X86ISelLowering.cpp revision 2f9bb1a0a47622d959ec0cee25a7346c55066817
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/ADT/StringExtras.h"
37using namespace llvm;
38
39X86TargetLowering::X86TargetLowering(TargetMachine &TM)
40  : TargetLowering(TM) {
41  Subtarget = &TM.getSubtarget<X86Subtarget>();
42  X86ScalarSSE = Subtarget->hasSSE2();
43  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
44
45  // Set up the TargetLowering object.
46
47  // X86 is weird, it always uses i8 for shift amounts and setcc results.
48  setShiftAmountType(MVT::i8);
49  setSetCCResultType(MVT::i8);
50  setSetCCResultContents(ZeroOrOneSetCCResult);
51  setSchedulingPreference(SchedulingForRegPressure);
52  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
53  setStackPointerRegisterToSaveRestore(X86StackPtr);
54
55  if (Subtarget->isTargetDarwin()) {
56    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
57    setUseUnderscoreSetJmp(false);
58    setUseUnderscoreLongJmp(false);
59  } else if (Subtarget->isTargetMingw()) {
60    // MS runtime is weird: it exports _setjmp, but longjmp!
61    setUseUnderscoreSetJmp(true);
62    setUseUnderscoreLongJmp(false);
63  } else {
64    setUseUnderscoreSetJmp(true);
65    setUseUnderscoreLongJmp(true);
66  }
67
68  // Set up the register classes.
69  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
70  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
71  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
72  if (Subtarget->is64Bit())
73    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
74
75  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
76
77  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
78  // operation.
79  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
80  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
81  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
82
83  if (Subtarget->is64Bit()) {
84    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
85    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
86  } else {
87    if (X86ScalarSSE)
88      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
89      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
90    else
91      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
92  }
93
94  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
95  // this operation.
96  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
97  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
98  // SSE has no i16 to fp conversion, only i32
99  if (X86ScalarSSE)
100    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
101  else {
102    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
103    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
104  }
105
106  if (!Subtarget->is64Bit()) {
107    // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode.
108    setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
109    setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
110  }
111
112  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
113  // this operation.
114  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
115  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
116
117  if (X86ScalarSSE) {
118    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
119  } else {
120    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
121    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
122  }
123
124  // Handle FP_TO_UINT by promoting the destination to a larger signed
125  // conversion.
126  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
127  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
128  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
129
130  if (Subtarget->is64Bit()) {
131    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
132    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
133  } else {
134    if (X86ScalarSSE && !Subtarget->hasSSE3())
135      // Expand FP_TO_UINT into a select.
136      // FIXME: We would like to use a Custom expander here eventually to do
137      // the optimal thing for SSE vs. the default expansion in the legalizer.
138      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
139    else
140      // With SSE3 we can use fisttpll to convert to a signed i64.
141      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
142  }
143
144  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
145  if (!X86ScalarSSE) {
146    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
147    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
148  }
149
150  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
151  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
152  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
153  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
154  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
155  if (Subtarget->is64Bit())
156    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
157  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Expand);
158  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Expand);
159  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
160  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
161  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
162
163  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
164  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
165  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
166  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
167  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
168  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
169  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
170  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
171  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
172  if (Subtarget->is64Bit()) {
173    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
174    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
175    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
176  }
177
178  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
179  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
180
181  // These should be promoted to a larger select which is supported.
182  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
183  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
184  // X86 wants to expand cmov itself.
185  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
186  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
187  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
188  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
189  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
190  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
191  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
192  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
193  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
194  if (Subtarget->is64Bit()) {
195    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
196    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
197  }
198  // X86 ret instruction may pop stack.
199  setOperationAction(ISD::RET             , MVT::Other, Custom);
200  // Darwin ABI issue.
201  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
202  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
203  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
204  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
205  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
206  if (Subtarget->is64Bit()) {
207    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
208    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
209    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
210    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
211  }
212  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
213  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
214  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
215  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
216  // X86 wants to expand memset / memcpy itself.
217  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
218  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
219
220  // We don't have line number support yet.
221  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
222  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
223  // FIXME - use subtarget debug flags
224  if (!Subtarget->isTargetDarwin() &&
225      !Subtarget->isTargetELF() &&
226      !Subtarget->isTargetCygMing())
227    setOperationAction(ISD::LABEL, MVT::Other, Expand);
228
229  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
230  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
231  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
232  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
233  if (Subtarget->is64Bit())
234    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
235  else
236    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
237
238  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
239  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
240  if (Subtarget->is64Bit())
241    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
242  if (Subtarget->isTargetCygMing())
243    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
244  else
245    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
246
247  if (X86ScalarSSE) {
248    // Set up the FP register classes.
249    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
250    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
251
252    // Use ANDPD to simulate FABS.
253    setOperationAction(ISD::FABS , MVT::f64, Custom);
254    setOperationAction(ISD::FABS , MVT::f32, Custom);
255
256    // Use XORP to simulate FNEG.
257    setOperationAction(ISD::FNEG , MVT::f64, Custom);
258    setOperationAction(ISD::FNEG , MVT::f32, Custom);
259
260    // Use ANDPD and ORPD to simulate FCOPYSIGN.
261    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
262    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
263
264    // We don't support sin/cos/fmod
265    setOperationAction(ISD::FSIN , MVT::f64, Expand);
266    setOperationAction(ISD::FCOS , MVT::f64, Expand);
267    setOperationAction(ISD::FREM , MVT::f64, Expand);
268    setOperationAction(ISD::FSIN , MVT::f32, Expand);
269    setOperationAction(ISD::FCOS , MVT::f32, Expand);
270    setOperationAction(ISD::FREM , MVT::f32, Expand);
271
272    // Expand FP immediates into loads from the stack, except for the special
273    // cases we handle.
274    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
275    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
276    addLegalFPImmediate(+0.0); // xorps / xorpd
277  } else {
278    // Set up the FP register classes.
279    addRegisterClass(MVT::f64, X86::RFPRegisterClass);
280
281    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
282    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
283    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
284
285    if (!UnsafeFPMath) {
286      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
287      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
288    }
289
290    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
291    addLegalFPImmediate(+0.0); // FLD0
292    addLegalFPImmediate(+1.0); // FLD1
293    addLegalFPImmediate(-0.0); // FLD0/FCHS
294    addLegalFPImmediate(-1.0); // FLD1/FCHS
295  }
296
297  // First set operation action for all vector types to expand. Then we
298  // will selectively turn on ones that can be effectively codegen'd.
299  for (unsigned VT = (unsigned)MVT::Vector + 1;
300       VT != (unsigned)MVT::LAST_VALUETYPE; VT++) {
301    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
302    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
303    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
304    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
305    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
306    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
307    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
308    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
309    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
310    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
311    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
312    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
313    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
314    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
315    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
316  }
317
318  if (Subtarget->hasMMX()) {
319    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
320    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
321    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
322    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
323
324    // FIXME: add MMX packed arithmetics
325
326    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
327    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
328    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
329    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
330
331    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
332    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
333    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
334
335    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
336    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
337
338    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
339    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
340    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
341    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
342    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
343    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
344    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
345
346    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
347    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
348    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
349    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
350    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
351    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
352    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
353
354    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
355    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
356    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
357    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
358    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
359    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
360    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
361
362    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
363    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
364    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
365    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
366    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
367    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
368    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
369
370    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
371    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
372    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
373    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
374
375    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
376    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
377    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
378    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
379
380    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
381    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
382    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Custom);
383    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
384  }
385
386  if (Subtarget->hasSSE1()) {
387    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
388
389    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
390    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
391    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
392    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
393    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
394    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
395    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
396    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
397    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
398  }
399
400  if (Subtarget->hasSSE2()) {
401    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
402    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
403    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
404    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
405    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
406
407    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
408    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
409    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
410    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
411    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
412    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
413    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
414    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
415    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
416    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
417    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
418    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
419    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
420
421    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
422    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
423    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
424    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
425    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
426    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
427
428    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
429    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
430      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
431      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
432      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
433    }
434    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
435    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
436    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
437    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
438    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
439    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
440
441    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
442    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
443      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
444      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
445      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
446      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
447      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
448      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
449      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
450      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
451      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
452      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
453    }
454
455    // Custom lower v2i64 and v2f64 selects.
456    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
457    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
458    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
459    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
460  }
461
462  // We want to custom lower some of our intrinsics.
463  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
464
465  // We have target-specific dag combine patterns for the following nodes:
466  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
467  setTargetDAGCombine(ISD::SELECT);
468
469  computeRegisterProperties();
470
471  // FIXME: These should be based on subtarget info. Plus, the values should
472  // be smaller when we are in optimizing for size mode.
473  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
474  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
475  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
476  allowUnalignedMemoryAccesses = true; // x86 supports it!
477}
478
479
480//===----------------------------------------------------------------------===//
481//               Return Value Calling Convention Implementation
482//===----------------------------------------------------------------------===//
483
484#include "X86GenCallingConv.inc"
485
486/// LowerRET - Lower an ISD::RET node.
487SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
488  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
489
490  SmallVector<CCValAssign, 16> RVLocs;
491  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
492  CCState CCInfo(CC, getTargetMachine(), RVLocs);
493  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
494
495
496  // If this is the first return lowered for this function, add the regs to the
497  // liveout set for the function.
498  if (DAG.getMachineFunction().liveout_empty()) {
499    for (unsigned i = 0; i != RVLocs.size(); ++i)
500      if (RVLocs[i].isRegLoc())
501        DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
502  }
503
504  SDOperand Chain = Op.getOperand(0);
505  SDOperand Flag;
506
507  // Copy the result values into the output registers.
508  if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
509      RVLocs[0].getLocReg() != X86::ST0) {
510    for (unsigned i = 0; i != RVLocs.size(); ++i) {
511      CCValAssign &VA = RVLocs[i];
512      assert(VA.isRegLoc() && "Can only return in registers!");
513      Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
514                               Flag);
515      Flag = Chain.getValue(1);
516    }
517  } else {
518    // We need to handle a destination of ST0 specially, because it isn't really
519    // a register.
520    SDOperand Value = Op.getOperand(1);
521
522    // If this is an FP return with ScalarSSE, we need to move the value from
523    // an XMM register onto the fp-stack.
524    if (X86ScalarSSE) {
525      SDOperand MemLoc;
526
527      // If this is a load into a scalarsse value, don't store the loaded value
528      // back to the stack, only to reload it: just replace the scalar-sse load.
529      if (ISD::isNON_EXTLoad(Value.Val) &&
530          (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
531        Chain  = Value.getOperand(0);
532        MemLoc = Value.getOperand(1);
533      } else {
534        // Spill the value to memory and reload it into top of stack.
535        unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
536        MachineFunction &MF = DAG.getMachineFunction();
537        int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
538        MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
539        Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
540      }
541      SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other);
542      SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
543      Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
544      Chain = Value.getValue(1);
545    }
546
547    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
548    SDOperand Ops[] = { Chain, Value };
549    Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
550    Flag = Chain.getValue(1);
551  }
552
553  SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
554  if (Flag.Val)
555    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
556  else
557    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
558}
559
560
561/// LowerCallResult - Lower the result values of an ISD::CALL into the
562/// appropriate copies out of appropriate physical registers.  This assumes that
563/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
564/// being lowered.  The returns a SDNode with the same number of values as the
565/// ISD::CALL.
566SDNode *X86TargetLowering::
567LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
568                unsigned CallingConv, SelectionDAG &DAG) {
569
570  // Assign locations to each value returned by this call.
571  SmallVector<CCValAssign, 16> RVLocs;
572  CCState CCInfo(CallingConv, getTargetMachine(), RVLocs);
573  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
574
575
576  SmallVector<SDOperand, 8> ResultVals;
577
578  // Copy all of the result registers out of their specified physreg.
