2Used = InputQuads[2] || InputQuads[3];
5484  if (Subtarget->hasSSSE3orAVX()) {
5485    if (InputQuads.count() == 2 && V1Used && V2Used) {
5486      BestLoQuad = InputQuads.find_first();
5487      BestHiQuad = InputQuads.find_next(BestLoQuad);
5488    }
5489    if (InputQuads.count() > 2) {
5490      BestLoQuad = -1;
5491      BestHiQuad = -1;
5492    }
5493  }
5494
5495  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5496  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5497  // words from all 4 input quadwords.
5498  SDValue NewV;
5499  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5500    SmallVector<int, 8> MaskV;
5501    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5502    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5503    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5504                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5505                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5506    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5507
5508    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5509    // source words for the shuffle, to aid later transformations.
5510    bool AllWordsInNewV = true;
5511    bool InOrder[2] = { true, true };
5512    for (unsigned i = 0; i != 8; ++i) {
5513      int idx = MaskVals[i];
5514      if (idx != (int)i)
5515        InOrder[i/4] = false;
5516      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5517        continue;
5518      AllWordsInNewV = false;
5519      break;
5520    }
5521
5522    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5523    if (AllWordsInNewV) {
5524      for (int i = 0; i != 8; ++i) {
5525        int idx = MaskVals[i];
5526        if (idx < 0)
5527          continue;
5528        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5529        if ((idx != i) && idx < 4)
5530          pshufhw = false;
5531        if ((idx != i) && idx > 3)
5532          pshuflw = false;
5533      }
5534      V1 = NewV;
5535      V2Used = false;
5536      BestLoQuad = 0;
5537      BestHiQuad = 1;
5538    }
5539
5540    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5541    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5542    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5543      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5544      unsigned TargetMask = 0;
5545      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5546                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5547      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5548                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5549      V1 = NewV.getOperand(0);
5550      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5551    }
5552  }
5553
5554  // If we have SSSE3, and all words of the result are from 1 input vector,
5555  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5556  // is present, fall back to case 4.
5557  if (Subtarget->hasSSSE3orAVX()) {
5558    SmallVector<SDValue,16> pshufbMask;
5559
5560    // If we have elements from both input vectors, set the high bit of the
5561    // shuffle mask element to zero out elements that come from V2 in the V1
5562    // mask, and elements that come from V1 in the V2 mask, so that the two
5563    // results can be OR'd together.
5564    bool TwoInputs = V1Used && V2Used;
5565    for (unsigned i = 0; i != 8; ++i) {
5566      int EltIdx = MaskVals[i] * 2;
5567      if (TwoInputs && (EltIdx >= 16)) {
5568        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5569        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5570        continue;
5571      }
5572      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5573      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5574    }
5575    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5576    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5577                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5578                                 MVT::v16i8, &pshufbMask[0], 16));
5579    if (!TwoInputs)
5580      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5581
5582    // Calculate the shuffle mask for the second input, shuffle it, and
5583    // OR it with the first shuffled input.
5584    pshufbMask.clear();
5585    for (unsigned i = 0; i != 8; ++i) {
5586      int EltIdx = MaskVals[i] * 2;
5587      if (EltIdx < 16) {
5588        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5589        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5590        continue;
5591      }
5592      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5593      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5594    }
5595    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5596    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5597                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5598                                 MVT::v16i8, &pshufbMask[0], 16));
5599    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5600    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5601  }
5602
5603  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5604  // and update MaskVals with new element order.
5605  BitVector InOrder(8);
5606  if (BestLoQuad >= 0) {
5607    SmallVector<int, 8> MaskV;
5608    for (int i = 0; i != 4; ++i) {
5609      int idx = MaskVals[i];
5610      if (idx < 0) {
5611        MaskV.push_back(-1);
5612        InOrder.set(i);
5613      } else if ((idx / 4) == BestLoQuad) {
5614        MaskV.push_back(idx & 3);
5615        InOrder.set(i);
5616      } else {
5617        MaskV.push_back(-1);
5618      }
5619    }
5620    for (unsigned i = 4; i != 8; ++i)
5621      MaskV.push_back(i);
5622    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5623                                &MaskV[0]);
5624
5625    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3orAVX())
5626      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5627                               NewV.getOperand(0),
5628                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5629                               DAG);
5630  }
5631
5632  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5633  // and update MaskVals with the new element order.
5634  if (BestHiQuad >= 0) {
5635    SmallVector<int, 8> MaskV;
5636    for (unsigned i = 0; i != 4; ++i)
5637      MaskV.push_back(i);
5638    for (unsigned i = 4; i != 8; ++i) {
5639      int idx = MaskVals[i];
5640      if (idx < 0) {
5641        MaskV.push_back(-1);
5642        InOrder.set(i);
5643      } else if ((idx / 4) == BestHiQuad) {
5644        MaskV.push_back((idx & 3) + 4);
5645        InOrder.set(i);
5646      } else {
5647        MaskV.push_back(-1);
5648      }
5649    }
5650    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5651                                &MaskV[0]);
5652
5653    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3orAVX())
5654      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5655                              NewV.getOperand(0),
5656                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5657                              DAG);
5658  }
5659
5660  // In case BestHi & BestLo were both -1, which means each quadword has a word
5661  // from each of the four input quadwords, calculate the InOrder bitvector now
5662  // before falling through to the insert/extract cleanup.
5663  if (BestLoQuad == -1 && BestHiQuad == -1) {
5664    NewV = V1;
5665    for (int i = 0; i != 8; ++i)
5666      if (MaskVals[i] < 0 || MaskVals[i] == i)
5667        InOrder.set(i);
5668  }
5669
5670  // The other elements are put in the right place using pextrw and pinsrw.
5671  for (unsigned i = 0; i != 8; ++i) {
5672    if (InOrder[i])
5673      continue;
5674    int EltIdx = MaskVals[i];
5675    if (EltIdx < 0)
5676      continue;
5677    SDValue ExtOp = (EltIdx < 8)
5678    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5679                  DAG.getIntPtrConstant(EltIdx))
5680    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5681                  DAG.getIntPtrConstant(EltIdx - 8));
5682    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5683                       DAG.getIntPtrConstant(i));
5684  }
5685  return NewV;
5686}
5687
5688// v16i8 shuffles - Prefer shuffles in the following order:
5689// 1. [ssse3] 1 x pshufb
5690// 2. [ssse3] 2 x pshufb + 1 x por
5691// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5692static
5693SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5694                                 SelectionDAG &DAG,
5695                                 const X86TargetLowering &TLI) {
5696  SDValue V1 = SVOp->getOperand(0);
5697  SDValue V2 = SVOp->getOperand(1);
5698  DebugLoc dl = SVOp->getDebugLoc();
5699  SmallVector<int, 16> MaskVals;
5700  SVOp->getMask(MaskVals);
5701
5702  // If we have SSSE3, case 1 is generated when all result bytes come from
5703  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5704  // present, fall back to case 3.
5705  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5706  bool V1Only = true;
5707  bool V2Only = true;
5708  for (unsigned i = 0; i < 16; ++i) {
5709    int EltIdx = MaskVals[i];
5710    if (EltIdx < 0)
5711      continue;
5712    if (EltIdx < 16)
5713      V2Only = false;
5714    else
5715      V1Only = false;
5716  }
5717
5718  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5719  if (TLI.getSubtarget()->hasSSSE3orAVX()) {
5720    SmallVector<SDValue,16> pshufbMask;
5721
5722    // If all result elements are from one input vector, then only translate
5723    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5724    //
5725    // Otherwise, we have elements from both input vectors, and must zero out
5726    // elements that come from V2 in the first mask, and V1 in the second mask
5727    // so that we can OR them together.
5728    bool TwoInputs = !(V1Only || V2Only);
5729    for (unsigned i = 0; i != 16; ++i) {
5730      int EltIdx = MaskVals[i];
5731      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5732        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5733        continue;
5734      }
5735      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5736    }
5737    // If all the elements are from V2, assign it to V1 and return after
5738    // building the first pshufb.
5739    if (V2Only)
5740      V1 = V2;
5741    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5742                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5743                                 MVT::v16i8, &pshufbMask[0], 16));
5744    if (!TwoInputs)
5745      return V1;
5746
5747    // Calculate the shuffle mask for the second input, shuffle it, and
5748    // OR it with the first shuffled input.
5749    pshufbMask.clear();
5750    for (unsigned i = 0; i != 16; ++i) {
5751      int EltIdx = MaskVals[i];
5752      if (EltIdx < 16) {
5753        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5754        continue;
5755      }
5756      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5757    }
5758    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5759                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5760                                 MVT::v16i8, &pshufbMask[0], 16));
5761    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5762  }
5763
5764  // No SSSE3 - Calculate in place words and then fix all out of place words
5765  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5766  // the 16 different words that comprise the two doublequadword input vectors.
5767  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5768  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5769  SDValue NewV = V2Only ? V2 : V1;
5770  for (int i = 0; i != 8; ++i) {
5771    int Elt0 = MaskVals[i*2];
5772    int Elt1 = MaskVals[i*2+1];
5773
5774    // This word of the result is all undef, skip it.
5775    if (Elt0 < 0 && Elt1 < 0)
5776      continue;
5777
5778    // This word of the result is already in the correct place, skip it.
5779    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5780      continue;
5781    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5782      continue;
5783
5784    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5785    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5786    SDValue InsElt;
5787
5788    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5789    // using a single extract together, load it and store it.
5790    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5791      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5792                           DAG.getIntPtrConstant(Elt1 / 2));
5793      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5794                        DAG.getIntPtrConstant(i));
5795      continue;
5796    }
5797
5798    // If Elt1 is defined, extract it from the appropriate source.  If the
5799    // source byte is not also odd, shift the extracted word left 8 bits
5800    // otherwise clear the bottom 8 bits if we need to do an or.
5801    if (Elt1 >= 0) {
5802      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5803                           DAG.getIntPtrConstant(Elt1 / 2));
5804      if ((Elt1 & 1) == 0)
5805        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5806                             DAG.getConstant(8,
5807                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5808      else if (Elt0 >= 0)
5809        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5810                             DAG.getConstant(0xFF00, MVT::i16));
5811    }
5812    // If Elt0 is defined, extract it from the appropriate source.  If the
5813    // source byte is not also even, shift the extracted word right 8 bits. If
5814    // Elt1 was also defined, OR the extracted values together before
5815    // inserting them in the result.
5816    if (Elt0 >= 0) {
5817      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5818                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5819      if ((Elt0 & 1) != 0)
5820        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5821                              DAG.getConstant(8,
5822                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5823      else if (Elt1 >= 0)
5824        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5825                             DAG.getConstant(0x00FF, MVT::i16));
5826      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5827                         : InsElt0;
5828    }
5829    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5830                       DAG.getIntPtrConstant(i));
5831  }
5832  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5833}
5834
5835/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5836/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5837/// done when every pair / quad of shuffle mask elements point to elements in
5838/// the right sequence. e.g.
5839/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5840static
5841SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5842                                 SelectionDAG &DAG, DebugLoc dl) {
5843  EVT VT = SVOp->getValueType(0);
5844  SDValue V1 = SVOp->getOperand(0);
5845  SDValue V2 = SVOp->getOperand(1);
5846  unsigned NumElems = VT.getVectorNumElements();
5847  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5848  EVT NewVT;
5849  switch (VT.getSimpleVT().SimpleTy) {
5850  default: assert(false && "Unexpected!");
5851  case MVT::v4f32: NewVT = MVT::v2f64; break;
5852  case MVT::v4i32: NewVT = MVT::v2i64; break;
5853  case MVT::v8i16: NewVT = MVT::v4i32; break;
5854  case MVT::v16i8: NewVT = MVT::v4i32; break;
5855  }
5856
5857  int Scale = NumElems / NewWidth;
5858  SmallVector<int, 8> MaskVec;
5859  for (unsigned i = 0; i < NumElems; i += Scale) {
5860    int StartIdx = -1;
5861    for (int j = 0; j < Scale; ++j) {
5862      int EltIdx = SVOp->getMaskElt(i+j);
5863      if (EltIdx < 0)
5864        continue;
5865      if (StartIdx == -1)
5866        StartIdx = EltIdx - (EltIdx % Scale);
5867      if (EltIdx != StartIdx + j)
5868        return SDValue();
5869    }
5870    if (StartIdx == -1)
5871      MaskVec.push_back(-1);
5872    else
5873      MaskVec.push_back(StartIdx / Scale);
5874  }
5875
5876  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5877  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5878  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5879}
5880
5881/// getVZextMovL - Return a zero-extending vector move low node.
5882///
5883static SDValue getVZextMovL(EVT VT, EVT OpVT,
5884                            SDValue SrcOp, SelectionDAG &DAG,
5885                            const X86Subtarget *Subtarget, DebugLoc dl) {
5886  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5887    LoadSDNode *LD = NULL;
5888    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5889      LD = dyn_cast<LoadSDNode>(SrcOp);
5890    if (!LD) {
5891      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5892      // instead.
5893      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5894      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5895          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5896          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5897          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5898        // PR2108
5899        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5900        return DAG.getNode(ISD::BITCAST, dl, VT,
5901                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5902                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5903                                                   OpVT,
5904                                                   SrcOp.getOperand(0)
5905                                                          .getOperand(0))));
5906      }
5907    }
5908  }
5909
5910  return DAG.getNode(ISD::BITCAST, dl, VT,
5911                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5912                                 DAG.getNode(ISD::BITCAST, dl,
5913                                             OpVT, SrcOp)));
5914}
5915
5916/// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
5917/// shuffle node referes to only one lane in the sources.
5918static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
5919  EVT VT = SVOp->getValueType(0);
5920  int NumElems = VT.getVectorNumElements();
5921  int HalfSize = NumElems/2;
5922  SmallVector<int, 16> M;
5923  SVOp->getMask(M);
5924  bool MatchA = false, MatchB = false;
5925
5926  for (int l = 0; l < NumElems*2; l += HalfSize) {
5927    if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
5928      MatchA = true;
5929      break;
5930    }
5931  }
5932
5933  for (int l = 0; l < NumElems*2; l += HalfSize) {
5934    if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
5935      MatchB = true;
5936      break;
5937    }
5938  }
5939
5940  return MatchA && MatchB;
5941}
5942
5943/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5944/// which could not be matched by any known target speficic shuffle
5945static SDValue
5946LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5947  if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
5948    // If each half of a vector shuffle node referes to only one lane in the
5949    // source vectors, extract each used 128-bit lane and shuffle them using
5950    // 128-bit shuffles. Then, concatenate the results. Otherwise leave
5951    // the work to the legalizer.
5952    DebugLoc dl = SVOp->getDebugLoc();
5953    EVT VT = SVOp->getValueType(0);
5954    int NumElems = VT.getVectorNumElements();
5955    int HalfSize = NumElems/2;
5956
5957    // Extract the reference for each half
5958    int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
5959    int FstVecOpNum = 0, SndVecOpNum = 0;
5960    for (int i = 0; i < HalfSize; ++i) {
5961      int Elt = SVOp->getMaskElt(i);
5962      if (SVOp->getMaskElt(i) < 0)
5963        continue;
5964      FstVecOpNum = Elt/NumElems;
5965      FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5966      break;
5967    }
5968    for (int i = HalfSize; i < NumElems; ++i) {
5969      int Elt = SVOp->getMaskElt(i);
5970      if (SVOp->getMaskElt(i) < 0)
5971        continue;
5972      SndVecOpNum = Elt/NumElems;
5973      SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5974      break;
5975    }
5976
5977    // Extract the subvectors
5978    SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
5979                      DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
5980    SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
5981                      DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
5982
5983    // Generate 128-bit shuffles
5984    SmallVector<int, 16> MaskV1, MaskV2;
5985    for (int i = 0; i < HalfSize; ++i) {
5986      int Elt = SVOp->getMaskElt(i);
5987      MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5988    }
5989    for (int i = HalfSize; i < NumElems; ++i) {
5990      int Elt = SVOp->getMaskElt(i);
5991      MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5992    }
5993
5994    EVT NVT = V1.getValueType();
5995    V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
5996    V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
5997
5998    // Concatenate the result back
5999    SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
6000                                   DAG.getConstant(0, MVT::i32), DAG, dl);
6001    return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
6002                              DAG, dl);
6003  }
6004
6005  return SDValue();
6006}
6007
6008/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6009/// 4 elements, and match them with several different shuffle types.
6010static SDValue
6011LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6012  SDValue V1 = SVOp->getOperand(0);
6013  SDValue V2 = SVOp->getOperand(1);
6014  DebugLoc dl = SVOp->getDebugLoc();
6015  EVT VT = SVOp->getValueType(0);
6016
6017  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6018
6019  SmallVector<std::pair<int, int>, 8> Locs;
6020  Locs.resize(4);
6021  SmallVector<int, 8> Mask1(4U, -1);
6022  SmallVector<int, 8> PermMask;
6023  SVOp->getMask(PermMask);
6024
6025  unsigned NumHi = 0;
6026  unsigned NumLo = 0;
6027  for (unsigned i = 0; i != 4; ++i) {
6028    int Idx = PermMask[i];
6029    if (Idx < 0) {
6030      Locs[i] = std::make_pair(-1, -1);
6031    } else {
6032      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6033      if (Idx < 4) {
6034        Locs[i] = std::make_pair(0, NumLo);
6035        Mask1[NumLo] = Idx;
6036        NumLo++;
6037      } else {
6038        Locs[i] = std::make_pair(1, NumHi);
6039        if (2+NumHi < 4)
6040          Mask1[2+NumHi] = Idx;
6041        NumHi++;
6042      }
6043    }
6044  }
6045
6046  if (NumLo <= 2 && NumHi <= 2) {
6047    // If no more than two elements come from either vector. This can be
6048    // implemented with two shuffles. First shuffle gather the elements.
6049    // The second shuffle, which takes the first shuffle as both of its
6050    // vector operands, put the elements into the right order.
6051    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6052
6053    SmallVector<int, 8> Mask2(4U, -1);
6054
6055    for (unsigned i = 0; i != 4; ++i) {
6056      if (Locs[i].first == -1)
6057        continue;
6058      else {
6059        unsigned Idx = (i < 2) ? 0 : 4;
6060        Idx += Locs[i].first * 2 + Locs[i].second;
6061        Mask2[i] = Idx;
6062      }
6063    }
6064
6065    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6066  } else if (NumLo == 3 || NumHi == 3) {
6067    // Otherwise, we must have three elements from one vector, call it X, and
6068    // one element from the other, call it Y.  First, use a shufps to build an
6069    // intermediate vector with the one element from Y and the element from X
6070    // that will be in the same half in the final destination (the indexes don't
6071    // matter). Then, use a shufps to build the final vector, taking the half
6072    // containing the element from Y from the intermediate, and the other half
6073    // from X.
6074    if (NumHi == 3) {
6075      // Normalize it so the 3 elements come from V1.
6076      CommuteVectorShuffleMask(PermMask, 4);
6077      std::swap(V1, V2);
6078    }
6079
6080    // Find the element from V2.
6081    unsigned HiIndex;
6082    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6083      int Val = PermMask[HiIndex];
6084      if (Val < 0)
6085        continue;
6086      if (Val >= 4)
6087        break;
6088    }
6089
6090    Mask1[0] = PermMask[HiIndex];
6091    Mask1[1] = -1;
6092    Mask1[2] = PermMask[HiIndex^1];
6093    Mask1[3] = -1;
6094    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6095
6096    if (HiIndex >= 2) {
6097      Mask1[0] = PermMask[0];
6098      Mask1[1] = PermMask[1];
6099      Mask1[2] = HiIndex & 1 ? 6 : 4;
6100      Mask1[3] = HiIndex & 1 ? 4 : 6;
6101      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6102    } else {
6103      Mask1[0] = HiIndex & 1 ? 2 : 0;
6104      Mask1[1] = HiIndex & 1 ? 0 : 2;
6105      Mask1[2] = PermMask[2];
6106      Mask1[3] = PermMask[3];
6107      if (Mask1[2] >= 0)
6108        Mask1[2] += 4;
6109      if (Mask1[3] >= 0)
6110        Mask1[3] += 4;
6111      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6112    }
6113  }
6114
6115  // Break it into (shuffle shuffle_hi, shuffle_lo).
6116  Locs.clear();
6117  Locs.resize(4);
6118  SmallVector<int,8> LoMask(4U, -1);
6119  SmallVector<int,8> HiMask(4U, -1);
6120
6121  SmallVector<int,8> *MaskPtr = &LoMask;
6122  unsigned MaskIdx = 0;
6123  unsigned LoIdx = 0;
6124  unsigned HiIdx = 2;
6125  for (unsigned i = 0; i != 4; ++i) {
6126    if (i == 2) {
6127      MaskPtr = &HiMask;
6128      MaskIdx = 1;
6129      LoIdx = 0;
6130      HiIdx = 2;
6131    }
6132    int Idx = PermMask[i];
6133    if (Idx < 0) {
6134      Locs[i] = std::make_pair(-1, -1);
6135    } else if (Idx < 4) {
6136      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6137      (*MaskPtr)[LoIdx] = Idx;
6138      LoIdx++;
6139    } else {
6140      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6141      (*MaskPtr)[HiIdx] = Idx;
6142      HiIdx++;
6143    }
6144  }
6145
6146  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6147  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6148  SmallVector<int, 8> MaskOps;
6149  for (unsigned i = 0; i != 4; ++i) {
6150    if (Locs[i].first == -1) {
6151      MaskOps.push_back(-1);
6152    } else {
6153      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6154      MaskOps.push_back(Idx);
6155    }
6156  }
6157  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6158}
6159
6160static bool MayFoldVectorLoad(SDValue V) {
6161  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6162    V = V.getOperand(0);
6163  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6164    V = V.getOperand(0);
6165  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6166      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6167    // BUILD_VECTOR (load), undef
6168    V = V.getOperand(0);
6169  if (MayFoldLoad(V))
6170    return true;
6171  return false;
6172}
6173
6174// FIXME: the version above should always be used. Since there's
6175// a bug where several vector shuffles can't be folded because the
6176// DAG is not updated during lowering and a node claims to have two
6177// uses while it only has one, use this version, and let isel match
6178// another instruction if the load really happens to have more than
6179// one use. Remove this version after this bug get fixed.
6180// rdar://8434668, PR8156
6181static bool RelaxedMayFoldVectorLoad(SDValue V) {
6182  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6183    V = V.getOperand(0);
6184  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6185    V = V.getOperand(0);
6186  if (ISD::isNormalLoad(V.getNode()))
6187    return true;
6188  return false;
6189}
6190
6191/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6192/// a vector extract, and if both can be later optimized into a single load.
6193/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6194/// here because otherwise a target specific shuffle node is going to be
6195/// emitted for this shuffle, and the optimization not done.
6196/// FIXME: This is probably not the best approach, but fix the problem
6197/// until the right path is decided.
6198static
6199bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6200                                         const TargetLowering &TLI) {
6201  EVT VT = V.getValueType();
6202  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6203
6204  // Be sure that the vector shuffle is present in a pattern like this:
6205  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6206  if (!V.hasOneUse())
6207    return false;
6208
6209  SDNode *N = *V.getNode()->use_begin();
6210  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6211    return false;
6212
6213  SDValue EltNo = N->getOperand(1);
6214  if (!isa<ConstantSDNode>(EltNo))
6215    return false;
6216
6217  // If the bit convert changed the number of elements, it is unsafe
6218  // to examine the mask.
6219  bool HasShuffleIntoBitcast = false;
6220  if (V.getOpcode() == ISD::BITCAST) {
6221    EVT SrcVT = V.getOperand(0).getValueType();
6222    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6223      return false;
6224    V = V.getOperand(0);
6225    HasShuffleIntoBitcast = true;
6226  }
6227
6228  // Select the input vector, guarding against out of range extract vector.
6229  unsigned NumElems = VT.getVectorNumElements();
6230  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6231  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6232  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6233
6234  // Skip one more bit_convert if necessary
6235  if (V.getOpcode() == ISD::BITCAST)
6236    V = V.getOperand(0);
6237
6238  if (ISD::isNormalLoad(V.getNode())) {
6239    // Is the original load suitable?
6240    LoadSDNode *LN0 = cast<LoadSDNode>(V);
6241
6242    // FIXME: avoid the multi-use bug that is preventing lots of
6243    // of foldings to be detected, this is still wrong of course, but
6244    // give the temporary desired behavior, and if it happens that
6245    // the load has real more uses, during isel it will not fold, and
6246    // will generate poor code.
6247    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
6248      return false;
6249
6250    if (!HasShuffleIntoBitcast)
6251      return true;
6252
6253    // If there's a bitcast before the shuffle, check if the load type and
6254    // alignment is valid.
6255    unsigned Align = LN0->getAlignment();
6256    unsigned NewAlign =
6257      TLI.getTargetData()->getABITypeAlignment(
6258                                    VT.getTypeForEVT(*DAG.getContext()));
6259
6260    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6261      return false;
6262  }
6263
6264  return true;
6265}
6266
6267static
6268SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6269  EVT VT = Op.getValueType();
6270
6271  // Canonizalize to v2f64.
6272  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6273  return DAG.getNode(ISD::BITCAST, dl, VT,
6274                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6275                                          V1, DAG));
6276}
6277
6278static
6279SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6280                        bool HasXMMInt) {
6281  SDValue V1 = Op.getOperand(0);
6282  SDValue V2 = Op.getOperand(1);
6283  EVT VT = Op.getValueType();
6284
6285  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6286
6287  if (HasXMMInt && VT == MVT::v2f64)
6288    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6289
6290  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6291  return DAG.getNode(ISD::BITCAST, dl, VT,
6292                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6293                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6294                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6295}
6296
6297static
6298SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6299  SDValue V1 = Op.getOperand(0);
6300  SDValue V2 = Op.getOperand(1);
6301  EVT VT = Op.getValueType();
6302
6303  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6304         "unsupported shuffle type");
6305
6306  if (V2.getOpcode() == ISD::UNDEF)
6307    V2 = V1;
6308
6309  // v4i32 or v4f32
6310  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6311}
6312
6313static inline unsigned getSHUFPOpcode(EVT VT) {
6314  switch(VT.getSimpleVT().SimpleTy) {
6315  case MVT::v8i32: // Use fp unit for int unpack.
6316  case MVT::v8f32:
6317  case MVT::v4i32: // Use fp unit for int unpack.
6318  case MVT::v4f32: return X86ISD::SHUFPS;
6319  case MVT::v4i64: // Use fp unit for int unpack.
6320  case MVT::v4f64:
6321  case MVT::v2i64: // Use fp unit for int unpack.
6322  case MVT::v2f64: return X86ISD::SHUFPD;
6323  default:
6324    llvm_unreachable("Unknown type for shufp*");
6325  }
6326  return 0;
6327}
6328
6329static
6330SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasXMMInt) {
6331  SDValue V1 = Op.getOperand(0);
6332  SDValue V2 = Op.getOperand(1);
6333  EVT VT = Op.getValueType();
6334  unsigned NumElems = VT.getVectorNumElements();
6335
6336  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6337  // operand of these instructions is only memory, so check if there's a
6338  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6339  // same masks.
6340  bool CanFoldLoad = false;
6341
6342  // Trivial case, when V2 comes from a load.
6343  if (MayFoldVectorLoad(V2))
6344    CanFoldLoad = true;
6345
6346  // When V1 is a load, it can be folded later into a store in isel, example:
6347  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6348  //    turns into:
6349  //  (MOVLPSmr addr:$src1, VR128:$src2)
6350  // So, recognize this potential and also use MOVLPS or MOVLPD
6351  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6352    CanFoldLoad = true;
6353
6354  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6355  if (CanFoldLoad) {
6356    if (HasXMMInt && NumElems == 2)
6357      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6358
6359    if (NumElems == 4)
6360      // If we don't care about the second element, procede to use movss.
6361      if (SVOp->getMaskElt(1) != -1)
6362        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6363  }
6364
6365  // movl and movlp will both match v2i64, but v2i64 is never matched by
6366  // movl earlier because we make it strict to avoid messing with the movlp load
6367  // folding logic (see the code above getMOVLP call). Match it here then,
6368  // this is horrible, but will stay like this until we move all shuffle
6369  // matching to x86 specific nodes. Note that for the 1st condition all
6370  // types are matched with movsd.
6371  if (HasXMMInt) {
6372    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6373    // as to remove this logic from here, as much as possible
6374    if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6375      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6376    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6377  }
6378
6379  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6380
6381  // Invert the operand order and use SHUFPS to match it.
6382  return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V2, V1,
6383                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6384}
6385
6386static
6387SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6388                               const TargetLowering &TLI,
6389                               const X86Subtarget *Subtarget) {
6390  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6391  EVT VT = Op.getValueType();
6392  DebugLoc dl = Op.getDebugLoc();
6393  SDValue V1 = Op.getOperand(0);
6394  SDValue V2 = Op.getOperand(1);
6395
6396  if (isZeroShuffle(SVOp))
6397    return getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
6398
6399  // Handle splat operations
6400  if (SVOp->isSplat()) {
6401    unsigned NumElem = VT.getVectorNumElements();
6402    int Size = VT.getSizeInBits();
6403    // Special case, this is the only place now where it's allowed to return
6404    // a vector_shuffle operation without using a target specific node, because
6405    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6406    // this be moved to DAGCombine instead?
6407    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6408      return Op;
6409
6410    // Use vbroadcast whenever the splat comes from a foldable load
6411    SDValue LD = isVectorBroadcast(Op, Subtarget->hasAVX2());
6412    if (Subtarget->hasAVX() && LD.getNode())
6413      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
6414
6415    // Handle splats by matching through known shuffle masks
6416    if ((Size == 128 && NumElem <= 4) ||
6417        (Size == 256 && NumElem < 8))
6418      return SDValue();
6419
6420    // All remaning splats are promoted to target supported vector shuffles.
6421    return PromoteSplat(SVOp, DAG);
6422  }
6423
6424  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6425  // do it!
6426  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6427    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6428    if (NewOp.getNode())
6429      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6430  } else if ((VT == MVT::v4i32 ||
6431             (VT == MVT::v4f32 && Subtarget->hasXMMInt()))) {
6432    // FIXME: Figure out a cleaner way to do this.
6433    // Try to make use of movq to zero out the top part.
6434    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6435      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6436      if (NewOp.getNode()) {
6437        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6438          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6439                              DAG, Subtarget, dl);
6440      }
6441    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6442      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6443      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6444        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6445                            DAG, Subtarget, dl);
6446    }
6447  }
6448  return SDValue();
6449}
6450
6451SDValue
6452X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6453  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6454  SDValue V1 = Op.getOperand(0);
6455  SDValue V2 = Op.getOperand(1);
6456  EVT VT = Op.getValueType();
6457  DebugLoc dl = Op.getDebugLoc();
6458  unsigned NumElems = VT.getVectorNumElements();
6459  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6460  bool V1IsSplat = false;
6461  bool V2IsSplat = false;
6462  bool HasXMMInt = Subtarget->hasXMMInt();
6463  bool HasAVX    = Subtarget->hasAVX();
6464  bool HasAVX2   = Subtarget->hasAVX2();
6465  MachineFunction &MF = DAG.getMachineFunction();
6466  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6467
6468  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6469
6470  assert(V1.getOpcode() != ISD::UNDEF && "Op 1 of shuffle should not be undef");
6471
6472  // Vector shuffle lowering takes 3 steps:
6473  //
6474  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6475  //    narrowing and commutation of operands should be handled.
6476  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6477  //    shuffle nodes.
6478  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6479  //    so the shuffle can be broken into other shuffles and the legalizer can
6480  //    try the lowering again.
6481  //
6482  // The general idea is that no vector_shuffle operation should be left to
6483  // be matched during isel, all of them must be converted to a target specific
6484  // node here.
6485
6486  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6487  // narrowing and commutation of operands should be handled. The actual code
6488  // doesn't include all of those, work in progress...
6489  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6490  if (NewOp.getNode())
6491    return NewOp;
6492
6493  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6494  // unpckh_undef). Only use pshufd if speed is more important than size.
6495  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp, HasAVX2))
6496    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6497  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp, HasAVX2))
6498    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6499
6500  if (X86::isMOVDDUPMask(SVOp) && Subtarget->hasSSE3orAVX() &&
6501      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6502    return getMOVDDup(Op, dl, V1, DAG);
6503
6504  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6505    return getMOVHighToLow(Op, dl, DAG);
6506
6507  // Use to match splats
6508  if (HasXMMInt && X86::isUNPCKHMask(SVOp, HasAVX2) && V2IsUndef &&
6509      (VT == MVT::v2f64 || VT == MVT::v2i64))
6510    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6511
6512  if (X86::isPSHUFDMask(SVOp)) {
6513    // The actual implementation will match the mask in the if above and then
6514    // during isel it can match several different instructions, not only pshufd
6515    // as its name says, sad but true, emulate the behavior for now...
6516    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6517        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6518
6519    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6520
6521    if (HasXMMInt && (VT == MVT::v4f32 || VT == MVT::v4i32))
6522      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6523
6524    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V1,
6525                                TargetMask, DAG);
6526  }
6527
6528  // Check if this can be converted into a logical shift.
6529  bool isLeft = false;
6530  unsigned ShAmt = 0;
6531  SDValue ShVal;
6532  bool isShift = HasXMMInt && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6533  if (isShift && ShVal.hasOneUse()) {
6534    // If the shifted value has multiple uses, it may be cheaper to use
6535    // v_set0 + movlhps or movhlps, etc.
6536    EVT EltVT = VT.getVectorElementType();
6537    ShAmt *= EltVT.getSizeInBits();
6538    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6539  }
6540
6541  if (X86::isMOVLMask(SVOp)) {
6542    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6543      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6544    if (!X86::isMOVLPMask(SVOp)) {
6545      if (HasXMMInt && (VT == MVT::v2i64 || VT == MVT::v2f64))
6546        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6547
6548      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6549        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6550    }
6551  }
6552
6553  // FIXME: fold these into legal mask.
6554  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp, HasAVX2))
6555    return getMOVLowToHigh(Op, dl, DAG, HasXMMInt);
6556
6557  if (X86::isMOVHLPSMask(SVOp))
6558    return getMOVHighToLow(Op, dl, DAG);
6559
6560  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6561    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6562
6563  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6564    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6565
6566  if (X86::isMOVLPMask(SVOp))
6567    return getMOVLP(Op, dl, DAG, HasXMMInt);
6568
6569  if (ShouldXformToMOVHLPS(SVOp) ||
6570      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6571    return CommuteVectorShuffle(SVOp, DAG);
6572
6573  if (isShift) {
6574    // No better options. Use a vshl / vsrl.
6575    EVT EltVT = VT.getVectorElementType();
6576    ShAmt *= EltVT.getSizeInBits();
6577    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6578  }
6579
6580  bool Commuted = false;
6581  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6582  // 1,1,1,1 -> v8i16 though.
6583  V1IsSplat = isSplatVector(V1.getNode());
6584  V2IsSplat = isSplatVector(V2.getNode());
6585
6586  // Canonicalize the splat or undef, if present, to be on the RHS.
6587  if (V1IsSplat && !V2IsSplat) {
6588    Op = CommuteVectorShuffle(SVOp, DAG);
6589    SVOp = cast<ShuffleVectorSDNode>(Op);
6590    V1 = SVOp->getOperand(0);
6591    V2 = SVOp->getOperand(1);
6592    std::swap(V1IsSplat, V2IsSplat);
6593    Commuted = true;
6594  }
6595
6596  SmallVector<int, 32> M;
6597  SVOp->getMask(M);
6598
6599  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6600    // Shuffling low element of v1 into undef, just return v1.
6601    if (V2IsUndef)
6602      return V1;
6603    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6604    // the instruction selector will not match, so get a canonical MOVL with
6605    // swapped operands to undo the commute.
6606    return getMOVL(DAG, dl, VT, V2, V1);
6607  }
6608
6609  if (isUNPCKLMask(M, VT, HasAVX2))
6610    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6611
6612  if (isUNPCKHMask(M, VT, HasAVX2))
6613    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6614
6615  if (V2IsSplat) {
6616    // Normalize mask so all entries that point to V2 points to its first
6617    // element then try to match unpck{h|l} again. If match, return a
6618    // new vector_shuffle with the corrected mask.
6619    SDValue NewMask = NormalizeMask(SVOp, DAG);
6620    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6621    if (NSVOp != SVOp) {
6622      if (X86::isUNPCKLMask(NSVOp, HasAVX2, true)) {
6623        return NewMask;
6624      } else if (X86::isUNPCKHMask(NSVOp, HasAVX2, true)) {
6625        return NewMask;
6626      }
6627    }
6628  }
6629
6630  if (Commuted) {
6631    // Commute is back and try unpck* again.
6632    // FIXME: this seems wrong.
6633    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6634    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6635
6636    if (X86::isUNPCKLMask(NewSVOp, HasAVX2))
6637      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V2, V1, DAG);
6638
6639    if (X86::isUNPCKHMask(NewSVOp, HasAVX2))
6640      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V2, V1, DAG);
6641  }
6642
6643  // Normalize the node to match x86 shuffle ops if needed
6644  if (!V2IsUndef && (isSHUFPMask(M, VT, /* Commuted */ true) ||
6645                     isVSHUFPYMask(M, VT, HasAVX, /* Commuted */ true)))
6646    return CommuteVectorShuffle(SVOp, DAG);
6647
6648  // The checks below are all present in isShuffleMaskLegal, but they are
6649  // inlined here right now to enable us to directly emit target specific
6650  // nodes, and remove one by one until they don't return Op anymore.
6651
6652  if (isPALIGNRMask(M, VT, Subtarget->hasSSSE3orAVX()))
6653    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6654                                getShufflePALIGNRImmediate(SVOp),
6655                                DAG);
6656
6657  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6658      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6659    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6660      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6661  }
6662
6663  if (isPSHUFHWMask(M, VT))
6664    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6665                                X86::getShufflePSHUFHWImmediate(SVOp),
6666                                DAG);
6667
6668  if (isPSHUFLWMask(M, VT))
6669    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6670                                X86::getShufflePSHUFLWImmediate(SVOp),
6671                                DAG);
6672
6673  if (isSHUFPMask(M, VT))
6674    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6675                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6676
6677  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6678    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6679  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6680    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6681
6682  //===--------------------------------------------------------------------===//
6683  // Generate target specific nodes for 128 or 256-bit shuffles only
6684  // supported in the AVX instruction set.
