X86ISelLowering.cpp revision 2f4fad99ea776906c853f0c4eef0eb0f7d2dc579
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalAlias.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Function.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/LLVMContext.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/MC/MCContext.h"
39#include "llvm/MC/MCExpr.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/Dwarf.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52using namespace llvm;
53using namespace dwarf;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57static cl::opt<bool>
58DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
59
60// Forward declarations.
61static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
62                       SDValue V2);
63
64static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
65
66  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
67
68  if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) {
69    if (is64Bit) return new X8664_MachoTargetObjectFile();
70    return new TargetLoweringObjectFileMachO();
71  } else if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){
72    if (is64Bit) return new X8664_ELFTargetObjectFile(TM);
73    return new X8632_ELFTargetObjectFile(TM);
74  } else if (TM.getSubtarget<X86Subtarget>().isTargetCOFF()) {
75    return new TargetLoweringObjectFileCOFF();
76  }
77  llvm_unreachable("unknown subtarget type");
78}
79
80X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
81  : TargetLowering(TM, createTLOF(TM)) {
82  Subtarget = &TM.getSubtarget<X86Subtarget>();
83  X86ScalarSSEf64 = Subtarget->hasSSE2();
84  X86ScalarSSEf32 = Subtarget->hasSSE1();
85  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
86
87  RegInfo = TM.getRegisterInfo();
88  TD = getTargetData();
89
90  // Set up the TargetLowering object.
91
92  // X86 is weird, it always uses i8 for shift amounts and setcc results.
93  setShiftAmountType(MVT::i8);
94  setBooleanContents(ZeroOrOneBooleanContent);
95  setSchedulingPreference(Sched::RegPressure);
96  setStackPointerRegisterToSaveRestore(X86StackPtr);
97
98  if (Subtarget->isTargetDarwin()) {
99    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
100    setUseUnderscoreSetJmp(false);
101    setUseUnderscoreLongJmp(false);
102  } else if (Subtarget->isTargetMingw()) {
103    // MS runtime is weird: it exports _setjmp, but longjmp!
104    setUseUnderscoreSetJmp(true);
105    setUseUnderscoreLongJmp(false);
106  } else {
107    setUseUnderscoreSetJmp(true);
108    setUseUnderscoreLongJmp(true);
109  }
110
111  // Set up the register classes.
112  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
113  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
114  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
115  if (Subtarget->is64Bit())
116    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
117
118  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
119
120  // We don't accept any truncstore of integer registers.
121  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
122  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
123  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
124  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
125  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
126  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
127
128  // SETOEQ and SETUNE require checking two conditions.
129  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
130  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
131  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
132  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
133  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
134  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
135
136  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
137  // operation.
138  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
139  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
140  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
141
142  if (Subtarget->is64Bit()) {
143    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
144    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
145  } else if (!UseSoftFloat) {
146    // We have an algorithm for SSE2->double, and we turn this into a
147    // 64-bit FILD followed by conditional FADD for other targets.
148    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
149    // We have an algorithm for SSE2, and we turn this into a 64-bit
150    // FILD for other targets.
151    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
152  }
153
154  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
155  // this operation.
156  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
157  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
158
159  if (!UseSoftFloat) {
160    // SSE has no i16 to fp conversion, only i32
161    if (X86ScalarSSEf32) {
162      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
163      // f32 and f64 cases are Legal, f80 case is not
164      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
165    } else {
166      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
167      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
168    }
169  } else {
170    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
171    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
172  }
173
174  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
175  // are Legal, f80 is custom lowered.
176  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
177  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
178
179  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
180  // this operation.
181  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
182  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
183
184  if (X86ScalarSSEf32) {
185    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
186    // f32 and f64 cases are Legal, f80 case is not
187    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
188  } else {
189    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
190    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
191  }
192
193  // Handle FP_TO_UINT by promoting the destination to a larger signed
194  // conversion.
195  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
196  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
197  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
198
199  if (Subtarget->is64Bit()) {
200    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
201    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
202  } else if (!UseSoftFloat) {
203    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
204      // Expand FP_TO_UINT into a select.
205      // FIXME: We would like to use a Custom expander here eventually to do
206      // the optimal thing for SSE vs. the default expansion in the legalizer.
207      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
208    else
209      // With SSE3 we can use fisttpll to convert to a signed i64; without
210      // SSE, we're stuck with a fistpll.
211      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
212  }
213
214  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
215  if (!X86ScalarSSEf64) {
216    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
217    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
218    if (Subtarget->is64Bit()) {
219      setOperationAction(ISD::BIT_CONVERT    , MVT::f64  , Expand);
220      // Without SSE, i64->f64 goes through memory; i64->MMX is Legal.
221      if (Subtarget->hasMMX() && !DisableMMX)
222        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Custom);
223      else
224        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Expand);
225    }
226  }
227
228  // Scalar integer divide and remainder are lowered to use operations that
229  // produce two results, to match the available instructions. This exposes
230  // the two-result form to trivial CSE, which is able to combine x/y and x%y
231  // into a single instruction.
232  //
233  // Scalar integer multiply-high is also lowered to use two-result
234  // operations, to match the available instructions. However, plain multiply
235  // (low) operations are left as Legal, as there are single-result
236  // instructions for this in x86. Using the two-result multiply instructions
237  // when both high and low results are needed must be arranged by dagcombine.
238  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
239  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
240  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
241  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
242  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
243  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
244  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
245  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
246  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
247  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
248  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
249  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
250  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
251  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
252  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
253  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
254  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
255  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
256  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
257  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
258  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
259  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
260  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
261  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
262
263  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
264  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
265  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
266  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
267  if (Subtarget->is64Bit())
268    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
269  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
270  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
271  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
272  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
273  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
274  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
275  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
276  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
277
278  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
279  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
280  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
281  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
282  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
283  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
284  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
285  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
286  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
287  if (Subtarget->is64Bit()) {
288    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
289    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
290    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
291  }
292
293  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
294  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
295
296  // These should be promoted to a larger select which is supported.
297  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
298  // X86 wants to expand cmov itself.
299  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
300  setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
301  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
302  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
303  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
304  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
305  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
306  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
307  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
308  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
309  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
310  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
313    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
314  }
315  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
316
317  // Darwin ABI issue.
318  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
319  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
320  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
321  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
322  if (Subtarget->is64Bit())
323    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
324  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
325  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
326  if (Subtarget->is64Bit()) {
327    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
328    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
329    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
330    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
331    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
332  }
333  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
334  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
335  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
336  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
337  if (Subtarget->is64Bit()) {
338    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
339    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
340    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
341  }
342
343  if (Subtarget->hasSSE1())
344    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
345
346  // We may not have a libcall for MEMBARRIER so we should lower this.
347  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
348
349  // On X86 and X86-64, atomic operations are lowered to locked instructions.
350  // Locked instructions, in turn, have implicit fence semantics (all memory
351  // operations are flushed before issuing the locked instruction, and they
352  // are not buffered), so we can fold away the common pattern of
353  // fence-atomic-fence.
354  setShouldFoldAtomicFences(true);
355
356  // Expand certain atomics
357  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
358  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
359  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
360  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
361
362  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
363  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
364  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
365  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
366
367  if (!Subtarget->is64Bit()) {
368    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
369    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
370    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
371    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
372    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
373    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
374    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
375  }
376
377  // FIXME - use subtarget debug flags
378  if (!Subtarget->isTargetDarwin() &&
379      !Subtarget->isTargetELF() &&
380      !Subtarget->isTargetCygMing()) {
381    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
382  }
383
384  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
385  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
386  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
387  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
388  if (Subtarget->is64Bit()) {
389    setExceptionPointerRegister(X86::RAX);
390    setExceptionSelectorRegister(X86::RDX);
391  } else {
392    setExceptionPointerRegister(X86::EAX);
393    setExceptionSelectorRegister(X86::EDX);
394  }
395  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
396  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
397
398  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
399
400  setOperationAction(ISD::TRAP, MVT::Other, Legal);
401
402  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
403  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
404  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
405  if (Subtarget->is64Bit()) {
406    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
407    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
408  } else {
409    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
410    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
411  }
412
413  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
414  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
415  if (Subtarget->is64Bit())
416    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
417  if (Subtarget->isTargetCygMing())
418    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
419  else
420    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
421
422  if (!UseSoftFloat && X86ScalarSSEf64) {
423    // f32 and f64 use SSE.
424    // Set up the FP register classes.
425    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
426    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
427
428    // Use ANDPD to simulate FABS.
429    setOperationAction(ISD::FABS , MVT::f64, Custom);
430    setOperationAction(ISD::FABS , MVT::f32, Custom);
431
432    // Use XORP to simulate FNEG.
433    setOperationAction(ISD::FNEG , MVT::f64, Custom);
434    setOperationAction(ISD::FNEG , MVT::f32, Custom);
435
436    // Use ANDPD and ORPD to simulate FCOPYSIGN.
437    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
438    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
439
440    // We don't support sin/cos/fmod
441    setOperationAction(ISD::FSIN , MVT::f64, Expand);
442    setOperationAction(ISD::FCOS , MVT::f64, Expand);
443    setOperationAction(ISD::FSIN , MVT::f32, Expand);
444    setOperationAction(ISD::FCOS , MVT::f32, Expand);
445
446    // Expand FP immediates into loads from the stack, except for the special
447    // cases we handle.
448    addLegalFPImmediate(APFloat(+0.0)); // xorpd
449    addLegalFPImmediate(APFloat(+0.0f)); // xorps
450  } else if (!UseSoftFloat && X86ScalarSSEf32) {
451    // Use SSE for f32, x87 for f64.
452    // Set up the FP register classes.
453    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
454    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
455
456    // Use ANDPS to simulate FABS.
457    setOperationAction(ISD::FABS , MVT::f32, Custom);
458
459    // Use XORP to simulate FNEG.
460    setOperationAction(ISD::FNEG , MVT::f32, Custom);
461
462    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
463
464    // Use ANDPS and ORPS to simulate FCOPYSIGN.
465    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
466    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
467
468    // We don't support sin/cos/fmod
469    setOperationAction(ISD::FSIN , MVT::f32, Expand);
470    setOperationAction(ISD::FCOS , MVT::f32, Expand);
471
472    // Special cases we handle for FP constants.
473    addLegalFPImmediate(APFloat(+0.0f)); // xorps
474    addLegalFPImmediate(APFloat(+0.0)); // FLD0
475    addLegalFPImmediate(APFloat(+1.0)); // FLD1
476    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
477    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
478
479    if (!UnsafeFPMath) {
480      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
481      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
482    }
483  } else if (!UseSoftFloat) {
484    // f32 and f64 in x87.
485    // Set up the FP register classes.
486    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
487    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
488
489    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
490    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
491    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
492    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
493
494    if (!UnsafeFPMath) {
495      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
496      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
497    }
498    addLegalFPImmediate(APFloat(+0.0)); // FLD0
499    addLegalFPImmediate(APFloat(+1.0)); // FLD1
500    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
501    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
502    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
503    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
504    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
505    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
506  }
507
508  // Long double always uses X87.
509  if (!UseSoftFloat) {
510    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
511    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
512    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
513    {
514      bool ignored;
515      APFloat TmpFlt(+0.0);
516      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
517                     &ignored);
518      addLegalFPImmediate(TmpFlt);  // FLD0
519      TmpFlt.changeSign();
520      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
521      APFloat TmpFlt2(+1.0);
522      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
523                      &ignored);
524      addLegalFPImmediate(TmpFlt2);  // FLD1
525      TmpFlt2.changeSign();
526      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
527    }
528
529    if (!UnsafeFPMath) {
530      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
531      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
532    }
533  }
534
535  // Always use a library call for pow.
536  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
537  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
538  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
539
540  setOperationAction(ISD::FLOG, MVT::f80, Expand);
541  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
542  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
543  setOperationAction(ISD::FEXP, MVT::f80, Expand);
544  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
545
546  // First set operation action for all vector types to either promote
547  // (for widening) or expand (for scalarization). Then we will selectively
548  // turn on ones that can be effectively codegen'd.
549  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
550       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
551    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
566    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
567    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
600    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
604    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
605         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
606      setTruncStoreAction((MVT::SimpleValueType)VT,
607                          (MVT::SimpleValueType)InnerVT, Expand);
608    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
609    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
610    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
611  }
612
613  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
614  // with -msoft-float, disable use of MMX as well.
615  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
616    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass, false);
617    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass, false);
618    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass, false);
619
620    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass, false);
621
622    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
623    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
624    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
625    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
626
627    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
628    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
629    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
630    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
631
632    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
633    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
634
635    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
636    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
637    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
638    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
639    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
640    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
641    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
642
643    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
644    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
645    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
646    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
647    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
648    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
649    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
650
651    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
652    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
653    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
654    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
655    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
656    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
657    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
658
659    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
660    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
661    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
662    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
663    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
664    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
665    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
666
667    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
668    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
669    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
670    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
671
672    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
673    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
674    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
675    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
676
677    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
678    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
679    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
680
681    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
682
683    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
684    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
685    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
686    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
687    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
688    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
689    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
690
691    if (!X86ScalarSSEf64 && Subtarget->is64Bit()) {
692      setOperationAction(ISD::BIT_CONVERT,        MVT::v8i8,  Custom);
693      setOperationAction(ISD::BIT_CONVERT,        MVT::v4i16, Custom);
694      setOperationAction(ISD::BIT_CONVERT,        MVT::v2i32, Custom);
695      setOperationAction(ISD::BIT_CONVERT,        MVT::v1i64, Custom);
696    }
697  }
698
699  if (!UseSoftFloat && Subtarget->hasSSE1()) {
700    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
701
702    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
703    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
704    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
705    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
706    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
707    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
708    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
709    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
710    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
711    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
712    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
713    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
714  }
715
716  if (!UseSoftFloat && Subtarget->hasSSE2()) {
717    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
718
719    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
720    // registers cannot be used even for integer operations.
721    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
722    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
723    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
724    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
725
726    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
727    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
728    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
729    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
730    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
731    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
732    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
733    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
734    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
735    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
736    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
737    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
738    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
739    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
740    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
741    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
742
743    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
744    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
745    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
746    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
747
748    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
749    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
750    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
751    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
752    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
753
754    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
755    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
756    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
757    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
758    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
759
760    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
761    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
762      EVT VT = (MVT::SimpleValueType)i;
763      // Do not attempt to custom lower non-power-of-2 vectors
764      if (!isPowerOf2_32(VT.getVectorNumElements()))
765        continue;
766      // Do not attempt to custom lower non-128-bit vectors
767      if (!VT.is128BitVector())
768        continue;
769      setOperationAction(ISD::BUILD_VECTOR,
770                         VT.getSimpleVT().SimpleTy, Custom);
771      setOperationAction(ISD::VECTOR_SHUFFLE,
772                         VT.getSimpleVT().SimpleTy, Custom);
773      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
774                         VT.getSimpleVT().SimpleTy, Custom);
775    }
776
777    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
778    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
779    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
780    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
781    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
782    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
783
784    if (Subtarget->is64Bit()) {
785      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
786      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
787    }
788
789    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
790    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
791      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
792      EVT VT = SVT;
793
794      // Do not attempt to promote non-128-bit vectors
795      if (!VT.is128BitVector())
796        continue;
797
798      setOperationAction(ISD::AND,    SVT, Promote);
799      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
800      setOperationAction(ISD::OR,     SVT, Promote);
801      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
802      setOperationAction(ISD::XOR,    SVT, Promote);
803      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
804      setOperationAction(ISD::LOAD,   SVT, Promote);
805      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
806      setOperationAction(ISD::SELECT, SVT, Promote);
807      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
808    }
809
810    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
811
812    // Custom lower v2i64 and v2f64 selects.
813    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
814    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
815    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
816    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
817
818    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
819    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
820    if (!DisableMMX && Subtarget->hasMMX()) {
821      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
822      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
823    }
824  }
825
826  if (Subtarget->hasSSE41()) {
827    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
828    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
829    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
830    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
831    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
832    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
833    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
834    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
835    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
836    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
837
838    // FIXME: Do we need to handle scalar-to-vector here?
839    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
840
841    // Can turn SHL into an integer multiply.
842    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
843    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
844
845    // i8 and i16 vectors are custom , because the source register and source
846    // source memory operand types are not the same width.  f32 vectors are
847    // custom since the immediate controlling the insert encodes additional
848    // information.
849    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
850    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
851    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
852    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
853
854    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
855    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
856    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
857    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
858
859    if (Subtarget->is64Bit()) {
860      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
861      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
862    }
863  }
864
865  if (Subtarget->hasSSE42()) {
866    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
867  }
868
869  if (!UseSoftFloat && Subtarget->hasAVX()) {
870    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
871    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
872    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
873    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
874    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
875
876    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
877    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
878    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
879    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
880    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
881    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
882    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
883    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
884    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
885    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
886    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
887    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
888    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
889    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
890    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
891
892    // Operations to consider commented out -v16i16 v32i8
893    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
894    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
895    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
896    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
897    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
898    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
899    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
900    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
901    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
902    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
903    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
904    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
905    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
906    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
907
908    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
909    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
910    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
911    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
912
913    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
914    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
915    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
916    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
917    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
918
919    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
920    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
921    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
922    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
923    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
924    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
925
926#if 0
927    // Not sure we want to do this since there are no 256-bit integer
928    // operations in AVX
929
930    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
931    // This includes 256-bit vectors
932    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
933      EVT VT = (MVT::SimpleValueType)i;
934
935      // Do not attempt to custom lower non-power-of-2 vectors
936      if (!isPowerOf2_32(VT.getVectorNumElements()))
937        continue;
938
939      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
940      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
941      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
942    }
943
944    if (Subtarget->is64Bit()) {
945      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
946      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
947    }
948#endif
949
950#if 0
951    // Not sure we want to do this since there are no 256-bit integer
952    // operations in AVX
953
954    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
955    // Including 256-bit vectors
956    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
957      EVT VT = (MVT::SimpleValueType)i;
958
959      if (!VT.is256BitVector()) {
960        continue;
961      }
962      setOperationAction(ISD::AND,    VT, Promote);
963      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
964      setOperationAction(ISD::OR,     VT, Promote);
965      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
966      setOperationAction(ISD::XOR,    VT, Promote);
967      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
968      setOperationAction(ISD::LOAD,   VT, Promote);
969      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
970      setOperationAction(ISD::SELECT, VT, Promote);
971      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
972    }
973
974    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
975#endif
976  }
977
978  // We want to custom lower some of our intrinsics.
979  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
980
981  // Add/Sub/Mul with overflow operations are custom lowered.
982  setOperationAction(ISD::SADDO, MVT::i32, Custom);
983  setOperationAction(ISD::UADDO, MVT::i32, Custom);
984  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
985  setOperationAction(ISD::USUBO, MVT::i32, Custom);
986  setOperationAction(ISD::SMULO, MVT::i32, Custom);
987
988  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
989  // handle type legalization for these operations here.
990  //
991  // FIXME: We really should do custom legalization for addition and
992  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
993  // than generic legalization for 64-bit multiplication-with-overflow, though.
994  if (Subtarget->is64Bit()) {
995    setOperationAction(ISD::SADDO, MVT::i64, Custom);
996    setOperationAction(ISD::UADDO, MVT::i64, Custom);
997    setOperationAction(ISD::SSUBO, MVT::i64, Custom);
998    setOperationAction(ISD::USUBO, MVT::i64, Custom);
999    setOperationAction(ISD::SMULO, MVT::i64, Custom);
1000  }
1001
1002  if (!Subtarget->is64Bit()) {
1003    // These libcalls are not available in 32-bit.
1004    setLibcallName(RTLIB::SHL_I128, 0);
1005    setLibcallName(RTLIB::SRL_I128, 0);
1006    setLibcallName(RTLIB::SRA_I128, 0);
1007  }
1008
1009  // We have target-specific dag combine patterns for the following nodes:
1010  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1011  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1012  setTargetDAGCombine(ISD::BUILD_VECTOR);
1013  setTargetDAGCombine(ISD::SELECT);
1014  setTargetDAGCombine(ISD::SHL);
1015  setTargetDAGCombine(ISD::SRA);
1016  setTargetDAGCombine(ISD::SRL);
1017  setTargetDAGCombine(ISD::OR);
1018  setTargetDAGCombine(ISD::STORE);
1019  setTargetDAGCombine(ISD::ZERO_EXTEND);
1020  if (Subtarget->is64Bit())
1021    setTargetDAGCombine(ISD::MUL);
1022
1023  computeRegisterProperties();
1024
1025  // FIXME: These should be based on subtarget info. Plus, the values should
1026  // be smaller when we are in optimizing for size mode.
1027  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1028  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1029  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1030  setPrefLoopAlignment(16);
1031  benefitFromCodePlacementOpt = true;
1032}
1033
1034
1035MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1036  return MVT::i8;
1037}
1038
1039
1040/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1041/// the desired ByVal argument alignment.
1042static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1043  if (MaxAlign == 16)
1044    return;
1045  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1046    if (VTy->getBitWidth() == 128)
1047      MaxAlign = 16;
1048  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1049    unsigned EltAlign = 0;
1050    getMaxByValAlign(ATy->getElementType(), EltAlign);
1051    if (EltAlign > MaxAlign)
1052      MaxAlign = EltAlign;
1053  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1054    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1055      unsigned EltAlign = 0;
1056      getMaxByValAlign(STy->getElementType(i), EltAlign);
1057      if (EltAlign > MaxAlign)
1058        MaxAlign = EltAlign;
1059      if (MaxAlign == 16)
1060        break;
1061    }
1062  }
1063  return;
1064}
1065
1066/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1067/// function arguments in the caller parameter area. For X86, aggregates
1068/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1069/// are at 4-byte boundaries.
1070unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1071  if (Subtarget->is64Bit()) {
1072    // Max of 8 and alignment of type.
1073    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1074    if (TyAlign > 8)
1075      return TyAlign;
1076    return 8;
1077  }
1078
1079  unsigned Align = 4;
1080  if (Subtarget->hasSSE1())
1081    getMaxByValAlign(Ty, Align);
1082  return Align;
1083}
1084
1085/// getOptimalMemOpType - Returns the target specific optimal type for load
1086/// and store operations as a result of memset, memcpy, and memmove
1087/// lowering. If DstAlign is zero that means it's safe to destination
1088/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1089/// means there isn't a need to check it against alignment requirement,
1090/// probably because the source does not need to be loaded. If
1091/// 'NonScalarIntSafe' is true, that means it's safe to return a
1092/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1093/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1094/// constant so it does not need to be loaded.
1095/// It returns EVT::Other if the type should be determined using generic
1096/// target-independent logic.
1097EVT
1098X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1099                                       unsigned DstAlign, unsigned SrcAlign,
1100                                       bool NonScalarIntSafe,
1101                                       bool MemcpyStrSrc,
1102                                       MachineFunction &MF) const {
1103  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1104  // linux.  This is because the stack realignment code can't handle certain
1105  // cases like PR2962.  This should be removed when PR2962 is fixed.
1106  const Function *F = MF.getFunction();
1107  if (NonScalarIntSafe &&
1108      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1109    if (Size >= 16 &&
1110        (Subtarget->isUnalignedMemAccessFast() ||
1111         ((DstAlign == 0 || DstAlign >= 16) &&
1112          (SrcAlign == 0 || SrcAlign >= 16))) &&
1113        Subtarget->getStackAlignment() >= 16) {
1114      if (Subtarget->hasSSE2())
1115        return MVT::v4i32;
1116      if (Subtarget->hasSSE1())
1117        return MVT::v4f32;
1118    } else if (!MemcpyStrSrc && Size >= 8 &&
1119               !Subtarget->is64Bit() &&
1120               Subtarget->getStackAlignment() >= 8 &&
1121               Subtarget->hasSSE2()) {
1122      // Do not use f64 to lower memcpy if source is string constant. It's
1123      // better to use i32 to avoid the loads.
1124      return MVT::f64;
1125    }
1126  }
1127  if (Subtarget->is64Bit() && Size >= 8)
1128    return MVT::i64;
1129  return MVT::i32;
1130}
1131
1132/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1133/// current function.  The returned value is a member of the
1134/// MachineJumpTableInfo::JTEntryKind enum.
1135unsigned X86TargetLowering::getJumpTableEncoding() const {
1136  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1137  // symbol.
1138  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1139      Subtarget->isPICStyleGOT())
1140    return MachineJumpTableInfo::EK_Custom32;
1141
1142  // Otherwise, use the normal jump table encoding heuristics.
1143  return TargetLowering::getJumpTableEncoding();
1144}
1145
1146/// getPICBaseSymbol - Return the X86-32 PIC base.
1147MCSymbol *
1148X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1149                                    MCContext &Ctx) const {
1150  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1151  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1152                               Twine(MF->getFunctionNumber())+"$pb");
1153}
1154
1155
1156const MCExpr *
1157X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1158                                             const MachineBasicBlock *MBB,
1159                                             unsigned uid,MCContext &Ctx) const{
1160  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1161         Subtarget->isPICStyleGOT());
1162  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1163  // entries.
1164  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1165                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1166}
1167
1168/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1169/// jumptable.
1170SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1171                                                    SelectionDAG &DAG) const {
1172  if (!Subtarget->is64Bit())
1173    // This doesn't have DebugLoc associated with it, but is not really the
1174    // same as a Register.
1175    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1176  return Table;
1177}
1178
1179/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1180/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1181/// MCExpr.
1182const MCExpr *X86TargetLowering::
1183getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1184                             MCContext &Ctx) const {
1185  // X86-64 uses RIP relative addressing based on the jump table label.
1186  if (Subtarget->isPICStyleRIPRel())
1187    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1188
1189  // Otherwise, the reference is relative to the PIC base.
1190  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1191}
1192
1193/// getFunctionAlignment - Return the Log2 alignment of this function.
1194unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1195  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1196}
1197
1198std::pair<const TargetRegisterClass*, uint8_t>
1199X86TargetLowering::findRepresentativeClass(EVT VT) const{
1200  const TargetRegisterClass *RRC = 0;
1201  uint8_t Cost = 1;
1202  switch (VT.getSimpleVT().SimpleTy) {
1203  default:
1204    return TargetLowering::findRepresentativeClass(VT);
1205  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1206    RRC = (Subtarget->is64Bit()
1207           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1208    break;
1209  case MVT::v8i8: case MVT::v4i16:
1210  case MVT::v2i32: case MVT::v1i64:
1211    RRC = X86::VR64RegisterClass;
1212    break;
1213  case MVT::f32: case MVT::f64:
1214  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1215  case MVT::v4f32: case MVT::v2f64:
1216  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1217  case MVT::v4f64:
1218    RRC = X86::VR128RegisterClass;
1219    break;
1220  }
1221  return std::make_pair(RRC, Cost);
1222}
1223
1224unsigned
1225X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
1226                                       MachineFunction &MF) const {
1227  unsigned FPDiff = RegInfo->hasFP(MF) ? 1 : 0;
1228  switch (RC->getID()) {
1229  default:
1230    return 0;
1231  case X86::GR32RegClassID:
1232    return 4 - FPDiff;
1233  case X86::GR64RegClassID:
1234    return 8 - FPDiff;
1235  case X86::VR128RegClassID:
1236    return Subtarget->is64Bit() ? 10 : 4;
1237  case X86::VR64RegClassID:
1238    return 4;
1239  }
1240}
1241
1242bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1243                                               unsigned &Offset) const {
1244  if (!Subtarget->isTargetLinux())
1245    return false;
1246
1247  if (Subtarget->is64Bit()) {
1248    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1249    Offset = 0x28;
1250    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1251      AddressSpace = 256;
1252    else
1253      AddressSpace = 257;
1254  } else {
1255    // %gs:0x14 on i386
1256    Offset = 0x14;
1257    AddressSpace = 256;
1258  }
1259  return true;
1260}
1261
1262
1263//===----------------------------------------------------------------------===//
1264//               Return Value Calling Convention Implementation
1265//===----------------------------------------------------------------------===//
1266
1267#include "X86GenCallingConv.inc"
1268
1269bool
1270X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1271                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1272                        LLVMContext &Context) const {
1273  SmallVector<CCValAssign, 16> RVLocs;
1274  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1275                 RVLocs, Context);
1276  return CCInfo.CheckReturn(Outs, RetCC_X86);
1277}
1278
1279SDValue
1280X86TargetLowering::LowerReturn(SDValue Chain,
1281                               CallingConv::ID CallConv, bool isVarArg,
1282                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1283                               const SmallVectorImpl<SDValue> &OutVals,
1284                               DebugLoc dl, SelectionDAG &DAG) const {
1285  MachineFunction &MF = DAG.getMachineFunction();
1286  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1287
1288  SmallVector<CCValAssign, 16> RVLocs;
1289  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1290                 RVLocs, *DAG.getContext());
1291  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1292
1293  // Add the regs to the liveout set for the function.
1294  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1295  for (unsigned i = 0; i != RVLocs.size(); ++i)
1296    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1297      MRI.addLiveOut(RVLocs[i].getLocReg());
1298
1299  SDValue Flag;
1300
1301  SmallVector<SDValue, 6> RetOps;
1302  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1303  // Operand #1 = Bytes To Pop
1304  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1305                   MVT::i16));
1306
1307  // Copy the result values into the output registers.
1308  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1309    CCValAssign &VA = RVLocs[i];
1310    assert(VA.isRegLoc() && "Can only return in registers!");
1311    SDValue ValToCopy = OutVals[i];
1312    EVT ValVT = ValToCopy.getValueType();
1313
1314    // If this is x86-64, and we disabled SSE, we can't return FP values
1315    if ((ValVT == MVT::f32 || ValVT == MVT::f64) &&
1316        (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1317      report_fatal_error("SSE register return with SSE disabled");
1318    }
1319    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1320    // llvm-gcc has never done it right and no one has noticed, so this
1321    // should be OK for now.
1322    if (ValVT == MVT::f64 &&
1323        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1324      report_fatal_error("SSE2 register return with SSE2 disabled");
1325
1326    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1327    // the RET instruction and handled by the FP Stackifier.
1328    if (VA.getLocReg() == X86::ST0 ||
1329        VA.getLocReg() == X86::ST1) {
1330      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1331      // change the value to the FP stack register class.
1332      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1333        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1334      RetOps.push_back(ValToCopy);
1335      // Don't emit a copytoreg.
1336      continue;
1337    }
1338
1339    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1340    // which is returned in RAX / RDX.
1341    if (Subtarget->is64Bit()) {
1342      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1343        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1344        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1345          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1346                                  ValToCopy);
1347
1348          // If we don't have SSE2 available, convert to v4f32 so the generated
1349          // register is legal.
1350          if (!Subtarget->hasSSE2())
1351            ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32,ValToCopy);
1352        }
1353      }
1354    }
1355
1356    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1357    Flag = Chain.getValue(1);
1358  }
1359
1360  // The x86-64 ABI for returning structs by value requires that we copy
1361  // the sret argument into %rax for the return. We saved the argument into
1362  // a virtual register in the entry block, so now we copy the value out
1363  // and into %rax.
1364  if (Subtarget->is64Bit() &&
1365      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1366    MachineFunction &MF = DAG.getMachineFunction();
1367    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1368    unsigned Reg = FuncInfo->getSRetReturnReg();
1369    assert(Reg &&
1370           "SRetReturnReg should have been set in LowerFormalArguments().");
1371    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1372
1373    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1374    Flag = Chain.getValue(1);
1375
1376    // RAX now acts like a return value.
1377    MRI.addLiveOut(X86::RAX);
1378  }
1379
1380  RetOps[0] = Chain;  // Update chain.
1381
1382  // Add the flag if we have it.
1383  if (Flag.getNode())
1384    RetOps.push_back(Flag);
1385
1386  return DAG.getNode(X86ISD::RET_FLAG, dl,
1387                     MVT::Other, &RetOps[0], RetOps.size());
1388}
1389
1390/// LowerCallResult - Lower the result values of a call into the
1391/// appropriate copies out of appropriate physical registers.
1392///
1393SDValue
1394X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1395                                   CallingConv::ID CallConv, bool isVarArg,
1396                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1397                                   DebugLoc dl, SelectionDAG &DAG,
1398                                   SmallVectorImpl<SDValue> &InVals) const {
1399
1400  // Assign locations to each value returned by this call.
1401  SmallVector<CCValAssign, 16> RVLocs;
1402  bool Is64Bit = Subtarget->is64Bit();
1403  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1404                 RVLocs, *DAG.getContext());
1405  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1406
1407  // Copy all of the result registers out of their specified physreg.
1408  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1409    CCValAssign &VA = RVLocs[i];
1410    EVT CopyVT = VA.getValVT();
1411
1412    // If this is x86-64, and we disabled SSE, we can't return FP values
1413    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1414        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1415      report_fatal_error("SSE register return with SSE disabled");
1416    }
1417
1418    SDValue Val;
1419
1420    // If this is a call to a function that returns an fp value on the floating
1421    // point stack, we must guarantee the the value is popped from the stack, so
1422    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1423    // if the return value is not used. We use the FpGET_ST0 instructions
1424    // instead.
1425    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1426      // If we prefer to use the value in xmm registers, copy it out as f80 and
1427      // use a truncate to move it from fp stack reg to xmm reg.
1428      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1429      bool isST0 = VA.getLocReg() == X86::ST0;
1430      unsigned Opc = 0;
1431      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1432      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1433      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1434      SDValue Ops[] = { Chain, InFlag };
1435      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Flag,
1436                                         Ops, 2), 1);
1437      Val = Chain.getValue(0);
1438
1439      // Round the f80 to the right size, which also moves it to the appropriate
1440      // xmm register.
1441      if (CopyVT != VA.getValVT())
1442        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1443                          // This truncation won't change the value.
1444                          DAG.getIntPtrConstant(1));
1445    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1446      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1447      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1448        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1449                                   MVT::v2i64, InFlag).getValue(1);
1450        Val = Chain.getValue(0);
1451        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1452                          Val, DAG.getConstant(0, MVT::i64));
1453      } else {
1454        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1455                                   MVT::i64, InFlag).getValue(1);
1456        Val = Chain.getValue(0);
1457      }
1458      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1459    } else {
1460      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1461                                 CopyVT, InFlag).getValue(1);
1462      Val = Chain.getValue(0);
1463    }
1464    InFlag = Chain.getValue(2);
1465    InVals.push_back(Val);
1466  }
1467
1468  return Chain;
1469}
1470
1471
1472//===----------------------------------------------------------------------===//
1473//                C & StdCall & Fast Calling Convention implementation
1474//===----------------------------------------------------------------------===//
1475//  StdCall calling convention seems to be standard for many Windows' API
1476//  routines and around. It differs from C calling convention just a little:
1477//  callee should clean up the stack, not caller. Symbols should be also
1478//  decorated in some fancy way :) It doesn't support any vector arguments.
1479//  For info on fast calling convention see Fast Calling Convention (tail call)
1480//  implementation LowerX86_32FastCCCallTo.
1481
1482/// CallIsStructReturn - Determines whether a call uses struct return
1483/// semantics.
1484static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1485  if (Outs.empty())
1486    return false;
1487
1488  return Outs[0].Flags.isSRet();
1489}
1490
1491/// ArgsAreStructReturn - Determines whether a function uses struct
1492/// return semantics.
1493static bool
1494ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1495  if (Ins.empty())
1496    return false;
1497
1498  return Ins[0].Flags.isSRet();
1499}
1500
1501/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1502/// given CallingConvention value.
1503CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1504  if (Subtarget->is64Bit()) {
1505    if (CC == CallingConv::GHC)
1506      return CC_X86_64_GHC;
1507    else if (Subtarget->isTargetWin64())
1508      return CC_X86_Win64_C;
1509    else
1510      return CC_X86_64_C;
1511  }
1512
1513  if (CC == CallingConv::X86_FastCall)
1514    return CC_X86_32_FastCall;
1515  else if (CC == CallingConv::X86_ThisCall)
1516    return CC_X86_32_ThisCall;
1517  else if (CC == CallingConv::Fast)
1518    return CC_X86_32_FastCC;
1519  else if (CC == CallingConv::GHC)
1520    return CC_X86_32_GHC;
1521  else
1522    return CC_X86_32_C;
1523}
1524
1525/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1526/// by "Src" to address "Dst" with size and alignment information specified by
1527/// the specific parameter attribute. The copy will be passed as a byval
1528/// function parameter.
1529static SDValue
1530CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1531                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1532                          DebugLoc dl) {
1533  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1534  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1535                       /*isVolatile*/false, /*AlwaysInline=*/true,
1536                       NULL, 0, NULL, 0);
1537}
1538
1539/// IsTailCallConvention - Return true if the calling convention is one that
1540/// supports tail call optimization.
1541static bool IsTailCallConvention(CallingConv::ID CC) {
1542  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1543}
1544
1545/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1546/// a tailcall target by changing its ABI.
1547static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1548  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1549}
1550
1551SDValue
1552X86TargetLowering::LowerMemArgument(SDValue Chain,
1553                                    CallingConv::ID CallConv,
1554                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1555                                    DebugLoc dl, SelectionDAG &DAG,
1556                                    const CCValAssign &VA,
1557                                    MachineFrameInfo *MFI,
1558                                    unsigned i) const {
1559  // Create the nodes corresponding to a load from this parameter slot.
1560  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1561  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1562  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1563  EVT ValVT;
1564
1565  // If value is passed by pointer we have address passed instead of the value
1566  // itself.
1567  if (VA.getLocInfo() == CCValAssign::Indirect)
1568    ValVT = VA.getLocVT();
1569  else
1570    ValVT = VA.getValVT();
1571
1572  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1573  // changed with more analysis.
1574  // In case of tail call optimization mark all arguments mutable. Since they
1575  // could be overwritten by lowering of arguments in case of a tail call.
1576  if (Flags.isByVal()) {
1577    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1578                                    VA.getLocMemOffset(), isImmutable);
1579    return DAG.getFrameIndex(FI, getPointerTy());
1580  } else {
1581    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1582                                    VA.getLocMemOffset(), isImmutable);
1583    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1584    return DAG.getLoad(ValVT, dl, Chain, FIN,
1585                       PseudoSourceValue::getFixedStack(FI), 0,
1586                       false, false, 0);
1587  }
1588}
1589
1590SDValue
1591X86TargetLowering::LowerFormalArguments(SDValue Chain,
1592                                        CallingConv::ID CallConv,
1593                                        bool isVarArg,
1594                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1595                                        DebugLoc dl,
1596                                        SelectionDAG &DAG,
1597                                        SmallVectorImpl<SDValue> &InVals)
1598                                          const {
1599  MachineFunction &MF = DAG.getMachineFunction();
1600  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1601
1602  const Function* Fn = MF.getFunction();
1603  if (Fn->hasExternalLinkage() &&
1604      Subtarget->isTargetCygMing() &&
1605      Fn->getName() == "main")
1606    FuncInfo->setForceFramePointer(true);
1607
1608  MachineFrameInfo *MFI = MF.getFrameInfo();
1609  bool Is64Bit = Subtarget->is64Bit();
1610  bool IsWin64 = Subtarget->isTargetWin64();
1611
1612  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1613         "Var args not supported with calling convention fastcc or ghc");
1614
1615  // Assign locations to all of the incoming arguments.
1616  SmallVector<CCValAssign, 16> ArgLocs;
1617  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1618                 ArgLocs, *DAG.getContext());
1619
1620  // Allocate shadow area for Win64
1621  if (IsWin64)
1622   CCInfo.AllocateStack(32, 8);
1623
1624  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1625
1626  unsigned LastVal = ~0U;
1627  SDValue ArgValue;
1628  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1629    CCValAssign &VA = ArgLocs[i];
1630    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1631    // places.
1632    assert(VA.getValNo() != LastVal &&
1633           "Don't support value assigned to multiple locs yet");
1634    LastVal = VA.getValNo();
1635
1636    if (VA.isRegLoc()) {
1637      EVT RegVT = VA.getLocVT();
1638      TargetRegisterClass *RC = NULL;
1639      if (RegVT == MVT::i32)
1640        RC = X86::GR32RegisterClass;
1641      else if (Is64Bit && RegVT == MVT::i64)
1642        RC = X86::GR64RegisterClass;
1643      else if (RegVT == MVT::f32)
1644        RC = X86::FR32RegisterClass;
1645      else if (RegVT == MVT::f64)
1646        RC = X86::FR64RegisterClass;
1647      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1648        RC = X86::VR256RegisterClass;
1649      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1650        RC = X86::VR128RegisterClass;
1651      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1652        RC = X86::VR64RegisterClass;
1653      else
1654        llvm_unreachable("Unknown argument type!");
1655
1656      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1657      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1658
1659      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1660      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1661      // right size.
1662      if (VA.getLocInfo() == CCValAssign::SExt)
1663        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1664                               DAG.getValueType(VA.getValVT()));
1665      else if (VA.getLocInfo() == CCValAssign::ZExt)
1666        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1667                               DAG.getValueType(VA.getValVT()));
1668      else if (VA.getLocInfo() == CCValAssign::BCvt)
1669        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1670
1671      if (VA.isExtInLoc()) {
1672        // Handle MMX values passed in XMM regs.
1673        if (RegVT.isVector()) {
1674          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1675                                 ArgValue, DAG.getConstant(0, MVT::i64));
1676          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1677        } else
1678          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1679      }
1680    } else {
1681      assert(VA.isMemLoc());
1682      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1683    }
1684
1685    // If value is passed via pointer - do a load.
1686    if (VA.getLocInfo() == CCValAssign::Indirect)
1687      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1688                             false, false, 0);
1689
1690    InVals.push_back(ArgValue);
1691  }
1692
1693  // The x86-64 ABI for returning structs by value requires that we copy
1694  // the sret argument into %rax for the return. Save the argument into
1695  // a virtual register so that we can access it from the return points.
1696  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1697    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1698    unsigned Reg = FuncInfo->getSRetReturnReg();
1699    if (!Reg) {
1700      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1701      FuncInfo->setSRetReturnReg(Reg);
1702    }
1703    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1704    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1705  }
1706
1707  unsigned StackSize = CCInfo.getNextStackOffset();
1708  // Align stack specially for tail calls.
1709  if (FuncIsMadeTailCallSafe(CallConv))
1710    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1711
1712  // If the function takes variable number of arguments, make a frame index for
1713  // the start of the first vararg value... for expansion of llvm.va_start.