579  if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
580    for (unsigned i = 0; i != RVLocs.size(); ++i) {
581      Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
582                                 RVLocs[i].getValVT(), InFlag).getValue(1);
583      InFlag = Chain.getValue(2);
584      ResultVals.push_back(Chain.getValue(0));
585    }
586  } else {
587    // Copies from the FP stack are special, as ST0 isn't a valid register
588    // before the fp stackifier runs.
589
590    // Copy ST0 into an RFP register with FP_GET_RESULT.
591    SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
592    SDOperand GROps[] = { Chain, InFlag };
593    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
594    Chain  = RetVal.getValue(1);
595    InFlag = RetVal.getValue(2);
596
597    // If we are using ScalarSSE, store ST(0) to the stack and reload it into
598    // an XMM register.
599    if (X86ScalarSSE) {
600      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
601      // shouldn't be necessary except that RFP cannot be live across
602      // multiple blocks. When stackifier is fixed, they can be uncoupled.
603      MachineFunction &MF = DAG.getMachineFunction();
604      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
605      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
606      SDOperand Ops[] = {
607        Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
608      };
609      Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
610      RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
611      Chain = RetVal.getValue(1);
612    }
613
614    if (RVLocs[0].getValVT() == MVT::f32 && !X86ScalarSSE)
615      // FIXME: we would really like to remember that this FP_ROUND
616      // operation is okay to eliminate if we allow excess FP precision.
617      RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
618    ResultVals.push_back(RetVal);
619  }
620
621  // Merge everything together with a MERGE_VALUES node.
622  ResultVals.push_back(Chain);
623  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
624                     &ResultVals[0], ResultVals.size()).Val;
625}
626
627
628//===----------------------------------------------------------------------===//
629//                C & StdCall Calling Convention implementation
630//===----------------------------------------------------------------------===//
631//  StdCall calling convention seems to be standard for many Windows' API
632//  routines and around. It differs from C calling convention just a little:
633//  callee should clean up the stack, not caller. Symbols should be also
634//  decorated in some fancy way :) It doesn't support any vector arguments.
635
636/// AddLiveIn - This helper function adds the specified physical register to the
637/// MachineFunction as a live in value.  It also creates a corresponding virtual
638/// register for it.
639static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
640                          const TargetRegisterClass *RC) {
641  assert(RC->contains(PReg) && "Not the correct regclass!");
642  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
643  MF.addLiveIn(PReg, VReg);
644  return VReg;
645}
646
647SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
648                                               bool isStdCall) {
649  unsigned NumArgs = Op.Val->getNumValues() - 1;
650  MachineFunction &MF = DAG.getMachineFunction();
651  MachineFrameInfo *MFI = MF.getFrameInfo();
652  SDOperand Root = Op.getOperand(0);
653  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
654
655  // Assign locations to all of the incoming arguments.
656  SmallVector<CCValAssign, 16> ArgLocs;
657  CCState CCInfo(MF.getFunction()->getCallingConv(), getTargetMachine(),
658                 ArgLocs);
659  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
660
661  SmallVector<SDOperand, 8> ArgValues;
662  unsigned LastVal = ~0U;
663  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
664    CCValAssign &VA = ArgLocs[i];
665    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
666    // places.
667    assert(VA.getValNo() != LastVal &&
668           "Don't support value assigned to multiple locs yet");
669    LastVal = VA.getValNo();
670
671    if (VA.isRegLoc()) {
672      MVT::ValueType RegVT = VA.getLocVT();
673      TargetRegisterClass *RC;
674      if (RegVT == MVT::i32)
675        RC = X86::GR32RegisterClass;
676      else {
677        assert(MVT::isVector(RegVT));
678        RC = X86::VR128RegisterClass;
679      }
680
681      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
682      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
683
684      // If this is an 8 or 16-bit value, it is really passed promoted to 32
685      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
686      // right size.
687      if (VA.getLocInfo() == CCValAssign::SExt)
688        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
689                               DAG.getValueType(VA.getValVT()));
690      else if (VA.getLocInfo() == CCValAssign::ZExt)
691        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
692                               DAG.getValueType(VA.getValVT()));
693
694      if (VA.getLocInfo() != CCValAssign::Full)
695        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
696
697      ArgValues.push_back(ArgValue);
698    } else {
699      assert(VA.isMemLoc());
700
701      // Create the nodes corresponding to a load from this parameter slot.
702      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
703                                      VA.getLocMemOffset());
704      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
705      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
706    }
707  }
708
709  unsigned StackSize = CCInfo.getNextStackOffset();
710
711  ArgValues.push_back(Root);
712
713  // If the function takes variable number of arguments, make a frame index for
714  // the start of the first vararg value... for expansion of llvm.va_start.
715  if (isVarArg)
716    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
717
718  if (isStdCall && !isVarArg) {
719    BytesToPopOnReturn  = StackSize;    // Callee pops everything..
720    BytesCallerReserves = 0;
721  } else {
722    BytesToPopOnReturn  = 0; // Callee pops nothing.
723
724    // If this is an sret function, the return should pop the hidden pointer.
725    if (NumArgs &&
726        (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
727         ISD::ParamFlags::StructReturn))
728      BytesToPopOnReturn = 4;
729
730    BytesCallerReserves = StackSize;
731  }
732
733  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
734  ReturnAddrIndex = 0;            // No return address slot generated yet.
735
736  MF.getInfo<X86MachineFunctionInfo>()
737    ->setBytesToPopOnReturn(BytesToPopOnReturn);
738
739  // Return the new list of results.
740  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
741                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
742}
743
744SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
745                                            unsigned CC) {
746  SDOperand Chain     = Op.getOperand(0);
747  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
748  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
749  SDOperand Callee    = Op.getOperand(4);
750  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
751
752  // Analyze operands of the call, assigning locations to each operand.
753  SmallVector<CCValAssign, 16> ArgLocs;
754  CCState CCInfo(CC, getTargetMachine(), ArgLocs);
755  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
756
757  // Get a count of how many bytes are to be pushed on the stack.
758  unsigned NumBytes = CCInfo.getNextStackOffset();
759
760  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
761
762  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
763  SmallVector<SDOperand, 8> MemOpChains;
764
765  SDOperand StackPtr;
766
767  // Walk the register/memloc assignments, inserting copies/loads.
768  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
769    CCValAssign &VA = ArgLocs[i];
770    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
771
772    // Promote the value if needed.
773    switch (VA.getLocInfo()) {
774    default: assert(0 && "Unknown loc info!");
775    case CCValAssign::Full: break;
776    case CCValAssign::SExt:
777      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
778      break;
779    case CCValAssign::ZExt:
780      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
781      break;
782    case CCValAssign::AExt:
783      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
784      break;
785    }
786
787    if (VA.isRegLoc()) {
788      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
789    } else {
790      assert(VA.isMemLoc());
791      if (StackPtr.Val == 0)
792        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
793      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
794      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
795      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
796    }
797  }
798
799  // If the first argument is an sret pointer, remember it.
800  bool isSRet = NumOps &&
801    (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
802     ISD::ParamFlags::StructReturn);
803
804  if (!MemOpChains.empty())
805    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
806                        &MemOpChains[0], MemOpChains.size());
807
808  // Build a sequence of copy-to-reg nodes chained together with token chain
809  // and flag operands which copy the outgoing args into registers.
810  SDOperand InFlag;
811  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
812    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
813                             InFlag);
814    InFlag = Chain.getValue(1);
815  }
816
817  // ELF / PIC requires GOT in the EBX register before function calls via PLT
818  // GOT pointer.
819  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
820      Subtarget->isPICStyleGOT()) {
821    Chain = DAG.getCopyToReg(Chain, X86::EBX,
822                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
823                             InFlag);
824    InFlag = Chain.getValue(1);
825  }
826
827  // If the callee is a GlobalAddress node (quite common, every direct call is)
828  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
829  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
830    // We should use extra load for direct calls to dllimported functions in
831    // non-JIT mode.
832    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
833                                        getTargetMachine(), true))
834      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
835  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
836    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
837
838  // Returns a chain & a flag for retval copy to use.
839  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
840  SmallVector<SDOperand, 8> Ops;
841  Ops.push_back(Chain);
842  Ops.push_back(Callee);
843
844  // Add argument registers to the end of the list so that they are known live
845  // into the call.
846  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
847    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
848                                  RegsToPass[i].second.getValueType()));
849
850  // Add an implicit use GOT pointer in EBX.
851  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
852      Subtarget->isPICStyleGOT())
853    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
854
855  if (InFlag.Val)
856    Ops.push_back(InFlag);
857
858  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
859                      NodeTys, &Ops[0], Ops.size());
860  InFlag = Chain.getValue(1);
861
862  // Create the CALLSEQ_END node.
863  unsigned NumBytesForCalleeToPush = 0;
864
865  if (CC == CallingConv::X86_StdCall) {
866    if (isVarArg)
867      NumBytesForCalleeToPush = isSRet ? 4 : 0;
868    else
869      NumBytesForCalleeToPush = NumBytes;
870  } else {
871    // If this is is a call to a struct-return function, the callee
872    // pops the hidden struct pointer, so we have to push it back.
873    // This is common for Darwin/X86, Linux & Mingw32 targets.
874    NumBytesForCalleeToPush = isSRet ? 4 : 0;
875  }
876
877  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
878  Ops.clear();
879  Ops.push_back(Chain);
880  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
881  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
882  Ops.push_back(InFlag);
883  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
884  InFlag = Chain.getValue(1);
885
886  // Handle result values, copying them out of physregs into vregs that we
887  // return.
888  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
889}
890
891
892//===----------------------------------------------------------------------===//
893//                   FastCall Calling Convention implementation
894//===----------------------------------------------------------------------===//
895//
896// The X86 'fastcall' calling convention passes up to two integer arguments in
897// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
898// and requires that the callee pop its arguments off the stack (allowing proper
899// tail calls), and has the same return value conventions as C calling convs.
900//
901// This calling convention always arranges for the callee pop value to be 8n+4
902// bytes, which is needed for tail recursion elimination and stack alignment
903// reasons.
904SDOperand
905X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
906  MachineFunction &MF = DAG.getMachineFunction();
907  MachineFrameInfo *MFI = MF.getFrameInfo();
908  SDOperand Root = Op.getOperand(0);
909
910  // Assign locations to all of the incoming arguments.
911  SmallVector<CCValAssign, 16> ArgLocs;
912  CCState CCInfo(MF.getFunction()->getCallingConv(), getTargetMachine(),
913                 ArgLocs);
914  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
915
916  SmallVector<SDOperand, 8> ArgValues;
917  unsigned LastVal = ~0U;
918  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
919    CCValAssign &VA = ArgLocs[i];
920    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
921    // places.
922    assert(VA.getValNo() != LastVal &&
923           "Don't support value assigned to multiple locs yet");
924    LastVal = VA.getValNo();
925
926    if (VA.isRegLoc()) {
927      MVT::ValueType RegVT = VA.getLocVT();
928      TargetRegisterClass *RC;
929      if (RegVT == MVT::i32)
930        RC = X86::GR32RegisterClass;
931      else {
932        assert(MVT::isVector(RegVT));
933        RC = X86::VR128RegisterClass;
934      }
935
936      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
937      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
938
939      // If this is an 8 or 16-bit value, it is really passed promoted to 32
940      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
941      // right size.
942      if (VA.getLocInfo() == CCValAssign::SExt)
943        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
944                               DAG.getValueType(VA.getValVT()));
945      else if (VA.getLocInfo() == CCValAssign::ZExt)
946        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
947                               DAG.getValueType(VA.getValVT()));
948
949      if (VA.getLocInfo() != CCValAssign::Full)
950        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
951
952      ArgValues.push_back(ArgValue);
953    } else {
954      assert(VA.isMemLoc());
955
956      // Create the nodes corresponding to a load from this parameter slot.