6685  //
6686
6687  // Handle VMOVDDUPY permutations
6688  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6689    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6690
6691  // Handle VPERMILPS/D* permutations
6692  if (isVPERMILPMask(M, VT, HasAVX))
6693    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6694                                getShuffleVPERMILPImmediate(SVOp), DAG);
6695
6696  // Handle VPERM2F128/VPERM2I128 permutations
6697  if (isVPERM2X128Mask(M, VT, HasAVX))
6698    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6699                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6700
6701  // Handle VSHUFPS/DY permutations
6702  if (isVSHUFPYMask(M, VT, HasAVX))
6703    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6704                                getShuffleVSHUFPYImmediate(SVOp), DAG);
6705
6706  //===--------------------------------------------------------------------===//
6707  // Since no target specific shuffle was selected for this generic one,
6708  // lower it into other known shuffles. FIXME: this isn't true yet, but
6709  // this is the plan.
6710  //
6711
6712  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6713  if (VT == MVT::v8i16) {
6714    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6715    if (NewOp.getNode())
6716      return NewOp;
6717  }
6718
6719  if (VT == MVT::v16i8) {
6720    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6721    if (NewOp.getNode())
6722      return NewOp;
6723  }
6724
6725  // Handle all 128-bit wide vectors with 4 elements, and match them with
6726  // several different shuffle types.
6727  if (NumElems == 4 && VT.getSizeInBits() == 128)
6728    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6729
6730  // Handle general 256-bit shuffles
6731  if (VT.is256BitVector())
6732    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6733
6734  return SDValue();
6735}
6736
6737SDValue
6738X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6739                                                SelectionDAG &DAG) const {
6740  EVT VT = Op.getValueType();
6741  DebugLoc dl = Op.getDebugLoc();
6742
6743  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6744    return SDValue();
6745
6746  if (VT.getSizeInBits() == 8) {
6747    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6748                                    Op.getOperand(0), Op.getOperand(1));
6749    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6750                                    DAG.getValueType(VT));
6751    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6752  } else if (VT.getSizeInBits() == 16) {
6753    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6754    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6755    if (Idx == 0)
6756      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6757                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6758                                     DAG.getNode(ISD::BITCAST, dl,
6759                                                 MVT::v4i32,
6760                                                 Op.getOperand(0)),
6761                                     Op.getOperand(1)));
6762    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6763                                    Op.getOperand(0), Op.getOperand(1));
6764    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6765                                    DAG.getValueType(VT));
6766    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6767  } else if (VT == MVT::f32) {
6768    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6769    // the result back to FR32 register. It's only worth matching if the
6770    // result has a single use which is a store or a bitcast to i32.  And in
6771    // the case of a store, it's not worth it if the index is a constant 0,
6772    // because a MOVSSmr can be used instead, which is smaller and faster.
6773    if (!Op.hasOneUse())
6774      return SDValue();
6775    SDNode *User = *Op.getNode()->use_begin();
6776    if ((User->getOpcode() != ISD::STORE ||
6777         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6778          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6779        (User->getOpcode() != ISD::BITCAST ||
6780         User->getValueType(0) != MVT::i32))
6781      return SDValue();
6782    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6783                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6784                                              Op.getOperand(0)),
6785                                              Op.getOperand(1));
6786    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6787  } else if (VT == MVT::i32 || VT == MVT::i64) {
6788    // ExtractPS/pextrq works with constant index.
6789    if (isa<ConstantSDNode>(Op.getOperand(1)))
6790      return Op;
6791  }
6792  return SDValue();
6793}
6794
6795
6796SDValue
6797X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6798                                           SelectionDAG &DAG) const {
6799  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6800    return SDValue();
6801
6802  SDValue Vec = Op.getOperand(0);
6803  EVT VecVT = Vec.getValueType();
6804
6805  // If this is a 256-bit vector result, first extract the 128-bit vector and
6806  // then extract the element from the 128-bit vector.
6807  if (VecVT.getSizeInBits() == 256) {
6808    DebugLoc dl = Op.getNode()->getDebugLoc();
6809    unsigned NumElems = VecVT.getVectorNumElements();
6810    SDValue Idx = Op.getOperand(1);
6811    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6812
6813    // Get the 128-bit vector.
6814    bool Upper = IdxVal >= NumElems/2;
6815    Vec = Extract128BitVector(Vec,
6816                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6817
6818    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6819                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6820  }
6821
6822  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6823
6824  if (Subtarget->hasSSE41orAVX()) {
6825    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6826    if (Res.getNode())
6827      return Res;
6828  }
6829
6830  EVT VT = Op.getValueType();
6831  DebugLoc dl = Op.getDebugLoc();
6832  // TODO: handle v16i8.
6833  if (VT.getSizeInBits() == 16) {
6834    SDValue Vec = Op.getOperand(0);
6835    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6836    if (Idx == 0)
6837      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6838                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6839                                     DAG.getNode(ISD::BITCAST, dl,
6840                                                 MVT::v4i32, Vec),
6841                                     Op.getOperand(1)));
6842    // Transform it so it match pextrw which produces a 32-bit result.
6843    EVT EltVT = MVT::i32;
6844    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6845                                    Op.getOperand(0), Op.getOperand(1));
6846    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6847                                    DAG.getValueType(VT));
6848    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6849  } else if (VT.getSizeInBits() == 32) {
6850    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6851    if (Idx == 0)
6852      return Op;
6853
6854    // SHUFPS the element to the lowest double word, then movss.
6855    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6856    EVT VVT = Op.getOperand(0).getValueType();
6857    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6858                                       DAG.getUNDEF(VVT), Mask);
6859    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6860                       DAG.getIntPtrConstant(0));
6861  } else if (VT.getSizeInBits() == 64) {
6862    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6863    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6864    //        to match extract_elt for f64.
6865    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6866    if (Idx == 0)
6867      return Op;
6868
6869    // UNPCKHPD the element to the lowest double word, then movsd.
6870    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6871    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6872    int Mask[2] = { 1, -1 };
6873    EVT VVT = Op.getOperand(0).getValueType();
6874    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6875                                       DAG.getUNDEF(VVT), Mask);
6876    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6877                       DAG.getIntPtrConstant(0));
6878  }
6879
6880  return SDValue();
6881}
6882
6883SDValue
6884X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6885                                               SelectionDAG &DAG) const {
6886  EVT VT = Op.getValueType();
6887  EVT EltVT = VT.getVectorElementType();
6888  DebugLoc dl = Op.getDebugLoc();
6889
6890  SDValue N0 = Op.getOperand(0);
6891  SDValue N1 = Op.getOperand(1);
6892  SDValue N2 = Op.getOperand(2);
6893
6894  if (VT.getSizeInBits() == 256)
6895    return SDValue();
6896
6897  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6898      isa<ConstantSDNode>(N2)) {
6899    unsigned Opc;
6900    if (VT == MVT::v8i16)
6901      Opc = X86ISD::PINSRW;
6902    else if (VT == MVT::v16i8)
6903      Opc = X86ISD::PINSRB;
6904    else
6905      Opc = X86ISD::PINSRB;
6906
6907    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6908    // argument.
6909    if (N1.getValueType() != MVT::i32)
6910      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6911    if (N2.getValueType() != MVT::i32)
6912      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6913    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6914  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6915    // Bits [7:6] of the constant are the source select.  This will always be
6916    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6917    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6918    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6919    // Bits [5:4] of the constant are the destination select.  This is the
6920    //  value of the incoming immediate.
6921    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6922    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6923    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6924    // Create this as a scalar to vector..
6925    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6926    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6927  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6928             isa<ConstantSDNode>(N2)) {
6929    // PINSR* works with constant index.
6930    return Op;
6931  }
6932  return SDValue();
6933}
6934
6935SDValue
6936X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6937  EVT VT = Op.getValueType();
6938  EVT EltVT = VT.getVectorElementType();
6939
6940  DebugLoc dl = Op.getDebugLoc();
6941  SDValue N0 = Op.getOperand(0);
6942  SDValue N1 = Op.getOperand(1);
6943  SDValue N2 = Op.getOperand(2);
6944
6945  // If this is a 256-bit vector result, first extract the 128-bit vector,
6946  // insert the element into the extracted half and then place it back.
6947  if (VT.getSizeInBits() == 256) {
6948    if (!isa<ConstantSDNode>(N2))
6949      return SDValue();
6950
6951    // Get the desired 128-bit vector half.
6952    unsigned NumElems = VT.getVectorNumElements();
6953    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6954    bool Upper = IdxVal >= NumElems/2;
6955    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6956    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6957
6958    // Insert the element into the desired half.
6959    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6960                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6961
6962    // Insert the changed part back to the 256-bit vector
6963    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6964  }
6965
6966  if (Subtarget->hasSSE41orAVX())
6967    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6968
6969  if (EltVT == MVT::i8)
6970    return SDValue();
6971
6972  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6973    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6974    // as its second argument.
6975    if (N1.getValueType() != MVT::i32)
6976      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6977    if (N2.getValueType() != MVT::i32)
6978      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6979    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6980  }
6981  return SDValue();
6982}
6983
6984SDValue
6985X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6986  LLVMContext *Context = DAG.getContext();
6987  DebugLoc dl = Op.getDebugLoc();
6988  EVT OpVT = Op.getValueType();
6989
6990  // If this is a 256-bit vector result, first insert into a 128-bit
6991  // vector and then insert into the 256-bit vector.
6992  if (OpVT.getSizeInBits() > 128) {
6993    // Insert into a 128-bit vector.
6994    EVT VT128 = EVT::getVectorVT(*Context,
6995                                 OpVT.getVectorElementType(),
6996                                 OpVT.getVectorNumElements() / 2);
6997
6998    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6999
7000    // Insert the 128-bit vector.
7001    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7002                              DAG.getConstant(0, MVT::i32),
7003                              DAG, dl);
7004  }
7005
7006  if (Op.getValueType() == MVT::v1i64 &&
7007      Op.getOperand(0).getValueType() == MVT::i64)
7008    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7009
7010  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7011  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7012         "Expected an SSE type!");
7013  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7014                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7015}
7016
7017// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7018// a simple subregister reference or explicit instructions to grab
7019// upper bits of a vector.
7020SDValue
7021X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7022  if (Subtarget->hasAVX()) {
7023    DebugLoc dl = Op.getNode()->getDebugLoc();
7024    SDValue Vec = Op.getNode()->getOperand(0);
7025    SDValue Idx = Op.getNode()->getOperand(1);
7026
7027    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7028        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7029        return Extract128BitVector(Vec, Idx, DAG, dl);
7030    }
7031  }
7032  return SDValue();
7033}
7034
7035// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7036// simple superregister reference or explicit instructions to insert
7037// the upper bits of a vector.
7038SDValue
7039X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7040  if (Subtarget->hasAVX()) {
7041    DebugLoc dl = Op.getNode()->getDebugLoc();
7042    SDValue Vec = Op.getNode()->getOperand(0);
7043    SDValue SubVec = Op.getNode()->getOperand(1);
7044    SDValue Idx = Op.getNode()->getOperand(2);
7045
7046    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7047        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7048      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7049    }
7050  }
7051  return SDValue();
7052}
7053
7054// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7055// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7056// one of the above mentioned nodes. It has to be wrapped because otherwise
7057// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7058// be used to form addressing mode. These wrapped nodes will be selected
7059// into MOV32ri.
7060SDValue
7061X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7062  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7063
7064  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7065  // global base reg.
7066  unsigned char OpFlag = 0;
7067  unsigned WrapperKind = X86ISD::Wrapper;
7068  CodeModel::Model M = getTargetMachine().getCodeModel();
7069
7070  if (Subtarget->isPICStyleRIPRel() &&
7071      (M == CodeModel::Small || M == CodeModel::Kernel))
7072    WrapperKind = X86ISD::WrapperRIP;
7073  else if (Subtarget->isPICStyleGOT())
7074    OpFlag = X86II::MO_GOTOFF;
7075  else if (Subtarget->isPICStyleStubPIC())
7076    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7077
7078  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7079                                             CP->getAlignment(),
7080                                             CP->getOffset(), OpFlag);
7081  DebugLoc DL = CP->getDebugLoc();
7082  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7083  // With PIC, the address is actually $g + Offset.
7084  if (OpFlag) {
7085    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7086                         DAG.getNode(X86ISD::GlobalBaseReg,
7087                                     DebugLoc(), getPointerTy()),
7088                         Result);
7089  }
7090
7091  return Result;
7092}
7093
7094SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7095  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7096
7097  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7098  // global base reg.
7099  unsigned char OpFlag = 0;
7100  unsigned WrapperKind = X86ISD::Wrapper;
7101  CodeModel::Model M = getTargetMachine().getCodeModel();
7102
7103  if (Subtarget->isPICStyleRIPRel() &&
7104      (M == CodeModel::Small || M == CodeModel::Kernel))
7105    WrapperKind = X86ISD::WrapperRIP;
7106  else if (Subtarget->isPICStyleGOT())
7107    OpFlag = X86II::MO_GOTOFF;
7108  else if (Subtarget->isPICStyleStubPIC())
7109    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7110
7111  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7112                                          OpFlag);
7113  DebugLoc DL = JT->getDebugLoc();
7114  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7115
7116  // With PIC, the address is actually $g + Offset.
7117  if (OpFlag)
7118    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7119                         DAG.getNode(X86ISD::GlobalBaseReg,
7120                                     DebugLoc(), getPointerTy()),
7121                         Result);
7122
7123  return Result;
7124}
7125
7126SDValue
7127X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7128  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7129
7130  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7131  // global base reg.
7132  unsigned char OpFlag = 0;
7133  unsigned WrapperKind = X86ISD::Wrapper;
7134  CodeModel::Model M = getTargetMachine().getCodeModel();
7135
7136  if (Subtarget->isPICStyleRIPRel() &&
7137      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7138    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7139      OpFlag = X86II::MO_GOTPCREL;
7140    WrapperKind = X86ISD::WrapperRIP;
7141  } else if (Subtarget->isPICStyleGOT()) {
7142    OpFlag = X86II::MO_GOT;
7143  } else if (Subtarget->isPICStyleStubPIC()) {
7144    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7145  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7146    OpFlag = X86II::MO_DARWIN_NONLAZY;
7147  }
7148
7149  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7150
7151  DebugLoc DL = Op.getDebugLoc();
7152  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7153
7154
7155  // With PIC, the address is actually $g + Offset.
7156  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7157      !Subtarget->is64Bit()) {
7158    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7159                         DAG.getNode(X86ISD::GlobalBaseReg,
7160                                     DebugLoc(), getPointerTy()),
7161                         Result);
7162  }
7163
7164  // For symbols that require a load from a stub to get the address, emit the
7165  // load.
7166  if (isGlobalStubReference(OpFlag))
7167    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7168                         MachinePointerInfo::getGOT(), false, false, false, 0);
7169
7170  return Result;
7171}
7172
7173SDValue
7174X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7175  // Create the TargetBlockAddressAddress node.
7176  unsigned char OpFlags =
7177    Subtarget->ClassifyBlockAddressReference();
7178  CodeModel::Model M = getTargetMachine().getCodeModel();
7179  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7180  DebugLoc dl = Op.getDebugLoc();
7181  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7182                                       /*isTarget=*/true, OpFlags);
7183
7184  if (Subtarget->isPICStyleRIPRel() &&
7185      (M == CodeModel::Small || M == CodeModel::Kernel))
7186    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7187  else
7188    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7189
7190  // With PIC, the address is actually $g + Offset.
7191  if (isGlobalRelativeToPICBase(OpFlags)) {
7192    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7193                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7194                         Result);
7195  }
7196
7197  return Result;
7198}
7199
7200SDValue
7201X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7202                                      int64_t Offset,
7203                                      SelectionDAG &DAG) const {
7204  // Create the TargetGlobalAddress node, folding in the constant
7205  // offset if it is legal.
7206  unsigned char OpFlags =
7207    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7208  CodeModel::Model M = getTargetMachine().getCodeModel();
7209  SDValue Result;
7210  if (OpFlags == X86II::MO_NO_FLAG &&
7211      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7212    // A direct static reference to a global.
7213    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7214    Offset = 0;
7215  } else {
7216    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7217  }
7218
7219  if (Subtarget->isPICStyleRIPRel() &&
7220      (M == CodeModel::Small || M == CodeModel::Kernel))
7221    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7222  else
7223    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7224
7225  // With PIC, the address is actually $g + Offset.
7226  if (isGlobalRelativeToPICBase(OpFlags)) {
7227    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7228                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7229                         Result);
7230  }
7231
7232  // For globals that require a load from a stub to get the address, emit the
7233  // load.
7234  if (isGlobalStubReference(OpFlags))
7235    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7236                         MachinePointerInfo::getGOT(), false, false, false, 0);
7237
7238  // If there was a non-zero offset that we didn't fold, create an explicit
7239  // addition for it.
7240  if (Offset != 0)
7241    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7242                         DAG.getConstant(Offset, getPointerTy()));
7243
7244  return Result;
7245}
7246
7247SDValue
7248X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7249  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7250  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7251  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7252}
7253
7254static SDValue
7255GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7256           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7257           unsigned char OperandFlags) {
7258  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7259  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7260  DebugLoc dl = GA->getDebugLoc();
7261  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7262                                           GA->getValueType(0),
7263                                           GA->getOffset(),
7264                                           OperandFlags);
7265  if (InFlag) {
7266    SDValue Ops[] = { Chain,  TGA, *InFlag };
7267    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7268  } else {
7269    SDValue Ops[]  = { Chain, TGA };
7270    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7271  }
7272
7273  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7274  MFI->setAdjustsStack(true);
7275
7276  SDValue Flag = Chain.getValue(1);
7277  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7278}
7279
7280// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7281static SDValue
7282LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7283                                const EVT PtrVT) {
7284  SDValue InFlag;
7285  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7286  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7287                                     DAG.getNode(X86ISD::GlobalBaseReg,
7288                                                 DebugLoc(), PtrVT), InFlag);
7289  InFlag = Chain.getValue(1);
7290
7291  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7292}
7293
7294// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7295static SDValue
7296LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7297                                const EVT PtrVT) {
7298  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7299                    X86::RAX, X86II::MO_TLSGD);
7300}
7301
7302// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7303// "local exec" model.
7304static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7305                                   const EVT PtrVT, TLSModel::Model model,
7306                                   bool is64Bit) {
7307  DebugLoc dl = GA->getDebugLoc();
7308
7309  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7310  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7311                                                         is64Bit ? 257 : 256));
7312
7313  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7314                                      DAG.getIntPtrConstant(0),
7315                                      MachinePointerInfo(Ptr),
7316                                      false, false, false, 0);
7317
7318  unsigned char OperandFlags = 0;
7319  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7320  // initialexec.
7321  unsigned WrapperKind = X86ISD::Wrapper;
7322  if (model == TLSModel::LocalExec) {
7323    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7324  } else if (is64Bit) {
7325    assert(model == TLSModel::InitialExec);
7326    OperandFlags = X86II::MO_GOTTPOFF;
7327    WrapperKind = X86ISD::WrapperRIP;
7328  } else {
7329    assert(model == TLSModel::InitialExec);
7330    OperandFlags = X86II::MO_INDNTPOFF;
7331  }
7332
7333  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7334  // exec)
7335  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7336                                           GA->getValueType(0),
7337                                           GA->getOffset(), OperandFlags);
7338  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7339
7340  if (model == TLSModel::InitialExec)
7341    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7342                         MachinePointerInfo::getGOT(), false, false, false, 0);
7343
7344  // The address of the thread local variable is the add of the thread
7345  // pointer with the offset of the variable.
7346  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7347}
7348
7349SDValue
7350X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7351
7352  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7353  const GlobalValue *GV = GA->getGlobal();
7354
7355  if (Subtarget->isTargetELF()) {
7356    // TODO: implement the "local dynamic" model
7357    // TODO: implement the "initial exec"model for pic executables
7358
7359    // If GV is an alias then use the aliasee for determining
7360    // thread-localness.
7361    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7362      GV = GA->resolveAliasedGlobal(false);
7363
7364    TLSModel::Model model
7365      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7366
7367    switch (model) {
7368      case TLSModel::GeneralDynamic:
7369      case TLSModel::LocalDynamic: // not implemented
7370        if (Subtarget->is64Bit())
7371          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7372        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7373
7374      case TLSModel::InitialExec:
7375      case TLSModel::LocalExec:
7376        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7377                                   Subtarget->is64Bit());
7378    }
7379  } else if (Subtarget->isTargetDarwin()) {
7380    // Darwin only has one model of TLS.  Lower to that.
7381    unsigned char OpFlag = 0;
7382    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7383                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7384
7385    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7386    // global base reg.
7387    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7388                  !Subtarget->is64Bit();
7389    if (PIC32)
7390      OpFlag = X86II::MO_TLVP_PIC_BASE;
7391    else
7392      OpFlag = X86II::MO_TLVP;
7393    DebugLoc DL = Op.getDebugLoc();
7394    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7395                                                GA->getValueType(0),
7396                                                GA->getOffset(), OpFlag);
7397    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7398
7399    // With PIC32, the address is actually $g + Offset.
7400    if (PIC32)
7401      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7402                           DAG.getNode(X86ISD::GlobalBaseReg,
7403                                       DebugLoc(), getPointerTy()),
7404                           Offset);
7405
7406    // Lowering the machine isd will make sure everything is in the right
7407    // location.
7408    SDValue Chain = DAG.getEntryNode();
7409    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7410    SDValue Args[] = { Chain, Offset };
7411    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7412
7413    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7414    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7415    MFI->setAdjustsStack(true);
7416
7417    // And our return value (tls address) is in the standard call return value
7418    // location.
7419    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7420    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7421                              Chain.getValue(1));
7422  }
7423
7424  assert(false &&
7425         "TLS not implemented for this target.");
7426
7427  llvm_unreachable("Unreachable");
7428  return SDValue();
7429}
7430
7431
7432/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
7433/// take a 2 x i32 value to shift plus a shift amount.
7434SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
7435  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7436  EVT VT = Op.getValueType();
7437  unsigned VTBits = VT.getSizeInBits();
7438  DebugLoc dl = Op.getDebugLoc();
7439  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7440  SDValue ShOpLo = Op.getOperand(0);
7441  SDValue ShOpHi = Op.getOperand(1);
7442  SDValue ShAmt  = Op.getOperand(2);
7443  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7444                                     DAG.getConstant(VTBits - 1, MVT::i8))
7445                       : DAG.getConstant(0, VT);
7446
7447  SDValue Tmp2, Tmp3;
7448  if (Op.getOpcode() == ISD::SHL_PARTS) {
7449    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7450    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7451  } else {
7452    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7453    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7454  }
7455
7456  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7457                                DAG.getConstant(VTBits, MVT::i8));
7458  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7459                             AndNode, DAG.getConstant(0, MVT::i8));
7460
7461  SDValue Hi, Lo;
7462  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7463  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7464  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7465
7466  if (Op.getOpcode() == ISD::SHL_PARTS) {
7467    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7468    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7469  } else {
7470    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7471    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7472  }
7473
7474  SDValue Ops[2] = { Lo, Hi };
7475  return DAG.getMergeValues(Ops, 2, dl);
7476}
7477
7478SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7479                                           SelectionDAG &DAG) const {
7480  EVT SrcVT = Op.getOperand(0).getValueType();
7481
7482  if (SrcVT.isVector())
7483    return SDValue();
7484
7485  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7486         "Unknown SINT_TO_FP to lower!");
7487
7488  // These are really Legal; return the operand so the caller accepts it as
7489  // Legal.
7490  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7491    return Op;
7492  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7493      Subtarget->is64Bit()) {
7494    return Op;
7495  }
7496
7497  DebugLoc dl = Op.getDebugLoc();
7498  unsigned Size = SrcVT.getSizeInBits()/8;
7499  MachineFunction &MF = DAG.getMachineFunction();
7500  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7501  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7502  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7503                               StackSlot,
7504                               MachinePointerInfo::getFixedStack(SSFI),
7505                               false, false, 0);
7506  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7507}
7508
7509SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7510                                     SDValue StackSlot,
7511                                     SelectionDAG &DAG) const {
7512  // Build the FILD
7513  DebugLoc DL = Op.getDebugLoc();
7514  SDVTList Tys;
7515  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7516  if (useSSE)
7517    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7518  else
7519    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7520
7521  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7522
7523  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7524  MachineMemOperand *MMO;
7525  if (FI) {
7526    int SSFI = FI->getIndex();
7527    MMO =
7528      DAG.getMachineFunction()
7529      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7530                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7531  } else {
7532    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7533    StackSlot = StackSlot.getOperand(1);
7534  }
7535  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7536  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7537                                           X86ISD::FILD, DL,
7538                                           Tys, Ops, array_lengthof(Ops),
7539                                           SrcVT, MMO);
7540
7541  if (useSSE) {
7542    Chain = Result.getValue(1);
7543    SDValue InFlag = Result.getValue(2);
7544
7545    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7546    // shouldn't be necessary except that RFP cannot be live across
7547    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7548    MachineFunction &MF = DAG.getMachineFunction();
7549    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7550    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7551    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7552    Tys = DAG.getVTList(MVT::Other);
7553    SDValue Ops[] = {
7554      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7555    };
7556    MachineMemOperand *MMO =
7557      DAG.getMachineFunction()
7558      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7559                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7560
7561    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7562                                    Ops, array_lengthof(Ops),
7563                                    Op.getValueType(), MMO);
7564    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7565                         MachinePointerInfo::getFixedStack(SSFI),
7566                         false, false, false, 0);
7567  }
7568
7569  return Result;
7570}
7571
7572// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7573SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7574                                               SelectionDAG &DAG) const {
7575  // This algorithm is not obvious. Here it is in C code, more or less:
7576  /*
7577    double uint64_to_double( uint32_t hi, uint32_t lo ) {
7578      static const __m128i exp = { 0x4330000045300000ULL, 0 };
7579      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7580
7581      // Copy ints to xmm registers.
7582      __m128i xh = _mm_cvtsi32_si128( hi );
7583      __m128i xl = _mm_cvtsi32_si128( lo );
7584
7585      // Combine into low half of a single xmm register.
7586      __m128i x = _mm_unpacklo_epi32( xh, xl );
7587      __m128d d;
7588      double sd;
7589
7590      // Merge in appropriate exponents to give the integer bits the right
7591      // magnitude.
7592      x = _mm_unpacklo_epi32( x, exp );
7593
7594      // Subtract away the biases to deal with the IEEE-754 double precision
7595      // implicit 1.
7596      d = _mm_sub_pd( (__m128d) x, bias );
7597
7598      // All conversions up to here are exact. The correctly rounded result is
7599      // calculated using the current rounding mode using the following
7600      // horizontal add.
7601      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7602      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
7603                                // store doesn't really need to be here (except
7604                                // maybe to zero the other double)
7605      return sd;
7606    }
7607  */
7608
7609  DebugLoc dl = Op.getDebugLoc();
7610  LLVMContext *Context = DAG.getContext();
7611
7612  // Build some magic constants.
7613  SmallVector<Constant*,4> CV0;
7614  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7615  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7616  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7617  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7618  Constant *C0 = ConstantVector::get(CV0);
7619  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7620
7621  SmallVector<Constant*,2> CV1;
7622  CV1.push_back(
7623    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7624  CV1.push_back(
7625    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7626  Constant *C1 = ConstantVector::get(CV1);
7627  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7628
7629  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7630                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7631                                        Op.getOperand(0),
7632                                        DAG.getIntPtrConstant(1)));
7633  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7634                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7635                                        Op.getOperand(0),
7636                                        DAG.getIntPtrConstant(0)));
7637  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7638  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7639                              MachinePointerInfo::getConstantPool(),
7640                              false, false, false, 16);
7641  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7642  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7643  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7644                              MachinePointerInfo::getConstantPool(),
7645                              false, false, false, 16);
7646  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7647
7648  // Add the halves; easiest way is to swap them into another reg first.
7649  int ShufMask[2] = { 1, -1 };
7650  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7651                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
7652  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7653  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7654                     DAG.getIntPtrConstant(0));
7655}
7656
7657// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7658SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7659                                               SelectionDAG &DAG) const {
7660  DebugLoc dl = Op.getDebugLoc();
7661  // FP constant to bias correct the final result.
7662  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7663                                   MVT::f64);
7664
7665  // Load the 32-bit value into an XMM register.
7666  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7667                             Op.getOperand(0));
7668
7669  // Zero out the upper parts of the register.
7670  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget->hasXMMInt(),
7671                                     DAG);
7672
7673  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7674                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7675                     DAG.getIntPtrConstant(0));
7676
7677  // Or the load with the bias.
7678  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7679                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7680                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7681                                                   MVT::v2f64, Load)),
7682                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7683                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7684                                                   MVT::v2f64, Bias)));
7685  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7686                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7687                   DAG.getIntPtrConstant(0));
7688
7689  // Subtract the bias.
7690  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7691
7692  // Handle final rounding.
7693  EVT DestVT = Op.getValueType();
7694
7695  if (DestVT.bitsLT(MVT::f64)) {
7696    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7697                       DAG.getIntPtrConstant(0));
7698  } else if (DestVT.bitsGT(MVT::f64)) {
7699    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7700  }
7701
7702  // Handle final rounding.
7703  return Sub;
7704}
7705
7706SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7707                                           SelectionDAG &DAG) const {
7708  SDValue N0 = Op.getOperand(0);
7709  DebugLoc dl = Op.getDebugLoc();
7710
7711  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7712  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7713  // the optimization here.
7714  if (DAG.SignBitIsZero(N0))
7715    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7716
7717  EVT SrcVT = N0.getValueType();
7718  EVT DstVT = Op.getValueType();
7719  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7720    return LowerUINT_TO_FP_i64(Op, DAG);
7721  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7722    return LowerUINT_TO_FP_i32(Op, DAG);
7723
7724  // Make a 64-bit buffer, and use it to build an FILD.
7725  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7726  if (SrcVT == MVT::i32) {
7727    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7728    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7729                                     getPointerTy(), StackSlot, WordOff);
7730    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7731                                  StackSlot, MachinePointerInfo(),
7732                                  false, false, 0);
7733    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7734                                  OffsetSlot, MachinePointerInfo(),
7735                                  false, false, 0);
7736    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7737    return Fild;
7738  }
7739
7740  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7741  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7742                                StackSlot, MachinePointerInfo(),
7743                               false, false, 0);
7744  // For i64 source, we need to add the appropriate power of 2 if the input
7745  // was negative.  This is the same as the optimization in
7746  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7747  // we must be careful to do the computation in x87 extended precision, not
7748  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7749  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7750  MachineMemOperand *MMO =
7751    DAG.getMachineFunction()
7752    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7753                          MachineMemOperand::MOLoad, 8, 8);
7754
7755  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7756  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7757  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7758                                         MVT::i64, MMO);
7759
7760  APInt FF(32, 0x5F800000ULL);
7761
7762  // Check whether the sign bit is set.
7763  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7764                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7765                                 ISD::SETLT);
7766
7767  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7768  SDValue FudgePtr = DAG.getConstantPool(
7769                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7770                                         getPointerTy());
7771
7772  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7773  SDValue Zero = DAG.getIntPtrConstant(0);
7774  SDValue Four = DAG.getIntPtrConstant(4);
7775  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7776                               Zero, Four);
7777  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7778
7779  // Load the value out, extending it from f32 to f80.
7780  // FIXME: Avoid the extend by constructing the right constant pool?
7781  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7782                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7783                                 MVT::f32, false, false, 4);
7784  // Extend everything to 80 bits to force it to be done on x87.
7785  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7786  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7787}
7788
7789std::pair<SDValue,SDValue> X86TargetLowering::
7790FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7791  DebugLoc DL = Op.getDebugLoc();
7792
7793  EVT DstTy = Op.getValueType();
7794
7795  if (!IsSigned) {
7796    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7797    DstTy = MVT::i64;
7798  }
7799
7800  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7801         DstTy.getSimpleVT() >= MVT::i16 &&
7802         "Unknown FP_TO_SINT to lower!");
7803
7804  // These are really Legal.
7805  if (DstTy == MVT::i32 &&
7806      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7807    return std::make_pair(SDValue(), SDValue());
7808  if (Subtarget->is64Bit() &&
7809      DstTy == MVT::i64 &&
7810      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7811    return std::make_pair(SDValue(), SDValue());
7812
7813  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7814  // stack slot.
7815  MachineFunction &MF = DAG.getMachineFunction();
7816  unsigned MemSize = DstTy.getSizeInBits()/8;
7817  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7818  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7819
7820
7821
7822  unsigned Opc;
7823  switch (DstTy.getSimpleVT().SimpleTy) {
7824  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7825  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7826  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7827  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7828  }
7829
7830  SDValue Chain = DAG.getEntryNode();
7831  SDValue Value = Op.getOperand(0);
7832  EVT TheVT = Op.getOperand(0).getValueType();
7833  if (isScalarFPTypeInSSEReg(TheVT)) {
7834    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7835    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7836                         MachinePointerInfo::getFixedStack(SSFI),
7837                         false, false, 0);
7838    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7839    SDValue Ops[] = {
7840      Chain, StackSlot, DAG.getValueType(TheVT)
7841    };
7842
7843    MachineMemOperand *MMO =
7844      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7845                              MachineMemOperand::MOLoad, MemSize, MemSize);
7846    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7847                                    DstTy, MMO);
7848    Chain = Value.getValue(1);
7849    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7850    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7851  }
7852
7853  MachineMemOperand *MMO =
7854    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7855                            MachineMemOperand::MOStore, MemSize, MemSize);
7856
7857  // Build the FP_TO_INT*_IN_MEM
7858  SDValue Ops[] = { Chain, Value, StackSlot };
7859  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7860                                         Ops, 3, DstTy, MMO);
7861
7862  return std::make_pair(FIST, StackSlot);
7863}
7864
7865SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7866                                           SelectionDAG &DAG) const {
7867  if (Op.getValueType().isVector())
7868    return SDValue();
7869
7870  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7871  SDValue FIST = Vals.first, StackSlot = Vals.second;
7872  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7873  if (FIST.getNode() == 0) return Op;
7874
7875  // Load the result.
7876  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7877                     FIST, StackSlot, MachinePointerInfo(),
7878                     false, false, false, 0);
7879}
7880
7881SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7882                                           SelectionDAG &DAG) const {
7883  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7884  SDValue FIST = Vals.first, StackSlot = Vals.second;
7885  assert(FIST.getNode() && "Unexpected failure");
7886
7887  // Load the result.
7888  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7889                     FIST, StackSlot, MachinePointerInfo(),
7890                     false, false, false, 0);
7891}
7892
7893SDValue X86TargetLowering::LowerFABS(SDValue Op,
7894                                     SelectionDAG &DAG) const {
7895  LLVMContext *Context = DAG.getContext();
7896  DebugLoc dl = Op.getDebugLoc();
7897  EVT VT = Op.getValueType();
7898  EVT EltVT = VT;
7899  if (VT.isVector())
7900    EltVT = VT.getVectorElementType();
7901  SmallVector<Constant*,4> CV;
7902  if (EltVT == MVT::f64) {
7903    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7904    CV.assign(2, C);
7905  } else {
7906    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7907    CV.assign(4, C);
7908  }
7909  Constant *C = ConstantVector::get(CV);
7910  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7911  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7912                             MachinePointerInfo::getConstantPool(),
7913                             false, false, false, 16);
7914  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7915}
7916
7917SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7918  LLVMContext *Context = DAG.getContext();
7919  DebugLoc dl = Op.getDebugLoc();
7920  EVT VT = Op.getValueType();
7921  EVT EltVT = VT;
7922  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7923  if (VT.isVector()) {
7924    EltVT = VT.getVectorElementType();
7925    NumElts = VT.getVectorNumElements();
7926  }
7927  SmallVector<Constant*,8> CV;
7928  if (EltVT == MVT::f64) {
7929    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7930    CV.assign(NumElts, C);
7931  } else {
7932    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7933    CV.assign(NumElts, C);
7934  }
7935  Constant *C = ConstantVector::get(CV);
7936  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7937  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7938                             MachinePointerInfo::getConstantPool(),
7939                             false, false, false, 16);
7940  if (VT.isVector()) {
7941    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7942    return DAG.getNode(ISD::BITCAST, dl, VT,
7943                       DAG.getNode(ISD::XOR, dl, XORVT,
7944                    DAG.getNode(ISD::BITCAST, dl, XORVT,
7945                                Op.getOperand(0)),
7946                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7947  } else {
7948    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7949  }
7950}
7951
7952SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7953  LLVMContext *Context = DAG.getContext();
7954  SDValue Op0 = Op.getOperand(0);
7955  SDValue Op1 = Op.getOperand(1);
7956  DebugLoc dl = Op.getDebugLoc();
7957  EVT VT = Op.getValueType();
7958  EVT SrcVT = Op1.getValueType();
7959
7960  // If second operand is smaller, extend it first.
7961  if (SrcVT.bitsLT(VT)) {
7962    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7963    SrcVT = VT;
7964  }
7965  // And if it is bigger, shrink it first.
7966  if (SrcVT.bitsGT(VT)) {
7967    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7968    SrcVT = VT;
7969  }
7970
7971  // At this point the operands and the result should have the same
7972  // type, and that won't be f80 since that is not custom lowered.
7973
7974  // First get the sign bit of second operand.
7975  SmallVector<Constant*,4> CV;
7976  if (SrcVT == MVT::f64) {
7977    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7978    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7979  } else {
7980    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7981    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7982    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7983    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7984  }
7985  Constant *C = ConstantVector::get(CV);
7986  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7987  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7988                              MachinePointerInfo::getConstantPool(),
7989                              false, false, false, 16);
7990  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7991
7992  // Shift sign bit right or left if the two operands have different types.
7993  if (SrcVT.bitsGT(VT)) {
7994    // Op0 is MVT::f32, Op1 is MVT::f64.
7995    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7996    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7997                          DAG.getConstant(32, MVT::i32));
7998    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7999    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8000                          DAG.getIntPtrConstant(0));
8001  }
8002
8003  // Clear first operand sign bit.