1714  if (isVarArg) {
1715    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1716                    CallConv != CallingConv::X86_ThisCall)) {
1717      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1718    }
1719    if (Is64Bit) {
1720      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1721
1722      // FIXME: We should really autogenerate these arrays
1723      static const unsigned GPR64ArgRegsWin64[] = {
1724        X86::RCX, X86::RDX, X86::R8,  X86::R9
1725      };
1726      static const unsigned XMMArgRegsWin64[] = {
1727        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1728      };
1729      static const unsigned GPR64ArgRegs64Bit[] = {
1730        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1731      };
1732      static const unsigned XMMArgRegs64Bit[] = {
1733        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1734        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1735      };
1736      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1737
1738      if (IsWin64) {
1739        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1740        GPR64ArgRegs = GPR64ArgRegsWin64;
1741        XMMArgRegs = XMMArgRegsWin64;
1742      } else {
1743        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1744        GPR64ArgRegs = GPR64ArgRegs64Bit;
1745        XMMArgRegs = XMMArgRegs64Bit;
1746      }
1747      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1748                                                       TotalNumIntRegs);
1749      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1750                                                       TotalNumXMMRegs);
1751
1752      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1753      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1754             "SSE register cannot be used when SSE is disabled!");
1755      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1756             "SSE register cannot be used when SSE is disabled!");
1757      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1758        // Kernel mode asks for SSE to be disabled, so don't push them
1759        // on the stack.
1760        TotalNumXMMRegs = 0;
1761
1762      // For X86-64, if there are vararg parameters that are passed via
1763      // registers, then we must store them to their spots on the stack so they
1764      // may be loaded by deferencing the result of va_next.
1765      FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1766      FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1767      FuncInfo->setRegSaveFrameIndex(
1768        MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1769                               false));
1770
1771      // Store the integer parameter registers.
1772      SmallVector<SDValue, 8> MemOps;
1773      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1774                                        getPointerTy());
1775      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1776      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1777        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1778                                  DAG.getIntPtrConstant(Offset));
1779        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1780                                     X86::GR64RegisterClass);
1781        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1782        SDValue Store =
1783          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1784                       PseudoSourceValue::getFixedStack(
1785                         FuncInfo->getRegSaveFrameIndex()),
1786                       Offset, false, false, 0);
1787        MemOps.push_back(Store);
1788        Offset += 8;
1789      }
1790
1791      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1792        // Now store the XMM (fp + vector) parameter registers.
1793        SmallVector<SDValue, 11> SaveXMMOps;
1794        SaveXMMOps.push_back(Chain);
1795
1796        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1797        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1798        SaveXMMOps.push_back(ALVal);
1799
1800        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1801                               FuncInfo->getRegSaveFrameIndex()));
1802        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1803                               FuncInfo->getVarArgsFPOffset()));
1804
1805        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1806          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1807                                       X86::VR128RegisterClass);
1808          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1809          SaveXMMOps.push_back(Val);
1810        }
1811        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1812                                     MVT::Other,
1813                                     &SaveXMMOps[0], SaveXMMOps.size()));
1814      }
1815
1816      if (!MemOps.empty())
1817        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1818                            &MemOps[0], MemOps.size());
1819    }
1820  }
1821
1822  // Some CCs need callee pop.
1823  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1824    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1825  } else {
1826    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1827    // If this is an sret function, the return should pop the hidden pointer.
1828    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1829      FuncInfo->setBytesToPopOnReturn(4);
1830  }
1831
1832  if (!Is64Bit) {
1833    // RegSaveFrameIndex is X86-64 only.
1834    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1835    if (CallConv == CallingConv::X86_FastCall ||
1836        CallConv == CallingConv::X86_ThisCall)
1837      // fastcc functions can't have varargs.
1838      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1839  }
1840
1841  return Chain;
1842}
1843
1844SDValue
1845X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1846                                    SDValue StackPtr, SDValue Arg,
1847                                    DebugLoc dl, SelectionDAG &DAG,
1848                                    const CCValAssign &VA,
1849                                    ISD::ArgFlagsTy Flags) const {
1850  unsigned LocMemOffset = VA.getLocMemOffset();
1851  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1852  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1853  if (Flags.isByVal()) {
1854    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1855  }
1856  return DAG.getStore(Chain, dl, Arg, PtrOff,
1857                      PseudoSourceValue::getStack(), LocMemOffset,
1858                      false, false, 0);
1859}
1860
1861/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1862/// optimization is performed and it is required.
1863SDValue
1864X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1865                                           SDValue &OutRetAddr, SDValue Chain,
1866                                           bool IsTailCall, bool Is64Bit,
1867                                           int FPDiff, DebugLoc dl) const {
1868  // Adjust the Return address stack slot.
1869  EVT VT = getPointerTy();
1870  OutRetAddr = getReturnAddressFrameIndex(DAG);
1871
1872  // Load the "old" Return address.
1873  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1874  return SDValue(OutRetAddr.getNode(), 1);
1875}
1876
1877/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1878/// optimization is performed and it is required (FPDiff!=0).
1879static SDValue
1880EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1881                         SDValue Chain, SDValue RetAddrFrIdx,
1882                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1883  // Store the return address to the appropriate stack slot.
1884  if (!FPDiff) return Chain;
1885  // Calculate the new stack slot for the return address.
1886  int SlotSize = Is64Bit ? 8 : 4;
1887  int NewReturnAddrFI =
1888    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1889  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1890  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1891  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1892                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1893                       false, false, 0);
1894  return Chain;
1895}
1896
1897SDValue
1898X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1899                             CallingConv::ID CallConv, bool isVarArg,
1900                             bool &isTailCall,
1901                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1902                             const SmallVectorImpl<SDValue> &OutVals,
1903                             const SmallVectorImpl<ISD::InputArg> &Ins,
1904                             DebugLoc dl, SelectionDAG &DAG,
1905                             SmallVectorImpl<SDValue> &InVals) const {
1906  MachineFunction &MF = DAG.getMachineFunction();
1907  bool Is64Bit        = Subtarget->is64Bit();
1908  bool IsStructRet    = CallIsStructReturn(Outs);
1909  bool IsSibcall      = false;
1910
1911  if (isTailCall) {
1912    // Check if it's really possible to do a tail call.
1913    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1914                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1915                                                   Outs, OutVals, Ins, DAG);
1916
1917    // Sibcalls are automatically detected tailcalls which do not require
1918    // ABI changes.
1919    if (!GuaranteedTailCallOpt && isTailCall)
1920      IsSibcall = true;
1921
1922    if (isTailCall)
1923      ++NumTailCalls;
1924  }
1925
1926  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1927         "Var args not supported with calling convention fastcc or ghc");
1928
1929  // Analyze operands of the call, assigning locations to each operand.
1930  SmallVector<CCValAssign, 16> ArgLocs;
1931  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1932                 ArgLocs, *DAG.getContext());
1933
1934  // Allocate shadow area for Win64
1935  if (Subtarget->isTargetWin64())
1936    CCInfo.AllocateStack(32, 8);
1937
1938  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1939
1940  // Get a count of how many bytes are to be pushed on the stack.
1941  unsigned NumBytes = CCInfo.getNextStackOffset();
1942  if (IsSibcall)
1943    // This is a sibcall. The memory operands are available in caller's
1944    // own caller's stack.
1945    NumBytes = 0;
1946  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1947    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1948
1949  int FPDiff = 0;
1950  if (isTailCall && !IsSibcall) {
1951    // Lower arguments at fp - stackoffset + fpdiff.
1952    unsigned NumBytesCallerPushed =
1953      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1954    FPDiff = NumBytesCallerPushed - NumBytes;
1955
1956    // Set the delta of movement of the returnaddr stackslot.
1957    // But only set if delta is greater than previous delta.
1958    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1959      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1960  }
1961
1962  if (!IsSibcall)
1963    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1964
1965  SDValue RetAddrFrIdx;
1966  // Load return adress for tail calls.
1967  if (isTailCall && FPDiff)
1968    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1969                                    Is64Bit, FPDiff, dl);
1970
1971  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1972  SmallVector<SDValue, 8> MemOpChains;
1973  SDValue StackPtr;
1974
1975  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1976  // of tail call optimization arguments are handle later.
1977  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1978    CCValAssign &VA = ArgLocs[i];
1979    EVT RegVT = VA.getLocVT();
1980    SDValue Arg = OutVals[i];
1981    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1982    bool isByVal = Flags.isByVal();
1983
1984    // Promote the value if needed.
1985    switch (VA.getLocInfo()) {
1986    default: llvm_unreachable("Unknown loc info!");
1987    case CCValAssign::Full: break;
1988    case CCValAssign::SExt:
1989      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1990      break;
1991    case CCValAssign::ZExt:
1992      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1993      break;
1994    case CCValAssign::AExt:
1995      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1996        // Special case: passing MMX values in XMM registers.
1997        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1998        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1999        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2000      } else
2001        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2002      break;
2003    case CCValAssign::BCvt:
2004      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
2005      break;
2006    case CCValAssign::Indirect: {
2007      // Store the argument.
2008      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2009      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2010      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2011                           PseudoSourceValue::getFixedStack(FI), 0,
2012                           false, false, 0);
2013      Arg = SpillSlot;
2014      break;
2015    }
2016    }
2017
2018    if (VA.isRegLoc()) {
2019      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2020      if (isVarArg && Subtarget->isTargetWin64()) {
2021        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2022        // shadow reg if callee is a varargs function.
2023        unsigned ShadowReg = 0;
2024        switch (VA.getLocReg()) {
2025        case X86::XMM0: ShadowReg = X86::RCX; break;
2026        case X86::XMM1: ShadowReg = X86::RDX; break;
2027        case X86::XMM2: ShadowReg = X86::R8; break;
2028        case X86::XMM3: ShadowReg = X86::R9; break;
2029        }
2030        if (ShadowReg)
2031          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2032      }
2033    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2034      assert(VA.isMemLoc());
2035      if (StackPtr.getNode() == 0)
2036        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2037      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2038                                             dl, DAG, VA, Flags));
2039    }
2040  }
2041
2042  if (!MemOpChains.empty())
2043    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2044                        &MemOpChains[0], MemOpChains.size());
2045
2046  // Build a sequence of copy-to-reg nodes chained together with token chain
2047  // and flag operands which copy the outgoing args into registers.
2048  SDValue InFlag;
2049  // Tail call byval lowering might overwrite argument registers so in case of
2050  // tail call optimization the copies to registers are lowered later.
2051  if (!isTailCall)
2052    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2053      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2054                               RegsToPass[i].second, InFlag);
2055      InFlag = Chain.getValue(1);
2056    }
2057
2058  if (Subtarget->isPICStyleGOT()) {
2059    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2060    // GOT pointer.
2061    if (!isTailCall) {
2062      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2063                               DAG.getNode(X86ISD::GlobalBaseReg,
2064                                           DebugLoc(), getPointerTy()),
2065                               InFlag);
2066      InFlag = Chain.getValue(1);
2067    } else {
2068      // If we are tail calling and generating PIC/GOT style code load the
2069      // address of the callee into ECX. The value in ecx is used as target of
2070      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2071      // for tail calls on PIC/GOT architectures. Normally we would just put the
2072      // address of GOT into ebx and then call target@PLT. But for tail calls
2073      // ebx would be restored (since ebx is callee saved) before jumping to the
2074      // target@PLT.
2075
2076      // Note: The actual moving to ECX is done further down.
2077      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2078      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2079          !G->getGlobal()->hasProtectedVisibility())
2080        Callee = LowerGlobalAddress(Callee, DAG);
2081      else if (isa<ExternalSymbolSDNode>(Callee))
2082        Callee = LowerExternalSymbol(Callee, DAG);
2083    }
2084  }
2085
2086  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) {
2087    // From AMD64 ABI document:
2088    // For calls that may call functions that use varargs or stdargs
2089    // (prototype-less calls or calls to functions containing ellipsis (...) in
2090    // the declaration) %al is used as hidden argument to specify the number
2091    // of SSE registers used. The contents of %al do not need to match exactly
2092    // the number of registers, but must be an ubound on the number of SSE
2093    // registers used and is in the range 0 - 8 inclusive.
2094
2095    // Count the number of XMM registers allocated.
2096    static const unsigned XMMArgRegs[] = {
2097      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2098      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2099    };
2100    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2101    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2102           && "SSE registers cannot be used when SSE is disabled");
2103
2104    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2105                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2106    InFlag = Chain.getValue(1);
2107  }
2108
2109
2110  // For tail calls lower the arguments to the 'real' stack slot.
2111  if (isTailCall) {
2112    // Force all the incoming stack arguments to be loaded from the stack
2113    // before any new outgoing arguments are stored to the stack, because the
2114    // outgoing stack slots may alias the incoming argument stack slots, and
2115    // the alias isn't otherwise explicit. This is slightly more conservative
2116    // than necessary, because it means that each store effectively depends
2117    // on every argument instead of just those arguments it would clobber.
2118    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2119
2120    SmallVector<SDValue, 8> MemOpChains2;
2121    SDValue FIN;
2122    int FI = 0;
2123    // Do not flag preceeding copytoreg stuff together with the following stuff.
2124    InFlag = SDValue();
2125    if (GuaranteedTailCallOpt) {
2126      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2127        CCValAssign &VA = ArgLocs[i];
2128        if (VA.isRegLoc())
2129          continue;
2130        assert(VA.isMemLoc());
2131        SDValue Arg = OutVals[i];
2132        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2133        // Create frame index.
2134        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2135        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2136        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2137        FIN = DAG.getFrameIndex(FI, getPointerTy());
2138
2139        if (Flags.isByVal()) {
2140          // Copy relative to framepointer.
2141          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2142          if (StackPtr.getNode() == 0)
2143            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2144                                          getPointerTy());
2145          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2146
2147          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2148                                                           ArgChain,
2149                                                           Flags, DAG, dl));
2150        } else {
2151          // Store relative to framepointer.
2152          MemOpChains2.push_back(
2153            DAG.getStore(ArgChain, dl, Arg, FIN,
2154                         PseudoSourceValue::getFixedStack(FI), 0,
2155                         false, false, 0));
2156        }
2157      }
2158    }
2159
2160    if (!MemOpChains2.empty())
2161      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2162                          &MemOpChains2[0], MemOpChains2.size());
2163
2164    // Copy arguments to their registers.
2165    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2166      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2167                               RegsToPass[i].second, InFlag);
2168      InFlag = Chain.getValue(1);
2169    }
2170    InFlag =SDValue();
2171
2172    // Store the return address to the appropriate stack slot.
2173    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2174                                     FPDiff, dl);
2175  }
2176
2177  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2178    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2179    // In the 64-bit large code model, we have to make all calls
2180    // through a register, since the call instruction's 32-bit
2181    // pc-relative offset may not be large enough to hold the whole
2182    // address.
2183  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2184    // If the callee is a GlobalAddress node (quite common, every direct call
2185    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2186    // it.
2187
2188    // We should use extra load for direct calls to dllimported functions in
2189    // non-JIT mode.
2190    const GlobalValue *GV = G->getGlobal();
2191    if (!GV->hasDLLImportLinkage()) {
2192      unsigned char OpFlags = 0;
2193
2194      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2195      // external symbols most go through the PLT in PIC mode.  If the symbol
2196      // has hidden or protected visibility, or if it is static or local, then
2197      // we don't need to use the PLT - we can directly call it.
2198      if (Subtarget->isTargetELF() &&
2199          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2200          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2201        OpFlags = X86II::MO_PLT;
2202      } else if (Subtarget->isPICStyleStubAny() &&
2203               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2204               Subtarget->getDarwinVers() < 9) {
2205        // PC-relative references to external symbols should go through $stub,
2206        // unless we're building with the leopard linker or later, which
2207        // automatically synthesizes these stubs.
2208        OpFlags = X86II::MO_DARWIN_STUB;
2209      }
2210
2211      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2212                                          G->getOffset(), OpFlags);
2213    }
2214  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2215    unsigned char OpFlags = 0;
2216
2217    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2218    // symbols should go through the PLT.
2219    if (Subtarget->isTargetELF() &&
2220        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2221      OpFlags = X86II::MO_PLT;
2222    } else if (Subtarget->isPICStyleStubAny() &&
2223             Subtarget->getDarwinVers() < 9) {
2224      // PC-relative references to external symbols should go through $stub,
2225      // unless we're building with the leopard linker or later, which
2226      // automatically synthesizes these stubs.
2227      OpFlags = X86II::MO_DARWIN_STUB;
2228    }
2229
2230    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2231                                         OpFlags);
2232  }
2233
2234  // Returns a chain & a flag for retval copy to use.
2235  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2236  SmallVector<SDValue, 8> Ops;
2237
2238  if (!IsSibcall && isTailCall) {
2239    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2240                           DAG.getIntPtrConstant(0, true), InFlag);
2241    InFlag = Chain.getValue(1);
2242  }
2243
2244  Ops.push_back(Chain);
2245  Ops.push_back(Callee);
2246
2247  if (isTailCall)
2248    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2249
2250  // Add argument registers to the end of the list so that they are known live
2251  // into the call.
2252  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2253    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2254                                  RegsToPass[i].second.getValueType()));
2255
2256  // Add an implicit use GOT pointer in EBX.
2257  if (!isTailCall && Subtarget->isPICStyleGOT())
2258    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2259
2260  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2261  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64())
2262    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2263
2264  if (InFlag.getNode())
2265    Ops.push_back(InFlag);
2266
2267  if (isTailCall) {
2268    // We used to do:
2269    //// If this is the first return lowered for this function, add the regs
2270    //// to the liveout set for the function.
2271    // This isn't right, although it's probably harmless on x86; liveouts
2272    // should be computed from returns not tail calls.  Consider a void
2273    // function making a tail call to a function returning int.
2274    return DAG.getNode(X86ISD::TC_RETURN, dl,
2275                       NodeTys, &Ops[0], Ops.size());
2276  }
2277
2278  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2279  InFlag = Chain.getValue(1);
2280
2281  // Create the CALLSEQ_END node.
2282  unsigned NumBytesForCalleeToPush;
2283  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2284    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2285  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2286    // If this is a call to a struct-return function, the callee
2287    // pops the hidden struct pointer, so we have to push it back.
2288    // This is common for Darwin/X86, Linux & Mingw32 targets.
2289    NumBytesForCalleeToPush = 4;
2290  else
2291    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2292
2293  // Returns a flag for retval copy to use.
2294  if (!IsSibcall) {
2295    Chain = DAG.getCALLSEQ_END(Chain,
2296                               DAG.getIntPtrConstant(NumBytes, true),
2297                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2298                                                     true),
2299                               InFlag);
2300    InFlag = Chain.getValue(1);
2301  }
2302
2303  // Handle result values, copying them out of physregs into vregs that we
2304  // return.
2305  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2306                         Ins, dl, DAG, InVals);
2307}
2308
2309
2310//===----------------------------------------------------------------------===//
2311//                Fast Calling Convention (tail call) implementation
2312//===----------------------------------------------------------------------===//
2313
2314//  Like std call, callee cleans arguments, convention except that ECX is
2315//  reserved for storing the tail called function address. Only 2 registers are
2316//  free for argument passing (inreg). Tail call optimization is performed
2317//  provided:
2318//                * tailcallopt is enabled
2319//                * caller/callee are fastcc
2320//  On X86_64 architecture with GOT-style position independent code only local
2321//  (within module) calls are supported at the moment.
2322//  To keep the stack aligned according to platform abi the function
2323//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2324//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2325//  If a tail called function callee has more arguments than the caller the
2326//  caller needs to make sure that there is room to move the RETADDR to. This is
2327//  achieved by reserving an area the size of the argument delta right after the
2328//  original REtADDR, but before the saved framepointer or the spilled registers
2329//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2330//  stack layout:
2331//    arg1
2332//    arg2
2333//    RETADDR
2334//    [ new RETADDR
2335//      move area ]
2336//    (possible EBP)
2337//    ESI
2338//    EDI
2339//    local1 ..
2340
2341/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2342/// for a 16 byte align requirement.
2343unsigned
2344X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2345                                               SelectionDAG& DAG) const {
2346  MachineFunction &MF = DAG.getMachineFunction();
2347  const TargetMachine &TM = MF.getTarget();
2348  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2349  unsigned StackAlignment = TFI.getStackAlignment();
2350  uint64_t AlignMask = StackAlignment - 1;
2351  int64_t Offset = StackSize;
2352  uint64_t SlotSize = TD->getPointerSize();
2353  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2354    // Number smaller than 12 so just add the difference.
2355    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2356  } else {
2357    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2358    Offset = ((~AlignMask) & Offset) + StackAlignment +
2359      (StackAlignment-SlotSize);
2360  }
2361  return Offset;
2362}
2363
2364/// MatchingStackOffset - Return true if the given stack call argument is
2365/// already available in the same position (relatively) of the caller's
2366/// incoming argument stack.
2367static
2368bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2369                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2370                         const X86InstrInfo *TII) {
2371  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2372  int FI = INT_MAX;
2373  if (Arg.getOpcode() == ISD::CopyFromReg) {
2374    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2375    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2376      return false;
2377    MachineInstr *Def = MRI->getVRegDef(VR);
2378    if (!Def)
2379      return false;
2380    if (!Flags.isByVal()) {
2381      if (!TII->isLoadFromStackSlot(Def, FI))
2382        return false;
2383    } else {
2384      unsigned Opcode = Def->getOpcode();
2385      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2386          Def->getOperand(1).isFI()) {
2387        FI = Def->getOperand(1).getIndex();
2388        Bytes = Flags.getByValSize();
2389      } else
2390        return false;
2391    }
2392  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2393    if (Flags.isByVal())
2394      // ByVal argument is passed in as a pointer but it's now being
2395      // dereferenced. e.g.
2396      // define @foo(%struct.X* %A) {
2397      //   tail call @bar(%struct.X* byval %A)
2398      // }
2399      return false;
2400    SDValue Ptr = Ld->getBasePtr();
2401    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2402    if (!FINode)
2403      return false;
2404    FI = FINode->getIndex();
2405  } else
2406    return false;
2407
2408  assert(FI != INT_MAX);
2409  if (!MFI->isFixedObjectIndex(FI))
2410    return false;
2411  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2412}
2413
2414/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2415/// for tail call optimization. Targets which want to do tail call
2416/// optimization should implement this function.
2417bool
2418X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2419                                                     CallingConv::ID CalleeCC,
2420                                                     bool isVarArg,
2421                                                     bool isCalleeStructRet,
2422                                                     bool isCallerStructRet,
2423                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2424                                    const SmallVectorImpl<SDValue> &OutVals,
2425                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2426                                                     SelectionDAG& DAG) const {
2427  if (!IsTailCallConvention(CalleeCC) &&
2428      CalleeCC != CallingConv::C)
2429    return false;
2430
2431  // If -tailcallopt is specified, make fastcc functions tail-callable.
2432  const MachineFunction &MF = DAG.getMachineFunction();
2433  const Function *CallerF = DAG.getMachineFunction().getFunction();
2434  CallingConv::ID CallerCC = CallerF->getCallingConv();
2435  bool CCMatch = CallerCC == CalleeCC;
2436
2437  if (GuaranteedTailCallOpt) {
2438    if (IsTailCallConvention(CalleeCC) && CCMatch)
2439      return true;
2440    return false;
2441  }
2442
2443  // Look for obvious safe cases to perform tail call optimization that do not
2444  // require ABI changes. This is what gcc calls sibcall.
2445
2446  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2447  // emit a special epilogue.
2448  if (RegInfo->needsStackRealignment(MF))
2449    return false;
2450
2451  // Do not sibcall optimize vararg calls unless the call site is not passing
2452  // any arguments.
2453  if (isVarArg && !Outs.empty())
2454    return false;
2455
2456  // Also avoid sibcall optimization if either caller or callee uses struct
2457  // return semantics.
2458  if (isCalleeStructRet || isCallerStructRet)
2459    return false;
2460
2461  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2462  // Therefore if it's not used by the call it is not safe to optimize this into
2463  // a sibcall.
2464  bool Unused = false;
2465  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2466    if (!Ins[i].Used) {
2467      Unused = true;
2468      break;
2469    }
2470  }
2471  if (Unused) {
2472    SmallVector<CCValAssign, 16> RVLocs;
2473    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2474                   RVLocs, *DAG.getContext());
2475    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2476    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2477      CCValAssign &VA = RVLocs[i];
2478      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2479        return false;
2480    }
2481  }
2482
2483  // If the calling conventions do not match, then we'd better make sure the
2484  // results are returned in the same way as what the caller expects.
2485  if (!CCMatch) {
2486    SmallVector<CCValAssign, 16> RVLocs1;
2487    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2488                    RVLocs1, *DAG.getContext());
2489    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2490
2491    SmallVector<CCValAssign, 16> RVLocs2;
2492    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2493                    RVLocs2, *DAG.getContext());
2494    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2495
2496    if (RVLocs1.size() != RVLocs2.size())
2497      return false;
2498    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2499      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2500        return false;
2501      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2502        return false;
2503      if (RVLocs1[i].isRegLoc()) {
2504        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2505          return false;
2506      } else {
2507        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2508          return false;
2509      }
2510    }
2511  }
2512
2513  // If the callee takes no arguments then go on to check the results of the
2514  // call.
2515  if (!Outs.empty()) {
2516    // Check if stack adjustment is needed. For now, do not do this if any
2517    // argument is passed on the stack.
2518    SmallVector<CCValAssign, 16> ArgLocs;
2519    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2520                   ArgLocs, *DAG.getContext());
2521    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2522    if (CCInfo.getNextStackOffset()) {
2523      MachineFunction &MF = DAG.getMachineFunction();
2524      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2525        return false;
2526      if (Subtarget->isTargetWin64())
2527        // Win64 ABI has additional complications.
2528        return false;
2529
2530      // Check if the arguments are already laid out in the right way as
2531      // the caller's fixed stack objects.
2532      MachineFrameInfo *MFI = MF.getFrameInfo();
2533      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2534      const X86InstrInfo *TII =
2535        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2536      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2537        CCValAssign &VA = ArgLocs[i];
2538        SDValue Arg = OutVals[i];
2539        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2540        if (VA.getLocInfo() == CCValAssign::Indirect)
2541          return false;
2542        if (!VA.isRegLoc()) {
2543          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2544                                   MFI, MRI, TII))
2545            return false;
2546        }
2547      }
2548    }
2549
2550    // If the tailcall address may be in a register, then make sure it's
2551    // possible to register allocate for it. In 32-bit, the call address can
2552    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2553    // callee-saved registers are restored. These happen to be the same
2554    // registers used to pass 'inreg' arguments so watch out for those.
2555    if (!Subtarget->is64Bit() &&
2556        !isa<GlobalAddressSDNode>(Callee) &&
2557        !isa<ExternalSymbolSDNode>(Callee)) {
2558      unsigned NumInRegs = 0;
2559      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2560        CCValAssign &VA = ArgLocs[i];
2561        if (!VA.isRegLoc())
2562          continue;
2563        unsigned Reg = VA.getLocReg();
2564        switch (Reg) {
2565        default: break;
2566        case X86::EAX: case X86::EDX: case X86::ECX:
2567          if (++NumInRegs == 3)
2568            return false;
2569          break;
2570        }
2571      }
2572    }
2573  }
2574
2575  return true;
2576}
2577
2578FastISel *
2579X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2580  return X86::createFastISel(funcInfo);
2581}
2582
2583
2584//===----------------------------------------------------------------------===//
2585//                           Other Lowering Hooks
2586//===----------------------------------------------------------------------===//
2587
2588static bool MayFoldLoad(SDValue Op) {
2589  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2590}
2591
2592static bool MayFoldIntoStore(SDValue Op) {
2593  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2594}
2595
2596static bool isTargetShuffle(unsigned Opcode) {
2597  switch(Opcode) {
2598  default: return false;
2599  case X86ISD::PSHUFD:
2600  case X86ISD::PSHUFHW:
2601  case X86ISD::PSHUFLW:
2602  case X86ISD::SHUFPD:
2603  case X86ISD::SHUFPS:
2604  case X86ISD::MOVLHPS:
2605  case X86ISD::MOVLHPD:
2606  case X86ISD::MOVHLPS:
2607  case X86ISD::MOVLPS:
2608  case X86ISD::MOVLPD:
2609  case X86ISD::MOVSHDUP:
2610  case X86ISD::MOVSLDUP:
2611  case X86ISD::MOVSS:
2612  case X86ISD::MOVSD:
2613  case X86ISD::UNPCKLPS:
2614  case X86ISD::PUNPCKLWD:
2615  case X86ISD::PUNPCKLBW:
2616  case X86ISD::PUNPCKLDQ:
2617  case X86ISD::UNPCKHPS:
2618  case X86ISD::PUNPCKHWD:
2619  case X86ISD::PUNPCKHBW:
2620  case X86ISD::PUNPCKHDQ:
2621    return true;
2622  }
2623  return false;
2624}
2625
2626static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2627                                               SDValue V1, SelectionDAG &DAG) {
2628  switch(Opc) {
2629  default: llvm_unreachable("Unknown x86 shuffle node");
2630  case X86ISD::MOVSHDUP:
2631  case X86ISD::MOVSLDUP:
2632    return DAG.getNode(Opc, dl, VT, V1);
2633  }
2634
2635  return SDValue();
2636}
2637
2638static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2639                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2640  switch(Opc) {
2641  default: llvm_unreachable("Unknown x86 shuffle node");
2642  case X86ISD::PSHUFD:
2643  case X86ISD::PSHUFHW:
2644  case X86ISD::PSHUFLW:
2645    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2646  }
2647
2648  return SDValue();
2649}
2650
2651static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2652               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2653  switch(Opc) {
2654  default: llvm_unreachable("Unknown x86 shuffle node");
2655  case X86ISD::SHUFPD:
2656  case X86ISD::SHUFPS:
2657    return DAG.getNode(Opc, dl, VT, V1, V2,
2658                       DAG.getConstant(TargetMask, MVT::i8));
2659  }
2660  return SDValue();
2661}
2662
2663static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2664                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2665  switch(Opc) {
2666  default: llvm_unreachable("Unknown x86 shuffle node");
2667  case X86ISD::MOVLHPS:
2668  case X86ISD::MOVLHPD:
2669  case X86ISD::MOVHLPS:
2670  case X86ISD::MOVLPS:
2671  case X86ISD::MOVLPD:
2672  case X86ISD::MOVSS:
2673  case X86ISD::MOVSD:
2674  case X86ISD::UNPCKLPS:
2675  case X86ISD::PUNPCKLWD:
2676  case X86ISD::PUNPCKLBW:
2677  case X86ISD::PUNPCKLDQ:
2678  case X86ISD::UNPCKHPS:
2679  case X86ISD::PUNPCKHWD:
2680  case X86ISD::PUNPCKHBW:
2681  case X86ISD::PUNPCKHDQ:
2682    return DAG.getNode(Opc, dl, VT, V1, V2);
2683  }
2684  return SDValue();
2685}
2686
2687SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2688  MachineFunction &MF = DAG.getMachineFunction();
2689  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2690  int ReturnAddrIndex = FuncInfo->getRAIndex();
2691
2692  if (ReturnAddrIndex == 0) {
2693    // Set up a frame object for the return address.
2694    uint64_t SlotSize = TD->getPointerSize();
2695    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2696                                                           false);
2697    FuncInfo->setRAIndex(ReturnAddrIndex);
2698  }
2699
2700  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2701}
2702
2703
2704bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2705                                       bool hasSymbolicDisplacement) {
2706  // Offset should fit into 32 bit immediate field.
2707  if (!isInt<32>(Offset))
2708    return false;
2709
2710  // If we don't have a symbolic displacement - we don't have any extra
2711  // restrictions.
2712  if (!hasSymbolicDisplacement)
2713    return true;
2714
2715  // FIXME: Some tweaks might be needed for medium code model.
2716  if (M != CodeModel::Small && M != CodeModel::Kernel)
2717    return false;
2718
2719  // For small code model we assume that latest object is 16MB before end of 31
2720  // bits boundary. We may also accept pretty large negative constants knowing
2721  // that all objects are in the positive half of address space.
2722  if (M == CodeModel::Small && Offset < 16*1024*1024)
2723    return true;
2724
2725  // For kernel code model we know that all object resist in the negative half
2726  // of 32bits address space. We may not accept negative offsets, since they may
2727  // be just off and we may accept pretty large positive ones.
2728  if (M == CodeModel::Kernel && Offset > 0)
2729    return true;
2730
2731  return false;
2732}
2733
2734/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2735/// specific condition code, returning the condition code and the LHS/RHS of the
2736/// comparison to make.
2737static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2738                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2739  if (!isFP) {
2740    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2741      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2742        // X > -1   -> X == 0, jump !sign.
2743        RHS = DAG.getConstant(0, RHS.getValueType());
2744        return X86::COND_NS;
2745      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2746        // X < 0   -> X == 0, jump on sign.
2747        return X86::COND_S;
2748      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2749        // X < 1   -> X <= 0
2750        RHS = DAG.getConstant(0, RHS.getValueType());
2751        return X86::COND_LE;
2752      }
2753    }
2754
2755    switch (SetCCOpcode) {
2756    default: llvm_unreachable("Invalid integer condition!");
2757    case ISD::SETEQ:  return X86::COND_E;
2758    case ISD::SETGT:  return X86::COND_G;
2759    case ISD::SETGE:  return X86::COND_GE;
2760    case ISD::SETLT:  return X86::COND_L;
2761    case ISD::SETLE:  return X86::COND_LE;
2762    case ISD::SETNE:  return X86::COND_NE;
2763    case ISD::SETULT: return X86::COND_B;
2764    case ISD::SETUGT: return X86::COND_A;
2765    case ISD::SETULE: return X86::COND_BE;
2766    case ISD::SETUGE: return X86::COND_AE;
2767    }
2768  }
2769
2770  // First determine if it is required or is profitable to flip the operands.
2771
2772  // If LHS is a foldable load, but RHS is not, flip the condition.
2773  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2774      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2775    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2776    std::swap(LHS, RHS);
2777  }
2778
2779  switch (SetCCOpcode) {
2780  default: break;
2781  case ISD::SETOLT:
2782  case ISD::SETOLE:
2783  case ISD::SETUGT:
2784  case ISD::SETUGE:
2785    std::swap(LHS, RHS);
2786    break;
2787  }
2788
2789  // On a floating point condition, the flags are set as follows:
2790  // ZF  PF  CF   op
2791  //  0 | 0 | 0 | X > Y
2792  //  0 | 0 | 1 | X < Y
2793  //  1 | 0 | 0 | X == Y
2794  //  1 | 1 | 1 | unordered
2795  switch (SetCCOpcode) {
2796  default: llvm_unreachable("Condcode should be pre-legalized away");
2797  case ISD::SETUEQ:
2798  case ISD::SETEQ:   return X86::COND_E;
2799  case ISD::SETOLT:              // flipped
2800  case ISD::SETOGT:
2801  case ISD::SETGT:   return X86::COND_A;
2802  case ISD::SETOLE:              // flipped
2803  case ISD::SETOGE:
2804  case ISD::SETGE:   return X86::COND_AE;
2805  case ISD::SETUGT:              // flipped
2806  case ISD::SETULT:
2807  case ISD::SETLT:   return X86::COND_B;
2808  case ISD::SETUGE:              // flipped
2809  case ISD::SETULE:
2810  case ISD::SETLE:   return X86::COND_BE;
2811  case ISD::SETONE:
2812  case ISD::SETNE:   return X86::COND_NE;
2813  case ISD::SETUO:   return X86::COND_P;
2814  case ISD::SETO:    return X86::COND_NP;
2815  case ISD::SETOEQ:
2816  case ISD::SETUNE:  return X86::COND_INVALID;
2817  }
2818}
2819
2820/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2821/// code. Current x86 isa includes the following FP cmov instructions:
2822/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2823static bool hasFPCMov(unsigned X86CC) {
2824  switch (X86CC) {
2825  default:
2826    return false;
2827  case X86::COND_B:
2828  case X86::COND_BE:
2829  case X86::COND_E:
2830  case X86::COND_P:
2831  case X86::COND_A:
2832  case X86::COND_AE:
2833  case X86::COND_NE:
2834  case X86::COND_NP:
2835    return true;
2836  }
2837}
2838
2839/// isFPImmLegal - Returns true if the target can instruction select the
2840/// specified FP immediate natively. If false, the legalizer will
2841/// materialize the FP immediate as a load from a constant pool.
2842bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2843  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2844    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2845      return true;
2846  }
2847  return false;
2848}
2849
2850/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2851/// the specified range (L, H].
2852static bool isUndefOrInRange(int Val, int Low, int Hi) {
2853  return (Val < 0) || (Val >= Low && Val < Hi);
2854}
2855
2856/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2857/// specified value.
2858static bool isUndefOrEqual(int Val, int CmpVal) {
2859  if (Val < 0 || Val == CmpVal)
2860    return true;
2861  return false;
2862}
2863
2864/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2865/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2866/// the second operand.
2867static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2868  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2869    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2870  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2871    return (Mask[0] < 2 && Mask[1] < 2);
2872  return false;
2873}
2874
2875bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2876  SmallVector<int, 8> M;
2877  N->getMask(M);
2878  return ::isPSHUFDMask(M, N->getValueType(0));
2879}
2880
2881/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2882/// is suitable for input to PSHUFHW.
2883static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2884  if (VT != MVT::v8i16)
2885    return false;
2886
2887  // Lower quadword copied in order or undef.
2888  for (int i = 0; i != 4; ++i)
2889    if (Mask[i] >= 0 && Mask[i] != i)
2890      return false;
2891
2892  // Upper quadword shuffled.
2893  for (int i = 4; i != 8; ++i)
2894    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2895      return false;
2896
2897  return true;
2898}
2899
2900bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2901  SmallVector<int, 8> M;
2902  N->getMask(M);
2903  return ::isPSHUFHWMask(M, N->getValueType(0));
2904}
2905
2906/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2907/// is suitable for input to PSHUFLW.
2908static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2909  if (VT != MVT::v8i16)
2910    return false;
2911
2912  // Upper quadword copied in order.
2913  for (int i = 4; i != 8; ++i)
2914    if (Mask[i] >= 0 && Mask[i] != i)
2915      return false;
2916
2917  // Lower quadword shuffled.
2918  for (int i = 0; i != 4; ++i)
2919    if (Mask[i] >= 4)
2920      return false;
2921
2922  return true;
2923}
2924
2925bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2926  SmallVector<int, 8> M;
2927  N->getMask(M);
2928  return ::isPSHUFLWMask(M, N->getValueType(0));
2929}
2930
2931/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2932/// is suitable for input to PALIGNR.
2933static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2934                          bool hasSSSE3) {
2935  int i, e = VT.getVectorNumElements();
2936
2937  // Do not handle v2i64 / v2f64 shuffles with palignr.
2938  if (e < 4 || !hasSSSE3)
2939    return false;
2940
2941  for (i = 0; i != e; ++i)
2942    if (Mask[i] >= 0)
2943      break;
2944
2945  // All undef, not a palignr.
2946  if (i == e)
2947    return false;
2948
2949  // Determine if it's ok to perform a palignr with only the LHS, since we
2950  // don't have access to the actual shuffle elements to see if RHS is undef.
2951  bool Unary = Mask[i] < (int)e;
2952  bool NeedsUnary = false;
2953
2954  int s = Mask[i] - i;
2955
2956  // Check the rest of the elements to see if they are consecutive.
2957  for (++i; i != e; ++i) {
2958    int m = Mask[i];
2959    if (m < 0)
2960      continue;
2961
2962    Unary = Unary && (m < (int)e);
2963    NeedsUnary = NeedsUnary || (m < s);
2964
2965    if (NeedsUnary && !Unary)
2966      return false;
2967    if (Unary && m != ((s+i) & (e-1)))
2968      return false;
2969    if (!Unary && m != (s+i))
2970      return false;
2971  }
2972  return true;
2973}
2974
2975bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2976  SmallVector<int, 8> M;
2977  N->getMask(M);
2978  return ::isPALIGNRMask(M, N->getValueType(0), true);
2979}
2980
2981/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2982/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2983static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2984  int NumElems = VT.getVectorNumElements();
2985  if (NumElems != 2 && NumElems != 4)
2986    return false;
2987
2988  int Half = NumElems / 2;
2989  for (int i = 0; i < Half; ++i)
2990    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2991      return false;
2992  for (int i = Half; i < NumElems; ++i)
2993    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2994      return false;
2995
2996  return true;
2997}
2998
2999bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3000  SmallVector<int, 8> M;
3001  N->getMask(M);
3002  return ::isSHUFPMask(M, N->getValueType(0));
3003}
3004
3005/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3006/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3007/// half elements to come from vector 1 (which would equal the dest.) and
3008/// the upper half to come from vector 2.
3009static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3010  int NumElems = VT.getVectorNumElements();
3011
3012  if (NumElems != 2 && NumElems != 4)
3013    return false;
3014
3015  int Half = NumElems / 2;
3016  for (int i = 0; i < Half; ++i)
3017    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3018      return false;
3019  for (int i = Half; i < NumElems; ++i)
3020    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3021      return false;
3022  return true;
3023}
3024
3025static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3026  SmallVector<int, 8> M;
3027  N->getMask(M);
3028  return isCommutedSHUFPMask(M, N->getValueType(0));
3029}
3030
3031/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3032/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3033bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3034  if (N->getValueType(0).getVectorNumElements() != 4)
3035    return false;
3036
3037  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3038  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3039         isUndefOrEqual(N->getMaskElt(1), 7) &&
3040         isUndefOrEqual(N->getMaskElt(2), 2) &&
3041         isUndefOrEqual(N->getMaskElt(3), 3);
3042}
3043
3044/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3045/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3046/// <2, 3, 2, 3>
3047bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3048  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3049
3050  if (NumElems != 4)
3051    return false;
3052
3053  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3054  isUndefOrEqual(N->getMaskElt(1), 3) &&
3055  isUndefOrEqual(N->getMaskElt(2), 2) &&
3056  isUndefOrEqual(N->getMaskElt(3), 3);
3057}
3058
3059/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3060/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3061bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3062  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3063
3064  if (NumElems != 2 && NumElems != 4)
3065    return false;
3066
3067  for (unsigned i = 0; i < NumElems/2; ++i)
3068    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3069      return false;
3070
3071  for (unsigned i = NumElems/2; i < NumElems; ++i)
3072    if (!isUndefOrEqual(N->getMaskElt(i), i))
3073      return false;
3074
3075  return true;
3076}
3077
3078/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3079/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3080bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3081  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3082
3083  if (NumElems != 2 && NumElems != 4)
3084    return false;
3085
3086  for (unsigned i = 0; i < NumElems/2; ++i)
3087    if (!isUndefOrEqual(N->getMaskElt(i), i))
3088      return false;
3089
3090  for (unsigned i = 0; i < NumElems/2; ++i)
3091    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3092      return false;
3093
3094  return true;
3095}
3096
3097/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3098/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3099static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3100                         bool V2IsSplat = false) {
3101  int NumElts = VT.getVectorNumElements();
3102  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3103    return false;
3104
3105  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3106    int BitI  = Mask[i];
3107    int BitI1 = Mask[i+1];
3108    if (!isUndefOrEqual(BitI, j))
3109      return false;
3110    if (V2IsSplat) {
3111      if (!isUndefOrEqual(BitI1, NumElts))
3112        return false;
3113    } else {
3114      if (!isUndefOrEqual(BitI1, j + NumElts))
3115        return false;
3116    }
3117  }
3118  return true;
3119}
3120
3121bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3122  SmallVector<int, 8> M;
3123  N->getMask(M);
3124  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3125}
3126
3127/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3128/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3129static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3130                         bool V2IsSplat = false) {
3131  int NumElts = VT.getVectorNumElements();
3132  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3133    return false;
3134
3135  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3136    int BitI  = Mask[i];
3137    int BitI1 = Mask[i+1];
3138    if (!isUndefOrEqual(BitI, j + NumElts/2))
3139      return false;
3140    if (V2IsSplat) {
3141      if (isUndefOrEqual(BitI1, NumElts))
3142        return false;
3143    } else {
3144      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3145        return false;
3146    }
3147  }
3148  return true;
3149}
3150
3151bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3152  SmallVector<int, 8> M;
3153  N->getMask(M);
3154  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3155}
3156
3157/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3158/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3159/// <0, 0, 1, 1>
3160static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3161  int NumElems = VT.getVectorNumElements();
3162  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3163    return false;
3164
3165  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
3166    int BitI  = Mask[i];
3167    int BitI1 = Mask[i+1];
3168    if (!isUndefOrEqual(BitI, j))
3169      return false;
3170    if (!isUndefOrEqual(BitI1, j))
3171      return false;
3172  }
3173  return true;
3174}
3175
3176bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3177  SmallVector<int, 8> M;
3178  N->getMask(M);
3179  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3180}
3181
3182/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3183/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3184/// <2, 2, 3, 3>
3185static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3186  int NumElems = VT.getVectorNumElements();
3187  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3188    return false;
3189
3190  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3191    int BitI  = Mask[i];
3192    int BitI1 = Mask[i+1];
3193    if (!isUndefOrEqual(BitI, j))
3194      return false;
3195    if (!isUndefOrEqual(BitI1, j))
3196      return false;
3197  }
3198  return true;
3199}
3200
3201bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3202  SmallVector<int, 8> M;
3203  N->getMask(M);
3204  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3205}
3206
3207/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3208/// specifies a shuffle of elements that is suitable for input to MOVSS,
3209/// MOVSD, and MOVD, i.e. setting the lowest element.