957      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
958                                      VA.getLocMemOffset());
959      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
960      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
961    }
962  }
963
964  ArgValues.push_back(Root);
965
966  unsigned StackSize = CCInfo.getNextStackOffset();
967
968  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
969    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
970    // arguments and the arguments after the retaddr has been pushed are aligned.
971    if ((StackSize & 7) == 0)
972      StackSize += 4;
973  }
974
975  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
976  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
977  ReturnAddrIndex = 0;             // No return address slot generated yet.
978  BytesToPopOnReturn = StackSize;  // Callee pops all stack arguments.
979  BytesCallerReserves = 0;
980
981  MF.getInfo<X86MachineFunctionInfo>()
982    ->setBytesToPopOnReturn(BytesToPopOnReturn);
983
984  // Return the new list of results.
985  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
986                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
987}
988
989SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
990                                               unsigned CC) {
991  SDOperand Chain     = Op.getOperand(0);
992  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
993  SDOperand Callee    = Op.getOperand(4);
994
995  // Analyze operands of the call, assigning locations to each operand.
996  SmallVector<CCValAssign, 16> ArgLocs;
997  CCState CCInfo(CC, getTargetMachine(), ArgLocs);
998  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
999
1000  // Get a count of how many bytes are to be pushed on the stack.
1001  unsigned NumBytes = CCInfo.getNextStackOffset();
1002
1003  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1004    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1005    // arguments and the arguments after the retaddr has been pushed are aligned.
1006    if ((NumBytes & 7) == 0)
1007      NumBytes += 4;
1008  }
1009
1010  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1011
1012  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1013  SmallVector<SDOperand, 8> MemOpChains;
1014
1015  SDOperand StackPtr;
1016
1017  // Walk the register/memloc assignments, inserting copies/loads.
1018  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1019    CCValAssign &VA = ArgLocs[i];
1020    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1021
1022    // Promote the value if needed.
1023    switch (VA.getLocInfo()) {
1024      default: assert(0 && "Unknown loc info!");
1025      case CCValAssign::Full: break;
1026      case CCValAssign::SExt:
1027        Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1028        break;
1029      case CCValAssign::ZExt:
1030        Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1031        break;
1032      case CCValAssign::AExt:
1033        Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1034        break;
1035    }
1036
1037    if (VA.isRegLoc()) {
1038      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1039    } else {
1040      assert(VA.isMemLoc());
1041      if (StackPtr.Val == 0)
1042        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1043      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1044      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1045      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1046    }
1047  }
1048
1049  if (!MemOpChains.empty())
1050    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1051                        &MemOpChains[0], MemOpChains.size());
1052
1053  // Build a sequence of copy-to-reg nodes chained together with token chain
1054  // and flag operands which copy the outgoing args into registers.
1055  SDOperand InFlag;
1056  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1057    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1058                             InFlag);
1059    InFlag = Chain.getValue(1);
1060  }
1061
1062  // If the callee is a GlobalAddress node (quite common, every direct call is)
1063  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1064  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1065    // We should use extra load for direct calls to dllimported functions in
1066    // non-JIT mode.
1067    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1068                                        getTargetMachine(), true))
1069      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1070  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1071    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1072
1073  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1074  // GOT pointer.
1075  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1076      Subtarget->isPICStyleGOT()) {
1077    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1078                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1079                             InFlag);
1080    InFlag = Chain.getValue(1);
1081  }
1082
1083  // Returns a chain & a flag for retval copy to use.
1084  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1085  SmallVector<SDOperand, 8> Ops;
1086  Ops.push_back(Chain);
1087  Ops.push_back(Callee);
1088
1089  // Add argument registers to the end of the list so that they are known live
1090  // into the call.
1091  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1092    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1093                                  RegsToPass[i].second.getValueType()));
1094
1095  // Add an implicit use GOT pointer in EBX.
1096  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1097      Subtarget->isPICStyleGOT())
1098    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1099
1100  if (InFlag.Val)
1101    Ops.push_back(InFlag);
1102
1103  // FIXME: Do not generate X86ISD::TAILCALL for now.
1104  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1105                      NodeTys, &Ops[0], Ops.size());
1106  InFlag = Chain.getValue(1);
1107
1108  // Returns a flag for retval copy to use.
1109  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1110  Ops.clear();
1111  Ops.push_back(Chain);
1112  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1113  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1114  Ops.push_back(InFlag);
1115  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1116  InFlag = Chain.getValue(1);
1117
1118  // Handle result values, copying them out of physregs into vregs that we
1119  // return.
1120  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1121}
1122
1123
1124//===----------------------------------------------------------------------===//
1125//                 X86-64 C Calling Convention implementation
1126//===----------------------------------------------------------------------===//
1127
1128SDOperand
1129X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1130  MachineFunction &MF = DAG.getMachineFunction();
1131  MachineFrameInfo *MFI = MF.getFrameInfo();
1132  SDOperand Root = Op.getOperand(0);
1133  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1134
1135  static const unsigned GPR64ArgRegs[] = {
1136    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1137  };
1138  static const unsigned XMMArgRegs[] = {
1139    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1140    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1141  };
1142
1143
1144  // Assign locations to all of the incoming arguments.
1145  SmallVector<CCValAssign, 16> ArgLocs;
1146  CCState CCInfo(MF.getFunction()->getCallingConv(), getTargetMachine(),
1147                 ArgLocs);
1148  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1149
1150  SmallVector<SDOperand, 8> ArgValues;
1151  unsigned LastVal = ~0U;
1152  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1153    CCValAssign &VA = ArgLocs[i];
1154    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1155    // places.
1156    assert(VA.getValNo() != LastVal &&
1157           "Don't support value assigned to multiple locs yet");
1158    LastVal = VA.getValNo();
1159
1160    if (VA.isRegLoc()) {
1161      MVT::ValueType RegVT = VA.getLocVT();
1162      TargetRegisterClass *RC;
1163      if (RegVT == MVT::i32)
1164        RC = X86::GR32RegisterClass;
1165      else if (RegVT == MVT::i64)
1166        RC = X86::GR64RegisterClass;
1167      else if (RegVT == MVT::f32)
1168        RC = X86::FR32RegisterClass;
1169      else if (RegVT == MVT::f64)
1170        RC = X86::FR64RegisterClass;
1171      else {
1172        assert(MVT::isVector(RegVT));
1173        RC = X86::VR128RegisterClass;
1174      }
1175
1176      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1177      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1178
1179      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1180      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1181      // right size.
1182      if (VA.getLocInfo() == CCValAssign::SExt)
1183        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1184                               DAG.getValueType(VA.getValVT()));
1185      else if (VA.getLocInfo() == CCValAssign::ZExt)
1186        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1187                               DAG.getValueType(VA.getValVT()));
1188
1189      if (VA.getLocInfo() != CCValAssign::Full)
1190        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1191
1192      ArgValues.push_back(ArgValue);
1193    } else {
1194      assert(VA.isMemLoc());
1195
1196      // Create the nodes corresponding to a load from this parameter slot.
1197      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1198                                      VA.getLocMemOffset());
1199      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1200      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
1201    }
1202  }
1203
1204  unsigned StackSize = CCInfo.getNextStackOffset();
1205
1206  // If the function takes variable number of arguments, make a frame index for
1207  // the start of the first vararg value... for expansion of llvm.va_start.
1208  if (isVarArg) {
1209    unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1210    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1211
1212    // For X86-64, if there are vararg parameters that are passed via
1213    // registers, then we must store them to their spots on the stack so they
1214    // may be loaded by deferencing the result of va_next.
1215    VarArgsGPOffset = NumIntRegs * 8;
1216    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1217    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1218    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1219
1220    // Store the integer parameter registers.
1221    SmallVector<SDOperand, 8> MemOps;
1222    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1223    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1224                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1225    for (; NumIntRegs != 6; ++NumIntRegs) {
1226      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1227                                X86::GR64RegisterClass);
1228      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1229      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1230      MemOps.push_back(Store);
1231      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1232                        DAG.getConstant(8, getPointerTy()));
1233    }
1234
1235    // Now store the XMM (fp + vector) parameter registers.
1236    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1237                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1238    for (; NumXMMRegs != 8; ++NumXMMRegs) {
1239      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1240                                X86::VR128RegisterClass);
1241      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1242      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1243      MemOps.push_back(Store);
1244      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1245                        DAG.getConstant(16, getPointerTy()));
1246    }
1247    if (!MemOps.empty())
1248        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1249                           &MemOps[0], MemOps.size());
1250  }
1251
1252  ArgValues.push_back(Root);
1253
1254  ReturnAddrIndex = 0;     // No return address slot generated yet.
1255  BytesToPopOnReturn = 0;  // Callee pops nothing.
1256  BytesCallerReserves = StackSize;
1257
1258  // Return the new list of results.
1259  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1260                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1261}
1262
1263SDOperand
1264X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1265                                        unsigned CC) {
1266  SDOperand Chain     = Op.getOperand(0);
1267  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1268  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1269  SDOperand Callee    = Op.getOperand(4);
1270
1271  // Analyze operands of the call, assigning locations to each operand.
1272  SmallVector<CCValAssign, 16> ArgLocs;
1273  CCState CCInfo(CC, getTargetMachine(), ArgLocs);
1274  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1275
1276  // Get a count of how many bytes are to be pushed on the stack.
1277  unsigned NumBytes = CCInfo.getNextStackOffset();
1278  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1279
1280  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1281  SmallVector<SDOperand, 8> MemOpChains;
1282
1283  SDOperand StackPtr;
1284
1285  // Walk the register/memloc assignments, inserting copies/loads.
1286  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1287    CCValAssign &VA = ArgLocs[i];
1288    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1289
1290    // Promote the value if needed.
1291    switch (VA.getLocInfo()) {
1292    default: assert(0 && "Unknown loc info!");
1293    case CCValAssign::Full: break;
1294    case CCValAssign::SExt:
1295      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1296      break;
1297    case CCValAssign::ZExt:
1298      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1299      break;
1300    case CCValAssign::AExt:
1301      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1302      break;
1303    }
1304
1305    if (VA.isRegLoc()) {
1306      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1307    } else {
1308      assert(VA.isMemLoc());
1309      if (StackPtr.Val == 0)
1310        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1311      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1312      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1313      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1314    }
1315  }
1316
1317  if (!MemOpChains.empty())
1318    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1319                        &MemOpChains[0], MemOpChains.size());
1320
1321  // Build a sequence of copy-to-reg nodes chained together with token chain
1322  // and flag operands which copy the outgoing args into registers.
1323  SDOperand InFlag;
1324  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1325    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1326                             InFlag);
1327    InFlag = Chain.getValue(1);
1328  }
1329
1330  if (isVarArg) {
1331    // From AMD64 ABI document:
1332    // For calls that may call functions that use varargs or stdargs
1333    // (prototype-less calls or calls to functions containing ellipsis (...) in
1334    // the declaration) %al is used as hidden argument to specify the number
1335    // of SSE registers used. The contents of %al do not need to match exactly
1336    // the number of registers, but must be an ubound on the number of SSE
1337    // registers used and is in the range 0 - 8 inclusive.
1338
1339    // Count the number of XMM registers allocated.
1340    static const unsigned XMMArgRegs[] = {
1341      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1342      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1343    };
1344    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1345
1346    Chain = DAG.getCopyToReg(Chain, X86::AL,
1347                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1348    InFlag = Chain.getValue(1);
1349  }
1350
1351  // If the callee is a GlobalAddress node (quite common, every direct call is)
1352  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1353  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1354    // We should use extra load for direct calls to dllimported functions in
1355    // non-JIT mode.
1356    if (getTargetMachine().getCodeModel() != CodeModel::Large
1357        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1358                                           getTargetMachine(), true))
1359      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1360  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1361    if (getTargetMachine().getCodeModel() != CodeModel::Large)
1362      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1363
1364  // Returns a chain & a flag for retval copy to use.