8004  CV.clear();
8005  if (VT == MVT::f64) {
8006    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8007    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8008  } else {
8009    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8010    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8011    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8012    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8013  }
8014  C = ConstantVector::get(CV);
8015  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8016  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8017                              MachinePointerInfo::getConstantPool(),
8018                              false, false, false, 16);
8019  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8020
8021  // Or the value with the sign bit.
8022  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8023}
8024
8025SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8026  SDValue N0 = Op.getOperand(0);
8027  DebugLoc dl = Op.getDebugLoc();
8028  EVT VT = Op.getValueType();
8029
8030  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8031  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8032                                  DAG.getConstant(1, VT));
8033  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8034}
8035
8036/// Emit nodes that will be selected as "test Op0,Op0", or something
8037/// equivalent.
8038SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8039                                    SelectionDAG &DAG) const {
8040  DebugLoc dl = Op.getDebugLoc();
8041
8042  // CF and OF aren't always set the way we want. Determine which
8043  // of these we need.
8044  bool NeedCF = false;
8045  bool NeedOF = false;
8046  switch (X86CC) {
8047  default: break;
8048  case X86::COND_A: case X86::COND_AE:
8049  case X86::COND_B: case X86::COND_BE:
8050    NeedCF = true;
8051    break;
8052  case X86::COND_G: case X86::COND_GE:
8053  case X86::COND_L: case X86::COND_LE:
8054  case X86::COND_O: case X86::COND_NO:
8055    NeedOF = true;
8056    break;
8057  }
8058
8059  // See if we can use the EFLAGS value from the operand instead of
8060  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8061  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8062  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8063    // Emit a CMP with 0, which is the TEST pattern.
8064    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8065                       DAG.getConstant(0, Op.getValueType()));
8066
8067  unsigned Opcode = 0;
8068  unsigned NumOperands = 0;
8069  switch (Op.getNode()->getOpcode()) {
8070  case ISD::ADD:
8071    // Due to an isel shortcoming, be conservative if this add is likely to be
8072    // selected as part of a load-modify-store instruction. When the root node
8073    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8074    // uses of other nodes in the match, such as the ADD in this case. This
8075    // leads to the ADD being left around and reselected, with the result being
8076    // two adds in the output.  Alas, even if none our users are stores, that
8077    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8078    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8079    // climbing the DAG back to the root, and it doesn't seem to be worth the
8080    // effort.
8081    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8082         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8083      if (UI->getOpcode() != ISD::CopyToReg &&
8084          UI->getOpcode() != ISD::SETCC &&
8085          UI->getOpcode() != ISD::STORE)
8086        goto default_case;
8087
8088    if (ConstantSDNode *C =
8089        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8090      // An add of one will be selected as an INC.
8091      if (C->getAPIntValue() == 1) {
8092        Opcode = X86ISD::INC;
8093        NumOperands = 1;
8094        break;
8095      }
8096
8097      // An add of negative one (subtract of one) will be selected as a DEC.
8098      if (C->getAPIntValue().isAllOnesValue()) {
8099        Opcode = X86ISD::DEC;
8100        NumOperands = 1;
8101        break;
8102      }
8103    }
8104
8105    // Otherwise use a regular EFLAGS-setting add.
8106    Opcode = X86ISD::ADD;
8107    NumOperands = 2;
8108    break;
8109  case ISD::AND: {
8110    // If the primary and result isn't used, don't bother using X86ISD::AND,
8111    // because a TEST instruction will be better.
8112    bool NonFlagUse = false;
8113    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8114           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8115      SDNode *User = *UI;
8116      unsigned UOpNo = UI.getOperandNo();
8117      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8118        // Look pass truncate.
8119        UOpNo = User->use_begin().getOperandNo();
8120        User = *User->use_begin();
8121      }
8122
8123      if (User->getOpcode() != ISD::BRCOND &&
8124          User->getOpcode() != ISD::SETCC &&
8125          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8126        NonFlagUse = true;
8127        break;
8128      }
8129    }
8130
8131    if (!NonFlagUse)
8132      break;
8133  }
8134    // FALL THROUGH
8135  case ISD::SUB:
8136  case ISD::OR:
8137  case ISD::XOR:
8138    // Due to the ISEL shortcoming noted above, be conservative if this op is
8139    // likely to be selected as part of a load-modify-store instruction.
8140    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8141           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8142      if (UI->getOpcode() == ISD::STORE)
8143        goto default_case;
8144
8145    // Otherwise use a regular EFLAGS-setting instruction.
8146    switch (Op.getNode()->getOpcode()) {
8147    default: llvm_unreachable("unexpected operator!");
8148    case ISD::SUB: Opcode = X86ISD::SUB; break;
8149    case ISD::OR:  Opcode = X86ISD::OR;  break;
8150    case ISD::XOR: Opcode = X86ISD::XOR; break;
8151    case ISD::AND: Opcode = X86ISD::AND; break;
8152    }
8153
8154    NumOperands = 2;
8155    break;
8156  case X86ISD::ADD:
8157  case X86ISD::SUB:
8158  case X86ISD::INC:
8159  case X86ISD::DEC:
8160  case X86ISD::OR:
8161  case X86ISD::XOR:
8162  case X86ISD::AND:
8163    return SDValue(Op.getNode(), 1);
8164  default:
8165  default_case:
8166    break;
8167  }
8168
8169  if (Opcode == 0)
8170    // Emit a CMP with 0, which is the TEST pattern.
8171    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8172                       DAG.getConstant(0, Op.getValueType()));
8173
8174  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8175  SmallVector<SDValue, 4> Ops;
8176  for (unsigned i = 0; i != NumOperands; ++i)
8177    Ops.push_back(Op.getOperand(i));
8178
8179  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8180  DAG.ReplaceAllUsesWith(Op, New);
8181  return SDValue(New.getNode(), 1);
8182}
8183
8184/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8185/// equivalent.
8186SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8187                                   SelectionDAG &DAG) const {
8188  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8189    if (C->getAPIntValue() == 0)
8190      return EmitTest(Op0, X86CC, DAG);
8191
8192  DebugLoc dl = Op0.getDebugLoc();
8193  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8194}
8195
8196/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8197/// if it's possible.
8198SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8199                                     DebugLoc dl, SelectionDAG &DAG) const {
8200  SDValue Op0 = And.getOperand(0);
8201  SDValue Op1 = And.getOperand(1);
8202  if (Op0.getOpcode() == ISD::TRUNCATE)
8203    Op0 = Op0.getOperand(0);
8204  if (Op1.getOpcode() == ISD::TRUNCATE)
8205    Op1 = Op1.getOperand(0);
8206
8207  SDValue LHS, RHS;
8208  if (Op1.getOpcode() == ISD::SHL)
8209    std::swap(Op0, Op1);
8210  if (Op0.getOpcode() == ISD::SHL) {
8211    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8212      if (And00C->getZExtValue() == 1) {
8213        // If we looked past a truncate, check that it's only truncating away
8214        // known zeros.
8215        unsigned BitWidth = Op0.getValueSizeInBits();
8216        unsigned AndBitWidth = And.getValueSizeInBits();
8217        if (BitWidth > AndBitWidth) {
8218          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8219          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8220          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8221            return SDValue();
8222        }
8223        LHS = Op1;
8224        RHS = Op0.getOperand(1);
8225      }
8226  } else if (Op1.getOpcode() == ISD::Constant) {
8227    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8228    uint64_t AndRHSVal = AndRHS->getZExtValue();
8229    SDValue AndLHS = Op0;
8230
8231    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8232      LHS = AndLHS.getOperand(0);
8233      RHS = AndLHS.getOperand(1);
8234    }
8235
8236    // Use BT if the immediate can't be encoded in a TEST instruction.
8237    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8238      LHS = AndLHS;
8239      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8240    }
8241  }
8242
8243  if (LHS.getNode()) {
8244    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8245    // instruction.  Since the shift amount is in-range-or-undefined, we know
8246    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8247    // the encoding for the i16 version is larger than the i32 version.
8248    // Also promote i16 to i32 for performance / code size reason.
8249    if (LHS.getValueType() == MVT::i8 ||
8250        LHS.getValueType() == MVT::i16)
8251      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8252
8253    // If the operand types disagree, extend the shift amount to match.  Since
8254    // BT ignores high bits (like shifts) we can use anyextend.
8255    if (LHS.getValueType() != RHS.getValueType())
8256      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8257
8258    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8259    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8260    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8261                       DAG.getConstant(Cond, MVT::i8), BT);
8262  }
8263
8264  return SDValue();
8265}
8266
8267SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8268
8269  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8270
8271  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8272  SDValue Op0 = Op.getOperand(0);
8273  SDValue Op1 = Op.getOperand(1);
8274  DebugLoc dl = Op.getDebugLoc();
8275  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8276
8277  // Optimize to BT if possible.
8278  // Lower (X & (1 << N)) == 0 to BT(X, N).
8279  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8280  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8281  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8282      Op1.getOpcode() == ISD::Constant &&
8283      cast<ConstantSDNode>(Op1)->isNullValue() &&
8284      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8285    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8286    if (NewSetCC.getNode())
8287      return NewSetCC;
8288  }
8289
8290  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8291  // these.
8292  if (Op1.getOpcode() == ISD::Constant &&
8293      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8294       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8295      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8296
8297    // If the input is a setcc, then reuse the input setcc or use a new one with
8298    // the inverted condition.
8299    if (Op0.getOpcode() == X86ISD::SETCC) {
8300      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8301      bool Invert = (CC == ISD::SETNE) ^
8302        cast<ConstantSDNode>(Op1)->isNullValue();
8303      if (!Invert) return Op0;
8304
8305      CCode = X86::GetOppositeBranchCondition(CCode);
8306      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8307                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8308    }
8309  }
8310
8311  bool isFP = Op1.getValueType().isFloatingPoint();
8312  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8313  if (X86CC == X86::COND_INVALID)
8314    return SDValue();
8315
8316  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8317  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8318                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8319}
8320
8321// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8322// ones, and then concatenate the result back.
8323static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8324  EVT VT = Op.getValueType();
8325
8326  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8327         "Unsupported value type for operation");
8328
8329  int NumElems = VT.getVectorNumElements();
8330  DebugLoc dl = Op.getDebugLoc();
8331  SDValue CC = Op.getOperand(2);
8332  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8333  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8334
8335  // Extract the LHS vectors
8336  SDValue LHS = Op.getOperand(0);
8337  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8338  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8339
8340  // Extract the RHS vectors
8341  SDValue RHS = Op.getOperand(1);
8342  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8343  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8344
8345  // Issue the operation on the smaller types and concatenate the result back
8346  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8347  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8348  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8349                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8350                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8351}
8352
8353
8354SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8355  SDValue Cond;
8356  SDValue Op0 = Op.getOperand(0);
8357  SDValue Op1 = Op.getOperand(1);
8358  SDValue CC = Op.getOperand(2);
8359  EVT VT = Op.getValueType();
8360  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8361  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8362  DebugLoc dl = Op.getDebugLoc();
8363
8364  if (isFP) {
8365    unsigned SSECC = 8;
8366    EVT EltVT = Op0.getValueType().getVectorElementType();
8367    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8368
8369    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8370    bool Swap = false;
8371
8372    // SSE Condition code mapping:
8373    //  0 - EQ
8374    //  1 - LT
8375    //  2 - LE
8376    //  3 - UNORD
8377    //  4 - NEQ
8378    //  5 - NLT
8379    //  6 - NLE
8380    //  7 - ORD
8381    switch (SetCCOpcode) {
8382    default: break;
8383    case ISD::SETOEQ:
8384    case ISD::SETEQ:  SSECC = 0; break;
8385    case ISD::SETOGT:
8386    case ISD::SETGT: Swap = true; // Fallthrough
8387    case ISD::SETLT:
8388    case ISD::SETOLT: SSECC = 1; break;
8389    case ISD::SETOGE:
8390    case ISD::SETGE: Swap = true; // Fallthrough
8391    case ISD::SETLE:
8392    case ISD::SETOLE: SSECC = 2; break;
8393    case ISD::SETUO:  SSECC = 3; break;
8394    case ISD::SETUNE:
8395    case ISD::SETNE:  SSECC = 4; break;
8396    case ISD::SETULE: Swap = true;
8397    case ISD::SETUGE: SSECC = 5; break;
8398    case ISD::SETULT: Swap = true;
8399    case ISD::SETUGT: SSECC = 6; break;
8400    case ISD::SETO:   SSECC = 7; break;
8401    }
8402    if (Swap)
8403      std::swap(Op0, Op1);
8404
8405    // In the two special cases we can't handle, emit two comparisons.
8406    if (SSECC == 8) {
8407      if (SetCCOpcode == ISD::SETUEQ) {
8408        SDValue UNORD, EQ;
8409        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8410        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8411        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8412      } else if (SetCCOpcode == ISD::SETONE) {
8413        SDValue ORD, NEQ;
8414        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8415        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8416        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8417      }
8418      llvm_unreachable("Illegal FP comparison");
8419    }
8420    // Handle all other FP comparisons here.
8421    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8422  }
8423
8424  // Break 256-bit integer vector compare into smaller ones.
8425  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8426    return Lower256IntVSETCC(Op, DAG);
8427
8428  // We are handling one of the integer comparisons here.  Since SSE only has
8429  // GT and EQ comparisons for integer, swapping operands and multiple
8430  // operations may be required for some comparisons.
8431  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8432  bool Swap = false, Invert = false, FlipSigns = false;
8433
8434  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
8435  default: break;
8436  case MVT::i8:   EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8437  case MVT::i16:  EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8438  case MVT::i32:  EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8439  case MVT::i64:  EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8440  }
8441
8442  switch (SetCCOpcode) {
8443  default: break;
8444  case ISD::SETNE:  Invert = true;
8445  case ISD::SETEQ:  Opc = EQOpc; break;
8446  case ISD::SETLT:  Swap = true;
8447  case ISD::SETGT:  Opc = GTOpc; break;
8448  case ISD::SETGE:  Swap = true;
8449  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8450  case ISD::SETULT: Swap = true;
8451  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8452  case ISD::SETUGE: Swap = true;
8453  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8454  }
8455  if (Swap)
8456    std::swap(Op0, Op1);
8457
8458  // Check that the operation in question is available (most are plain SSE2,
8459  // but PCMPGTQ and PCMPEQQ have different requirements).
8460  if (Opc == X86ISD::PCMPGTQ && !Subtarget->hasSSE42orAVX())
8461    return SDValue();
8462  if (Opc == X86ISD::PCMPEQQ && !Subtarget->hasSSE41orAVX())
8463    return SDValue();
8464
8465  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8466  // bits of the inputs before performing those operations.
8467  if (FlipSigns) {
8468    EVT EltVT = VT.getVectorElementType();
8469    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8470                                      EltVT);
8471    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8472    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8473                                    SignBits.size());
8474    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8475    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8476  }
8477
8478  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8479
8480  // If the logical-not of the result is required, perform that now.
8481  if (Invert)
8482    Result = DAG.getNOT(dl, Result, VT);
8483
8484  return Result;
8485}
8486
8487// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8488static bool isX86LogicalCmp(SDValue Op) {
8489  unsigned Opc = Op.getNode()->getOpcode();
8490  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8491    return true;
8492  if (Op.getResNo() == 1 &&
8493      (Opc == X86ISD::ADD ||
8494       Opc == X86ISD::SUB ||
8495       Opc == X86ISD::ADC ||
8496       Opc == X86ISD::SBB ||
8497       Opc == X86ISD::SMUL ||
8498       Opc == X86ISD::UMUL ||
8499       Opc == X86ISD::INC ||
8500       Opc == X86ISD::DEC ||
8501       Opc == X86ISD::OR ||
8502       Opc == X86ISD::XOR ||
8503       Opc == X86ISD::AND))
8504    return true;
8505
8506  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8507    return true;
8508
8509  return false;
8510}
8511
8512static bool isZero(SDValue V) {
8513  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8514  return C && C->isNullValue();
8515}
8516
8517static bool isAllOnes(SDValue V) {
8518  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8519  return C && C->isAllOnesValue();
8520}
8521
8522SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8523  bool addTest = true;
8524  SDValue Cond  = Op.getOperand(0);
8525  SDValue Op1 = Op.getOperand(1);
8526  SDValue Op2 = Op.getOperand(2);
8527  DebugLoc DL = Op.getDebugLoc();
8528  SDValue CC;
8529
8530  if (Cond.getOpcode() == ISD::SETCC) {
8531    SDValue NewCond = LowerSETCC(Cond, DAG);
8532    if (NewCond.getNode())
8533      Cond = NewCond;
8534  }
8535
8536  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8537  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8538  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8539  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8540  if (Cond.getOpcode() == X86ISD::SETCC &&
8541      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8542      isZero(Cond.getOperand(1).getOperand(1))) {
8543    SDValue Cmp = Cond.getOperand(1);
8544
8545    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8546
8547    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8548        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8549      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8550
8551      SDValue CmpOp0 = Cmp.getOperand(0);
8552      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8553                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8554
8555      SDValue Res =   // Res = 0 or -1.
8556        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8557                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8558
8559      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8560        Res = DAG.getNOT(DL, Res, Res.getValueType());
8561
8562      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8563      if (N2C == 0 || !N2C->isNullValue())
8564        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8565      return Res;
8566    }
8567  }
8568
8569  // Look past (and (setcc_carry (cmp ...)), 1).
8570  if (Cond.getOpcode() == ISD::AND &&
8571      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8572    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8573    if (C && C->getAPIntValue() == 1)
8574      Cond = Cond.getOperand(0);
8575  }
8576
8577  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8578  // setting operand in place of the X86ISD::SETCC.
8579  unsigned CondOpcode = Cond.getOpcode();
8580  if (CondOpcode == X86ISD::SETCC ||
8581      CondOpcode == X86ISD::SETCC_CARRY) {
8582    CC = Cond.getOperand(0);
8583
8584    SDValue Cmp = Cond.getOperand(1);
8585    unsigned Opc = Cmp.getOpcode();
8586    EVT VT = Op.getValueType();
8587
8588    bool IllegalFPCMov = false;
8589    if (VT.isFloatingPoint() && !VT.isVector() &&
8590        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8591      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8592
8593    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8594        Opc == X86ISD::BT) { // FIXME
8595      Cond = Cmp;
8596      addTest = false;
8597    }
8598  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8599             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8600             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8601              Cond.getOperand(0).getValueType() != MVT::i8)) {
8602    SDValue LHS = Cond.getOperand(0);
8603    SDValue RHS = Cond.getOperand(1);
8604    unsigned X86Opcode;
8605    unsigned X86Cond;
8606    SDVTList VTs;
8607    switch (CondOpcode) {
8608    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8609    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8610    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8611    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8612    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8613    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8614    default: llvm_unreachable("unexpected overflowing operator");
8615    }
8616    if (CondOpcode == ISD::UMULO)
8617      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8618                          MVT::i32);
8619    else
8620      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8621
8622    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8623
8624    if (CondOpcode == ISD::UMULO)
8625      Cond = X86Op.getValue(2);
8626    else
8627      Cond = X86Op.getValue(1);
8628
8629    CC = DAG.getConstant(X86Cond, MVT::i8);
8630    addTest = false;
8631  }
8632
8633  if (addTest) {
8634    // Look pass the truncate.
8635    if (Cond.getOpcode() == ISD::TRUNCATE)
8636      Cond = Cond.getOperand(0);
8637
8638    // We know the result of AND is compared against zero. Try to match
8639    // it to BT.
8640    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8641      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8642      if (NewSetCC.getNode()) {
8643        CC = NewSetCC.getOperand(0);
8644        Cond = NewSetCC.getOperand(1);
8645        addTest = false;
8646      }
8647    }
8648  }
8649
8650  if (addTest) {
8651    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8652    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8653  }
8654
8655  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8656  // a <  b ?  0 : -1 -> RES = setcc_carry
8657  // a >= b ? -1 :  0 -> RES = setcc_carry
8658  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8659  if (Cond.getOpcode() == X86ISD::CMP) {
8660    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8661
8662    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8663        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8664      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8665                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8666      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8667        return DAG.getNOT(DL, Res, Res.getValueType());
8668      return Res;
8669    }
8670  }
8671
8672  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8673  // condition is true.
8674  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8675  SDValue Ops[] = { Op2, Op1, CC, Cond };
8676  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8677}
8678
8679// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8680// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8681// from the AND / OR.
8682static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8683  Opc = Op.getOpcode();
8684  if (Opc != ISD::OR && Opc != ISD::AND)
8685    return false;
8686  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8687          Op.getOperand(0).hasOneUse() &&
8688          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8689          Op.getOperand(1).hasOneUse());
8690}
8691
8692// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8693// 1 and that the SETCC node has a single use.
8694static bool isXor1OfSetCC(SDValue Op) {
8695  if (Op.getOpcode() != ISD::XOR)
8696    return false;
8697  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8698  if (N1C && N1C->getAPIntValue() == 1) {
8699    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8700      Op.getOperand(0).hasOneUse();
8701  }
8702  return false;
8703}
8704
8705SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8706  bool addTest = true;
8707  SDValue Chain = Op.getOperand(0);
8708  SDValue Cond  = Op.getOperand(1);
8709  SDValue Dest  = Op.getOperand(2);
8710  DebugLoc dl = Op.getDebugLoc();
8711  SDValue CC;
8712  bool Inverted = false;
8713
8714  if (Cond.getOpcode() == ISD::SETCC) {
8715    // Check for setcc([su]{add,sub,mul}o == 0).
8716    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8717        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8718        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8719        Cond.getOperand(0).getResNo() == 1 &&
8720        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8721         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8722         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8723         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8724         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8725         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8726      Inverted = true;
8727      Cond = Cond.getOperand(0);
8728    } else {
8729      SDValue NewCond = LowerSETCC(Cond, DAG);
8730      if (NewCond.getNode())
8731        Cond = NewCond;
8732    }
8733  }
8734#if 0
8735  // FIXME: LowerXALUO doesn't handle these!!
8736  else if (Cond.getOpcode() == X86ISD::ADD  ||
8737           Cond.getOpcode() == X86ISD::SUB  ||
8738           Cond.getOpcode() == X86ISD::SMUL ||
8739           Cond.getOpcode() == X86ISD::UMUL)
8740    Cond = LowerXALUO(Cond, DAG);
8741#endif
8742
8743  // Look pass (and (setcc_carry (cmp ...)), 1).
8744  if (Cond.getOpcode() == ISD::AND &&
8745      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8746    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8747    if (C && C->getAPIntValue() == 1)
8748      Cond = Cond.getOperand(0);
8749  }
8750
8751  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8752  // setting operand in place of the X86ISD::SETCC.
8753  unsigned CondOpcode = Cond.getOpcode();
8754  if (CondOpcode == X86ISD::SETCC ||
8755      CondOpcode == X86ISD::SETCC_CARRY) {
8756    CC = Cond.getOperand(0);
8757
8758    SDValue Cmp = Cond.getOperand(1);
8759    unsigned Opc = Cmp.getOpcode();
8760    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8761    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8762      Cond = Cmp;
8763      addTest = false;
8764    } else {
8765      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8766      default: break;
8767      case X86::COND_O:
8768      case X86::COND_B:
8769        // These can only come from an arithmetic instruction with overflow,
8770        // e.g. SADDO, UADDO.
8771        Cond = Cond.getNode()->getOperand(1);
8772        addTest = false;
8773        break;
8774      }
8775    }
8776  }
8777  CondOpcode = Cond.getOpcode();
8778  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8779      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8780      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8781       Cond.getOperand(0).getValueType() != MVT::i8)) {
8782    SDValue LHS = Cond.getOperand(0);
8783    SDValue RHS = Cond.getOperand(1);
8784    unsigned X86Opcode;
8785    unsigned X86Cond;
8786    SDVTList VTs;
8787    switch (CondOpcode) {
8788    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8789    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8790    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8791    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8792    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8793    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8794    default: llvm_unreachable("unexpected overflowing operator");
8795    }
8796    if (Inverted)
8797      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8798    if (CondOpcode == ISD::UMULO)
8799      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8800                          MVT::i32);
8801    else
8802      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8803
8804    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8805
8806    if (CondOpcode == ISD::UMULO)
8807      Cond = X86Op.getValue(2);
8808    else
8809      Cond = X86Op.getValue(1);
8810
8811    CC = DAG.getConstant(X86Cond, MVT::i8);
8812    addTest = false;
8813  } else {
8814    unsigned CondOpc;
8815    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8816      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8817      if (CondOpc == ISD::OR) {
8818        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8819        // two branches instead of an explicit OR instruction with a
8820        // separate test.
8821        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8822            isX86LogicalCmp(Cmp)) {
8823          CC = Cond.getOperand(0).getOperand(0);
8824          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8825                              Chain, Dest, CC, Cmp);
8826          CC = Cond.getOperand(1).getOperand(0);
8827          Cond = Cmp;
8828          addTest = false;
8829        }
8830      } else { // ISD::AND
8831        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8832        // two branches instead of an explicit AND instruction with a
8833        // separate test. However, we only do this if this block doesn't
8834        // have a fall-through edge, because this requires an explicit
8835        // jmp when the condition is false.
8836        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8837            isX86LogicalCmp(Cmp) &&
8838            Op.getNode()->hasOneUse()) {
8839          X86::CondCode CCode =
8840            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8841          CCode = X86::GetOppositeBranchCondition(CCode);
8842          CC = DAG.getConstant(CCode, MVT::i8);
8843          SDNode *User = *Op.getNode()->use_begin();
8844          // Look for an unconditional branch following this conditional branch.
8845          // We need this because we need to reverse the successors in order
8846          // to implement FCMP_OEQ.
8847          if (User->getOpcode() == ISD::BR) {
8848            SDValue FalseBB = User->getOperand(1);
8849            SDNode *NewBR =
8850              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8851            assert(NewBR == User);
8852            (void)NewBR;
8853            Dest = FalseBB;
8854
8855            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8856                                Chain, Dest, CC, Cmp);
8857            X86::CondCode CCode =
8858              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8859            CCode = X86::GetOppositeBranchCondition(CCode);
8860            CC = DAG.getConstant(CCode, MVT::i8);
8861            Cond = Cmp;
8862            addTest = false;
8863          }
8864        }
8865      }
8866    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8867      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8868      // It should be transformed during dag combiner except when the condition
8869      // is set by a arithmetics with overflow node.
8870      X86::CondCode CCode =
8871        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8872      CCode = X86::GetOppositeBranchCondition(CCode);
8873      CC = DAG.getConstant(CCode, MVT::i8);
8874      Cond = Cond.getOperand(0).getOperand(1);
8875      addTest = false;
8876    } else if (Cond.getOpcode() == ISD::SETCC &&
8877               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8878      // For FCMP_OEQ, we can emit
8879      // two branches instead of an explicit AND instruction with a
8880      // separate test. However, we only do this if this block doesn't
8881      // have a fall-through edge, because this requires an explicit
8882      // jmp when the condition is false.
8883      if (Op.getNode()->hasOneUse()) {
8884        SDNode *User = *Op.getNode()->use_begin();
8885        // Look for an unconditional branch following this conditional branch.
8886        // We need this because we need to reverse the successors in order
8887        // to implement FCMP_OEQ.
8888        if (User->getOpcode() == ISD::BR) {
8889          SDValue FalseBB = User->getOperand(1);
8890          SDNode *NewBR =
8891            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8892          assert(NewBR == User);
8893          (void)NewBR;
8894          Dest = FalseBB;
8895
8896          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8897                                    Cond.getOperand(0), Cond.getOperand(1));
8898          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8899          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8900                              Chain, Dest, CC, Cmp);
8901          CC = DAG.getConstant(X86::COND_P, MVT::i8);
8902          Cond = Cmp;
8903          addTest = false;
8904        }
8905      }
8906    } else if (Cond.getOpcode() == ISD::SETCC &&
8907               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8908      // For FCMP_UNE, we can emit
8909      // two branches instead of an explicit AND instruction with a
8910      // separate test. However, we only do this if this block doesn't
8911      // have a fall-through edge, because this requires an explicit
8912      // jmp when the condition is false.
8913      if (Op.getNode()->hasOneUse()) {
8914        SDNode *User = *Op.getNode()->use_begin();
8915        // Look for an unconditional branch following this conditional branch.
8916        // We need this because we need to reverse the successors in order
8917        // to implement FCMP_UNE.
8918        if (User->getOpcode() == ISD::BR) {
8919          SDValue FalseBB = User->getOperand(1);
8920          SDNode *NewBR =
8921            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8922          assert(NewBR == User);
8923          (void)NewBR;
8924
8925          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8926                                    Cond.getOperand(0), Cond.getOperand(1));
8927          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8928          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8929                              Chain, Dest, CC, Cmp);
8930          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8931          Cond = Cmp;
8932          addTest = false;
8933          Dest = FalseBB;
8934        }
8935      }
8936    }
8937  }
8938
8939  if (addTest) {
8940    // Look pass the truncate.
8941    if (Cond.getOpcode() == ISD::TRUNCATE)
8942      Cond = Cond.getOperand(0);
8943
8944    // We know the result of AND is compared against zero. Try to match
8945    // it to BT.
8946    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8947      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8948      if (NewSetCC.getNode()) {
8949        CC = NewSetCC.getOperand(0);
8950        Cond = NewSetCC.getOperand(1);
8951        addTest = false;
8952      }
8953    }
8954  }
8955
8956  if (addTest) {
8957    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8958    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8959  }
8960  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8961                     Chain, Dest, CC, Cond);
8962}
8963
8964
8965// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8966// Calls to _alloca is needed to probe the stack when allocating more than 4k
8967// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8968// that the guard pages used by the OS virtual memory manager are allocated in
8969// correct sequence.
8970SDValue
8971X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8972                                           SelectionDAG &DAG) const {
8973  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8974          getTargetMachine().Options.EnableSegmentedStacks) &&
8975         "This should be used only on Windows targets or when segmented stacks "
8976         "are being used");
8977  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8978  DebugLoc dl = Op.getDebugLoc();
8979
8980  // Get the inputs.
8981  SDValue Chain = Op.getOperand(0);
8982  SDValue Size  = Op.getOperand(1);
8983  // FIXME: Ensure alignment here
8984
8985  bool Is64Bit = Subtarget->is64Bit();
8986  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8987
8988  if (getTargetMachine().Options.EnableSegmentedStacks) {
8989    MachineFunction &MF = DAG.getMachineFunction();
8990    MachineRegisterInfo &MRI = MF.getRegInfo();
8991
8992    if (Is64Bit) {
8993      // The 64 bit implementation of segmented stacks needs to clobber both r10
8994      // r11. This makes it impossible to use it along with nested parameters.
8995      const Function *F = MF.getFunction();
8996
8997      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8998           I != E; I++)
8999        if (I->hasNestAttr())
9000          report_fatal_error("Cannot use segmented stacks with functions that "
9001                             "have nested arguments.");
9002    }
9003
9004    const TargetRegisterClass *AddrRegClass =
9005      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9006    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9007    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9008    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9009                                DAG.getRegister(Vreg, SPTy));
9010    SDValue Ops1[2] = { Value, Chain };
9011    return DAG.getMergeValues(Ops1, 2, dl);
9012  } else {
9013    SDValue Flag;
9014    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9015
9016    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9017    Flag = Chain.getValue(1);
9018    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9019
9020    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9021    Flag = Chain.getValue(1);
9022
9023    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9024
9025    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9026    return DAG.getMergeValues(Ops1, 2, dl);
9027  }
9028}
9029
9030SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9031  MachineFunction &MF = DAG.getMachineFunction();
9032  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9033
9034  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9035  DebugLoc DL = Op.getDebugLoc();
9036
9037  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9038    // vastart just stores the address of the VarArgsFrameIndex slot into the
9039    // memory location argument.
9040    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9041                                   getPointerTy());
9042    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9043                        MachinePointerInfo(SV), false, false, 0);
9044  }
9045
9046  // __va_list_tag:
9047  //   gp_offset         (0 - 6 * 8)
9048  //   fp_offset         (48 - 48 + 8 * 16)
9049  //   overflow_arg_area (point to parameters coming in memory).
9050  //   reg_save_area
9051  SmallVector<SDValue, 8> MemOps;
9052  SDValue FIN = Op.getOperand(1);
9053  // Store gp_offset
9054  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9055                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9056                                               MVT::i32),
9057                               FIN, MachinePointerInfo(SV), false, false, 0);
9058  MemOps.push_back(Store);
9059
9060  // Store fp_offset
9061  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9062                    FIN, DAG.getIntPtrConstant(4));
9063  Store = DAG.getStore(Op.getOperand(0), DL,
9064                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9065                                       MVT::i32),
9066                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9067  MemOps.push_back(Store);
9068
9069  // Store ptr to overflow_arg_area
9070  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9071                    FIN, DAG.getIntPtrConstant(4));
9072  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9073                                    getPointerTy());
9074  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9075                       MachinePointerInfo(SV, 8),
9076                       false, false, 0);
9077  MemOps.push_back(Store);
9078
9079  // Store ptr to reg_save_area.
9080  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9081                    FIN, DAG.getIntPtrConstant(8));
9082  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9083                                    getPointerTy());
9084  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9085                       MachinePointerInfo(SV, 16), false, false, 0);
9086  MemOps.push_back(Store);
9087  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9088                     &MemOps[0], MemOps.size());
9089}
9090
9091SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9092  assert(Subtarget->is64Bit() &&
9093         "LowerVAARG only handles 64-bit va_arg!");
9094  assert((Subtarget->isTargetLinux() ||
9095          Subtarget->isTargetDarwin()) &&
9096          "Unhandled target in LowerVAARG");
9097  assert(Op.getNode()->getNumOperands() == 4);
9098  SDValue Chain = Op.getOperand(0);
9099  SDValue SrcPtr = Op.getOperand(1);
9100  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9101  unsigned Align = Op.getConstantOperandVal(3);
9102  DebugLoc dl = Op.getDebugLoc();
9103
9104  EVT ArgVT = Op.getNode()->getValueType(0);
9105  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9106  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9107  uint8_t ArgMode;
9108
9109  // Decide which area this value should be read from.
9110  // TODO: Implement the AMD64 ABI in its entirety. This simple
9111  // selection mechanism works only for the basic types.
9112  if (ArgVT == MVT::f80) {
9113    llvm_unreachable("va_arg for f80 not yet implemented");
9114  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9115    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9116  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9117    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9118  } else {
9119    llvm_unreachable("Unhandled argument type in LowerVAARG");
9120  }
9121
9122  if (ArgMode == 2) {
9123    // Sanity Check: Make sure using fp_offset makes sense.
9124    assert(!getTargetMachine().Options.UseSoftFloat &&
9125           !(DAG.getMachineFunction()
9126                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9127           Subtarget->hasXMM());
9128  }
9129
9130  // Insert VAARG_64 node into the DAG
9131  // VAARG_64 returns two values: Variable Argument Address, Chain
9132  SmallVector<SDValue, 11> InstOps;
9133  InstOps.push_back(Chain);
9134  InstOps.push_back(SrcPtr);
9135  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9136  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9137  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9138  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9139  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9140                                          VTs, &InstOps[0], InstOps.size(),
9141                                          MVT::i64,
9142                                          MachinePointerInfo(SV),
9143                                          /*Align=*/0,
9144                                          /*Volatile=*/false,
9145                                          /*ReadMem=*/true,
9146                                          /*WriteMem=*/true);
9147  Chain = VAARG.getValue(1);
9148
9149  // Load the next argument and return it
9150  return DAG.getLoad(ArgVT, dl,
9151                     Chain,
9152                     VAARG,
9153                     MachinePointerInfo(),
9154                     false, false, false, 0);
9155}
9156
9157SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9158  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9159  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9160  SDValue Chain = Op.getOperand(0);
9161  SDValue DstPtr = Op.getOperand(1);
9162  SDValue SrcPtr = Op.getOperand(2);
9163  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9164  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9165  DebugLoc DL = Op.getDebugLoc();
9166
9167  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9168                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9169                       false,
9170                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9171}
9172
9173SDValue
9174X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9175  DebugLoc dl = Op.getDebugLoc();
9176  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9177  switch (IntNo) {
9178  default: return SDValue();    // Don't custom lower most intrinsics.
9179  // Comparison intrinsics.