3210static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3211  if (VT.getVectorElementType().getSizeInBits() < 32)
3212    return false;
3213
3214  int NumElts = VT.getVectorNumElements();
3215
3216  if (!isUndefOrEqual(Mask[0], NumElts))
3217    return false;
3218
3219  for (int i = 1; i < NumElts; ++i)
3220    if (!isUndefOrEqual(Mask[i], i))
3221      return false;
3222
3223  return true;
3224}
3225
3226bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3227  SmallVector<int, 8> M;
3228  N->getMask(M);
3229  return ::isMOVLMask(M, N->getValueType(0));
3230}
3231
3232/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3233/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3234/// element of vector 2 and the other elements to come from vector 1 in order.
3235static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3236                               bool V2IsSplat = false, bool V2IsUndef = false) {
3237  int NumOps = VT.getVectorNumElements();
3238  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3239    return false;
3240
3241  if (!isUndefOrEqual(Mask[0], 0))
3242    return false;
3243
3244  for (int i = 1; i < NumOps; ++i)
3245    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3246          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3247          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3248      return false;
3249
3250  return true;
3251}
3252
3253static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3254                           bool V2IsUndef = false) {
3255  SmallVector<int, 8> M;
3256  N->getMask(M);
3257  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3258}
3259
3260/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3261/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3262bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3263  if (N->getValueType(0).getVectorNumElements() != 4)
3264    return false;
3265
3266  // Expect 1, 1, 3, 3
3267  for (unsigned i = 0; i < 2; ++i) {
3268    int Elt = N->getMaskElt(i);
3269    if (Elt >= 0 && Elt != 1)
3270      return false;
3271  }
3272
3273  bool HasHi = false;
3274  for (unsigned i = 2; i < 4; ++i) {
3275    int Elt = N->getMaskElt(i);
3276    if (Elt >= 0 && Elt != 3)
3277      return false;
3278    if (Elt == 3)
3279      HasHi = true;
3280  }
3281  // Don't use movshdup if it can be done with a shufps.
3282  // FIXME: verify that matching u, u, 3, 3 is what we want.
3283  return HasHi;
3284}
3285
3286/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3287/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3288bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3289  if (N->getValueType(0).getVectorNumElements() != 4)
3290    return false;
3291
3292  // Expect 0, 0, 2, 2
3293  for (unsigned i = 0; i < 2; ++i)
3294    if (N->getMaskElt(i) > 0)
3295      return false;
3296
3297  bool HasHi = false;
3298  for (unsigned i = 2; i < 4; ++i) {
3299    int Elt = N->getMaskElt(i);
3300    if (Elt >= 0 && Elt != 2)
3301      return false;
3302    if (Elt == 2)
3303      HasHi = true;
3304  }
3305  // Don't use movsldup if it can be done with a shufps.
3306  return HasHi;
3307}
3308
3309/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3310/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3311bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3312  int e = N->getValueType(0).getVectorNumElements() / 2;
3313
3314  for (int i = 0; i < e; ++i)
3315    if (!isUndefOrEqual(N->getMaskElt(i), i))
3316      return false;
3317  for (int i = 0; i < e; ++i)
3318    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3319      return false;
3320  return true;
3321}
3322
3323/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3324/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3325unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3326  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3327  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3328
3329  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3330  unsigned Mask = 0;
3331  for (int i = 0; i < NumOperands; ++i) {
3332    int Val = SVOp->getMaskElt(NumOperands-i-1);
3333    if (Val < 0) Val = 0;
3334    if (Val >= NumOperands) Val -= NumOperands;
3335    Mask |= Val;
3336    if (i != NumOperands - 1)
3337      Mask <<= Shift;
3338  }
3339  return Mask;
3340}
3341
3342/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3343/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3344unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3345  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3346  unsigned Mask = 0;
3347  // 8 nodes, but we only care about the last 4.
3348  for (unsigned i = 7; i >= 4; --i) {
3349    int Val = SVOp->getMaskElt(i);
3350    if (Val >= 0)
3351      Mask |= (Val - 4);
3352    if (i != 4)
3353      Mask <<= 2;
3354  }
3355  return Mask;
3356}
3357
3358/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3359/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3360unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3361  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3362  unsigned Mask = 0;
3363  // 8 nodes, but we only care about the first 4.
3364  for (int i = 3; i >= 0; --i) {
3365    int Val = SVOp->getMaskElt(i);
3366    if (Val >= 0)
3367      Mask |= Val;
3368    if (i != 0)
3369      Mask <<= 2;
3370  }
3371  return Mask;
3372}
3373
3374/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3375/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3376unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3377  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3378  EVT VVT = N->getValueType(0);
3379  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3380  int Val = 0;
3381
3382  unsigned i, e;
3383  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3384    Val = SVOp->getMaskElt(i);
3385    if (Val >= 0)
3386      break;
3387  }
3388  return (Val - i) * EltSize;
3389}
3390
3391/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3392/// constant +0.0.
3393bool X86::isZeroNode(SDValue Elt) {
3394  return ((isa<ConstantSDNode>(Elt) &&
3395           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3396          (isa<ConstantFPSDNode>(Elt) &&
3397           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3398}
3399
3400/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3401/// their permute mask.
3402static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3403                                    SelectionDAG &DAG) {
3404  EVT VT = SVOp->getValueType(0);
3405  unsigned NumElems = VT.getVectorNumElements();
3406  SmallVector<int, 8> MaskVec;
3407
3408  for (unsigned i = 0; i != NumElems; ++i) {
3409    int idx = SVOp->getMaskElt(i);
3410    if (idx < 0)
3411      MaskVec.push_back(idx);
3412    else if (idx < (int)NumElems)
3413      MaskVec.push_back(idx + NumElems);
3414    else
3415      MaskVec.push_back(idx - NumElems);
3416  }
3417  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3418                              SVOp->getOperand(0), &MaskVec[0]);
3419}
3420
3421/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3422/// the two vector operands have swapped position.
3423static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3424  unsigned NumElems = VT.getVectorNumElements();
3425  for (unsigned i = 0; i != NumElems; ++i) {
3426    int idx = Mask[i];
3427    if (idx < 0)
3428      continue;
3429    else if (idx < (int)NumElems)
3430      Mask[i] = idx + NumElems;
3431    else
3432      Mask[i] = idx - NumElems;
3433  }
3434}
3435
3436/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3437/// match movhlps. The lower half elements should come from upper half of
3438/// V1 (and in order), and the upper half elements should come from the upper
3439/// half of V2 (and in order).
3440static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3441  if (Op->getValueType(0).getVectorNumElements() != 4)
3442    return false;
3443  for (unsigned i = 0, e = 2; i != e; ++i)
3444    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3445      return false;
3446  for (unsigned i = 2; i != 4; ++i)
3447    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3448      return false;
3449  return true;
3450}
3451
3452/// isScalarLoadToVector - Returns true if the node is a scalar load that
3453/// is promoted to a vector. It also returns the LoadSDNode by reference if
3454/// required.
3455static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3456  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3457    return false;
3458  N = N->getOperand(0).getNode();
3459  if (!ISD::isNON_EXTLoad(N))
3460    return false;
3461  if (LD)
3462    *LD = cast<LoadSDNode>(N);
3463  return true;
3464}
3465
3466/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3467/// match movlp{s|d}. The lower half elements should come from lower half of
3468/// V1 (and in order), and the upper half elements should come from the upper
3469/// half of V2 (and in order). And since V1 will become the source of the
3470/// MOVLP, it must be either a vector load or a scalar load to vector.
3471static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3472                               ShuffleVectorSDNode *Op) {
3473  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3474    return false;
3475  // Is V2 is a vector load, don't do this transformation. We will try to use
3476  // load folding shufps op.
3477  if (ISD::isNON_EXTLoad(V2))
3478    return false;
3479
3480  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3481
3482  if (NumElems != 2 && NumElems != 4)
3483    return false;
3484  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3485    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3486      return false;
3487  for (unsigned i = NumElems/2; i != NumElems; ++i)
3488    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3489      return false;
3490  return true;
3491}
3492
3493/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3494/// all the same.
3495static bool isSplatVector(SDNode *N) {
3496  if (N->getOpcode() != ISD::BUILD_VECTOR)
3497    return false;
3498
3499  SDValue SplatValue = N->getOperand(0);
3500  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3501    if (N->getOperand(i) != SplatValue)
3502      return false;
3503  return true;
3504}
3505
3506/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3507/// to an zero vector.
3508/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3509static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3510  SDValue V1 = N->getOperand(0);
3511  SDValue V2 = N->getOperand(1);
3512  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3513  for (unsigned i = 0; i != NumElems; ++i) {
3514    int Idx = N->getMaskElt(i);
3515    if (Idx >= (int)NumElems) {
3516      unsigned Opc = V2.getOpcode();
3517      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3518        continue;
3519      if (Opc != ISD::BUILD_VECTOR ||
3520          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3521        return false;
3522    } else if (Idx >= 0) {
3523      unsigned Opc = V1.getOpcode();
3524      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3525        continue;
3526      if (Opc != ISD::BUILD_VECTOR ||
3527          !X86::isZeroNode(V1.getOperand(Idx)))
3528        return false;
3529    }
3530  }
3531  return true;
3532}
3533
3534/// getZeroVector - Returns a vector of specified type with all zero elements.
3535///
3536static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3537                             DebugLoc dl) {
3538  assert(VT.isVector() && "Expected a vector type");
3539
3540  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted
3541  // to their dest type. This ensures they get CSE'd.
3542  SDValue Vec;
3543  if (VT.getSizeInBits() == 64) { // MMX
3544    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3545    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3546  } else if (VT.getSizeInBits() == 128) {
3547    if (HasSSE2) {  // SSE2
3548      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3549      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3550    } else { // SSE1
3551      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3552      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3553    }
3554  } else if (VT.getSizeInBits() == 256) { // AVX
3555    // 256-bit logic and arithmetic instructions in AVX are
3556    // all floating-point, no support for integer ops. Default
3557    // to emitting fp zeroed vectors then.
3558    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3559    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3560    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3561  }
3562  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3563}
3564
3565/// getOnesVector - Returns a vector of specified type with all bits set.
3566///
3567static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3568  assert(VT.isVector() && "Expected a vector type");
3569
3570  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3571  // type.  This ensures they get CSE'd.
3572  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3573  SDValue Vec;
3574  if (VT.getSizeInBits() == 64) // MMX
3575    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3576  else // SSE
3577    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3578  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3579}
3580
3581
3582/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3583/// that point to V2 points to its first element.
3584static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3585  EVT VT = SVOp->getValueType(0);
3586  unsigned NumElems = VT.getVectorNumElements();
3587
3588  bool Changed = false;
3589  SmallVector<int, 8> MaskVec;
3590  SVOp->getMask(MaskVec);
3591
3592  for (unsigned i = 0; i != NumElems; ++i) {
3593    if (MaskVec[i] > (int)NumElems) {
3594      MaskVec[i] = NumElems;
3595      Changed = true;
3596    }
3597  }
3598  if (Changed)
3599    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3600                                SVOp->getOperand(1), &MaskVec[0]);
3601  return SDValue(SVOp, 0);
3602}
3603
3604/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3605/// operation of specified width.
3606static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3607                       SDValue V2) {
3608  unsigned NumElems = VT.getVectorNumElements();
3609  SmallVector<int, 8> Mask;
3610  Mask.push_back(NumElems);
3611  for (unsigned i = 1; i != NumElems; ++i)
3612    Mask.push_back(i);
3613  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3614}
3615
3616/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3617static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3618                          SDValue V2) {
3619  unsigned NumElems = VT.getVectorNumElements();
3620  SmallVector<int, 8> Mask;
3621  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3622    Mask.push_back(i);
3623    Mask.push_back(i + NumElems);
3624  }
3625  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3626}
3627
3628/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3629static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3630                          SDValue V2) {
3631  unsigned NumElems = VT.getVectorNumElements();
3632  unsigned Half = NumElems/2;
3633  SmallVector<int, 8> Mask;
3634  for (unsigned i = 0; i != Half; ++i) {
3635    Mask.push_back(i + Half);
3636    Mask.push_back(i + NumElems + Half);
3637  }
3638  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3639}
3640
3641/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3642static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3643  if (SV->getValueType(0).getVectorNumElements() <= 4)
3644    return SDValue(SV, 0);
3645
3646  EVT PVT = MVT::v4f32;
3647  EVT VT = SV->getValueType(0);
3648  DebugLoc dl = SV->getDebugLoc();
3649  SDValue V1 = SV->getOperand(0);
3650  int NumElems = VT.getVectorNumElements();
3651  int EltNo = SV->getSplatIndex();
3652
3653  // unpack elements to the correct location
3654  while (NumElems > 4) {
3655    if (EltNo < NumElems/2) {
3656      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3657    } else {
3658      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3659      EltNo -= NumElems/2;
3660    }
3661    NumElems >>= 1;
3662  }
3663
3664  // Perform the splat.
3665  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3666  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3667  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3668  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3669}
3670
3671/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3672/// vector of zero or undef vector.  This produces a shuffle where the low
3673/// element of V2 is swizzled into the zero/undef vector, landing at element
3674/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3675static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3676                                             bool isZero, bool HasSSE2,
3677                                             SelectionDAG &DAG) {
3678  EVT VT = V2.getValueType();
3679  SDValue V1 = isZero
3680    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3681  unsigned NumElems = VT.getVectorNumElements();
3682  SmallVector<int, 16> MaskVec;
3683  for (unsigned i = 0; i != NumElems; ++i)
3684    // If this is the insertion idx, put the low elt of V2 here.
3685    MaskVec.push_back(i == Idx ? NumElems : i);
3686  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3687}
3688
3689/// getShuffleScalarElt - Returns the scalar element that will make up the ith
3690/// element of the result of the vector shuffle.
3691SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG) {
3692  SDValue V = SDValue(N, 0);
3693  EVT VT = V.getValueType();
3694  unsigned Opcode = V.getOpcode();
3695
3696  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
3697  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
3698    Index = SV->getMaskElt(Index);
3699
3700    if (Index < 0)
3701      return DAG.getUNDEF(VT.getVectorElementType());
3702
3703    int NumElems = VT.getVectorNumElements();
3704    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
3705    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG);
3706  }
3707
3708  // Recurse into target specific vector shuffles to find scalars.
3709  if (isTargetShuffle(Opcode)) {
3710    switch(Opcode) {
3711    case X86ISD::MOVSS:
3712    case X86ISD::MOVSD: {
3713      // The index 0 always comes from the first element of the second source,
3714      // this is why MOVSS and MOVSD are used in the first place. The other
3715      // elements come from the other positions of the first source vector.
3716      unsigned OpNum = (Index == 0) ? 1 : 0;
3717      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG);
3718    }
3719    default:
3720      assert("not implemented for target shuffle node");
3721      return SDValue();
3722    }
3723  }
3724
3725  // Actual nodes that may contain scalar elements
3726  if (Opcode == ISD::BIT_CONVERT) {
3727    V = V.getOperand(0);
3728    EVT SrcVT = V.getValueType();
3729    unsigned NumElems = VT.getVectorNumElements();
3730
3731    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
3732      return SDValue();
3733  }
3734
3735  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
3736    return (Index == 0) ? V.getOperand(0)
3737                          : DAG.getUNDEF(VT.getVectorElementType());
3738
3739  if (V.getOpcode() == ISD::BUILD_VECTOR)
3740    return V.getOperand(Index);
3741
3742  return SDValue();
3743}
3744
3745/// getNumOfConsecutiveZeros - Return the number of elements of a vector
3746/// shuffle operation which come from a consecutively from a zero. The
3747/// search can start in two diferent directions, from left or right.
3748static
3749unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
3750                                  bool ZerosFromLeft, SelectionDAG &DAG) {
3751  int i = 0;
3752
3753  while (i < NumElems) {
3754    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
3755    SDValue Elt = getShuffleScalarElt(N, Index, DAG);
3756    if (!(Elt.getNode() &&
3757         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
3758      break;
3759    ++i;
3760  }
3761
3762  return i;
3763}
3764
3765/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
3766/// MaskE correspond consecutively to elements from one of the vector operands,
3767/// starting from its index OpIdx. Also tell OpNum which source vector operand.
3768static
3769bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
3770                              int OpIdx, int NumElems, unsigned &OpNum) {
3771  bool SeenV1 = false;
3772  bool SeenV2 = false;
3773
3774  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
3775    int Idx = SVOp->getMaskElt(i);
3776    // Ignore undef indicies
3777    if (Idx < 0)
3778      continue;
3779
3780    if (Idx < NumElems)
3781      SeenV1 = true;
3782    else
3783      SeenV2 = true;
3784
3785    // Only accept consecutive elements from the same vector
3786    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
3787      return false;
3788  }
3789
3790  OpNum = SeenV1 ? 0 : 1;
3791  return true;
3792}
3793
3794/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
3795/// logical left shift of a vector.
3796static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3797                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3798  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3799  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3800              false /* check zeros from right */, DAG);
3801  unsigned OpSrc;
3802
3803  if (!NumZeros)
3804    return false;
3805
3806  // Considering the elements in the mask that are not consecutive zeros,
3807  // check if they consecutively come from only one of the source vectors.
3808  //
3809  //               V1 = {X, A, B, C}     0
3810  //                         \  \  \    /
3811  //   vector_shuffle V1, V2 <1, 2, 3, X>
3812  //
3813  if (!isShuffleMaskConsecutive(SVOp,
3814            0,                   // Mask Start Index
3815            NumElems-NumZeros-1, // Mask End Index
3816            NumZeros,            // Where to start looking in the src vector
3817            NumElems,            // Number of elements in vector
3818            OpSrc))              // Which source operand ?
3819    return false;
3820
3821  isLeft = false;
3822  ShAmt = NumZeros;
3823  ShVal = SVOp->getOperand(OpSrc);
3824  return true;
3825}
3826
3827/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
3828/// logical left shift of a vector.
3829static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3830                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3831  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3832  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3833              true /* check zeros from left */, DAG);
3834  unsigned OpSrc;
3835
3836  if (!NumZeros)
3837    return false;
3838
3839  // Considering the elements in the mask that are not consecutive zeros,
3840  // check if they consecutively come from only one of the source vectors.
3841  //
3842  //                           0    { A, B, X, X } = V2
3843  //                          / \    /  /
3844  //   vector_shuffle V1, V2 <X, X, 4, 5>
3845  //
3846  if (!isShuffleMaskConsecutive(SVOp,
3847            NumZeros,     // Mask Start Index
3848            NumElems-1,   // Mask End Index
3849            0,            // Where to start looking in the src vector
3850            NumElems,     // Number of elements in vector
3851            OpSrc))       // Which source operand ?
3852    return false;
3853
3854  isLeft = true;
3855  ShAmt = NumZeros;
3856  ShVal = SVOp->getOperand(OpSrc);
3857  return true;
3858}
3859
3860/// isVectorShift - Returns true if the shuffle can be implemented as a
3861/// logical left or right shift of a vector.
3862static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3863                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3864  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
3865      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
3866    return true;
3867
3868  return false;
3869}
3870
3871/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3872///
3873static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3874                                       unsigned NumNonZero, unsigned NumZero,
3875                                       SelectionDAG &DAG,
3876                                       const TargetLowering &TLI) {
3877  if (NumNonZero > 8)
3878    return SDValue();
3879
3880  DebugLoc dl = Op.getDebugLoc();
3881  SDValue V(0, 0);
3882  bool First = true;
3883  for (unsigned i = 0; i < 16; ++i) {
3884    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3885    if (ThisIsNonZero && First) {
3886      if (NumZero)
3887        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3888      else
3889        V = DAG.getUNDEF(MVT::v8i16);
3890      First = false;
3891    }
3892
3893    if ((i & 1) != 0) {
3894      SDValue ThisElt(0, 0), LastElt(0, 0);
3895      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3896      if (LastIsNonZero) {
3897        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3898                              MVT::i16, Op.getOperand(i-1));
3899      }
3900      if (ThisIsNonZero) {
3901        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3902        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3903                              ThisElt, DAG.getConstant(8, MVT::i8));
3904        if (LastIsNonZero)
3905          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3906      } else
3907        ThisElt = LastElt;
3908
3909      if (ThisElt.getNode())
3910        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3911                        DAG.getIntPtrConstant(i/2));
3912    }
3913  }
3914
3915  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3916}
3917
3918/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3919///
3920static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3921                                     unsigned NumNonZero, unsigned NumZero,
3922                                     SelectionDAG &DAG,
3923                                     const TargetLowering &TLI) {
3924  if (NumNonZero > 4)
3925    return SDValue();
3926
3927  DebugLoc dl = Op.getDebugLoc();
3928  SDValue V(0, 0);
3929  bool First = true;
3930  for (unsigned i = 0; i < 8; ++i) {
3931    bool isNonZero = (NonZeros & (1 << i)) != 0;
3932    if (isNonZero) {
3933      if (First) {
3934        if (NumZero)
3935          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3936        else
3937          V = DAG.getUNDEF(MVT::v8i16);
3938        First = false;
3939      }
3940      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3941                      MVT::v8i16, V, Op.getOperand(i),
3942                      DAG.getIntPtrConstant(i));
3943    }
3944  }
3945
3946  return V;
3947}
3948
3949/// getVShift - Return a vector logical shift node.
3950///
3951static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3952                         unsigned NumBits, SelectionDAG &DAG,
3953                         const TargetLowering &TLI, DebugLoc dl) {
3954  bool isMMX = VT.getSizeInBits() == 64;
3955  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3956  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3957  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3958  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3959                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3960                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3961}
3962
3963SDValue
3964X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3965                                          SelectionDAG &DAG) const {
3966
3967  // Check if the scalar load can be widened into a vector load. And if
3968  // the address is "base + cst" see if the cst can be "absorbed" into
3969  // the shuffle mask.
3970  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3971    SDValue Ptr = LD->getBasePtr();
3972    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3973      return SDValue();
3974    EVT PVT = LD->getValueType(0);
3975    if (PVT != MVT::i32 && PVT != MVT::f32)
3976      return SDValue();
3977
3978    int FI = -1;
3979    int64_t Offset = 0;
3980    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3981      FI = FINode->getIndex();
3982      Offset = 0;
3983    } else if (Ptr.getOpcode() == ISD::ADD &&
3984               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3985               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3986      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3987      Offset = Ptr.getConstantOperandVal(1);
3988      Ptr = Ptr.getOperand(0);
3989    } else {
3990      return SDValue();
3991    }
3992
3993    SDValue Chain = LD->getChain();
3994    // Make sure the stack object alignment is at least 16.
3995    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3996    if (DAG.InferPtrAlignment(Ptr) < 16) {
3997      if (MFI->isFixedObjectIndex(FI)) {
3998        // Can't change the alignment. FIXME: It's possible to compute
3999        // the exact stack offset and reference FI + adjust offset instead.
4000        // If someone *really* cares about this. That's the way to implement it.
4001        return SDValue();
4002      } else {
4003        MFI->setObjectAlignment(FI, 16);
4004      }
4005    }
4006
4007    // (Offset % 16) must be multiple of 4. Then address is then
4008    // Ptr + (Offset & ~15).
4009    if (Offset < 0)
4010      return SDValue();
4011    if ((Offset % 16) & 3)
4012      return SDValue();
4013    int64_t StartOffset = Offset & ~15;
4014    if (StartOffset)
4015      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4016                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4017
4018    int EltNo = (Offset - StartOffset) >> 2;
4019    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4020    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4021    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
4022                             false, false, 0);
4023    // Canonicalize it to a v4i32 shuffle.
4024    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
4025    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4026                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4027                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
4028  }
4029
4030  return SDValue();
4031}
4032
4033/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4034/// vector of type 'VT', see if the elements can be replaced by a single large
4035/// load which has the same value as a build_vector whose operands are 'elts'.
4036///
4037/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4038///
4039/// FIXME: we'd also like to handle the case where the last elements are zero
4040/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4041/// There's even a handy isZeroNode for that purpose.
4042static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4043                                        DebugLoc &dl, SelectionDAG &DAG) {
4044  EVT EltVT = VT.getVectorElementType();
4045  unsigned NumElems = Elts.size();
4046
4047  LoadSDNode *LDBase = NULL;
4048  unsigned LastLoadedElt = -1U;
4049
4050  // For each element in the initializer, see if we've found a load or an undef.
4051  // If we don't find an initial load element, or later load elements are
4052  // non-consecutive, bail out.
4053  for (unsigned i = 0; i < NumElems; ++i) {
4054    SDValue Elt = Elts[i];
4055
4056    if (!Elt.getNode() ||
4057        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4058      return SDValue();
4059    if (!LDBase) {
4060      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4061        return SDValue();
4062      LDBase = cast<LoadSDNode>(Elt.getNode());
4063      LastLoadedElt = i;
4064      continue;
4065    }
4066    if (Elt.getOpcode() == ISD::UNDEF)
4067      continue;
4068
4069    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4070    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4071      return SDValue();
4072    LastLoadedElt = i;
4073  }
4074
4075  // If we have found an entire vector of loads and undefs, then return a large
4076  // load of the entire vector width starting at the base pointer.  If we found
4077  // consecutive loads for the low half, generate a vzext_load node.
4078  if (LastLoadedElt == NumElems - 1) {
4079    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4080      return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
4081                         LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
4082                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4083    return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
4084                       LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
4085                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4086                       LDBase->getAlignment());
4087  } else if (NumElems == 4 && LastLoadedElt == 1) {
4088    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4089    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4090    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
4091    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
4092  }
4093  return SDValue();
4094}
4095
4096SDValue
4097X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4098  DebugLoc dl = Op.getDebugLoc();
4099  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
4100  // All one's are handled with pcmpeqd. In AVX, zero's are handled with
4101  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
4102  // is present, so AllOnes is ignored.
4103  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4104      (Op.getValueType().getSizeInBits() != 256 &&
4105       ISD::isBuildVectorAllOnes(Op.getNode()))) {
4106    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
4107    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4108    // eliminated on x86-32 hosts.
4109    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
4110      return Op;
4111
4112    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4113      return getOnesVector(Op.getValueType(), DAG, dl);
4114    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4115  }
4116
4117  EVT VT = Op.getValueType();
4118  EVT ExtVT = VT.getVectorElementType();
4119  unsigned EVTBits = ExtVT.getSizeInBits();
4120
4121  unsigned NumElems = Op.getNumOperands();
4122  unsigned NumZero  = 0;
4123  unsigned NumNonZero = 0;
4124  unsigned NonZeros = 0;
4125  bool IsAllConstants = true;
4126  SmallSet<SDValue, 8> Values;
4127  for (unsigned i = 0; i < NumElems; ++i) {
4128    SDValue Elt = Op.getOperand(i);
4129    if (Elt.getOpcode() == ISD::UNDEF)
4130      continue;
4131    Values.insert(Elt);
4132    if (Elt.getOpcode() != ISD::Constant &&
4133        Elt.getOpcode() != ISD::ConstantFP)
4134      IsAllConstants = false;
4135    if (X86::isZeroNode(Elt))
4136      NumZero++;
4137    else {
4138      NonZeros |= (1 << i);
4139      NumNonZero++;
4140    }
4141  }
4142
4143  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4144  if (NumNonZero == 0)
4145    return DAG.getUNDEF(VT);
4146
4147  // Special case for single non-zero, non-undef, element.
4148  if (NumNonZero == 1) {
4149    unsigned Idx = CountTrailingZeros_32(NonZeros);
4150    SDValue Item = Op.getOperand(Idx);
4151
4152    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4153    // the value are obviously zero, truncate the value to i32 and do the
4154    // insertion that way.  Only do this if the value is non-constant or if the
4155    // value is a constant being inserted into element 0.  It is cheaper to do
4156    // a constant pool load than it is to do a movd + shuffle.
4157    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4158        (!IsAllConstants || Idx == 0)) {
4159      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4160        // Handle MMX and SSE both.
4161        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
4162        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
4163
4164        // Truncate the value (which may itself be a constant) to i32, and
4165        // convert it to a vector with movd (S2V+shuffle to zero extend).
4166        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4167        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4168        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4169                                           Subtarget->hasSSE2(), DAG);
4170
4171        // Now we have our 32-bit value zero extended in the low element of
4172        // a vector.  If Idx != 0, swizzle it into place.
4173        if (Idx != 0) {
4174          SmallVector<int, 4> Mask;
4175          Mask.push_back(Idx);
4176          for (unsigned i = 1; i != VecElts; ++i)
4177            Mask.push_back(i);
4178          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4179                                      DAG.getUNDEF(Item.getValueType()),
4180                                      &Mask[0]);
4181        }
4182        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
4183      }
4184    }
4185
4186    // If we have a constant or non-constant insertion into the low element of
4187    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4188    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4189    // depending on what the source datatype is.
4190    if (Idx == 0) {
4191      if (NumZero == 0) {
4192        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4193      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4194          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4195        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4196        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4197        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4198                                           DAG);
4199      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4200        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4201        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
4202        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4203        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4204                                           Subtarget->hasSSE2(), DAG);
4205        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
4206      }
4207    }
4208
4209    // Is it a vector logical left shift?
4210    if (NumElems == 2 && Idx == 1 &&
4211        X86::isZeroNode(Op.getOperand(0)) &&
4212        !X86::isZeroNode(Op.getOperand(1))) {
4213      unsigned NumBits = VT.getSizeInBits();
4214      return getVShift(true, VT,
4215                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4216                                   VT, Op.getOperand(1)),
4217                       NumBits/2, DAG, *this, dl);
4218    }
4219
4220    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4221      return SDValue();
4222
4223    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4224    // is a non-constant being inserted into an element other than the low one,
4225    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4226    // movd/movss) to move this into the low element, then shuffle it into
4227    // place.
4228    if (EVTBits == 32) {
4229      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4230
4231      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4232      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4233                                         Subtarget->hasSSE2(), DAG);
4234      SmallVector<int, 8> MaskVec;
4235      for (unsigned i = 0; i < NumElems; i++)
4236        MaskVec.push_back(i == Idx ? 0 : 1);
4237      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4238    }
4239  }
4240
4241  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4242  if (Values.size() == 1) {
4243    if (EVTBits == 32) {
4244      // Instead of a shuffle like this:
4245      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4246      // Check if it's possible to issue this instead.
4247      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4248      unsigned Idx = CountTrailingZeros_32(NonZeros);
4249      SDValue Item = Op.getOperand(Idx);
4250      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4251        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4252    }
4253    return SDValue();
4254  }
4255
4256  // A vector full of immediates; various special cases are already
4257  // handled, so this is best done with a single constant-pool load.
4258  if (IsAllConstants)
4259    return SDValue();
4260
4261  // Let legalizer expand 2-wide build_vectors.
4262  if (EVTBits == 64) {
4263    if (NumNonZero == 1) {
4264      // One half is zero or undef.
4265      unsigned Idx = CountTrailingZeros_32(NonZeros);
4266      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4267                                 Op.getOperand(Idx));
4268      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4269                                         Subtarget->hasSSE2(), DAG);
4270    }
4271    return SDValue();
4272  }
4273
4274  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4275  if (EVTBits == 8 && NumElems == 16) {
4276    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4277                                        *this);
4278    if (V.getNode()) return V;
4279  }
4280
4281  if (EVTBits == 16 && NumElems == 8) {
4282    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4283                                      *this);
4284    if (V.getNode()) return V;
4285  }
4286
4287  // If element VT is == 32 bits, turn it into a number of shuffles.
4288  SmallVector<SDValue, 8> V;
4289  V.resize(NumElems);
4290  if (NumElems == 4 && NumZero > 0) {
4291    for (unsigned i = 0; i < 4; ++i) {
4292      bool isZero = !(NonZeros & (1 << i));
4293      if (isZero)
4294        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4295      else
4296        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4297    }
4298
4299    for (unsigned i = 0; i < 2; ++i) {
4300      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4301        default: break;
4302        case 0:
4303          V[i] = V[i*2];  // Must be a zero vector.
4304          break;
4305        case 1:
4306          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4307          break;
4308        case 2:
4309          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4310          break;
4311        case 3:
4312          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4313          break;
4314      }
4315    }
4316
4317    SmallVector<int, 8> MaskVec;
4318    bool Reverse = (NonZeros & 0x3) == 2;
4319    for (unsigned i = 0; i < 2; ++i)
4320      MaskVec.push_back(Reverse ? 1-i : i);
4321    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4322    for (unsigned i = 0; i < 2; ++i)
4323      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4324    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4325  }
4326
4327  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4328    // Check for a build vector of consecutive loads.
4329    for (unsigned i = 0; i < NumElems; ++i)
4330      V[i] = Op.getOperand(i);
4331
4332    // Check for elements which are consecutive loads.
4333    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4334    if (LD.getNode())
4335      return LD;
4336
4337    // For SSE 4.1, use insertps to put the high elements into the low element.
4338    if (getSubtarget()->hasSSE41()) {
4339      SDValue Result;
4340      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4341        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4342      else
4343        Result = DAG.getUNDEF(VT);
4344
4345      for (unsigned i = 1; i < NumElems; ++i) {
4346        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4347        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4348                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4349      }
4350      return Result;
4351    }
4352
4353    // Otherwise, expand into a number of unpckl*, start by extending each of
4354    // our (non-undef) elements to the full vector width with the element in the
4355    // bottom slot of the vector (which generates no code for SSE).
4356    for (unsigned i = 0; i < NumElems; ++i) {
4357      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4358        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4359      else
4360        V[i] = DAG.getUNDEF(VT);
4361    }
4362
4363    // Next, we iteratively mix elements, e.g. for v4f32:
4364    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4365    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4366    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4367    unsigned EltStride = NumElems >> 1;
4368    while (EltStride != 0) {
4369      for (unsigned i = 0; i < EltStride; ++i) {
4370        // If V[i+EltStride] is undef and this is the first round of mixing,
4371        // then it is safe to just drop this shuffle: V[i] is already in the
4372        // right place, the one element (since it's the first round) being
4373        // inserted as undef can be dropped.  This isn't safe for successive
4374        // rounds because they will permute elements within both vectors.
4375        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4376            EltStride == NumElems/2)
4377          continue;
4378
4379        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4380      }
4381      EltStride >>= 1;
4382    }
4383    return V[0];
4384  }
4385  return SDValue();
4386}
4387
4388SDValue
4389X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4390  // We support concatenate two MMX registers and place them in a MMX
4391  // register.  This is better than doing a stack convert.
4392  DebugLoc dl = Op.getDebugLoc();
4393  EVT ResVT = Op.getValueType();
4394  assert(Op.getNumOperands() == 2);
4395  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4396         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4397  int Mask[2];
4398  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
4399  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4400  InVec = Op.getOperand(1);
4401  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4402    unsigned NumElts = ResVT.getVectorNumElements();
4403    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4404    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4405                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4406  } else {
4407    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
4408    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4409    Mask[0] = 0; Mask[1] = 2;
4410    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4411  }
4412  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4413}
4414
4415// v8i16 shuffles - Prefer shuffles in the following order:
4416// 1. [all]   pshuflw, pshufhw, optional move
4417// 2. [ssse3] 1 x pshufb
4418// 3. [ssse3] 2 x pshufb + 1 x por
4419// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4420SDValue
4421X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4422                                            SelectionDAG &DAG) const {
4423  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4424  SDValue V1 = SVOp->getOperand(0);
4425  SDValue V2 = SVOp->getOperand(1);
4426  DebugLoc dl = SVOp->getDebugLoc();
4427  SmallVector<int, 8> MaskVals;
4428
4429  // Determine if more than 1 of the words in each of the low and high quadwords
4430  // of the result come from the same quadword of one of the two inputs.  Undef
4431  // mask values count as coming from any quadword, for better codegen.
4432  SmallVector<unsigned, 4> LoQuad(4);
4433  SmallVector<unsigned, 4> HiQuad(4);
4434  BitVector InputQuads(4);
4435  for (unsigned i = 0; i < 8; ++i) {
4436    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4437    int EltIdx = SVOp->getMaskElt(i);
4438    MaskVals.push_back(EltIdx);
4439    if (EltIdx < 0) {
4440      ++Quad[0];
4441      ++Quad[1];
4442      ++Quad[2];
4443      ++Quad[3];
4444      continue;
4445    }
4446    ++Quad[EltIdx / 4];
4447    InputQuads.set(EltIdx / 4);
4448  }
4449
4450  int BestLoQuad = -1;
4451  unsigned MaxQuad = 1;
4452  for (unsigned i = 0; i < 4; ++i) {
4453    if (LoQuad[i] > MaxQuad) {
4454      BestLoQuad = i;
4455      MaxQuad = LoQuad[i];
4456    }
4457  }
4458
4459  int BestHiQuad = -1;
4460  MaxQuad = 1;
4461  for (unsigned i = 0; i < 4; ++i) {
4462    if (HiQuad[i] > MaxQuad) {
4463      BestHiQuad = i;
4464      MaxQuad = HiQuad[i];
4465    }
4466  }
4467
4468  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4469  // of the two input vectors, shuffle them into one input vector so only a
4470  // single pshufb instruction is necessary. If There are more than 2 input
4471  // quads, disable the next transformation since it does not help SSSE3.
4472  bool V1Used = InputQuads[0] || InputQuads[1];
4473  bool V2Used = InputQuads[2] || InputQuads[3];
4474  if (Subtarget->hasSSSE3()) {
4475    if (InputQuads.count() == 2 && V1Used && V2Used) {
4476      BestLoQuad = InputQuads.find_first();
4477      BestHiQuad = InputQuads.find_next(BestLoQuad);
4478    }
4479    if (InputQuads.count() > 2) {
4480      BestLoQuad = -1;
4481      BestHiQuad = -1;
4482    }
4483  }
4484
4485  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4486  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4487  // words from all 4 input quadwords.
4488  SDValue NewV;
4489  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4490    SmallVector<int, 8> MaskV;
4491    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4492    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4493    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4494                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4495                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4496    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4497
4498    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4499    // source words for the shuffle, to aid later transformations.
4500    bool AllWordsInNewV = true;
4501    bool InOrder[2] = { true, true };
4502    for (unsigned i = 0; i != 8; ++i) {
4503      int idx = MaskVals[i];
4504      if (idx != (int)i)
4505        InOrder[i/4] = false;
4506      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4507        continue;
4508      AllWordsInNewV = false;
4509      break;
4510    }
4511
4512    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4513    if (AllWordsInNewV) {
4514      for (int i = 0; i != 8; ++i) {
4515        int idx = MaskVals[i];
4516        if (idx < 0)
4517          continue;
4518        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4519        if ((idx != i) && idx < 4)
4520          pshufhw = false;
4521        if ((idx != i) && idx > 3)
4522          pshuflw = false;
4523      }
4524      V1 = NewV;
4525      V2Used = false;
4526      BestLoQuad = 0;
4527      BestHiQuad = 1;
4528    }
4529
4530    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4531    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4532    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4533      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4534      unsigned TargetMask = 0;
4535      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4536                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4537      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4538                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4539      V1 = NewV.getOperand(0);
4540      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4541    }
4542  }
4543
4544  // If we have SSSE3, and all words of the result are from 1 input vector,
4545  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4546  // is present, fall back to case 4.
4547  if (Subtarget->hasSSSE3()) {
4548    SmallVector<SDValue,16> pshufbMask;
4549
4550    // If we have elements from both input vectors, set the high bit of the
4551    // shuffle mask element to zero out elements that come from V2 in the V1
4552    // mask, and elements that come from V1 in the V2 mask, so that the two
4553    // results can be OR'd together.
4554    bool TwoInputs = V1Used && V2Used;
4555    for (unsigned i = 0; i != 8; ++i) {
4556      int EltIdx = MaskVals[i] * 2;
4557      if (TwoInputs && (EltIdx >= 16)) {
4558        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4559        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4560        continue;
4561      }
4562      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4563      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4564    }
4565    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4566    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4567                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4568                                 MVT::v16i8, &pshufbMask[0], 16));
4569    if (!TwoInputs)
4570      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4571
4572    // Calculate the shuffle mask for the second input, shuffle it, and
4573    // OR it with the first shuffled input.
4574    pshufbMask.clear();
4575    for (unsigned i = 0; i != 8; ++i) {
4576      int EltIdx = MaskVals[i] * 2;
4577      if (EltIdx < 16) {
4578        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4579        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4580        continue;
4581      }
4582      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4583      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4584    }
4585    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4586    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4587                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4588                                 MVT::v16i8, &pshufbMask[0], 16));
4589    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4590    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4591  }
4592
4593  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4594  // and update MaskVals with new element order.