1365  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1366  SmallVector<SDOperand, 8> Ops;
1367  Ops.push_back(Chain);
1368  Ops.push_back(Callee);
1369
1370  // Add argument registers to the end of the list so that they are known live
1371  // into the call.
1372  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1373    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1374                                  RegsToPass[i].second.getValueType()));
1375
1376  if (InFlag.Val)
1377    Ops.push_back(InFlag);
1378
1379  // FIXME: Do not generate X86ISD::TAILCALL for now.
1380  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1381                      NodeTys, &Ops[0], Ops.size());
1382  InFlag = Chain.getValue(1);
1383
1384  // Returns a flag for retval copy to use.
1385  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1386  Ops.clear();
1387  Ops.push_back(Chain);
1388  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1389  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1390  Ops.push_back(InFlag);
1391  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1392  InFlag = Chain.getValue(1);
1393
1394  // Handle result values, copying them out of physregs into vregs that we
1395  // return.
1396  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1397}
1398
1399
1400//===----------------------------------------------------------------------===//
1401//                           Other Lowering Hooks
1402//===----------------------------------------------------------------------===//
1403
1404
1405SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1406  if (ReturnAddrIndex == 0) {
1407    // Set up a frame object for the return address.
1408    MachineFunction &MF = DAG.getMachineFunction();
1409    if (Subtarget->is64Bit())
1410      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1411    else
1412      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1413  }
1414
1415  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1416}
1417
1418
1419
1420/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1421/// specific condition code. It returns a false if it cannot do a direct
1422/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1423/// needed.
1424static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1425                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1426                           SelectionDAG &DAG) {
1427  X86CC = X86::COND_INVALID;
1428  if (!isFP) {
1429    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1430      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1431        // X > -1   -> X == 0, jump !sign.
1432        RHS = DAG.getConstant(0, RHS.getValueType());
1433        X86CC = X86::COND_NS;
1434        return true;
1435      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1436        // X < 0   -> X == 0, jump on sign.
1437        X86CC = X86::COND_S;
1438        return true;
1439      }
1440    }
1441
1442    switch (SetCCOpcode) {
1443    default: break;
1444    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1445    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1446    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1447    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1448    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1449    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1450    case ISD::SETULT: X86CC = X86::COND_B;  break;
1451    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1452    case ISD::SETULE: X86CC = X86::COND_BE; break;
1453    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1454    }
1455  } else {
1456    // On a floating point condition, the flags are set as follows:
1457    // ZF  PF  CF   op
1458    //  0 | 0 | 0 | X > Y
1459    //  0 | 0 | 1 | X < Y
1460    //  1 | 0 | 0 | X == Y
1461    //  1 | 1 | 1 | unordered
1462    bool Flip = false;
1463    switch (SetCCOpcode) {
1464    default: break;
1465    case ISD::SETUEQ:
1466    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1467    case ISD::SETOLT: Flip = true; // Fallthrough
1468    case ISD::SETOGT:
1469    case ISD::SETGT: X86CC = X86::COND_A;  break;
1470    case ISD::SETOLE: Flip = true; // Fallthrough
1471    case ISD::SETOGE:
1472    case ISD::SETGE: X86CC = X86::COND_AE; break;
1473    case ISD::SETUGT: Flip = true; // Fallthrough
1474    case ISD::SETULT:
1475    case ISD::SETLT: X86CC = X86::COND_B;  break;
1476    case ISD::SETUGE: Flip = true; // Fallthrough
1477    case ISD::SETULE:
1478    case ISD::SETLE: X86CC = X86::COND_BE; break;
1479    case ISD::SETONE:
1480    case ISD::SETNE: X86CC = X86::COND_NE; break;
1481    case ISD::SETUO: X86CC = X86::COND_P;  break;
1482    case ISD::SETO:  X86CC = X86::COND_NP; break;
1483    }
1484    if (Flip)
1485      std::swap(LHS, RHS);
1486  }
1487
1488  return X86CC != X86::COND_INVALID;
1489}
1490
1491/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1492/// code. Current x86 isa includes the following FP cmov instructions:
1493/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1494static bool hasFPCMov(unsigned X86CC) {
1495  switch (X86CC) {
1496  default:
1497    return false;
1498  case X86::COND_B:
1499  case X86::COND_BE:
1500  case X86::COND_E:
1501  case X86::COND_P:
1502  case X86::COND_A:
1503  case X86::COND_AE:
1504  case X86::COND_NE:
1505  case X86::COND_NP:
1506    return true;
1507  }
1508}
1509
1510/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
1511/// true if Op is undef or if its value falls within the specified range (L, H].
1512static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1513  if (Op.getOpcode() == ISD::UNDEF)
1514    return true;
1515
1516  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1517  return (Val >= Low && Val < Hi);
1518}
1519
1520/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
1521/// true if Op is undef or if its value equal to the specified value.
1522static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1523  if (Op.getOpcode() == ISD::UNDEF)
1524    return true;
1525  return cast<ConstantSDNode>(Op)->getValue() == Val;
1526}
1527
1528/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1529/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1530bool X86::isPSHUFDMask(SDNode *N) {
1531  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1532
1533  if (N->getNumOperands() != 4)
1534    return false;
1535
1536  // Check if the value doesn't reference the second vector.
1537  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1538    SDOperand Arg = N->getOperand(i);
1539    if (Arg.getOpcode() == ISD::UNDEF) continue;
1540    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1541    if (cast<ConstantSDNode>(Arg)->getValue() >= 4)
1542      return false;
1543  }
1544
1545  return true;
1546}
1547
1548/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1549/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1550bool X86::isPSHUFHWMask(SDNode *N) {
1551  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1552
1553  if (N->getNumOperands() != 8)
1554    return false;
1555
1556  // Lower quadword copied in order.
1557  for (unsigned i = 0; i != 4; ++i) {
1558    SDOperand Arg = N->getOperand(i);
1559    if (Arg.getOpcode() == ISD::UNDEF) continue;
1560    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1561    if (cast<ConstantSDNode>(Arg)->getValue() != i)
1562      return false;
1563  }
1564
1565  // Upper quadword shuffled.
1566  for (unsigned i = 4; i != 8; ++i) {
1567    SDOperand Arg = N->getOperand(i);
1568    if (Arg.getOpcode() == ISD::UNDEF) continue;
1569    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1570    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1571    if (Val < 4 || Val > 7)
1572      return false;
1573  }
1574
1575  return true;
1576}
1577
1578/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1579/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1580bool X86::isPSHUFLWMask(SDNode *N) {
1581  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1582
1583  if (N->getNumOperands() != 8)
1584    return false;
1585
1586  // Upper quadword copied in order.
1587  for (unsigned i = 4; i != 8; ++i)
1588    if (!isUndefOrEqual(N->getOperand(i), i))
1589      return false;
1590
1591  // Lower quadword shuffled.
1592  for (unsigned i = 0; i != 4; ++i)
1593    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1594      return false;
1595
1596  return true;
1597}
1598
1599/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1600/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1601static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1602  if (NumElems != 2 && NumElems != 4) return false;
1603
1604  unsigned Half = NumElems / 2;
1605  for (unsigned i = 0; i < Half; ++i)
1606    if (!isUndefOrInRange(Elems[i], 0, NumElems))
1607      return false;
1608  for (unsigned i = Half; i < NumElems; ++i)
1609    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
1610      return false;
1611
1612  return true;
1613}
1614
1615bool X86::isSHUFPMask(SDNode *N) {
1616  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1617  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
1618}
1619
1620/// isCommutedSHUFP - Returns true if the shuffle mask is except
1621/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
1622/// half elements to come from vector 1 (which would equal the dest.) and
1623/// the upper half to come from vector 2.
1624static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
1625  if (NumOps != 2 && NumOps != 4) return false;
1626
1627  unsigned Half = NumOps / 2;
1628  for (unsigned i = 0; i < Half; ++i)
1629    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
1630      return false;
1631  for (unsigned i = Half; i < NumOps; ++i)
1632    if (!isUndefOrInRange(Ops[i], 0, NumOps))
1633      return false;
1634  return true;
1635}
1636
1637static bool isCommutedSHUFP(SDNode *N) {
1638  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1639  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
1640}
1641
1642/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
1643/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1644bool X86::isMOVHLPSMask(SDNode *N) {
1645  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1646
1647  if (N->getNumOperands() != 4)
1648    return false;
1649
1650  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
1651  return isUndefOrEqual(N->getOperand(0), 6) &&
1652         isUndefOrEqual(N->getOperand(1), 7) &&
1653         isUndefOrEqual(N->getOperand(2), 2) &&
1654         isUndefOrEqual(N->getOperand(3), 3);
1655}
1656
1657/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
1658/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
1659/// <2, 3, 2, 3>
1660bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
1661  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1662
1663  if (N->getNumOperands() != 4)
1664    return false;
1665
1666  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
1667  return isUndefOrEqual(N->getOperand(0), 2) &&
1668         isUndefOrEqual(N->getOperand(1), 3) &&
1669         isUndefOrEqual(N->getOperand(2), 2) &&
1670         isUndefOrEqual(N->getOperand(3), 3);
1671}
1672
1673/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
1674/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
1675bool X86::isMOVLPMask(SDNode *N) {
1676  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1677
1678  unsigned NumElems = N->getNumOperands();
1679  if (NumElems != 2 && NumElems != 4)
1680    return false;
1681
1682  for (unsigned i = 0; i < NumElems/2; ++i)
1683    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
1684      return false;
1685
1686  for (unsigned i = NumElems/2; i < NumElems; ++i)
1687    if (!isUndefOrEqual(N->getOperand(i), i))
1688      return false;
1689
1690  return true;
1691}
1692
1693/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
1694/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
1695/// and MOVLHPS.
1696bool X86::isMOVHPMask(SDNode *N) {
1697  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1698
1699  unsigned NumElems = N->getNumOperands();
1700  if (NumElems != 2 && NumElems != 4)
1701    return false;
1702
1703  for (unsigned i = 0; i < NumElems/2; ++i)
1704    if (!isUndefOrEqual(N->getOperand(i), i))
1705      return false;
1706
1707  for (unsigned i = 0; i < NumElems/2; ++i) {
1708    SDOperand Arg = N->getOperand(i + NumElems/2);
1709    if (!isUndefOrEqual(Arg, i + NumElems))
1710      return false;
1711  }
1712
1713  return true;
1714}
1715
1716/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
1717/// specifies a shuffle of elements that is suitable for input to UNPCKL.
1718bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
1719                         bool V2IsSplat = false) {
1720  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1721    return false;
1722
1723  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1724    SDOperand BitI  = Elts[i];
1725    SDOperand BitI1 = Elts[i+1];
1726    if (!isUndefOrEqual(BitI, j))
1727      return false;
1728    if (V2IsSplat) {
1729      if (isUndefOrEqual(BitI1, NumElts))
1730        return false;
1731    } else {
1732      if (!isUndefOrEqual(BitI1, j + NumElts))
1733        return false;
1734    }
1735  }
1736
1737  return true;
1738}
1739
1740bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
1741  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1742  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1743}
1744
1745/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
1746/// specifies a shuffle of elements that is suitable for input to UNPCKH.