9180  case Intrinsic::x86_sse_comieq_ss:
9181  case Intrinsic::x86_sse_comilt_ss:
9182  case Intrinsic::x86_sse_comile_ss:
9183  case Intrinsic::x86_sse_comigt_ss:
9184  case Intrinsic::x86_sse_comige_ss:
9185  case Intrinsic::x86_sse_comineq_ss:
9186  case Intrinsic::x86_sse_ucomieq_ss:
9187  case Intrinsic::x86_sse_ucomilt_ss:
9188  case Intrinsic::x86_sse_ucomile_ss:
9189  case Intrinsic::x86_sse_ucomigt_ss:
9190  case Intrinsic::x86_sse_ucomige_ss:
9191  case Intrinsic::x86_sse_ucomineq_ss:
9192  case Intrinsic::x86_sse2_comieq_sd:
9193  case Intrinsic::x86_sse2_comilt_sd:
9194  case Intrinsic::x86_sse2_comile_sd:
9195  case Intrinsic::x86_sse2_comigt_sd:
9196  case Intrinsic::x86_sse2_comige_sd:
9197  case Intrinsic::x86_sse2_comineq_sd:
9198  case Intrinsic::x86_sse2_ucomieq_sd:
9199  case Intrinsic::x86_sse2_ucomilt_sd:
9200  case Intrinsic::x86_sse2_ucomile_sd:
9201  case Intrinsic::x86_sse2_ucomigt_sd:
9202  case Intrinsic::x86_sse2_ucomige_sd:
9203  case Intrinsic::x86_sse2_ucomineq_sd: {
9204    unsigned Opc = 0;
9205    ISD::CondCode CC = ISD::SETCC_INVALID;
9206    switch (IntNo) {
9207    default: break;
9208    case Intrinsic::x86_sse_comieq_ss:
9209    case Intrinsic::x86_sse2_comieq_sd:
9210      Opc = X86ISD::COMI;
9211      CC = ISD::SETEQ;
9212      break;
9213    case Intrinsic::x86_sse_comilt_ss:
9214    case Intrinsic::x86_sse2_comilt_sd:
9215      Opc = X86ISD::COMI;
9216      CC = ISD::SETLT;
9217      break;
9218    case Intrinsic::x86_sse_comile_ss:
9219    case Intrinsic::x86_sse2_comile_sd:
9220      Opc = X86ISD::COMI;
9221      CC = ISD::SETLE;
9222      break;
9223    case Intrinsic::x86_sse_comigt_ss:
9224    case Intrinsic::x86_sse2_comigt_sd:
9225      Opc = X86ISD::COMI;
9226      CC = ISD::SETGT;
9227      break;
9228    case Intrinsic::x86_sse_comige_ss:
9229    case Intrinsic::x86_sse2_comige_sd:
9230      Opc = X86ISD::COMI;
9231      CC = ISD::SETGE;
9232      break;
9233    case Intrinsic::x86_sse_comineq_ss:
9234    case Intrinsic::x86_sse2_comineq_sd:
9235      Opc = X86ISD::COMI;
9236      CC = ISD::SETNE;
9237      break;
9238    case Intrinsic::x86_sse_ucomieq_ss:
9239    case Intrinsic::x86_sse2_ucomieq_sd:
9240      Opc = X86ISD::UCOMI;
9241      CC = ISD::SETEQ;
9242      break;
9243    case Intrinsic::x86_sse_ucomilt_ss:
9244    case Intrinsic::x86_sse2_ucomilt_sd:
9245      Opc = X86ISD::UCOMI;
9246      CC = ISD::SETLT;
9247      break;
9248    case Intrinsic::x86_sse_ucomile_ss:
9249    case Intrinsic::x86_sse2_ucomile_sd:
9250      Opc = X86ISD::UCOMI;
9251      CC = ISD::SETLE;
9252      break;
9253    case Intrinsic::x86_sse_ucomigt_ss:
9254    case Intrinsic::x86_sse2_ucomigt_sd:
9255      Opc = X86ISD::UCOMI;
9256      CC = ISD::SETGT;
9257      break;
9258    case Intrinsic::x86_sse_ucomige_ss:
9259    case Intrinsic::x86_sse2_ucomige_sd:
9260      Opc = X86ISD::UCOMI;
9261      CC = ISD::SETGE;
9262      break;
9263    case Intrinsic::x86_sse_ucomineq_ss:
9264    case Intrinsic::x86_sse2_ucomineq_sd:
9265      Opc = X86ISD::UCOMI;
9266      CC = ISD::SETNE;
9267      break;
9268    }
9269
9270    SDValue LHS = Op.getOperand(1);
9271    SDValue RHS = Op.getOperand(2);
9272    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9273    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9274    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9275    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9276                                DAG.getConstant(X86CC, MVT::i8), Cond);
9277    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9278  }
9279  // Arithmetic intrinsics.
9280  case Intrinsic::x86_sse3_hadd_ps:
9281  case Intrinsic::x86_sse3_hadd_pd:
9282  case Intrinsic::x86_avx_hadd_ps_256:
9283  case Intrinsic::x86_avx_hadd_pd_256:
9284    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9285                       Op.getOperand(1), Op.getOperand(2));
9286  case Intrinsic::x86_sse3_hsub_ps:
9287  case Intrinsic::x86_sse3_hsub_pd:
9288  case Intrinsic::x86_avx_hsub_ps_256:
9289  case Intrinsic::x86_avx_hsub_pd_256:
9290    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9291                       Op.getOperand(1), Op.getOperand(2));
9292  case Intrinsic::x86_avx2_psllv_d:
9293  case Intrinsic::x86_avx2_psllv_q:
9294  case Intrinsic::x86_avx2_psllv_d_256:
9295  case Intrinsic::x86_avx2_psllv_q_256:
9296    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9297                      Op.getOperand(1), Op.getOperand(2));
9298  case Intrinsic::x86_avx2_psrlv_d:
9299  case Intrinsic::x86_avx2_psrlv_q:
9300  case Intrinsic::x86_avx2_psrlv_d_256:
9301  case Intrinsic::x86_avx2_psrlv_q_256:
9302    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9303                      Op.getOperand(1), Op.getOperand(2));
9304  case Intrinsic::x86_avx2_psrav_d:
9305  case Intrinsic::x86_avx2_psrav_d_256:
9306    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9307                      Op.getOperand(1), Op.getOperand(2));
9308
9309  // ptest and testp intrinsics. The intrinsic these come from are designed to
9310  // return an integer value, not just an instruction so lower it to the ptest
9311  // or testp pattern and a setcc for the result.
9312  case Intrinsic::x86_sse41_ptestz:
9313  case Intrinsic::x86_sse41_ptestc:
9314  case Intrinsic::x86_sse41_ptestnzc:
9315  case Intrinsic::x86_avx_ptestz_256:
9316  case Intrinsic::x86_avx_ptestc_256:
9317  case Intrinsic::x86_avx_ptestnzc_256:
9318  case Intrinsic::x86_avx_vtestz_ps:
9319  case Intrinsic::x86_avx_vtestc_ps:
9320  case Intrinsic::x86_avx_vtestnzc_ps:
9321  case Intrinsic::x86_avx_vtestz_pd:
9322  case Intrinsic::x86_avx_vtestc_pd:
9323  case Intrinsic::x86_avx_vtestnzc_pd:
9324  case Intrinsic::x86_avx_vtestz_ps_256:
9325  case Intrinsic::x86_avx_vtestc_ps_256:
9326  case Intrinsic::x86_avx_vtestnzc_ps_256:
9327  case Intrinsic::x86_avx_vtestz_pd_256:
9328  case Intrinsic::x86_avx_vtestc_pd_256:
9329  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9330    bool IsTestPacked = false;
9331    unsigned X86CC = 0;
9332    switch (IntNo) {
9333    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9334    case Intrinsic::x86_avx_vtestz_ps:
9335    case Intrinsic::x86_avx_vtestz_pd:
9336    case Intrinsic::x86_avx_vtestz_ps_256:
9337    case Intrinsic::x86_avx_vtestz_pd_256:
9338      IsTestPacked = true; // Fallthrough
9339    case Intrinsic::x86_sse41_ptestz:
9340    case Intrinsic::x86_avx_ptestz_256:
9341      // ZF = 1
9342      X86CC = X86::COND_E;
9343      break;
9344    case Intrinsic::x86_avx_vtestc_ps:
9345    case Intrinsic::x86_avx_vtestc_pd:
9346    case Intrinsic::x86_avx_vtestc_ps_256:
9347    case Intrinsic::x86_avx_vtestc_pd_256:
9348      IsTestPacked = true; // Fallthrough
9349    case Intrinsic::x86_sse41_ptestc:
9350    case Intrinsic::x86_avx_ptestc_256:
9351      // CF = 1
9352      X86CC = X86::COND_B;
9353      break;
9354    case Intrinsic::x86_avx_vtestnzc_ps:
9355    case Intrinsic::x86_avx_vtestnzc_pd:
9356    case Intrinsic::x86_avx_vtestnzc_ps_256:
9357    case Intrinsic::x86_avx_vtestnzc_pd_256:
9358      IsTestPacked = true; // Fallthrough
9359    case Intrinsic::x86_sse41_ptestnzc:
9360    case Intrinsic::x86_avx_ptestnzc_256:
9361      // ZF and CF = 0
9362      X86CC = X86::COND_A;
9363      break;
9364    }
9365
9366    SDValue LHS = Op.getOperand(1);
9367    SDValue RHS = Op.getOperand(2);
9368    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9369    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9370    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9371    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9372    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9373  }
9374
9375  // Fix vector shift instructions where the last operand is a non-immediate
9376  // i32 value.
9377  case Intrinsic::x86_avx2_pslli_w:
9378  case Intrinsic::x86_avx2_pslli_d:
9379  case Intrinsic::x86_avx2_pslli_q:
9380  case Intrinsic::x86_avx2_psrli_w:
9381  case Intrinsic::x86_avx2_psrli_d:
9382  case Intrinsic::x86_avx2_psrli_q:
9383  case Intrinsic::x86_avx2_psrai_w:
9384  case Intrinsic::x86_avx2_psrai_d:
9385  case Intrinsic::x86_sse2_pslli_w:
9386  case Intrinsic::x86_sse2_pslli_d:
9387  case Intrinsic::x86_sse2_pslli_q:
9388  case Intrinsic::x86_sse2_psrli_w:
9389  case Intrinsic::x86_sse2_psrli_d:
9390  case Intrinsic::x86_sse2_psrli_q:
9391  case Intrinsic::x86_sse2_psrai_w:
9392  case Intrinsic::x86_sse2_psrai_d:
9393  case Intrinsic::x86_mmx_pslli_w:
9394  case Intrinsic::x86_mmx_pslli_d:
9395  case Intrinsic::x86_mmx_pslli_q:
9396  case Intrinsic::x86_mmx_psrli_w:
9397  case Intrinsic::x86_mmx_psrli_d:
9398  case Intrinsic::x86_mmx_psrli_q:
9399  case Intrinsic::x86_mmx_psrai_w:
9400  case Intrinsic::x86_mmx_psrai_d: {
9401    SDValue ShAmt = Op.getOperand(2);
9402    if (isa<ConstantSDNode>(ShAmt))
9403      return SDValue();
9404
9405    unsigned NewIntNo = 0;
9406    EVT ShAmtVT = MVT::v4i32;
9407    switch (IntNo) {
9408    case Intrinsic::x86_sse2_pslli_w:
9409      NewIntNo = Intrinsic::x86_sse2_psll_w;
9410      break;
9411    case Intrinsic::x86_sse2_pslli_d:
9412      NewIntNo = Intrinsic::x86_sse2_psll_d;
9413      break;
9414    case Intrinsic::x86_sse2_pslli_q:
9415      NewIntNo = Intrinsic::x86_sse2_psll_q;
9416      break;
9417    case Intrinsic::x86_sse2_psrli_w:
9418      NewIntNo = Intrinsic::x86_sse2_psrl_w;
9419      break;
9420    case Intrinsic::x86_sse2_psrli_d:
9421      NewIntNo = Intrinsic::x86_sse2_psrl_d;
9422      break;
9423    case Intrinsic::x86_sse2_psrli_q:
9424      NewIntNo = Intrinsic::x86_sse2_psrl_q;
9425      break;
9426    case Intrinsic::x86_sse2_psrai_w:
9427      NewIntNo = Intrinsic::x86_sse2_psra_w;
9428      break;
9429    case Intrinsic::x86_sse2_psrai_d:
9430      NewIntNo = Intrinsic::x86_sse2_psra_d;
9431      break;
9432    case Intrinsic::x86_avx2_pslli_w:
9433      NewIntNo = Intrinsic::x86_avx2_psll_w;
9434      break;
9435    case Intrinsic::x86_avx2_pslli_d:
9436      NewIntNo = Intrinsic::x86_avx2_psll_d;
9437      break;
9438    case Intrinsic::x86_avx2_pslli_q:
9439      NewIntNo = Intrinsic::x86_avx2_psll_q;
9440      break;
9441    case Intrinsic::x86_avx2_psrli_w:
9442      NewIntNo = Intrinsic::x86_avx2_psrl_w;
9443      break;
9444    case Intrinsic::x86_avx2_psrli_d:
9445      NewIntNo = Intrinsic::x86_avx2_psrl_d;
9446      break;
9447    case Intrinsic::x86_avx2_psrli_q:
9448      NewIntNo = Intrinsic::x86_avx2_psrl_q;
9449      break;
9450    case Intrinsic::x86_avx2_psrai_w:
9451      NewIntNo = Intrinsic::x86_avx2_psra_w;
9452      break;
9453    case Intrinsic::x86_avx2_psrai_d:
9454      NewIntNo = Intrinsic::x86_avx2_psra_d;
9455      break;
9456    default: {
9457      ShAmtVT = MVT::v2i32;
9458      switch (IntNo) {
9459      case Intrinsic::x86_mmx_pslli_w:
9460        NewIntNo = Intrinsic::x86_mmx_psll_w;
9461        break;
9462      case Intrinsic::x86_mmx_pslli_d:
9463        NewIntNo = Intrinsic::x86_mmx_psll_d;
9464        break;
9465      case Intrinsic::x86_mmx_pslli_q:
9466        NewIntNo = Intrinsic::x86_mmx_psll_q;
9467        break;
9468      case Intrinsic::x86_mmx_psrli_w:
9469        NewIntNo = Intrinsic::x86_mmx_psrl_w;
9470        break;
9471      case Intrinsic::x86_mmx_psrli_d:
9472        NewIntNo = Intrinsic::x86_mmx_psrl_d;
9473        break;
9474      case Intrinsic::x86_mmx_psrli_q:
9475        NewIntNo = Intrinsic::x86_mmx_psrl_q;
9476        break;
9477      case Intrinsic::x86_mmx_psrai_w:
9478        NewIntNo = Intrinsic::x86_mmx_psra_w;
9479        break;
9480      case Intrinsic::x86_mmx_psrai_d:
9481        NewIntNo = Intrinsic::x86_mmx_psra_d;
9482        break;
9483      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9484      }
9485      break;
9486    }
9487    }
9488
9489    // The vector shift intrinsics with scalars uses 32b shift amounts but
9490    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9491    // to be zero.
9492    SDValue ShOps[4];
9493    ShOps[0] = ShAmt;
9494    ShOps[1] = DAG.getConstant(0, MVT::i32);
9495    if (ShAmtVT == MVT::v4i32) {
9496      ShOps[2] = DAG.getUNDEF(MVT::i32);
9497      ShOps[3] = DAG.getUNDEF(MVT::i32);
9498      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9499    } else {
9500      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9501// FIXME this must be lowered to get rid of the invalid type.
9502    }
9503
9504    EVT VT = Op.getValueType();
9505    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9506    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9507                       DAG.getConstant(NewIntNo, MVT::i32),
9508                       Op.getOperand(1), ShAmt);
9509  }
9510  }
9511}
9512
9513SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9514                                           SelectionDAG &DAG) const {
9515  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9516  MFI->setReturnAddressIsTaken(true);
9517
9518  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9519  DebugLoc dl = Op.getDebugLoc();
9520
9521  if (Depth > 0) {
9522    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9523    SDValue Offset =
9524      DAG.getConstant(TD->getPointerSize(),
9525                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9526    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9527                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9528                                   FrameAddr, Offset),
9529                       MachinePointerInfo(), false, false, false, 0);
9530  }
9531
9532  // Just load the return address.
9533  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9534  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9535                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9536}
9537
9538SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9539  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9540  MFI->setFrameAddressIsTaken(true);
9541
9542  EVT VT = Op.getValueType();
9543  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9544  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9545  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9546  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9547  while (Depth--)
9548    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9549                            MachinePointerInfo(),
9550                            false, false, false, 0);
9551  return FrameAddr;
9552}
9553
9554SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9555                                                     SelectionDAG &DAG) const {
9556  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9557}
9558
9559SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9560  MachineFunction &MF = DAG.getMachineFunction();
9561  SDValue Chain     = Op.getOperand(0);
9562  SDValue Offset    = Op.getOperand(1);
9563  SDValue Handler   = Op.getOperand(2);
9564  DebugLoc dl       = Op.getDebugLoc();
9565
9566  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9567                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9568                                     getPointerTy());
9569  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9570
9571  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9572                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9573  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9574  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9575                       false, false, 0);
9576  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9577  MF.getRegInfo().addLiveOut(StoreAddrReg);
9578
9579  return DAG.getNode(X86ISD::EH_RETURN, dl,
9580                     MVT::Other,
9581                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9582}
9583
9584SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9585                                                  SelectionDAG &DAG) const {
9586  return Op.getOperand(0);
9587}
9588
9589SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9590                                                SelectionDAG &DAG) const {
9591  SDValue Root = Op.getOperand(0);
9592  SDValue Trmp = Op.getOperand(1); // trampoline
9593  SDValue FPtr = Op.getOperand(2); // nested function
9594  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9595  DebugLoc dl  = Op.getDebugLoc();
9596
9597  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9598
9599  if (Subtarget->is64Bit()) {
9600    SDValue OutChains[6];
9601
9602    // Large code-model.
9603    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9604    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9605
9606    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9607    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9608
9609    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9610
9611    // Load the pointer to the nested function into R11.
9612    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9613    SDValue Addr = Trmp;
9614    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9615                                Addr, MachinePointerInfo(TrmpAddr),
9616                                false, false, 0);
9617
9618    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9619                       DAG.getConstant(2, MVT::i64));
9620    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9621                                MachinePointerInfo(TrmpAddr, 2),
9622                                false, false, 2);
9623
9624    // Load the 'nest' parameter value into R10.
9625    // R10 is specified in X86CallingConv.td
9626    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9627    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9628                       DAG.getConstant(10, MVT::i64));
9629    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9630                                Addr, MachinePointerInfo(TrmpAddr, 10),
9631                                false, false, 0);
9632
9633    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9634                       DAG.getConstant(12, MVT::i64));
9635    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9636                                MachinePointerInfo(TrmpAddr, 12),
9637                                false, false, 2);
9638
9639    // Jump to the nested function.
9640    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9641    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9642                       DAG.getConstant(20, MVT::i64));
9643    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9644                                Addr, MachinePointerInfo(TrmpAddr, 20),
9645                                false, false, 0);
9646
9647    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9648    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9649                       DAG.getConstant(22, MVT::i64));
9650    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9651                                MachinePointerInfo(TrmpAddr, 22),
9652                                false, false, 0);
9653
9654    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9655  } else {
9656    const Function *Func =
9657      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9658    CallingConv::ID CC = Func->getCallingConv();
9659    unsigned NestReg;
9660
9661    switch (CC) {
9662    default:
9663      llvm_unreachable("Unsupported calling convention");
9664    case CallingConv::C:
9665    case CallingConv::X86_StdCall: {
9666      // Pass 'nest' parameter in ECX.
9667      // Must be kept in sync with X86CallingConv.td
9668      NestReg = X86::ECX;
9669
9670      // Check that ECX wasn't needed by an 'inreg' parameter.
9671      FunctionType *FTy = Func->getFunctionType();
9672      const AttrListPtr &Attrs = Func->getAttributes();
9673
9674      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9675        unsigned InRegCount = 0;
9676        unsigned Idx = 1;
9677
9678        for (FunctionType::param_iterator I = FTy->param_begin(),
9679             E = FTy->param_end(); I != E; ++I, ++Idx)
9680          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9681            // FIXME: should only count parameters that are lowered to integers.
9682            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9683
9684        if (InRegCount > 2) {
9685          report_fatal_error("Nest register in use - reduce number of inreg"
9686                             " parameters!");
9687        }
9688      }
9689      break;
9690    }
9691    case CallingConv::X86_FastCall:
9692    case CallingConv::X86_ThisCall:
9693    case CallingConv::Fast:
9694      // Pass 'nest' parameter in EAX.
9695      // Must be kept in sync with X86CallingConv.td
9696      NestReg = X86::EAX;
9697      break;
9698    }
9699
9700    SDValue OutChains[4];
9701    SDValue Addr, Disp;
9702
9703    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9704                       DAG.getConstant(10, MVT::i32));
9705    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9706
9707    // This is storing the opcode for MOV32ri.
9708    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9709    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9710    OutChains[0] = DAG.getStore(Root, dl,
9711                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9712                                Trmp, MachinePointerInfo(TrmpAddr),
9713                                false, false, 0);
9714
9715    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9716                       DAG.getConstant(1, MVT::i32));
9717    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9718                                MachinePointerInfo(TrmpAddr, 1),
9719                                false, false, 1);
9720
9721    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9722    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9723                       DAG.getConstant(5, MVT::i32));
9724    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9725                                MachinePointerInfo(TrmpAddr, 5),
9726                                false, false, 1);
9727
9728    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9729                       DAG.getConstant(6, MVT::i32));
9730    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9731                                MachinePointerInfo(TrmpAddr, 6),
9732                                false, false, 1);
9733
9734    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9735  }
9736}
9737
9738SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9739                                            SelectionDAG &DAG) const {
9740  /*
9741   The rounding mode is in bits 11:10 of FPSR, and has the following
9742   settings:
9743     00 Round to nearest
9744     01 Round to -inf
9745     10 Round to +inf
9746     11 Round to 0
9747
9748  FLT_ROUNDS, on the other hand, expects the following:
9749    -1 Undefined
9750     0 Round to 0
9751     1 Round to nearest
9752     2 Round to +inf
9753     3 Round to -inf
9754
9755  To perform the conversion, we do:
9756    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9757  */
9758
9759  MachineFunction &MF = DAG.getMachineFunction();
9760  const TargetMachine &TM = MF.getTarget();
9761  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9762  unsigned StackAlignment = TFI.getStackAlignment();
9763  EVT VT = Op.getValueType();
9764  DebugLoc DL = Op.getDebugLoc();
9765
9766  // Save FP Control Word to stack slot
9767  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9768  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9769
9770
9771  MachineMemOperand *MMO =
9772   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9773                           MachineMemOperand::MOStore, 2, 2);
9774
9775  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9776  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9777                                          DAG.getVTList(MVT::Other),
9778                                          Ops, 2, MVT::i16, MMO);
9779
9780  // Load FP Control Word from stack slot
9781  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9782                            MachinePointerInfo(), false, false, false, 0);
9783
9784  // Transform as necessary
9785  SDValue CWD1 =
9786    DAG.getNode(ISD::SRL, DL, MVT::i16,
9787                DAG.getNode(ISD::AND, DL, MVT::i16,
9788                            CWD, DAG.getConstant(0x800, MVT::i16)),
9789                DAG.getConstant(11, MVT::i8));
9790  SDValue CWD2 =
9791    DAG.getNode(ISD::SRL, DL, MVT::i16,
9792                DAG.getNode(ISD::AND, DL, MVT::i16,
9793                            CWD, DAG.getConstant(0x400, MVT::i16)),
9794                DAG.getConstant(9, MVT::i8));
9795
9796  SDValue RetVal =
9797    DAG.getNode(ISD::AND, DL, MVT::i16,
9798                DAG.getNode(ISD::ADD, DL, MVT::i16,
9799                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9800                            DAG.getConstant(1, MVT::i16)),
9801                DAG.getConstant(3, MVT::i16));
9802
9803
9804  return DAG.getNode((VT.getSizeInBits() < 16 ?
9805                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9806}
9807
9808SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9809  EVT VT = Op.getValueType();
9810  EVT OpVT = VT;
9811  unsigned NumBits = VT.getSizeInBits();
9812  DebugLoc dl = Op.getDebugLoc();
9813
9814  Op = Op.getOperand(0);
9815  if (VT == MVT::i8) {
9816    // Zero extend to i32 since there is not an i8 bsr.
9817    OpVT = MVT::i32;
9818    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9819  }
9820
9821  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9822  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9823  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9824
9825  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9826  SDValue Ops[] = {
9827    Op,
9828    DAG.getConstant(NumBits+NumBits-1, OpVT),
9829    DAG.getConstant(X86::COND_E, MVT::i8),
9830    Op.getValue(1)
9831  };
9832  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9833
9834  // Finally xor with NumBits-1.
9835  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9836
9837  if (VT == MVT::i8)
9838    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9839  return Op;
9840}
9841
9842SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9843  EVT VT = Op.getValueType();
9844  EVT OpVT = VT;
9845  unsigned NumBits = VT.getSizeInBits();
9846  DebugLoc dl = Op.getDebugLoc();
9847
9848  Op = Op.getOperand(0);
9849  if (VT == MVT::i8) {
9850    OpVT = MVT::i32;
9851    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9852  }
9853
9854  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9855  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9856  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9857
9858  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9859  SDValue Ops[] = {
9860    Op,
9861    DAG.getConstant(NumBits, OpVT),
9862    DAG.getConstant(X86::COND_E, MVT::i8),
9863    Op.getValue(1)
9864  };
9865  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9866
9867  if (VT == MVT::i8)
9868    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9869  return Op;
9870}
9871
9872// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9873// ones, and then concatenate the result back.
9874static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9875  EVT VT = Op.getValueType();
9876
9877  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9878         "Unsupported value type for operation");
9879
9880  int NumElems = VT.getVectorNumElements();
9881  DebugLoc dl = Op.getDebugLoc();
9882  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9883  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9884
9885  // Extract the LHS vectors
9886  SDValue LHS = Op.getOperand(0);
9887  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9888  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9889
9890  // Extract the RHS vectors
9891  SDValue RHS = Op.getOperand(1);
9892  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9893  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9894
9895  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9896  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9897
9898  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9899                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9900                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9901}
9902
9903SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9904  assert(Op.getValueType().getSizeInBits() == 256 &&
9905         Op.getValueType().isInteger() &&
9906         "Only handle AVX 256-bit vector integer operation");
9907  return Lower256IntArith(Op, DAG);
9908}
9909
9910SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9911  assert(Op.getValueType().getSizeInBits() == 256 &&
9912         Op.getValueType().isInteger() &&
9913         "Only handle AVX 256-bit vector integer operation");
9914  return Lower256IntArith(Op, DAG);
9915}
9916
9917SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9918  EVT VT = Op.getValueType();
9919
9920  // Decompose 256-bit ops into smaller 128-bit ops.
9921  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
9922    return Lower256IntArith(Op, DAG);
9923
9924  DebugLoc dl = Op.getDebugLoc();
9925
9926  SDValue A = Op.getOperand(0);
9927  SDValue B = Op.getOperand(1);
9928
9929  if (VT == MVT::v4i64) {
9930    assert(Subtarget->hasAVX2() && "Lowering v4i64 multiply requires AVX2");
9931
9932    //  ulong2 Ahi = __builtin_ia32_psrlqi256( a, 32);
9933    //  ulong2 Bhi = __builtin_ia32_psrlqi256( b, 32);
9934    //  ulong2 AloBlo = __builtin_ia32_pmuludq256( a, b );
9935    //  ulong2 AloBhi = __builtin_ia32_pmuludq256( a, Bhi );
9936    //  ulong2 AhiBlo = __builtin_ia32_pmuludq256( Ahi, b );
9937    //
9938    //  AloBhi = __builtin_ia32_psllqi256( AloBhi, 32 );
9939    //  AhiBlo = __builtin_ia32_psllqi256( AhiBlo, 32 );
9940    //  return AloBlo + AloBhi + AhiBlo;
9941
9942    SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9943                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
9944                         A, DAG.getConstant(32, MVT::i32));
9945    SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9946                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
9947                         B, DAG.getConstant(32, MVT::i32));
9948    SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9949                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9950                         A, B);
9951    SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9952                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9953                         A, Bhi);
9954    SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9955                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9956                         Ahi, B);
9957    AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9958                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
9959                         AloBhi, DAG.getConstant(32, MVT::i32));
9960    AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9961                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
9962                         AhiBlo, DAG.getConstant(32, MVT::i32));
9963    SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9964    Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9965    return Res;
9966  }
9967
9968  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9969
9970  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9971  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9972  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9973  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9974  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9975  //
9976  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9977  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9978  //  return AloBlo + AloBhi + AhiBlo;
9979
9980  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9981                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9982                       A, DAG.getConstant(32, MVT::i32));
9983  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9984                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9985                       B, DAG.getConstant(32, MVT::i32));
9986  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9987                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9988                       A, B);
9989  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9990                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9991                       A, Bhi);
9992  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9993                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9994                       Ahi, B);
9995  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9996                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9997                       AloBhi, DAG.getConstant(32, MVT::i32));
9998  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9999                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10000                       AhiBlo, DAG.getConstant(32, MVT::i32));
10001  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10002  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10003  return Res;
10004}
10005
10006SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10007
10008  EVT VT = Op.getValueType();
10009  DebugLoc dl = Op.getDebugLoc();
10010  SDValue R = Op.getOperand(0);
10011  SDValue Amt = Op.getOperand(1);
10012  LLVMContext *Context = DAG.getContext();
10013
10014  if (!Subtarget->hasXMMInt())
10015    return SDValue();
10016
10017  // Optimize shl/srl/sra with constant shift amount.
10018  if (isSplatVector(Amt.getNode())) {
10019    SDValue SclrAmt = Amt->getOperand(0);
10020    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10021      uint64_t ShiftAmt = C->getZExtValue();
10022
10023      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SHL) {
10024        // Make a large shift.
10025        SDValue SHL =
10026          DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10027                      DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10028                      R, DAG.getConstant(ShiftAmt, MVT::i32));
10029        // Zero out the rightmost bits.
10030        SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10031                                                       MVT::i8));
10032        return DAG.getNode(ISD::AND, dl, VT, SHL,
10033                           DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10034      }
10035
10036      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
10037       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10038                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10039                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10040
10041      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
10042       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10043                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10044                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10045
10046      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
10047       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10048                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10049                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10050
10051      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRL) {
10052        // Make a large shift.
10053        SDValue SRL =
10054          DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10055                      DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10056                      R, DAG.getConstant(ShiftAmt, MVT::i32));
10057        // Zero out the leftmost bits.
10058        SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10059                                                       MVT::i8));
10060        return DAG.getNode(ISD::AND, dl, VT, SRL,
10061                           DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10062      }
10063
10064      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
10065       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10066                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10067                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10068
10069      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
10070       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10071                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10072                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10073
10074      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
10075       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10076                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10077                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10078
10079      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
10080       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10081                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10082                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10083
10084      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
10085       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10086                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10087                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10088
10089      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRA) {
10090        if (ShiftAmt == 7) {
10091          // R s>> 7  ===  R s< 0
10092          SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
10093          return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10094        }
10095
10096        // R s>> a === ((R u>> a) ^ m) - m
10097        SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10098        SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10099                                                       MVT::i8));
10100        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10101        Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10102        Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10103        return Res;
10104      }
10105
10106      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10107        if (Op.getOpcode() == ISD::SHL) {
10108          // Make a large shift.
10109          SDValue SHL =
10110            DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10111                        DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
10112                        R, DAG.getConstant(ShiftAmt, MVT::i32));
10113          // Zero out the rightmost bits.
10114          SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10115                                                         MVT::i8));
10116          return DAG.getNode(ISD::AND, dl, VT, SHL,
10117                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10118        }
10119        if (Op.getOpcode() == ISD::SRL) {
10120          // Make a large shift.
10121          SDValue SRL =
10122            DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10123                        DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
10124                        R, DAG.getConstant(ShiftAmt, MVT::i32));
10125          // Zero out the leftmost bits.
10126          SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10127                                                         MVT::i8));
10128          return DAG.getNode(ISD::AND, dl, VT, SRL,
10129                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10130        }
10131        if (Op.getOpcode() == ISD::SRA) {
10132          if (ShiftAmt == 7) {
10133            // R s>> 7  ===  R s< 0
10134            SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
10135            return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10136          }
10137
10138          // R s>> a === ((R u>> a) ^ m) - m
10139          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10140          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10141                                                         MVT::i8));
10142          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10143          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10144          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10145          return Res;
10146        }
10147      }
10148    }
10149  }
10150
10151  // Lower SHL with variable shift amount.
10152  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10153    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10154                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10155                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
10156
10157    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
10158
10159    std::vector<Constant*> CV(4, CI);
10160    Constant *C = ConstantVector::get(CV);
10161    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10162    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10163                                 MachinePointerInfo::getConstantPool(),
10164                                 false, false, false, 16);
10165
10166    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10167    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10168    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10169    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10170  }
10171  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10172    assert((Subtarget->hasSSE2() || Subtarget->hasAVX()) &&
10173            "Need SSE2 for pslli/pcmpeq.");
10174
10175    // a = a << 5;
10176    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10177                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10178                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
10179
10180    // Turn 'a' into a mask suitable for VSELECT
10181    SDValue VSelM = DAG.getConstant(0x80, VT);
10182    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10183    OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10184                        DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10185                        OpVSel, VSelM);
10186
10187    SDValue CM1 = DAG.getConstant(0x0f, VT);
10188    SDValue CM2 = DAG.getConstant(0x3f, VT);
10189
10190    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10191    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10192    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10193                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10194                    DAG.getConstant(4, MVT::i32));
10195    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10196
10197    // a += a
10198    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10199    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10200    OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10201                        DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10202                        OpVSel, VSelM);
10203
10204    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10205    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10206    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10207                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10208                    DAG.getConstant(2, MVT::i32));
10209    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10210
10211    // a += a
10212    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10213    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10214    OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10215                        DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10216                        OpVSel, VSelM);
10217
10218    // return VSELECT(r, r+r, a);
10219    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10220                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10221    return R;
10222  }
10223
10224  // Decompose 256-bit shifts into smaller 128-bit shifts.
10225  if (VT.getSizeInBits() == 256) {
10226    int NumElems = VT.getVectorNumElements();
10227    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10228    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10229
10230    // Extract the two vectors
10231    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10232    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10233                                     DAG, dl);
10234
10235    // Recreate the shift amount vectors
10236    SDValue Amt1, Amt2;
10237    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10238      // Constant shift amount
10239      SmallVector<SDValue, 4> Amt1Csts;
10240      SmallVector<SDValue, 4> Amt2Csts;
10241      for (int i = 0; i < NumElems/2; ++i)
10242        Amt1Csts.push_back(Amt->getOperand(i));
10243      for (int i = NumElems/2; i < NumElems; ++i)
10244        Amt2Csts.push_back(Amt->getOperand(i));
10245
10246      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10247                                 &Amt1Csts[0], NumElems/2);
10248      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10249                                 &Amt2Csts[0], NumElems/2);
10250    } else {
10251      // Variable shift amount
10252      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10253      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10254                                 DAG, dl);
10255    }
10256
10257    // Issue new vector shifts for the smaller types
10258    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10259    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10260
10261    // Concatenate the result back
10262    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10263  }
10264
10265  return SDValue();
10266}
10267
10268SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10269  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10270  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10271  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10272  // has only one use.
10273  SDNode *N = Op.getNode();
10274  SDValue LHS = N->getOperand(0);
10275  SDValue RHS = N->getOperand(1);
10276  unsigned BaseOp = 0;
10277  unsigned Cond = 0;
10278  DebugLoc DL = Op.getDebugLoc();
10279  switch (Op.getOpcode()) {
10280  default: llvm_unreachable("Unknown ovf instruction!");
10281  case ISD::SADDO:
10282    // A subtract of one will be selected as a INC. Note that INC doesn't
10283    // set CF, so we can't do this for UADDO.
10284    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10285      if (C->isOne()) {
10286        BaseOp = X86ISD::INC;
10287        Cond = X86::COND_O;
10288        break;
10289      }
10290    BaseOp = X86ISD::ADD;
10291    Cond = X86::COND_O;
10292    break;
10293  case ISD::UADDO:
10294    BaseOp = X86ISD::ADD;
10295    Cond = X86::COND_B;
10296    break;
10297  case ISD::SSUBO:
10298    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10299    // set CF, so we can't do this for USUBO.
10300    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10301      if (C->isOne()) {
10302        BaseOp = X86ISD::DEC;
10303        Cond = X86::COND_O;
10304        break;
10305      }
10306    BaseOp = X86ISD::SUB;
10307    Cond = X86::COND_O;
10308    break;
10309  case ISD::USUBO:
10310    BaseOp = X86ISD::SUB;
10311    Cond = X86::COND_B;
10312    break;
10313  case ISD::SMULO:
10314    BaseOp = X86ISD::SMUL;
10315    Cond = X86::COND_O;
10316    break;
10317  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10318    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10319                                 MVT::i32);
10320    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10321
10322    SDValue SetCC =
10323      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10324                  DAG.getConstant(X86::COND_O, MVT::i32),
10325                  SDValue(Sum.getNode(), 2));
10326
10327    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10328  }
10329  }
10330
10331  // Also sets EFLAGS.
10332  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10333  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10334
10335  SDValue SetCC =
10336    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10337                DAG.getConstant(Cond, MVT::i32),
10338                SDValue(Sum.getNode(), 1));
10339
10340  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10341}
10342
10343SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
10344  DebugLoc dl = Op.getDebugLoc();
10345  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10346  EVT VT = Op.getValueType();
10347
10348  if (Subtarget->hasXMMInt() && VT.isVector()) {
10349    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10350                        ExtraVT.getScalarType().getSizeInBits();
10351    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10352
10353    unsigned SHLIntrinsicsID = 0;
10354    unsigned SRAIntrinsicsID = 0;
10355    switch (VT.getSimpleVT().SimpleTy) {
10356      default:
10357        return SDValue();
10358      case MVT::v4i32:
10359        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10360        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10361        break;
10362      case MVT::v8i16:
10363        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10364        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10365        break;
10366      case MVT::v8i32:
10367      case MVT::v16i16:
10368        if (!Subtarget->hasAVX())
10369          return SDValue();
10370        if (!Subtarget->hasAVX2()) {
10371          // needs to be split
10372          int NumElems = VT.getVectorNumElements();
10373          SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10374          SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10375
10376          // Extract the LHS vectors
10377          SDValue LHS = Op.getOperand(0);
10378          SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10379          SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10380
10381          MVT EltVT = VT.getVectorElementType().getSimpleVT();
10382          EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10383
10384          EVT ExtraEltVT = ExtraVT.getVectorElementType();
10385          int ExtraNumElems = ExtraVT.getVectorNumElements();
10386          ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10387                                     ExtraNumElems/2);
10388          SDValue Extra = DAG.getValueType(ExtraVT);
10389
10390          LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10391          LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10392
10393          return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10394        }
10395        if (VT == MVT::v8i32) {
10396          SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_d;
10397          SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_d;
10398        } else {
10399          SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_w;
10400          SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_w;
10401        }
10402    }
10403
10404    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10405                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10406                         Op.getOperand(0), ShAmt);
10407
10408    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10409                       DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10410                       Tmp1, ShAmt);
10411  }
10412
10413  return SDValue();
10414}
10415
10416
10417SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10418  DebugLoc dl = Op.getDebugLoc();
10419
10420  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10421  // There isn't any reason to disable it if the target processor supports it.
10422  if (!Subtarget->hasXMMInt() && !Subtarget->is64Bit()) {
10423    SDValue Chain = Op.getOperand(0);
10424    SDValue Zero = DAG.getConstant(0, MVT::i32);
10425    SDValue Ops[] = {
10426      DAG.getRegister(X86::ESP, MVT::i32), // Base
10427      DAG.getTargetConstant(1, MVT::i8),   // Scale
10428      DAG.getRegister(0, MVT::i32),        // Index
10429      DAG.getTargetConstant(0, MVT::i32),  // Disp
10430      DAG.getRegister(0, MVT::i32),        // Segment.
10431      Zero,
10432      Chain
10433    };
10434    SDNode *Res =
10435      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10436                          array_lengthof(Ops));
10437    return SDValue(Res, 0);
10438  }
10439
10440  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10441  if (!isDev)
10442    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10443
10444  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10445  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10446  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10447  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10448
10449  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10450  if (!Op1 && !Op2 && !Op3 && Op4)
10451    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10452
10453  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10454  if (Op1 && !Op2 && !Op3 && !Op4)
10455    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10456
10457  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10458  //           (MFENCE)>;
10459  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10460}
10461
10462SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10463                                             SelectionDAG &DAG) const {
10464  DebugLoc dl = Op.getDebugLoc();
10465  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10466    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10467  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10468    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10469
10470  // The only fence that needs an instruction is a sequentially-consistent
10471  // cross-thread fence.