4595  BitVector InOrder(8);
4596  if (BestLoQuad >= 0) {
4597    SmallVector<int, 8> MaskV;
4598    for (int i = 0; i != 4; ++i) {
4599      int idx = MaskVals[i];
4600      if (idx < 0) {
4601        MaskV.push_back(-1);
4602        InOrder.set(i);
4603      } else if ((idx / 4) == BestLoQuad) {
4604        MaskV.push_back(idx & 3);
4605        InOrder.set(i);
4606      } else {
4607        MaskV.push_back(-1);
4608      }
4609    }
4610    for (unsigned i = 4; i != 8; ++i)
4611      MaskV.push_back(i);
4612    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4613                                &MaskV[0]);
4614
4615    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4616      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4617                               NewV.getOperand(0),
4618                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4619                               DAG);
4620  }
4621
4622  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4623  // and update MaskVals with the new element order.
4624  if (BestHiQuad >= 0) {
4625    SmallVector<int, 8> MaskV;
4626    for (unsigned i = 0; i != 4; ++i)
4627      MaskV.push_back(i);
4628    for (unsigned i = 4; i != 8; ++i) {
4629      int idx = MaskVals[i];
4630      if (idx < 0) {
4631        MaskV.push_back(-1);
4632        InOrder.set(i);
4633      } else if ((idx / 4) == BestHiQuad) {
4634        MaskV.push_back((idx & 3) + 4);
4635        InOrder.set(i);
4636      } else {
4637        MaskV.push_back(-1);
4638      }
4639    }
4640    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4641                                &MaskV[0]);
4642
4643    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4644      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4645                              NewV.getOperand(0),
4646                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4647                              DAG);
4648  }
4649
4650  // In case BestHi & BestLo were both -1, which means each quadword has a word
4651  // from each of the four input quadwords, calculate the InOrder bitvector now
4652  // before falling through to the insert/extract cleanup.
4653  if (BestLoQuad == -1 && BestHiQuad == -1) {
4654    NewV = V1;
4655    for (int i = 0; i != 8; ++i)
4656      if (MaskVals[i] < 0 || MaskVals[i] == i)
4657        InOrder.set(i);
4658  }
4659
4660  // The other elements are put in the right place using pextrw and pinsrw.
4661  for (unsigned i = 0; i != 8; ++i) {
4662    if (InOrder[i])
4663      continue;
4664    int EltIdx = MaskVals[i];
4665    if (EltIdx < 0)
4666      continue;
4667    SDValue ExtOp = (EltIdx < 8)
4668    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4669                  DAG.getIntPtrConstant(EltIdx))
4670    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4671                  DAG.getIntPtrConstant(EltIdx - 8));
4672    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4673                       DAG.getIntPtrConstant(i));
4674  }
4675  return NewV;
4676}
4677
4678// v16i8 shuffles - Prefer shuffles in the following order:
4679// 1. [ssse3] 1 x pshufb
4680// 2. [ssse3] 2 x pshufb + 1 x por
4681// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4682static
4683SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4684                                 SelectionDAG &DAG,
4685                                 const X86TargetLowering &TLI) {
4686  SDValue V1 = SVOp->getOperand(0);
4687  SDValue V2 = SVOp->getOperand(1);
4688  DebugLoc dl = SVOp->getDebugLoc();
4689  SmallVector<int, 16> MaskVals;
4690  SVOp->getMask(MaskVals);
4691
4692  // If we have SSSE3, case 1 is generated when all result bytes come from
4693  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4694  // present, fall back to case 3.
4695  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4696  bool V1Only = true;
4697  bool V2Only = true;
4698  for (unsigned i = 0; i < 16; ++i) {
4699    int EltIdx = MaskVals[i];
4700    if (EltIdx < 0)
4701      continue;
4702    if (EltIdx < 16)
4703      V2Only = false;
4704    else
4705      V1Only = false;
4706  }
4707
4708  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4709  if (TLI.getSubtarget()->hasSSSE3()) {
4710    SmallVector<SDValue,16> pshufbMask;
4711
4712    // If all result elements are from one input vector, then only translate
4713    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4714    //
4715    // Otherwise, we have elements from both input vectors, and must zero out
4716    // elements that come from V2 in the first mask, and V1 in the second mask
4717    // so that we can OR them together.
4718    bool TwoInputs = !(V1Only || V2Only);
4719    for (unsigned i = 0; i != 16; ++i) {
4720      int EltIdx = MaskVals[i];
4721      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4722        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4723        continue;
4724      }
4725      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4726    }
4727    // If all the elements are from V2, assign it to V1 and return after
4728    // building the first pshufb.
4729    if (V2Only)
4730      V1 = V2;
4731    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4732                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4733                                 MVT::v16i8, &pshufbMask[0], 16));
4734    if (!TwoInputs)
4735      return V1;
4736
4737    // Calculate the shuffle mask for the second input, shuffle it, and
4738    // OR it with the first shuffled input.
4739    pshufbMask.clear();
4740    for (unsigned i = 0; i != 16; ++i) {
4741      int EltIdx = MaskVals[i];
4742      if (EltIdx < 16) {
4743        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4744        continue;
4745      }
4746      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4747    }
4748    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4749                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4750                                 MVT::v16i8, &pshufbMask[0], 16));
4751    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4752  }
4753
4754  // No SSSE3 - Calculate in place words and then fix all out of place words
4755  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4756  // the 16 different words that comprise the two doublequadword input vectors.
4757  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4758  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4759  SDValue NewV = V2Only ? V2 : V1;
4760  for (int i = 0; i != 8; ++i) {
4761    int Elt0 = MaskVals[i*2];
4762    int Elt1 = MaskVals[i*2+1];
4763
4764    // This word of the result is all undef, skip it.
4765    if (Elt0 < 0 && Elt1 < 0)
4766      continue;
4767
4768    // This word of the result is already in the correct place, skip it.
4769    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4770      continue;
4771    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4772      continue;
4773
4774    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4775    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4776    SDValue InsElt;
4777
4778    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4779    // using a single extract together, load it and store it.
4780    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4781      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4782                           DAG.getIntPtrConstant(Elt1 / 2));
4783      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4784                        DAG.getIntPtrConstant(i));
4785      continue;
4786    }
4787
4788    // If Elt1 is defined, extract it from the appropriate source.  If the
4789    // source byte is not also odd, shift the extracted word left 8 bits
4790    // otherwise clear the bottom 8 bits if we need to do an or.
4791    if (Elt1 >= 0) {
4792      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4793                           DAG.getIntPtrConstant(Elt1 / 2));
4794      if ((Elt1 & 1) == 0)
4795        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4796                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4797      else if (Elt0 >= 0)
4798        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4799                             DAG.getConstant(0xFF00, MVT::i16));
4800    }
4801    // If Elt0 is defined, extract it from the appropriate source.  If the
4802    // source byte is not also even, shift the extracted word right 8 bits. If
4803    // Elt1 was also defined, OR the extracted values together before
4804    // inserting them in the result.
4805    if (Elt0 >= 0) {
4806      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4807                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4808      if ((Elt0 & 1) != 0)
4809        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4810                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4811      else if (Elt1 >= 0)
4812        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4813                             DAG.getConstant(0x00FF, MVT::i16));
4814      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4815                         : InsElt0;
4816    }
4817    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4818                       DAG.getIntPtrConstant(i));
4819  }
4820  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4821}
4822
4823/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4824/// ones, or rewriting v4i32 / v2i32 as 2 wide ones if possible. This can be
4825/// done when every pair / quad of shuffle mask elements point to elements in
4826/// the right sequence. e.g.
4827/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4828static
4829SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4830                                 SelectionDAG &DAG,
4831                                 const TargetLowering &TLI, DebugLoc dl) {
4832  EVT VT = SVOp->getValueType(0);
4833  SDValue V1 = SVOp->getOperand(0);
4834  SDValue V2 = SVOp->getOperand(1);
4835  unsigned NumElems = VT.getVectorNumElements();
4836  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4837  EVT MaskVT = (NewWidth == 4) ? MVT::v4i16 : MVT::v2i32;
4838  EVT NewVT = MaskVT;
4839  switch (VT.getSimpleVT().SimpleTy) {
4840  default: assert(false && "Unexpected!");
4841  case MVT::v4f32: NewVT = MVT::v2f64; break;
4842  case MVT::v4i32: NewVT = MVT::v2i64; break;
4843  case MVT::v8i16: NewVT = MVT::v4i32; break;
4844  case MVT::v16i8: NewVT = MVT::v4i32; break;
4845  }
4846
4847  if (NewWidth == 2) {
4848    if (VT.isInteger())
4849      NewVT = MVT::v2i64;
4850    else
4851      NewVT = MVT::v2f64;
4852  }
4853  int Scale = NumElems / NewWidth;
4854  SmallVector<int, 8> MaskVec;
4855  for (unsigned i = 0; i < NumElems; i += Scale) {
4856    int StartIdx = -1;
4857    for (int j = 0; j < Scale; ++j) {
4858      int EltIdx = SVOp->getMaskElt(i+j);
4859      if (EltIdx < 0)
4860        continue;
4861      if (StartIdx == -1)
4862        StartIdx = EltIdx - (EltIdx % Scale);
4863      if (EltIdx != StartIdx + j)
4864        return SDValue();
4865    }
4866    if (StartIdx == -1)
4867      MaskVec.push_back(-1);
4868    else
4869      MaskVec.push_back(StartIdx / Scale);
4870  }
4871
4872  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4873  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4874  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4875}
4876
4877/// getVZextMovL - Return a zero-extending vector move low node.
4878///
4879static SDValue getVZextMovL(EVT VT, EVT OpVT,
4880                            SDValue SrcOp, SelectionDAG &DAG,
4881                            const X86Subtarget *Subtarget, DebugLoc dl) {
4882  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4883    LoadSDNode *LD = NULL;
4884    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4885      LD = dyn_cast<LoadSDNode>(SrcOp);
4886    if (!LD) {
4887      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4888      // instead.
4889      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4890      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4891          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4892          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4893          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4894        // PR2108
4895        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4896        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4897                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4898                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4899                                                   OpVT,
4900                                                   SrcOp.getOperand(0)
4901                                                          .getOperand(0))));
4902      }
4903    }
4904  }
4905
4906  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4907                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4908                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4909                                             OpVT, SrcOp)));
4910}
4911
4912/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4913/// shuffles.
4914static SDValue
4915LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4916  SDValue V1 = SVOp->getOperand(0);
4917  SDValue V2 = SVOp->getOperand(1);
4918  DebugLoc dl = SVOp->getDebugLoc();
4919  EVT VT = SVOp->getValueType(0);
4920
4921  SmallVector<std::pair<int, int>, 8> Locs;
4922  Locs.resize(4);
4923  SmallVector<int, 8> Mask1(4U, -1);
4924  SmallVector<int, 8> PermMask;
4925  SVOp->getMask(PermMask);
4926
4927  unsigned NumHi = 0;
4928  unsigned NumLo = 0;
4929  for (unsigned i = 0; i != 4; ++i) {
4930    int Idx = PermMask[i];
4931    if (Idx < 0) {
4932      Locs[i] = std::make_pair(-1, -1);
4933    } else {
4934      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4935      if (Idx < 4) {
4936        Locs[i] = std::make_pair(0, NumLo);
4937        Mask1[NumLo] = Idx;
4938        NumLo++;
4939      } else {
4940        Locs[i] = std::make_pair(1, NumHi);
4941        if (2+NumHi < 4)
4942          Mask1[2+NumHi] = Idx;
4943        NumHi++;
4944      }
4945    }
4946  }
4947
4948  if (NumLo <= 2 && NumHi <= 2) {
4949    // If no more than two elements come from either vector. This can be
4950    // implemented with two shuffles. First shuffle gather the elements.
4951    // The second shuffle, which takes the first shuffle as both of its
4952    // vector operands, put the elements into the right order.
4953    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4954
4955    SmallVector<int, 8> Mask2(4U, -1);
4956
4957    for (unsigned i = 0; i != 4; ++i) {
4958      if (Locs[i].first == -1)
4959        continue;
4960      else {
4961        unsigned Idx = (i < 2) ? 0 : 4;
4962        Idx += Locs[i].first * 2 + Locs[i].second;
4963        Mask2[i] = Idx;
4964      }
4965    }
4966
4967    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4968  } else if (NumLo == 3 || NumHi == 3) {
4969    // Otherwise, we must have three elements from one vector, call it X, and
4970    // one element from the other, call it Y.  First, use a shufps to build an
4971    // intermediate vector with the one element from Y and the element from X
4972    // that will be in the same half in the final destination (the indexes don't
4973    // matter). Then, use a shufps to build the final vector, taking the half
4974    // containing the element from Y from the intermediate, and the other half
4975    // from X.
4976    if (NumHi == 3) {
4977      // Normalize it so the 3 elements come from V1.
4978      CommuteVectorShuffleMask(PermMask, VT);
4979      std::swap(V1, V2);
4980    }
4981
4982    // Find the element from V2.
4983    unsigned HiIndex;
4984    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4985      int Val = PermMask[HiIndex];
4986      if (Val < 0)
4987        continue;
4988      if (Val >= 4)
4989        break;
4990    }
4991
4992    Mask1[0] = PermMask[HiIndex];
4993    Mask1[1] = -1;
4994    Mask1[2] = PermMask[HiIndex^1];
4995    Mask1[3] = -1;
4996    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4997
4998    if (HiIndex >= 2) {
4999      Mask1[0] = PermMask[0];
5000      Mask1[1] = PermMask[1];
5001      Mask1[2] = HiIndex & 1 ? 6 : 4;
5002      Mask1[3] = HiIndex & 1 ? 4 : 6;
5003      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5004    } else {
5005      Mask1[0] = HiIndex & 1 ? 2 : 0;
5006      Mask1[1] = HiIndex & 1 ? 0 : 2;
5007      Mask1[2] = PermMask[2];
5008      Mask1[3] = PermMask[3];
5009      if (Mask1[2] >= 0)
5010        Mask1[2] += 4;
5011      if (Mask1[3] >= 0)
5012        Mask1[3] += 4;
5013      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5014    }
5015  }
5016
5017  // Break it into (shuffle shuffle_hi, shuffle_lo).
5018  Locs.clear();
5019  SmallVector<int,8> LoMask(4U, -1);
5020  SmallVector<int,8> HiMask(4U, -1);
5021
5022  SmallVector<int,8> *MaskPtr = &LoMask;
5023  unsigned MaskIdx = 0;
5024  unsigned LoIdx = 0;
5025  unsigned HiIdx = 2;
5026  for (unsigned i = 0; i != 4; ++i) {
5027    if (i == 2) {
5028      MaskPtr = &HiMask;
5029      MaskIdx = 1;
5030      LoIdx = 0;
5031      HiIdx = 2;
5032    }
5033    int Idx = PermMask[i];
5034    if (Idx < 0) {
5035      Locs[i] = std::make_pair(-1, -1);
5036    } else if (Idx < 4) {
5037      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5038      (*MaskPtr)[LoIdx] = Idx;
5039      LoIdx++;
5040    } else {
5041      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5042      (*MaskPtr)[HiIdx] = Idx;
5043      HiIdx++;
5044    }
5045  }
5046
5047  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5048  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5049  SmallVector<int, 8> MaskOps;
5050  for (unsigned i = 0; i != 4; ++i) {
5051    if (Locs[i].first == -1) {
5052      MaskOps.push_back(-1);
5053    } else {
5054      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5055      MaskOps.push_back(Idx);
5056    }
5057  }
5058  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5059}
5060
5061static
5062SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5063                        bool HasSSE2) {
5064  SDValue V1 = Op.getOperand(0);
5065  SDValue V2 = Op.getOperand(1);
5066  EVT VT = Op.getValueType();
5067
5068  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5069
5070  if (HasSSE2 && VT == MVT::v2f64)
5071    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5072
5073  // v4f32 or v4i32
5074  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5075}
5076
5077static
5078SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5079  SDValue V1 = Op.getOperand(0);
5080  SDValue V2 = Op.getOperand(1);
5081  EVT VT = Op.getValueType();
5082
5083  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5084         "unsupported shuffle type");
5085
5086  if (V2.getOpcode() == ISD::UNDEF)
5087    V2 = V1;
5088
5089  // v4i32 or v4f32
5090  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5091}
5092
5093static
5094SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5095  SDValue V1 = Op.getOperand(0);
5096  SDValue V2 = Op.getOperand(1);
5097  EVT VT = Op.getValueType();
5098  unsigned NumElems = VT.getVectorNumElements();
5099
5100  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5101  // operand of these instructions is only memory, so check if there's a
5102  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5103  // same masks.
5104  bool CanFoldLoad = false;
5105  SDValue TmpV1 = V1;
5106  SDValue TmpV2 = V2;
5107
5108  // Trivial case, when V2 comes from a load.
5109  if (TmpV2.hasOneUse() && TmpV2.getOpcode() == ISD::BIT_CONVERT)
5110    TmpV2 = TmpV2.getOperand(0);
5111  if (TmpV2.hasOneUse() && TmpV2.getOpcode() == ISD::SCALAR_TO_VECTOR)
5112    TmpV2 = TmpV2.getOperand(0);
5113  if (MayFoldLoad(TmpV2))
5114    CanFoldLoad = true;
5115
5116  // When V1 is a load, it can be folded later into a store in isel, example:
5117  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5118  //    turns into:
5119  //  (MOVLPSmr addr:$src1, VR128:$src2)
5120  // So, recognize this potential and also use MOVLPS or MOVLPD
5121  if (TmpV1.hasOneUse() && TmpV1.getOpcode() == ISD::BIT_CONVERT)
5122    TmpV1 = TmpV1.getOperand(0);
5123  if (MayFoldLoad(TmpV1) && MayFoldIntoStore(Op))
5124    CanFoldLoad = true;
5125
5126  if (CanFoldLoad) {
5127    if (HasSSE2 && NumElems == 2)
5128      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5129
5130    if (NumElems == 4)
5131      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5132  }
5133
5134  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5135  // movl and movlp will both match v2i64, but v2i64 is never matched by
5136  // movl earlier because we make it strict to avoid messing with the movlp load
5137  // folding logic (see the code above getMOVLP call). Match it here then,
5138  // this is horrible, but will stay like this until we move all shuffle
5139  // matching to x86 specific nodes. Note that for the 1st condition all
5140  // types are matched with movsd.
5141  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5142    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5143  else if (HasSSE2)
5144    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5145
5146
5147  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5148
5149  // Invert the operand order and use SHUFPS to match it.
5150  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5151                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5152}
5153
5154SDValue
5155X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5156  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5157  SDValue V1 = Op.getOperand(0);
5158  SDValue V2 = Op.getOperand(1);
5159  EVT VT = Op.getValueType();
5160  DebugLoc dl = Op.getDebugLoc();
5161  unsigned NumElems = VT.getVectorNumElements();
5162  bool isMMX = VT.getSizeInBits() == 64;
5163  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5164  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5165  bool V1IsSplat = false;
5166  bool V2IsSplat = false;
5167  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5168  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5169  MachineFunction &MF = DAG.getMachineFunction();
5170  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5171
5172  if (isZeroShuffle(SVOp))
5173    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5174
5175  // Promote splats to v4f32.
5176  if (SVOp->isSplat()) {
5177    if (isMMX || NumElems < 4)
5178      return Op;
5179    return PromoteSplat(SVOp, DAG);
5180  }
5181
5182  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5183  // do it!
5184  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5185    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
5186    if (NewOp.getNode())
5187      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5188                         LowerVECTOR_SHUFFLE(NewOp, DAG));
5189  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5190    // FIXME: Figure out a cleaner way to do this.
5191    // Try to make use of movq to zero out the top part.
5192    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5193      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
5194      if (NewOp.getNode()) {
5195        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5196          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5197                              DAG, Subtarget, dl);
5198      }
5199    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5200      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
5201      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5202        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5203                            DAG, Subtarget, dl);
5204    }
5205  }
5206
5207  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp)) {
5208    // NOTE: isPSHUFDMask can also match this mask, if speed is more
5209    // important than size here, this will be matched by pshufd
5210    if (VT == MVT::v4f32)
5211      return getTargetShuffleNode(X86ISD::UNPCKLPS, dl, VT, V1, V1, DAG);
5212    if (HasSSE2 && VT == MVT::v16i8)
5213      return getTargetShuffleNode(X86ISD::PUNPCKLBW, dl, VT, V1, V1, DAG);
5214    if (HasSSE2 && VT == MVT::v8i16)
5215      return getTargetShuffleNode(X86ISD::PUNPCKLWD, dl, VT, V1, V1, DAG);
5216    if (HasSSE2 && VT == MVT::v4i32)
5217      return getTargetShuffleNode(X86ISD::PUNPCKLDQ, dl, VT, V1, V1, DAG);
5218  }
5219
5220  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp)) {
5221    // NOTE: isPSHUFDMask can also match this mask, if speed is more
5222    // important than size here, this will be matched by pshufd
5223    if (VT == MVT::v4f32)
5224      return getTargetShuffleNode(X86ISD::UNPCKHPS, dl, VT, V1, V1, DAG);
5225    if (HasSSE2 && VT == MVT::v16i8)
5226      return getTargetShuffleNode(X86ISD::PUNPCKHBW, dl, VT, V1, V1, DAG);
5227    if (HasSSE2 && VT == MVT::v8i16)
5228      return getTargetShuffleNode(X86ISD::PUNPCKHWD, dl, VT, V1, V1, DAG);
5229    if (HasSSE2 && VT == MVT::v4i32)
5230      return getTargetShuffleNode(X86ISD::PUNPCKHDQ, dl, VT, V1, V1, DAG);
5231  }
5232
5233  if (X86::isPSHUFDMask(SVOp)) {
5234    // The actual implementation will match the mask in the if above and then
5235    // during isel it can match several different instructions, not only pshufd
5236    // as its name says, sad but true, emulate the behavior for now...
5237    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5238        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5239
5240    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5241
5242    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5243      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5244
5245    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5246      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5247                                  TargetMask, DAG);
5248
5249    if (VT == MVT::v4f32)
5250      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5251                                  TargetMask, DAG);
5252  }
5253
5254  // Check if this can be converted into a logical shift.
5255  bool isLeft = false;
5256  unsigned ShAmt = 0;
5257  SDValue ShVal;
5258  bool isShift = getSubtarget()->hasSSE2() &&
5259    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5260  if (isShift && ShVal.hasOneUse()) {
5261    // If the shifted value has multiple uses, it may be cheaper to use
5262    // v_set0 + movlhps or movhlps, etc.
5263    EVT EltVT = VT.getVectorElementType();
5264    ShAmt *= EltVT.getSizeInBits();
5265    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5266  }
5267
5268  if (X86::isMOVLMask(SVOp)) {
5269    if (V1IsUndef)
5270      return V2;
5271    if (ISD::isBuildVectorAllZeros(V1.getNode()))
5272      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5273    if (!isMMX && !X86::isMOVLPMask(SVOp)) {
5274      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5275        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5276
5277      if (VT == MVT::v4i32 || VT == MVT::v4f32)
5278        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5279    }
5280  }
5281
5282  // FIXME: fold these into legal mask.
5283  if (!isMMX) {
5284    if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5285      return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5286
5287    if (X86::isMOVHLPSMask(SVOp))
5288      return getMOVHighToLow(Op, dl, DAG);
5289
5290    if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5291      return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
5292
5293    if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5294      return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
5295
5296    if (X86::isMOVLPMask(SVOp))
5297      return getMOVLP(Op, dl, DAG, HasSSE2);
5298  }
5299
5300  if (ShouldXformToMOVHLPS(SVOp) ||
5301      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5302    return CommuteVectorShuffle(SVOp, DAG);
5303
5304  if (isShift) {
5305    // No better options. Use a vshl / vsrl.
5306    EVT EltVT = VT.getVectorElementType();
5307    ShAmt *= EltVT.getSizeInBits();
5308    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5309  }
5310
5311  bool Commuted = false;
5312  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
5313  // 1,1,1,1 -> v8i16 though.
5314  V1IsSplat = isSplatVector(V1.getNode());
5315  V2IsSplat = isSplatVector(V2.getNode());
5316
5317  // Canonicalize the splat or undef, if present, to be on the RHS.
5318  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
5319    Op = CommuteVectorShuffle(SVOp, DAG);
5320    SVOp = cast<ShuffleVectorSDNode>(Op);
5321    V1 = SVOp->getOperand(0);
5322    V2 = SVOp->getOperand(1);
5323    std::swap(V1IsSplat, V2IsSplat);
5324    std::swap(V1IsUndef, V2IsUndef);
5325    Commuted = true;
5326  }
5327
5328  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
5329    // Shuffling low element of v1 into undef, just return v1.
5330    if (V2IsUndef)
5331      return V1;
5332    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5333    // the instruction selector will not match, so get a canonical MOVL with
5334    // swapped operands to undo the commute.
5335    return getMOVL(DAG, dl, VT, V2, V1);
5336  }
5337
5338  if (X86::isUNPCKLMask(SVOp) ||
5339      X86::isUNPCKHMask(SVOp))
5340    return Op;
5341
5342  if (V2IsSplat) {
5343    // Normalize mask so all entries that point to V2 points to its first
5344    // element then try to match unpck{h|l} again. If match, return a
5345    // new vector_shuffle with the corrected mask.
5346    SDValue NewMask = NormalizeMask(SVOp, DAG);
5347    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
5348    if (NSVOp != SVOp) {
5349      if (X86::isUNPCKLMask(NSVOp, true)) {
5350        return NewMask;
5351      } else if (X86::isUNPCKHMask(NSVOp, true)) {
5352        return NewMask;
5353      }
5354    }
5355  }
5356
5357  if (Commuted) {
5358    // Commute is back and try unpck* again.
5359    // FIXME: this seems wrong.
5360    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5361    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5362    if (X86::isUNPCKLMask(NewSVOp) ||
5363        X86::isUNPCKHMask(NewSVOp))
5364      return NewOp;
5365  }
5366
5367  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
5368
5369  // Normalize the node to match x86 shuffle ops if needed
5370  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5371    return CommuteVectorShuffle(SVOp, DAG);
5372
5373  // Check for legal shuffle and return?
5374  SmallVector<int, 16> PermMask;
5375  SVOp->getMask(PermMask);
5376  if (isShuffleMaskLegal(PermMask, VT))
5377    return Op;
5378
5379  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5380  if (VT == MVT::v8i16) {
5381    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5382    if (NewOp.getNode())
5383      return NewOp;
5384  }
5385
5386  if (VT == MVT::v16i8) {
5387    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5388    if (NewOp.getNode())
5389      return NewOp;
5390  }
5391
5392  // Handle all 4 wide cases with a number of shuffles except for MMX.
5393  if (NumElems == 4 && !isMMX)
5394    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5395
5396  return SDValue();
5397}
5398
5399SDValue
5400X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5401                                                SelectionDAG &DAG) const {
5402  EVT VT = Op.getValueType();
5403  DebugLoc dl = Op.getDebugLoc();
5404  if (VT.getSizeInBits() == 8) {
5405    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5406                                    Op.getOperand(0), Op.getOperand(1));
5407    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5408                                    DAG.getValueType(VT));
5409    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5410  } else if (VT.getSizeInBits() == 16) {
5411    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5412    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5413    if (Idx == 0)
5414      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5415                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5416                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5417                                                 MVT::v4i32,
5418                                                 Op.getOperand(0)),
5419                                     Op.getOperand(1)));
5420    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5421                                    Op.getOperand(0), Op.getOperand(1));
5422    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5423                                    DAG.getValueType(VT));
5424    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5425  } else if (VT == MVT::f32) {
5426    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5427    // the result back to FR32 register. It's only worth matching if the
5428    // result has a single use which is a store or a bitcast to i32.  And in
5429    // the case of a store, it's not worth it if the index is a constant 0,
5430    // because a MOVSSmr can be used instead, which is smaller and faster.
5431    if (!Op.hasOneUse())
5432      return SDValue();
5433    SDNode *User = *Op.getNode()->use_begin();
5434    if ((User->getOpcode() != ISD::STORE ||
5435         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5436          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5437        (User->getOpcode() != ISD::BIT_CONVERT ||
5438         User->getValueType(0) != MVT::i32))
5439      return SDValue();
5440    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5441                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
5442                                              Op.getOperand(0)),
5443                                              Op.getOperand(1));
5444    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
5445  } else if (VT == MVT::i32) {
5446    // ExtractPS works with constant index.
5447    if (isa<ConstantSDNode>(Op.getOperand(1)))
5448      return Op;
5449  }
5450  return SDValue();
5451}
5452
5453
5454SDValue
5455X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5456                                           SelectionDAG &DAG) const {
5457  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5458    return SDValue();
5459
5460  if (Subtarget->hasSSE41()) {
5461    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
5462    if (Res.getNode())
5463      return Res;
5464  }
5465
5466  EVT VT = Op.getValueType();
5467  DebugLoc dl = Op.getDebugLoc();
5468  // TODO: handle v16i8.
5469  if (VT.getSizeInBits() == 16) {
5470    SDValue Vec = Op.getOperand(0);
5471    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5472    if (Idx == 0)
5473      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5474                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5475                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5476                                                 MVT::v4i32, Vec),
5477                                     Op.getOperand(1)));
5478    // Transform it so it match pextrw which produces a 32-bit result.
5479    EVT EltVT = MVT::i32;
5480    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
5481                                    Op.getOperand(0), Op.getOperand(1));
5482    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
5483                                    DAG.getValueType(VT));
5484    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5485  } else if (VT.getSizeInBits() == 32) {
5486    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5487    if (Idx == 0)
5488      return Op;
5489
5490    // SHUFPS the element to the lowest double word, then movss.
5491    int Mask[4] = { Idx, -1, -1, -1 };
5492    EVT VVT = Op.getOperand(0).getValueType();
5493    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5494                                       DAG.getUNDEF(VVT), Mask);
5495    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5496                       DAG.getIntPtrConstant(0));
5497  } else if (VT.getSizeInBits() == 64) {
5498    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
5499    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
5500    //        to match extract_elt for f64.
5501    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5502    if (Idx == 0)
5503      return Op;
5504
5505    // UNPCKHPD the element to the lowest double word, then movsd.
5506    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
5507    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
5508    int Mask[2] = { 1, -1 };
5509    EVT VVT = Op.getOperand(0).getValueType();
5510    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5511                                       DAG.getUNDEF(VVT), Mask);
5512    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5513                       DAG.getIntPtrConstant(0));
5514  }
5515
5516  return SDValue();
5517}
5518
5519SDValue
5520X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
5521                                               SelectionDAG &DAG) const {
5522  EVT VT = Op.getValueType();
5523  EVT EltVT = VT.getVectorElementType();
5524  DebugLoc dl = Op.getDebugLoc();
5525
5526  SDValue N0 = Op.getOperand(0);
5527  SDValue N1 = Op.getOperand(1);
5528  SDValue N2 = Op.getOperand(2);
5529
5530  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
5531      isa<ConstantSDNode>(N2)) {
5532    unsigned Opc;
5533    if (VT == MVT::v8i16)
5534      Opc = X86ISD::PINSRW;
5535    else if (VT == MVT::v4i16)
5536      Opc = X86ISD::MMX_PINSRW;
5537    else if (VT == MVT::v16i8)
5538      Opc = X86ISD::PINSRB;
5539    else
5540      Opc = X86ISD::PINSRB;
5541
5542    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5543    // argument.
5544    if (N1.getValueType() != MVT::i32)
5545      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5546    if (N2.getValueType() != MVT::i32)
5547      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5548    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
5549  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
5550    // Bits [7:6] of the constant are the source select.  This will always be
5551    //  zero here.  The DAG Combiner may combine an extract_elt index into these
5552    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
5553    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
5554    // Bits [5:4] of the constant are the destination select.  This is the
5555    //  value of the incoming immediate.
5556    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
5557    //   combine either bitwise AND or insert of float 0.0 to set these bits.
5558    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
5559    // Create this as a scalar to vector..
5560    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
5561    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
5562  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
5563    // PINSR* works with constant index.
5564    return Op;
5565  }
5566  return SDValue();
5567}
5568
5569SDValue
5570X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5571  EVT VT = Op.getValueType();
5572  EVT EltVT = VT.getVectorElementType();
5573
5574  if (Subtarget->hasSSE41())
5575    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5576
5577  if (EltVT == MVT::i8)
5578    return SDValue();
5579
5580  DebugLoc dl = Op.getDebugLoc();
5581  SDValue N0 = Op.getOperand(0);
5582  SDValue N1 = Op.getOperand(1);
5583  SDValue N2 = Op.getOperand(2);
5584
5585  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5586    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5587    // as its second argument.
5588    if (N1.getValueType() != MVT::i32)
5589      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5590    if (N2.getValueType() != MVT::i32)
5591      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5592    return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW,
5593                       dl, VT, N0, N1, N2);
5594  }
5595  return SDValue();
5596}
5597
5598SDValue
5599X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5600  DebugLoc dl = Op.getDebugLoc();
5601
5602  if (Op.getValueType() == MVT::v1i64 &&
5603      Op.getOperand(0).getValueType() == MVT::i64)
5604    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5605
5606  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5607  EVT VT = MVT::v2i32;
5608  switch (Op.getValueType().getSimpleVT().SimpleTy) {
5609  default: break;
5610  case MVT::v16i8:
5611  case MVT::v8i16:
5612    VT = MVT::v4i32;
5613    break;
5614  }
5615  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5616                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
5617}
5618
5619// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5620// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5621// one of the above mentioned nodes. It has to be wrapped because otherwise
5622// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5623// be used to form addressing mode. These wrapped nodes will be selected
5624// into MOV32ri.
5625SDValue
5626X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5627  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5628
5629  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5630  // global base reg.
5631  unsigned char OpFlag = 0;
5632  unsigned WrapperKind = X86ISD::Wrapper;
5633  CodeModel::Model M = getTargetMachine().getCodeModel();
5634
5635  if (Subtarget->isPICStyleRIPRel() &&
5636      (M == CodeModel::Small || M == CodeModel::Kernel))
5637    WrapperKind = X86ISD::WrapperRIP;
5638  else if (Subtarget->isPICStyleGOT())
5639    OpFlag = X86II::MO_GOTOFF;
5640  else if (Subtarget->isPICStyleStubPIC())
5641    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5642
5643  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5644                                             CP->getAlignment(),
5645                                             CP->getOffset(), OpFlag);
5646  DebugLoc DL = CP->getDebugLoc();
5647  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5648  // With PIC, the address is actually $g + Offset.
5649  if (OpFlag) {
5650    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5651                         DAG.getNode(X86ISD::GlobalBaseReg,
5652                                     DebugLoc(), getPointerTy()),
5653                         Result);
5654  }
5655
5656  return Result;
5657}
5658
5659SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5660  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5661
5662  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5663  // global base reg.
5664  unsigned char OpFlag = 0;
5665  unsigned WrapperKind = X86ISD::Wrapper;
5666  CodeModel::Model M = getTargetMachine().getCodeModel();
5667
5668  if (Subtarget->isPICStyleRIPRel() &&
5669      (M == CodeModel::Small || M == CodeModel::Kernel))
5670    WrapperKind = X86ISD::WrapperRIP;
5671  else if (Subtarget->isPICStyleGOT())
5672    OpFlag = X86II::MO_GOTOFF;
5673  else if (Subtarget->isPICStyleStubPIC())
5674    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5675
5676  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5677                                          OpFlag);
5678  DebugLoc DL = JT->getDebugLoc();
5679  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5680
5681  // With PIC, the address is actually $g + Offset.
5682  if (OpFlag) {
5683    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5684                         DAG.getNode(X86ISD::GlobalBaseReg,
5685                                     DebugLoc(), getPointerTy()),
5686                         Result);
5687  }
5688
5689  return Result;
5690}
5691
5692SDValue
5693X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
5694  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5695
5696  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5697  // global base reg.
5698  unsigned char OpFlag = 0;
5699  unsigned WrapperKind = X86ISD::Wrapper;
5700  CodeModel::Model M = getTargetMachine().getCodeModel();
5701
5702  if (Subtarget->isPICStyleRIPRel() &&
5703      (M == CodeModel::Small || M == CodeModel::Kernel))
5704    WrapperKind = X86ISD::WrapperRIP;
5705  else if (Subtarget->isPICStyleGOT())
5706    OpFlag = X86II::MO_GOTOFF;
5707  else if (Subtarget->isPICStyleStubPIC())
5708    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5709
5710  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5711
5712  DebugLoc DL = Op.getDebugLoc();
5713  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5714
5715
5716  // With PIC, the address is actually $g + Offset.
5717  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5718      !Subtarget->is64Bit()) {
5719    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5720                         DAG.getNode(X86ISD::GlobalBaseReg,
5721                                     DebugLoc(), getPointerTy()),
5722                         Result);
5723  }
5724
5725  return Result;
5726}
5727
5728SDValue
5729X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
5730  // Create the TargetBlockAddressAddress node.
5731  unsigned char OpFlags =
5732    Subtarget->ClassifyBlockAddressReference();
5733  CodeModel::Model M = getTargetMachine().getCodeModel();
5734  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5735  DebugLoc dl = Op.getDebugLoc();
5736  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5737                                       /*isTarget=*/true, OpFlags);
5738
5739  if (Subtarget->isPICStyleRIPRel() &&
5740      (M == CodeModel::Small || M == CodeModel::Kernel))
5741    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5742  else
5743    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5744
5745  // With PIC, the address is actually $g + Offset.
5746  if (isGlobalRelativeToPICBase(OpFlags)) {
5747    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5748                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5749                         Result);
5750  }
5751
5752  return Result;
5753}
5754
5755SDValue
5756X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5757                                      int64_t Offset,
5758                                      SelectionDAG &DAG) const {
5759  // Create the TargetGlobalAddress node, folding in the constant
5760  // offset if it is legal.
5761  unsigned char OpFlags =
5762    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5763  CodeModel::Model M = getTargetMachine().getCodeModel();
5764  SDValue Result;
5765  if (OpFlags == X86II::MO_NO_FLAG &&
5766      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5767    // A direct static reference to a global.
5768    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
5769    Offset = 0;
5770  } else {
5771    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
5772  }
5773
5774  if (Subtarget->isPICStyleRIPRel() &&
5775      (M == CodeModel::Small || M == CodeModel::Kernel))
5776    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5777  else
5778    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5779
5780  // With PIC, the address is actually $g + Offset.
5781  if (isGlobalRelativeToPICBase(OpFlags)) {
5782    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5783                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5784                         Result);
5785  }
5786
5787  // For globals that require a load from a stub to get the address, emit the
5788  // load.
5789  if (isGlobalStubReference(OpFlags))
5790    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5791                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5792
5793  // If there was a non-zero offset that we didn't fold, create an explicit
5794  // addition for it.
5795  if (Offset != 0)
5796    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5797                         DAG.getConstant(Offset, getPointerTy()));
5798
5799  return Result;
5800}
5801
5802SDValue
5803X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
5804  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5805  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5806  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5807}
5808
5809static SDValue
5810GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5811           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5812           unsigned char OperandFlags) {
5813  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5814  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5815  DebugLoc dl = GA->getDebugLoc();
5816  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
5817                                           GA->getValueType(0),
5818                                           GA->getOffset(),
5819                                           OperandFlags);
5820  if (InFlag) {
5821    SDValue Ops[] = { Chain,  TGA, *InFlag };
5822    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5823  } else {
5824    SDValue Ops[]  = { Chain, TGA };
5825    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5826  }
5827
5828  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5829  MFI->setAdjustsStack(true);
5830
5831  SDValue Flag = Chain.getValue(1);
5832  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5833}
5834
5835// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5836static SDValue
5837LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5838                                const EVT PtrVT) {
5839  SDValue InFlag;
5840  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5841  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5842                                     DAG.getNode(X86ISD::GlobalBaseReg,
5843                                                 DebugLoc(), PtrVT), InFlag);
5844  InFlag = Chain.getValue(1);
5845
5846  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5847}
5848
5849// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5850static SDValue
5851LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5852                                const EVT PtrVT) {
5853  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5854                    X86::RAX, X86II::MO_TLSGD);
5855}
5856
5857// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5858// "local exec" model.
5859static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5860                                   const EVT PtrVT, TLSModel::Model model,
5861                                   bool is64Bit) {
5862  DebugLoc dl = GA->getDebugLoc();
5863  // Get the Thread Pointer
5864  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5865                             DebugLoc(), PtrVT,
5866                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5867                                             MVT::i32));
5868
5869  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5870                                      NULL, 0, false, false, 0);
5871
5872  unsigned char OperandFlags = 0;
5873  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5874  // initialexec.
5875  unsigned WrapperKind = X86ISD::Wrapper;
5876  if (model == TLSModel::LocalExec) {
5877    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5878  } else if (is64Bit) {
5879    assert(model == TLSModel::InitialExec);
5880    OperandFlags = X86II::MO_GOTTPOFF;
5881    WrapperKind = X86ISD::WrapperRIP;
5882  } else {
5883    assert(model == TLSModel::InitialExec);
5884    OperandFlags = X86II::MO_INDNTPOFF;
5885  }
5886
5887  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5888  // exec)
5889  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
5890                                           GA->getValueType(0),
5891                                           GA->getOffset(), OperandFlags);
5892  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5893
5894  if (model == TLSModel::InitialExec)
5895    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5896                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5897
5898  // The address of the thread local variable is the add of the thread
5899  // pointer with the offset of the variable.
5900  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5901}
5902
5903SDValue
5904X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
5905
5906  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5907  const GlobalValue *GV = GA->getGlobal();
5908
5909  if (Subtarget->isTargetELF()) {
5910    // TODO: implement the "local dynamic" model
5911    // TODO: implement the "initial exec"model for pic executables
5912
5913    // If GV is an alias then use the aliasee for determining
5914    // thread-localness.
5915    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5916      GV = GA->resolveAliasedGlobal(false);
5917
5918    TLSModel::Model model
5919      = getTLSModel(GV, getTargetMachine().getRelocationModel());
5920
5921    switch (model) {
5922      case TLSModel::GeneralDynamic:
5923      case TLSModel::LocalDynamic: // not implemented
5924        if (Subtarget->is64Bit())
5925          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5926        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5927
5928      case TLSModel::InitialExec:
5929      case TLSModel::LocalExec:
5930        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5931                                   Subtarget->is64Bit());
5932    }
5933  } else if (Subtarget->isTargetDarwin()) {
5934    // Darwin only has one model of TLS.  Lower to that.
5935    unsigned char OpFlag = 0;
5936    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
5937                           X86ISD::WrapperRIP : X86ISD::Wrapper;
5938
5939    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5940    // global base reg.
5941    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
5942                  !Subtarget->is64Bit();
5943    if (PIC32)
5944      OpFlag = X86II::MO_TLVP_PIC_BASE;
5945    else
5946      OpFlag = X86II::MO_TLVP;
5947    DebugLoc DL = Op.getDebugLoc();
5948    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
5949                                                getPointerTy(),
5950                                                GA->getOffset(), OpFlag);
5951    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5952
5953    // With PIC32, the address is actually $g + Offset.