1747bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
1748                         bool V2IsSplat = false) {
1749  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1750    return false;
1751
1752  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1753    SDOperand BitI  = Elts[i];
1754    SDOperand BitI1 = Elts[i+1];
1755    if (!isUndefOrEqual(BitI, j + NumElts/2))
1756      return false;
1757    if (V2IsSplat) {
1758      if (isUndefOrEqual(BitI1, NumElts))
1759        return false;
1760    } else {
1761      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
1762        return false;
1763    }
1764  }
1765
1766  return true;
1767}
1768
1769bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
1770  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1771  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1772}
1773
1774/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
1775/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
1776/// <0, 0, 1, 1>
1777bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
1778  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1779
1780  unsigned NumElems = N->getNumOperands();
1781  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1782    return false;
1783
1784  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
1785    SDOperand BitI  = N->getOperand(i);
1786    SDOperand BitI1 = N->getOperand(i+1);
1787
1788    if (!isUndefOrEqual(BitI, j))
1789      return false;
1790    if (!isUndefOrEqual(BitI1, j))
1791      return false;
1792  }
1793
1794  return true;
1795}
1796
1797/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
1798/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
1799/// <2, 2, 3, 3>
1800bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
1801  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1802
1803  unsigned NumElems = N->getNumOperands();
1804  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1805    return false;
1806
1807  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
1808    SDOperand BitI  = N->getOperand(i);
1809    SDOperand BitI1 = N->getOperand(i + 1);
1810
1811    if (!isUndefOrEqual(BitI, j))
1812      return false;
1813    if (!isUndefOrEqual(BitI1, j))
1814      return false;
1815  }
1816
1817  return true;
1818}
1819
1820/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
1821/// specifies a shuffle of elements that is suitable for input to MOVSS,
1822/// MOVSD, and MOVD, i.e. setting the lowest element.
1823static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
1824  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1825    return false;
1826
1827  if (!isUndefOrEqual(Elts[0], NumElts))
1828    return false;
1829
1830  for (unsigned i = 1; i < NumElts; ++i) {
1831    if (!isUndefOrEqual(Elts[i], i))
1832      return false;
1833  }
1834
1835  return true;
1836}
1837
1838bool X86::isMOVLMask(SDNode *N) {
1839  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1840  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
1841}
1842
1843/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
1844/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
1845/// element of vector 2 and the other elements to come from vector 1 in order.
1846static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
1847                           bool V2IsSplat = false,
1848                           bool V2IsUndef = false) {
1849  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
1850    return false;
1851
1852  if (!isUndefOrEqual(Ops[0], 0))
1853    return false;
1854
1855  for (unsigned i = 1; i < NumOps; ++i) {
1856    SDOperand Arg = Ops[i];
1857    if (!(isUndefOrEqual(Arg, i+NumOps) ||
1858          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
1859          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
1860      return false;
1861  }
1862
1863  return true;
1864}
1865
1866static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
1867                           bool V2IsUndef = false) {
1868  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1869  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
1870                        V2IsSplat, V2IsUndef);
1871}
1872
1873/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1874/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
1875bool X86::isMOVSHDUPMask(SDNode *N) {
1876  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1877
1878  if (N->getNumOperands() != 4)
1879    return false;
1880
1881  // Expect 1, 1, 3, 3
1882  for (unsigned i = 0; i < 2; ++i) {
1883    SDOperand Arg = N->getOperand(i);
1884    if (Arg.getOpcode() == ISD::UNDEF) continue;
1885    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1886    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1887    if (Val != 1) return false;
1888  }
1889
1890  bool HasHi = false;
1891  for (unsigned i = 2; i < 4; ++i) {
1892    SDOperand Arg = N->getOperand(i);
1893    if (Arg.getOpcode() == ISD::UNDEF) continue;
1894    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1895    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1896    if (Val != 3) return false;
1897    HasHi = true;
1898  }
1899
1900  // Don't use movshdup if it can be done with a shufps.
1901  return HasHi;
1902}
1903
1904/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1905/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
1906bool X86::isMOVSLDUPMask(SDNode *N) {
1907  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1908
1909  if (N->getNumOperands() != 4)
1910    return false;
1911
1912  // Expect 0, 0, 2, 2
1913  for (unsigned i = 0; i < 2; ++i) {
1914    SDOperand Arg = N->getOperand(i);
1915    if (Arg.getOpcode() == ISD::UNDEF) continue;
1916    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1917    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1918    if (Val != 0) return false;
1919  }
1920
1921  bool HasHi = false;
1922  for (unsigned i = 2; i < 4; ++i) {
1923    SDOperand Arg = N->getOperand(i);
1924    if (Arg.getOpcode() == ISD::UNDEF) continue;
1925    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1926    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1927    if (Val != 2) return false;
1928    HasHi = true;
1929  }
1930
1931  // Don't use movshdup if it can be done with a shufps.
1932  return HasHi;
1933}
1934
1935/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
1936/// a splat of a single element.
1937static bool isSplatMask(SDNode *N) {
1938  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1939
1940  // This is a splat operation if each element of the permute is the same, and
1941  // if the value doesn't reference the second vector.
1942  unsigned NumElems = N->getNumOperands();
1943  SDOperand ElementBase;
1944  unsigned i = 0;
1945  for (; i != NumElems; ++i) {
1946    SDOperand Elt = N->getOperand(i);
1947    if (isa<ConstantSDNode>(Elt)) {
1948      ElementBase = Elt;
1949      break;
1950    }
1951  }
1952
1953  if (!ElementBase.Val)
1954    return false;
1955
1956  for (; i != NumElems; ++i) {
1957    SDOperand Arg = N->getOperand(i);
1958    if (Arg.getOpcode() == ISD::UNDEF) continue;
1959    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1960    if (Arg != ElementBase) return false;
1961  }
1962
1963  // Make sure it is a splat of the first vector operand.
1964  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
1965}
1966
1967/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
1968/// a splat of a single element and it's a 2 or 4 element mask.
1969bool X86::isSplatMask(SDNode *N) {
1970  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1971
1972  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
1973  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
1974    return false;
1975  return ::isSplatMask(N);
1976}
1977
1978/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
1979/// specifies a splat of zero element.
1980bool X86::isSplatLoMask(SDNode *N) {
1981  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1982
1983  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
1984    if (!isUndefOrEqual(N->getOperand(i), 0))
1985      return false;
1986  return true;
1987}
1988
1989/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
1990/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
1991/// instructions.
1992unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
1993  unsigned NumOperands = N->getNumOperands();
1994  unsigned Shift = (NumOperands == 4) ? 2 : 1;
1995  unsigned Mask = 0;
1996  for (unsigned i = 0; i < NumOperands; ++i) {
1997    unsigned Val = 0;
1998    SDOperand Arg = N->getOperand(NumOperands-i-1);
1999    if (Arg.getOpcode() != ISD::UNDEF)
2000      Val = cast<ConstantSDNode>(Arg)->getValue();
2001    if (Val >= NumOperands) Val -= NumOperands;
2002    Mask |= Val;
2003    if (i != NumOperands - 1)
2004      Mask <<= Shift;
2005  }
2006
2007  return Mask;
2008}
2009
2010/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2011/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2012/// instructions.
2013unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2014  unsigned Mask = 0;
2015  // 8 nodes, but we only care about the last 4.
2016  for (unsigned i = 7; i >= 4; --i) {
2017    unsigned Val = 0;
2018    SDOperand Arg = N->getOperand(i);
2019    if (Arg.getOpcode() != ISD::UNDEF)
2020      Val = cast<ConstantSDNode>(Arg)->getValue();
2021    Mask |= (Val - 4);
2022    if (i != 4)
2023      Mask <<= 2;
2024  }
2025
2026  return Mask;
2027}
2028
2029/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2030/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2031/// instructions.
2032unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2033  unsigned Mask = 0;
2034  // 8 nodes, but we only care about the first 4.
2035  for (int i = 3; i >= 0; --i) {
2036    unsigned Val = 0;
2037    SDOperand Arg = N->getOperand(i);
2038    if (Arg.getOpcode() != ISD::UNDEF)
2039      Val = cast<ConstantSDNode>(Arg)->getValue();
2040    Mask |= Val;
2041    if (i != 0)
2042      Mask <<= 2;
2043  }
2044
2045  return Mask;
2046}
2047
2048/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2049/// specifies a 8 element shuffle that can be broken into a pair of
2050/// PSHUFHW and PSHUFLW.
2051static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2052  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2053
2054  if (N->getNumOperands() != 8)
2055    return false;
2056
2057  // Lower quadword shuffled.
2058  for (unsigned i = 0; i != 4; ++i) {
2059    SDOperand Arg = N->getOperand(i);
2060    if (Arg.getOpcode() == ISD::UNDEF) continue;
2061    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2062    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2063    if (Val > 4)
2064      return false;
2065  }
2066
2067  // Upper quadword shuffled.
2068  for (unsigned i = 4; i != 8; ++i) {
2069    SDOperand Arg = N->getOperand(i);
2070    if (Arg.getOpcode() == ISD::UNDEF) continue;
2071    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2072    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2073    if (Val < 4 || Val > 7)
2074      return false;
2075  }
2076
2077  return true;
2078}
2079
2080/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2081/// values in ther permute mask.
2082static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2083                                      SDOperand &V2, SDOperand &Mask,
2084                                      SelectionDAG &DAG) {
2085  MVT::ValueType VT = Op.getValueType();
2086  MVT::ValueType MaskVT = Mask.getValueType();
2087  MVT::ValueType EltVT = MVT::getVectorBaseType(MaskVT);
2088  unsigned NumElems = Mask.getNumOperands();
2089  SmallVector<SDOperand, 8> MaskVec;
2090
2091  for (unsigned i = 0; i != NumElems; ++i) {
2092    SDOperand Arg = Mask.getOperand(i);
2093    if (Arg.getOpcode() == ISD::UNDEF) {
2094      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2095      continue;
2096    }
2097    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2098    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2099    if (Val < NumElems)
2100      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2101    else
2102      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2103  }
2104
2105  std::swap(V1, V2);
2106  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2107  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2108}
2109
2110/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2111/// match movhlps. The lower half elements should come from upper half of
2112/// V1 (and in order), and the upper half elements should come from the upper
2113/// half of V2 (and in order).
2114static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2115  unsigned NumElems = Mask->getNumOperands();
2116  if (NumElems != 4)
2117    return false;
2118  for (unsigned i = 0, e = 2; i != e; ++i)
2119    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2120      return false;
2121  for (unsigned i = 2; i != 4; ++i)
2122    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2123      return false;
2124  return true;
2125}
2126
2127/// isScalarLoadToVector - Returns true if the node is a scalar load that
2128/// is promoted to a vector.
2129static inline bool isScalarLoadToVector(SDNode *N) {
2130  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2131    N = N->getOperand(0).Val;
2132    return ISD::isNON_EXTLoad(N);
2133  }
2134  return false;
2135}
2136
2137/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2138/// match movlp{s|d}. The lower half elements should come from lower half of
2139/// V1 (and in order), and the upper half elements should come from the upper
2140/// half of V2 (and in order). And since V1 will become the source of the
2141/// MOVLP, it must be either a vector load or a scalar load to vector.
2142static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2143  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2144    return false;
2145  // Is V2 is a vector load, don't do this transformation. We will try to use
2146  // load folding shufps op.
2147  if (ISD::isNON_EXTLoad(V2))
2148    return false;
2149
2150  unsigned NumElems = Mask->getNumOperands();
2151  if (NumElems != 2 && NumElems != 4)
2152    return false;
2153  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2154    if (!isUndefOrEqual(Mask->getOperand(i), i))
2155      return false;
2156  for (unsigned i = NumElems/2; i != NumElems; ++i)
2157    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2158      return false;
2159  return true;
2160}
2161
2162/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2163/// all the same.
2164static bool isSplatVector(SDNode *N) {
2165  if (N->getOpcode() != ISD::BUILD_VECTOR)
2166    return false;
2167
2168  SDOperand SplatValue = N->getOperand(0);
2169  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2170    if (N->getOperand(i) != SplatValue)
2171      return false;
2172  return true;
2173}
2174
2175/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2176/// to an undef.