10472  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10473    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10474    // no-sse2). There isn't any reason to disable it if the target processor
10475    // supports it.
10476    if (Subtarget->hasXMMInt() || Subtarget->is64Bit())
10477      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10478
10479    SDValue Chain = Op.getOperand(0);
10480    SDValue Zero = DAG.getConstant(0, MVT::i32);
10481    SDValue Ops[] = {
10482      DAG.getRegister(X86::ESP, MVT::i32), // Base
10483      DAG.getTargetConstant(1, MVT::i8),   // Scale
10484      DAG.getRegister(0, MVT::i32),        // Index
10485      DAG.getTargetConstant(0, MVT::i32),  // Disp
10486      DAG.getRegister(0, MVT::i32),        // Segment.
10487      Zero,
10488      Chain
10489    };
10490    SDNode *Res =
10491      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10492                         array_lengthof(Ops));
10493    return SDValue(Res, 0);
10494  }
10495
10496  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10497  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10498}
10499
10500
10501SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10502  EVT T = Op.getValueType();
10503  DebugLoc DL = Op.getDebugLoc();
10504  unsigned Reg = 0;
10505  unsigned size = 0;
10506  switch(T.getSimpleVT().SimpleTy) {
10507  default:
10508    assert(false && "Invalid value type!");
10509  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10510  case MVT::i16: Reg = X86::AX;  size = 2; break;
10511  case MVT::i32: Reg = X86::EAX; size = 4; break;
10512  case MVT::i64:
10513    assert(Subtarget->is64Bit() && "Node not type legal!");
10514    Reg = X86::RAX; size = 8;
10515    break;
10516  }
10517  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10518                                    Op.getOperand(2), SDValue());
10519  SDValue Ops[] = { cpIn.getValue(0),
10520                    Op.getOperand(1),
10521                    Op.getOperand(3),
10522                    DAG.getTargetConstant(size, MVT::i8),
10523                    cpIn.getValue(1) };
10524  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10525  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10526  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10527                                           Ops, 5, T, MMO);
10528  SDValue cpOut =
10529    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10530  return cpOut;
10531}
10532
10533SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10534                                                 SelectionDAG &DAG) const {
10535  assert(Subtarget->is64Bit() && "Result not type legalized?");
10536  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10537  SDValue TheChain = Op.getOperand(0);
10538  DebugLoc dl = Op.getDebugLoc();
10539  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10540  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10541  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10542                                   rax.getValue(2));
10543  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10544                            DAG.getConstant(32, MVT::i8));
10545  SDValue Ops[] = {
10546    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10547    rdx.getValue(1)
10548  };
10549  return DAG.getMergeValues(Ops, 2, dl);
10550}
10551
10552SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10553                                            SelectionDAG &DAG) const {
10554  EVT SrcVT = Op.getOperand(0).getValueType();
10555  EVT DstVT = Op.getValueType();
10556  assert(Subtarget->is64Bit() && !Subtarget->hasXMMInt() &&
10557         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10558  assert((DstVT == MVT::i64 ||
10559          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10560         "Unexpected custom BITCAST");
10561  // i64 <=> MMX conversions are Legal.
10562  if (SrcVT==MVT::i64 && DstVT.isVector())
10563    return Op;
10564  if (DstVT==MVT::i64 && SrcVT.isVector())
10565    return Op;
10566  // MMX <=> MMX conversions are Legal.
10567  if (SrcVT.isVector() && DstVT.isVector())
10568    return Op;
10569  // All other conversions need to be expanded.
10570  return SDValue();
10571}
10572
10573SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10574  SDNode *Node = Op.getNode();
10575  DebugLoc dl = Node->getDebugLoc();
10576  EVT T = Node->getValueType(0);
10577  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10578                              DAG.getConstant(0, T), Node->getOperand(2));
10579  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10580                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10581                       Node->getOperand(0),
10582                       Node->getOperand(1), negOp,
10583                       cast<AtomicSDNode>(Node)->getSrcValue(),
10584                       cast<AtomicSDNode>(Node)->getAlignment(),
10585                       cast<AtomicSDNode>(Node)->getOrdering(),
10586                       cast<AtomicSDNode>(Node)->getSynchScope());
10587}
10588
10589static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10590  SDNode *Node = Op.getNode();
10591  DebugLoc dl = Node->getDebugLoc();
10592  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10593
10594  // Convert seq_cst store -> xchg
10595  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10596  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10597  //        (The only way to get a 16-byte store is cmpxchg16b)
10598  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10599  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10600      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10601    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10602                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10603                                 Node->getOperand(0),
10604                                 Node->getOperand(1), Node->getOperand(2),
10605                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10606                                 cast<AtomicSDNode>(Node)->getOrdering(),
10607                                 cast<AtomicSDNode>(Node)->getSynchScope());
10608    return Swap.getValue(1);
10609  }
10610  // Other atomic stores have a simple pattern.
10611  return Op;
10612}
10613
10614static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10615  EVT VT = Op.getNode()->getValueType(0);
10616
10617  // Let legalize expand this if it isn't a legal type yet.
10618  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10619    return SDValue();
10620
10621  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10622
10623  unsigned Opc;
10624  bool ExtraOp = false;
10625  switch (Op.getOpcode()) {
10626  default: assert(0 && "Invalid code");
10627  case ISD::ADDC: Opc = X86ISD::ADD; break;
10628  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10629  case ISD::SUBC: Opc = X86ISD::SUB; break;
10630  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10631  }
10632
10633  if (!ExtraOp)
10634    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10635                       Op.getOperand(1));
10636  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10637                     Op.getOperand(1), Op.getOperand(2));
10638}
10639
10640/// LowerOperation - Provide custom lowering hooks for some operations.
10641///
10642SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10643  switch (Op.getOpcode()) {
10644  default: llvm_unreachable("Should not custom lower this!");
10645  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10646  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10647  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10648  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10649  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10650  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10651  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10652  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10653  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10654  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10655  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10656  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10657  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10658  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10659  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10660  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10661  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10662  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10663  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10664  case ISD::SHL_PARTS:
10665  case ISD::SRA_PARTS:
10666  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10667  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10668  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10669  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10670  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10671  case ISD::FABS:               return LowerFABS(Op, DAG);
10672  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10673  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10674  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10675  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10676  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10677  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10678  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10679  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10680  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10681  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10682  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10683  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10684  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10685  case ISD::FRAME_TO_ARGS_OFFSET:
10686                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10687  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10688  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10689  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10690  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10691  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10692  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10693  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10694  case ISD::MUL:                return LowerMUL(Op, DAG);
10695  case ISD::SRA:
10696  case ISD::SRL:
10697  case ISD::SHL:                return LowerShift(Op, DAG);
10698  case ISD::SADDO:
10699  case ISD::UADDO:
10700  case ISD::SSUBO:
10701  case ISD::USUBO:
10702  case ISD::SMULO:
10703  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10704  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10705  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10706  case ISD::ADDC:
10707  case ISD::ADDE:
10708  case ISD::SUBC:
10709  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10710  case ISD::ADD:                return LowerADD(Op, DAG);
10711  case ISD::SUB:                return LowerSUB(Op, DAG);
10712  }
10713}
10714
10715static void ReplaceATOMIC_LOAD(SDNode *Node,
10716                                  SmallVectorImpl<SDValue> &Results,
10717                                  SelectionDAG &DAG) {
10718  DebugLoc dl = Node->getDebugLoc();
10719  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10720
10721  // Convert wide load -> cmpxchg8b/cmpxchg16b
10722  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10723  //        (The only way to get a 16-byte load is cmpxchg16b)
10724  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10725  SDValue Zero = DAG.getConstant(0, VT);
10726  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10727                               Node->getOperand(0),
10728                               Node->getOperand(1), Zero, Zero,
10729                               cast<AtomicSDNode>(Node)->getMemOperand(),
10730                               cast<AtomicSDNode>(Node)->getOrdering(),
10731                               cast<AtomicSDNode>(Node)->getSynchScope());
10732  Results.push_back(Swap.getValue(0));
10733  Results.push_back(Swap.getValue(1));
10734}
10735
10736void X86TargetLowering::
10737ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10738                        SelectionDAG &DAG, unsigned NewOp) const {
10739  DebugLoc dl = Node->getDebugLoc();
10740  assert (Node->getValueType(0) == MVT::i64 &&
10741          "Only know how to expand i64 atomics");
10742
10743  SDValue Chain = Node->getOperand(0);
10744  SDValue In1 = Node->getOperand(1);
10745  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10746                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10747  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10748                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10749  SDValue Ops[] = { Chain, In1, In2L, In2H };
10750  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10751  SDValue Result =
10752    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10753                            cast<MemSDNode>(Node)->getMemOperand());
10754  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10755  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10756  Results.push_back(Result.getValue(2));
10757}
10758
10759/// ReplaceNodeResults - Replace a node with an illegal result type
10760/// with a new node built out of custom code.
10761void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10762                                           SmallVectorImpl<SDValue>&Results,
10763                                           SelectionDAG &DAG) const {
10764  DebugLoc dl = N->getDebugLoc();
10765  switch (N->getOpcode()) {
10766  default:
10767    assert(false && "Do not know how to custom type legalize this operation!");
10768    return;
10769  case ISD::SIGN_EXTEND_INREG:
10770  case ISD::ADDC:
10771  case ISD::ADDE:
10772  case ISD::SUBC:
10773  case ISD::SUBE:
10774    // We don't want to expand or promote these.
10775    return;
10776  case ISD::FP_TO_SINT: {
10777    std::pair<SDValue,SDValue> Vals =
10778        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10779    SDValue FIST = Vals.first, StackSlot = Vals.second;
10780    if (FIST.getNode() != 0) {
10781      EVT VT = N->getValueType(0);
10782      // Return a load from the stack slot.
10783      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10784                                    MachinePointerInfo(),
10785                                    false, false, false, 0));
10786    }
10787    return;
10788  }
10789  case ISD::READCYCLECOUNTER: {
10790    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10791    SDValue TheChain = N->getOperand(0);
10792    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10793    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10794                                     rd.getValue(1));
10795    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10796                                     eax.getValue(2));
10797    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10798    SDValue Ops[] = { eax, edx };
10799    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10800    Results.push_back(edx.getValue(1));
10801    return;
10802  }
10803  case ISD::ATOMIC_CMP_SWAP: {
10804    EVT T = N->getValueType(0);
10805    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10806    bool Regs64bit = T == MVT::i128;
10807    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10808    SDValue cpInL, cpInH;
10809    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10810                        DAG.getConstant(0, HalfT));
10811    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10812                        DAG.getConstant(1, HalfT));
10813    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10814                             Regs64bit ? X86::RAX : X86::EAX,
10815                             cpInL, SDValue());
10816    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10817                             Regs64bit ? X86::RDX : X86::EDX,
10818                             cpInH, cpInL.getValue(1));
10819    SDValue swapInL, swapInH;
10820    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10821                          DAG.getConstant(0, HalfT));
10822    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10823                          DAG.getConstant(1, HalfT));
10824    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10825                               Regs64bit ? X86::RBX : X86::EBX,
10826                               swapInL, cpInH.getValue(1));
10827    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10828                               Regs64bit ? X86::RCX : X86::ECX,
10829                               swapInH, swapInL.getValue(1));
10830    SDValue Ops[] = { swapInH.getValue(0),
10831                      N->getOperand(1),
10832                      swapInH.getValue(1) };
10833    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10834    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10835    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10836                                  X86ISD::LCMPXCHG8_DAG;
10837    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10838                                             Ops, 3, T, MMO);
10839    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10840                                        Regs64bit ? X86::RAX : X86::EAX,
10841                                        HalfT, Result.getValue(1));
10842    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10843                                        Regs64bit ? X86::RDX : X86::EDX,
10844                                        HalfT, cpOutL.getValue(2));
10845    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10846    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10847    Results.push_back(cpOutH.getValue(1));
10848    return;
10849  }
10850  case ISD::ATOMIC_LOAD_ADD:
10851    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10852    return;
10853  case ISD::ATOMIC_LOAD_AND:
10854    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10855    return;
10856  case ISD::ATOMIC_LOAD_NAND:
10857    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10858    return;
10859  case ISD::ATOMIC_LOAD_OR:
10860    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10861    return;
10862  case ISD::ATOMIC_LOAD_SUB:
10863    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10864    return;
10865  case ISD::ATOMIC_LOAD_XOR:
10866    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10867    return;
10868  case ISD::ATOMIC_SWAP:
10869    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10870    return;
10871  case ISD::ATOMIC_LOAD:
10872    ReplaceATOMIC_LOAD(N, Results, DAG);
10873  }
10874}
10875
10876const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10877  switch (Opcode) {
10878  default: return NULL;
10879  case X86ISD::BSF:                return "X86ISD::BSF";
10880  case X86ISD::BSR:                return "X86ISD::BSR";
10881  case X86ISD::SHLD:               return "X86ISD::SHLD";
10882  case X86ISD::SHRD:               return "X86ISD::SHRD";
10883  case X86ISD::FAND:               return "X86ISD::FAND";
10884  case X86ISD::FOR:                return "X86ISD::FOR";
10885  case X86ISD::FXOR:               return "X86ISD::FXOR";
10886  case X86ISD::FSRL:               return "X86ISD::FSRL";
10887  case X86ISD::FILD:               return "X86ISD::FILD";
10888  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
10889  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10890  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10891  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10892  case X86ISD::FLD:                return "X86ISD::FLD";
10893  case X86ISD::FST:                return "X86ISD::FST";
10894  case X86ISD::CALL:               return "X86ISD::CALL";
10895  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
10896  case X86ISD::BT:                 return "X86ISD::BT";
10897  case X86ISD::CMP:                return "X86ISD::CMP";
10898  case X86ISD::COMI:               return "X86ISD::COMI";
10899  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
10900  case X86ISD::SETCC:              return "X86ISD::SETCC";
10901  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
10902  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
10903  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
10904  case X86ISD::CMOV:               return "X86ISD::CMOV";
10905  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
10906  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
10907  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
10908  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
10909  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
10910  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
10911  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
10912  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
10913  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
10914  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
10915  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
10916  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
10917  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
10918  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
10919  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
10920  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
10921  case X86ISD::HADD:               return "X86ISD::HADD";
10922  case X86ISD::HSUB:               return "X86ISD::HSUB";
10923  case X86ISD::FHADD:              return "X86ISD::FHADD";
10924  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
10925  case X86ISD::FMAX:               return "X86ISD::FMAX";
10926  case X86ISD::FMIN:               return "X86ISD::FMIN";
10927  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
10928  case X86ISD::FRCP:               return "X86ISD::FRCP";
10929  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
10930  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
10931  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
10932  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
10933  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
10934  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
10935  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
10936  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
10937  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
10938  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
10939  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
10940  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
10941  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
10942  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
10943  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
10944  case X86ISD::VSHL:               return "X86ISD::VSHL";
10945  case X86ISD::VSRL:               return "X86ISD::VSRL";
10946  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
10947  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
10948  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
10949  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
10950  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
10951  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
10952  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
10953  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
10954  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
10955  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
10956  case X86ISD::ADD:                return "X86ISD::ADD";
10957  case X86ISD::SUB:                return "X86ISD::SUB";
10958  case X86ISD::ADC:                return "X86ISD::ADC";
10959  case X86ISD::SBB:                return "X86ISD::SBB";
10960  case X86ISD::SMUL:               return "X86ISD::SMUL";
10961  case X86ISD::UMUL:               return "X86ISD::UMUL";
10962  case X86ISD::INC:                return "X86ISD::INC";
10963  case X86ISD::DEC:                return "X86ISD::DEC";
10964  case X86ISD::OR:                 return "X86ISD::OR";
10965  case X86ISD::XOR:                return "X86ISD::XOR";
10966  case X86ISD::AND:                return "X86ISD::AND";
10967  case X86ISD::ANDN:               return "X86ISD::ANDN";
10968  case X86ISD::BLSI:               return "X86ISD::BLSI";
10969  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
10970  case X86ISD::BLSR:               return "X86ISD::BLSR";
10971  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
10972  case X86ISD::PTEST:              return "X86ISD::PTEST";
10973  case X86ISD::TESTP:              return "X86ISD::TESTP";
10974  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
10975  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
10976  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
10977  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
10978  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
10979  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
10980  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
10981  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
10982  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
10983  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
10984  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
10985  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
10986  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
10987  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
10988  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
10989  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
10990  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
10991  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
10992  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
10993  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
10994  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
10995  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
10996  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
10997  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
10998  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
10999  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11000  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11001  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11002  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11003  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11004  }
11005}
11006
11007// isLegalAddressingMode - Return true if the addressing mode represented
11008// by AM is legal for this target, for a load/store of the specified type.
11009bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11010                                              Type *Ty) const {
11011  // X86 supports extremely general addressing modes.
11012  CodeModel::Model M = getTargetMachine().getCodeModel();
11013  Reloc::Model R = getTargetMachine().getRelocationModel();
11014
11015  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11016  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11017    return false;
11018
11019  if (AM.BaseGV) {
11020    unsigned GVFlags =
11021      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11022
11023    // If a reference to this global requires an extra load, we can't fold it.
11024    if (isGlobalStubReference(GVFlags))
11025      return false;
11026
11027    // If BaseGV requires a register for the PIC base, we cannot also have a
11028    // BaseReg specified.
11029    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11030      return false;
11031
11032    // If lower 4G is not available, then we must use rip-relative addressing.
11033    if ((M != CodeModel::Small || R != Reloc::Static) &&
11034        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11035      return false;
11036  }
11037
11038  switch (AM.Scale) {
11039  case 0:
11040  case 1:
11041  case 2:
11042  case 4:
11043  case 8:
11044    // These scales always work.
11045    break;
11046  case 3:
11047  case 5:
11048  case 9:
11049    // These scales are formed with basereg+scalereg.  Only accept if there is
11050    // no basereg yet.
11051    if (AM.HasBaseReg)
11052      return false;
11053    break;
11054  default:  // Other stuff never works.
11055    return false;
11056  }
11057
11058  return true;
11059}
11060
11061
11062bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11063  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11064    return false;
11065  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11066  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11067  if (NumBits1 <= NumBits2)
11068    return false;
11069  return true;
11070}
11071
11072bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11073  if (!VT1.isInteger() || !VT2.isInteger())
11074    return false;
11075  unsigned NumBits1 = VT1.getSizeInBits();
11076  unsigned NumBits2 = VT2.getSizeInBits();
11077  if (NumBits1 <= NumBits2)
11078    return false;
11079  return true;
11080}
11081
11082bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11083  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11084  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11085}
11086
11087bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11088  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11089  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11090}
11091
11092bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11093  // i16 instructions are longer (0x66 prefix) and potentially slower.
11094  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11095}
11096
11097/// isShuffleMaskLegal - Targets can use this to indicate that they only
11098/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11099/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11100/// are assumed to be legal.
11101bool
11102X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11103                                      EVT VT) const {
11104  // Very little shuffling can be done for 64-bit vectors right now.
11105  if (VT.getSizeInBits() == 64)
11106    return false;
11107
11108  // FIXME: pshufb, blends, shifts.
11109  return (VT.getVectorNumElements() == 2 ||
11110          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11111          isMOVLMask(M, VT) ||
11112          isSHUFPMask(M, VT) ||
11113          isPSHUFDMask(M, VT) ||
11114          isPSHUFHWMask(M, VT) ||
11115          isPSHUFLWMask(M, VT) ||
11116          isPALIGNRMask(M, VT, Subtarget->hasSSSE3orAVX()) ||
11117          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11118          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11119          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11120          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11121}
11122
11123bool
11124X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11125                                          EVT VT) const {
11126  unsigned NumElts = VT.getVectorNumElements();
11127  // FIXME: This collection of masks seems suspect.
11128  if (NumElts == 2)
11129    return true;
11130  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11131    return (isMOVLMask(Mask, VT)  ||
11132            isCommutedMOVLMask(Mask, VT, true) ||
11133            isSHUFPMask(Mask, VT) ||
11134            isSHUFPMask(Mask, VT, /* Commuted */ true));
11135  }
11136  return false;
11137}
11138
11139//===----------------------------------------------------------------------===//
11140//                           X86 Scheduler Hooks
11141//===----------------------------------------------------------------------===//
11142
11143// private utility function
11144MachineBasicBlock *
11145X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11146                                                       MachineBasicBlock *MBB,
11147                                                       unsigned regOpc,
11148                                                       unsigned immOpc,
11149                                                       unsigned LoadOpc,
11150                                                       unsigned CXchgOpc,
11151                                                       unsigned notOpc,
11152                                                       unsigned EAXreg,
11153                                                       TargetRegisterClass *RC,
11154                                                       bool invSrc) const {
11155  // For the atomic bitwise operator, we generate
11156  //   thisMBB:
11157  //   newMBB:
11158  //     ld  t1 = [bitinstr.addr]
11159  //     op  t2 = t1, [bitinstr.val]
11160  //     mov EAX = t1
11161  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11162  //     bz  newMBB
11163  //     fallthrough -->nextMBB
11164  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11165  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11166  MachineFunction::iterator MBBIter = MBB;
11167  ++MBBIter;
11168
11169  /// First build the CFG
11170  MachineFunction *F = MBB->getParent();
11171  MachineBasicBlock *thisMBB = MBB;
11172  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11173  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11174  F->insert(MBBIter, newMBB);
11175  F->insert(MBBIter, nextMBB);
11176
11177  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11178  nextMBB->splice(nextMBB->begin(), thisMBB,
11179                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11180                  thisMBB->end());
11181  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11182
11183  // Update thisMBB to fall through to newMBB
11184  thisMBB->addSuccessor(newMBB);
11185
11186  // newMBB jumps to itself and fall through to nextMBB
11187  newMBB->addSuccessor(nextMBB);
11188  newMBB->addSuccessor(newMBB);
11189
11190  // Insert instructions into newMBB based on incoming instruction
11191  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11192         "unexpected number of operands");
11193  DebugLoc dl = bInstr->getDebugLoc();
11194  MachineOperand& destOper = bInstr->getOperand(0);
11195  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11196  int numArgs = bInstr->getNumOperands() - 1;
11197  for (int i=0; i < numArgs; ++i)
11198    argOpers[i] = &bInstr->getOperand(i+1);
11199
11200  // x86 address has 4 operands: base, index, scale, and displacement
11201  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11202  int valArgIndx = lastAddrIndx + 1;
11203
11204  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11205  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11206  for (int i=0; i <= lastAddrIndx; ++i)
11207    (*MIB).addOperand(*argOpers[i]);
11208
11209  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11210  if (invSrc) {
11211    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11212  }
11213  else
11214    tt = t1;
11215
11216  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11217  assert((argOpers[valArgIndx]->isReg() ||
11218          argOpers[valArgIndx]->isImm()) &&
11219         "invalid operand");
11220  if (argOpers[valArgIndx]->isReg())
11221    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11222  else
11223    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11224  MIB.addReg(tt);
11225  (*MIB).addOperand(*argOpers[valArgIndx]);
11226
11227  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11228  MIB.addReg(t1);
11229
11230  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11231  for (int i=0; i <= lastAddrIndx; ++i)
11232    (*MIB).addOperand(*argOpers[i]);
11233  MIB.addReg(t2);
11234  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11235  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11236                    bInstr->memoperands_end());
11237
11238  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11239  MIB.addReg(EAXreg);
11240
11241  // insert branch
11242  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11243
11244  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11245  return nextMBB;
11246}
11247
11248// private utility function:  64 bit atomics on 32 bit host.
11249MachineBasicBlock *
11250X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11251                                                       MachineBasicBlock *MBB,
11252                                                       unsigned regOpcL,
11253                                                       unsigned regOpcH,
11254                                                       unsigned immOpcL,
11255                                                       unsigned immOpcH,
11256                                                       bool invSrc) const {
11257  // For the atomic bitwise operator, we generate
11258  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11259  //     ld t1,t2 = [bitinstr.addr]
11260  //   newMBB:
11261  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11262  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11263  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11264  //     mov ECX, EBX <- t5, t6
11265  //     mov EAX, EDX <- t1, t2
11266  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11267  //     mov t3, t4 <- EAX, EDX
11268  //     bz  newMBB
11269  //     result in out1, out2
11270  //     fallthrough -->nextMBB
11271
11272  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11273  const unsigned LoadOpc = X86::MOV32rm;
11274  const unsigned NotOpc = X86::NOT32r;
11275  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11276  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11277  MachineFunction::iterator MBBIter = MBB;
11278  ++MBBIter;
11279
11280  /// First build the CFG
11281  MachineFunction *F = MBB->getParent();
11282  MachineBasicBlock *thisMBB = MBB;
11283  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11284  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11285  F->insert(MBBIter, newMBB);
11286  F->insert(MBBIter, nextMBB);
11287
11288  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11289  nextMBB->splice(nextMBB->begin(), thisMBB,
11290                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11291                  thisMBB->end());
11292  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11293
11294  // Update thisMBB to fall through to newMBB
11295  thisMBB->addSuccessor(newMBB);
11296
11297  // newMBB jumps to itself and fall through to nextMBB
11298  newMBB->addSuccessor(nextMBB);
11299  newMBB->addSuccessor(newMBB);
11300
11301  DebugLoc dl = bInstr->getDebugLoc();
11302  // Insert instructions into newMBB based on incoming instruction
11303  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11304  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11305         "unexpected number of operands");
11306  MachineOperand& dest1Oper = bInstr->getOperand(0);
11307  MachineOperand& dest2Oper = bInstr->getOperand(1);
11308  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11309  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11310    argOpers[i] = &bInstr->getOperand(i+2);
11311
11312    // We use some of the operands multiple times, so conservatively just
11313    // clear any kill flags that might be present.
11314    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11315      argOpers[i]->setIsKill(false);
11316  }
11317
11318  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11319  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11320
11321  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11322  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11323  for (int i=0; i <= lastAddrIndx; ++i)
11324    (*MIB).addOperand(*argOpers[i]);
11325  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11326  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11327  // add 4 to displacement.
11328  for (int i=0; i <= lastAddrIndx-2; ++i)
11329    (*MIB).addOperand(*argOpers[i]);
11330  MachineOperand newOp3 = *(argOpers[3]);
11331  if (newOp3.isImm())
11332    newOp3.setImm(newOp3.getImm()+4);
11333  else
11334    newOp3.setOffset(newOp3.getOffset()+4);
11335  (*MIB).addOperand(newOp3);
11336  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11337
11338  // t3/4 are defined later, at the bottom of the loop
11339  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11340  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11341  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11342    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11343  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11344    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11345
11346  // The subsequent operations should be using the destination registers of
11347  //the PHI instructions.
11348  if (invSrc) {
11349    t1 = F->getRegInfo().createVirtualRegister(RC);
11350    t2 = F->getRegInfo().createVirtualRegister(RC);
11351    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11352    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11353  } else {
11354    t1 = dest1Oper.getReg();
11355    t2 = dest2Oper.getReg();
11356  }
11357
11358  int valArgIndx = lastAddrIndx + 1;
11359  assert((argOpers[valArgIndx]->isReg() ||
11360          argOpers[valArgIndx]->isImm()) &&
11361         "invalid operand");
11362  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11363  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11364  if (argOpers[valArgIndx]->isReg())
11365    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11366  else
11367    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11368  if (regOpcL != X86::MOV32rr)
11369    MIB.addReg(t1);
11370  (*MIB).addOperand(*argOpers[valArgIndx]);
11371  assert(argOpers[valArgIndx + 1]->isReg() ==
11372         argOpers[valArgIndx]->isReg());
11373  assert(argOpers[valArgIndx + 1]->isImm() ==
11374         argOpers[valArgIndx]->isImm());
11375  if (argOpers[valArgIndx + 1]->isReg())
11376    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11377  else
11378    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11379  if (regOpcH != X86::MOV32rr)
11380    MIB.addReg(t2);
11381  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11382
11383  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11384  MIB.addReg(t1);
11385  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11386  MIB.addReg(t2);
11387
11388  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11389  MIB.addReg(t5);
11390  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11391  MIB.addReg(t6);
11392
11393  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11394  for (int i=0; i <= lastAddrIndx; ++i)
11395    (*MIB).addOperand(*argOpers[i]);
11396
11397  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11398  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11399                    bInstr->memoperands_end());
11400
11401  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11402  MIB.addReg(X86::EAX);
11403  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11404  MIB.addReg(X86::EDX);
11405
11406  // insert branch
11407  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11408
11409  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11410  return nextMBB;
11411}
11412
11413// private utility function
11414MachineBasicBlock *
11415X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11416                                                      MachineBasicBlock *MBB,
11417                                                      unsigned cmovOpc) const {
11418  // For the atomic min/max operator, we generate
11419  //   thisMBB:
11420  //   newMBB:
11421  //     ld t1 = [min/max.addr]
11422  //     mov t2 = [min/max.val]
11423  //     cmp  t1, t2
11424  //     cmov[cond] t2 = t1
11425  //     mov EAX = t1
11426  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11427  //     bz   newMBB
11428  //     fallthrough -->nextMBB
11429  //
11430  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11431  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11432  MachineFunction::iterator MBBIter = MBB;
11433  ++MBBIter;
11434
11435  /// First build the CFG
11436  MachineFunction *F = MBB->getParent();
11437  MachineBasicBlock *thisMBB = MBB;
11438  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11439  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11440  F->insert(MBBIter, newMBB);
11441  F->insert(MBBIter, nextMBB);
11442
11443  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11444  nextMBB->splice(nextMBB->begin(), thisMBB,
11445                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11446                  thisMBB->end());
11447  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11448
11449  // Update thisMBB to fall through to newMBB
11450  thisMBB->addSuccessor(newMBB);
11451
11452  // newMBB jumps to newMBB and fall through to nextMBB
11453  newMBB->addSuccessor(nextMBB);
11454  newMBB->addSuccessor(newMBB);
11455
11456  DebugLoc dl = mInstr->getDebugLoc();
11457  // Insert instructions into newMBB based on incoming instruction
11458  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11459         "unexpected number of operands");
11460  MachineOperand& destOper = mInstr->getOperand(0);
11461  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11462  int numArgs = mInstr->getNumOperands() - 1;
11463  for (int i=0; i < numArgs; ++i)
11464    argOpers[i] = &mInstr->getOperand(i+1);
11465
11466  // x86 address has 4 operands: base, index, scale, and displacement
11467  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11468  int valArgIndx = lastAddrIndx + 1;
11469
11470  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11471  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11472  for (int i=0; i <= lastAddrIndx; ++i)
11473    (*MIB).addOperand(*argOpers[i]);
11474
11475  // We only support register and immediate values
11476  assert((argOpers[valArgIndx]->isReg() ||
11477          argOpers[valArgIndx]->isImm()) &&
11478         "invalid operand");
11479
11480  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11481  if (argOpers[valArgIndx]->isReg())
11482    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11483  else
11484    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11485  (*MIB).addOperand(*argOpers[valArgIndx]);
11486
11487  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11488  MIB.addReg(t1);
11489
11490  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11491  MIB.addReg(t1);
11492  MIB.addReg(t2);
11493
11494  // Generate movc
11495  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11496  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11497  MIB.addReg(t2);
11498  MIB.addReg(t1);
11499
11500  // Cmp and exchange if none has modified the memory location
11501  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11502  for (int i=0; i <= lastAddrIndx; ++i)
11503    (*MIB).addOperand(*argOpers[i]);
11504  MIB.addReg(t3);
11505  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11506  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11507                    mInstr->memoperands_end());
11508
11509  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11510  MIB.addReg(X86::EAX);
11511
11512  // insert branch
11513  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11514
11515  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11516  return nextMBB;
11517}
11518
11519// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11520// or XMM0_V32I8 in AVX all of this code can be replaced with that
11521// in the .td file.
11522MachineBasicBlock *
11523X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11524                            unsigned numArgs, bool memArg) const {
11525  assert(Subtarget->hasSSE42orAVX() &&
11526         "Target must have SSE4.2 or AVX features enabled");
11527
11528  DebugLoc dl = MI->getDebugLoc();
11529  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11530  unsigned Opc;
11531  if (!Subtarget->hasAVX()) {
11532    if (memArg)
11533      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11534    else
11535      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11536  } else {
11537    if (memArg)
11538      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11539    else
11540      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11541  }
11542
11543  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11544  for (unsigned i = 0; i < numArgs; ++i) {
11545    MachineOperand &Op = MI->getOperand(i+1);
11546    if (!(Op.isReg() && Op.isImplicit()))
11547      MIB.addOperand(Op);
11548  }
11549  BuildMI(*BB, MI, dl,
11550    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11551             MI->getOperand(0).getReg())
11552    .addReg(X86::XMM0);
11553
11554  MI->eraseFromParent();
11555  return BB;
11556}
11557
11558MachineBasicBlock *
11559X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11560  DebugLoc dl = MI->getDebugLoc();
11561  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11562
11563  // Address into RAX/EAX, other two args into ECX, EDX.
11564  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11565  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11566  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11567  for (int i = 0; i < X86::AddrNumOperands; ++i)
11568    MIB.addOperand(MI->getOperand(i));
11569
11570  unsigned ValOps = X86::AddrNumOperands;
11571  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11572    .addReg(MI->getOperand(ValOps).getReg());
11573  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11574    .addReg(MI->getOperand(ValOps+1).getReg());
11575
11576  // The instruction doesn't actually take any operands though.
11577  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11578
11579  MI->eraseFromParent(); // The pseudo is gone now.
11580  return BB;
11581}
11582
11583MachineBasicBlock *
11584X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11585  DebugLoc dl = MI->getDebugLoc();
11586  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11587
11588  // First arg in ECX, the second in EAX.
11589  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11590    .addReg(MI->getOperand(0).getReg());
11591  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11592    .addReg(MI->getOperand(1).getReg());
11593
11594  // The instruction doesn't actually take any operands though.
11595  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11596
11597  MI->eraseFromParent(); // The pseudo is gone now.
11598  return BB;
11599}
11600
11601MachineBasicBlock *
11602X86TargetLowering::EmitVAARG64WithCustomInserter(
11603                   MachineInstr *MI,
11604                   MachineBasicBlock *MBB) const {
11605  // Emit va_arg instruction on X86-64.
11606
11607  // Operands to this pseudo-instruction:
11608  // 0  ) Output        : destination address (reg)
11609  // 1-5) Input         : va_list address (addr, i64mem)
11610  // 6  ) ArgSize       : Size (in bytes) of vararg type
11611  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11612  // 8  ) Align         : Alignment of type
11613  // 9  ) EFLAGS (implicit-def)
11614
11615  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11616  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11617
11618  unsigned DestReg = MI->getOperand(0).getReg();
11619  MachineOperand &Base = MI->getOperand(1);
11620  MachineOperand &Scale = MI->getOperand(2);
11621  MachineOperand &Index = MI->getOperand(3);
11622  MachineOperand &Disp = MI->getOperand(4);
11623  MachineOperand &Segment = MI->getOperand(5);
11624  unsigned ArgSize = MI->getOperand(6).getImm();
11625  unsigned ArgMode = MI->getOperand(7).getImm();
11626  unsigned Align = MI->getOperand(8).getImm();
11627
11628  // Memory Reference
11629  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11630  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11631  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11632
11633  // Machine Information
11634  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11635  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11636  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11637  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11638  DebugLoc DL = MI->getDebugLoc();
11639
11640  // struct va_list {
11641  //   i32   gp_offset
11642  //   i32   fp_offset
11643  //   i64   overflow_area (address)
11644  //   i64   reg_save_area (address)
11645  // }
11646  // sizeof(va_list) = 24
11647  // alignment(va_list) = 8
11648
11649  unsigned TotalNumIntRegs = 6;
11650  unsigned TotalNumXMMRegs = 8;
11651  bool UseGPOffset = (ArgMode == 1);
11652  bool UseFPOffset = (ArgMode == 2);
11653  unsigned MaxOffset = TotalNumIntRegs * 8 +
11654                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11655
11656  /* Align ArgSize to a multiple of 8 */
11657  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11658  bool NeedsAlign = (Align > 8);
11659
11660  MachineBasicBlock *thisMBB = MBB;
11661  MachineBasicBlock *overflowMBB;
11662  MachineBasicBlock *offsetMBB;
11663  MachineBasicBlock *endMBB;
11664
11665  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11666  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11667  unsigned OffsetReg = 0;
11668
11669  if (!UseGPOffset && !UseFPOffset) {
11670    // If we only pull from the overflow region, we don't create a branch.
11671    // We don't need to alter control flow.
11672    OffsetDestReg = 0; // unused
11673    OverflowDestReg = DestReg;
11674
11675    offsetMBB = NULL;
11676    overflowMBB = thisMBB;
11677    endMBB = thisMBB;
11678  } else {
11679    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11680    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11681    // If not, pull from overflow_area. (branch to overflowMBB)
11682    //
11683    //       thisMBB
11684    //         |     .
11685    //         |        .
11686    //     offsetMBB   overflowMBB
11687    //         |        .
11688    //         |     .
11689    //        endMBB
11690
11691    // Registers for the PHI in endMBB
11692    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11693    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11694
11695    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11696    MachineFunction *MF = MBB->getParent();
11697    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11698    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11699    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11700
11701    MachineFunction::iterator MBBIter = MBB;
11702    ++MBBIter;
11703
11704    // Insert the new basic blocks
11705    MF->insert(MBBIter, offsetMBB);
11706    MF->insert(MBBIter, overflowMBB);
11707    MF->insert(MBBIter, endMBB);
11708
11709    // Transfer the remainder of MBB and its successor edges to endMBB.