5954    if (PIC32)
5955      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5956                           DAG.getNode(X86ISD::GlobalBaseReg,
5957                                       DebugLoc(), getPointerTy()),
5958                           Offset);
5959
5960    // Lowering the machine isd will make sure everything is in the right
5961    // location.
5962    SDValue Args[] = { Offset };
5963    SDValue Chain = DAG.getNode(X86ISD::TLSCALL, DL, MVT::Other, Args, 1);
5964
5965    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
5966    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5967    MFI->setAdjustsStack(true);
5968
5969    // And our return value (tls address) is in the standard call return value
5970    // location.
5971    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
5972    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
5973  }
5974
5975  assert(false &&
5976         "TLS not implemented for this target.");
5977
5978  llvm_unreachable("Unreachable");
5979  return SDValue();
5980}
5981
5982
5983/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5984/// take a 2 x i32 value to shift plus a shift amount.
5985SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
5986  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5987  EVT VT = Op.getValueType();
5988  unsigned VTBits = VT.getSizeInBits();
5989  DebugLoc dl = Op.getDebugLoc();
5990  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5991  SDValue ShOpLo = Op.getOperand(0);
5992  SDValue ShOpHi = Op.getOperand(1);
5993  SDValue ShAmt  = Op.getOperand(2);
5994  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5995                                     DAG.getConstant(VTBits - 1, MVT::i8))
5996                       : DAG.getConstant(0, VT);
5997
5998  SDValue Tmp2, Tmp3;
5999  if (Op.getOpcode() == ISD::SHL_PARTS) {
6000    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6001    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6002  } else {
6003    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6004    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6005  }
6006
6007  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6008                                DAG.getConstant(VTBits, MVT::i8));
6009  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6010                             AndNode, DAG.getConstant(0, MVT::i8));
6011
6012  SDValue Hi, Lo;
6013  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6014  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6015  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6016
6017  if (Op.getOpcode() == ISD::SHL_PARTS) {
6018    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6019    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6020  } else {
6021    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6022    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6023  }
6024
6025  SDValue Ops[2] = { Lo, Hi };
6026  return DAG.getMergeValues(Ops, 2, dl);
6027}
6028
6029SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6030                                           SelectionDAG &DAG) const {
6031  EVT SrcVT = Op.getOperand(0).getValueType();
6032
6033  if (SrcVT.isVector()) {
6034    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
6035      return Op;
6036    }
6037    return SDValue();
6038  }
6039
6040  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6041         "Unknown SINT_TO_FP to lower!");
6042
6043  // These are really Legal; return the operand so the caller accepts it as
6044  // Legal.
6045  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6046    return Op;
6047  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6048      Subtarget->is64Bit()) {
6049    return Op;
6050  }
6051
6052  DebugLoc dl = Op.getDebugLoc();
6053  unsigned Size = SrcVT.getSizeInBits()/8;
6054  MachineFunction &MF = DAG.getMachineFunction();
6055  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6056  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6057  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6058                               StackSlot,
6059                               PseudoSourceValue::getFixedStack(SSFI), 0,
6060                               false, false, 0);
6061  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
6062}
6063
6064SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
6065                                     SDValue StackSlot,
6066                                     SelectionDAG &DAG) const {
6067  // Build the FILD
6068  DebugLoc dl = Op.getDebugLoc();
6069  SDVTList Tys;
6070  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
6071  if (useSSE)
6072    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
6073  else
6074    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
6075  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
6076  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
6077                               Tys, Ops, array_lengthof(Ops));
6078
6079  if (useSSE) {
6080    Chain = Result.getValue(1);
6081    SDValue InFlag = Result.getValue(2);
6082
6083    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6084    // shouldn't be necessary except that RFP cannot be live across
6085    // multiple blocks. When stackifier is fixed, they can be uncoupled.
6086    MachineFunction &MF = DAG.getMachineFunction();
6087    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
6088    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6089    Tys = DAG.getVTList(MVT::Other);
6090    SDValue Ops[] = {
6091      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
6092    };
6093    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
6094    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
6095                         PseudoSourceValue::getFixedStack(SSFI), 0,
6096                         false, false, 0);
6097  }
6098
6099  return Result;
6100}
6101
6102// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6103SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
6104                                               SelectionDAG &DAG) const {
6105  // This algorithm is not obvious. Here it is in C code, more or less:
6106  /*
6107    double uint64_to_double( uint32_t hi, uint32_t lo ) {
6108      static const __m128i exp = { 0x4330000045300000ULL, 0 };
6109      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6110
6111      // Copy ints to xmm registers.
6112      __m128i xh = _mm_cvtsi32_si128( hi );
6113      __m128i xl = _mm_cvtsi32_si128( lo );
6114
6115      // Combine into low half of a single xmm register.
6116      __m128i x = _mm_unpacklo_epi32( xh, xl );
6117      __m128d d;
6118      double sd;
6119
6120      // Merge in appropriate exponents to give the integer bits the right
6121      // magnitude.
6122      x = _mm_unpacklo_epi32( x, exp );
6123
6124      // Subtract away the biases to deal with the IEEE-754 double precision
6125      // implicit 1.
6126      d = _mm_sub_pd( (__m128d) x, bias );
6127
6128      // All conversions up to here are exact. The correctly rounded result is
6129      // calculated using the current rounding mode using the following
6130      // horizontal add.
6131      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
6132      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
6133                                // store doesn't really need to be here (except
6134                                // maybe to zero the other double)
6135      return sd;
6136    }
6137  */
6138
6139  DebugLoc dl = Op.getDebugLoc();
6140  LLVMContext *Context = DAG.getContext();
6141
6142  // Build some magic constants.
6143  std::vector<Constant*> CV0;
6144  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
6145  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
6146  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6147  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6148  Constant *C0 = ConstantVector::get(CV0);
6149  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
6150
6151  std::vector<Constant*> CV1;
6152  CV1.push_back(
6153    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
6154  CV1.push_back(
6155    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
6156  Constant *C1 = ConstantVector::get(CV1);
6157  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
6158
6159  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6160                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6161                                        Op.getOperand(0),
6162                                        DAG.getIntPtrConstant(1)));
6163  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6164                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6165                                        Op.getOperand(0),
6166                                        DAG.getIntPtrConstant(0)));
6167  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
6168  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
6169                              PseudoSourceValue::getConstantPool(), 0,
6170                              false, false, 16);
6171  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
6172  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
6173  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
6174                              PseudoSourceValue::getConstantPool(), 0,
6175                              false, false, 16);
6176  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
6177
6178  // Add the halves; easiest way is to swap them into another reg first.
6179  int ShufMask[2] = { 1, -1 };
6180  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
6181                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
6182  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
6183  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
6184                     DAG.getIntPtrConstant(0));
6185}
6186
6187// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6188SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
6189                                               SelectionDAG &DAG) const {
6190  DebugLoc dl = Op.getDebugLoc();
6191  // FP constant to bias correct the final result.
6192  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
6193                                   MVT::f64);
6194
6195  // Load the 32-bit value into an XMM register.
6196  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6197                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6198                                         Op.getOperand(0),
6199                                         DAG.getIntPtrConstant(0)));
6200
6201  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6202                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
6203                     DAG.getIntPtrConstant(0));
6204
6205  // Or the load with the bias.
6206  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
6207                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6208                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6209                                                   MVT::v2f64, Load)),
6210                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6211                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6212                                                   MVT::v2f64, Bias)));
6213  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6214                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
6215                   DAG.getIntPtrConstant(0));
6216
6217  // Subtract the bias.
6218  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
6219
6220  // Handle final rounding.
6221  EVT DestVT = Op.getValueType();
6222
6223  if (DestVT.bitsLT(MVT::f64)) {
6224    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
6225                       DAG.getIntPtrConstant(0));
6226  } else if (DestVT.bitsGT(MVT::f64)) {
6227    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
6228  }
6229
6230  // Handle final rounding.
6231  return Sub;
6232}
6233
6234SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
6235                                           SelectionDAG &DAG) const {
6236  SDValue N0 = Op.getOperand(0);
6237  DebugLoc dl = Op.getDebugLoc();
6238
6239  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
6240  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
6241  // the optimization here.
6242  if (DAG.SignBitIsZero(N0))
6243    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
6244
6245  EVT SrcVT = N0.getValueType();
6246  EVT DstVT = Op.getValueType();
6247  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
6248    return LowerUINT_TO_FP_i64(Op, DAG);
6249  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
6250    return LowerUINT_TO_FP_i32(Op, DAG);
6251
6252  // Make a 64-bit buffer, and use it to build an FILD.
6253  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
6254  if (SrcVT == MVT::i32) {
6255    SDValue WordOff = DAG.getConstant(4, getPointerTy());
6256    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
6257                                     getPointerTy(), StackSlot, WordOff);
6258    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6259                                  StackSlot, NULL, 0, false, false, 0);
6260    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
6261                                  OffsetSlot, NULL, 0, false, false, 0);
6262    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
6263    return Fild;
6264  }
6265
6266  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
6267  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6268                                StackSlot, NULL, 0, false, false, 0);
6269  // For i64 source, we need to add the appropriate power of 2 if the input
6270  // was negative.  This is the same as the optimization in
6271  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
6272  // we must be careful to do the computation in x87 extended precision, not
6273  // in SSE. (The generic code can't know it's OK to do this, or how to.)
6274  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
6275  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
6276  SDValue Fild = DAG.getNode(X86ISD::FILD, dl, Tys, Ops, 3);
6277
6278  APInt FF(32, 0x5F800000ULL);
6279
6280  // Check whether the sign bit is set.
6281  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
6282                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
6283                                 ISD::SETLT);
6284
6285  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
6286  SDValue FudgePtr = DAG.getConstantPool(
6287                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
6288                                         getPointerTy());
6289
6290  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
6291  SDValue Zero = DAG.getIntPtrConstant(0);
6292  SDValue Four = DAG.getIntPtrConstant(4);
6293  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
6294                               Zero, Four);
6295  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
6296
6297  // Load the value out, extending it from f32 to f80.
6298  // FIXME: Avoid the extend by constructing the right constant pool?
6299  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(),
6300                                 FudgePtr, PseudoSourceValue::getConstantPool(),
6301                                 0, MVT::f32, false, false, 4);
6302  // Extend everything to 80 bits to force it to be done on x87.
6303  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
6304  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
6305}
6306
6307std::pair<SDValue,SDValue> X86TargetLowering::
6308FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
6309  DebugLoc dl = Op.getDebugLoc();
6310
6311  EVT DstTy = Op.getValueType();
6312
6313  if (!IsSigned) {
6314    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
6315    DstTy = MVT::i64;
6316  }
6317
6318  assert(DstTy.getSimpleVT() <= MVT::i64 &&
6319         DstTy.getSimpleVT() >= MVT::i16 &&
6320         "Unknown FP_TO_SINT to lower!");
6321
6322  // These are really Legal.
6323  if (DstTy == MVT::i32 &&
6324      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6325    return std::make_pair(SDValue(), SDValue());
6326  if (Subtarget->is64Bit() &&
6327      DstTy == MVT::i64 &&
6328      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6329    return std::make_pair(SDValue(), SDValue());
6330
6331  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
6332  // stack slot.
6333  MachineFunction &MF = DAG.getMachineFunction();
6334  unsigned MemSize = DstTy.getSizeInBits()/8;
6335  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6336  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6337
6338  unsigned Opc;
6339  switch (DstTy.getSimpleVT().SimpleTy) {
6340  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
6341  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
6342  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
6343  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
6344  }
6345
6346  SDValue Chain = DAG.getEntryNode();
6347  SDValue Value = Op.getOperand(0);
6348  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
6349    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
6350    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
6351                         PseudoSourceValue::getFixedStack(SSFI), 0,
6352                         false, false, 0);
6353    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
6354    SDValue Ops[] = {
6355      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
6356    };
6357    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
6358    Chain = Value.getValue(1);
6359    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6360    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6361  }
6362
6363  // Build the FP_TO_INT*_IN_MEM
6364  SDValue Ops[] = { Chain, Value, StackSlot };
6365  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
6366
6367  return std::make_pair(FIST, StackSlot);
6368}
6369
6370SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
6371                                           SelectionDAG &DAG) const {
6372  if (Op.getValueType().isVector()) {
6373    if (Op.getValueType() == MVT::v2i32 &&
6374        Op.getOperand(0).getValueType() == MVT::v2f64) {
6375      return Op;
6376    }
6377    return SDValue();
6378  }
6379
6380  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
6381  SDValue FIST = Vals.first, StackSlot = Vals.second;
6382  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
6383  if (FIST.getNode() == 0) return Op;
6384
6385  // Load the result.
6386  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6387                     FIST, StackSlot, NULL, 0, false, false, 0);
6388}
6389
6390SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
6391                                           SelectionDAG &DAG) const {
6392  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
6393  SDValue FIST = Vals.first, StackSlot = Vals.second;
6394  assert(FIST.getNode() && "Unexpected failure");
6395
6396  // Load the result.
6397  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6398                     FIST, StackSlot, NULL, 0, false, false, 0);
6399}
6400
6401SDValue X86TargetLowering::LowerFABS(SDValue Op,
6402                                     SelectionDAG &DAG) const {
6403  LLVMContext *Context = DAG.getContext();
6404  DebugLoc dl = Op.getDebugLoc();
6405  EVT VT = Op.getValueType();
6406  EVT EltVT = VT;
6407  if (VT.isVector())
6408    EltVT = VT.getVectorElementType();
6409  std::vector<Constant*> CV;
6410  if (EltVT == MVT::f64) {
6411    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
6412    CV.push_back(C);
6413    CV.push_back(C);
6414  } else {
6415    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
6416    CV.push_back(C);
6417    CV.push_back(C);
6418    CV.push_back(C);
6419    CV.push_back(C);
6420  }
6421  Constant *C = ConstantVector::get(CV);
6422  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6423  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6424                             PseudoSourceValue::getConstantPool(), 0,
6425                             false, false, 16);
6426  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
6427}
6428
6429SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
6430  LLVMContext *Context = DAG.getContext();
6431  DebugLoc dl = Op.getDebugLoc();
6432  EVT VT = Op.getValueType();
6433  EVT EltVT = VT;
6434  if (VT.isVector())
6435    EltVT = VT.getVectorElementType();
6436  std::vector<Constant*> CV;
6437  if (EltVT == MVT::f64) {
6438    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
6439    CV.push_back(C);
6440    CV.push_back(C);
6441  } else {
6442    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
6443    CV.push_back(C);
6444    CV.push_back(C);
6445    CV.push_back(C);
6446    CV.push_back(C);
6447  }
6448  Constant *C = ConstantVector::get(CV);
6449  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6450  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6451                             PseudoSourceValue::getConstantPool(), 0,
6452                             false, false, 16);
6453  if (VT.isVector()) {
6454    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6455                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
6456                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6457                                Op.getOperand(0)),
6458                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
6459  } else {
6460    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
6461  }
6462}
6463
6464SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6465  LLVMContext *Context = DAG.getContext();
6466  SDValue Op0 = Op.getOperand(0);
6467  SDValue Op1 = Op.getOperand(1);
6468  DebugLoc dl = Op.getDebugLoc();
6469  EVT VT = Op.getValueType();
6470  EVT SrcVT = Op1.getValueType();
6471
6472  // If second operand is smaller, extend it first.
6473  if (SrcVT.bitsLT(VT)) {
6474    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
6475    SrcVT = VT;
6476  }
6477  // And if it is bigger, shrink it first.
6478  if (SrcVT.bitsGT(VT)) {
6479    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
6480    SrcVT = VT;
6481  }
6482
6483  // At this point the operands and the result should have the same
6484  // type, and that won't be f80 since that is not custom lowered.
6485
6486  // First get the sign bit of second operand.
6487  std::vector<Constant*> CV;
6488  if (SrcVT == MVT::f64) {
6489    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
6490    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6491  } else {
6492    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
6493    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6494    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6495    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6496  }
6497  Constant *C = ConstantVector::get(CV);
6498  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6499  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
6500                              PseudoSourceValue::getConstantPool(), 0,
6501                              false, false, 16);
6502  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
6503
6504  // Shift sign bit right or left if the two operands have different types.
6505  if (SrcVT.bitsGT(VT)) {
6506    // Op0 is MVT::f32, Op1 is MVT::f64.
6507    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
6508    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
6509                          DAG.getConstant(32, MVT::i32));
6510    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
6511    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
6512                          DAG.getIntPtrConstant(0));
6513  }
6514
6515  // Clear first operand sign bit.
6516  CV.clear();
6517  if (VT == MVT::f64) {
6518    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
6519    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6520  } else {
6521    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
6522    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6523    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6524    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6525  }
6526  C = ConstantVector::get(CV);
6527  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6528  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6529                              PseudoSourceValue::getConstantPool(), 0,
6530                              false, false, 16);
6531  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
6532
6533  // Or the value with the sign bit.
6534  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
6535}
6536
6537/// Emit nodes that will be selected as "test Op0,Op0", or something
6538/// equivalent.
6539SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
6540                                    SelectionDAG &DAG) const {
6541  DebugLoc dl = Op.getDebugLoc();
6542
6543  // CF and OF aren't always set the way we want. Determine which
6544  // of these we need.
6545  bool NeedCF = false;
6546  bool NeedOF = false;
6547  switch (X86CC) {
6548  default: break;
6549  case X86::COND_A: case X86::COND_AE:
6550  case X86::COND_B: case X86::COND_BE:
6551    NeedCF = true;
6552    break;
6553  case X86::COND_G: case X86::COND_GE:
6554  case X86::COND_L: case X86::COND_LE:
6555  case X86::COND_O: case X86::COND_NO:
6556    NeedOF = true;
6557    break;
6558  }
6559
6560  // See if we can use the EFLAGS value from the operand instead of
6561  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6562  // we prove that the arithmetic won't overflow, we can't use OF or CF.
6563  if (Op.getResNo() != 0 || NeedOF || NeedCF)
6564    // Emit a CMP with 0, which is the TEST pattern.
6565    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6566                       DAG.getConstant(0, Op.getValueType()));
6567
6568  unsigned Opcode = 0;
6569  unsigned NumOperands = 0;
6570  switch (Op.getNode()->getOpcode()) {
6571  case ISD::ADD:
6572    // Due to an isel shortcoming, be conservative if this add is likely to be
6573    // selected as part of a load-modify-store instruction. When the root node
6574    // in a match is a store, isel doesn't know how to remap non-chain non-flag
6575    // uses of other nodes in the match, such as the ADD in this case. This
6576    // leads to the ADD being left around and reselected, with the result being
6577    // two adds in the output.  Alas, even if none our users are stores, that
6578    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
6579    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
6580    // climbing the DAG back to the root, and it doesn't seem to be worth the
6581    // effort.
6582    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6583           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6584      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
6585        goto default_case;
6586
6587    if (ConstantSDNode *C =
6588        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
6589      // An add of one will be selected as an INC.
6590      if (C->getAPIntValue() == 1) {
6591        Opcode = X86ISD::INC;
6592        NumOperands = 1;
6593        break;
6594      }
6595
6596      // An add of negative one (subtract of one) will be selected as a DEC.
6597      if (C->getAPIntValue().isAllOnesValue()) {
6598        Opcode = X86ISD::DEC;
6599        NumOperands = 1;
6600        break;
6601      }
6602    }
6603
6604    // Otherwise use a regular EFLAGS-setting add.
6605    Opcode = X86ISD::ADD;
6606    NumOperands = 2;
6607    break;
6608  case ISD::AND: {
6609    // If the primary and result isn't used, don't bother using X86ISD::AND,
6610    // because a TEST instruction will be better.
6611    bool NonFlagUse = false;
6612    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6613           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
6614      SDNode *User = *UI;
6615      unsigned UOpNo = UI.getOperandNo();
6616      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
6617        // Look pass truncate.
6618        UOpNo = User->use_begin().getOperandNo();
6619        User = *User->use_begin();
6620      }
6621
6622      if (User->getOpcode() != ISD::BRCOND &&
6623          User->getOpcode() != ISD::SETCC &&
6624          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
6625        NonFlagUse = true;
6626        break;
6627      }
6628    }
6629
6630    if (!NonFlagUse)
6631      break;
6632  }
6633    // FALL THROUGH
6634  case ISD::SUB:
6635  case ISD::OR:
6636  case ISD::XOR:
6637    // Due to the ISEL shortcoming noted above, be conservative if this op is
6638    // likely to be selected as part of a load-modify-store instruction.
6639    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6640           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6641      if (UI->getOpcode() == ISD::STORE)
6642        goto default_case;
6643
6644    // Otherwise use a regular EFLAGS-setting instruction.
6645    switch (Op.getNode()->getOpcode()) {
6646    default: llvm_unreachable("unexpected operator!");
6647    case ISD::SUB: Opcode = X86ISD::SUB; break;
6648    case ISD::OR:  Opcode = X86ISD::OR;  break;
6649    case ISD::XOR: Opcode = X86ISD::XOR; break;
6650    case ISD::AND: Opcode = X86ISD::AND; break;
6651    }
6652
6653    NumOperands = 2;
6654    break;
6655  case X86ISD::ADD:
6656  case X86ISD::SUB:
6657  case X86ISD::INC:
6658  case X86ISD::DEC:
6659  case X86ISD::OR:
6660  case X86ISD::XOR:
6661  case X86ISD::AND:
6662    return SDValue(Op.getNode(), 1);
6663  default:
6664  default_case:
6665    break;
6666  }
6667
6668  if (Opcode == 0)
6669    // Emit a CMP with 0, which is the TEST pattern.
6670    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6671                       DAG.getConstant(0, Op.getValueType()));
6672
6673  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
6674  SmallVector<SDValue, 4> Ops;
6675  for (unsigned i = 0; i != NumOperands; ++i)
6676    Ops.push_back(Op.getOperand(i));
6677
6678  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
6679  DAG.ReplaceAllUsesWith(Op, New);
6680  return SDValue(New.getNode(), 1);
6681}
6682
6683/// Emit nodes that will be selected as "cmp Op0,Op1", or something
6684/// equivalent.
6685SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6686                                   SelectionDAG &DAG) const {
6687  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6688    if (C->getAPIntValue() == 0)
6689      return EmitTest(Op0, X86CC, DAG);
6690
6691  DebugLoc dl = Op0.getDebugLoc();
6692  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6693}
6694
6695/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6696/// if it's possible.
6697SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
6698                                     DebugLoc dl, SelectionDAG &DAG) const {
6699  SDValue Op0 = And.getOperand(0);
6700  SDValue Op1 = And.getOperand(1);
6701  if (Op0.getOpcode() == ISD::TRUNCATE)
6702    Op0 = Op0.getOperand(0);
6703  if (Op1.getOpcode() == ISD::TRUNCATE)
6704    Op1 = Op1.getOperand(0);
6705
6706  SDValue LHS, RHS;
6707  if (Op1.getOpcode() == ISD::SHL)
6708    std::swap(Op0, Op1);
6709  if (Op0.getOpcode() == ISD::SHL) {
6710    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6711      if (And00C->getZExtValue() == 1) {
6712        // If we looked past a truncate, check that it's only truncating away
6713        // known zeros.
6714        unsigned BitWidth = Op0.getValueSizeInBits();
6715        unsigned AndBitWidth = And.getValueSizeInBits();
6716        if (BitWidth > AndBitWidth) {
6717          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
6718          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
6719          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
6720            return SDValue();
6721        }
6722        LHS = Op1;
6723        RHS = Op0.getOperand(1);
6724      }
6725  } else if (Op1.getOpcode() == ISD::Constant) {
6726    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6727    SDValue AndLHS = Op0;
6728    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6729      LHS = AndLHS.getOperand(0);
6730      RHS = AndLHS.getOperand(1);
6731    }
6732  }
6733
6734  if (LHS.getNode()) {
6735    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
6736    // instruction.  Since the shift amount is in-range-or-undefined, we know
6737    // that doing a bittest on the i32 value is ok.  We extend to i32 because
6738    // the encoding for the i16 version is larger than the i32 version.
6739    // Also promote i16 to i32 for performance / code size reason.
6740    if (LHS.getValueType() == MVT::i8 ||
6741        LHS.getValueType() == MVT::i16)
6742      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6743
6744    // If the operand types disagree, extend the shift amount to match.  Since
6745    // BT ignores high bits (like shifts) we can use anyextend.
6746    if (LHS.getValueType() != RHS.getValueType())
6747      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6748
6749    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6750    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6751    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6752                       DAG.getConstant(Cond, MVT::i8), BT);
6753  }
6754
6755  return SDValue();
6756}
6757
6758SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
6759  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
6760  SDValue Op0 = Op.getOperand(0);
6761  SDValue Op1 = Op.getOperand(1);
6762  DebugLoc dl = Op.getDebugLoc();
6763  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6764
6765  // Optimize to BT if possible.
6766  // Lower (X & (1 << N)) == 0 to BT(X, N).
6767  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
6768  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
6769  if (Op0.getOpcode() == ISD::AND &&
6770      Op0.hasOneUse() &&
6771      Op1.getOpcode() == ISD::Constant &&
6772      cast<ConstantSDNode>(Op1)->isNullValue() &&
6773      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6774    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
6775    if (NewSetCC.getNode())
6776      return NewSetCC;
6777  }
6778
6779  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
6780  if (Op0.getOpcode() == X86ISD::SETCC &&
6781      Op1.getOpcode() == ISD::Constant &&
6782      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
6783       cast<ConstantSDNode>(Op1)->isNullValue()) &&
6784      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6785    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
6786    bool Invert = (CC == ISD::SETNE) ^
6787      cast<ConstantSDNode>(Op1)->isNullValue();
6788    if (Invert)
6789      CCode = X86::GetOppositeBranchCondition(CCode);
6790    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6791                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
6792  }
6793
6794  bool isFP = Op1.getValueType().isFloatingPoint();
6795  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
6796  if (X86CC == X86::COND_INVALID)
6797    return SDValue();
6798
6799  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
6800
6801  // Use sbb x, x to materialize carry bit into a GPR.
6802  if (X86CC == X86::COND_B)
6803    return DAG.getNode(ISD::AND, dl, MVT::i8,
6804                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
6805                                   DAG.getConstant(X86CC, MVT::i8), Cond),
6806                       DAG.getConstant(1, MVT::i8));
6807
6808  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6809                     DAG.getConstant(X86CC, MVT::i8), Cond);
6810}
6811
6812SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
6813  SDValue Cond;
6814  SDValue Op0 = Op.getOperand(0);
6815  SDValue Op1 = Op.getOperand(1);
6816  SDValue CC = Op.getOperand(2);
6817  EVT VT = Op.getValueType();
6818  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6819  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6820  DebugLoc dl = Op.getDebugLoc();
6821
6822  if (isFP) {
6823    unsigned SSECC = 8;
6824    EVT VT0 = Op0.getValueType();
6825    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
6826    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
6827    bool Swap = false;
6828
6829    switch (SetCCOpcode) {
6830    default: break;
6831    case ISD::SETOEQ:
6832    case ISD::SETEQ:  SSECC = 0; break;
6833    case ISD::SETOGT:
6834    case ISD::SETGT: Swap = true; // Fallthrough
6835    case ISD::SETLT:
6836    case ISD::SETOLT: SSECC = 1; break;
6837    case ISD::SETOGE:
6838    case ISD::SETGE: Swap = true; // Fallthrough
6839    case ISD::SETLE:
6840    case ISD::SETOLE: SSECC = 2; break;
6841    case ISD::SETUO:  SSECC = 3; break;
6842    case ISD::SETUNE:
6843    case ISD::SETNE:  SSECC = 4; break;
6844    case ISD::SETULE: Swap = true;
6845    case ISD::SETUGE: SSECC = 5; break;
6846    case ISD::SETULT: Swap = true;
6847    case ISD::SETUGT: SSECC = 6; break;
6848    case ISD::SETO:   SSECC = 7; break;
6849    }
6850    if (Swap)
6851      std::swap(Op0, Op1);
6852
6853    // In the two special cases we can't handle, emit two comparisons.
6854    if (SSECC == 8) {
6855      if (SetCCOpcode == ISD::SETUEQ) {
6856        SDValue UNORD, EQ;
6857        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6858        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6859        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6860      }
6861      else if (SetCCOpcode == ISD::SETONE) {
6862        SDValue ORD, NEQ;
6863        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6864        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6865        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6866      }
6867      llvm_unreachable("Illegal FP comparison");
6868    }
6869    // Handle all other FP comparisons here.
6870    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6871  }
6872
6873  // We are handling one of the integer comparisons here.  Since SSE only has
6874  // GT and EQ comparisons for integer, swapping operands and multiple
6875  // operations may be required for some comparisons.
6876  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6877  bool Swap = false, Invert = false, FlipSigns = false;
6878
6879  switch (VT.getSimpleVT().SimpleTy) {
6880  default: break;
6881  case MVT::v8i8:
6882  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6883  case MVT::v4i16:
6884  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6885  case MVT::v2i32:
6886  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6887  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6888  }
6889
6890  switch (SetCCOpcode) {
6891  default: break;
6892  case ISD::SETNE:  Invert = true;
6893  case ISD::SETEQ:  Opc = EQOpc; break;
6894  case ISD::SETLT:  Swap = true;
6895  case ISD::SETGT:  Opc = GTOpc; break;
6896  case ISD::SETGE:  Swap = true;
6897  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6898  case ISD::SETULT: Swap = true;
6899  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6900  case ISD::SETUGE: Swap = true;
6901  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6902  }
6903  if (Swap)
6904    std::swap(Op0, Op1);
6905
6906  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6907  // bits of the inputs before performing those operations.
6908  if (FlipSigns) {
6909    EVT EltVT = VT.getVectorElementType();
6910    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6911                                      EltVT);
6912    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6913    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6914                                    SignBits.size());
6915    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6916    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6917  }
6918
6919  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6920
6921  // If the logical-not of the result is required, perform that now.
6922  if (Invert)
6923    Result = DAG.getNOT(dl, Result, VT);
6924
6925  return Result;
6926}
6927
6928// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6929static bool isX86LogicalCmp(SDValue Op) {
6930  unsigned Opc = Op.getNode()->getOpcode();
6931  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6932    return true;
6933  if (Op.getResNo() == 1 &&
6934      (Opc == X86ISD::ADD ||
6935       Opc == X86ISD::SUB ||
6936       Opc == X86ISD::SMUL ||
6937       Opc == X86ISD::UMUL ||
6938       Opc == X86ISD::INC ||
6939       Opc == X86ISD::DEC ||
6940       Opc == X86ISD::OR ||
6941       Opc == X86ISD::XOR ||
6942       Opc == X86ISD::AND))
6943    return true;
6944
6945  return false;
6946}
6947
6948SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
6949  bool addTest = true;
6950  SDValue Cond  = Op.getOperand(0);
6951  DebugLoc dl = Op.getDebugLoc();
6952  SDValue CC;
6953
6954  if (Cond.getOpcode() == ISD::SETCC) {
6955    SDValue NewCond = LowerSETCC(Cond, DAG);
6956    if (NewCond.getNode())
6957      Cond = NewCond;
6958  }
6959
6960  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6961  SDValue Op1 = Op.getOperand(1);
6962  SDValue Op2 = Op.getOperand(2);
6963  if (Cond.getOpcode() == X86ISD::SETCC &&
6964      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6965    SDValue Cmp = Cond.getOperand(1);
6966    if (Cmp.getOpcode() == X86ISD::CMP) {
6967      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6968      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6969      ConstantSDNode *RHSC =
6970        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6971      if (N1C && N1C->isAllOnesValue() &&
6972          N2C && N2C->isNullValue() &&
6973          RHSC && RHSC->isNullValue()) {
6974        SDValue CmpOp0 = Cmp.getOperand(0);
6975        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6976                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6977        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6978                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6979      }
6980    }
6981  }
6982
6983  // Look pass (and (setcc_carry (cmp ...)), 1).
6984  if (Cond.getOpcode() == ISD::AND &&
6985      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6986    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6987    if (C && C->getAPIntValue() == 1)
6988      Cond = Cond.getOperand(0);
6989  }
6990
6991  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6992  // setting operand in place of the X86ISD::SETCC.
6993  if (Cond.getOpcode() == X86ISD::SETCC ||
6994      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6995    CC = Cond.getOperand(0);
6996
6997    SDValue Cmp = Cond.getOperand(1);
6998    unsigned Opc = Cmp.getOpcode();
6999    EVT VT = Op.getValueType();
7000
7001    bool IllegalFPCMov = false;
7002    if (VT.isFloatingPoint() && !VT.isVector() &&
7003        !isScalarFPTypeInSSEReg(VT))  // FPStack?
7004      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
7005
7006    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
7007        Opc == X86ISD::BT) { // FIXME
7008      Cond = Cmp;
7009      addTest = false;
7010    }
7011  }
7012
7013  if (addTest) {
7014    // Look pass the truncate.
7015    if (Cond.getOpcode() == ISD::TRUNCATE)
7016      Cond = Cond.getOperand(0);
7017
7018    // We know the result of AND is compared against zero. Try to match
7019    // it to BT.
7020    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7021      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7022      if (NewSetCC.getNode()) {
7023        CC = NewSetCC.getOperand(0);
7024        Cond = NewSetCC.getOperand(1);
7025        addTest = false;
7026      }
7027    }
7028  }
7029
7030  if (addTest) {
7031    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7032    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7033  }
7034
7035  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
7036  // condition is true.
7037  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
7038  SDValue Ops[] = { Op2, Op1, CC, Cond };
7039  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
7040}
7041
7042// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7043// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7044// from the AND / OR.
7045static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
7046  Opc = Op.getOpcode();
7047  if (Opc != ISD::OR && Opc != ISD::AND)
7048    return false;
7049  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7050          Op.getOperand(0).hasOneUse() &&
7051          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
7052          Op.getOperand(1).hasOneUse());
7053}
7054
7055// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7056// 1 and that the SETCC node has a single use.
7057static bool isXor1OfSetCC(SDValue Op) {
7058  if (Op.getOpcode() != ISD::XOR)
7059    return false;
7060  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7061  if (N1C && N1C->getAPIntValue() == 1) {
7062    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7063      Op.getOperand(0).hasOneUse();
7064  }
7065  return false;
7066}
7067
7068SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
7069  bool addTest = true;
7070  SDValue Chain = Op.getOperand(0);
7071  SDValue Cond  = Op.getOperand(1);
7072  SDValue Dest  = Op.getOperand(2);
7073  DebugLoc dl = Op.getDebugLoc();
7074  SDValue CC;
7075
7076  if (Cond.getOpcode() == ISD::SETCC) {
7077    SDValue NewCond = LowerSETCC(Cond, DAG);
7078    if (NewCond.getNode())
7079      Cond = NewCond;
7080  }
7081#if 0
7082  // FIXME: LowerXALUO doesn't handle these!!
7083  else if (Cond.getOpcode() == X86ISD::ADD  ||
7084           Cond.getOpcode() == X86ISD::SUB  ||
7085           Cond.getOpcode() == X86ISD::SMUL ||
7086           Cond.getOpcode() == X86ISD::UMUL)
7087    Cond = LowerXALUO(Cond, DAG);
7088#endif
7089
7090  // Look pass (and (setcc_carry (cmp ...)), 1).
7091  if (Cond.getOpcode() == ISD::AND &&
7092      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7093    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7094    if (C && C->getAPIntValue() == 1)
7095      Cond = Cond.getOperand(0);
7096  }
7097
7098  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7099  // setting operand in place of the X86ISD::SETCC.
7100  if (Cond.getOpcode() == X86ISD::SETCC ||
7101      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7102    CC = Cond.getOperand(0);
7103
7104    SDValue Cmp = Cond.getOperand(1);
7105    unsigned Opc = Cmp.getOpcode();
7106    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
7107    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
7108      Cond = Cmp;
7109      addTest = false;
7110    } else {
7111      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
7112      default: break;
7113      case X86::COND_O:
7114      case X86::COND_B:
7115        // These can only come from an arithmetic instruction with overflow,
7116        // e.g. SADDO, UADDO.
7117        Cond = Cond.getNode()->getOperand(1);
7118        addTest = false;
7119        break;
7120      }
7121    }
7122  } else {
7123    unsigned CondOpc;
7124    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
7125      SDValue Cmp = Cond.getOperand(0).getOperand(1);
7126      if (CondOpc == ISD::OR) {
7127        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
7128        // two branches instead of an explicit OR instruction with a
7129        // separate test.
7130        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7131            isX86LogicalCmp(Cmp)) {
7132          CC = Cond.getOperand(0).getOperand(0);
7133          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7134                              Chain, Dest, CC, Cmp);
7135          CC = Cond.getOperand(1).getOperand(0);
7136          Cond = Cmp;
7137          addTest = false;
7138        }
7139      } else { // ISD::AND
7140        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
7141        // two branches instead of an explicit AND instruction with a
7142        // separate test. However, we only do this if this block doesn't
7143        // have a fall-through edge, because this requires an explicit
7144        // jmp when the condition is false.
7145        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7146            isX86LogicalCmp(Cmp) &&
7147            Op.getNode()->hasOneUse()) {
7148          X86::CondCode CCode =
7149            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7150          CCode = X86::GetOppositeBranchCondition(CCode);
7151          CC = DAG.getConstant(CCode, MVT::i8);
7152          SDNode *User = *Op.getNode()->use_begin();
7153          // Look for an unconditional branch following this conditional branch.
7154          // We need this because we need to reverse the successors in order
7155          // to implement FCMP_OEQ.
7156          if (User->getOpcode() == ISD::BR) {
7157            SDValue FalseBB = User->getOperand(1);
7158            SDNode *NewBR =
7159              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
7160            assert(NewBR == User);
7161            (void)NewBR;
7162            Dest = FalseBB;
7163
7164            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7165                                Chain, Dest, CC, Cmp);
7166            X86::CondCode CCode =
7167              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
7168            CCode = X86::GetOppositeBranchCondition(CCode);
7169            CC = DAG.getConstant(CCode, MVT::i8);
7170            Cond = Cmp;
7171            addTest = false;
7172          }
7173        }
7174      }
7175    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
7176      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
7177      // It should be transformed during dag combiner except when the condition
7178      // is set by a arithmetics with overflow node.
7179      X86::CondCode CCode =
7180        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7181      CCode = X86::GetOppositeBranchCondition(CCode);
7182      CC = DAG.getConstant(CCode, MVT::i8);
7183      Cond = Cond.getOperand(0).getOperand(1);
7184      addTest = false;
7185    }
7186  }
7187
7188  if (addTest) {
7189    // Look pass the truncate.
7190    if (Cond.getOpcode() == ISD::TRUNCATE)
7191      Cond = Cond.getOperand(0);
7192
7193    // We know the result of AND is compared against zero. Try to match
7194    // it to BT.
7195    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7196      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7197      if (NewSetCC.getNode()) {
7198        CC = NewSetCC.getOperand(0);
7199        Cond = NewSetCC.getOperand(1);
7200        addTest = false;
7201      }
7202    }
7203  }
7204
7205  if (addTest) {
7206    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7207    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7208  }
7209  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7210                     Chain, Dest, CC, Cond);
7211}
7212
7213
7214// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
7215// Calls to _alloca is needed to probe the stack when allocating more than 4k
7216// bytes in one go. Touching the stack at 4K increments is necessary to ensure
7217// that the guard pages used by the OS virtual memory manager are allocated in
7218// correct sequence.
7219SDValue
7220X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7221                                           SelectionDAG &DAG) const {
7222  assert(Subtarget->isTargetCygMing() &&
7223         "This should be used only on Cygwin/Mingw targets");
7224  DebugLoc dl = Op.getDebugLoc();
7225
7226  // Get the inputs.
7227  SDValue Chain = Op.getOperand(0);
7228  SDValue Size  = Op.getOperand(1);
7229  // FIXME: Ensure alignment here
7230
7231  SDValue Flag;
7232
7233  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
7234
7235  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
7236  Flag = Chain.getValue(1);
7237
7238  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
7239
7240  Chain = DAG.getNode(X86ISD::MINGW_ALLOCA, dl, NodeTys, Chain, Flag);
7241  Flag = Chain.getValue(1);
7242
7243  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
7244
7245  SDValue Ops1[2] = { Chain.getValue(0), Chain };
7246  return DAG.getMergeValues(Ops1, 2, dl);
7247}
7248
7249SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
7250  MachineFunction &MF = DAG.getMachineFunction();
7251  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
7252
7253  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7254  DebugLoc dl = Op.getDebugLoc();
7255
7256  if (!Subtarget->is64Bit()) {
7257    // vastart just stores the address of the VarArgsFrameIndex slot into the
7258    // memory location argument.
7259    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7260                                   getPointerTy());
7261    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
7262                        false, false, 0);
7263  }
7264
7265  // __va_list_tag:
7266  //   gp_offset         (0 - 6 * 8)
7267  //   fp_offset         (48 - 48 + 8 * 16)
7268  //   overflow_arg_area (point to parameters coming in memory).
7269  //   reg_save_area
7270  SmallVector<SDValue, 8> MemOps;
7271  SDValue FIN = Op.getOperand(1);
7272  // Store gp_offset
7273  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
7274                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
7275                                               MVT::i32),
7276                               FIN, SV, 0, false, false, 0);
7277  MemOps.push_back(Store);
7278
7279  // Store fp_offset
7280  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7281                    FIN, DAG.getIntPtrConstant(4));
7282  Store = DAG.getStore(Op.getOperand(0), dl,
7283                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
7284                                       MVT::i32),
7285                       FIN, SV, 4, false, false, 0);
7286  MemOps.push_back(Store);
7287
7288  // Store ptr to overflow_arg_area
7289  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7290                    FIN, DAG.getIntPtrConstant(4));
7291  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7292                                    getPointerTy());
7293  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 8,
7294                       false, false, 0);
7295  MemOps.push_back(Store);
7296
7297  // Store ptr to reg_save_area.
7298  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7299                    FIN, DAG.getIntPtrConstant(8));
7300  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
7301                                    getPointerTy());
7302  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 16,
7303                       false, false, 0);
7304  MemOps.push_back(Store);
7305  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7306                     &MemOps[0], MemOps.size());
7307}
7308
7309SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
7310  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
7311  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
7312
7313  report_fatal_error("VAArgInst is not yet implemented for x86-64!");
7314  return SDValue();
7315}
7316
7317SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
7318  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
7319  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
7320  SDValue Chain = Op.getOperand(0);
7321  SDValue DstPtr = Op.getOperand(1);
7322  SDValue SrcPtr = Op.getOperand(2);
7323  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
7324  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7325  DebugLoc dl = Op.getDebugLoc();
7326
7327  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
7328                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
7329                       false, DstSV, 0, SrcSV, 0);
7330}
7331
7332SDValue
7333X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
7334  DebugLoc dl = Op.getDebugLoc();
7335  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7336  switch (IntNo) {
7337  default: return SDValue();    // Don't custom lower most intrinsics.