2177static bool isUndefShuffle(SDNode *N) {
2178  if (N->getOpcode() != ISD::BUILD_VECTOR)
2179    return false;
2180
2181  SDOperand V1 = N->getOperand(0);
2182  SDOperand V2 = N->getOperand(1);
2183  SDOperand Mask = N->getOperand(2);
2184  unsigned NumElems = Mask.getNumOperands();
2185  for (unsigned i = 0; i != NumElems; ++i) {
2186    SDOperand Arg = Mask.getOperand(i);
2187    if (Arg.getOpcode() != ISD::UNDEF) {
2188      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2189      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2190        return false;
2191      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2192        return false;
2193    }
2194  }
2195  return true;
2196}
2197
2198/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2199/// that point to V2 points to its first element.
2200static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2201  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2202
2203  bool Changed = false;
2204  SmallVector<SDOperand, 8> MaskVec;
2205  unsigned NumElems = Mask.getNumOperands();
2206  for (unsigned i = 0; i != NumElems; ++i) {
2207    SDOperand Arg = Mask.getOperand(i);
2208    if (Arg.getOpcode() != ISD::UNDEF) {
2209      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2210      if (Val > NumElems) {
2211        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2212        Changed = true;
2213      }
2214    }
2215    MaskVec.push_back(Arg);
2216  }
2217
2218  if (Changed)
2219    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2220                       &MaskVec[0], MaskVec.size());
2221  return Mask;
2222}
2223
2224/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2225/// operation of specified width.
2226static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2227  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2228  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2229
2230  SmallVector<SDOperand, 8> MaskVec;
2231  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2232  for (unsigned i = 1; i != NumElems; ++i)
2233    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2234  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2235}
2236
2237/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2238/// of specified width.
2239static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2240  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2241  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2242  SmallVector<SDOperand, 8> MaskVec;
2243  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2244    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2245    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2246  }
2247  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2248}
2249
2250/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2251/// of specified width.
2252static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2253  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2254  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2255  unsigned Half = NumElems/2;
2256  SmallVector<SDOperand, 8> MaskVec;
2257  for (unsigned i = 0; i != Half; ++i) {
2258    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2259    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2260  }
2261  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2262}
2263
2264/// getZeroVector - Returns a vector of specified type with all zero elements.
2265///
2266static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2267  assert(MVT::isVector(VT) && "Expected a vector type");
2268  unsigned NumElems = getVectorNumElements(VT);
2269  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
2270  bool isFP = MVT::isFloatingPoint(EVT);
2271  SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2272  SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2273  return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2274}
2275
2276/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2277///
2278static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2279  SDOperand V1 = Op.getOperand(0);
2280  SDOperand Mask = Op.getOperand(2);
2281  MVT::ValueType VT = Op.getValueType();
2282  unsigned NumElems = Mask.getNumOperands();
2283  Mask = getUnpacklMask(NumElems, DAG);
2284  while (NumElems != 4) {
2285    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2286    NumElems >>= 1;
2287  }
2288  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2289
2290  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2291  Mask = getZeroVector(MaskVT, DAG);
2292  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2293                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2294  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2295}
2296
2297/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2298/// constant +0.0.
2299static inline bool isZeroNode(SDOperand Elt) {
2300  return ((isa<ConstantSDNode>(Elt) &&
2301           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2302          (isa<ConstantFPSDNode>(Elt) &&
2303           cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0)));
2304}
2305
2306/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2307/// vector and zero or undef vector.
2308static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2309                                             unsigned NumElems, unsigned Idx,
2310                                             bool isZero, SelectionDAG &DAG) {
2311  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2312  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2313  MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
2314  SDOperand Zero = DAG.getConstant(0, EVT);
2315  SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2316  MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2317  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2318                               &MaskVec[0], MaskVec.size());
2319  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2320}
2321
2322/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2323///
2324static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2325                                       unsigned NumNonZero, unsigned NumZero,
2326                                       SelectionDAG &DAG, TargetLowering &TLI) {
2327  if (NumNonZero > 8)
2328    return SDOperand();
2329
2330  SDOperand V(0, 0);
2331  bool First = true;
2332  for (unsigned i = 0; i < 16; ++i) {
2333    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2334    if (ThisIsNonZero && First) {
2335      if (NumZero)
2336        V = getZeroVector(MVT::v8i16, DAG);
2337      else
2338        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2339      First = false;
2340    }
2341
2342    if ((i & 1) != 0) {
2343      SDOperand ThisElt(0, 0), LastElt(0, 0);
2344      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2345      if (LastIsNonZero) {
2346        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2347      }
2348      if (ThisIsNonZero) {
2349        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2350        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2351                              ThisElt, DAG.getConstant(8, MVT::i8));
2352        if (LastIsNonZero)
2353          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2354      } else
2355        ThisElt = LastElt;
2356
2357      if (ThisElt.Val)
2358        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2359                        DAG.getConstant(i/2, TLI.getPointerTy()));
2360    }
2361  }
2362
2363  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2364}
2365
2366/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2367///
2368static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2369                                       unsigned NumNonZero, unsigned NumZero,
2370                                       SelectionDAG &DAG, TargetLowering &TLI) {
2371  if (NumNonZero > 4)
2372    return SDOperand();
2373
2374  SDOperand V(0, 0);
2375  bool First = true;
2376  for (unsigned i = 0; i < 8; ++i) {
2377    bool isNonZero = (NonZeros & (1 << i)) != 0;
2378    if (isNonZero) {
2379      if (First) {
2380        if (NumZero)
2381          V = getZeroVector(MVT::v8i16, DAG);
2382        else
2383          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2384        First = false;
2385      }
2386      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2387                      DAG.getConstant(i, TLI.getPointerTy()));
2388    }
2389  }
2390
2391  return V;
2392}
2393
2394SDOperand
2395X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2396  // All zero's are handled with pxor.
2397  if (ISD::isBuildVectorAllZeros(Op.Val))
2398    return Op;
2399
2400  // All one's are handled with pcmpeqd.
2401  if (ISD::isBuildVectorAllOnes(Op.Val))
2402    return Op;
2403
2404  MVT::ValueType VT = Op.getValueType();
2405  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
2406  unsigned EVTBits = MVT::getSizeInBits(EVT);
2407
2408  unsigned NumElems = Op.getNumOperands();
2409  unsigned NumZero  = 0;
2410  unsigned NumNonZero = 0;
2411  unsigned NonZeros = 0;
2412  std::set<SDOperand> Values;
2413  for (unsigned i = 0; i < NumElems; ++i) {
2414    SDOperand Elt = Op.getOperand(i);
2415    if (Elt.getOpcode() != ISD::UNDEF) {
2416      Values.insert(Elt);
2417      if (isZeroNode(Elt))
2418        NumZero++;
2419      else {
2420        NonZeros |= (1 << i);
2421        NumNonZero++;
2422      }
2423    }
2424  }
2425
2426  if (NumNonZero == 0)
2427    // Must be a mix of zero and undef. Return a zero vector.
2428    return getZeroVector(VT, DAG);
2429
2430  // Splat is obviously ok. Let legalizer expand it to a shuffle.
2431  if (Values.size() == 1)
2432    return SDOperand();
2433
2434  // Special case for single non-zero element.
2435  if (NumNonZero == 1) {
2436    unsigned Idx = CountTrailingZeros_32(NonZeros);
2437    SDOperand Item = Op.getOperand(Idx);
2438    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2439    if (Idx == 0)
2440      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2441      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2442                                         NumZero > 0, DAG);
2443
2444    if (EVTBits == 32) {
2445      // Turn it into a shuffle of zero and zero-extended scalar to vector.
2446      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2447                                         DAG);
2448      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
2449      MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
2450      SmallVector<SDOperand, 8> MaskVec;
2451      for (unsigned i = 0; i < NumElems; i++)
2452        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2453      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2454                                   &MaskVec[0], MaskVec.size());
2455      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2456                         DAG.getNode(ISD::UNDEF, VT), Mask);
2457    }
2458  }
2459
2460  // Let legalizer expand 2-wide build_vectors.
2461  if (EVTBits == 64)
2462    return SDOperand();
2463
2464  // If element VT is < 32 bits, convert it to inserts into a zero vector.
2465  if (EVTBits == 8 && NumElems == 16) {
2466    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2467                                        *this);
2468    if (V.Val) return V;
2469  }
2470
2471  if (EVTBits == 16 && NumElems == 8) {
2472    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2473                                        *this);
2474    if (V.Val) return V;
2475  }
2476
2477  // If element VT is == 32 bits, turn it into a number of shuffles.
2478  SmallVector<SDOperand, 8> V;
2479  V.resize(NumElems);
2480  if (NumElems == 4 && NumZero > 0) {
2481    for (unsigned i = 0; i < 4; ++i) {
2482      bool isZero = !(NonZeros & (1 << i));
2483      if (isZero)
2484        V[i] = getZeroVector(VT, DAG);
2485      else
2486        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2487    }
2488
2489    for (unsigned i = 0; i < 2; ++i) {
2490      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2491        default: break;
2492        case 0:
2493          V[i] = V[i*2];  // Must be a zero vector.
2494          break;
2495        case 1:
2496          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2497                             getMOVLMask(NumElems, DAG));
2498          break;
2499        case 2:
2500          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2501                             getMOVLMask(NumElems, DAG));
2502          break;
2503        case 3:
2504          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2505                             getUnpacklMask(NumElems, DAG));
2506          break;
2507      }
2508    }
2509
2510    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2511    // clears the upper bits.
2512    // FIXME: we can do the same for v4f32 case when we know both parts of
2513    // the lower half come from scalar_to_vector (loadf32). We should do
2514    // that in post legalizer dag combiner with target specific hooks.
2515    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2516      return V[0];
2517    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2518    MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
2519    SmallVector<SDOperand, 8> MaskVec;
2520    bool Reverse = (NonZeros & 0x3) == 2;
2521    for (unsigned i = 0; i < 2; ++i)
2522      if (Reverse)
2523        MaskVec.push_back(DAG.getConstant(1-i, EVT));
2524      else
2525        MaskVec.push_back(DAG.getConstant(i, EVT));
2526    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2527    for (unsigned i = 0; i < 2; ++i)
2528      if (Reverse)
2529        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2530      else
2531        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2532    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2533                                     &MaskVec[0], MaskVec.size());
2534    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2535  }
2536
2537  if (Values.size() > 2) {
2538    // Expand into a number of unpckl*.
2539    // e.g. for v4f32
2540    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2541    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2542    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
2543    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2544    for (unsigned i = 0; i < NumElems; ++i)
2545      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2546    NumElems >>= 1;
2547    while (NumElems != 0) {
2548      for (unsigned i = 0; i < NumElems; ++i)
2549        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2550                           UnpckMask);
2551      NumElems >>= 1;
2552    }
2553    return V[0];
2554  }
2555
2556  return SDOperand();
2557}
2558
2559SDOperand
2560X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2561  SDOperand V1 = Op.getOperand(0);
2562  SDOperand V2 = Op.getOperand(1);
2563  SDOperand PermMask = Op.getOperand(2);
2564  MVT::ValueType VT = Op.getValueType();
2565  unsigned NumElems = PermMask.getNumOperands();
2566  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
2567  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
2568  bool V1IsSplat = false;
2569  bool V2IsSplat = false;
2570
2571  if (isUndefShuffle(Op.Val))
2572    return DAG.getNode(ISD::UNDEF, VT);
2573
2574  if (isSplatMask(PermMask.Val)) {
2575    if (NumElems <= 4) return Op;
2576    // Promote it to a v4i32 splat.