11710    endMBB->splice(endMBB->begin(), thisMBB,
11711                    llvm::next(MachineBasicBlock::iterator(MI)),
11712                    thisMBB->end());
11713    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11714
11715    // Make offsetMBB and overflowMBB successors of thisMBB
11716    thisMBB->addSuccessor(offsetMBB);
11717    thisMBB->addSuccessor(overflowMBB);
11718
11719    // endMBB is a successor of both offsetMBB and overflowMBB
11720    offsetMBB->addSuccessor(endMBB);
11721    overflowMBB->addSuccessor(endMBB);
11722
11723    // Load the offset value into a register
11724    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11725    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11726      .addOperand(Base)
11727      .addOperand(Scale)
11728      .addOperand(Index)
11729      .addDisp(Disp, UseFPOffset ? 4 : 0)
11730      .addOperand(Segment)
11731      .setMemRefs(MMOBegin, MMOEnd);
11732
11733    // Check if there is enough room left to pull this argument.
11734    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11735      .addReg(OffsetReg)
11736      .addImm(MaxOffset + 8 - ArgSizeA8);
11737
11738    // Branch to "overflowMBB" if offset >= max
11739    // Fall through to "offsetMBB" otherwise
11740    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11741      .addMBB(overflowMBB);
11742  }
11743
11744  // In offsetMBB, emit code to use the reg_save_area.
11745  if (offsetMBB) {
11746    assert(OffsetReg != 0);
11747
11748    // Read the reg_save_area address.
11749    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11750    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11751      .addOperand(Base)
11752      .addOperand(Scale)
11753      .addOperand(Index)
11754      .addDisp(Disp, 16)
11755      .addOperand(Segment)
11756      .setMemRefs(MMOBegin, MMOEnd);
11757
11758    // Zero-extend the offset
11759    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11760      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11761        .addImm(0)
11762        .addReg(OffsetReg)
11763        .addImm(X86::sub_32bit);
11764
11765    // Add the offset to the reg_save_area to get the final address.
11766    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11767      .addReg(OffsetReg64)
11768      .addReg(RegSaveReg);
11769
11770    // Compute the offset for the next argument
11771    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11772    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11773      .addReg(OffsetReg)
11774      .addImm(UseFPOffset ? 16 : 8);
11775
11776    // Store it back into the va_list.
11777    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11778      .addOperand(Base)
11779      .addOperand(Scale)
11780      .addOperand(Index)
11781      .addDisp(Disp, UseFPOffset ? 4 : 0)
11782      .addOperand(Segment)
11783      .addReg(NextOffsetReg)
11784      .setMemRefs(MMOBegin, MMOEnd);
11785
11786    // Jump to endMBB
11787    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11788      .addMBB(endMBB);
11789  }
11790
11791  //
11792  // Emit code to use overflow area
11793  //
11794
11795  // Load the overflow_area address into a register.
11796  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11797  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11798    .addOperand(Base)
11799    .addOperand(Scale)
11800    .addOperand(Index)
11801    .addDisp(Disp, 8)
11802    .addOperand(Segment)
11803    .setMemRefs(MMOBegin, MMOEnd);
11804
11805  // If we need to align it, do so. Otherwise, just copy the address
11806  // to OverflowDestReg.
11807  if (NeedsAlign) {
11808    // Align the overflow address
11809    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11810    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11811
11812    // aligned_addr = (addr + (align-1)) & ~(align-1)
11813    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11814      .addReg(OverflowAddrReg)
11815      .addImm(Align-1);
11816
11817    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11818      .addReg(TmpReg)
11819      .addImm(~(uint64_t)(Align-1));
11820  } else {
11821    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11822      .addReg(OverflowAddrReg);
11823  }
11824
11825  // Compute the next overflow address after this argument.
11826  // (the overflow address should be kept 8-byte aligned)
11827  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11828  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11829    .addReg(OverflowDestReg)
11830    .addImm(ArgSizeA8);
11831
11832  // Store the new overflow address.
11833  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11834    .addOperand(Base)
11835    .addOperand(Scale)
11836    .addOperand(Index)
11837    .addDisp(Disp, 8)
11838    .addOperand(Segment)
11839    .addReg(NextAddrReg)
11840    .setMemRefs(MMOBegin, MMOEnd);
11841
11842  // If we branched, emit the PHI to the front of endMBB.
11843  if (offsetMBB) {
11844    BuildMI(*endMBB, endMBB->begin(), DL,
11845            TII->get(X86::PHI), DestReg)
11846      .addReg(OffsetDestReg).addMBB(offsetMBB)
11847      .addReg(OverflowDestReg).addMBB(overflowMBB);
11848  }
11849
11850  // Erase the pseudo instruction
11851  MI->eraseFromParent();
11852
11853  return endMBB;
11854}
11855
11856MachineBasicBlock *
11857X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11858                                                 MachineInstr *MI,
11859                                                 MachineBasicBlock *MBB) const {
11860  // Emit code to save XMM registers to the stack. The ABI says that the
11861  // number of registers to save is given in %al, so it's theoretically
11862  // possible to do an indirect jump trick to avoid saving all of them,
11863  // however this code takes a simpler approach and just executes all
11864  // of the stores if %al is non-zero. It's less code, and it's probably
11865  // easier on the hardware branch predictor, and stores aren't all that
11866  // expensive anyway.
11867
11868  // Create the new basic blocks. One block contains all the XMM stores,
11869  // and one block is the final destination regardless of whether any
11870  // stores were performed.
11871  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11872  MachineFunction *F = MBB->getParent();
11873  MachineFunction::iterator MBBIter = MBB;
11874  ++MBBIter;
11875  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11876  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11877  F->insert(MBBIter, XMMSaveMBB);
11878  F->insert(MBBIter, EndMBB);
11879
11880  // Transfer the remainder of MBB and its successor edges to EndMBB.
11881  EndMBB->splice(EndMBB->begin(), MBB,
11882                 llvm::next(MachineBasicBlock::iterator(MI)),
11883                 MBB->end());
11884  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11885
11886  // The original block will now fall through to the XMM save block.
11887  MBB->addSuccessor(XMMSaveMBB);
11888  // The XMMSaveMBB will fall through to the end block.
11889  XMMSaveMBB->addSuccessor(EndMBB);
11890
11891  // Now add the instructions.
11892  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11893  DebugLoc DL = MI->getDebugLoc();
11894
11895  unsigned CountReg = MI->getOperand(0).getReg();
11896  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11897  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11898
11899  if (!Subtarget->isTargetWin64()) {
11900    // If %al is 0, branch around the XMM save block.
11901    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11902    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11903    MBB->addSuccessor(EndMBB);
11904  }
11905
11906  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11907  // In the XMM save block, save all the XMM argument registers.
11908  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11909    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11910    MachineMemOperand *MMO =
11911      F->getMachineMemOperand(
11912          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11913        MachineMemOperand::MOStore,
11914        /*Size=*/16, /*Align=*/16);
11915    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11916      .addFrameIndex(RegSaveFrameIndex)
11917      .addImm(/*Scale=*/1)
11918      .addReg(/*IndexReg=*/0)
11919      .addImm(/*Disp=*/Offset)
11920      .addReg(/*Segment=*/0)
11921      .addReg(MI->getOperand(i).getReg())
11922      .addMemOperand(MMO);
11923  }
11924
11925  MI->eraseFromParent();   // The pseudo instruction is gone now.
11926
11927  return EndMBB;
11928}
11929
11930MachineBasicBlock *
11931X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11932                                     MachineBasicBlock *BB) const {
11933  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11934  DebugLoc DL = MI->getDebugLoc();
11935
11936  // To "insert" a SELECT_CC instruction, we actually have to insert the
11937  // diamond control-flow pattern.  The incoming instruction knows the
11938  // destination vreg to set, the condition code register to branch on, the
11939  // true/false values to select between, and a branch opcode to use.
11940  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11941  MachineFunction::iterator It = BB;
11942  ++It;
11943
11944  //  thisMBB:
11945  //  ...
11946  //   TrueVal = ...
11947  //   cmpTY ccX, r1, r2
11948  //   bCC copy1MBB
11949  //   fallthrough --> copy0MBB
11950  MachineBasicBlock *thisMBB = BB;
11951  MachineFunction *F = BB->getParent();
11952  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11953  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11954  F->insert(It, copy0MBB);
11955  F->insert(It, sinkMBB);
11956
11957  // If the EFLAGS register isn't dead in the terminator, then claim that it's
11958  // live into the sink and copy blocks.
11959  if (!MI->killsRegister(X86::EFLAGS)) {
11960    copy0MBB->addLiveIn(X86::EFLAGS);
11961    sinkMBB->addLiveIn(X86::EFLAGS);
11962  }
11963
11964  // Transfer the remainder of BB and its successor edges to sinkMBB.
11965  sinkMBB->splice(sinkMBB->begin(), BB,
11966                  llvm::next(MachineBasicBlock::iterator(MI)),
11967                  BB->end());
11968  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11969
11970  // Add the true and fallthrough blocks as its successors.
11971  BB->addSuccessor(copy0MBB);
11972  BB->addSuccessor(sinkMBB);
11973
11974  // Create the conditional branch instruction.
11975  unsigned Opc =
11976    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11977  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11978
11979  //  copy0MBB:
11980  //   %FalseValue = ...
11981  //   # fallthrough to sinkMBB
11982  copy0MBB->addSuccessor(sinkMBB);
11983
11984  //  sinkMBB:
11985  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11986  //  ...
11987  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11988          TII->get(X86::PHI), MI->getOperand(0).getReg())
11989    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
11990    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
11991
11992  MI->eraseFromParent();   // The pseudo instruction is gone now.
11993  return sinkMBB;
11994}
11995
11996MachineBasicBlock *
11997X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
11998                                        bool Is64Bit) const {
11999  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12000  DebugLoc DL = MI->getDebugLoc();
12001  MachineFunction *MF = BB->getParent();
12002  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12003
12004  assert(getTargetMachine().Options.EnableSegmentedStacks);
12005
12006  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12007  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12008
12009  // BB:
12010  //  ... [Till the alloca]
12011  // If stacklet is not large enough, jump to mallocMBB
12012  //
12013  // bumpMBB:
12014  //  Allocate by subtracting from RSP
12015  //  Jump to continueMBB
12016  //
12017  // mallocMBB:
12018  //  Allocate by call to runtime
12019  //
12020  // continueMBB:
12021  //  ...
12022  //  [rest of original BB]
12023  //
12024
12025  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12026  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12027  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12028
12029  MachineRegisterInfo &MRI = MF->getRegInfo();
12030  const TargetRegisterClass *AddrRegClass =
12031    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12032
12033  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12034    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12035    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12036    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12037    sizeVReg = MI->getOperand(1).getReg(),
12038    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12039
12040  MachineFunction::iterator MBBIter = BB;
12041  ++MBBIter;
12042
12043  MF->insert(MBBIter, bumpMBB);
12044  MF->insert(MBBIter, mallocMBB);
12045  MF->insert(MBBIter, continueMBB);
12046
12047  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12048                      (MachineBasicBlock::iterator(MI)), BB->end());
12049  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12050
12051  // Add code to the main basic block to check if the stack limit has been hit,
12052  // and if so, jump to mallocMBB otherwise to bumpMBB.
12053  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12054  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12055    .addReg(tmpSPVReg).addReg(sizeVReg);
12056  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12057    .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12058    .addReg(SPLimitVReg);
12059  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12060
12061  // bumpMBB simply decreases the stack pointer, since we know the current
12062  // stacklet has enough space.
12063  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12064    .addReg(SPLimitVReg);
12065  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12066    .addReg(SPLimitVReg);
12067  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12068
12069  // Calls into a routine in libgcc to allocate more space from the heap.
12070  if (Is64Bit) {
12071    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12072      .addReg(sizeVReg);
12073    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12074    .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
12075  } else {
12076    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12077      .addImm(12);
12078    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12079    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12080      .addExternalSymbol("__morestack_allocate_stack_space");
12081  }
12082
12083  if (!Is64Bit)
12084    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12085      .addImm(16);
12086
12087  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12088    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12089  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12090
12091  // Set up the CFG correctly.
12092  BB->addSuccessor(bumpMBB);
12093  BB->addSuccessor(mallocMBB);
12094  mallocMBB->addSuccessor(continueMBB);
12095  bumpMBB->addSuccessor(continueMBB);
12096
12097  // Take care of the PHI nodes.
12098  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12099          MI->getOperand(0).getReg())
12100    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12101    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12102
12103  // Delete the original pseudo instruction.
12104  MI->eraseFromParent();
12105
12106  // And we're done.
12107  return continueMBB;
12108}
12109
12110MachineBasicBlock *
12111X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12112                                          MachineBasicBlock *BB) const {
12113  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12114  DebugLoc DL = MI->getDebugLoc();
12115
12116  assert(!Subtarget->isTargetEnvMacho());
12117
12118  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12119  // non-trivial part is impdef of ESP.
12120
12121  if (Subtarget->isTargetWin64()) {
12122    if (Subtarget->isTargetCygMing()) {
12123      // ___chkstk(Mingw64):
12124      // Clobbers R10, R11, RAX and EFLAGS.
12125      // Updates RSP.
12126      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12127        .addExternalSymbol("___chkstk")
12128        .addReg(X86::RAX, RegState::Implicit)
12129        .addReg(X86::RSP, RegState::Implicit)
12130        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12131        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12132        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12133    } else {
12134      // __chkstk(MSVCRT): does not update stack pointer.
12135      // Clobbers R10, R11 and EFLAGS.
12136      // FIXME: RAX(allocated size) might be reused and not killed.
12137      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12138        .addExternalSymbol("__chkstk")
12139        .addReg(X86::RAX, RegState::Implicit)
12140        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12141      // RAX has the offset to subtracted from RSP.
12142      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12143        .addReg(X86::RSP)
12144        .addReg(X86::RAX);
12145    }
12146  } else {
12147    const char *StackProbeSymbol =
12148      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12149
12150    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12151      .addExternalSymbol(StackProbeSymbol)
12152      .addReg(X86::EAX, RegState::Implicit)
12153      .addReg(X86::ESP, RegState::Implicit)
12154      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12155      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12156      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12157  }
12158
12159  MI->eraseFromParent();   // The pseudo instruction is gone now.
12160  return BB;
12161}
12162
12163MachineBasicBlock *
12164X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12165                                      MachineBasicBlock *BB) const {
12166  // This is pretty easy.  We're taking the value that we received from
12167  // our load from the relocation, sticking it in either RDI (x86-64)
12168  // or EAX and doing an indirect call.  The return value will then
12169  // be in the normal return register.
12170  const X86InstrInfo *TII
12171    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12172  DebugLoc DL = MI->getDebugLoc();
12173  MachineFunction *F = BB->getParent();
12174
12175  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12176  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12177
12178  if (Subtarget->is64Bit()) {
12179    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12180                                      TII->get(X86::MOV64rm), X86::RDI)
12181    .addReg(X86::RIP)
12182    .addImm(0).addReg(0)
12183    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12184                      MI->getOperand(3).getTargetFlags())
12185    .addReg(0);
12186    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12187    addDirectMem(MIB, X86::RDI);
12188  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12189    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12190                                      TII->get(X86::MOV32rm), X86::EAX)
12191    .addReg(0)
12192    .addImm(0).addReg(0)
12193    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12194                      MI->getOperand(3).getTargetFlags())
12195    .addReg(0);
12196    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12197    addDirectMem(MIB, X86::EAX);
12198  } else {
12199    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12200                                      TII->get(X86::MOV32rm), X86::EAX)
12201    .addReg(TII->getGlobalBaseReg(F))
12202    .addImm(0).addReg(0)
12203    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12204                      MI->getOperand(3).getTargetFlags())
12205    .addReg(0);
12206    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12207    addDirectMem(MIB, X86::EAX);
12208  }
12209
12210  MI->eraseFromParent(); // The pseudo instruction is gone now.
12211  return BB;
12212}
12213
12214MachineBasicBlock *
12215X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12216                                               MachineBasicBlock *BB) const {
12217  switch (MI->getOpcode()) {
12218  default: assert(0 && "Unexpected instr type to insert");
12219  case X86::TAILJMPd64:
12220  case X86::TAILJMPr64:
12221  case X86::TAILJMPm64:
12222    assert(0 && "TAILJMP64 would not be touched here.");
12223  case X86::TCRETURNdi64:
12224  case X86::TCRETURNri64:
12225  case X86::TCRETURNmi64:
12226    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
12227    // On AMD64, additional defs should be added before register allocation.
12228    if (!Subtarget->isTargetWin64()) {
12229      MI->addRegisterDefined(X86::RSI);
12230      MI->addRegisterDefined(X86::RDI);
12231      MI->addRegisterDefined(X86::XMM6);
12232      MI->addRegisterDefined(X86::XMM7);
12233      MI->addRegisterDefined(X86::XMM8);
12234      MI->addRegisterDefined(X86::XMM9);
12235      MI->addRegisterDefined(X86::XMM10);
12236      MI->addRegisterDefined(X86::XMM11);
12237      MI->addRegisterDefined(X86::XMM12);
12238      MI->addRegisterDefined(X86::XMM13);
12239      MI->addRegisterDefined(X86::XMM14);
12240      MI->addRegisterDefined(X86::XMM15);
12241    }
12242    return BB;
12243  case X86::WIN_ALLOCA:
12244    return EmitLoweredWinAlloca(MI, BB);
12245  case X86::SEG_ALLOCA_32:
12246    return EmitLoweredSegAlloca(MI, BB, false);
12247  case X86::SEG_ALLOCA_64:
12248    return EmitLoweredSegAlloca(MI, BB, true);
12249  case X86::TLSCall_32:
12250  case X86::TLSCall_64:
12251    return EmitLoweredTLSCall(MI, BB);
12252  case X86::CMOV_GR8:
12253  case X86::CMOV_FR32:
12254  case X86::CMOV_FR64:
12255  case X86::CMOV_V4F32:
12256  case X86::CMOV_V2F64:
12257  case X86::CMOV_V2I64:
12258  case X86::CMOV_V8F32:
12259  case X86::CMOV_V4F64:
12260  case X86::CMOV_V4I64:
12261  case X86::CMOV_GR16:
12262  case X86::CMOV_GR32:
12263  case X86::CMOV_RFP32:
12264  case X86::CMOV_RFP64:
12265  case X86::CMOV_RFP80:
12266    return EmitLoweredSelect(MI, BB);
12267
12268  case X86::FP32_TO_INT16_IN_MEM:
12269  case X86::FP32_TO_INT32_IN_MEM:
12270  case X86::FP32_TO_INT64_IN_MEM:
12271  case X86::FP64_TO_INT16_IN_MEM:
12272  case X86::FP64_TO_INT32_IN_MEM:
12273  case X86::FP64_TO_INT64_IN_MEM:
12274  case X86::FP80_TO_INT16_IN_MEM:
12275  case X86::FP80_TO_INT32_IN_MEM:
12276  case X86::FP80_TO_INT64_IN_MEM: {
12277    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12278    DebugLoc DL = MI->getDebugLoc();
12279
12280    // Change the floating point control register to use "round towards zero"
12281    // mode when truncating to an integer value.
12282    MachineFunction *F = BB->getParent();
12283    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12284    addFrameReference(BuildMI(*BB, MI, DL,
12285                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12286
12287    // Load the old value of the high byte of the control word...
12288    unsigned OldCW =
12289      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12290    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12291                      CWFrameIdx);
12292
12293    // Set the high part to be round to zero...
12294    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12295      .addImm(0xC7F);
12296
12297    // Reload the modified control word now...
12298    addFrameReference(BuildMI(*BB, MI, DL,
12299                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12300
12301    // Restore the memory image of control word to original value
12302    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12303      .addReg(OldCW);
12304
12305    // Get the X86 opcode to use.
12306    unsigned Opc;
12307    switch (MI->getOpcode()) {
12308    default: llvm_unreachable("illegal opcode!");
12309    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12310    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12311    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12312    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12313    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12314    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12315    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12316    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12317    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12318    }
12319
12320    X86AddressMode AM;
12321    MachineOperand &Op = MI->getOperand(0);
12322    if (Op.isReg()) {
12323      AM.BaseType = X86AddressMode::RegBase;
12324      AM.Base.Reg = Op.getReg();
12325    } else {
12326      AM.BaseType = X86AddressMode::FrameIndexBase;
12327      AM.Base.FrameIndex = Op.getIndex();
12328    }
12329    Op = MI->getOperand(1);
12330    if (Op.isImm())
12331      AM.Scale = Op.getImm();
12332    Op = MI->getOperand(2);
12333    if (Op.isImm())
12334      AM.IndexReg = Op.getImm();
12335    Op = MI->getOperand(3);
12336    if (Op.isGlobal()) {
12337      AM.GV = Op.getGlobal();
12338    } else {
12339      AM.Disp = Op.getImm();
12340    }
12341    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12342                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12343
12344    // Reload the original control word now.
12345    addFrameReference(BuildMI(*BB, MI, DL,
12346                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12347
12348    MI->eraseFromParent();   // The pseudo instruction is gone now.
12349    return BB;
12350  }
12351    // String/text processing lowering.
12352  case X86::PCMPISTRM128REG:
12353  case X86::VPCMPISTRM128REG:
12354    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12355  case X86::PCMPISTRM128MEM:
12356  case X86::VPCMPISTRM128MEM:
12357    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12358  case X86::PCMPESTRM128REG:
12359  case X86::VPCMPESTRM128REG:
12360    return EmitPCMP(MI, BB, 5, false /* in mem */);
12361  case X86::PCMPESTRM128MEM:
12362  case X86::VPCMPESTRM128MEM:
12363    return EmitPCMP(MI, BB, 5, true /* in mem */);
12364
12365    // Thread synchronization.
12366  case X86::MONITOR:
12367    return EmitMonitor(MI, BB);
12368  case X86::MWAIT:
12369    return EmitMwait(MI, BB);
12370
12371    // Atomic Lowering.
12372  case X86::ATOMAND32:
12373    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12374                                               X86::AND32ri, X86::MOV32rm,
12375                                               X86::LCMPXCHG32,
12376                                               X86::NOT32r, X86::EAX,
12377                                               X86::GR32RegisterClass);
12378  case X86::ATOMOR32:
12379    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12380                                               X86::OR32ri, X86::MOV32rm,
12381                                               X86::LCMPXCHG32,
12382                                               X86::NOT32r, X86::EAX,
12383                                               X86::GR32RegisterClass);
12384  case X86::ATOMXOR32:
12385    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12386                                               X86::XOR32ri, X86::MOV32rm,
12387                                               X86::LCMPXCHG32,
12388                                               X86::NOT32r, X86::EAX,
12389                                               X86::GR32RegisterClass);
12390  case X86::ATOMNAND32:
12391    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12392                                               X86::AND32ri, X86::MOV32rm,
12393                                               X86::LCMPXCHG32,
12394                                               X86::NOT32r, X86::EAX,
12395                                               X86::GR32RegisterClass, true);
12396  case X86::ATOMMIN32:
12397    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12398  case X86::ATOMMAX32:
12399    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12400  case X86::ATOMUMIN32:
12401    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12402  case X86::ATOMUMAX32:
12403    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12404
12405  case X86::ATOMAND16:
12406    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12407                                               X86::AND16ri, X86::MOV16rm,
12408                                               X86::LCMPXCHG16,
12409                                               X86::NOT16r, X86::AX,
12410                                               X86::GR16RegisterClass);
12411  case X86::ATOMOR16:
12412    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12413                                               X86::OR16ri, X86::MOV16rm,
12414                                               X86::LCMPXCHG16,
12415                                               X86::NOT16r, X86::AX,
12416                                               X86::GR16RegisterClass);
12417  case X86::ATOMXOR16:
12418    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12419                                               X86::XOR16ri, X86::MOV16rm,
12420                                               X86::LCMPXCHG16,
12421                                               X86::NOT16r, X86::AX,
12422                                               X86::GR16RegisterClass);
12423  case X86::ATOMNAND16:
12424    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12425                                               X86::AND16ri, X86::MOV16rm,
12426                                               X86::LCMPXCHG16,
12427                                               X86::NOT16r, X86::AX,
12428                                               X86::GR16RegisterClass, true);
12429  case X86::ATOMMIN16:
12430    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12431  case X86::ATOMMAX16:
12432    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12433  case X86::ATOMUMIN16:
12434    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12435  case X86::ATOMUMAX16:
12436    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12437
12438  case X86::ATOMAND8:
12439    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12440                                               X86::AND8ri, X86::MOV8rm,
12441                                               X86::LCMPXCHG8,
12442                                               X86::NOT8r, X86::AL,
12443                                               X86::GR8RegisterClass);
12444  case X86::ATOMOR8:
12445    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12446                                               X86::OR8ri, X86::MOV8rm,
12447                                               X86::LCMPXCHG8,
12448                                               X86::NOT8r, X86::AL,
12449                                               X86::GR8RegisterClass);
12450  case X86::ATOMXOR8:
12451    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12452                                               X86::XOR8ri, X86::MOV8rm,
12453                                               X86::LCMPXCHG8,
12454                                               X86::NOT8r, X86::AL,
12455                                               X86::GR8RegisterClass);
12456  case X86::ATOMNAND8:
12457    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12458                                               X86::AND8ri, X86::MOV8rm,
12459                                               X86::LCMPXCHG8,
12460                                               X86::NOT8r, X86::AL,
12461                                               X86::GR8RegisterClass, true);
12462  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12463  // This group is for 64-bit host.
12464  case X86::ATOMAND64:
12465    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12466                                               X86::AND64ri32, X86::MOV64rm,
12467                                               X86::LCMPXCHG64,
12468                                               X86::NOT64r, X86::RAX,
12469                                               X86::GR64RegisterClass);
12470  case X86::ATOMOR64:
12471    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12472                                               X86::OR64ri32, X86::MOV64rm,
12473                                               X86::LCMPXCHG64,
12474                                               X86::NOT64r, X86::RAX,
12475                                               X86::GR64RegisterClass);
12476  case X86::ATOMXOR64:
12477    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12478                                               X86::XOR64ri32, X86::MOV64rm,
12479                                               X86::LCMPXCHG64,
12480                                               X86::NOT64r, X86::RAX,
12481                                               X86::GR64RegisterClass);
12482  case X86::ATOMNAND64:
12483    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12484                                               X86::AND64ri32, X86::MOV64rm,
12485                                               X86::LCMPXCHG64,
12486                                               X86::NOT64r, X86::RAX,
12487                                               X86::GR64RegisterClass, true);
12488  case X86::ATOMMIN64:
12489    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12490  case X86::ATOMMAX64:
12491    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12492  case X86::ATOMUMIN64:
12493    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12494  case X86::ATOMUMAX64:
12495    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12496
12497  // This group does 64-bit operations on a 32-bit host.
12498  case X86::ATOMAND6432:
12499    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12500                                               X86::AND32rr, X86::AND32rr,
12501                                               X86::AND32ri, X86::AND32ri,
12502                                               false);
12503  case X86::ATOMOR6432:
12504    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12505                                               X86::OR32rr, X86::OR32rr,
12506                                               X86::OR32ri, X86::OR32ri,
12507                                               false);
12508  case X86::ATOMXOR6432:
12509    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12510                                               X86::XOR32rr, X86::XOR32rr,
12511                                               X86::XOR32ri, X86::XOR32ri,
12512                                               false);
12513  case X86::ATOMNAND6432:
12514    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12515                                               X86::AND32rr, X86::AND32rr,
12516                                               X86::AND32ri, X86::AND32ri,
12517                                               true);
12518  case X86::ATOMADD6432:
12519    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12520                                               X86::ADD32rr, X86::ADC32rr,
12521                                               X86::ADD32ri, X86::ADC32ri,
12522                                               false);
12523  case X86::ATOMSUB6432:
12524    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12525                                               X86::SUB32rr, X86::SBB32rr,
12526                                               X86::SUB32ri, X86::SBB32ri,
12527                                               false);
12528  case X86::ATOMSWAP6432:
12529    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12530                                               X86::MOV32rr, X86::MOV32rr,
12531                                               X86::MOV32ri, X86::MOV32ri,
12532                                               false);
12533  case X86::VASTART_SAVE_XMM_REGS:
12534    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12535
12536  case X86::VAARG_64:
12537    return EmitVAARG64WithCustomInserter(MI, BB);
12538  }
12539}
12540
12541//===----------------------------------------------------------------------===//
12542//                           X86 Optimization Hooks
12543//===----------------------------------------------------------------------===//
12544
12545void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12546                                                       const APInt &Mask,
12547                                                       APInt &KnownZero,
12548                                                       APInt &KnownOne,
12549                                                       const SelectionDAG &DAG,
12550                                                       unsigned Depth) const {
12551  unsigned Opc = Op.getOpcode();
12552  assert((Opc >= ISD::BUILTIN_OP_END ||
12553          Opc == ISD::INTRINSIC_WO_CHAIN ||
12554          Opc == ISD::INTRINSIC_W_CHAIN ||
12555          Opc == ISD::INTRINSIC_VOID) &&
12556         "Should use MaskedValueIsZero if you don't know whether Op"
12557         " is a target node!");
12558
12559  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12560  switch (Opc) {
12561  default: break;
12562  case X86ISD::ADD:
12563  case X86ISD::SUB:
12564  case X86ISD::ADC:
12565  case X86ISD::SBB:
12566  case X86ISD::SMUL:
12567  case X86ISD::UMUL:
12568  case X86ISD::INC:
12569  case X86ISD::DEC:
12570  case X86ISD::OR:
12571  case X86ISD::XOR:
12572  case X86ISD::AND:
12573    // These nodes' second result is a boolean.
12574    if (Op.getResNo() == 0)
12575      break;
12576    // Fallthrough
12577  case X86ISD::SETCC:
12578    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12579                                       Mask.getBitWidth() - 1);
12580    break;
12581  case ISD::INTRINSIC_WO_CHAIN: {
12582    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12583    unsigned NumLoBits = 0;
12584    switch (IntId) {
12585    default: break;
12586    case Intrinsic::x86_sse_movmsk_ps:
12587    case Intrinsic::x86_avx_movmsk_ps_256:
12588    case Intrinsic::x86_sse2_movmsk_pd:
12589    case Intrinsic::x86_avx_movmsk_pd_256:
12590    case Intrinsic::x86_mmx_pmovmskb:
12591    case Intrinsic::x86_sse2_pmovmskb_128: {
12592      // High bits of movmskp{s|d}, pmovmskb are known zero.
12593      switch (IntId) {
12594        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12595        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12596        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12597        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12598        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12599        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12600      }
12601      KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12602                                        Mask.getBitWidth() - NumLoBits);
12603      break;
12604    }
12605    }
12606    break;
12607  }
12608  }
12609}
12610
12611unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12612                                                         unsigned Depth) const {
12613  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12614  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12615    return Op.getValueType().getScalarType().getSizeInBits();
12616
12617  // Fallback case.
12618  return 1;
12619}
12620
12621/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12622/// node is a GlobalAddress + offset.
12623bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12624                                       const GlobalValue* &GA,
12625                                       int64_t &Offset) const {
12626  if (N->getOpcode() == X86ISD::Wrapper) {
12627    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12628      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12629      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12630      return true;
12631    }
12632  }
12633  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12634}
12635
12636/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12637/// same as extracting the high 128-bit part of 256-bit vector and then
12638/// inserting the result into the low part of a new 256-bit vector
12639static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12640  EVT VT = SVOp->getValueType(0);
12641  int NumElems = VT.getVectorNumElements();
12642
12643  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12644  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12645    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12646        SVOp->getMaskElt(j) >= 0)
12647      return false;
12648
12649  return true;
12650}
12651
12652/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12653/// same as extracting the low 128-bit part of 256-bit vector and then
12654/// inserting the result into the high part of a new 256-bit vector
12655static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12656  EVT VT = SVOp->getValueType(0);
12657  int NumElems = VT.getVectorNumElements();
12658
12659  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12660  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12661    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12662        SVOp->getMaskElt(j) >= 0)
12663      return false;
12664
12665  return true;
12666}
12667
12668/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12669static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12670                                        TargetLowering::DAGCombinerInfo &DCI) {
12671  DebugLoc dl = N->getDebugLoc();
12672  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12673  SDValue V1 = SVOp->getOperand(0);
12674  SDValue V2 = SVOp->getOperand(1);
12675  EVT VT = SVOp->getValueType(0);
12676  int NumElems = VT.getVectorNumElements();
12677
12678  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12679      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12680    //
12681    //                   0,0,0,...
12682    //                      |
12683    //    V      UNDEF    BUILD_VECTOR    UNDEF
12684    //     \      /           \           /
12685    //  CONCAT_VECTOR         CONCAT_VECTOR
12686    //         \                  /
12687    //          \                /
12688    //          RESULT: V + zero extended
12689    //
12690    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12691        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12692        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12693      return SDValue();
12694
12695    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12696      return SDValue();
12697
12698    // To match the shuffle mask, the first half of the mask should
12699    // be exactly the first vector, and all the rest a splat with the
12700    // first element of the second one.
12701    for (int i = 0; i < NumElems/2; ++i)
12702      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12703          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12704        return SDValue();
12705
12706    // Emit a zeroed vector and insert the desired subvector on its
12707    // first half.
12708    SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
12709    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12710                         DAG.getConstant(0, MVT::i32), DAG, dl);
12711    return DCI.CombineTo(N, InsV);
12712  }
12713
12714  //===--------------------------------------------------------------------===//
12715  // Combine some shuffles into subvector extracts and inserts:
12716  //
12717
12718  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12719  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12720    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12721                                    DAG, dl);
12722    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12723                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12724    return DCI.CombineTo(N, InsV);
12725  }
12726
12727  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12728  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12729    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12730    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12731                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12732    return DCI.CombineTo(N, InsV);
12733  }
12734
12735  return SDValue();
12736}
12737
12738/// PerformShuffleCombine - Performs several different shuffle combines.
12739static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12740                                     TargetLowering::DAGCombinerInfo &DCI,
12741                                     const X86Subtarget *Subtarget) {
12742  DebugLoc dl = N->getDebugLoc();
12743  EVT VT = N->getValueType(0);
12744
12745  // Don't create instructions with illegal types after legalize types has run.
12746  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12747  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12748    return SDValue();
12749
12750  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12751  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12752      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12753    return PerformShuffleCombine256(N, DAG, DCI);
12754
12755  // Only handle 128 wide vector from here on.
12756  if (VT.getSizeInBits() != 128)
12757    return SDValue();
12758
12759  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12760  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12761  // consecutive, non-overlapping, and in the right order.
12762  SmallVector<SDValue, 16> Elts;
12763  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12764    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12765
12766  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12767}
12768
12769/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12770/// generation and convert it from being a bunch of shuffles and extracts
12771/// to a simple store and scalar loads to extract the elements.
12772static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12773                                                const TargetLowering &TLI) {
12774  SDValue InputVector = N->getOperand(0);
12775
12776  // Only operate on vectors of 4 elements, where the alternative shuffling
12777  // gets to be more expensive.
12778  if (InputVector.getValueType() != MVT::v4i32)
12779    return SDValue();
12780
12781  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12782  // single use which is a sign-extend or zero-extend, and all elements are
12783  // used.
12784  SmallVector<SDNode *, 4> Uses;
12785  unsigned ExtractedElements = 0;
12786  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12787       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12788    if (UI.getUse().getResNo() != InputVector.getResNo())
12789      return SDValue();
12790
12791    SDNode *Extract = *UI;
12792    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12793      return SDValue();
12794
12795    if (Extract->getValueType(0) != MVT::i32)
12796      return SDValue();
12797    if (!Extract->hasOneUse())
12798      return SDValue();
12799    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12800        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12801      return SDValue();
12802    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12803      return SDValue();
12804
12805    // Record which element was extracted.
12806    ExtractedElements |=
12807      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12808
12809    Uses.push_back(Extract);
12810  }
12811
12812  // If not all the elements were used, this may not be worthwhile.
12813  if (ExtractedElements != 15)
12814    return SDValue();
12815
12816  // Ok, we've now decided to do the transformation.
12817  DebugLoc dl = InputVector.getDebugLoc();
12818
12819  // Store the value to a temporary stack slot.
12820  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12821  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12822                            MachinePointerInfo(), false, false, 0);
12823
12824  // Replace each use (extract) with a load of the appropriate element.
12825  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12826       UE = Uses.end(); UI != UE; ++UI) {
12827    SDNode *Extract = *UI;
12828
12829    // cOMpute the element's address.
12830    SDValue Idx = Extract->getOperand(1);
12831    unsigned EltSize =
12832        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12833    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12834    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12835
12836    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12837                                     StackPtr, OffsetVal);
12838
12839    // Load the scalar.
12840    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12841                                     ScalarAddr, MachinePointerInfo(),
12842                                     false, false, false, 0);
12843
12844    // Replace the exact with the load.
12845    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12846  }
12847
12848  // The replacement was made in place; don't return anything.
12849  return SDValue();
12850}
12851
12852/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
12853/// nodes.
12854static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12855                                    const X86Subtarget *Subtarget) {
12856  DebugLoc DL = N->getDebugLoc();
12857  SDValue Cond = N->getOperand(0);
12858  // Get the LHS/RHS of the select.
12859  SDValue LHS = N->getOperand(1);
12860  SDValue RHS = N->getOperand(2);
12861  EVT VT = LHS.getValueType();
12862
12863  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12864  // instructions match the semantics of the common C idiom x<y?x:y but not
12865  // x<=y?x:y, because of how they handle negative zero (which can be
12866  // ignored in unsafe-math mode).
12867  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
12868      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
12869      (Subtarget->hasXMMInt() ||
12870       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
12871    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12872
12873    unsigned Opcode = 0;
12874    // Check for x CC y ? x : y.
12875    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12876        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12877      switch (CC) {
12878      default: break;
12879      case ISD::SETULT:
12880        // Converting this to a min would handle NaNs incorrectly, and swapping
12881        // the operands would cause it to handle comparisons between positive
12882        // and negative zero incorrectly.
12883        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12884          if (!DAG.getTarget().Options.UnsafeFPMath &&
12885              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12886            break;
12887          std::swap(LHS, RHS);
12888        }
12889        Opcode = X86ISD::FMIN;
12890        break;
12891      case ISD::SETOLE:
12892        // Converting this to a min would handle comparisons between positive
12893        // and negative zero incorrectly.
12894        if (!DAG.getTarget().Options.UnsafeFPMath &&
12895            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12896          break;
12897        Opcode = X86ISD::FMIN;
12898        break;
12899      case ISD::SETULE:
12900        // Converting this to a min would handle both negative zeros and NaNs
12901        // incorrectly, but we can swap the operands to fix both.