7338  // Comparison intrinsics.
7339  case Intrinsic::x86_sse_comieq_ss:
7340  case Intrinsic::x86_sse_comilt_ss:
7341  case Intrinsic::x86_sse_comile_ss:
7342  case Intrinsic::x86_sse_comigt_ss:
7343  case Intrinsic::x86_sse_comige_ss:
7344  case Intrinsic::x86_sse_comineq_ss:
7345  case Intrinsic::x86_sse_ucomieq_ss:
7346  case Intrinsic::x86_sse_ucomilt_ss:
7347  case Intrinsic::x86_sse_ucomile_ss:
7348  case Intrinsic::x86_sse_ucomigt_ss:
7349  case Intrinsic::x86_sse_ucomige_ss:
7350  case Intrinsic::x86_sse_ucomineq_ss:
7351  case Intrinsic::x86_sse2_comieq_sd:
7352  case Intrinsic::x86_sse2_comilt_sd:
7353  case Intrinsic::x86_sse2_comile_sd:
7354  case Intrinsic::x86_sse2_comigt_sd:
7355  case Intrinsic::x86_sse2_comige_sd:
7356  case Intrinsic::x86_sse2_comineq_sd:
7357  case Intrinsic::x86_sse2_ucomieq_sd:
7358  case Intrinsic::x86_sse2_ucomilt_sd:
7359  case Intrinsic::x86_sse2_ucomile_sd:
7360  case Intrinsic::x86_sse2_ucomigt_sd:
7361  case Intrinsic::x86_sse2_ucomige_sd:
7362  case Intrinsic::x86_sse2_ucomineq_sd: {
7363    unsigned Opc = 0;
7364    ISD::CondCode CC = ISD::SETCC_INVALID;
7365    switch (IntNo) {
7366    default: break;
7367    case Intrinsic::x86_sse_comieq_ss:
7368    case Intrinsic::x86_sse2_comieq_sd:
7369      Opc = X86ISD::COMI;
7370      CC = ISD::SETEQ;
7371      break;
7372    case Intrinsic::x86_sse_comilt_ss:
7373    case Intrinsic::x86_sse2_comilt_sd:
7374      Opc = X86ISD::COMI;
7375      CC = ISD::SETLT;
7376      break;
7377    case Intrinsic::x86_sse_comile_ss:
7378    case Intrinsic::x86_sse2_comile_sd:
7379      Opc = X86ISD::COMI;
7380      CC = ISD::SETLE;
7381      break;
7382    case Intrinsic::x86_sse_comigt_ss:
7383    case Intrinsic::x86_sse2_comigt_sd:
7384      Opc = X86ISD::COMI;
7385      CC = ISD::SETGT;
7386      break;
7387    case Intrinsic::x86_sse_comige_ss:
7388    case Intrinsic::x86_sse2_comige_sd:
7389      Opc = X86ISD::COMI;
7390      CC = ISD::SETGE;
7391      break;
7392    case Intrinsic::x86_sse_comineq_ss:
7393    case Intrinsic::x86_sse2_comineq_sd:
7394      Opc = X86ISD::COMI;
7395      CC = ISD::SETNE;
7396      break;
7397    case Intrinsic::x86_sse_ucomieq_ss:
7398    case Intrinsic::x86_sse2_ucomieq_sd:
7399      Opc = X86ISD::UCOMI;
7400      CC = ISD::SETEQ;
7401      break;
7402    case Intrinsic::x86_sse_ucomilt_ss:
7403    case Intrinsic::x86_sse2_ucomilt_sd:
7404      Opc = X86ISD::UCOMI;
7405      CC = ISD::SETLT;
7406      break;
7407    case Intrinsic::x86_sse_ucomile_ss:
7408    case Intrinsic::x86_sse2_ucomile_sd:
7409      Opc = X86ISD::UCOMI;
7410      CC = ISD::SETLE;
7411      break;
7412    case Intrinsic::x86_sse_ucomigt_ss:
7413    case Intrinsic::x86_sse2_ucomigt_sd:
7414      Opc = X86ISD::UCOMI;
7415      CC = ISD::SETGT;
7416      break;
7417    case Intrinsic::x86_sse_ucomige_ss:
7418    case Intrinsic::x86_sse2_ucomige_sd:
7419      Opc = X86ISD::UCOMI;
7420      CC = ISD::SETGE;
7421      break;
7422    case Intrinsic::x86_sse_ucomineq_ss:
7423    case Intrinsic::x86_sse2_ucomineq_sd:
7424      Opc = X86ISD::UCOMI;
7425      CC = ISD::SETNE;
7426      break;
7427    }
7428
7429    SDValue LHS = Op.getOperand(1);
7430    SDValue RHS = Op.getOperand(2);
7431    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
7432    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
7433    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
7434    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7435                                DAG.getConstant(X86CC, MVT::i8), Cond);
7436    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7437  }
7438  // ptest and testp intrinsics. The intrinsic these come from are designed to
7439  // return an integer value, not just an instruction so lower it to the ptest
7440  // or testp pattern and a setcc for the result.
7441  case Intrinsic::x86_sse41_ptestz:
7442  case Intrinsic::x86_sse41_ptestc:
7443  case Intrinsic::x86_sse41_ptestnzc:
7444  case Intrinsic::x86_avx_ptestz_256:
7445  case Intrinsic::x86_avx_ptestc_256:
7446  case Intrinsic::x86_avx_ptestnzc_256:
7447  case Intrinsic::x86_avx_vtestz_ps:
7448  case Intrinsic::x86_avx_vtestc_ps:
7449  case Intrinsic::x86_avx_vtestnzc_ps:
7450  case Intrinsic::x86_avx_vtestz_pd:
7451  case Intrinsic::x86_avx_vtestc_pd:
7452  case Intrinsic::x86_avx_vtestnzc_pd:
7453  case Intrinsic::x86_avx_vtestz_ps_256:
7454  case Intrinsic::x86_avx_vtestc_ps_256:
7455  case Intrinsic::x86_avx_vtestnzc_ps_256:
7456  case Intrinsic::x86_avx_vtestz_pd_256:
7457  case Intrinsic::x86_avx_vtestc_pd_256:
7458  case Intrinsic::x86_avx_vtestnzc_pd_256: {
7459    bool IsTestPacked = false;
7460    unsigned X86CC = 0;
7461    switch (IntNo) {
7462    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
7463    case Intrinsic::x86_avx_vtestz_ps:
7464    case Intrinsic::x86_avx_vtestz_pd:
7465    case Intrinsic::x86_avx_vtestz_ps_256:
7466    case Intrinsic::x86_avx_vtestz_pd_256:
7467      IsTestPacked = true; // Fallthrough
7468    case Intrinsic::x86_sse41_ptestz:
7469    case Intrinsic::x86_avx_ptestz_256:
7470      // ZF = 1
7471      X86CC = X86::COND_E;
7472      break;
7473    case Intrinsic::x86_avx_vtestc_ps:
7474    case Intrinsic::x86_avx_vtestc_pd:
7475    case Intrinsic::x86_avx_vtestc_ps_256:
7476    case Intrinsic::x86_avx_vtestc_pd_256:
7477      IsTestPacked = true; // Fallthrough
7478    case Intrinsic::x86_sse41_ptestc:
7479    case Intrinsic::x86_avx_ptestc_256:
7480      // CF = 1
7481      X86CC = X86::COND_B;
7482      break;
7483    case Intrinsic::x86_avx_vtestnzc_ps:
7484    case Intrinsic::x86_avx_vtestnzc_pd:
7485    case Intrinsic::x86_avx_vtestnzc_ps_256:
7486    case Intrinsic::x86_avx_vtestnzc_pd_256:
7487      IsTestPacked = true; // Fallthrough
7488    case Intrinsic::x86_sse41_ptestnzc:
7489    case Intrinsic::x86_avx_ptestnzc_256:
7490      // ZF and CF = 0
7491      X86CC = X86::COND_A;
7492      break;
7493    }
7494
7495    SDValue LHS = Op.getOperand(1);
7496    SDValue RHS = Op.getOperand(2);
7497    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
7498    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
7499    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
7500    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
7501    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7502  }
7503
7504  // Fix vector shift instructions where the last operand is a non-immediate
7505  // i32 value.
7506  case Intrinsic::x86_sse2_pslli_w:
7507  case Intrinsic::x86_sse2_pslli_d:
7508  case Intrinsic::x86_sse2_pslli_q:
7509  case Intrinsic::x86_sse2_psrli_w:
7510  case Intrinsic::x86_sse2_psrli_d:
7511  case Intrinsic::x86_sse2_psrli_q:
7512  case Intrinsic::x86_sse2_psrai_w:
7513  case Intrinsic::x86_sse2_psrai_d:
7514  case Intrinsic::x86_mmx_pslli_w:
7515  case Intrinsic::x86_mmx_pslli_d:
7516  case Intrinsic::x86_mmx_pslli_q:
7517  case Intrinsic::x86_mmx_psrli_w:
7518  case Intrinsic::x86_mmx_psrli_d:
7519  case Intrinsic::x86_mmx_psrli_q:
7520  case Intrinsic::x86_mmx_psrai_w:
7521  case Intrinsic::x86_mmx_psrai_d: {
7522    SDValue ShAmt = Op.getOperand(2);
7523    if (isa<ConstantSDNode>(ShAmt))
7524      return SDValue();
7525
7526    unsigned NewIntNo = 0;
7527    EVT ShAmtVT = MVT::v4i32;
7528    switch (IntNo) {
7529    case Intrinsic::x86_sse2_pslli_w:
7530      NewIntNo = Intrinsic::x86_sse2_psll_w;
7531      break;
7532    case Intrinsic::x86_sse2_pslli_d:
7533      NewIntNo = Intrinsic::x86_sse2_psll_d;
7534      break;
7535    case Intrinsic::x86_sse2_pslli_q:
7536      NewIntNo = Intrinsic::x86_sse2_psll_q;
7537      break;
7538    case Intrinsic::x86_sse2_psrli_w:
7539      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7540      break;
7541    case Intrinsic::x86_sse2_psrli_d:
7542      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7543      break;
7544    case Intrinsic::x86_sse2_psrli_q:
7545      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7546      break;
7547    case Intrinsic::x86_sse2_psrai_w:
7548      NewIntNo = Intrinsic::x86_sse2_psra_w;
7549      break;
7550    case Intrinsic::x86_sse2_psrai_d:
7551      NewIntNo = Intrinsic::x86_sse2_psra_d;
7552      break;
7553    default: {
7554      ShAmtVT = MVT::v2i32;
7555      switch (IntNo) {
7556      case Intrinsic::x86_mmx_pslli_w:
7557        NewIntNo = Intrinsic::x86_mmx_psll_w;
7558        break;
7559      case Intrinsic::x86_mmx_pslli_d:
7560        NewIntNo = Intrinsic::x86_mmx_psll_d;
7561        break;
7562      case Intrinsic::x86_mmx_pslli_q:
7563        NewIntNo = Intrinsic::x86_mmx_psll_q;
7564        break;
7565      case Intrinsic::x86_mmx_psrli_w:
7566        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7567        break;
7568      case Intrinsic::x86_mmx_psrli_d:
7569        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7570        break;
7571      case Intrinsic::x86_mmx_psrli_q:
7572        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7573        break;
7574      case Intrinsic::x86_mmx_psrai_w:
7575        NewIntNo = Intrinsic::x86_mmx_psra_w;
7576        break;
7577      case Intrinsic::x86_mmx_psrai_d:
7578        NewIntNo = Intrinsic::x86_mmx_psra_d;
7579        break;
7580      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7581      }
7582      break;
7583    }
7584    }
7585
7586    // The vector shift intrinsics with scalars uses 32b shift amounts but
7587    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7588    // to be zero.
7589    SDValue ShOps[4];
7590    ShOps[0] = ShAmt;
7591    ShOps[1] = DAG.getConstant(0, MVT::i32);
7592    if (ShAmtVT == MVT::v4i32) {
7593      ShOps[2] = DAG.getUNDEF(MVT::i32);
7594      ShOps[3] = DAG.getUNDEF(MVT::i32);
7595      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7596    } else {
7597      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7598    }
7599
7600    EVT VT = Op.getValueType();
7601    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7602    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7603                       DAG.getConstant(NewIntNo, MVT::i32),
7604                       Op.getOperand(1), ShAmt);
7605  }
7606  }
7607}
7608
7609SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
7610                                           SelectionDAG &DAG) const {
7611  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7612  MFI->setReturnAddressIsTaken(true);
7613
7614  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7615  DebugLoc dl = Op.getDebugLoc();
7616
7617  if (Depth > 0) {
7618    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7619    SDValue Offset =
7620      DAG.getConstant(TD->getPointerSize(),
7621                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7622    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7623                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7624                                   FrameAddr, Offset),
7625                       NULL, 0, false, false, 0);
7626  }
7627
7628  // Just load the return address.
7629  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7630  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7631                     RetAddrFI, NULL, 0, false, false, 0);
7632}
7633
7634SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
7635  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7636  MFI->setFrameAddressIsTaken(true);
7637
7638  EVT VT = Op.getValueType();
7639  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7640  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7641  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7642  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7643  while (Depth--)
7644    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
7645                            false, false, 0);
7646  return FrameAddr;
7647}
7648
7649SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7650                                                     SelectionDAG &DAG) const {
7651  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7652}
7653
7654SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
7655  MachineFunction &MF = DAG.getMachineFunction();
7656  SDValue Chain     = Op.getOperand(0);
7657  SDValue Offset    = Op.getOperand(1);
7658  SDValue Handler   = Op.getOperand(2);
7659  DebugLoc dl       = Op.getDebugLoc();
7660
7661  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
7662                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7663                                     getPointerTy());
7664  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7665
7666  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
7667                                  DAG.getIntPtrConstant(TD->getPointerSize()));
7668  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7669  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
7670  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7671  MF.getRegInfo().addLiveOut(StoreAddrReg);
7672
7673  return DAG.getNode(X86ISD::EH_RETURN, dl,
7674                     MVT::Other,
7675                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7676}
7677
7678SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7679                                             SelectionDAG &DAG) const {
7680  SDValue Root = Op.getOperand(0);
7681  SDValue Trmp = Op.getOperand(1); // trampoline
7682  SDValue FPtr = Op.getOperand(2); // nested function
7683  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7684  DebugLoc dl  = Op.getDebugLoc();
7685
7686  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7687
7688  if (Subtarget->is64Bit()) {
7689    SDValue OutChains[6];
7690
7691    // Large code-model.
7692    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7693    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7694
7695    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7696    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7697
7698    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7699
7700    // Load the pointer to the nested function into R11.
7701    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7702    SDValue Addr = Trmp;
7703    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7704                                Addr, TrmpAddr, 0, false, false, 0);
7705
7706    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7707                       DAG.getConstant(2, MVT::i64));
7708    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7709                                false, false, 2);
7710
7711    // Load the 'nest' parameter value into R10.
7712    // R10 is specified in X86CallingConv.td
7713    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7714    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7715                       DAG.getConstant(10, MVT::i64));
7716    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7717                                Addr, TrmpAddr, 10, false, false, 0);
7718
7719    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7720                       DAG.getConstant(12, MVT::i64));
7721    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7722                                false, false, 2);
7723
7724    // Jump to the nested function.
7725    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7726    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7727                       DAG.getConstant(20, MVT::i64));
7728    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7729                                Addr, TrmpAddr, 20, false, false, 0);
7730
7731    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7732    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7733                       DAG.getConstant(22, MVT::i64));
7734    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7735                                TrmpAddr, 22, false, false, 0);
7736
7737    SDValue Ops[] =
7738      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7739    return DAG.getMergeValues(Ops, 2, dl);
7740  } else {
7741    const Function *Func =
7742      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7743    CallingConv::ID CC = Func->getCallingConv();
7744    unsigned NestReg;
7745
7746    switch (CC) {
7747    default:
7748      llvm_unreachable("Unsupported calling convention");
7749    case CallingConv::C:
7750    case CallingConv::X86_StdCall: {
7751      // Pass 'nest' parameter in ECX.
7752      // Must be kept in sync with X86CallingConv.td
7753      NestReg = X86::ECX;
7754
7755      // Check that ECX wasn't needed by an 'inreg' parameter.
7756      const FunctionType *FTy = Func->getFunctionType();
7757      const AttrListPtr &Attrs = Func->getAttributes();
7758
7759      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7760        unsigned InRegCount = 0;
7761        unsigned Idx = 1;
7762
7763        for (FunctionType::param_iterator I = FTy->param_begin(),
7764             E = FTy->param_end(); I != E; ++I, ++Idx)
7765          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7766            // FIXME: should only count parameters that are lowered to integers.
7767            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7768
7769        if (InRegCount > 2) {
7770          report_fatal_error("Nest register in use - reduce number of inreg"
7771                             " parameters!");
7772        }
7773      }
7774      break;
7775    }
7776    case CallingConv::X86_FastCall:
7777    case CallingConv::X86_ThisCall:
7778    case CallingConv::Fast:
7779      // Pass 'nest' parameter in EAX.
7780      // Must be kept in sync with X86CallingConv.td
7781      NestReg = X86::EAX;
7782      break;
7783    }
7784
7785    SDValue OutChains[4];
7786    SDValue Addr, Disp;
7787
7788    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7789                       DAG.getConstant(10, MVT::i32));
7790    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7791
7792    // This is storing the opcode for MOV32ri.
7793    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7794    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7795    OutChains[0] = DAG.getStore(Root, dl,
7796                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7797                                Trmp, TrmpAddr, 0, false, false, 0);
7798
7799    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7800                       DAG.getConstant(1, MVT::i32));
7801    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7802                                false, false, 1);
7803
7804    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7805    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7806                       DAG.getConstant(5, MVT::i32));
7807    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7808                                TrmpAddr, 5, false, false, 1);
7809
7810    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7811                       DAG.getConstant(6, MVT::i32));
7812    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7813                                false, false, 1);
7814
7815    SDValue Ops[] =
7816      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7817    return DAG.getMergeValues(Ops, 2, dl);
7818  }
7819}
7820
7821SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7822                                            SelectionDAG &DAG) const {
7823  /*
7824   The rounding mode is in bits 11:10 of FPSR, and has the following
7825   settings:
7826     00 Round to nearest
7827     01 Round to -inf
7828     10 Round to +inf
7829     11 Round to 0
7830
7831  FLT_ROUNDS, on the other hand, expects the following:
7832    -1 Undefined
7833     0 Round to 0
7834     1 Round to nearest
7835     2 Round to +inf
7836     3 Round to -inf
7837
7838  To perform the conversion, we do:
7839    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7840  */
7841
7842  MachineFunction &MF = DAG.getMachineFunction();
7843  const TargetMachine &TM = MF.getTarget();
7844  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7845  unsigned StackAlignment = TFI.getStackAlignment();
7846  EVT VT = Op.getValueType();
7847  DebugLoc dl = Op.getDebugLoc();
7848
7849  // Save FP Control Word to stack slot
7850  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7851  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7852
7853  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7854                              DAG.getEntryNode(), StackSlot);
7855
7856  // Load FP Control Word from stack slot
7857  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
7858                            false, false, 0);
7859
7860  // Transform as necessary
7861  SDValue CWD1 =
7862    DAG.getNode(ISD::SRL, dl, MVT::i16,
7863                DAG.getNode(ISD::AND, dl, MVT::i16,
7864                            CWD, DAG.getConstant(0x800, MVT::i16)),
7865                DAG.getConstant(11, MVT::i8));
7866  SDValue CWD2 =
7867    DAG.getNode(ISD::SRL, dl, MVT::i16,
7868                DAG.getNode(ISD::AND, dl, MVT::i16,
7869                            CWD, DAG.getConstant(0x400, MVT::i16)),
7870                DAG.getConstant(9, MVT::i8));
7871
7872  SDValue RetVal =
7873    DAG.getNode(ISD::AND, dl, MVT::i16,
7874                DAG.getNode(ISD::ADD, dl, MVT::i16,
7875                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7876                            DAG.getConstant(1, MVT::i16)),
7877                DAG.getConstant(3, MVT::i16));
7878
7879
7880  return DAG.getNode((VT.getSizeInBits() < 16 ?
7881                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7882}
7883
7884SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
7885  EVT VT = Op.getValueType();
7886  EVT OpVT = VT;
7887  unsigned NumBits = VT.getSizeInBits();
7888  DebugLoc dl = Op.getDebugLoc();
7889
7890  Op = Op.getOperand(0);
7891  if (VT == MVT::i8) {
7892    // Zero extend to i32 since there is not an i8 bsr.
7893    OpVT = MVT::i32;
7894    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7895  }
7896
7897  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7898  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7899  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7900
7901  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7902  SDValue Ops[] = {
7903    Op,
7904    DAG.getConstant(NumBits+NumBits-1, OpVT),
7905    DAG.getConstant(X86::COND_E, MVT::i8),
7906    Op.getValue(1)
7907  };
7908  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7909
7910  // Finally xor with NumBits-1.
7911  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7912
7913  if (VT == MVT::i8)
7914    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7915  return Op;
7916}
7917
7918SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
7919  EVT VT = Op.getValueType();
7920  EVT OpVT = VT;
7921  unsigned NumBits = VT.getSizeInBits();
7922  DebugLoc dl = Op.getDebugLoc();
7923
7924  Op = Op.getOperand(0);
7925  if (VT == MVT::i8) {
7926    OpVT = MVT::i32;
7927    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7928  }
7929
7930  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7931  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7932  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7933
7934  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7935  SDValue Ops[] = {
7936    Op,
7937    DAG.getConstant(NumBits, OpVT),
7938    DAG.getConstant(X86::COND_E, MVT::i8),
7939    Op.getValue(1)
7940  };
7941  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7942
7943  if (VT == MVT::i8)
7944    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7945  return Op;
7946}
7947
7948SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
7949  EVT VT = Op.getValueType();
7950  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7951  DebugLoc dl = Op.getDebugLoc();
7952
7953  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7954  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7955  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7956  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7957  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7958  //
7959  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7960  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7961  //  return AloBlo + AloBhi + AhiBlo;
7962
7963  SDValue A = Op.getOperand(0);
7964  SDValue B = Op.getOperand(1);
7965
7966  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7967                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7968                       A, DAG.getConstant(32, MVT::i32));
7969  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7970                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7971                       B, DAG.getConstant(32, MVT::i32));
7972  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7973                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7974                       A, B);
7975  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7976                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7977                       A, Bhi);
7978  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7979                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7980                       Ahi, B);
7981  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7982                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7983                       AloBhi, DAG.getConstant(32, MVT::i32));
7984  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7985                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7986                       AhiBlo, DAG.getConstant(32, MVT::i32));
7987  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7988  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7989  return Res;
7990}
7991
7992SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
7993  EVT VT = Op.getValueType();
7994  DebugLoc dl = Op.getDebugLoc();
7995  SDValue R = Op.getOperand(0);
7996
7997  LLVMContext *Context = DAG.getContext();
7998
7999  assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
8000
8001  if (VT == MVT::v4i32) {
8002    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8003                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8004                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
8005
8006    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
8007
8008    std::vector<Constant*> CV(4, CI);
8009    Constant *C = ConstantVector::get(CV);
8010    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8011    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8012                                 PseudoSourceValue::getConstantPool(), 0,
8013                                 false, false, 16);
8014
8015    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
8016    Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, Op);
8017    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
8018    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
8019  }
8020  if (VT == MVT::v16i8) {
8021    // a = a << 5;
8022    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8023                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8024                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
8025
8026    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
8027    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
8028
8029    std::vector<Constant*> CVM1(16, CM1);
8030    std::vector<Constant*> CVM2(16, CM2);
8031    Constant *C = ConstantVector::get(CVM1);
8032    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8033    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8034                            PseudoSourceValue::getConstantPool(), 0,
8035                            false, false, 16);
8036
8037    // r = pblendv(r, psllw(r & (char16)15, 4), a);
8038    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8039    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8040                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8041                    DAG.getConstant(4, MVT::i32));
8042    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8043                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8044                    R, M, Op);
8045    // a += a
8046    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8047
8048    C = ConstantVector::get(CVM2);
8049    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8050    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8051                    PseudoSourceValue::getConstantPool(), 0, false, false, 16);
8052
8053    // r = pblendv(r, psllw(r & (char16)63, 2), a);
8054    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8055    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8056                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8057                    DAG.getConstant(2, MVT::i32));
8058    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8059                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8060                    R, M, Op);
8061    // a += a
8062    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8063
8064    // return pblendv(r, r+r, a);
8065    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8066                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8067                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
8068    return R;
8069  }
8070  return SDValue();
8071}
8072
8073SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
8074  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
8075  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
8076  // looks for this combo and may remove the "setcc" instruction if the "setcc"
8077  // has only one use.
8078  SDNode *N = Op.getNode();
8079  SDValue LHS = N->getOperand(0);
8080  SDValue RHS = N->getOperand(1);
8081  unsigned BaseOp = 0;
8082  unsigned Cond = 0;
8083  DebugLoc dl = Op.getDebugLoc();
8084
8085  switch (Op.getOpcode()) {
8086  default: llvm_unreachable("Unknown ovf instruction!");
8087  case ISD::SADDO:
8088    // A subtract of one will be selected as a INC. Note that INC doesn't
8089    // set CF, so we can't do this for UADDO.
8090    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8091      if (C->getAPIntValue() == 1) {
8092        BaseOp = X86ISD::INC;
8093        Cond = X86::COND_O;
8094        break;
8095      }
8096    BaseOp = X86ISD::ADD;
8097    Cond = X86::COND_O;
8098    break;
8099  case ISD::UADDO:
8100    BaseOp = X86ISD::ADD;
8101    Cond = X86::COND_B;
8102    break;
8103  case ISD::SSUBO:
8104    // A subtract of one will be selected as a DEC. Note that DEC doesn't
8105    // set CF, so we can't do this for USUBO.
8106    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8107      if (C->getAPIntValue() == 1) {
8108        BaseOp = X86ISD::DEC;
8109        Cond = X86::COND_O;
8110        break;
8111      }
8112    BaseOp = X86ISD::SUB;
8113    Cond = X86::COND_O;
8114    break;
8115  case ISD::USUBO:
8116    BaseOp = X86ISD::SUB;
8117    Cond = X86::COND_B;
8118    break;
8119  case ISD::SMULO:
8120    BaseOp = X86ISD::SMUL;
8121    Cond = X86::COND_O;
8122    break;
8123  case ISD::UMULO:
8124    BaseOp = X86ISD::UMUL;
8125    Cond = X86::COND_B;
8126    break;
8127  }
8128
8129  // Also sets EFLAGS.
8130  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
8131  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
8132
8133  SDValue SetCC =
8134    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
8135                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
8136
8137  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8138  return Sum;
8139}
8140
8141SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
8142  DebugLoc dl = Op.getDebugLoc();
8143
8144  if (!Subtarget->hasSSE2()) {
8145    SDValue Chain = Op.getOperand(0);
8146    SDValue Zero = DAG.getConstant(0,
8147                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8148    SDValue Ops[] = {
8149      DAG.getRegister(X86::ESP, MVT::i32), // Base
8150      DAG.getTargetConstant(1, MVT::i8),   // Scale
8151      DAG.getRegister(0, MVT::i32),        // Index
8152      DAG.getTargetConstant(0, MVT::i32),  // Disp
8153      DAG.getRegister(0, MVT::i32),        // Segment.
8154      Zero,
8155      Chain
8156    };
8157    SDNode *Res =
8158      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
8159                          array_lengthof(Ops));
8160    return SDValue(Res, 0);
8161  }
8162
8163  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
8164  if (!isDev)
8165    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
8166
8167  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8168  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8169  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
8170  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
8171
8172  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
8173  if (!Op1 && !Op2 && !Op3 && Op4)
8174    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
8175
8176  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
8177  if (Op1 && !Op2 && !Op3 && !Op4)
8178    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
8179
8180  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
8181  //           (MFENCE)>;
8182  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
8183}
8184
8185SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8186  EVT T = Op.getValueType();
8187  DebugLoc dl = Op.getDebugLoc();
8188  unsigned Reg = 0;
8189  unsigned size = 0;
8190  switch(T.getSimpleVT().SimpleTy) {
8191  default:
8192    assert(false && "Invalid value type!");
8193  case MVT::i8:  Reg = X86::AL;  size = 1; break;
8194  case MVT::i16: Reg = X86::AX;  size = 2; break;
8195  case MVT::i32: Reg = X86::EAX; size = 4; break;
8196  case MVT::i64:
8197    assert(Subtarget->is64Bit() && "Node not type legal!");
8198    Reg = X86::RAX; size = 8;
8199    break;
8200  }
8201  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
8202                                    Op.getOperand(2), SDValue());
8203  SDValue Ops[] = { cpIn.getValue(0),
8204                    Op.getOperand(1),
8205                    Op.getOperand(3),
8206                    DAG.getTargetConstant(size, MVT::i8),
8207                    cpIn.getValue(1) };
8208  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8209  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
8210  SDValue cpOut =
8211    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
8212  return cpOut;
8213}
8214
8215SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
8216                                                 SelectionDAG &DAG) const {
8217  assert(Subtarget->is64Bit() && "Result not type legalized?");
8218  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8219  SDValue TheChain = Op.getOperand(0);
8220  DebugLoc dl = Op.getDebugLoc();
8221  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8222  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
8223  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
8224                                   rax.getValue(2));
8225  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
8226                            DAG.getConstant(32, MVT::i8));
8227  SDValue Ops[] = {
8228    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
8229    rdx.getValue(1)
8230  };
8231  return DAG.getMergeValues(Ops, 2, dl);
8232}
8233
8234SDValue X86TargetLowering::LowerBIT_CONVERT(SDValue Op,
8235                                            SelectionDAG &DAG) const {
8236  EVT SrcVT = Op.getOperand(0).getValueType();
8237  EVT DstVT = Op.getValueType();
8238  assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
8239          Subtarget->hasMMX() && !DisableMMX) &&
8240         "Unexpected custom BIT_CONVERT");
8241  assert((DstVT == MVT::i64 ||
8242          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
8243         "Unexpected custom BIT_CONVERT");
8244  // i64 <=> MMX conversions are Legal.
8245  if (SrcVT==MVT::i64 && DstVT.isVector())
8246    return Op;
8247  if (DstVT==MVT::i64 && SrcVT.isVector())
8248    return Op;
8249  // MMX <=> MMX conversions are Legal.
8250  if (SrcVT.isVector() && DstVT.isVector())
8251    return Op;
8252  // All other conversions need to be expanded.
8253  return SDValue();
8254}
8255SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
8256  SDNode *Node = Op.getNode();
8257  DebugLoc dl = Node->getDebugLoc();
8258  EVT T = Node->getValueType(0);
8259  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
8260                              DAG.getConstant(0, T), Node->getOperand(2));
8261  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
8262                       cast<AtomicSDNode>(Node)->getMemoryVT(),
8263                       Node->getOperand(0),
8264                       Node->getOperand(1), negOp,
8265                       cast<AtomicSDNode>(Node)->getSrcValue(),
8266                       cast<AtomicSDNode>(Node)->getAlignment());
8267}
8268
8269/// LowerOperation - Provide custom lowering hooks for some operations.
8270///
8271SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8272  switch (Op.getOpcode()) {
8273  default: llvm_unreachable("Should not custom lower this!");
8274  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
8275  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
8276  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
8277  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
8278  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
8279  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
8280  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8281  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
8282  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
8283  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
8284  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
8285  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
8286  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
8287  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
8288  case ISD::SHL_PARTS:
8289  case ISD::SRA_PARTS:
8290  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
8291  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
8292  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
8293  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
8294  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
8295  case ISD::FABS:               return LowerFABS(Op, DAG);
8296  case ISD::FNEG:               return LowerFNEG(Op, DAG);
8297  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
8298  case ISD::SETCC:              return LowerSETCC(Op, DAG);
8299  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
8300  case ISD::SELECT:             return LowerSELECT(Op, DAG);
8301  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
8302  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
8303  case ISD::VASTART:            return LowerVASTART(Op, DAG);
8304  case ISD::VAARG:              return LowerVAARG(Op, DAG);
8305  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
8306  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
8307  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
8308  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
8309  case ISD::FRAME_TO_ARGS_OFFSET:
8310                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
8311  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
8312  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
8313  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
8314  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
8315  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
8316  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
8317  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
8318  case ISD::SHL:                return LowerSHL(Op, DAG);
8319  case ISD::SADDO:
8320  case ISD::UADDO:
8321  case ISD::SSUBO:
8322  case ISD::USUBO:
8323  case ISD::SMULO:
8324  case ISD::UMULO:              return LowerXALUO(Op, DAG);
8325  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
8326  case ISD::BIT_CONVERT:        return LowerBIT_CONVERT(Op, DAG);
8327  }
8328}
8329
8330void X86TargetLowering::
8331ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
8332                        SelectionDAG &DAG, unsigned NewOp) const {
8333  EVT T = Node->getValueType(0);
8334  DebugLoc dl = Node->getDebugLoc();
8335  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
8336
8337  SDValue Chain = Node->getOperand(0);
8338  SDValue In1 = Node->getOperand(1);
8339  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8340                             Node->getOperand(2), DAG.getIntPtrConstant(0));
8341  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8342                             Node->getOperand(2), DAG.getIntPtrConstant(1));
8343  SDValue Ops[] = { Chain, In1, In2L, In2H };
8344  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
8345  SDValue Result =
8346    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
8347                            cast<MemSDNode>(Node)->getMemOperand());
8348  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
8349  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8350  Results.push_back(Result.getValue(2));
8351}
8352
8353/// ReplaceNodeResults - Replace a node with an illegal result type
8354/// with a new node built out of custom code.
8355void X86TargetLowering::ReplaceNodeResults(SDNode *N,
8356                                           SmallVectorImpl<SDValue>&Results,
8357                                           SelectionDAG &DAG) const {
8358  DebugLoc dl = N->getDebugLoc();
8359  switch (N->getOpcode()) {
8360  default:
8361    assert(false && "Do not know how to custom type legalize this operation!");
8362    return;
8363  case ISD::FP_TO_SINT: {
8364    std::pair<SDValue,SDValue> Vals =
8365        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
8366    SDValue FIST = Vals.first, StackSlot = Vals.second;
8367    if (FIST.getNode() != 0) {
8368      EVT VT = N->getValueType(0);
8369      // Return a load from the stack slot.
8370      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
8371                                    false, false, 0));
8372    }
8373    return;
8374  }
8375  case ISD::READCYCLECOUNTER: {
8376    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8377    SDValue TheChain = N->getOperand(0);
8378    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8379    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
8380                                     rd.getValue(1));
8381    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
8382                                     eax.getValue(2));
8383    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
8384    SDValue Ops[] = { eax, edx };
8385    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
8386    Results.push_back(edx.getValue(1));
8387    return;
8388  }
8389  case ISD::ATOMIC_CMP_SWAP: {
8390    EVT T = N->getValueType(0);
8391    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
8392    SDValue cpInL, cpInH;
8393    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8394                        DAG.getConstant(0, MVT::i32));
8395    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8396                        DAG.getConstant(1, MVT::i32));
8397    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
8398    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
8399                             cpInL.getValue(1));
8400    SDValue swapInL, swapInH;
8401    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8402                          DAG.getConstant(0, MVT::i32));
8403    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8404                          DAG.getConstant(1, MVT::i32));
8405    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
8406                               cpInH.getValue(1));
8407    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
8408                               swapInL.getValue(1));
8409    SDValue Ops[] = { swapInH.getValue(0),
8410                      N->getOperand(1),
8411                      swapInH.getValue(1) };
8412    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8413    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
8414    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
8415                                        MVT::i32, Result.getValue(1));
8416    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
8417                                        MVT::i32, cpOutL.getValue(2));
8418    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
8419    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8420    Results.push_back(cpOutH.getValue(1));
8421    return;
8422  }
8423  case ISD::ATOMIC_LOAD_ADD:
8424    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
8425    return;
8426  case ISD::ATOMIC_LOAD_AND:
8427    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
8428    return;
8429  case ISD::ATOMIC_LOAD_NAND:
8430    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
8431    return;
8432  case ISD::ATOMIC_LOAD_OR:
8433    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
8434    return;
8435  case ISD::ATOMIC_LOAD_SUB:
8436    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
8437    return;
8438  case ISD::ATOMIC_LOAD_XOR:
8439    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
8440    return;
8441  case ISD::ATOMIC_SWAP:
8442    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
8443    return;
8444  }
8445}
8446
8447const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
8448  switch (Opcode) {
8449  default: return NULL;
8450  case X86ISD::BSF:                return "X86ISD::BSF";
8451  case X86ISD::BSR:                return "X86ISD::BSR";
8452  case X86ISD::SHLD:               return "X86ISD::SHLD";
8453  case X86ISD::SHRD:               return "X86ISD::SHRD";
8454  case X86ISD::FAND:               return "X86ISD::FAND";
8455  case X86ISD::FOR:                return "X86ISD::FOR";
8456  case X86ISD::FXOR:               return "X86ISD::FXOR";
8457  case X86ISD::FSRL:               return "X86ISD::FSRL";
8458  case X86ISD::FILD:               return "X86ISD::FILD";
8459  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
8460  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
8461  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
8462  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
8463  case X86ISD::FLD:                return "X86ISD::FLD";
8464  case X86ISD::FST:                return "X86ISD::FST";
8465  case X86ISD::CALL:               return "X86ISD::CALL";
8466  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
8467  case X86ISD::BT:                 return "X86ISD::BT";
8468  case X86ISD::CMP:                return "X86ISD::CMP";
8469  case X86ISD::COMI:               return "X86ISD::COMI";
8470  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
8471  case X86ISD::SETCC:              return "X86ISD::SETCC";
8472  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
8473  case X86ISD::CMOV:               return "X86ISD::CMOV";
8474  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
8475  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
8476  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
8477  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
8478  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
8479  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
8480  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
8481  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
8482  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
8483  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
8484  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
8485  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
8486  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
8487  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
8488  case X86ISD::FMAX:               return "X86ISD::FMAX";
8489  case X86ISD::FMIN:               return "X86ISD::FMIN";
8490  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
8491  case X86ISD::FRCP:               return "X86ISD::FRCP";
8492  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
8493  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
8494  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
8495  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
8496  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
8497  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
8498  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
8499  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
8500  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
8501  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
8502  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
8503  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
8504  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
8505  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
8506  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
8507  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
8508  case X86ISD::VSHL:               return "X86ISD::VSHL";
8509  case X86ISD::VSRL:               return "X86ISD::VSRL";
8510  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
8511  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
8512  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
8513  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
8514  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
8515  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
8516  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
8517  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
8518  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
8519  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
8520  case X86ISD::ADD:                return "X86ISD::ADD";
8521  case X86ISD::SUB:                return "X86ISD::SUB";
8522  case X86ISD::SMUL:               return "X86ISD::SMUL";
8523  case X86ISD::UMUL:               return "X86ISD::UMUL";
8524  case X86ISD::INC:                return "X86ISD::INC";
8525  case X86ISD::DEC:                return "X86ISD::DEC";
8526  case X86ISD::OR:                 return "X86ISD::OR";
8527  case X86ISD::XOR:                return "X86ISD::XOR";
8528  case X86ISD::AND:                return "X86ISD::AND";
8529  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
8530  case X86ISD::PTEST:              return "X86ISD::PTEST";
8531  case X86ISD::TESTP:              return "X86ISD::TESTP";
8532  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
8533  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
8534  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
8535  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
8536  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
8537  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
8538  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
8539  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
8540  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
8541  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
8542  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
8543  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
8544  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
8545  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
8546  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
8547  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
8548  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
8549  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
8550  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
8551  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
8552  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
8553  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
8554  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
8555  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
8556  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
8557  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
8558  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
8559  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
8560  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
8561  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
8562  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
8563  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
8564  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
8565  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
8566  case X86ISD::MINGW_ALLOCA:       return "X86ISD::MINGW_ALLOCA";
8567  }
8568}
8569
8570// isLegalAddressingMode - Return true if the addressing mode represented
8571// by AM is legal for this target, for a load/store of the specified type.
8572bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
8573                                              const Type *Ty) const {
8574  // X86 supports extremely general addressing modes.
8575  CodeModel::Model M = getTargetMachine().getCodeModel();
8576  Reloc::Model R = getTargetMachine().getRelocationModel();
8577
8578  // X86 allows a sign-extended 32-bit immediate field as a displacement.
8579  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
8580    return false;
8581
8582  if (AM.BaseGV) {
8583    unsigned GVFlags =
8584      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
8585
8586    // If a reference to this global requires an extra load, we can't fold it.
8587    if (isGlobalStubReference(GVFlags))
8588      return false;
8589
8590    // If BaseGV requires a register for the PIC base, we cannot also have a
8591    // BaseReg specified.
8592    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
8593      return false;
8594
8595    // If lower 4G is not available, then we must use rip-relative addressing.
8596    if ((M != CodeModel::Small || R != Reloc::Static) &&
8597        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
8598      return false;
8599  }
8600
8601  switch (AM.Scale) {
8602  case 0:
8603  case 1:
8604  case 2:
8605  case 4:
8606  case 8:
8607    // These scales always work.
8608    break;
8609  case 3:
8610  case 5:
8611  case 9:
8612    // These scales are formed with basereg+scalereg.  Only accept if there is
8613    // no basereg yet.
8614    if (AM.HasBaseReg)
8615      return false;
8616    break;
8617  default:  // Other stuff never works.
8618    return false;
8619  }
8620
8621  return true;
8622}
8623
8624
8625bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
8626  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8627    return false;
8628  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8629  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8630  if (NumBits1 <= NumBits2)
8631    return false;
8632  return true;
8633}
8634
8635bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8636  if (!VT1.isInteger() || !VT2.isInteger())
8637    return false;
8638  unsigned NumBits1 = VT1.getSizeInBits();
8639  unsigned NumBits2 = VT2.getSizeInBits();
8640  if (NumBits1 <= NumBits2)
8641    return false;
8642  return true;
8643}
8644
8645bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
8646  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8647  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
8648}
8649
8650bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
8651  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8652  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
8653}
8654
8655bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
8656  // i16 instructions are longer (0x66 prefix) and potentially slower.
8657  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
8658}
8659
8660/// isShuffleMaskLegal - Targets can use this to indicate that they only
8661/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8662/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8663/// are assumed to be legal.
8664bool
8665X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
8666                                      EVT VT) const {
8667  // Very little shuffling can be done for 64-bit vectors right now.
8668  if (VT.getSizeInBits() == 64)
8669    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
8670
8671  // FIXME: pshufb, blends, shifts.