2577    return PromoteSplat(Op, DAG);
2578  }
2579
2580  if (X86::isMOVLMask(PermMask.Val))
2581    return (V1IsUndef) ? V2 : Op;
2582
2583  if (X86::isMOVSHDUPMask(PermMask.Val) ||
2584      X86::isMOVSLDUPMask(PermMask.Val) ||
2585      X86::isMOVHLPSMask(PermMask.Val) ||
2586      X86::isMOVHPMask(PermMask.Val) ||
2587      X86::isMOVLPMask(PermMask.Val))
2588    return Op;
2589
2590  if (ShouldXformToMOVHLPS(PermMask.Val) ||
2591      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
2592    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2593
2594  bool Commuted = false;
2595  V1IsSplat = isSplatVector(V1.Val);
2596  V2IsSplat = isSplatVector(V2.Val);
2597  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
2598    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2599    std::swap(V1IsSplat, V2IsSplat);
2600    std::swap(V1IsUndef, V2IsUndef);
2601    Commuted = true;
2602  }
2603
2604  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
2605    if (V2IsUndef) return V1;
2606    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2607    if (V2IsSplat) {
2608      // V2 is a splat, so the mask may be malformed. That is, it may point
2609      // to any V2 element. The instruction selectior won't like this. Get
2610      // a corrected mask and commute to form a proper MOVS{S|D}.
2611      SDOperand NewMask = getMOVLMask(NumElems, DAG);
2612      if (NewMask.Val != PermMask.Val)
2613        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2614    }
2615    return Op;
2616  }
2617
2618  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2619      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2620      X86::isUNPCKLMask(PermMask.Val) ||
2621      X86::isUNPCKHMask(PermMask.Val))
2622    return Op;
2623
2624  if (V2IsSplat) {
2625    // Normalize mask so all entries that point to V2 points to its first
2626    // element then try to match unpck{h|l} again. If match, return a
2627    // new vector_shuffle with the corrected mask.
2628    SDOperand NewMask = NormalizeMask(PermMask, DAG);
2629    if (NewMask.Val != PermMask.Val) {
2630      if (X86::isUNPCKLMask(PermMask.Val, true)) {
2631        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
2632        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2633      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
2634        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
2635        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2636      }
2637    }
2638  }
2639
2640  // Normalize the node to match x86 shuffle ops if needed
2641  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
2642      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2643
2644  if (Commuted) {
2645    // Commute is back and try unpck* again.
2646    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2647    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2648        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2649        X86::isUNPCKLMask(PermMask.Val) ||
2650        X86::isUNPCKHMask(PermMask.Val))
2651      return Op;
2652  }
2653
2654  // If VT is integer, try PSHUF* first, then SHUFP*.
2655  if (MVT::isInteger(VT)) {
2656    if (X86::isPSHUFDMask(PermMask.Val) ||
2657        X86::isPSHUFHWMask(PermMask.Val) ||
2658        X86::isPSHUFLWMask(PermMask.Val)) {
2659      if (V2.getOpcode() != ISD::UNDEF)
2660        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2661                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2662      return Op;
2663    }
2664
2665    if (X86::isSHUFPMask(PermMask.Val))
2666      return Op;
2667
2668    // Handle v8i16 shuffle high / low shuffle node pair.
2669    if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
2670      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2671      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2672      SmallVector<SDOperand, 8> MaskVec;
2673      for (unsigned i = 0; i != 4; ++i)
2674        MaskVec.push_back(PermMask.getOperand(i));
2675      for (unsigned i = 4; i != 8; ++i)
2676        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2677      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2678                                   &MaskVec[0], MaskVec.size());
2679      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2680      MaskVec.clear();
2681      for (unsigned i = 0; i != 4; ++i)
2682        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2683      for (unsigned i = 4; i != 8; ++i)
2684        MaskVec.push_back(PermMask.getOperand(i));
2685      Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
2686      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2687    }
2688  } else {
2689    // Floating point cases in the other order.
2690    if (X86::isSHUFPMask(PermMask.Val))
2691      return Op;
2692    if (X86::isPSHUFDMask(PermMask.Val) ||
2693        X86::isPSHUFHWMask(PermMask.Val) ||
2694        X86::isPSHUFLWMask(PermMask.Val)) {
2695      if (V2.getOpcode() != ISD::UNDEF)
2696        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2697                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2698      return Op;
2699    }
2700  }
2701
2702  if (NumElems == 4) {
2703    MVT::ValueType MaskVT = PermMask.getValueType();
2704    MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
2705    SmallVector<std::pair<int, int>, 8> Locs;
2706    Locs.reserve(NumElems);
2707    SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2708    SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2709    unsigned NumHi = 0;
2710    unsigned NumLo = 0;
2711    // If no more than two elements come from either vector. This can be
2712    // implemented with two shuffles. First shuffle gather the elements.
2713    // The second shuffle, which takes the first shuffle as both of its
2714    // vector operands, put the elements into the right order.
2715    for (unsigned i = 0; i != NumElems; ++i) {
2716      SDOperand Elt = PermMask.getOperand(i);
2717      if (Elt.getOpcode() == ISD::UNDEF) {
2718        Locs[i] = std::make_pair(-1, -1);
2719      } else {
2720        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
2721        if (Val < NumElems) {
2722          Locs[i] = std::make_pair(0, NumLo);
2723          Mask1[NumLo] = Elt;
2724          NumLo++;
2725        } else {
2726          Locs[i] = std::make_pair(1, NumHi);
2727          if (2+NumHi < NumElems)
2728            Mask1[2+NumHi] = Elt;
2729          NumHi++;
2730        }
2731      }
2732    }
2733    if (NumLo <= 2 && NumHi <= 2) {
2734      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2735                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2736                                   &Mask1[0], Mask1.size()));
2737      for (unsigned i = 0; i != NumElems; ++i) {
2738        if (Locs[i].first == -1)
2739          continue;
2740        else {
2741          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
2742          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
2743          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
2744        }
2745      }
2746
2747      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
2748                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2749                                     &Mask2[0], Mask2.size()));
2750    }
2751
2752    // Break it into (shuffle shuffle_hi, shuffle_lo).
2753    Locs.clear();
2754    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2755    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2756    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
2757    unsigned MaskIdx = 0;
2758    unsigned LoIdx = 0;
2759    unsigned HiIdx = NumElems/2;
2760    for (unsigned i = 0; i != NumElems; ++i) {
2761      if (i == NumElems/2) {
2762        MaskPtr = &HiMask;
2763        MaskIdx = 1;
2764        LoIdx = 0;
2765        HiIdx = NumElems/2;
2766      }
2767      SDOperand Elt = PermMask.getOperand(i);
2768      if (Elt.getOpcode() == ISD::UNDEF) {
2769        Locs[i] = std::make_pair(-1, -1);
2770      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
2771        Locs[i] = std::make_pair(MaskIdx, LoIdx);
2772        (*MaskPtr)[LoIdx] = Elt;
2773        LoIdx++;
2774      } else {
2775        Locs[i] = std::make_pair(MaskIdx, HiIdx);
2776        (*MaskPtr)[HiIdx] = Elt;
2777        HiIdx++;
2778      }
2779    }
2780
2781    SDOperand LoShuffle =
2782      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2783                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2784                              &LoMask[0], LoMask.size()));
2785    SDOperand HiShuffle =
2786      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2787                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2788                              &HiMask[0], HiMask.size()));
2789    SmallVector<SDOperand, 8> MaskOps;
2790    for (unsigned i = 0; i != NumElems; ++i) {
2791      if (Locs[i].first == -1) {
2792        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
2793      } else {
2794        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
2795        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
2796      }
2797    }
2798    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
2799                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2800                                   &MaskOps[0], MaskOps.size()));
2801  }
2802
2803  return SDOperand();
2804}
2805
2806SDOperand
2807X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
2808  if (!isa<ConstantSDNode>(Op.getOperand(1)))
2809    return SDOperand();
2810
2811  MVT::ValueType VT = Op.getValueType();
2812  // TODO: handle v16i8.
2813  if (MVT::getSizeInBits(VT) == 16) {
2814    // Transform it so it match pextrw which produces a 32-bit result.
2815    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
2816    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
2817                                    Op.getOperand(0), Op.getOperand(1));
2818    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
2819                                    DAG.getValueType(VT));
2820    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
2821  } else if (MVT::getSizeInBits(VT) == 32) {
2822    SDOperand Vec = Op.getOperand(0);
2823    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
2824    if (Idx == 0)
2825      return Op;
2826    // SHUFPS the element to the lowest double word, then movss.
2827    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2828    SmallVector<SDOperand, 8> IdxVec;
2829    IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorBaseType(MaskVT)));
2830    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
2831    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
2832    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
2833    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2834                                 &IdxVec[0], IdxVec.size());
2835    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
2836                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
2837    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
2838                       DAG.getConstant(0, getPointerTy()));
2839  } else if (MVT::getSizeInBits(VT) == 64) {
2840    SDOperand Vec = Op.getOperand(0);
2841    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
2842    if (Idx == 0)
2843      return Op;
2844
2845    // UNPCKHPD the element to the lowest double word, then movsd.
2846    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
2847    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
2848    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2849    SmallVector<SDOperand, 8> IdxVec;
2850    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorBaseType(MaskVT)));
2851    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
2852    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2853                                 &IdxVec[0], IdxVec.size());
2854    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
2855                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
2856    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
2857                       DAG.getConstant(0, getPointerTy()));
2858  }
2859
2860  return SDOperand();
2861}
2862
2863SDOperand
2864X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
2865  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
2866  // as its second argument.
2867  MVT::ValueType VT = Op.getValueType();
2868  MVT::ValueType BaseVT = MVT::getVectorBaseType(VT);
2869  SDOperand N0 = Op.getOperand(0);
2870  SDOperand N1 = Op.getOperand(1);
2871  SDOperand N2 = Op.getOperand(2);
2872  if (MVT::getSizeInBits(BaseVT) == 16) {
2873    if (N1.getValueType() != MVT::i32)
2874      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
2875    if (N2.getValueType() != MVT::i32)
2876      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(), MVT::i32);
2877    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
2878  } else if (MVT::getSizeInBits(BaseVT) == 32) {
2879    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
2880    if (Idx == 0) {
2881      // Use a movss.
2882      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
2883      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2884      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2885      SmallVector<SDOperand, 8> MaskVec;
2886      MaskVec.push_back(DAG.getConstant(4, BaseVT));
2887      for (unsigned i = 1; i <= 3; ++i)
2888        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2889      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
2890                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2891                                     &MaskVec[0], MaskVec.size()));
2892    } else {
2893      // Use two pinsrw instructions to insert a 32 bit value.
2894      Idx <<= 1;
2895      if (MVT::isFloatingPoint(N1.getValueType())) {
2896        if (ISD::isNON_EXTLoad(N1.Val)) {
2897          // Just load directly from f32mem to GR32.
2898          LoadSDNode *LD = cast<LoadSDNode>(N1);
2899          N1 = DAG.getLoad(MVT::i32, LD->getChain(), LD->getBasePtr(),
2900                           LD->getSrcValue(), LD->getSrcValueOffset());
2901        } else {
2902          N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
2903          N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
2904          N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
2905                           DAG.getConstant(0, getPointerTy()));
2906        }
2907      }
2908      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
2909      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
2910                       DAG.getConstant(Idx, getPointerTy()));
2911      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
2912      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
2913                       DAG.getConstant(Idx+1, getPointerTy()));
2914      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
2915    }
2916  }
2917
2918  return SDOperand();
2919}
2920
2921SDOperand
2922X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2923  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
2924  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
2925}
2926
2927// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2928// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
2929// one of the above mentioned nodes. It has to be wrapped because otherwise
2930// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2931// be used to form addressing mode. These wrapped nodes will be selected
2932// into MOV32ri.
2933SDOperand
2934X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
2935  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2936  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
2937                                               getPointerTy(),
2938                                               CP->getAlignment());
2939  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
2940  // With PIC, the address is actually $g + Offset.
2941  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2942      !Subtarget->isPICStyleRIPRel()) {
2943    Result = DAG.getNode(ISD::ADD, getPointerTy(),
2944                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
2945                         Result);
2946  }
2947
2948  return Result;
2949}
2950
2951SDOperand
2952X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
2953  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2954  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
2955  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
2956  // With PIC, the address is actually $g + Offset.