12902        std::swap(LHS, RHS);
12903      case ISD::SETOLT:
12904      case ISD::SETLT:
12905      case ISD::SETLE:
12906        Opcode = X86ISD::FMIN;
12907        break;
12908
12909      case ISD::SETOGE:
12910        // Converting this to a max would handle comparisons between positive
12911        // and negative zero incorrectly.
12912        if (!DAG.getTarget().Options.UnsafeFPMath &&
12913            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12914          break;
12915        Opcode = X86ISD::FMAX;
12916        break;
12917      case ISD::SETUGT:
12918        // Converting this to a max would handle NaNs incorrectly, and swapping
12919        // the operands would cause it to handle comparisons between positive
12920        // and negative zero incorrectly.
12921        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12922          if (!DAG.getTarget().Options.UnsafeFPMath &&
12923              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12924            break;
12925          std::swap(LHS, RHS);
12926        }
12927        Opcode = X86ISD::FMAX;
12928        break;
12929      case ISD::SETUGE:
12930        // Converting this to a max would handle both negative zeros and NaNs
12931        // incorrectly, but we can swap the operands to fix both.
12932        std::swap(LHS, RHS);
12933      case ISD::SETOGT:
12934      case ISD::SETGT:
12935      case ISD::SETGE:
12936        Opcode = X86ISD::FMAX;
12937        break;
12938      }
12939    // Check for x CC y ? y : x -- a min/max with reversed arms.
12940    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12941               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
12942      switch (CC) {
12943      default: break;
12944      case ISD::SETOGE:
12945        // Converting this to a min would handle comparisons between positive
12946        // and negative zero incorrectly, and swapping the operands would
12947        // cause it to handle NaNs incorrectly.
12948        if (!DAG.getTarget().Options.UnsafeFPMath &&
12949            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
12950          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12951            break;
12952          std::swap(LHS, RHS);
12953        }
12954        Opcode = X86ISD::FMIN;
12955        break;
12956      case ISD::SETUGT:
12957        // Converting this to a min would handle NaNs incorrectly.
12958        if (!DAG.getTarget().Options.UnsafeFPMath &&
12959            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
12960          break;
12961        Opcode = X86ISD::FMIN;
12962        break;
12963      case ISD::SETUGE:
12964        // Converting this to a min would handle both negative zeros and NaNs
12965        // incorrectly, but we can swap the operands to fix both.
12966        std::swap(LHS, RHS);
12967      case ISD::SETOGT:
12968      case ISD::SETGT:
12969      case ISD::SETGE:
12970        Opcode = X86ISD::FMIN;
12971        break;
12972
12973      case ISD::SETULT:
12974        // Converting this to a max would handle NaNs incorrectly.
12975        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12976          break;
12977        Opcode = X86ISD::FMAX;
12978        break;
12979      case ISD::SETOLE:
12980        // Converting this to a max would handle comparisons between positive
12981        // and negative zero incorrectly, and swapping the operands would
12982        // cause it to handle NaNs incorrectly.
12983        if (!DAG.getTarget().Options.UnsafeFPMath &&
12984            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
12985          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12986            break;
12987          std::swap(LHS, RHS);
12988        }
12989        Opcode = X86ISD::FMAX;
12990        break;
12991      case ISD::SETULE:
12992        // Converting this to a max would handle both negative zeros and NaNs
12993        // incorrectly, but we can swap the operands to fix both.
12994        std::swap(LHS, RHS);
12995      case ISD::SETOLT:
12996      case ISD::SETLT:
12997      case ISD::SETLE:
12998        Opcode = X86ISD::FMAX;
12999        break;
13000      }
13001    }
13002
13003    if (Opcode)
13004      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13005  }
13006
13007  // If this is a select between two integer constants, try to do some
13008  // optimizations.
13009  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13010    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13011      // Don't do this for crazy integer types.
13012      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13013        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13014        // so that TrueC (the true value) is larger than FalseC.
13015        bool NeedsCondInvert = false;
13016
13017        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13018            // Efficiently invertible.
13019            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13020             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13021              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13022          NeedsCondInvert = true;
13023          std::swap(TrueC, FalseC);
13024        }
13025
13026        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13027        if (FalseC->getAPIntValue() == 0 &&
13028            TrueC->getAPIntValue().isPowerOf2()) {
13029          if (NeedsCondInvert) // Invert the condition if needed.
13030            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13031                               DAG.getConstant(1, Cond.getValueType()));
13032
13033          // Zero extend the condition if needed.
13034          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13035
13036          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13037          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13038                             DAG.getConstant(ShAmt, MVT::i8));
13039        }
13040
13041        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13042        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13043          if (NeedsCondInvert) // Invert the condition if needed.
13044            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13045                               DAG.getConstant(1, Cond.getValueType()));
13046
13047          // Zero extend the condition if needed.
13048          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13049                             FalseC->getValueType(0), Cond);
13050          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13051                             SDValue(FalseC, 0));
13052        }
13053
13054        // Optimize cases that will turn into an LEA instruction.  This requires
13055        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13056        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13057          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13058          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13059
13060          bool isFastMultiplier = false;
13061          if (Diff < 10) {
13062            switch ((unsigned char)Diff) {
13063              default: break;
13064              case 1:  // result = add base, cond
13065              case 2:  // result = lea base(    , cond*2)
13066              case 3:  // result = lea base(cond, cond*2)
13067              case 4:  // result = lea base(    , cond*4)
13068              case 5:  // result = lea base(cond, cond*4)
13069              case 8:  // result = lea base(    , cond*8)
13070              case 9:  // result = lea base(cond, cond*8)
13071                isFastMultiplier = true;
13072                break;
13073            }
13074          }
13075
13076          if (isFastMultiplier) {
13077            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13078            if (NeedsCondInvert) // Invert the condition if needed.
13079              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13080                                 DAG.getConstant(1, Cond.getValueType()));
13081
13082            // Zero extend the condition if needed.
13083            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13084                               Cond);
13085            // Scale the condition by the difference.
13086            if (Diff != 1)
13087              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13088                                 DAG.getConstant(Diff, Cond.getValueType()));
13089
13090            // Add the base if non-zero.
13091            if (FalseC->getAPIntValue() != 0)
13092              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13093                                 SDValue(FalseC, 0));
13094            return Cond;
13095          }
13096        }
13097      }
13098  }
13099
13100  return SDValue();
13101}
13102
13103/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13104static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13105                                  TargetLowering::DAGCombinerInfo &DCI) {
13106  DebugLoc DL = N->getDebugLoc();
13107
13108  // If the flag operand isn't dead, don't touch this CMOV.
13109  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13110    return SDValue();
13111
13112  SDValue FalseOp = N->getOperand(0);
13113  SDValue TrueOp = N->getOperand(1);
13114  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13115  SDValue Cond = N->getOperand(3);
13116  if (CC == X86::COND_E || CC == X86::COND_NE) {
13117    switch (Cond.getOpcode()) {
13118    default: break;
13119    case X86ISD::BSR:
13120    case X86ISD::BSF:
13121      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13122      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13123        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13124    }
13125  }
13126
13127  // If this is a select between two integer constants, try to do some
13128  // optimizations.  Note that the operands are ordered the opposite of SELECT
13129  // operands.
13130  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13131    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13132      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13133      // larger than FalseC (the false value).
13134      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13135        CC = X86::GetOppositeBranchCondition(CC);
13136        std::swap(TrueC, FalseC);
13137      }
13138
13139      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13140      // This is efficient for any integer data type (including i8/i16) and
13141      // shift amount.
13142      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13143        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13144                           DAG.getConstant(CC, MVT::i8), Cond);
13145
13146        // Zero extend the condition if needed.
13147        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13148
13149        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13150        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13151                           DAG.getConstant(ShAmt, MVT::i8));
13152        if (N->getNumValues() == 2)  // Dead flag value?
13153          return DCI.CombineTo(N, Cond, SDValue());
13154        return Cond;
13155      }
13156
13157      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13158      // for any integer data type, including i8/i16.
13159      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13160        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13161                           DAG.getConstant(CC, MVT::i8), Cond);
13162
13163        // Zero extend the condition if needed.
13164        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13165                           FalseC->getValueType(0), Cond);
13166        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13167                           SDValue(FalseC, 0));
13168
13169        if (N->getNumValues() == 2)  // Dead flag value?
13170          return DCI.CombineTo(N, Cond, SDValue());
13171        return Cond;
13172      }
13173
13174      // Optimize cases that will turn into an LEA instruction.  This requires
13175      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13176      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13177        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13178        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13179
13180        bool isFastMultiplier = false;
13181        if (Diff < 10) {
13182          switch ((unsigned char)Diff) {
13183          default: break;
13184          case 1:  // result = add base, cond
13185          case 2:  // result = lea base(    , cond*2)
13186          case 3:  // result = lea base(cond, cond*2)
13187          case 4:  // result = lea base(    , cond*4)
13188          case 5:  // result = lea base(cond, cond*4)
13189          case 8:  // result = lea base(    , cond*8)
13190          case 9:  // result = lea base(cond, cond*8)
13191            isFastMultiplier = true;
13192            break;
13193          }
13194        }
13195
13196        if (isFastMultiplier) {
13197          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13198          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13199                             DAG.getConstant(CC, MVT::i8), Cond);
13200          // Zero extend the condition if needed.
13201          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13202                             Cond);
13203          // Scale the condition by the difference.
13204          if (Diff != 1)
13205            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13206                               DAG.getConstant(Diff, Cond.getValueType()));
13207
13208          // Add the base if non-zero.
13209          if (FalseC->getAPIntValue() != 0)
13210            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13211                               SDValue(FalseC, 0));
13212          if (N->getNumValues() == 2)  // Dead flag value?
13213            return DCI.CombineTo(N, Cond, SDValue());
13214          return Cond;
13215        }
13216      }
13217    }
13218  }
13219  return SDValue();
13220}
13221
13222
13223/// PerformMulCombine - Optimize a single multiply with constant into two
13224/// in order to implement it with two cheaper instructions, e.g.
13225/// LEA + SHL, LEA + LEA.
13226static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13227                                 TargetLowering::DAGCombinerInfo &DCI) {
13228  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13229    return SDValue();
13230
13231  EVT VT = N->getValueType(0);
13232  if (VT != MVT::i64)
13233    return SDValue();
13234
13235  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13236  if (!C)
13237    return SDValue();
13238  uint64_t MulAmt = C->getZExtValue();
13239  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13240    return SDValue();
13241
13242  uint64_t MulAmt1 = 0;
13243  uint64_t MulAmt2 = 0;
13244  if ((MulAmt % 9) == 0) {
13245    MulAmt1 = 9;
13246    MulAmt2 = MulAmt / 9;
13247  } else if ((MulAmt % 5) == 0) {
13248    MulAmt1 = 5;
13249    MulAmt2 = MulAmt / 5;
13250  } else if ((MulAmt % 3) == 0) {
13251    MulAmt1 = 3;
13252    MulAmt2 = MulAmt / 3;
13253  }
13254  if (MulAmt2 &&
13255      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13256    DebugLoc DL = N->getDebugLoc();
13257
13258    if (isPowerOf2_64(MulAmt2) &&
13259        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13260      // If second multiplifer is pow2, issue it first. We want the multiply by
13261      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13262      // is an add.
13263      std::swap(MulAmt1, MulAmt2);
13264
13265    SDValue NewMul;
13266    if (isPowerOf2_64(MulAmt1))
13267      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13268                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13269    else
13270      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13271                           DAG.getConstant(MulAmt1, VT));
13272
13273    if (isPowerOf2_64(MulAmt2))
13274      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13275                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13276    else
13277      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13278                           DAG.getConstant(MulAmt2, VT));
13279
13280    // Do not add new nodes to DAG combiner worklist.
13281    DCI.CombineTo(N, NewMul, false);
13282  }
13283  return SDValue();
13284}
13285
13286static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13287  SDValue N0 = N->getOperand(0);
13288  SDValue N1 = N->getOperand(1);
13289  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13290  EVT VT = N0.getValueType();
13291
13292  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13293  // since the result of setcc_c is all zero's or all ones.
13294  if (VT.isInteger() && !VT.isVector() &&
13295      N1C && N0.getOpcode() == ISD::AND &&
13296      N0.getOperand(1).getOpcode() == ISD::Constant) {
13297    SDValue N00 = N0.getOperand(0);
13298    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13299        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13300          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13301         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13302      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13303      APInt ShAmt = N1C->getAPIntValue();
13304      Mask = Mask.shl(ShAmt);
13305      if (Mask != 0)
13306        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13307                           N00, DAG.getConstant(Mask, VT));
13308    }
13309  }
13310
13311
13312  // Hardware support for vector shifts is sparse which makes us scalarize the
13313  // vector operations in many cases. Also, on sandybridge ADD is faster than
13314  // shl.
13315  // (shl V, 1) -> add V,V
13316  if (isSplatVector(N1.getNode())) {
13317    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13318    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13319    // We shift all of the values by one. In many cases we do not have
13320    // hardware support for this operation. This is better expressed as an ADD
13321    // of two values.
13322    if (N1C && (1 == N1C->getZExtValue())) {
13323      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13324    }
13325  }
13326
13327  return SDValue();
13328}
13329
13330/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13331///                       when possible.
13332static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13333                                   const X86Subtarget *Subtarget) {
13334  EVT VT = N->getValueType(0);
13335  if (N->getOpcode() == ISD::SHL) {
13336    SDValue V = PerformSHLCombine(N, DAG);
13337    if (V.getNode()) return V;
13338  }
13339
13340  // On X86 with SSE2 support, we can transform this to a vector shift if
13341  // all elements are shifted by the same amount.  We can't do this in legalize
13342  // because the a constant vector is typically transformed to a constant pool
13343  // so we have no knowledge of the shift amount.
13344  if (!Subtarget->hasXMMInt())
13345    return SDValue();
13346
13347  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13348      (!Subtarget->hasAVX2() ||
13349       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13350    return SDValue();
13351
13352  SDValue ShAmtOp = N->getOperand(1);
13353  EVT EltVT = VT.getVectorElementType();
13354  DebugLoc DL = N->getDebugLoc();
13355  SDValue BaseShAmt = SDValue();
13356  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13357    unsigned NumElts = VT.getVectorNumElements();
13358    unsigned i = 0;
13359    for (; i != NumElts; ++i) {
13360      SDValue Arg = ShAmtOp.getOperand(i);
13361      if (Arg.getOpcode() == ISD::UNDEF) continue;
13362      BaseShAmt = Arg;
13363      break;
13364    }
13365    for (; i != NumElts; ++i) {
13366      SDValue Arg = ShAmtOp.getOperand(i);
13367      if (Arg.getOpcode() == ISD::UNDEF) continue;
13368      if (Arg != BaseShAmt) {
13369        return SDValue();
13370      }
13371    }
13372  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13373             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13374    SDValue InVec = ShAmtOp.getOperand(0);
13375    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13376      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13377      unsigned i = 0;
13378      for (; i != NumElts; ++i) {
13379        SDValue Arg = InVec.getOperand(i);
13380        if (Arg.getOpcode() == ISD::UNDEF) continue;
13381        BaseShAmt = Arg;
13382        break;
13383      }
13384    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13385       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13386         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13387         if (C->getZExtValue() == SplatIdx)
13388           BaseShAmt = InVec.getOperand(1);
13389       }
13390    }
13391    if (BaseShAmt.getNode() == 0)
13392      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13393                              DAG.getIntPtrConstant(0));
13394  } else
13395    return SDValue();
13396
13397  // The shift amount is an i32.
13398  if (EltVT.bitsGT(MVT::i32))
13399    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13400  else if (EltVT.bitsLT(MVT::i32))
13401    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13402
13403  // The shift amount is identical so we can do a vector shift.
13404  SDValue  ValOp = N->getOperand(0);
13405  switch (N->getOpcode()) {
13406  default:
13407    llvm_unreachable("Unknown shift opcode!");
13408    break;
13409  case ISD::SHL:
13410    if (VT == MVT::v2i64)
13411      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13412                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13413                         ValOp, BaseShAmt);
13414    if (VT == MVT::v4i32)
13415      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13416                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13417                         ValOp, BaseShAmt);
13418    if (VT == MVT::v8i16)
13419      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13420                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13421                         ValOp, BaseShAmt);
13422    if (VT == MVT::v4i64)
13423      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13424                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
13425                         ValOp, BaseShAmt);
13426    if (VT == MVT::v8i32)
13427      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13428                         DAG.getConstant(Intrinsic::x86_avx2_pslli_d, MVT::i32),
13429                         ValOp, BaseShAmt);
13430    if (VT == MVT::v16i16)
13431      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13432                         DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
13433                         ValOp, BaseShAmt);
13434    break;
13435  case ISD::SRA:
13436    if (VT == MVT::v4i32)
13437      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13438                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13439                         ValOp, BaseShAmt);
13440    if (VT == MVT::v8i16)
13441      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13442                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13443                         ValOp, BaseShAmt);
13444    if (VT == MVT::v8i32)
13445      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13446                         DAG.getConstant(Intrinsic::x86_avx2_psrai_d, MVT::i32),
13447                         ValOp, BaseShAmt);
13448    if (VT == MVT::v16i16)
13449      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13450                         DAG.getConstant(Intrinsic::x86_avx2_psrai_w, MVT::i32),
13451                         ValOp, BaseShAmt);
13452    break;
13453  case ISD::SRL:
13454    if (VT == MVT::v2i64)
13455      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13456                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13457                         ValOp, BaseShAmt);
13458    if (VT == MVT::v4i32)
13459      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13460                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13461                         ValOp, BaseShAmt);
13462    if (VT ==  MVT::v8i16)
13463      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13464                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13465                         ValOp, BaseShAmt);
13466    if (VT == MVT::v4i64)
13467      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13468                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
13469                         ValOp, BaseShAmt);
13470    if (VT == MVT::v8i32)
13471      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13472                         DAG.getConstant(Intrinsic::x86_avx2_psrli_d, MVT::i32),
13473                         ValOp, BaseShAmt);
13474    if (VT ==  MVT::v16i16)
13475      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13476                         DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
13477                         ValOp, BaseShAmt);
13478    break;
13479  }
13480  return SDValue();
13481}
13482
13483
13484// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13485// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13486// and friends.  Likewise for OR -> CMPNEQSS.
13487static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13488                            TargetLowering::DAGCombinerInfo &DCI,
13489                            const X86Subtarget *Subtarget) {
13490  unsigned opcode;
13491
13492  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13493  // we're requiring SSE2 for both.
13494  if (Subtarget->hasXMMInt() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13495    SDValue N0 = N->getOperand(0);
13496    SDValue N1 = N->getOperand(1);
13497    SDValue CMP0 = N0->getOperand(1);
13498    SDValue CMP1 = N1->getOperand(1);
13499    DebugLoc DL = N->getDebugLoc();
13500
13501    // The SETCCs should both refer to the same CMP.
13502    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13503      return SDValue();
13504
13505    SDValue CMP00 = CMP0->getOperand(0);
13506    SDValue CMP01 = CMP0->getOperand(1);
13507    EVT     VT    = CMP00.getValueType();
13508
13509    if (VT == MVT::f32 || VT == MVT::f64) {
13510      bool ExpectingFlags = false;
13511      // Check for any users that want flags:
13512      for (SDNode::use_iterator UI = N->use_begin(),
13513             UE = N->use_end();
13514           !ExpectingFlags && UI != UE; ++UI)
13515        switch (UI->getOpcode()) {
13516        default:
13517        case ISD::BR_CC:
13518        case ISD::BRCOND:
13519        case ISD::SELECT:
13520          ExpectingFlags = true;
13521          break;
13522        case ISD::CopyToReg:
13523        case ISD::SIGN_EXTEND:
13524        case ISD::ZERO_EXTEND:
13525        case ISD::ANY_EXTEND:
13526          break;
13527        }
13528
13529      if (!ExpectingFlags) {
13530        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13531        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13532
13533        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13534          X86::CondCode tmp = cc0;
13535          cc0 = cc1;
13536          cc1 = tmp;
13537        }
13538
13539        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13540            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13541          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13542          X86ISD::NodeType NTOperator = is64BitFP ?
13543            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13544          // FIXME: need symbolic constants for these magic numbers.
13545          // See X86ATTInstPrinter.cpp:printSSECC().
13546          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13547          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13548                                              DAG.getConstant(x86cc, MVT::i8));
13549          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13550                                              OnesOrZeroesF);
13551          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13552                                      DAG.getConstant(1, MVT::i32));
13553          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13554          return OneBitOfTruth;
13555        }
13556      }
13557    }
13558  }
13559  return SDValue();
13560}
13561
13562/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13563/// so it can be folded inside ANDNP.
13564static bool CanFoldXORWithAllOnes(const SDNode *N) {
13565  EVT VT = N->getValueType(0);
13566
13567  // Match direct AllOnes for 128 and 256-bit vectors
13568  if (ISD::isBuildVectorAllOnes(N))
13569    return true;
13570
13571  // Look through a bit convert.
13572  if (N->getOpcode() == ISD::BITCAST)
13573    N = N->getOperand(0).getNode();
13574
13575  // Sometimes the operand may come from a insert_subvector building a 256-bit
13576  // allones vector
13577  if (VT.getSizeInBits() == 256 &&
13578      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13579    SDValue V1 = N->getOperand(0);
13580    SDValue V2 = N->getOperand(1);
13581
13582    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13583        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13584        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13585        ISD::isBuildVectorAllOnes(V2.getNode()))
13586      return true;
13587  }
13588
13589  return false;
13590}
13591
13592static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13593                                 TargetLowering::DAGCombinerInfo &DCI,
13594                                 const X86Subtarget *Subtarget) {
13595  if (DCI.isBeforeLegalizeOps())
13596    return SDValue();
13597
13598  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13599  if (R.getNode())
13600    return R;
13601
13602  EVT VT = N->getValueType(0);
13603
13604  // Create ANDN, BLSI, and BLSR instructions
13605  // BLSI is X & (-X)
13606  // BLSR is X & (X-1)
13607  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13608    SDValue N0 = N->getOperand(0);
13609    SDValue N1 = N->getOperand(1);
13610    DebugLoc DL = N->getDebugLoc();
13611
13612    // Check LHS for not
13613    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13614      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13615    // Check RHS for not
13616    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13617      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13618
13619    // Check LHS for neg
13620    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13621        isZero(N0.getOperand(0)))
13622      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13623
13624    // Check RHS for neg
13625    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13626        isZero(N1.getOperand(0)))
13627      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13628
13629    // Check LHS for X-1
13630    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13631        isAllOnes(N0.getOperand(1)))
13632      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13633
13634    // Check RHS for X-1
13635    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13636        isAllOnes(N1.getOperand(1)))
13637      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13638
13639    return SDValue();
13640  }
13641
13642  // Want to form ANDNP nodes:
13643  // 1) In the hopes of then easily combining them with OR and AND nodes
13644  //    to form PBLEND/PSIGN.
13645  // 2) To match ANDN packed intrinsics
13646  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13647    return SDValue();
13648
13649  SDValue N0 = N->getOperand(0);
13650  SDValue N1 = N->getOperand(1);
13651  DebugLoc DL = N->getDebugLoc();
13652
13653  // Check LHS for vnot
13654  if (N0.getOpcode() == ISD::XOR &&
13655      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13656      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13657    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13658
13659  // Check RHS for vnot
13660  if (N1.getOpcode() == ISD::XOR &&
13661      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13662      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13663    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13664
13665  return SDValue();
13666}
13667
13668static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13669                                TargetLowering::DAGCombinerInfo &DCI,
13670                                const X86Subtarget *Subtarget) {
13671  if (DCI.isBeforeLegalizeOps())
13672    return SDValue();
13673
13674  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13675  if (R.getNode())
13676    return R;
13677
13678  EVT VT = N->getValueType(0);
13679
13680  SDValue N0 = N->getOperand(0);
13681  SDValue N1 = N->getOperand(1);
13682
13683  // look for psign/blend
13684  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
13685    if (!Subtarget->hasSSSE3orAVX() ||
13686        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
13687      return SDValue();
13688
13689    // Canonicalize pandn to RHS
13690    if (N0.getOpcode() == X86ISD::ANDNP)
13691      std::swap(N0, N1);
13692    // or (and (m, x), (pandn m, y))
13693    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13694      SDValue Mask = N1.getOperand(0);
13695      SDValue X    = N1.getOperand(1);
13696      SDValue Y;
13697      if (N0.getOperand(0) == Mask)
13698        Y = N0.getOperand(1);
13699      if (N0.getOperand(1) == Mask)
13700        Y = N0.getOperand(0);
13701
13702      // Check to see if the mask appeared in both the AND and ANDNP and
13703      if (!Y.getNode())
13704        return SDValue();
13705
13706      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13707      if (Mask.getOpcode() != ISD::BITCAST ||
13708          X.getOpcode() != ISD::BITCAST ||
13709          Y.getOpcode() != ISD::BITCAST)
13710        return SDValue();
13711
13712      // Look through mask bitcast.
13713      Mask = Mask.getOperand(0);
13714      EVT MaskVT = Mask.getValueType();
13715
13716      // Validate that the Mask operand is a vector sra node.  The sra node
13717      // will be an intrinsic.
13718      if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13719        return SDValue();
13720
13721      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13722      // there is no psrai.b
13723      switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13724      case Intrinsic::x86_sse2_psrai_w:
13725      case Intrinsic::x86_sse2_psrai_d:
13726      case Intrinsic::x86_avx2_psrai_w:
13727      case Intrinsic::x86_avx2_psrai_d:
13728        break;
13729      default: return SDValue();
13730      }
13731
13732      // Check that the SRA is all signbits.
13733      SDValue SraC = Mask.getOperand(2);
13734      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13735      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13736      if ((SraAmt + 1) != EltBits)
13737        return SDValue();
13738
13739      DebugLoc DL = N->getDebugLoc();
13740
13741      // Now we know we at least have a plendvb with the mask val.  See if
13742      // we can form a psignb/w/d.
13743      // psign = x.type == y.type == mask.type && y = sub(0, x);
13744      X = X.getOperand(0);
13745      Y = Y.getOperand(0);
13746      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13747          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13748          X.getValueType() == MaskVT && X.getValueType() == Y.getValueType() &&
13749          (EltBits == 8 || EltBits == 16 || EltBits == 32)) {
13750        SDValue Sign = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X,
13751                                   Mask.getOperand(1));
13752        return DAG.getNode(ISD::BITCAST, DL, VT, Sign);
13753      }
13754      // PBLENDVB only available on SSE 4.1
13755      if (!Subtarget->hasSSE41orAVX())
13756        return SDValue();
13757
13758      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
13759
13760      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
13761      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
13762      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
13763      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
13764      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
13765    }
13766  }
13767
13768  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
13769    return SDValue();
13770
13771  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13772  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13773    std::swap(N0, N1);
13774  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13775    return SDValue();
13776  if (!N0.hasOneUse() || !N1.hasOneUse())
13777    return SDValue();
13778
13779  SDValue ShAmt0 = N0.getOperand(1);
13780  if (ShAmt0.getValueType() != MVT::i8)
13781    return SDValue();
13782  SDValue ShAmt1 = N1.getOperand(1);
13783  if (ShAmt1.getValueType() != MVT::i8)
13784    return SDValue();
13785  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13786    ShAmt0 = ShAmt0.getOperand(0);
13787  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13788    ShAmt1 = ShAmt1.getOperand(0);
13789
13790  DebugLoc DL = N->getDebugLoc();
13791  unsigned Opc = X86ISD::SHLD;
13792  SDValue Op0 = N0.getOperand(0);
13793  SDValue Op1 = N1.getOperand(0);
13794  if (ShAmt0.getOpcode() == ISD::SUB) {
13795    Opc = X86ISD::SHRD;
13796    std::swap(Op0, Op1);
13797    std::swap(ShAmt0, ShAmt1);
13798  }
13799
13800  unsigned Bits = VT.getSizeInBits();
13801  if (ShAmt1.getOpcode() == ISD::SUB) {
13802    SDValue Sum = ShAmt1.getOperand(0);
13803    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13804      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13805      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13806        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13807      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13808        return DAG.getNode(Opc, DL, VT,
13809                           Op0, Op1,
13810                           DAG.getNode(ISD::TRUNCATE, DL,
13811                                       MVT::i8, ShAmt0));
13812    }
13813  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13814    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13815    if (ShAmt0C &&
13816        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13817      return DAG.getNode(Opc, DL, VT,
13818                         N0.getOperand(0), N1.getOperand(0),
13819                         DAG.getNode(ISD::TRUNCATE, DL,
13820                                       MVT::i8, ShAmt0));
13821  }
13822
13823  return SDValue();
13824}
13825
13826static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
13827                                 TargetLowering::DAGCombinerInfo &DCI,
13828                                 const X86Subtarget *Subtarget) {
13829  if (DCI.isBeforeLegalizeOps())
13830    return SDValue();
13831
13832  EVT VT = N->getValueType(0);
13833
13834  if (VT != MVT::i32 && VT != MVT::i64)
13835    return SDValue();
13836
13837  // Create BLSMSK instructions by finding X ^ (X-1)
13838  SDValue N0 = N->getOperand(0);
13839  SDValue N1 = N->getOperand(1);
13840  DebugLoc DL = N->getDebugLoc();
13841
13842  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13843      isAllOnes(N0.getOperand(1)))
13844    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
13845
13846  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13847      isAllOnes(N1.getOperand(1)))
13848    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
13849
13850  return SDValue();
13851}
13852
13853/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
13854static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
13855                                   const X86Subtarget *Subtarget) {
13856  LoadSDNode *Ld = cast<LoadSDNode>(N);
13857  EVT RegVT = Ld->getValueType(0);
13858  EVT MemVT = Ld->getMemoryVT();
13859  DebugLoc dl = Ld->getDebugLoc();
13860  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13861
13862  ISD::LoadExtType Ext = Ld->getExtensionType();
13863
13864  // If this is a vector EXT Load then attempt to optimize it using a
13865  // shuffle. We need SSE4 for the shuffles.
13866  // TODO: It is possible to support ZExt by zeroing the undef values
13867  // during the shuffle phase or after the shuffle.
13868  if (RegVT.isVector() && Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
13869    assert(MemVT != RegVT && "Cannot extend to the same type");
13870    assert(MemVT.isVector() && "Must load a vector from memory");
13871
13872    unsigned NumElems = RegVT.getVectorNumElements();
13873    unsigned RegSz = RegVT.getSizeInBits();
13874    unsigned MemSz = MemVT.getSizeInBits();
13875    assert(RegSz > MemSz && "Register size must be greater than the mem size");
13876    // All sizes must be a power of two
13877    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
13878
13879    // Attempt to load the original value using a single load op.
13880    // Find a scalar type which is equal to the loaded word size.
13881    MVT SclrLoadTy = MVT::i8;
13882    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13883         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13884      MVT Tp = (MVT::SimpleValueType)tp;
13885      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
13886        SclrLoadTy = Tp;
13887        break;
13888      }
13889    }
13890
13891    // Proceed if a load word is found.
13892    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
13893
13894    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
13895      RegSz/SclrLoadTy.getSizeInBits());
13896
13897    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
13898                                  RegSz/MemVT.getScalarType().getSizeInBits());
13899    // Can't shuffle using an illegal type.
13900    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13901
13902    // Perform a single load.
13903    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
13904                                  Ld->getBasePtr(),
13905                                  Ld->getPointerInfo(), Ld->isVolatile(),
13906                                  Ld->isNonTemporal(), Ld->isInvariant(),
13907                                  Ld->getAlignment());
13908
13909    // Insert the word loaded into a vector.
13910    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
13911      LoadUnitVecVT, ScalarLoad);
13912
13913    // Bitcast the loaded value to a vector of the original element type, in
13914    // the size of the target vector type.
13915    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, ScalarInVector);
13916    unsigned SizeRatio = RegSz/MemSz;
13917
13918    // Redistribute the loaded elements into the different locations.
13919    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13920    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
13921
13922    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
13923                                DAG.getUNDEF(SlicedVec.getValueType()),
13924                                ShuffleVec.data());
13925
13926    // Bitcast to the requested type.
13927    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
13928    // Replace the original load with the new sequence
13929    // and return the new chain.
13930    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
13931    return SDValue(ScalarLoad.getNode(), 1);
13932  }
13933
13934  return SDValue();
13935}
13936
13937/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
13938static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
13939                                   const X86Subtarget *Subtarget) {
13940  StoreSDNode *St = cast<StoreSDNode>(N);
13941  EVT VT = St->getValue().getValueType();
13942  EVT StVT = St->getMemoryVT();
13943  DebugLoc dl = St->getDebugLoc();
13944  SDValue StoredVal = St->getOperand(1);
13945  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13946
13947  // If we are saving a concatenation of two XMM registers, perform two stores.
13948  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
13949  // 128-bit ones. If in the future the cost becomes only one memory access the
13950  // first version would be better.
13951  if (VT.getSizeInBits() == 256 &&
13952    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
13953    StoredVal.getNumOperands() == 2) {
13954
13955    SDValue Value0 = StoredVal.getOperand(0);
13956    SDValue Value1 = StoredVal.getOperand(1);
13957
13958    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
13959    SDValue Ptr0 = St->getBasePtr();
13960    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
13961
13962    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
13963                                St->getPointerInfo(), St->isVolatile(),
13964                                St->isNonTemporal(), St->getAlignment());
13965    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
13966                                St->getPointerInfo(), St->isVolatile(),
13967                                St->isNonTemporal(), St->getAlignment());
13968    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
13969  }
13970
13971  // Optimize trunc store (of multiple scalars) to shuffle and store.
13972  // First, pack all of the elements in one place. Next, store to memory
13973  // in fewer chunks.
13974  if (St->isTruncatingStore() && VT.isVector()) {
13975    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13976    unsigned NumElems = VT.getVectorNumElements();
13977    assert(StVT != VT && "Cannot truncate to the same type");
13978    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
13979    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
13980
13981    // From, To sizes and ElemCount must be pow of two
13982    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
13983    // We are going to use the original vector elt for storing.
13984    // Accumulated smaller vector elements must be a multiple of the store size.
13985    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
13986
13987    unsigned SizeRatio  = FromSz / ToSz;
13988
13989    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
13990
13991    // Create a type on which we perform the shuffle
13992    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
13993            StVT.getScalarType(), NumElems*SizeRatio);
13994
13995    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
13996
13997    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
13998    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13999    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14000
14001    // Can't shuffle using an illegal type
14002    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14003
14004    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14005                                DAG.getUNDEF(WideVec.getValueType()),
14006                                ShuffleVec.data());
14007    // At this point all of the data is stored at the bottom of the
14008    // register. We now need to save it to mem.
14009
14010    // Find the largest store unit
14011    MVT StoreType = MVT::i8;
14012    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14013         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14014      MVT Tp = (MVT::SimpleValueType)tp;
14015      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14016        StoreType = Tp;
14017    }
14018
14019    // Bitcast the original vector into a vector of store-size units
14020    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14021            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14022    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14023    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14024    SmallVector<SDValue, 8> Chains;
14025    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14026                                        TLI.getPointerTy());
14027    SDValue Ptr = St->getBasePtr();
14028
14029    // Perform one or more big stores into memory.
14030    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14031      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14032                                   StoreType, ShuffWide,
14033                                   DAG.getIntPtrConstant(i));
14034      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14035                                St->getPointerInfo(), St->isVolatile(),
14036                                St->isNonTemporal(), St->getAlignment());
14037      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14038      Chains.push_back(Ch);
14039    }
14040
14041    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14042                               Chains.size());
14043  }
14044
14045
14046  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14047  // the FP state in cases where an emms may be missing.
14048  // A preferable solution to the general problem is to figure out the right
14049  // places to insert EMMS.  This qualifies as a quick hack.
14050
14051  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14052  if (VT.getSizeInBits() != 64)
14053    return SDValue();
14054
14055  const Function *F = DAG.getMachineFunction().getFunction();
14056  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14057  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14058                     && Subtarget->hasXMMInt();
14059  if ((VT.isVector() ||
14060       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14061      isa<LoadSDNode>(St->getValue()) &&
14062      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14063      St->getChain().hasOneUse() && !St->isVolatile()) {
14064    SDNode* LdVal = St->getValue().getNode();
14065    LoadSDNode *Ld = 0;
14066    int TokenFactorIndex = -1;
14067    SmallVector<SDValue, 8> Ops;
14068    SDNode* ChainVal = St->getChain().getNode();
14069    // Must be a store of a load.  We currently handle two cases:  the load
14070    // is a direct child, and it's under an intervening TokenFactor.  It is
14071    // possible to dig deeper under nested TokenFactors.
14072    if (ChainVal == LdVal)
14073      Ld = cast<LoadSDNode>(St->getChain());
14074    else if (St->getValue().hasOneUse() &&
14075             ChainVal->getOpcode() == ISD::TokenFactor) {
14076      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
14077        if (ChainVal->getOperand(i).getNode() == LdVal) {
14078          TokenFactorIndex = i;
14079          Ld = cast<LoadSDNode>(St->getValue());
14080        } else
14081          Ops.push_back(ChainVal->getOperand(i));
14082      }
14083    }
14084
14085    if (!Ld || !ISD::isNormalLoad(Ld))
14086      return SDValue();
14087
14088    // If this is not the MMX case, i.e. we are just turning i64 load/store
14089    // into f64 load/store, avoid the transformation if there are multiple
14090    // uses of the loaded value.
14091    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14092      return SDValue();
14093
14094    DebugLoc LdDL = Ld->getDebugLoc();
14095    DebugLoc StDL = N->getDebugLoc();
14096    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14097    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14098    // pair instead.
14099    if (Subtarget->is64Bit() || F64IsLegal) {
14100      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14101      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14102                                  Ld->getPointerInfo(), Ld->isVolatile(),
14103                                  Ld->isNonTemporal(), Ld->isInvariant(),
14104                                  Ld->getAlignment());
14105      SDValue NewChain = NewLd.getValue(1);
14106      if (TokenFactorIndex != -1) {
14107        Ops.push_back(NewChain);
14108        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14109                               Ops.size());
14110      }
14111      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14112                          St->getPointerInfo(),
14113                          St->isVolatile(), St->isNonTemporal(),
14114                          St->getAlignment());
14115    }
14116
14117    // Otherwise, lower to two pairs of 32-bit loads / stores.