8672  return (VT.getVectorNumElements() == 2 ||
8673          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
8674          isMOVLMask(M, VT) ||
8675          isSHUFPMask(M, VT) ||
8676          isPSHUFDMask(M, VT) ||
8677          isPSHUFHWMask(M, VT) ||
8678          isPSHUFLWMask(M, VT) ||
8679          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
8680          isUNPCKLMask(M, VT) ||
8681          isUNPCKHMask(M, VT) ||
8682          isUNPCKL_v_undef_Mask(M, VT) ||
8683          isUNPCKH_v_undef_Mask(M, VT));
8684}
8685
8686bool
8687X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
8688                                          EVT VT) const {
8689  unsigned NumElts = VT.getVectorNumElements();
8690  // FIXME: This collection of masks seems suspect.
8691  if (NumElts == 2)
8692    return true;
8693  if (NumElts == 4 && VT.getSizeInBits() == 128) {
8694    return (isMOVLMask(Mask, VT)  ||
8695            isCommutedMOVLMask(Mask, VT, true) ||
8696            isSHUFPMask(Mask, VT) ||
8697            isCommutedSHUFPMask(Mask, VT));
8698  }
8699  return false;
8700}
8701
8702//===----------------------------------------------------------------------===//
8703//                           X86 Scheduler Hooks
8704//===----------------------------------------------------------------------===//
8705
8706// private utility function
8707MachineBasicBlock *
8708X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
8709                                                       MachineBasicBlock *MBB,
8710                                                       unsigned regOpc,
8711                                                       unsigned immOpc,
8712                                                       unsigned LoadOpc,
8713                                                       unsigned CXchgOpc,
8714                                                       unsigned notOpc,
8715                                                       unsigned EAXreg,
8716                                                       TargetRegisterClass *RC,
8717                                                       bool invSrc) const {
8718  // For the atomic bitwise operator, we generate
8719  //   thisMBB:
8720  //   newMBB:
8721  //     ld  t1 = [bitinstr.addr]
8722  //     op  t2 = t1, [bitinstr.val]
8723  //     mov EAX = t1
8724  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8725  //     bz  newMBB
8726  //     fallthrough -->nextMBB
8727  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8728  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8729  MachineFunction::iterator MBBIter = MBB;
8730  ++MBBIter;
8731
8732  /// First build the CFG
8733  MachineFunction *F = MBB->getParent();
8734  MachineBasicBlock *thisMBB = MBB;
8735  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8736  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8737  F->insert(MBBIter, newMBB);
8738  F->insert(MBBIter, nextMBB);
8739
8740  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8741  nextMBB->splice(nextMBB->begin(), thisMBB,
8742                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8743                  thisMBB->end());
8744  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8745
8746  // Update thisMBB to fall through to newMBB
8747  thisMBB->addSuccessor(newMBB);
8748
8749  // newMBB jumps to itself and fall through to nextMBB
8750  newMBB->addSuccessor(nextMBB);
8751  newMBB->addSuccessor(newMBB);
8752
8753  // Insert instructions into newMBB based on incoming instruction
8754  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
8755         "unexpected number of operands");
8756  DebugLoc dl = bInstr->getDebugLoc();
8757  MachineOperand& destOper = bInstr->getOperand(0);
8758  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8759  int numArgs = bInstr->getNumOperands() - 1;
8760  for (int i=0; i < numArgs; ++i)
8761    argOpers[i] = &bInstr->getOperand(i+1);
8762
8763  // x86 address has 4 operands: base, index, scale, and displacement
8764  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8765  int valArgIndx = lastAddrIndx + 1;
8766
8767  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8768  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
8769  for (int i=0; i <= lastAddrIndx; ++i)
8770    (*MIB).addOperand(*argOpers[i]);
8771
8772  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
8773  if (invSrc) {
8774    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
8775  }
8776  else
8777    tt = t1;
8778
8779  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8780  assert((argOpers[valArgIndx]->isReg() ||
8781          argOpers[valArgIndx]->isImm()) &&
8782         "invalid operand");
8783  if (argOpers[valArgIndx]->isReg())
8784    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
8785  else
8786    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
8787  MIB.addReg(tt);
8788  (*MIB).addOperand(*argOpers[valArgIndx]);
8789
8790  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
8791  MIB.addReg(t1);
8792
8793  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
8794  for (int i=0; i <= lastAddrIndx; ++i)
8795    (*MIB).addOperand(*argOpers[i]);
8796  MIB.addReg(t2);
8797  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8798  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8799                    bInstr->memoperands_end());
8800
8801  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
8802  MIB.addReg(EAXreg);
8803
8804  // insert branch
8805  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8806
8807  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
8808  return nextMBB;
8809}
8810
8811// private utility function:  64 bit atomics on 32 bit host.
8812MachineBasicBlock *
8813X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
8814                                                       MachineBasicBlock *MBB,
8815                                                       unsigned regOpcL,
8816                                                       unsigned regOpcH,
8817                                                       unsigned immOpcL,
8818                                                       unsigned immOpcH,
8819                                                       bool invSrc) const {
8820  // For the atomic bitwise operator, we generate
8821  //   thisMBB (instructions are in pairs, except cmpxchg8b)
8822  //     ld t1,t2 = [bitinstr.addr]
8823  //   newMBB:
8824  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
8825  //     op  t5, t6 <- out1, out2, [bitinstr.val]
8826  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
8827  //     mov ECX, EBX <- t5, t6
8828  //     mov EAX, EDX <- t1, t2
8829  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
8830  //     mov t3, t4 <- EAX, EDX
8831  //     bz  newMBB
8832  //     result in out1, out2
8833  //     fallthrough -->nextMBB
8834
8835  const TargetRegisterClass *RC = X86::GR32RegisterClass;
8836  const unsigned LoadOpc = X86::MOV32rm;
8837  const unsigned NotOpc = X86::NOT32r;
8838  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8839  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8840  MachineFunction::iterator MBBIter = MBB;
8841  ++MBBIter;
8842
8843  /// First build the CFG
8844  MachineFunction *F = MBB->getParent();
8845  MachineBasicBlock *thisMBB = MBB;
8846  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8847  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8848  F->insert(MBBIter, newMBB);
8849  F->insert(MBBIter, nextMBB);
8850
8851  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8852  nextMBB->splice(nextMBB->begin(), thisMBB,
8853                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8854                  thisMBB->end());
8855  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8856
8857  // Update thisMBB to fall through to newMBB
8858  thisMBB->addSuccessor(newMBB);
8859
8860  // newMBB jumps to itself and fall through to nextMBB
8861  newMBB->addSuccessor(nextMBB);
8862  newMBB->addSuccessor(newMBB);
8863
8864  DebugLoc dl = bInstr->getDebugLoc();
8865  // Insert instructions into newMBB based on incoming instruction
8866  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
8867  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
8868         "unexpected number of operands");
8869  MachineOperand& dest1Oper = bInstr->getOperand(0);
8870  MachineOperand& dest2Oper = bInstr->getOperand(1);
8871  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8872  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
8873    argOpers[i] = &bInstr->getOperand(i+2);
8874
8875    // We use some of the operands multiple times, so conservatively just
8876    // clear any kill flags that might be present.
8877    if (argOpers[i]->isReg() && argOpers[i]->isUse())
8878      argOpers[i]->setIsKill(false);
8879  }
8880
8881  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8882  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8883
8884  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8885  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8886  for (int i=0; i <= lastAddrIndx; ++i)
8887    (*MIB).addOperand(*argOpers[i]);
8888  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8889  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8890  // add 4 to displacement.
8891  for (int i=0; i <= lastAddrIndx-2; ++i)
8892    (*MIB).addOperand(*argOpers[i]);
8893  MachineOperand newOp3 = *(argOpers[3]);
8894  if (newOp3.isImm())
8895    newOp3.setImm(newOp3.getImm()+4);
8896  else
8897    newOp3.setOffset(newOp3.getOffset()+4);
8898  (*MIB).addOperand(newOp3);
8899  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8900
8901  // t3/4 are defined later, at the bottom of the loop
8902  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8903  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8904  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8905    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8906  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8907    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8908
8909  // The subsequent operations should be using the destination registers of
8910  //the PHI instructions.
8911  if (invSrc) {
8912    t1 = F->getRegInfo().createVirtualRegister(RC);
8913    t2 = F->getRegInfo().createVirtualRegister(RC);
8914    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8915    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8916  } else {
8917    t1 = dest1Oper.getReg();
8918    t2 = dest2Oper.getReg();
8919  }
8920
8921  int valArgIndx = lastAddrIndx + 1;
8922  assert((argOpers[valArgIndx]->isReg() ||
8923          argOpers[valArgIndx]->isImm()) &&
8924         "invalid operand");
8925  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8926  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8927  if (argOpers[valArgIndx]->isReg())
8928    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8929  else
8930    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8931  if (regOpcL != X86::MOV32rr)
8932    MIB.addReg(t1);
8933  (*MIB).addOperand(*argOpers[valArgIndx]);
8934  assert(argOpers[valArgIndx + 1]->isReg() ==
8935         argOpers[valArgIndx]->isReg());
8936  assert(argOpers[valArgIndx + 1]->isImm() ==
8937         argOpers[valArgIndx]->isImm());
8938  if (argOpers[valArgIndx + 1]->isReg())
8939    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8940  else
8941    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8942  if (regOpcH != X86::MOV32rr)
8943    MIB.addReg(t2);
8944  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8945
8946  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
8947  MIB.addReg(t1);
8948  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
8949  MIB.addReg(t2);
8950
8951  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
8952  MIB.addReg(t5);
8953  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
8954  MIB.addReg(t6);
8955
8956  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8957  for (int i=0; i <= lastAddrIndx; ++i)
8958    (*MIB).addOperand(*argOpers[i]);
8959
8960  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8961  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8962                    bInstr->memoperands_end());
8963
8964  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
8965  MIB.addReg(X86::EAX);
8966  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
8967  MIB.addReg(X86::EDX);
8968
8969  // insert branch
8970  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8971
8972  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
8973  return nextMBB;
8974}
8975
8976// private utility function
8977MachineBasicBlock *
8978X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8979                                                      MachineBasicBlock *MBB,
8980                                                      unsigned cmovOpc) const {
8981  // For the atomic min/max operator, we generate
8982  //   thisMBB:
8983  //   newMBB:
8984  //     ld t1 = [min/max.addr]
8985  //     mov t2 = [min/max.val]
8986  //     cmp  t1, t2
8987  //     cmov[cond] t2 = t1
8988  //     mov EAX = t1
8989  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8990  //     bz   newMBB
8991  //     fallthrough -->nextMBB
8992  //
8993  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8994  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8995  MachineFunction::iterator MBBIter = MBB;
8996  ++MBBIter;
8997
8998  /// First build the CFG
8999  MachineFunction *F = MBB->getParent();
9000  MachineBasicBlock *thisMBB = MBB;
9001  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9002  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9003  F->insert(MBBIter, newMBB);
9004  F->insert(MBBIter, nextMBB);
9005
9006  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9007  nextMBB->splice(nextMBB->begin(), thisMBB,
9008                  llvm::next(MachineBasicBlock::iterator(mInstr)),
9009                  thisMBB->end());
9010  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9011
9012  // Update thisMBB to fall through to newMBB
9013  thisMBB->addSuccessor(newMBB);
9014
9015  // newMBB jumps to newMBB and fall through to nextMBB
9016  newMBB->addSuccessor(nextMBB);
9017  newMBB->addSuccessor(newMBB);
9018
9019  DebugLoc dl = mInstr->getDebugLoc();
9020  // Insert instructions into newMBB based on incoming instruction
9021  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9022         "unexpected number of operands");
9023  MachineOperand& destOper = mInstr->getOperand(0);
9024  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9025  int numArgs = mInstr->getNumOperands() - 1;
9026  for (int i=0; i < numArgs; ++i)
9027    argOpers[i] = &mInstr->getOperand(i+1);
9028
9029  // x86 address has 4 operands: base, index, scale, and displacement
9030  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9031  int valArgIndx = lastAddrIndx + 1;
9032
9033  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9034  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
9035  for (int i=0; i <= lastAddrIndx; ++i)
9036    (*MIB).addOperand(*argOpers[i]);
9037
9038  // We only support register and immediate values
9039  assert((argOpers[valArgIndx]->isReg() ||
9040          argOpers[valArgIndx]->isImm()) &&
9041         "invalid operand");
9042
9043  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9044  if (argOpers[valArgIndx]->isReg())
9045    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
9046  else
9047    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
9048  (*MIB).addOperand(*argOpers[valArgIndx]);
9049
9050  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9051  MIB.addReg(t1);
9052
9053  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
9054  MIB.addReg(t1);
9055  MIB.addReg(t2);
9056
9057  // Generate movc
9058  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9059  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
9060  MIB.addReg(t2);
9061  MIB.addReg(t1);
9062
9063  // Cmp and exchange if none has modified the memory location
9064  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
9065  for (int i=0; i <= lastAddrIndx; ++i)
9066    (*MIB).addOperand(*argOpers[i]);
9067  MIB.addReg(t3);
9068  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9069  (*MIB).setMemRefs(mInstr->memoperands_begin(),
9070                    mInstr->memoperands_end());
9071
9072  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9073  MIB.addReg(X86::EAX);
9074
9075  // insert branch
9076  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9077
9078  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
9079  return nextMBB;
9080}
9081
9082// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
9083// or XMM0_V32I8 in AVX all of this code can be replaced with that
9084// in the .td file.
9085MachineBasicBlock *
9086X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
9087                            unsigned numArgs, bool memArg) const {
9088
9089  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
9090         "Target must have SSE4.2 or AVX features enabled");
9091
9092  DebugLoc dl = MI->getDebugLoc();
9093  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9094
9095  unsigned Opc;
9096
9097  if (!Subtarget->hasAVX()) {
9098    if (memArg)
9099      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
9100    else
9101      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
9102  } else {
9103    if (memArg)
9104      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
9105    else
9106      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
9107  }
9108
9109  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
9110
9111  for (unsigned i = 0; i < numArgs; ++i) {
9112    MachineOperand &Op = MI->getOperand(i+1);
9113
9114    if (!(Op.isReg() && Op.isImplicit()))
9115      MIB.addOperand(Op);
9116  }
9117
9118  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
9119    .addReg(X86::XMM0);
9120
9121  MI->eraseFromParent();
9122
9123  return BB;
9124}
9125
9126MachineBasicBlock *
9127X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
9128                                                 MachineInstr *MI,
9129                                                 MachineBasicBlock *MBB) const {
9130  // Emit code to save XMM registers to the stack. The ABI says that the
9131  // number of registers to save is given in %al, so it's theoretically
9132  // possible to do an indirect jump trick to avoid saving all of them,
9133  // however this code takes a simpler approach and just executes all
9134  // of the stores if %al is non-zero. It's less code, and it's probably
9135  // easier on the hardware branch predictor, and stores aren't all that
9136  // expensive anyway.
9137
9138  // Create the new basic blocks. One block contains all the XMM stores,
9139  // and one block is the final destination regardless of whether any
9140  // stores were performed.
9141  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9142  MachineFunction *F = MBB->getParent();
9143  MachineFunction::iterator MBBIter = MBB;
9144  ++MBBIter;
9145  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
9146  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
9147  F->insert(MBBIter, XMMSaveMBB);
9148  F->insert(MBBIter, EndMBB);
9149
9150  // Transfer the remainder of MBB and its successor edges to EndMBB.
9151  EndMBB->splice(EndMBB->begin(), MBB,
9152                 llvm::next(MachineBasicBlock::iterator(MI)),
9153                 MBB->end());
9154  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
9155
9156  // The original block will now fall through to the XMM save block.
9157  MBB->addSuccessor(XMMSaveMBB);
9158  // The XMMSaveMBB will fall through to the end block.
9159  XMMSaveMBB->addSuccessor(EndMBB);
9160
9161  // Now add the instructions.
9162  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9163  DebugLoc DL = MI->getDebugLoc();
9164
9165  unsigned CountReg = MI->getOperand(0).getReg();
9166  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
9167  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
9168
9169  if (!Subtarget->isTargetWin64()) {
9170    // If %al is 0, branch around the XMM save block.
9171    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
9172    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
9173    MBB->addSuccessor(EndMBB);
9174  }
9175
9176  // In the XMM save block, save all the XMM argument registers.
9177  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
9178    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
9179    MachineMemOperand *MMO =
9180      F->getMachineMemOperand(
9181        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
9182        MachineMemOperand::MOStore, Offset,
9183        /*Size=*/16, /*Align=*/16);
9184    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
9185      .addFrameIndex(RegSaveFrameIndex)
9186      .addImm(/*Scale=*/1)
9187      .addReg(/*IndexReg=*/0)
9188      .addImm(/*Disp=*/Offset)
9189      .addReg(/*Segment=*/0)
9190      .addReg(MI->getOperand(i).getReg())
9191      .addMemOperand(MMO);
9192  }
9193
9194  MI->eraseFromParent();   // The pseudo instruction is gone now.
9195
9196  return EndMBB;
9197}
9198
9199MachineBasicBlock *
9200X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
9201                                     MachineBasicBlock *BB) const {
9202  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9203  DebugLoc DL = MI->getDebugLoc();
9204
9205  // To "insert" a SELECT_CC instruction, we actually have to insert the
9206  // diamond control-flow pattern.  The incoming instruction knows the
9207  // destination vreg to set, the condition code register to branch on, the
9208  // true/false values to select between, and a branch opcode to use.
9209  const BasicBlock *LLVM_BB = BB->getBasicBlock();
9210  MachineFunction::iterator It = BB;
9211  ++It;
9212
9213  //  thisMBB:
9214  //  ...
9215  //   TrueVal = ...
9216  //   cmpTY ccX, r1, r2
9217  //   bCC copy1MBB
9218  //   fallthrough --> copy0MBB
9219  MachineBasicBlock *thisMBB = BB;
9220  MachineFunction *F = BB->getParent();
9221  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9222  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9223  F->insert(It, copy0MBB);
9224  F->insert(It, sinkMBB);
9225
9226  // If the EFLAGS register isn't dead in the terminator, then claim that it's
9227  // live into the sink and copy blocks.
9228  const MachineFunction *MF = BB->getParent();
9229  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
9230  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
9231
9232  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
9233    const MachineOperand &MO = MI->getOperand(I);
9234    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
9235    unsigned Reg = MO.getReg();
9236    if (Reg != X86::EFLAGS) continue;
9237    copy0MBB->addLiveIn(Reg);
9238    sinkMBB->addLiveIn(Reg);
9239  }
9240
9241  // Transfer the remainder of BB and its successor edges to sinkMBB.
9242  sinkMBB->splice(sinkMBB->begin(), BB,
9243                  llvm::next(MachineBasicBlock::iterator(MI)),
9244                  BB->end());
9245  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9246
9247  // Add the true and fallthrough blocks as its successors.
9248  BB->addSuccessor(copy0MBB);
9249  BB->addSuccessor(sinkMBB);
9250
9251  // Create the conditional branch instruction.
9252  unsigned Opc =
9253    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
9254  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
9255
9256  //  copy0MBB:
9257  //   %FalseValue = ...
9258  //   # fallthrough to sinkMBB
9259  copy0MBB->addSuccessor(sinkMBB);
9260
9261  //  sinkMBB:
9262  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9263  //  ...
9264  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
9265          TII->get(X86::PHI), MI->getOperand(0).getReg())
9266    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
9267    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
9268
9269  MI->eraseFromParent();   // The pseudo instruction is gone now.
9270  return sinkMBB;
9271}
9272
9273MachineBasicBlock *
9274X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI,
9275                                          MachineBasicBlock *BB) const {
9276  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9277  DebugLoc DL = MI->getDebugLoc();
9278
9279  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
9280  // non-trivial part is impdef of ESP.
9281  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
9282  // mingw-w64.
9283
9284  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
9285    .addExternalSymbol("_alloca")
9286    .addReg(X86::EAX, RegState::Implicit)
9287    .addReg(X86::ESP, RegState::Implicit)
9288    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
9289    .addReg(X86::ESP, RegState::Define | RegState::Implicit)
9290    .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
9291
9292  MI->eraseFromParent();   // The pseudo instruction is gone now.
9293  return BB;
9294}
9295
9296MachineBasicBlock *
9297X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
9298                                      MachineBasicBlock *BB) const {
9299  // This is pretty easy.  We're taking the value that we received from
9300  // our load from the relocation, sticking it in either RDI (x86-64)
9301  // or EAX and doing an indirect call.  The return value will then
9302  // be in the normal return register.
9303  const X86InstrInfo *TII
9304    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
9305  DebugLoc DL = MI->getDebugLoc();
9306  MachineFunction *F = BB->getParent();
9307  bool IsWin64 = Subtarget->isTargetWin64();
9308
9309  assert(MI->getOperand(3).isGlobal() && "This should be a global");
9310
9311  if (Subtarget->is64Bit()) {
9312    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9313                                      TII->get(X86::MOV64rm), X86::RDI)
9314    .addReg(X86::RIP)
9315    .addImm(0).addReg(0)
9316    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9317                      MI->getOperand(3).getTargetFlags())
9318    .addReg(0);
9319    MIB = BuildMI(*BB, MI, DL, TII->get(IsWin64 ? X86::WINCALL64m : X86::CALL64m));
9320    addDirectMem(MIB, X86::RDI);
9321  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
9322    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9323                                      TII->get(X86::MOV32rm), X86::EAX)
9324    .addReg(0)
9325    .addImm(0).addReg(0)
9326    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9327                      MI->getOperand(3).getTargetFlags())
9328    .addReg(0);
9329    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
9330    addDirectMem(MIB, X86::EAX);
9331  } else {
9332    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9333                                      TII->get(X86::MOV32rm), X86::EAX)
9334    .addReg(TII->getGlobalBaseReg(F))
9335    .addImm(0).addReg(0)
9336    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9337                      MI->getOperand(3).getTargetFlags())
9338    .addReg(0);
9339    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
9340    addDirectMem(MIB, X86::EAX);
9341  }
9342
9343  MI->eraseFromParent(); // The pseudo instruction is gone now.
9344  return BB;
9345}
9346
9347MachineBasicBlock *
9348X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
9349                                               MachineBasicBlock *BB) const {
9350  switch (MI->getOpcode()) {
9351  default: assert(false && "Unexpected instr type to insert");
9352  case X86::MINGW_ALLOCA:
9353    return EmitLoweredMingwAlloca(MI, BB);
9354  case X86::TLSCall_32:
9355  case X86::TLSCall_64:
9356    return EmitLoweredTLSCall(MI, BB);
9357  case X86::CMOV_GR8:
9358  case X86::CMOV_V1I64:
9359  case X86::CMOV_FR32:
9360  case X86::CMOV_FR64:
9361  case X86::CMOV_V4F32:
9362  case X86::CMOV_V2F64:
9363  case X86::CMOV_V2I64:
9364  case X86::CMOV_GR16:
9365  case X86::CMOV_GR32:
9366  case X86::CMOV_RFP32:
9367  case X86::CMOV_RFP64:
9368  case X86::CMOV_RFP80:
9369    return EmitLoweredSelect(MI, BB);
9370
9371  case X86::FP32_TO_INT16_IN_MEM:
9372  case X86::FP32_TO_INT32_IN_MEM:
9373  case X86::FP32_TO_INT64_IN_MEM:
9374  case X86::FP64_TO_INT16_IN_MEM:
9375  case X86::FP64_TO_INT32_IN_MEM:
9376  case X86::FP64_TO_INT64_IN_MEM:
9377  case X86::FP80_TO_INT16_IN_MEM:
9378  case X86::FP80_TO_INT32_IN_MEM:
9379  case X86::FP80_TO_INT64_IN_MEM: {
9380    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9381    DebugLoc DL = MI->getDebugLoc();
9382
9383    // Change the floating point control register to use "round towards zero"
9384    // mode when truncating to an integer value.
9385    MachineFunction *F = BB->getParent();
9386    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
9387    addFrameReference(BuildMI(*BB, MI, DL,
9388                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
9389
9390    // Load the old value of the high byte of the control word...
9391    unsigned OldCW =
9392      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
9393    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
9394                      CWFrameIdx);
9395
9396    // Set the high part to be round to zero...
9397    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
9398      .addImm(0xC7F);
9399
9400    // Reload the modified control word now...
9401    addFrameReference(BuildMI(*BB, MI, DL,
9402                              TII->get(X86::FLDCW16m)), CWFrameIdx);
9403
9404    // Restore the memory image of control word to original value
9405    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
9406      .addReg(OldCW);
9407
9408    // Get the X86 opcode to use.
9409    unsigned Opc;
9410    switch (MI->getOpcode()) {
9411    default: llvm_unreachable("illegal opcode!");
9412    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
9413    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
9414    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
9415    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
9416    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
9417    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
9418    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
9419    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
9420    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
9421    }
9422
9423    X86AddressMode AM;
9424    MachineOperand &Op = MI->getOperand(0);
9425    if (Op.isReg()) {
9426      AM.BaseType = X86AddressMode::RegBase;
9427      AM.Base.Reg = Op.getReg();
9428    } else {
9429      AM.BaseType = X86AddressMode::FrameIndexBase;
9430      AM.Base.FrameIndex = Op.getIndex();
9431    }
9432    Op = MI->getOperand(1);
9433    if (Op.isImm())
9434      AM.Scale = Op.getImm();
9435    Op = MI->getOperand(2);
9436    if (Op.isImm())
9437      AM.IndexReg = Op.getImm();
9438    Op = MI->getOperand(3);
9439    if (Op.isGlobal()) {
9440      AM.GV = Op.getGlobal();
9441    } else {
9442      AM.Disp = Op.getImm();
9443    }
9444    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
9445                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
9446
9447    // Reload the original control word now.
9448    addFrameReference(BuildMI(*BB, MI, DL,
9449                              TII->get(X86::FLDCW16m)), CWFrameIdx);
9450
9451    MI->eraseFromParent();   // The pseudo instruction is gone now.
9452    return BB;
9453  }
9454    // String/text processing lowering.
9455  case X86::PCMPISTRM128REG:
9456  case X86::VPCMPISTRM128REG:
9457    return EmitPCMP(MI, BB, 3, false /* in-mem */);
9458  case X86::PCMPISTRM128MEM:
9459  case X86::VPCMPISTRM128MEM:
9460    return EmitPCMP(MI, BB, 3, true /* in-mem */);
9461  case X86::PCMPESTRM128REG:
9462  case X86::VPCMPESTRM128REG:
9463    return EmitPCMP(MI, BB, 5, false /* in mem */);
9464  case X86::PCMPESTRM128MEM:
9465  case X86::VPCMPESTRM128MEM:
9466    return EmitPCMP(MI, BB, 5, true /* in mem */);
9467
9468    // Atomic Lowering.
9469  case X86::ATOMAND32:
9470    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
9471                                               X86::AND32ri, X86::MOV32rm,
9472                                               X86::LCMPXCHG32,
9473                                               X86::NOT32r, X86::EAX,
9474                                               X86::GR32RegisterClass);
9475  case X86::ATOMOR32:
9476    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
9477                                               X86::OR32ri, X86::MOV32rm,
9478                                               X86::LCMPXCHG32,
9479                                               X86::NOT32r, X86::EAX,
9480                                               X86::GR32RegisterClass);
9481  case X86::ATOMXOR32:
9482    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
9483                                               X86::XOR32ri, X86::MOV32rm,
9484                                               X86::LCMPXCHG32,
9485                                               X86::NOT32r, X86::EAX,
9486                                               X86::GR32RegisterClass);
9487  case X86::ATOMNAND32:
9488    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
9489                                               X86::AND32ri, X86::MOV32rm,
9490                                               X86::LCMPXCHG32,
9491                                               X86::NOT32r, X86::EAX,
9492                                               X86::GR32RegisterClass, true);
9493  case X86::ATOMMIN32:
9494    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
9495  case X86::ATOMMAX32:
9496    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
9497  case X86::ATOMUMIN32:
9498    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
9499  case X86::ATOMUMAX32:
9500    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
9501
9502  case X86::ATOMAND16:
9503    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
9504                                               X86::AND16ri, X86::MOV16rm,
9505                                               X86::LCMPXCHG16,
9506                                               X86::NOT16r, X86::AX,
9507                                               X86::GR16RegisterClass);
9508  case X86::ATOMOR16:
9509    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
9510                                               X86::OR16ri, X86::MOV16rm,
9511                                               X86::LCMPXCHG16,
9512                                               X86::NOT16r, X86::AX,
9513                                               X86::GR16RegisterClass);
9514  case X86::ATOMXOR16:
9515    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
9516                                               X86::XOR16ri, X86::MOV16rm,
9517                                               X86::LCMPXCHG16,
9518                                               X86::NOT16r, X86::AX,
9519                                               X86::GR16RegisterClass);
9520  case X86::ATOMNAND16:
9521    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
9522                                               X86::AND16ri, X86::MOV16rm,
9523                                               X86::LCMPXCHG16,
9524                                               X86::NOT16r, X86::AX,
9525                                               X86::GR16RegisterClass, true);
9526  case X86::ATOMMIN16:
9527    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
9528  case X86::ATOMMAX16:
9529    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
9530  case X86::ATOMUMIN16:
9531    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
9532  case X86::ATOMUMAX16:
9533    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
9534
9535  case X86::ATOMAND8:
9536    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
9537                                               X86::AND8ri, X86::MOV8rm,
9538                                               X86::LCMPXCHG8,
9539                                               X86::NOT8r, X86::AL,
9540                                               X86::GR8RegisterClass);
9541  case X86::ATOMOR8:
9542    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
9543                                               X86::OR8ri, X86::MOV8rm,
9544                                               X86::LCMPXCHG8,
9545                                               X86::NOT8r, X86::AL,
9546                                               X86::GR8RegisterClass);
9547  case X86::ATOMXOR8:
9548    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
9549                                               X86::XOR8ri, X86::MOV8rm,
9550                                               X86::LCMPXCHG8,
9551                                               X86::NOT8r, X86::AL,
9552                                               X86::GR8RegisterClass);
9553  case X86::ATOMNAND8:
9554    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
9555                                               X86::AND8ri, X86::MOV8rm,
9556                                               X86::LCMPXCHG8,
9557                                               X86::NOT8r, X86::AL,
9558                                               X86::GR8RegisterClass, true);
9559  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
9560  // This group is for 64-bit host.
9561  case X86::ATOMAND64:
9562    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
9563                                               X86::AND64ri32, X86::MOV64rm,
9564                                               X86::LCMPXCHG64,
9565                                               X86::NOT64r, X86::RAX,
9566                                               X86::GR64RegisterClass);
9567  case X86::ATOMOR64:
9568    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
9569                                               X86::OR64ri32, X86::MOV64rm,
9570                                               X86::LCMPXCHG64,
9571                                               X86::NOT64r, X86::RAX,
9572                                               X86::GR64RegisterClass);
9573  case X86::ATOMXOR64:
9574    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
9575                                               X86::XOR64ri32, X86::MOV64rm,
9576                                               X86::LCMPXCHG64,
9577                                               X86::NOT64r, X86::RAX,
9578                                               X86::GR64RegisterClass);
9579  case X86::ATOMNAND64:
9580    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
9581                                               X86::AND64ri32, X86::MOV64rm,
9582                                               X86::LCMPXCHG64,
9583                                               X86::NOT64r, X86::RAX,
9584                                               X86::GR64RegisterClass, true);
9585  case X86::ATOMMIN64:
9586    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
9587  case X86::ATOMMAX64:
9588    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
9589  case X86::ATOMUMIN64:
9590    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
9591  case X86::ATOMUMAX64:
9592    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
9593
9594  // This group does 64-bit operations on a 32-bit host.
9595  case X86::ATOMAND6432:
9596    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9597                                               X86::AND32rr, X86::AND32rr,
9598                                               X86::AND32ri, X86::AND32ri,
9599                                               false);
9600  case X86::ATOMOR6432:
9601    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9602                                               X86::OR32rr, X86::OR32rr,
9603                                               X86::OR32ri, X86::OR32ri,
9604                                               false);
9605  case X86::ATOMXOR6432:
9606    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9607                                               X86::XOR32rr, X86::XOR32rr,
9608                                               X86::XOR32ri, X86::XOR32ri,
9609                                               false);
9610  case X86::ATOMNAND6432:
9611    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9612                                               X86::AND32rr, X86::AND32rr,
9613                                               X86::AND32ri, X86::AND32ri,
9614                                               true);
9615  case X86::ATOMADD6432:
9616    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9617                                               X86::ADD32rr, X86::ADC32rr,
9618                                               X86::ADD32ri, X86::ADC32ri,
9619                                               false);
9620  case X86::ATOMSUB6432:
9621    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9622                                               X86::SUB32rr, X86::SBB32rr,
9623                                               X86::SUB32ri, X86::SBB32ri,
9624                                               false);
9625  case X86::ATOMSWAP6432:
9626    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9627                                               X86::MOV32rr, X86::MOV32rr,
9628                                               X86::MOV32ri, X86::MOV32ri,
9629                                               false);
9630  case X86::VASTART_SAVE_XMM_REGS:
9631    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
9632  }
9633}
9634
9635//===----------------------------------------------------------------------===//
9636//                           X86 Optimization Hooks
9637//===----------------------------------------------------------------------===//
9638
9639void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
9640                                                       const APInt &Mask,
9641                                                       APInt &KnownZero,
9642                                                       APInt &KnownOne,
9643                                                       const SelectionDAG &DAG,
9644                                                       unsigned Depth) const {
9645  unsigned Opc = Op.getOpcode();
9646  assert((Opc >= ISD::BUILTIN_OP_END ||
9647          Opc == ISD::INTRINSIC_WO_CHAIN ||
9648          Opc == ISD::INTRINSIC_W_CHAIN ||
9649          Opc == ISD::INTRINSIC_VOID) &&
9650         "Should use MaskedValueIsZero if you don't know whether Op"
9651         " is a target node!");
9652
9653  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
9654  switch (Opc) {
9655  default: break;
9656  case X86ISD::ADD:
9657  case X86ISD::SUB:
9658  case X86ISD::SMUL:
9659  case X86ISD::UMUL:
9660  case X86ISD::INC:
9661  case X86ISD::DEC:
9662  case X86ISD::OR:
9663  case X86ISD::XOR:
9664  case X86ISD::AND:
9665    // These nodes' second result is a boolean.
9666    if (Op.getResNo() == 0)
9667      break;
9668    // Fallthrough
9669  case X86ISD::SETCC:
9670    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
9671                                       Mask.getBitWidth() - 1);
9672    break;
9673  }
9674}
9675
9676/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
9677/// node is a GlobalAddress + offset.
9678bool X86TargetLowering::isGAPlusOffset(SDNode *N,
9679                                       const GlobalValue* &GA,
9680                                       int64_t &Offset) const {
9681  if (N->getOpcode() == X86ISD::Wrapper) {
9682    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
9683      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
9684      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
9685      return true;
9686    }
9687  }
9688  return TargetLowering::isGAPlusOffset(N, GA, Offset);
9689}
9690
9691/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
9692/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
9693/// if the load addresses are consecutive, non-overlapping, and in the right
9694/// order.
9695static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
9696                                     const TargetLowering &TLI) {
9697  DebugLoc dl = N->getDebugLoc();
9698  EVT VT = N->getValueType(0);
9699
9700  if (VT.getSizeInBits() != 128)
9701    return SDValue();
9702
9703  SmallVector<SDValue, 16> Elts;
9704  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
9705    Elts.push_back(getShuffleScalarElt(N, i, DAG));
9706
9707  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
9708}
9709
9710/// PerformShuffleCombine - Detect vector gather/scatter index generation
9711/// and convert it from being a bunch of shuffles and extracts to a simple
9712/// store and scalar loads to extract the elements.
9713static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
9714                                                const TargetLowering &TLI) {
9715  SDValue InputVector = N->getOperand(0);
9716
9717  // Only operate on vectors of 4 elements, where the alternative shuffling
9718  // gets to be more expensive.
9719  if (InputVector.getValueType() != MVT::v4i32)
9720    return SDValue();
9721
9722  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
9723  // single use which is a sign-extend or zero-extend, and all elements are
9724  // used.
9725  SmallVector<SDNode *, 4> Uses;
9726  unsigned ExtractedElements = 0;
9727  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
9728       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
9729    if (UI.getUse().getResNo() != InputVector.getResNo())
9730      return SDValue();
9731
9732    SDNode *Extract = *UI;
9733    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9734      return SDValue();
9735
9736    if (Extract->getValueType(0) != MVT::i32)
9737      return SDValue();
9738    if (!Extract->hasOneUse())
9739      return SDValue();
9740    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
9741        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
9742      return SDValue();
9743    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
9744      return SDValue();
9745
9746    // Record which element was extracted.
9747    ExtractedElements |=
9748      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
9749
9750    Uses.push_back(Extract);
9751  }
9752
9753  // If not all the elements were used, this may not be worthwhile.
9754  if (ExtractedElements != 15)
9755    return SDValue();
9756
9757  // Ok, we've now decided to do the transformation.
9758  DebugLoc dl = InputVector.getDebugLoc();
9759
9760  // Store the value to a temporary stack slot.
9761  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
9762  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, NULL,
9763                            0, false, false, 0);
9764
9765  // Replace each use (extract) with a load of the appropriate element.
9766  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
9767       UE = Uses.end(); UI != UE; ++UI) {
9768    SDNode *Extract = *UI;
9769
9770    // Compute the element's address.
9771    SDValue Idx = Extract->getOperand(1);
9772    unsigned EltSize =
9773        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
9774    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
9775    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
9776
9777    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
9778                                     OffsetVal, StackPtr);
9779
9780    // Load the scalar.
9781    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
9782                                     ScalarAddr, NULL, 0, false, false, 0);
9783
9784    // Replace the exact with the load.
9785    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
9786  }
9787
9788  // The replacement was made in place; don't return anything.
9789  return SDValue();
9790}
9791
9792/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
9793static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
9794                                    const X86Subtarget *Subtarget) {
9795  DebugLoc DL = N->getDebugLoc();
9796  SDValue Cond = N->getOperand(0);
9797  // Get the LHS/RHS of the select.
9798  SDValue LHS = N->getOperand(1);
9799  SDValue RHS = N->getOperand(2);
9800
9801  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
9802  // instructions match the semantics of the common C idiom x<y?x:y but not
9803  // x<=y?x:y, because of how they handle negative zero (which can be
9804  // ignored in unsafe-math mode).
9805  if (Subtarget->hasSSE2() &&
9806      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
9807      Cond.getOpcode() == ISD::SETCC) {
9808    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
9809
9810    unsigned Opcode = 0;
9811    // Check for x CC y ? x : y.
9812    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
9813        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
9814      switch (CC) {
9815      default: break;
9816      case ISD::SETULT:
9817        // Converting this to a min would handle NaNs incorrectly, and swapping
9818        // the operands would cause it to handle comparisons between positive
9819        // and negative zero incorrectly.
9820        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
9821          if (!UnsafeFPMath &&
9822              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9823            break;
9824          std::swap(LHS, RHS);
9825        }
9826        Opcode = X86ISD::FMIN;
9827        break;
9828      case ISD::SETOLE:
9829        // Converting this to a min would handle comparisons between positive
9830        // and negative zero incorrectly.
9831        if (!UnsafeFPMath &&
9832            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
9833          break;
9834        Opcode = X86ISD::FMIN;
9835        break;
9836      case ISD::SETULE:
9837        // Converting this to a min would handle both negative zeros and NaNs
9838        // incorrectly, but we can swap the operands to fix both.
9839        std::swap(LHS, RHS);
9840      case ISD::SETOLT:
9841      case ISD::SETLT:
9842      case ISD::SETLE:
9843        Opcode = X86ISD::FMIN;
9844        break;
9845
9846      case ISD::SETOGE:
9847        // Converting this to a max would handle comparisons between positive
9848        // and negative zero incorrectly.
9849        if (!UnsafeFPMath &&
9850            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
9851          break;
9852        Opcode = X86ISD::FMAX;
9853        break;
9854      case ISD::SETUGT:
9855        // Converting this to a max would handle NaNs incorrectly, and swapping
9856        // the operands would cause it to handle comparisons between positive
9857        // and negative zero incorrectly.
9858        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
9859          if (!UnsafeFPMath &&
9860              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9861            break;
9862          std::swap(LHS, RHS);
9863        }
9864        Opcode = X86ISD::FMAX;
9865        break;
9866      case ISD::SETUGE:
9867        // Converting this to a max would handle both negative zeros and NaNs
9868        // incorrectly, but we can swap the operands to fix both.
9869        std::swap(LHS, RHS);
9870      case ISD::SETOGT:
9871      case ISD::SETGT:
9872      case ISD::SETGE:
9873        Opcode = X86ISD::FMAX;
9874        break;
9875      }
9876    // Check for x CC y ? y : x -- a min/max with reversed arms.
9877    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
9878               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
9879      switch (CC) {
9880      default: break;
9881      case ISD::SETOGE:
9882        // Converting this to a min would handle comparisons between positive
9883        // and negative zero incorrectly, and swapping the operands would
9884        // cause it to handle NaNs incorrectly.
9885        if (!UnsafeFPMath &&
9886            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
9887          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9888            break;
9889          std::swap(LHS, RHS);
9890        }
9891        Opcode = X86ISD::FMIN;
9892        break;
9893      case ISD::SETUGT:
9894        // Converting this to a min would handle NaNs incorrectly.
9895        if (!UnsafeFPMath &&
9896            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9897          break;
9898        Opcode = X86ISD::FMIN;
9899        break;
9900      case ISD::SETUGE:
9901        // Converting this to a min would handle both negative zeros and NaNs
9902        // incorrectly, but we can swap the operands to fix both.
9903        std::swap(LHS, RHS);
9904      case ISD::SETOGT:
9905      case ISD::SETGT:
9906      case ISD::SETGE:
9907        Opcode = X86ISD::FMIN;
9908        break;
9909
9910      case ISD::SETULT:
9911        // Converting this to a max would handle NaNs incorrectly.
9912        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9913          break;
9914        Opcode = X86ISD::FMAX;
9915        break;
9916      case ISD::SETOLE:
9917        // Converting this to a max would handle comparisons between positive
9918        // and negative zero incorrectly, and swapping the operands would
9919        // cause it to handle NaNs incorrectly.
9920        if (!UnsafeFPMath &&
9921            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
9922          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9923            break;
9924          std::swap(LHS, RHS);
9925        }
9926        Opcode = X86ISD::FMAX;
9927        break;
9928      case ISD::SETULE:
9929        // Converting this to a max would handle both negative zeros and NaNs
9930        // incorrectly, but we can swap the operands to fix both.
9931        std::swap(LHS, RHS);
9932      case ISD::SETOLT:
9933      case ISD::SETLT:
9934      case ISD::SETLE:
9935        Opcode = X86ISD::FMAX;
9936        break;
9937      }
9938    }
9939
9940    if (Opcode)
9941      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
9942  }
9943
9944  // If this is a select between two integer constants, try to do some
9945  // optimizations.
9946  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
9947    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
9948      // Don't do this for crazy integer types.
9949      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
9950        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
9951        // so that TrueC (the true value) is larger than FalseC.
9952        bool NeedsCondInvert = false;
9953
9954        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
9955            // Efficiently invertible.
9956            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
9957             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
9958              isa<ConstantSDNode>(Cond.getOperand(1))))) {
9959          NeedsCondInvert = true;
9960          std::swap(TrueC, FalseC);
9961        }
9962
9963        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
9964        if (FalseC->getAPIntValue() == 0 &&
9965            TrueC->getAPIntValue().isPowerOf2()) {
9966          if (NeedsCondInvert) // Invert the condition if needed.
9967            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9968                               DAG.getConstant(1, Cond.getValueType()));
9969
9970          // Zero extend the condition if needed.
9971          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
9972
9973          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9974          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
9975                             DAG.getConstant(ShAmt, MVT::i8));
9976        }
9977
9978        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
9979        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9980          if (NeedsCondInvert) // Invert the condition if needed.
9981            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9982                               DAG.getConstant(1, Cond.getValueType()));
9983
9984          // Zero extend the condition if needed.
9985          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9986                             FalseC->getValueType(0), Cond);
9987          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9988                             SDValue(FalseC, 0));
9989        }
9990
9991        // Optimize cases that will turn into an LEA instruction.  This requires
9992        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9993        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9994          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9995          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9996
9997          bool isFastMultiplier = false;
9998          if (Diff < 10) {
9999            switch ((unsigned char)Diff) {
10000              default: break;
10001              case 1:  // result = add base, cond
10002              case 2:  // result = lea base(    , cond*2)
10003              case 3:  // result = lea base(cond, cond*2)
10004              case 4:  // result = lea base(    , cond*4)
10005              case 5:  // result = lea base(cond, cond*4)
10006              case 8:  // result = lea base(    , cond*8)
10007              case 9:  // result = lea base(cond, cond*8)
10008                isFastMultiplier = true;
10009                break;
10010            }
10011          }
10012
10013          if (isFastMultiplier) {
10014            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10015            if (NeedsCondInvert) // Invert the condition if needed.
10016              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10017                                 DAG.getConstant(1, Cond.getValueType()));
10018
10019            // Zero extend the condition if needed.
10020            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10021                               Cond);
10022            // Scale the condition by the difference.
10023            if (Diff != 1)
10024              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10025                                 DAG.getConstant(Diff, Cond.getValueType()));
10026
10027            // Add the base if non-zero.
10028            if (FalseC->getAPIntValue() != 0)
10029              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10030                                 SDValue(FalseC, 0));
10031            return Cond;
10032          }
10033        }
10034      }
10035  }
10036
10037  return SDValue();
10038}
10039
10040/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
10041static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
10042                                  TargetLowering::DAGCombinerInfo &DCI) {
10043  DebugLoc DL = N->getDebugLoc();
10044
10045  // If the flag operand isn't dead, don't touch this CMOV.
10046  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
10047    return SDValue();
10048
10049  // If this is a select between two integer constants, try to do some
10050  // optimizations.  Note that the operands are ordered the opposite of SELECT
10051  // operands.
10052  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
10053    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10054      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
10055      // larger than FalseC (the false value).
10056      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
10057
10058      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
10059        CC = X86::GetOppositeBranchCondition(CC);
10060        std::swap(TrueC, FalseC);
10061      }
10062
10063      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
10064      // This is efficient for any integer data type (including i8/i16) and
10065      // shift amount.
10066      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
10067        SDValue Cond = N->getOperand(3);
10068        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10069                           DAG.getConstant(CC, MVT::i8), Cond);
10070
10071        // Zero extend the condition if needed.
10072        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
10073
10074        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10075        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
10076                           DAG.getConstant(ShAmt, MVT::i8));
10077        if (N->getNumValues() == 2)  // Dead flag value?
10078          return DCI.CombineTo(N, Cond, SDValue());
10079        return Cond;
10080      }
10081
10082      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
10083      // for any integer data type, including i8/i16.
10084      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10085        SDValue Cond = N->getOperand(3);
10086        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10087                           DAG.getConstant(CC, MVT::i8), Cond);
10088
10089        // Zero extend the condition if needed.
10090        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10091                           FalseC->getValueType(0), Cond);
10092        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10093                           SDValue(FalseC, 0));
10094
10095        if (N->getNumValues() == 2)  // Dead flag value?
10096          return DCI.CombineTo(N, Cond, SDValue());
10097        return Cond;
10098      }
10099
10100      // Optimize cases that will turn into an LEA instruction.  This requires
10101      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10102      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10103        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10104        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10105
10106        bool isFastMultiplier = false;
10107        if (Diff < 10) {
10108          switch ((unsigned char)Diff) {
10109          default: break;
10110          case 1:  // result = add base, cond
10111          case 2:  // result = lea base(    , cond*2)
10112          case 3:  // result = lea base(cond, cond*2)
10113          case 4:  // result = lea base(    , cond*4)
10114          case 5:  // result = lea base(cond, cond*4)
10115          case 8:  // result = lea base(    , cond*8)
10116          case 9:  // result = lea base(cond, cond*8)
10117            isFastMultiplier = true;
10118            break;
10119          }
10120        }
10121
10122        if (isFastMultiplier) {
10123          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10124          SDValue Cond = N->getOperand(3);
10125          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10126                             DAG.getConstant(CC, MVT::i8), Cond);
10127          // Zero extend the condition if needed.
10128          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10129                             Cond);
10130          // Scale the condition by the difference.
10131          if (Diff != 1)
10132            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10133                               DAG.getConstant(Diff, Cond.getValueType()));
10134
10135          // Add the base if non-zero.
10136          if (FalseC->getAPIntValue() != 0)
10137            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10138                               SDValue(FalseC, 0));
10139          if (N->getNumValues() == 2)  // Dead flag value?
10140            return DCI.CombineTo(N, Cond, SDValue());
10141          return Cond;
10142        }
10143      }
10144    }
10145  }
10146  return SDValue();
10147}
10148
10149
10150/// PerformMulCombine - Optimize a single multiply with constant into two
10151/// in order to implement it with two cheaper instructions, e.g.
10152/// LEA + SHL, LEA + LEA.
10153static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
10154                                 TargetLowering::DAGCombinerInfo &DCI) {
10155  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10156    return SDValue();
10157
10158  EVT VT = N->getValueType(0);
10159  if (VT != MVT::i64)
10160    return SDValue();
10161
10162  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10163  if (!C)
10164    return SDValue();
10165  uint64_t MulAmt = C->getZExtValue();
10166  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
10167    return SDValue();
10168
10169  uint64_t MulAmt1 = 0;
10170  uint64_t MulAmt2 = 0;
10171  if ((MulAmt % 9) == 0) {
10172    MulAmt1 = 9;
10173    MulAmt2 = MulAmt / 9;
10174  } else if ((MulAmt % 5) == 0) {
10175    MulAmt1 = 5;
10176    MulAmt2 = MulAmt / 5;
10177  } else if ((MulAmt % 3) == 0) {
10178    MulAmt1 = 3;
10179    MulAmt2 = MulAmt / 3;
10180  }
10181  if (MulAmt2 &&
10182      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
10183    DebugLoc DL = N->getDebugLoc();
10184
10185    if (isPowerOf2_64(MulAmt2) &&
10186        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
10187      // If second multiplifer is pow2, issue it first. We want the multiply by
10188      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
10189      // is an add.
10190      std::swap(MulAmt1, MulAmt2);
10191
10192    SDValue NewMul;
10193    if (isPowerOf2_64(MulAmt1))
10194      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
10195                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
10196    else
10197      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
10198                           DAG.getConstant(MulAmt1, VT));
10199
10200    if (isPowerOf2_64(MulAmt2))
10201      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
10202                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
10203    else
10204      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
10205                           DAG.getConstant(MulAmt2, VT));
10206
10207    // Do not add new nodes to DAG combiner worklist.
10208    DCI.CombineTo(N, NewMul, false);
10209  }
10210  return SDValue();
10211}
10212
10213static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
10214  SDValue N0 = N->getOperand(0);
10215  SDValue N1 = N->getOperand(1);
10216  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
10217  EVT VT = N0.getValueType();
10218
10219  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
10220  // since the result of setcc_c is all zero's or all ones.
10221  if (N1C && N0.getOpcode() == ISD::AND &&
10222      N0.getOperand(1).getOpcode() == ISD::Constant) {
10223    SDValue N00 = N0.getOperand(0);
10224    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
10225        ((N00.getOpcode() == ISD::ANY_EXTEND ||
10226          N00.getOpcode() == ISD::ZERO_EXTEND) &&
10227         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
10228      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
10229      APInt ShAmt = N1C->getAPIntValue();
10230      Mask = Mask.shl(ShAmt);
10231      if (Mask != 0)
10232        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
10233                           N00, DAG.getConstant(Mask, VT));
10234    }
10235  }
10236
10237  return SDValue();
10238}
10239
10240/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
10241///                       when possible.
10242static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
10243                                   const X86Subtarget *Subtarget) {
10244  EVT VT = N->getValueType(0);
10245  if (!VT.isVector() && VT.isInteger() &&
10246      N->getOpcode() == ISD::SHL)
10247    return PerformSHLCombine(N, DAG);
10248
10249  // On X86 with SSE2 support, we can transform this to a vector shift if
10250  // all elements are shifted by the same amount.  We can't do this in legalize
10251  // because the a constant vector is typically transformed to a constant pool
10252  // so we have no knowledge of the shift amount.
10253  if (!Subtarget->hasSSE2())
10254    return SDValue();
10255
10256  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
10257    return SDValue();
10258
10259  SDValue ShAmtOp = N->getOperand(1);
10260  EVT EltVT = VT.getVectorElementType();
10261  DebugLoc DL = N->getDebugLoc();
10262  SDValue BaseShAmt = SDValue();
10263  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
10264    unsigned NumElts = VT.getVectorNumElements();
10265    unsigned i = 0;
10266    for (; i != NumElts; ++i) {
10267      SDValue Arg = ShAmtOp.getOperand(i);
10268      if (Arg.getOpcode() == ISD::UNDEF) continue;
10269      BaseShAmt = Arg;
10270      break;
10271    }
10272    for (; i != NumElts; ++i) {
10273      SDValue Arg = ShAmtOp.getOperand(i);
10274      if (Arg.getOpcode() == ISD::UNDEF) continue;
10275      if (Arg != BaseShAmt) {
10276        return SDValue();
10277      }
10278    }
10279  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
10280             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
10281    SDValue InVec = ShAmtOp.getOperand(0);
10282    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
10283      unsigned NumElts = InVec.getValueType().getVectorNumElements();
10284      unsigned i = 0;
10285      for (; i != NumElts; ++i) {
10286        SDValue Arg = InVec.getOperand(i);
10287        if (Arg.getOpcode() == ISD::UNDEF) continue;
10288        BaseShAmt = Arg;
10289        break;
10290      }
10291    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
10292       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
10293         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
10294         if (C->getZExtValue() == SplatIdx)
10295           BaseShAmt = InVec.getOperand(1);
10296       }
10297    }
10298    if (BaseShAmt.getNode() == 0)
10299      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
10300                              DAG.getIntPtrConstant(0));
10301  } else
10302    return SDValue();
10303
10304  // The shift amount is an i32.
10305  if (EltVT.bitsGT(MVT::i32))
10306    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
10307  else if (EltVT.bitsLT(MVT::i32))
10308    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
10309
10310  // The shift amount is identical so we can do a vector shift.
10311  SDValue  ValOp = N->getOperand(0);
10312  switch (N->getOpcode()) {
10313  default:
10314    llvm_unreachable("Unknown shift opcode!");
10315    break;
10316  case ISD::SHL:
10317    if (VT == MVT::v2i64)
10318      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10319                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10320                         ValOp, BaseShAmt);
10321    if (VT == MVT::v4i32)
10322      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10323                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10324                         ValOp, BaseShAmt);
10325    if (VT == MVT::v8i16)
10326      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10327                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10328                         ValOp, BaseShAmt);
10329    break;
10330  case ISD::SRA:
10331    if (VT == MVT::v4i32)
10332      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10333                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10334                         ValOp, BaseShAmt);
10335    if (VT == MVT::v8i16)
10336      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10337                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10338                         ValOp, BaseShAmt);
10339    break;
10340  case ISD::SRL:
10341    if (VT == MVT::v2i64)
10342      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10343                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10344                         ValOp, BaseShAmt);
10345    if (VT == MVT::v4i32)
10346      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10347                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10348                         ValOp, BaseShAmt);
10349    if (VT ==  MVT::v8i16)
10350      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10351                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10352                         ValOp, BaseShAmt);
10353    break;
10354  }
10355  return SDValue();
10356}
10357
10358static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
10359                                TargetLowering::DAGCombinerInfo &DCI,
10360                                const X86Subtarget *Subtarget) {
10361  if (DCI.isBeforeLegalizeOps())
10362    return SDValue();
10363
10364  EVT VT = N->getValueType(0);
10365  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
10366    return SDValue();
10367
10368  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
10369  SDValue N0 = N->getOperand(0);
10370  SDValue N1 = N->getOperand(1);
10371  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
10372    std::swap(N0, N1);
10373  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
10374    return SDValue();
10375  if (!N0.hasOneUse() || !N1.hasOneUse())
10376    return SDValue();
10377
10378  SDValue ShAmt0 = N0.getOperand(1);
10379  if (ShAmt0.getValueType() != MVT::i8)
10380    return SDValue();
10381  SDValue ShAmt1 = N1.getOperand(1);
10382  if (ShAmt1.getValueType() != MVT::i8)
10383    return SDValue();
10384  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
10385    ShAmt0 = ShAmt0.getOperand(0);
10386  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
10387    ShAmt1 = ShAmt1.getOperand(0);
10388
10389  DebugLoc DL = N->getDebugLoc();
10390  unsigned Opc = X86ISD::SHLD;
10391  SDValue Op0 = N0.getOperand(0);
10392  SDValue Op1 = N1.getOperand(0);
10393  if (ShAmt0.getOpcode() == ISD::SUB) {
10394    Opc = X86ISD::SHRD;
10395    std::swap(Op0, Op1);
10396    std::swap(ShAmt0, ShAmt1);
10397  }
10398
10399  unsigned Bits = VT.getSizeInBits();
10400  if (ShAmt1.getOpcode() == ISD::SUB) {
10401    SDValue Sum = ShAmt1.getOperand(0);
10402    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
10403      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
10404      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
10405        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
10406      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
10407        return DAG.getNode(Opc, DL, VT,
10408                           Op0, Op1,
10409                           DAG.getNode(ISD::TRUNCATE, DL,
10410                                       MVT::i8, ShAmt0));
10411    }
10412  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
10413    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
10414    if (ShAmt0C &&
10415        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
10416      return DAG.getNode(Opc, DL, VT,
10417                         N0.getOperand(0), N1.getOperand(0),
10418                         DAG.getNode(ISD::TRUNCATE, DL,
10419                                       MVT::i8, ShAmt0));
10420  }
10421
10422  return SDValue();
10423}
10424
10425/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
10426static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
10427                                   const X86Subtarget *Subtarget) {
10428  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
10429  // the FP state in cases where an emms may be missing.
10430  // A preferable solution to the general problem is to figure out the right
10431  // places to insert EMMS.  This qualifies as a quick hack.
10432
10433  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
10434  StoreSDNode *St = cast<StoreSDNode>(N);
10435  EVT VT = St->getValue().getValueType();
10436  if (VT.getSizeInBits() != 64)
10437    return SDValue();
10438
10439  const Function *F = DAG.getMachineFunction().getFunction();
10440  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
10441  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
10442    && Subtarget->hasSSE2();
10443  if ((VT.isVector() ||
10444       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
10445      isa<LoadSDNode>(St->getValue()) &&
10446      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
10447      St->getChain().hasOneUse() && !St->isVolatile()) {
10448    SDNode* LdVal = St->getValue().getNode();
10449    LoadSDNode *Ld = 0;
10450    int TokenFactorIndex = -1;
10451    SmallVector<SDValue, 8> Ops;
10452    SDNode* ChainVal = St->getChain().getNode();
10453    // Must be a store of a load.  We currently handle two cases:  the load
10454    // is a direct child, and it's under an intervening TokenFactor.  It is
10455    // possible to dig deeper under nested TokenFactors.
10456    if (ChainVal == LdVal)
10457      Ld = cast<LoadSDNode>(St->getChain());
10458    else if (St->getValue().hasOneUse() &&
10459             ChainVal->getOpcode() == ISD::TokenFactor) {
10460      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
10461        if (ChainVal->getOperand(i).getNode() == LdVal) {
10462          TokenFactorIndex = i;
10463          Ld = cast<LoadSDNode>(St->getValue());
10464        } else
10465          Ops.push_back(ChainVal->getOperand(i));
10466      }
10467    }
10468
10469    if (!Ld || !ISD::isNormalLoad(Ld))
10470      return SDValue();
10471
10472    // If this is not the MMX case, i.e. we are just turning i64 load/store
10473    // into f64 load/store, avoid the transformation if there are multiple
10474    // uses of the loaded value.
10475    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
10476      return SDValue();
10477
10478    DebugLoc LdDL = Ld->getDebugLoc();
10479    DebugLoc StDL = N->getDebugLoc();
10480    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
10481    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
10482    // pair instead.
10483    if (Subtarget->is64Bit() || F64IsLegal) {
10484      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
10485      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
10486                                  Ld->getBasePtr(), Ld->getSrcValue(),
10487                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
10488                                  Ld->isNonTemporal(), Ld->getAlignment());
10489      SDValue NewChain = NewLd.getValue(1);
10490      if (TokenFactorIndex != -1) {
10491        Ops.push_back(NewChain);
10492        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
10493                               Ops.size());
10494      }
10495      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
10496                          St->getSrcValue(), St->getSrcValueOffset(),
10497                          St->isVolatile(), St->isNonTemporal(),
10498                          St->getAlignment());
10499    }
10500
10501    // Otherwise, lower to two pairs of 32-bit loads / stores.
10502    SDValue LoAddr = Ld->getBasePtr();
10503    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
10504                                 DAG.getConstant(4, MVT::i32));
10505
10506    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
10507                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
10508                               Ld->isVolatile(), Ld->isNonTemporal(),
10509                               Ld->getAlignment());
10510    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
10511                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
10512                               Ld->isVolatile(), Ld->isNonTemporal(),
10513                               MinAlign(Ld->getAlignment(), 4));
10514
10515    SDValue NewChain = LoLd.getValue(1);
10516    if (TokenFactorIndex != -1) {
10517      Ops.push_back(LoLd);
10518      Ops.push_back(HiLd);
10519      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
10520                             Ops.size());
10521    }
10522
10523    LoAddr = St->getBasePtr();
10524    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
10525                         DAG.getConstant(4, MVT::i32));
10526
10527    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
10528                                St->getSrcValue(), St->getSrcValueOffset(),
10529                                St->isVolatile(), St->isNonTemporal(),
10530                                St->getAlignment());
10531    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
10532                                St->getSrcValue(),
10533                                St->getSrcValueOffset() + 4,
10534                                St->isVolatile(),
10535                                St->isNonTemporal(),
10536                                MinAlign(St->getAlignment(), 4));
10537    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
10538  }
10539  return SDValue();
10540}
10541
10542/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
10543/// X86ISD::FXOR nodes.
10544static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
10545  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
10546  // F[X]OR(0.0, x) -> x
10547  // F[X]OR(x, 0.0) -> x
10548  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
10549    if (C->getValueAPF().isPosZero())
10550      return N->getOperand(1);
10551  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
10552    if (C->getValueAPF().isPosZero())
10553      return N->getOperand(0);
10554  return SDValue();
10555}
10556
10557/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
10558static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
10559  // FAND(0.0, x) -> 0.0
10560  // FAND(x, 0.0) -> 0.0
10561  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
10562    if (C->getValueAPF().isPosZero())
10563      return N->getOperand(0);
10564  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
10565    if (C->getValueAPF().isPosZero())
10566      return N->getOperand(1);
10567  return SDValue();
10568}
10569
10570static SDValue PerformBTCombine(SDNode *N,
10571                                SelectionDAG &DAG,
10572                                TargetLowering::DAGCombinerInfo &DCI) {
10573  // BT ignores high bits in the bit index operand.
10574  SDValue Op1 = N->getOperand(1);
10575  if (Op1.hasOneUse()) {
10576    unsigned BitWidth = Op1.getValueSizeInBits();
10577    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
10578    APInt KnownZero, KnownOne;
10579    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
10580                                          !DCI.isBeforeLegalizeOps());
10581    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10582    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
10583        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
10584      DCI.CommitTargetLoweringOpt(TLO);
10585  }
10586  return SDValue();
10587}
10588
10589static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
10590  SDValue Op = N->getOperand(0);
10591  if (Op.getOpcode() == ISD::BIT_CONVERT)
10592    Op = Op.getOperand(0);
10593  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
10594  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
10595      VT.getVectorElementType().getSizeInBits() ==
10596      OpVT.getVectorElementType().getSizeInBits()) {
10597    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
10598  }
10599  return SDValue();
10600}
10601
10602static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
10603  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
10604  //           (and (i32 x86isd::setcc_carry), 1)
10605  // This eliminates the zext. This transformation is necessary because
10606  // ISD::SETCC is always legalized to i8.
10607  DebugLoc dl = N->getDebugLoc();
10608  SDValue N0 = N->getOperand(0);
10609  EVT VT = N->getValueType(0);
10610  if (N0.getOpcode() == ISD::AND &&
10611      N0.hasOneUse() &&
10612      N0.getOperand(0).hasOneUse()) {
10613    SDValue N00 = N0.getOperand(0);
10614    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
10615      return SDValue();
10616    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
10617    if (!C || C->getZExtValue() != 1)
10618      return SDValue();
10619    return DAG.getNode(ISD::AND, dl, VT,
10620                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
10621                                   N00.getOperand(0), N00.getOperand(1)),
10622                       DAG.getConstant(1, VT));
10623  }
10624
10625  return SDValue();
10626}
10627
10628SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
10629                                             DAGCombinerInfo &DCI) const {
10630  SelectionDAG &DAG = DCI.DAG;
10631  switch (N->getOpcode()) {
10632  default: break;
10633  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
10634  case ISD::EXTRACT_VECTOR_ELT:
10635                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
10636  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
10637  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
10638  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
10639  case ISD::SHL:
10640  case ISD::SRA:
10641  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
10642  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
10643  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
10644  case X86ISD::FXOR:
10645  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
10646  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
10647  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
10648  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
10649  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
10650  }
10651
10652  return SDValue();
10653}
10654
10655/// isTypeDesirableForOp - Return true if the target has native support for
10656/// the specified value type and it is 'desirable' to use the type for the
10657/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
10658/// instruction encodings are longer and some i16 instructions are slow.
10659bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
10660  if (!isTypeLegal(VT))
10661    return false;
10662  if (VT != MVT::i16)
10663    return true;
10664
10665  switch (Opc) {
10666  default:
10667    return true;
10668  case ISD::LOAD:
10669  case ISD::SIGN_EXTEND:
10670  case ISD::ZERO_EXTEND:
10671  case ISD::ANY_EXTEND:
10672  case ISD::SHL:
10673  case ISD::SRL:
10674  case ISD::SUB:
10675  case ISD::ADD:
10676  case ISD::MUL:
10677  case ISD::AND:
10678  case ISD::OR:
10679  case ISD::XOR:
10680    return false;
10681  }
10682}
10683
10684/// IsDesirableToPromoteOp - This method query the target whether it is
10685/// beneficial for dag combiner to promote the specified node. If true, it
10686/// should return the desired promotion type by reference.
10687bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
10688  EVT VT = Op.getValueType();
10689  if (VT != MVT::i16)
10690    return false;
10691
10692  bool Promote = false;
10693  bool Commute = false;
10694  switch (Op.getOpcode()) {
10695  default: break;
10696  case ISD::LOAD: {
10697    LoadSDNode *LD = cast<LoadSDNode>(Op);
10698    // If the non-extending load has a single use and it's not live out, then it
10699    // might be folded.
10700    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
10701                                                     Op.hasOneUse()*/) {
10702      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
10703             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
10704        // The only case where we'd want to promote LOAD (rather then it being
10705        // promoted as an operand is when it's only use is liveout.
10706        if (UI->getOpcode() != ISD::CopyToReg)
10707          return false;
10708      }
10709    }
10710    Promote = true;
10711    break;
10712  }
10713  case ISD::SIGN_EXTEND:
10714  case ISD::ZERO_EXTEND:
10715  case ISD::ANY_EXTEND:
10716    Promote = true;
10717    break;
10718  case ISD::SHL:
10719  case ISD::SRL: {
10720    SDValue N0 = Op.getOperand(0);
10721    // Look out for (store (shl (load), x)).
10722    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
10723      return false;
10724    Promote = true;
10725    break;
10726  }
10727  case ISD::ADD:
10728  case ISD::MUL:
10729  case ISD::AND:
10730  case ISD::OR:
10731  case ISD::XOR:
10732    Commute = true;
10733    // fallthrough
10734  case ISD::SUB: {
10735    SDValue N0 = Op.getOperand(0);
10736    SDValue N1 = Op.getOperand(1);
10737    if (!Commute && MayFoldLoad(N1))
10738      return false;
10739    // Avoid disabling potential load folding opportunities.
10740    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
10741      return false;
10742    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
10743      return false;
10744    Promote = true;
10745  }
10746  }
10747
10748  PVT = MVT::i32;
10749  return Promote;
10750}
10751
10752//===----------------------------------------------------------------------===//
10753//                           X86 Inline Assembly Support
10754//===----------------------------------------------------------------------===//
10755
10756static bool LowerToBSwap(CallInst *CI) {
10757  // FIXME: this should verify that we are targetting a 486 or better.  If not,
10758  // we will turn this bswap into something that will be lowered to logical ops
10759  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
10760  // so don't worry about this.
10761
10762  // Verify this is a simple bswap.
10763  if (CI->getNumArgOperands() != 1 ||
10764      CI->getType() != CI->getArgOperand(0)->getType() ||
10765      !CI->getType()->isIntegerTy())
10766    return false;
10767
10768  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
10769  if (!Ty || Ty->getBitWidth() % 16 != 0)
10770    return false;
10771
10772  // Okay, we can do this xform, do so now.
10773  const Type *Tys[] = { Ty };
10774  Module *M = CI->getParent()->getParent()->getParent();
10775  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
10776
10777  Value *Op = CI->getArgOperand(0);
10778  Op = CallInst::Create(Int, Op, CI->getName(), CI);
10779
10780  CI->replaceAllUsesWith(Op);
10781  CI->eraseFromParent();
10782  return true;
10783}
10784
10785bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
10786  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
10787  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
10788
10789  std::string AsmStr = IA->getAsmString();
10790
10791  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
10792  SmallVector<StringRef, 4> AsmPieces;
10793  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
10794
10795  switch (AsmPieces.size()) {
10796  default: return false;
10797  case 1:
10798    AsmStr = AsmPieces[0];
10799    AsmPieces.clear();
10800    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
10801
10802    // bswap $0
10803    if (AsmPieces.size() == 2 &&
10804        (AsmPieces[0] == "bswap" ||
10805         AsmPieces[0] == "bswapq" ||
10806         AsmPieces[0] == "bswapl") &&
10807        (AsmPieces[1] == "$0" ||
10808         AsmPieces[1] == "${0:q}")) {
10809      // No need to check constraints, nothing other than the equivalent of
10810      // "=r,0" would be valid here.
10811      return LowerToBSwap(CI);
10812    }
10813    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
10814    if (CI->getType()->isIntegerTy(16) &&
10815        AsmPieces.size() == 3 &&
10816        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
10817        AsmPieces[1] == "$$8," &&
10818        AsmPieces[2] == "${0:w}" &&
10819        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
10820      AsmPieces.clear();
10821      const std::string &Constraints = IA->getConstraintString();
10822      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
10823      std::sort(AsmPieces.begin(), AsmPieces.end());
10824      if (AsmPieces.size() == 4 &&
10825          AsmPieces[0] == "~{cc}" &&
10826          AsmPieces[1] == "~{dirflag}" &&
10827          AsmPieces[2] == "~{flags}" &&
10828          AsmPieces[3] == "~{fpsr}") {
10829        return LowerToBSwap(CI);
10830      }
10831    }
10832    break;
10833  case 3:
10834    if (CI->getType()->isIntegerTy(64) &&
10835        Constraints.size() >= 2 &&
10836        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
10837        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
10838      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
10839      SmallVector<StringRef, 4> Words;
10840      SplitString(AsmPieces[0], Words, " \t");
10841      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
10842        Words.clear();
10843        SplitString(AsmPieces[1], Words, " \t");
10844        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
10845          Words.clear();
10846          SplitString(AsmPieces[2], Words, " \t,");
10847          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
10848              Words[2] == "%edx") {
10849            return LowerToBSwap(CI);
10850          }
10851        }
10852      }
10853    }
10854    break;
10855  }
10856  return false;
10857}
10858
10859
10860
10861/// getConstraintType - Given a constraint letter, return the type of
10862/// constraint it is for this target.
10863X86TargetLowering::ConstraintType
10864X86TargetLowering::getConstraintType(const std::string &Constraint) const {
10865  if (Constraint.size() == 1) {
10866    switch (Constraint[0]) {
10867    case 'A':
10868      return C_Register;
10869    case 'f':
10870    case 'r':
10871    case 'R':
10872    case 'l':
10873    case 'q':
10874    case 'Q':
10875    case 'x':
10876    case 'y':
10877    case 'Y':
10878      return C_RegisterClass;
10879    case 'e':
10880    case 'Z':
10881      return C_Other;
10882    default:
10883      break;
10884    }
10885  }
10886  return TargetLowering::getConstraintType(Constraint);
10887}
10888
10889/// LowerXConstraint - try to replace an X constraint, which matches anything,
10890/// with another that has more specific requirements based on the type of the
10891/// corresponding operand.
10892const char *X86TargetLowering::
10893LowerXConstraint(EVT ConstraintVT) const {
10894  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
10895  // 'f' like normal targets.
10896  if (ConstraintVT.isFloatingPoint()) {
10897    if (Subtarget->hasSSE2())
10898      return "Y";
10899    if (Subtarget->hasSSE1())
10900      return "x";
10901  }
10902
10903  return TargetLowering::LowerXConstraint(ConstraintVT);
10904}
10905
10906/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10907/// vector.  If it is invalid, don't add anything to Ops.
10908void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10909                                                     char Constraint,
10910                                                     std::vector<SDValue>&Ops,
10911                                                     SelectionDAG &DAG) const {
10912  SDValue Result(0, 0);
10913
10914  switch (Constraint) {
10915  default: break;
10916  case 'I':
10917    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10918      if (C->getZExtValue() <= 31) {
10919        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10920        break;
10921      }
10922    }
10923    return;
10924  case 'J':
10925    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10926      if (C->getZExtValue() <= 63) {
10927        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10928        break;
10929      }
10930    }
10931    return;
10932  case 'K':
10933    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10934      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
10935        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10936        break;
10937      }
10938    }
10939    return;
10940  case 'N':
10941    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10942      if (C->getZExtValue() <= 255) {
10943        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10944        break;
10945      }
10946    }
10947    return;
10948  case 'e': {
10949    // 32-bit signed value
10950    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10951      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10952                                           C->getSExtValue())) {
10953        // Widen to 64 bits here to get it sign extended.
10954        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
10955        break;
10956      }
10957    // FIXME gcc accepts some relocatable values here too, but only in certain
10958    // memory models; it's complicated.
10959    }
10960    return;
10961  }
10962  case 'Z': {
10963    // 32-bit unsigned value
10964    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10965      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10966                                           C->getZExtValue())) {
10967        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10968        break;
10969      }
10970    }
10971    // FIXME gcc accepts some relocatable values here too, but only in certain
10972    // memory models; it's complicated.
10973    return;
10974  }
10975  case 'i': {
10976    // Literal immediates are always ok.
10977    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
10978      // Widen to 64 bits here to get it sign extended.
10979      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
10980      break;
10981    }
10982
10983    // In any sort of PIC mode addresses need to be computed at runtime by
10984    // adding in a register or some sort of table lookup.  These can't
10985    // be used as immediates.
10986    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
10987      return;
10988
10989    // If we are in non-pic codegen mode, we allow the address of a global (with
10990    // an optional displacement) to be used with 'i'.
10991    GlobalAddressSDNode *GA = 0;
10992    int64_t Offset = 0;
10993
10994    // Match either (GA), (GA+C), (GA+C1+C2), etc.
10995    while (1) {
10996      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
10997        Offset += GA->getOffset();
10998        break;
10999      } else if (Op.getOpcode() == ISD::ADD) {
11000        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
11001          Offset += C->getZExtValue();
11002          Op = Op.getOperand(0);
11003          continue;
11004        }
11005      } else if (Op.getOpcode() == ISD::SUB) {
11006        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
11007          Offset += -C->getZExtValue();
11008          Op = Op.getOperand(0);
11009          continue;
11010        }
11011      }
11012
11013      // Otherwise, this isn't something we can handle, reject it.
11014      return;
11015    }
11016
11017    const GlobalValue *GV = GA->getGlobal();
11018    // If we require an extra load to get this address, as in PIC mode, we
11019    // can't accept it.
11020    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
11021                                                        getTargetMachine())))
11022      return;
11023
11024    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
11025                                        GA->getValueType(0), Offset);
11026    break;
11027  }
11028  }
11029
11030  if (Result.getNode()) {
11031    Ops.push_back(Result);
11032    return;
11033  }
11034  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11035}
11036
11037std::vector<unsigned> X86TargetLowering::
11038getRegClassForInlineAsmConstraint(const std::string &Constraint,
11039                                  EVT VT) const {
11040  if (Constraint.size() == 1) {
11041    // FIXME: not handling fp-stack yet!
11042    switch (Constraint[0]) {      // GCC X86 Constraint Letters
11043    default: break;  // Unknown constraint letter
11044    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
11045      if (Subtarget->is64Bit()) {
11046        if (VT == MVT::i32)
11047          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
11048                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
11049                                       X86::R10D,X86::R11D,X86::R12D,
11050                                       X86::R13D,X86::R14D,X86::R15D,
11051                                       X86::EBP, X86::ESP, 0);
11052        else if (VT == MVT::i16)
11053          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
11054                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
11055                                       X86::R10W,X86::R11W,X86::R12W,
11056                                       X86::R13W,X86::R14W,X86::R15W,
11057                                       X86::BP,  X86::SP, 0);
11058        else if (VT == MVT::i8)
11059          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
11060                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
11061                                       X86::R10B,X86::R11B,X86::R12B,
11062                                       X86::R13B,X86::R14B,X86::R15B,
11063                                       X86::BPL, X86::SPL, 0);
11064
11065        else if (VT == MVT::i64)
11066          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
11067                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
11068                                       X86::R10, X86::R11, X86::R12,
11069                                       X86::R13, X86::R14, X86::R15,
11070                                       X86::RBP, X86::RSP, 0);
11071
11072        break;
11073      }
11074      // 32-bit fallthrough
11075    case 'Q':   // Q_REGS
11076      if (VT == MVT::i32)
11077        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
11078      else if (VT == MVT::i16)
11079        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
11080      else if (VT == MVT::i8)
11081        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
11082      else if (VT == MVT::i64)
11083        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
11084      break;
11085    }
11086  }
11087
11088  return std::vector<unsigned>();
11089}
11090
11091std::pair<unsigned, const TargetRegisterClass*>
11092X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
11093                                                EVT VT) const {
11094  // First, see if this is a constraint that directly corresponds to an LLVM
11095  // register class.
11096  if (Constraint.size() == 1) {
11097    // GCC Constraint Letters
11098    switch (Constraint[0]) {
11099    default: break;
11100    case 'r':   // GENERAL_REGS
11101    case 'l':   // INDEX_REGS
11102      if (VT == MVT::i8)
11103        return std::make_pair(0U, X86::GR8RegisterClass);
11104      if (VT == MVT::i16)
11105        return std::make_pair(0U, X86::GR16RegisterClass);
11106      if (VT == MVT::i32 || !Subtarget->is64Bit())
11107        return std::make_pair(0U, X86::GR32RegisterClass);
11108      return std::make_pair(0U, X86::GR64RegisterClass);
11109    case 'R':   // LEGACY_REGS
11110      if (VT == MVT::i8)
11111        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
11112      if (VT == MVT::i16)
11113        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
11114      if (VT == MVT::i32 || !Subtarget->is64Bit())
11115        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
11116      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
11117    case 'f':  // FP Stack registers.
11118      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
11119      // value to the correct fpstack register class.
11120      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
11121        return std::make_pair(0U, X86::RFP32RegisterClass);
11122      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
11123        return std::make_pair(0U, X86::RFP64RegisterClass);
11124      return std::make_pair(0U, X86::RFP80RegisterClass);
11125    case 'y':   // MMX_REGS if MMX allowed.
11126      if (!Subtarget->hasMMX()) break;
11127      return std::make_pair(0U, X86::VR64RegisterClass);
11128    case 'Y':   // SSE_REGS if SSE2 allowed
11129      if (!Subtarget->hasSSE2()) break;
11130      // FALL THROUGH.
11131    case 'x':   // SSE_REGS if SSE1 allowed
11132      if (!Subtarget->hasSSE1()) break;
11133
11134      switch (VT.getSimpleVT().SimpleTy) {
11135      default: break;
11136      // Scalar SSE types.
11137      case MVT::f32:
11138      case MVT::i32:
11139        return std::make_pair(0U, X86::FR32RegisterClass);
11140      case MVT::f64:
11141      case MVT::i64:
11142        return std::make_pair(0U, X86::FR64RegisterClass);
11143      // Vector types.
11144      case MVT::v16i8:
11145      case MVT::v8i16:
11146      case MVT::v4i32:
11147      case MVT::v2i64:
11148      case MVT::v4f32:
11149      case MVT::v2f64:
11150        return std::make_pair(0U, X86::VR128RegisterClass);
11151      }
11152      break;
11153    }
11154  }
11155
11156  // Use the default implementation in TargetLowering to convert the register
11157  // constraint into a member of a register class.
11158  std::pair<unsigned, const TargetRegisterClass*> Res;
11159  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
11160
11161  // Not found as a standard register?
11162  if (Res.second == 0) {
11163    // Map st(0) -> st(7) -> ST0
11164    if (Constraint.size() == 7 && Constraint[0] == '{' &&
11165        tolower(Constraint[1]) == 's' &&
11166        tolower(Constraint[2]) == 't' &&
11167        Constraint[3] == '(' &&
11168        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
11169        Constraint[5] == ')' &&
11170        Constraint[6] == '}') {
11171
11172      Res.first = X86::ST0+Constraint[4]-'0';
11173      Res.second = X86::RFP80RegisterClass;
11174      return Res;
11175    }
11176
11177    // GCC allows "st(0)" to be called just plain "st".
11178    if (StringRef("{st}").equals_lower(Constraint)) {
11179      Res.first = X86::ST0;
11180      Res.second = X86::RFP80RegisterClass;
11181      return Res;
11182    }
11183
11184    // flags -> EFLAGS
11185    if (StringRef("{flags}").equals_lower(Constraint)) {
11186      Res.first = X86::EFLAGS;
11187      Res.second = X86::CCRRegisterClass;
11188      return Res;
11189    }
11190
11191    // 'A' means EAX + EDX.
11192    if (Constraint == "A") {
11193      Res.first = X86::EAX;
11194      Res.second = X86::GR32_ADRegisterClass;
11195      return Res;
11196    }
11197    return Res;
11198  }
11199
11200  // Otherwise, check to see if this is a register class of the wrong value
11201  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
11202  // turn into {ax},{dx}.
11203  if (Res.second->hasType(VT))
11204    return Res;   // Correct type already, nothing to do.
11205
11206  // All of the single-register GCC register classes map their values onto
11207  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
11208  // really want an 8-bit or 32-bit register, map to the appropriate register
11209  // class and return the appropriate register.
11210  if (Res.second == X86::GR16RegisterClass) {
11211    if (VT == MVT::i8) {
11212      unsigned DestReg = 0;
11213      switch (Res.first) {
11214      default: break;
11215      case X86::AX: DestReg = X86::AL; break;
11216      case X86::DX: DestReg = X86::DL; break;
11217      case X86::CX: DestReg = X86::CL; break;
11218      case X86::BX: DestReg = X86::BL; break;
11219      }
11220      if (DestReg) {
11221        Res.first = DestReg;
11222        Res.second = X86::GR8RegisterClass;
11223      }
11224    } else if (VT == MVT::i32) {
11225      unsigned DestReg = 0;
11226      switch (Res.first) {
11227      default: break;
11228      case X86::AX: DestReg = X86::EAX; break;
11229      case X86::DX: DestReg = X86::EDX; break;
11230      case X86::CX: DestReg = X86::ECX; break;
11231      case X86::BX: DestReg = X86::EBX; break;
11232      case X86::SI: DestReg = X86::ESI; break;
11233      case X86::DI: DestReg = X86::EDI; break;
11234      case X86::BP: DestReg = X86::EBP; break;
11235      case X86::SP: DestReg = X86::ESP; break;
11236      }
11237      if (DestReg) {
11238        Res.first = DestReg;
11239        Res.second = X86::GR32RegisterClass;
11240      }
11241    } else if (VT == MVT::i64) {
11242      unsigned DestReg = 0;
11243      switch (Res.first) {
11244      default: break;
11245      case X86::AX: DestReg = X86::RAX; break;
11246      case X86::DX: DestReg = X86::RDX; break;
11247      case X86::CX: DestReg = X86::RCX; break;
11248      case X86::BX: DestReg = X86::RBX; break;
11249      case X86::SI: DestReg = X86::RSI; break;
11250      case X86::DI: DestReg = X86::RDI; break;
11251      case X86::BP: DestReg = X86::RBP; break;
11252      case X86::SP: DestReg = X86::RSP; break;
11253      }
11254      if (DestReg) {
11255        Res.first = DestReg;
11256        Res.second = X86::GR64RegisterClass;
11257      }
11258    }
11259  } else if (Res.second == X86::FR32RegisterClass ||
11260             Res.second == X86::FR64RegisterClass ||
11261             Res.second == X86::VR128RegisterClass) {
11262    // Handle references to XMM physical registers that got mapped into the
11263    // wrong class.  This can happen with constraints like {xmm0} where the
11264    // target independent register mapper will just pick the first match it can
11265    // find, ignoring the required type.
11266    if (VT == MVT::f32)
11267      Res.second = X86::FR32RegisterClass;
11268    else if (VT == MVT::f64)
11269      Res.second = X86::FR64RegisterClass;
11270    else if (X86::VR128RegisterClass->hasType(VT))
11271      Res.second = X86::VR128RegisterClass;
11272  }
11273
11274  return Res;
11275}
11276