14118    SDValue LoAddr = Ld->getBasePtr();
14119    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14120                                 DAG.getConstant(4, MVT::i32));
14121
14122    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14123                               Ld->getPointerInfo(),
14124                               Ld->isVolatile(), Ld->isNonTemporal(),
14125                               Ld->isInvariant(), Ld->getAlignment());
14126    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14127                               Ld->getPointerInfo().getWithOffset(4),
14128                               Ld->isVolatile(), Ld->isNonTemporal(),
14129                               Ld->isInvariant(),
14130                               MinAlign(Ld->getAlignment(), 4));
14131
14132    SDValue NewChain = LoLd.getValue(1);
14133    if (TokenFactorIndex != -1) {
14134      Ops.push_back(LoLd);
14135      Ops.push_back(HiLd);
14136      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14137                             Ops.size());
14138    }
14139
14140    LoAddr = St->getBasePtr();
14141    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14142                         DAG.getConstant(4, MVT::i32));
14143
14144    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14145                                St->getPointerInfo(),
14146                                St->isVolatile(), St->isNonTemporal(),
14147                                St->getAlignment());
14148    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14149                                St->getPointerInfo().getWithOffset(4),
14150                                St->isVolatile(),
14151                                St->isNonTemporal(),
14152                                MinAlign(St->getAlignment(), 4));
14153    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14154  }
14155  return SDValue();
14156}
14157
14158/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14159/// and return the operands for the horizontal operation in LHS and RHS.  A
14160/// horizontal operation performs the binary operation on successive elements
14161/// of its first operand, then on successive elements of its second operand,
14162/// returning the resulting values in a vector.  For example, if
14163///   A = < float a0, float a1, float a2, float a3 >
14164/// and
14165///   B = < float b0, float b1, float b2, float b3 >
14166/// then the result of doing a horizontal operation on A and B is
14167///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14168/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14169/// A horizontal-op B, for some already available A and B, and if so then LHS is
14170/// set to A, RHS to B, and the routine returns 'true'.
14171/// Note that the binary operation should have the property that if one of the
14172/// operands is UNDEF then the result is UNDEF.
14173static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14174  // Look for the following pattern: if
14175  //   A = < float a0, float a1, float a2, float a3 >
14176  //   B = < float b0, float b1, float b2, float b3 >
14177  // and
14178  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14179  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14180  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14181  // which is A horizontal-op B.
14182
14183  // At least one of the operands should be a vector shuffle.
14184  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14185      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14186    return false;
14187
14188  EVT VT = LHS.getValueType();
14189
14190  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14191         "Unsupported vector type for horizontal add/sub");
14192
14193  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14194  // operate independently on 128-bit lanes.
14195  unsigned NumElts = VT.getVectorNumElements();
14196  unsigned NumLanes = VT.getSizeInBits()/128;
14197  unsigned NumLaneElts = NumElts / NumLanes;
14198  assert((NumLaneElts % 2 == 0) &&
14199         "Vector type should have an even number of elements in each lane");
14200  unsigned HalfLaneElts = NumLaneElts/2;
14201
14202  // View LHS in the form
14203  //   LHS = VECTOR_SHUFFLE A, B, LMask
14204  // If LHS is not a shuffle then pretend it is the shuffle
14205  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14206  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14207  // type VT.
14208  SDValue A, B;
14209  SmallVector<int, 16> LMask(NumElts);
14210  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14211    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14212      A = LHS.getOperand(0);
14213    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14214      B = LHS.getOperand(1);
14215    cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(LMask);
14216  } else {
14217    if (LHS.getOpcode() != ISD::UNDEF)
14218      A = LHS;
14219    for (unsigned i = 0; i != NumElts; ++i)
14220      LMask[i] = i;
14221  }
14222
14223  // Likewise, view RHS in the form
14224  //   RHS = VECTOR_SHUFFLE C, D, RMask
14225  SDValue C, D;
14226  SmallVector<int, 16> RMask(NumElts);
14227  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14228    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14229      C = RHS.getOperand(0);
14230    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14231      D = RHS.getOperand(1);
14232    cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(RMask);
14233  } else {
14234    if (RHS.getOpcode() != ISD::UNDEF)
14235      C = RHS;
14236    for (unsigned i = 0; i != NumElts; ++i)
14237      RMask[i] = i;
14238  }
14239
14240  // Check that the shuffles are both shuffling the same vectors.
14241  if (!(A == C && B == D) && !(A == D && B == C))
14242    return false;
14243
14244  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14245  if (!A.getNode() && !B.getNode())
14246    return false;
14247
14248  // If A and B occur in reverse order in RHS, then "swap" them (which means
14249  // rewriting the mask).
14250  if (A != C)
14251    CommuteVectorShuffleMask(RMask, NumElts);
14252
14253  // At this point LHS and RHS are equivalent to
14254  //   LHS = VECTOR_SHUFFLE A, B, LMask
14255  //   RHS = VECTOR_SHUFFLE A, B, RMask
14256  // Check that the masks correspond to performing a horizontal operation.
14257  for (unsigned i = 0; i != NumElts; ++i) {
14258    int LIdx = LMask[i], RIdx = RMask[i];
14259
14260    // Ignore any UNDEF components.
14261    if (LIdx < 0 || RIdx < 0 ||
14262        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14263        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14264      continue;
14265
14266    // Check that successive elements are being operated on.  If not, this is
14267    // not a horizontal operation.
14268    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14269    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14270    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14271    if (!(LIdx == Index && RIdx == Index + 1) &&
14272        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14273      return false;
14274  }
14275
14276  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14277  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14278  return true;
14279}
14280
14281/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14282static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14283                                  const X86Subtarget *Subtarget) {
14284  EVT VT = N->getValueType(0);
14285  SDValue LHS = N->getOperand(0);
14286  SDValue RHS = N->getOperand(1);
14287
14288  // Try to synthesize horizontal adds from adds of shuffles.
14289  if (((Subtarget->hasSSE3orAVX() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14290       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14291      isHorizontalBinOp(LHS, RHS, true))
14292    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14293  return SDValue();
14294}
14295
14296/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14297static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14298                                  const X86Subtarget *Subtarget) {
14299  EVT VT = N->getValueType(0);
14300  SDValue LHS = N->getOperand(0);
14301  SDValue RHS = N->getOperand(1);
14302
14303  // Try to synthesize horizontal subs from subs of shuffles.
14304  if (((Subtarget->hasSSE3orAVX() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14305       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14306      isHorizontalBinOp(LHS, RHS, false))
14307    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14308  return SDValue();
14309}
14310
14311/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14312/// X86ISD::FXOR nodes.
14313static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14314  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14315  // F[X]OR(0.0, x) -> x
14316  // F[X]OR(x, 0.0) -> x
14317  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14318    if (C->getValueAPF().isPosZero())
14319      return N->getOperand(1);
14320  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14321    if (C->getValueAPF().isPosZero())
14322      return N->getOperand(0);
14323  return SDValue();
14324}
14325
14326/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14327static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14328  // FAND(0.0, x) -> 0.0
14329  // FAND(x, 0.0) -> 0.0
14330  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14331    if (C->getValueAPF().isPosZero())
14332      return N->getOperand(0);
14333  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14334    if (C->getValueAPF().isPosZero())
14335      return N->getOperand(1);
14336  return SDValue();
14337}
14338
14339static SDValue PerformBTCombine(SDNode *N,
14340                                SelectionDAG &DAG,
14341                                TargetLowering::DAGCombinerInfo &DCI) {
14342  // BT ignores high bits in the bit index operand.
14343  SDValue Op1 = N->getOperand(1);
14344  if (Op1.hasOneUse()) {
14345    unsigned BitWidth = Op1.getValueSizeInBits();
14346    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14347    APInt KnownZero, KnownOne;
14348    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14349                                          !DCI.isBeforeLegalizeOps());
14350    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14351    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14352        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14353      DCI.CommitTargetLoweringOpt(TLO);
14354  }
14355  return SDValue();
14356}
14357
14358static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14359  SDValue Op = N->getOperand(0);
14360  if (Op.getOpcode() == ISD::BITCAST)
14361    Op = Op.getOperand(0);
14362  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14363  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14364      VT.getVectorElementType().getSizeInBits() ==
14365      OpVT.getVectorElementType().getSizeInBits()) {
14366    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14367  }
14368  return SDValue();
14369}
14370
14371static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
14372  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14373  //           (and (i32 x86isd::setcc_carry), 1)
14374  // This eliminates the zext. This transformation is necessary because
14375  // ISD::SETCC is always legalized to i8.
14376  DebugLoc dl = N->getDebugLoc();
14377  SDValue N0 = N->getOperand(0);
14378  EVT VT = N->getValueType(0);
14379  if (N0.getOpcode() == ISD::AND &&
14380      N0.hasOneUse() &&
14381      N0.getOperand(0).hasOneUse()) {
14382    SDValue N00 = N0.getOperand(0);
14383    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14384      return SDValue();
14385    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14386    if (!C || C->getZExtValue() != 1)
14387      return SDValue();
14388    return DAG.getNode(ISD::AND, dl, VT,
14389                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14390                                   N00.getOperand(0), N00.getOperand(1)),
14391                       DAG.getConstant(1, VT));
14392  }
14393
14394  return SDValue();
14395}
14396
14397// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14398static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14399  unsigned X86CC = N->getConstantOperandVal(0);
14400  SDValue EFLAG = N->getOperand(1);
14401  DebugLoc DL = N->getDebugLoc();
14402
14403  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14404  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14405  // cases.
14406  if (X86CC == X86::COND_B)
14407    return DAG.getNode(ISD::AND, DL, MVT::i8,
14408                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14409                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14410                       DAG.getConstant(1, MVT::i8));
14411
14412  return SDValue();
14413}
14414
14415static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14416                                        const X86TargetLowering *XTLI) {
14417  SDValue Op0 = N->getOperand(0);
14418  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14419  // a 32-bit target where SSE doesn't support i64->FP operations.
14420  if (Op0.getOpcode() == ISD::LOAD) {
14421    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14422    EVT VT = Ld->getValueType(0);
14423    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14424        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14425        !XTLI->getSubtarget()->is64Bit() &&
14426        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14427      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14428                                          Ld->getChain(), Op0, DAG);
14429      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14430      return FILDChain;
14431    }
14432  }
14433  return SDValue();
14434}
14435
14436// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14437static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14438                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14439  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14440  // the result is either zero or one (depending on the input carry bit).
14441  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14442  if (X86::isZeroNode(N->getOperand(0)) &&
14443      X86::isZeroNode(N->getOperand(1)) &&
14444      // We don't have a good way to replace an EFLAGS use, so only do this when
14445      // dead right now.
14446      SDValue(N, 1).use_empty()) {
14447    DebugLoc DL = N->getDebugLoc();
14448    EVT VT = N->getValueType(0);
14449    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14450    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14451                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14452                                           DAG.getConstant(X86::COND_B,MVT::i8),
14453                                           N->getOperand(2)),
14454                               DAG.getConstant(1, VT));
14455    return DCI.CombineTo(N, Res1, CarryOut);
14456  }
14457
14458  return SDValue();
14459}
14460
14461// fold (add Y, (sete  X, 0)) -> adc  0, Y
14462//      (add Y, (setne X, 0)) -> sbb -1, Y
14463//      (sub (sete  X, 0), Y) -> sbb  0, Y
14464//      (sub (setne X, 0), Y) -> adc -1, Y
14465static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14466  DebugLoc DL = N->getDebugLoc();
14467
14468  // Look through ZExts.
14469  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14470  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14471    return SDValue();
14472
14473  SDValue SetCC = Ext.getOperand(0);
14474  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14475    return SDValue();
14476
14477  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14478  if (CC != X86::COND_E && CC != X86::COND_NE)
14479    return SDValue();
14480
14481  SDValue Cmp = SetCC.getOperand(1);
14482  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14483      !X86::isZeroNode(Cmp.getOperand(1)) ||
14484      !Cmp.getOperand(0).getValueType().isInteger())
14485    return SDValue();
14486
14487  SDValue CmpOp0 = Cmp.getOperand(0);
14488  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14489                               DAG.getConstant(1, CmpOp0.getValueType()));
14490
14491  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14492  if (CC == X86::COND_NE)
14493    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14494                       DL, OtherVal.getValueType(), OtherVal,
14495                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14496  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14497                     DL, OtherVal.getValueType(), OtherVal,
14498                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14499}
14500
14501/// PerformADDCombine - Do target-specific dag combines on integer adds.
14502static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14503                                 const X86Subtarget *Subtarget) {
14504  EVT VT = N->getValueType(0);
14505  SDValue Op0 = N->getOperand(0);
14506  SDValue Op1 = N->getOperand(1);
14507
14508  // Try to synthesize horizontal adds from adds of shuffles.
14509  if (((Subtarget->hasSSSE3orAVX() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14510       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || MVT::v8i32))) &&
14511      isHorizontalBinOp(Op0, Op1, true))
14512    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14513
14514  return OptimizeConditionalInDecrement(N, DAG);
14515}
14516
14517static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14518                                 const X86Subtarget *Subtarget) {
14519  SDValue Op0 = N->getOperand(0);
14520  SDValue Op1 = N->getOperand(1);
14521
14522  // X86 can't encode an immediate LHS of a sub. See if we can push the
14523  // negation into a preceding instruction.
14524  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14525    // If the RHS of the sub is a XOR with one use and a constant, invert the
14526    // immediate. Then add one to the LHS of the sub so we can turn
14527    // X-Y -> X+~Y+1, saving one register.
14528    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14529        isa<ConstantSDNode>(Op1.getOperand(1))) {
14530      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14531      EVT VT = Op0.getValueType();
14532      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14533                                   Op1.getOperand(0),
14534                                   DAG.getConstant(~XorC, VT));
14535      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14536                         DAG.getConstant(C->getAPIntValue()+1, VT));
14537    }
14538  }
14539
14540  // Try to synthesize horizontal adds from adds of shuffles.
14541  EVT VT = N->getValueType(0);
14542  if (((Subtarget->hasSSSE3orAVX() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14543       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14544      isHorizontalBinOp(Op0, Op1, true))
14545    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
14546
14547  return OptimizeConditionalInDecrement(N, DAG);
14548}
14549
14550SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14551                                             DAGCombinerInfo &DCI) const {
14552  SelectionDAG &DAG = DCI.DAG;
14553  switch (N->getOpcode()) {
14554  default: break;
14555  case ISD::EXTRACT_VECTOR_ELT:
14556    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14557  case ISD::VSELECT:
14558  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
14559  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
14560  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
14561  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
14562  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
14563  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
14564  case ISD::SHL:
14565  case ISD::SRA:
14566  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
14567  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
14568  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
14569  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
14570  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
14571  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
14572  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
14573  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
14574  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
14575  case X86ISD::FXOR:
14576  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
14577  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
14578  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
14579  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
14580  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
14581  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
14582  case X86ISD::SHUFPS:      // Handle all target specific shuffles
14583  case X86ISD::SHUFPD:
14584  case X86ISD::PALIGN:
14585  case X86ISD::UNPCKH:
14586  case X86ISD::UNPCKL:
14587  case X86ISD::MOVHLPS:
14588  case X86ISD::MOVLHPS:
14589  case X86ISD::PSHUFD:
14590  case X86ISD::PSHUFHW:
14591  case X86ISD::PSHUFLW:
14592  case X86ISD::MOVSS:
14593  case X86ISD::MOVSD:
14594  case X86ISD::VPERMILP:
14595  case X86ISD::VPERM2X128:
14596  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14597  }
14598
14599  return SDValue();
14600}
14601
14602/// isTypeDesirableForOp - Return true if the target has native support for
14603/// the specified value type and it is 'desirable' to use the type for the
14604/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14605/// instruction encodings are longer and some i16 instructions are slow.
14606bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14607  if (!isTypeLegal(VT))
14608    return false;
14609  if (VT != MVT::i16)
14610    return true;
14611
14612  switch (Opc) {
14613  default:
14614    return true;
14615  case ISD::LOAD:
14616  case ISD::SIGN_EXTEND:
14617  case ISD::ZERO_EXTEND:
14618  case ISD::ANY_EXTEND:
14619  case ISD::SHL:
14620  case ISD::SRL:
14621  case ISD::SUB:
14622  case ISD::ADD:
14623  case ISD::MUL:
14624  case ISD::AND:
14625  case ISD::OR:
14626  case ISD::XOR:
14627    return false;
14628  }
14629}
14630
14631/// IsDesirableToPromoteOp - This method query the target whether it is
14632/// beneficial for dag combiner to promote the specified node. If true, it
14633/// should return the desired promotion type by reference.
14634bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14635  EVT VT = Op.getValueType();
14636  if (VT != MVT::i16)
14637    return false;
14638
14639  bool Promote = false;
14640  bool Commute = false;
14641  switch (Op.getOpcode()) {
14642  default: break;
14643  case ISD::LOAD: {
14644    LoadSDNode *LD = cast<LoadSDNode>(Op);
14645    // If the non-extending load has a single use and it's not live out, then it
14646    // might be folded.
14647    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14648                                                     Op.hasOneUse()*/) {
14649      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14650             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14651        // The only case where we'd want to promote LOAD (rather then it being
14652        // promoted as an operand is when it's only use is liveout.
14653        if (UI->getOpcode() != ISD::CopyToReg)
14654          return false;
14655      }
14656    }
14657    Promote = true;
14658    break;
14659  }
14660  case ISD::SIGN_EXTEND:
14661  case ISD::ZERO_EXTEND:
14662  case ISD::ANY_EXTEND:
14663    Promote = true;
14664    break;
14665  case ISD::SHL:
14666  case ISD::SRL: {
14667    SDValue N0 = Op.getOperand(0);
14668    // Look out for (store (shl (load), x)).
14669    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14670      return false;
14671    Promote = true;
14672    break;
14673  }
14674  case ISD::ADD:
14675  case ISD::MUL:
14676  case ISD::AND:
14677  case ISD::OR:
14678  case ISD::XOR:
14679    Commute = true;
14680    // fallthrough
14681  case ISD::SUB: {
14682    SDValue N0 = Op.getOperand(0);
14683    SDValue N1 = Op.getOperand(1);
14684    if (!Commute && MayFoldLoad(N1))
14685      return false;
14686    // Avoid disabling potential load folding opportunities.
14687    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14688      return false;
14689    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14690      return false;
14691    Promote = true;
14692  }
14693  }
14694
14695  PVT = MVT::i32;
14696  return Promote;
14697}
14698
14699//===----------------------------------------------------------------------===//
14700//                           X86 Inline Assembly Support
14701//===----------------------------------------------------------------------===//
14702
14703namespace {
14704  // Helper to match a string separated by whitespace.
14705  bool matchAsmImpl(ArrayRef<const StringRef *> args) {
14706    StringRef s(*args[0]);
14707    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
14708
14709    for (unsigned i = 1, e = args.size(); i != e; ++i) {
14710      StringRef piece(*args[i]);
14711      if (!s.startswith(piece)) // Check if the piece matches.
14712        return false;
14713
14714      s = s.substr(piece.size());
14715      StringRef::size_type pos = s.find_first_not_of(" \t");
14716      if (pos == 0) // We matched a prefix.
14717        return false;
14718
14719      s = s.substr(pos);
14720    }
14721
14722    return s.empty();
14723  }
14724  const VariadicFunction<bool, StringRef, matchAsmImpl> matchAsm = {};
14725}
14726
14727bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14728  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14729
14730  std::string AsmStr = IA->getAsmString();
14731
14732  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14733  if (!Ty || Ty->getBitWidth() % 16 != 0)
14734    return false;
14735
14736  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14737  SmallVector<StringRef, 4> AsmPieces;
14738  SplitString(AsmStr, AsmPieces, ";\n");
14739
14740  switch (AsmPieces.size()) {
14741  default: return false;
14742  case 1:
14743    // FIXME: this should verify that we are targeting a 486 or better.  If not,
14744    // we will turn this bswap into something that will be lowered to logical
14745    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
14746    // lower so don't worry about this.
14747    // bswap $0
14748    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
14749        matchAsm(AsmPieces[0], "bswapl", "$0") ||
14750        matchAsm(AsmPieces[0], "bswapq", "$0") ||
14751        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
14752        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
14753        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
14754      // No need to check constraints, nothing other than the equivalent of
14755      // "=r,0" would be valid here.
14756      return IntrinsicLowering::LowerToByteSwap(CI);
14757    }
14758
14759    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
14760    if (CI->getType()->isIntegerTy(16) &&
14761        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14762        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
14763         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
14764      AsmPieces.clear();
14765      const std::string &ConstraintsStr = IA->getConstraintString();
14766      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14767      std::sort(AsmPieces.begin(), AsmPieces.end());
14768      if (AsmPieces.size() == 4 &&
14769          AsmPieces[0] == "~{cc}" &&
14770          AsmPieces[1] == "~{dirflag}" &&
14771          AsmPieces[2] == "~{flags}" &&
14772          AsmPieces[3] == "~{fpsr}")
14773      return IntrinsicLowering::LowerToByteSwap(CI);
14774    }
14775    break;
14776  case 3:
14777    if (CI->getType()->isIntegerTy(32) &&
14778        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14779        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
14780        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
14781        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
14782      AsmPieces.clear();
14783      const std::string &ConstraintsStr = IA->getConstraintString();
14784      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14785      std::sort(AsmPieces.begin(), AsmPieces.end());
14786      if (AsmPieces.size() == 4 &&
14787          AsmPieces[0] == "~{cc}" &&
14788          AsmPieces[1] == "~{dirflag}" &&
14789          AsmPieces[2] == "~{flags}" &&
14790          AsmPieces[3] == "~{fpsr}")
14791        return IntrinsicLowering::LowerToByteSwap(CI);
14792    }
14793
14794    if (CI->getType()->isIntegerTy(64)) {
14795      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14796      if (Constraints.size() >= 2 &&
14797          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14798          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14799        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
14800        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
14801            matchAsm(AsmPieces[1], "bswap", "%edx") &&
14802            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
14803          return IntrinsicLowering::LowerToByteSwap(CI);
14804      }
14805    }
14806    break;
14807  }
14808  return false;
14809}
14810
14811
14812
14813/// getConstraintType - Given a constraint letter, return the type of
14814/// constraint it is for this target.
14815X86TargetLowering::ConstraintType
14816X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14817  if (Constraint.size() == 1) {
14818    switch (Constraint[0]) {
14819    case 'R':
14820    case 'q':
14821    case 'Q':
14822    case 'f':
14823    case 't':
14824    case 'u':
14825    case 'y':
14826    case 'x':
14827    case 'Y':
14828    case 'l':
14829      return C_RegisterClass;
14830    case 'a':
14831    case 'b':
14832    case 'c':
14833    case 'd':
14834    case 'S':
14835    case 'D':
14836    case 'A':
14837      return C_Register;
14838    case 'I':
14839    case 'J':
14840    case 'K':
14841    case 'L':
14842    case 'M':
14843    case 'N':
14844    case 'G':
14845    case 'C':
14846    case 'e':
14847    case 'Z':
14848      return C_Other;
14849    default:
14850      break;
14851    }
14852  }
14853  return TargetLowering::getConstraintType(Constraint);
14854}
14855
14856/// Examine constraint type and operand type and determine a weight value.
14857/// This object must already have been set up with the operand type
14858/// and the current alternative constraint selected.
14859TargetLowering::ConstraintWeight
14860  X86TargetLowering::getSingleConstraintMatchWeight(
14861    AsmOperandInfo &info, const char *constraint) const {
14862  ConstraintWeight weight = CW_Invalid;
14863  Value *CallOperandVal = info.CallOperandVal;
14864    // If we don't have a value, we can't do a match,
14865    // but allow it at the lowest weight.
14866  if (CallOperandVal == NULL)
14867    return CW_Default;
14868  Type *type = CallOperandVal->getType();
14869  // Look at the constraint type.
14870  switch (*constraint) {
14871  default:
14872    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14873  case 'R':
14874  case 'q':
14875  case 'Q':
14876  case 'a':
14877  case 'b':
14878  case 'c':
14879  case 'd':
14880  case 'S':
14881  case 'D':
14882  case 'A':
14883    if (CallOperandVal->getType()->isIntegerTy())
14884      weight = CW_SpecificReg;
14885    break;
14886  case 'f':
14887  case 't':
14888  case 'u':
14889      if (type->isFloatingPointTy())
14890        weight = CW_SpecificReg;
14891      break;
14892  case 'y':
14893      if (type->isX86_MMXTy() && Subtarget->hasMMX())
14894        weight = CW_SpecificReg;
14895      break;
14896  case 'x':
14897  case 'Y':
14898    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
14899      weight = CW_Register;
14900    break;
14901  case 'I':
14902    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
14903      if (C->getZExtValue() <= 31)
14904        weight = CW_Constant;
14905    }
14906    break;
14907  case 'J':
14908    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14909      if (C->getZExtValue() <= 63)
14910        weight = CW_Constant;
14911    }
14912    break;
14913  case 'K':
14914    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14915      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
14916        weight = CW_Constant;
14917    }
14918    break;
14919  case 'L':
14920    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14921      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
14922        weight = CW_Constant;
14923    }
14924    break;
14925  case 'M':
14926    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14927      if (C->getZExtValue() <= 3)
14928        weight = CW_Constant;
14929    }
14930    break;
14931  case 'N':
14932    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14933      if (C->getZExtValue() <= 0xff)
14934        weight = CW_Constant;
14935    }
14936    break;
14937  case 'G':
14938  case 'C':
14939    if (dyn_cast<ConstantFP>(CallOperandVal)) {
14940      weight = CW_Constant;
14941    }
14942    break;
14943  case 'e':
14944    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14945      if ((C->getSExtValue() >= -0x80000000LL) &&
14946          (C->getSExtValue() <= 0x7fffffffLL))
14947        weight = CW_Constant;
14948    }
14949    break;
14950  case 'Z':
14951    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14952      if (C->getZExtValue() <= 0xffffffff)
14953        weight = CW_Constant;
14954    }
14955    break;
14956  }
14957  return weight;
14958}
14959
14960/// LowerXConstraint - try to replace an X constraint, which matches anything,
14961/// with another that has more specific requirements based on the type of the
14962/// corresponding operand.
14963const char *X86TargetLowering::
14964LowerXConstraint(EVT ConstraintVT) const {
14965  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
14966  // 'f' like normal targets.
14967  if (ConstraintVT.isFloatingPoint()) {
14968    if (Subtarget->hasXMMInt())
14969      return "Y";
14970    if (Subtarget->hasXMM())
14971      return "x";
14972  }
14973
14974  return TargetLowering::LowerXConstraint(ConstraintVT);
14975}
14976
14977/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14978/// vector.  If it is invalid, don't add anything to Ops.
14979void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14980                                                     std::string &Constraint,
14981                                                     std::vector<SDValue>&Ops,
14982                                                     SelectionDAG &DAG) const {
14983  SDValue Result(0, 0);
14984
14985  // Only support length 1 constraints for now.
14986  if (Constraint.length() > 1) return;
14987
14988  char ConstraintLetter = Constraint[0];
14989  switch (ConstraintLetter) {
14990  default: break;
14991  case 'I':
14992    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14993      if (C->getZExtValue() <= 31) {
14994        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14995        break;
14996      }
14997    }
14998    return;
14999  case 'J':
15000    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15001      if (C->getZExtValue() <= 63) {
15002        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15003        break;
15004      }
15005    }
15006    return;
15007  case 'K':
15008    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15009      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15010        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15011        break;
15012      }
15013    }
15014    return;
15015  case 'N':
15016    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15017      if (C->getZExtValue() <= 255) {
15018        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15019        break;
15020      }
15021    }
15022    return;
15023  case 'e': {
15024    // 32-bit signed value
15025    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15026      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15027                                           C->getSExtValue())) {
15028        // Widen to 64 bits here to get it sign extended.
15029        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15030        break;
15031      }
15032    // FIXME gcc accepts some relocatable values here too, but only in certain
15033    // memory models; it's complicated.
15034    }
15035    return;
15036  }
15037  case 'Z': {
15038    // 32-bit unsigned value
15039    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15040      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15041                                           C->getZExtValue())) {
15042        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15043        break;
15044      }
15045    }
15046    // FIXME gcc accepts some relocatable values here too, but only in certain
15047    // memory models; it's complicated.
15048    return;
15049  }
15050  case 'i': {
15051    // Literal immediates are always ok.
15052    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15053      // Widen to 64 bits here to get it sign extended.
15054      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15055      break;
15056    }
15057
15058    // In any sort of PIC mode addresses need to be computed at runtime by
15059    // adding in a register or some sort of table lookup.  These can't
15060    // be used as immediates.
15061    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15062      return;
15063
15064    // If we are in non-pic codegen mode, we allow the address of a global (with
15065    // an optional displacement) to be used with 'i'.
15066    GlobalAddressSDNode *GA = 0;
15067    int64_t Offset = 0;
15068
15069    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15070    while (1) {
15071      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15072        Offset += GA->getOffset();
15073        break;
15074      } else if (Op.getOpcode() == ISD::ADD) {
15075        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15076          Offset += C->getZExtValue();
15077          Op = Op.getOperand(0);
15078          continue;
15079        }
15080      } else if (Op.getOpcode() == ISD::SUB) {
15081        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15082          Offset += -C->getZExtValue();
15083          Op = Op.getOperand(0);
15084          continue;
15085        }
15086      }
15087
15088      // Otherwise, this isn't something we can handle, reject it.
15089      return;
15090    }
15091
15092    const GlobalValue *GV = GA->getGlobal();
15093    // If we require an extra load to get this address, as in PIC mode, we
15094    // can't accept it.
15095    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15096                                                        getTargetMachine())))
15097      return;
15098
15099    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15100                                        GA->getValueType(0), Offset);
15101    break;
15102  }
15103  }
15104
15105  if (Result.getNode()) {
15106    Ops.push_back(Result);
15107    return;
15108  }
15109  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15110}
15111
15112std::pair<unsigned, const TargetRegisterClass*>
15113X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15114                                                EVT VT) const {
15115  // First, see if this is a constraint that directly corresponds to an LLVM
15116  // register class.
15117  if (Constraint.size() == 1) {
15118    // GCC Constraint Letters
15119    switch (Constraint[0]) {
15120    default: break;
15121      // TODO: Slight differences here in allocation order and leaving
15122      // RIP in the class. Do they matter any more here than they do
15123      // in the normal allocation?
15124    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15125      if (Subtarget->is64Bit()) {
15126	if (VT == MVT::i32 || VT == MVT::f32)
15127	  return std::make_pair(0U, X86::GR32RegisterClass);
15128	else if (VT == MVT::i16)
15129	  return std::make_pair(0U, X86::GR16RegisterClass);
15130	else if (VT == MVT::i8 || VT == MVT::i1)
15131	  return std::make_pair(0U, X86::GR8RegisterClass);
15132	else if (VT == MVT::i64 || VT == MVT::f64)
15133	  return std::make_pair(0U, X86::GR64RegisterClass);
15134	break;
15135      }
15136      // 32-bit fallthrough
15137    case 'Q':   // Q_REGS
15138      if (VT == MVT::i32 || VT == MVT::f32)
15139	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15140      else if (VT == MVT::i16)
15141	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15142      else if (VT == MVT::i8 || VT == MVT::i1)
15143	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15144      else if (VT == MVT::i64)
15145	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15146      break;
15147    case 'r':   // GENERAL_REGS
15148    case 'l':   // INDEX_REGS
15149      if (VT == MVT::i8 || VT == MVT::i1)
15150        return std::make_pair(0U, X86::GR8RegisterClass);
15151      if (VT == MVT::i16)
15152        return std::make_pair(0U, X86::GR16RegisterClass);
15153      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15154        return std::make_pair(0U, X86::GR32RegisterClass);
15155      return std::make_pair(0U, X86::GR64RegisterClass);
15156    case 'R':   // LEGACY_REGS
15157      if (VT == MVT::i8 || VT == MVT::i1)
15158        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15159      if (VT == MVT::i16)
15160        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15161      if (VT == MVT::i32 || !Subtarget->is64Bit())
15162        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15163      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15164    case 'f':  // FP Stack registers.
15165      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15166      // value to the correct fpstack register class.
15167      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15168        return std::make_pair(0U, X86::RFP32RegisterClass);
15169      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15170        return std::make_pair(0U, X86::RFP64RegisterClass);
15171      return std::make_pair(0U, X86::RFP80RegisterClass);
15172    case 'y':   // MMX_REGS if MMX allowed.
15173      if (!Subtarget->hasMMX()) break;
15174      return std::make_pair(0U, X86::VR64RegisterClass);
15175    case 'Y':   // SSE_REGS if SSE2 allowed
15176      if (!Subtarget->hasXMMInt()) break;
15177      // FALL THROUGH.
15178    case 'x':   // SSE_REGS if SSE1 allowed
15179      if (!Subtarget->hasXMM()) break;
15180
15181      switch (VT.getSimpleVT().SimpleTy) {
15182      default: break;
15183      // Scalar SSE types.
15184      case MVT::f32:
15185      case MVT::i32:
15186        return std::make_pair(0U, X86::FR32RegisterClass);
15187      case MVT::f64:
15188      case MVT::i64:
15189        return std::make_pair(0U, X86::FR64RegisterClass);
15190      // Vector types.
15191      case MVT::v16i8:
15192      case MVT::v8i16:
15193      case MVT::v4i32:
15194      case MVT::v2i64:
15195      case MVT::v4f32:
15196      case MVT::v2f64:
15197        return std::make_pair(0U, X86::VR128RegisterClass);
15198      }
15199      break;
15200    }
15201  }
15202
15203  // Use the default implementation in TargetLowering to convert the register
15204  // constraint into a member of a register class.
15205  std::pair<unsigned, const TargetRegisterClass*> Res;
15206  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15207
15208  // Not found as a standard register?
15209  if (Res.second == 0) {
15210    // Map st(0) -> st(7) -> ST0
15211    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15212        tolower(Constraint[1]) == 's' &&
15213        tolower(Constraint[2]) == 't' &&
15214        Constraint[3] == '(' &&
15215        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15216        Constraint[5] == ')' &&
15217        Constraint[6] == '}') {
15218
15219      Res.first = X86::ST0+Constraint[4]-'0';
15220      Res.second = X86::RFP80RegisterClass;
15221      return Res;
15222    }
15223
15224    // GCC allows "st(0)" to be called just plain "st".
15225    if (StringRef("{st}").equals_lower(Constraint)) {
15226      Res.first = X86::ST0;
15227      Res.second = X86::RFP80RegisterClass;
15228      return Res;
15229    }
15230
15231    // flags -> EFLAGS
15232    if (StringRef("{flags}").equals_lower(Constraint)) {
15233      Res.first = X86::EFLAGS;
15234      Res.second = X86::CCRRegisterClass;
15235      return Res;
15236    }
15237
15238    // 'A' means EAX + EDX.
15239    if (Constraint == "A") {
15240      Res.first = X86::EAX;
15241      Res.second = X86::GR32_ADRegisterClass;
15242      return Res;
15243    }
15244    return Res;
15245  }
15246
15247  // Otherwise, check to see if this is a register class of the wrong value
15248  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15249  // turn into {ax},{dx}.
15250  if (Res.second->hasType(VT))
15251    return Res;   // Correct type already, nothing to do.
15252
15253  // All of the single-register GCC register classes map their values onto
15254  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15255  // really want an 8-bit or 32-bit register, map to the appropriate register
15256  // class and return the appropriate register.
15257  if (Res.second == X86::GR16RegisterClass) {
15258    if (VT == MVT::i8) {
15259      unsigned DestReg = 0;
15260      switch (Res.first) {
15261      default: break;
15262      case X86::AX: DestReg = X86::AL; break;
15263      case X86::DX: DestReg = X86::DL; break;
15264      case X86::CX: DestReg = X86::CL; break;
15265      case X86::BX: DestReg = X86::BL; break;
15266      }
15267      if (DestReg) {
15268        Res.first = DestReg;
15269        Res.second = X86::GR8RegisterClass;
15270      }
15271    } else if (VT == MVT::i32) {
15272      unsigned DestReg = 0;
15273      switch (Res.first) {
15274      default: break;
15275      case X86::AX: DestReg = X86::EAX; break;
15276      case X86::DX: DestReg = X86::EDX; break;
15277      case X86::CX: DestReg = X86::ECX; break;
15278      case X86::BX: DestReg = X86::EBX; break;
15279      case X86::SI: DestReg = X86::ESI; break;
15280      case X86::DI: DestReg = X86::EDI; break;
15281      case X86::BP: DestReg = X86::EBP; break;
15282      case X86::SP: DestReg = X86::ESP; break;
15283      }
15284      if (DestReg) {
15285        Res.first = DestReg;
15286        Res.second = X86::GR32RegisterClass;
15287      }
15288    } else if (VT == MVT::i64) {
15289      unsigned DestReg = 0;
15290      switch (Res.first) {
15291      default: break;
15292      case X86::AX: DestReg = X86::RAX; break;
15293      case X86::DX: DestReg = X86::RDX; break;
15294      case X86::CX: DestReg = X86::RCX; break;
15295      case X86::BX: DestReg = X86::RBX; break;
15296      case X86::SI: DestReg = X86::RSI; break;
15297      case X86::DI: DestReg = X86::RDI; break;
15298      case X86::BP: DestReg = X86::RBP; break;
15299      case X86::SP: DestReg = X86::RSP; break;
15300      }
15301      if (DestReg) {
15302        Res.first = DestReg;
15303        Res.second = X86::GR64RegisterClass;
15304      }
15305    }
15306  } else if (Res.second == X86::FR32RegisterClass ||
15307             Res.second == X86::FR64RegisterClass ||
15308             Res.second == X86::VR128RegisterClass) {
15309    // Handle references to XMM physical registers that got mapped into the
15310    // wrong class.  This can happen with constraints like {xmm0} where the
15311    // target independent register mapper will just pick the first match it can
15312    // find, ignoring the required type.
15313    if (VT == MVT::f32)
15314      Res.second = X86::FR32RegisterClass;
15315    else if (VT == MVT::f64)
15316      Res.second = X86::FR64RegisterClass;
15317    else if (X86::VR128RegisterClass->hasType(VT))
15318      Res.second = X86::VR128RegisterClass;
15319  }
15320
15321  return Res;
15322}
15323