2957  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2958      !Subtarget->isPICStyleRIPRel()) {
2959    Result = DAG.getNode(ISD::ADD, getPointerTy(),
2960                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
2961                         Result);
2962  }
2963
2964  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
2965  // load the value at address GV, not the value of GV itself. This means that
2966  // the GlobalAddress must be in the base or index register of the address, not
2967  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
2968  // The same applies for external symbols during PIC codegen
2969  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
2970    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
2971
2972  return Result;
2973}
2974
2975// Lower ISD::GlobalTLSAddress using the "general dynamic" model
2976static SDOperand
2977LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
2978                              const MVT::ValueType PtrVT) {
2979  SDOperand InFlag;
2980  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
2981                                     DAG.getNode(X86ISD::GlobalBaseReg,
2982                                                 PtrVT), InFlag);
2983  InFlag = Chain.getValue(1);
2984
2985  // emit leal symbol@TLSGD(,%ebx,1), %eax
2986  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
2987  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
2988                                             GA->getValueType(0),
2989                                             GA->getOffset());
2990  SDOperand Ops[] = { Chain,  TGA, InFlag };
2991  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
2992  InFlag = Result.getValue(2);
2993  Chain = Result.getValue(1);
2994
2995  // call ___tls_get_addr. This function receives its argument in
2996  // the register EAX.
2997  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
2998  InFlag = Chain.getValue(1);
2999
3000  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3001  SDOperand Ops1[] = { Chain,
3002                      DAG.getTargetExternalSymbol("___tls_get_addr",
3003                                                  PtrVT),
3004                      DAG.getRegister(X86::EAX, PtrVT),
3005                      DAG.getRegister(X86::EBX, PtrVT),
3006                      InFlag };
3007  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3008  InFlag = Chain.getValue(1);
3009
3010  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3011}
3012
3013// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3014// "local exec" model.
3015static SDOperand
3016LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3017                         const MVT::ValueType PtrVT) {
3018  // Get the Thread Pointer
3019  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3020  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3021  // exec)
3022  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3023                                             GA->getValueType(0),
3024                                             GA->getOffset());
3025  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3026
3027  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3028    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3029
3030  // The address of the thread local variable is the add of the thread
3031  // pointer with the offset of the variable.
3032  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3033}
3034
3035SDOperand
3036X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3037  // TODO: implement the "local dynamic" model
3038  // TODO: implement the "initial exec"model for pic executables
3039  assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3040         "TLS not implemented for non-ELF and 64-bit targets");
3041  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3042  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3043  // otherwise use the "Local Exec"TLS Model
3044  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3045    return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3046  else
3047    return LowerToTLSExecModel(GA, DAG, getPointerTy());
3048}
3049
3050SDOperand
3051X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3052  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3053  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3054  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3055  // With PIC, the address is actually $g + Offset.
3056  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3057      !Subtarget->isPICStyleRIPRel()) {
3058    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3059                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3060                         Result);
3061  }
3062
3063  return Result;
3064}
3065
3066SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3067  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3068  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3069  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3070  // With PIC, the address is actually $g + Offset.
3071  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3072      !Subtarget->isPICStyleRIPRel()) {
3073    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3074                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3075                         Result);
3076  }
3077
3078  return Result;
3079}
3080
3081SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3082    assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3083           "Not an i64 shift!");
3084    bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3085    SDOperand ShOpLo = Op.getOperand(0);
3086    SDOperand ShOpHi = Op.getOperand(1);
3087    SDOperand ShAmt  = Op.getOperand(2);
3088    SDOperand Tmp1 = isSRA ?
3089      DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3090      DAG.getConstant(0, MVT::i32);
3091
3092    SDOperand Tmp2, Tmp3;
3093    if (Op.getOpcode() == ISD::SHL_PARTS) {
3094      Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3095      Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3096    } else {
3097      Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3098      Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3099    }
3100
3101    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3102    SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3103                                    DAG.getConstant(32, MVT::i8));
3104    SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3105    SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3106
3107    SDOperand Hi, Lo;
3108    SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3109
3110    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3111    SmallVector<SDOperand, 4> Ops;
3112    if (Op.getOpcode() == ISD::SHL_PARTS) {
3113      Ops.push_back(Tmp2);
3114      Ops.push_back(Tmp3);
3115      Ops.push_back(CC);
3116      Ops.push_back(InFlag);
3117      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3118      InFlag = Hi.getValue(1);
3119
3120      Ops.clear();
3121      Ops.push_back(Tmp3);
3122      Ops.push_back(Tmp1);
3123      Ops.push_back(CC);
3124      Ops.push_back(InFlag);
3125      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3126    } else {
3127      Ops.push_back(Tmp2);
3128      Ops.push_back(Tmp3);
3129      Ops.push_back(CC);
3130      Ops.push_back(InFlag);
3131      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3132      InFlag = Lo.getValue(1);
3133
3134      Ops.clear();
3135      Ops.push_back(Tmp3);
3136      Ops.push_back(Tmp1);
3137      Ops.push_back(CC);
3138      Ops.push_back(InFlag);
3139      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3140    }
3141
3142    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3143    Ops.clear();
3144    Ops.push_back(Lo);
3145    Ops.push_back(Hi);
3146    return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3147}
3148
3149SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3150  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3151         Op.getOperand(0).getValueType() >= MVT::i16 &&
3152         "Unknown SINT_TO_FP to lower!");
3153
3154  SDOperand Result;
3155  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3156  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3157  MachineFunction &MF = DAG.getMachineFunction();
3158  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3159  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3160  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3161                                 StackSlot, NULL, 0);
3162
3163  // Build the FILD
3164  SDVTList Tys;
3165  if (X86ScalarSSE)
3166    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3167  else
3168    Tys = DAG.getVTList(MVT::f64, MVT::Other);
3169  SmallVector<SDOperand, 8> Ops;
3170  Ops.push_back(Chain);
3171  Ops.push_back(StackSlot);
3172  Ops.push_back(DAG.getValueType(SrcVT));
3173  Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
3174                       Tys, &Ops[0], Ops.size());
3175
3176  if (X86ScalarSSE) {
3177    Chain = Result.getValue(1);
3178    SDOperand InFlag = Result.getValue(2);
3179
3180    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3181    // shouldn't be necessary except that RFP cannot be live across
3182    // multiple blocks. When stackifier is fixed, they can be uncoupled.
3183    MachineFunction &MF = DAG.getMachineFunction();
3184    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3185    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3186    Tys = DAG.getVTList(MVT::Other);
3187    SmallVector<SDOperand, 8> Ops;
3188    Ops.push_back(Chain);
3189    Ops.push_back(Result);
3190    Ops.push_back(StackSlot);
3191    Ops.push_back(DAG.getValueType(Op.getValueType()));
3192    Ops.push_back(InFlag);
3193    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3194    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3195  }
3196
3197  return Result;
3198}
3199
3200SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3201  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3202         "Unknown FP_TO_SINT to lower!");
3203  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3204  // stack slot.
3205  MachineFunction &MF = DAG.getMachineFunction();
3206  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3207  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3208  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3209
3210  unsigned Opc;
3211  switch (Op.getValueType()) {
3212    default: assert(0 && "Invalid FP_TO_SINT to lower!");
3213    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3214    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3215    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3216  }
3217
3218  SDOperand Chain = DAG.getEntryNode();
3219  SDOperand Value = Op.getOperand(0);
3220  if (X86ScalarSSE) {
3221    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3222    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3223    SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other);
3224    SDOperand Ops[] = {
3225      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3226    };
3227    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3228    Chain = Value.getValue(1);
3229    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3230    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3231  }
3232
3233  // Build the FP_TO_INT*_IN_MEM
3234  SDOperand Ops[] = { Chain, Value, StackSlot };
3235  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3236
3237  // Load the result.
3238  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3239}
3240
3241SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3242  MVT::ValueType VT = Op.getValueType();
3243  const Type *OpNTy =  MVT::getTypeForValueType(VT);
3244  std::vector<Constant*> CV;
3245  if (VT == MVT::f64) {
3246    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63))));
3247    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3248  } else {
3249    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31))));
3250    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3251    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3252    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3253  }
3254  Constant *CS = ConstantStruct::get(CV);
3255  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3256  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
3257  SmallVector<SDOperand, 3> Ops;
3258  Ops.push_back(DAG.getEntryNode());
3259  Ops.push_back(CPIdx);
3260  Ops.push_back(DAG.getSrcValue(NULL));
3261  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3262  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3263}
3264
3265SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3266  MVT::ValueType VT = Op.getValueType();
3267  const Type *OpNTy =  MVT::getTypeForValueType(VT);
3268  std::vector<Constant*> CV;
3269  if (VT == MVT::f64) {
3270    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63)));
3271    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3272  } else {
3273    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31)));
3274    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3275    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3276    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3277  }
3278  Constant *CS = ConstantStruct::get(CV);
3279  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3280  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
3281  SmallVector<SDOperand, 3> Ops;
3282  Ops.push_back(DAG.getEntryNode());
3283  Ops.push_back(CPIdx);
3284  Ops.push_back(DAG.getSrcValue(NULL));
3285  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3286  return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3287}
3288
3289SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3290  SDOperand Op0 = Op.getOperand(0);
3291  SDOperand Op1 = Op.getOperand(1);
3292  MVT::ValueType VT = Op.getValueType();
3293  MVT::ValueType SrcVT = Op1.getValueType();
3294  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
3295
3296  // If second operand is smaller, extend it first.
3297  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3298    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3299    SrcVT = VT;
3300  }
3301
3302  // First get the sign bit of second operand.
3303  std::vector<Constant*> CV;
3304  if (SrcVT == MVT::f64) {
3305    CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(1ULL << 63)));
3306    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3307  } else {
3308    CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(1U << 31)));
3309    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3310    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3311    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3312  }
3313  Constant *CS = ConstantStruct::get(CV);
3314  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3315  SDVTList Tys = DAG.getVTList(SrcVT, MVT::Other);
3316  SmallVector<SDOperand, 3> Ops;
3317  Ops.push_back(DAG.getEntryNode());
3318  Ops.push_back(CPIdx);
3319  Ops.push_back(DAG.getSrcValue(NULL));
3320  SDOperand Mask1 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3321  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3322
3323  // Shift sign bit right or left if the two operands have different types.
3324  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3325    // Op0 is MVT::f32, Op1 is MVT::f64.
3326    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3327    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3328                          DAG.getConstant(32, MVT::i32));
3329    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3330    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3331                          DAG.getConstant(0, getPointerTy()));
3332  }
3333
3334  // Clear first operand sign bit.
3335  CV.clear();
3336  if (VT == MVT::f64) {
3337    CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(~(1ULL << 63))));
3338    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3339  } else {
3340    CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(~(1U << 31))));
3341    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3342    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3343    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3344  }
3345  CS = ConstantStruct::get(CV);
3346  CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3347  Tys = DAG.getVTList(VT, MVT::Other);
3348  Ops.clear();
3349  Ops.push_back(DAG.getEntryNode());
3350  Ops.push_back(CPIdx);
3351  Ops.push_back(DAG.getSrcValue(NULL));
3352  SDOperand Mask2 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3353  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3354
3355  // Or the value with the sign bit.
3356  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3357}
3358
3359SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
3360                                        SDOperand Chain) {
3361  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3362  SDOperand Cond;
3363  SDOperand Op0 = Op.getOperand(0);
3364  SDOperand Op1 = Op.getOperand(1);
3365  SDOperand CC = Op.getOperand(2);
3366  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3367  const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3368  const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3369  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3370  unsigned X86CC;
3371
3372  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3373                     Op0, Op1, DAG)) {
3374    SDOperand Ops1[] = { Chain, Op0, Op1 };
3375    Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
3376    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3377    return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3378  }
3379
3380  assert(isFP && "Illegal integer SetCC!");
3381
3382  SDOperand COps[] = { Chain, Op0, Op1 };
3383  Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
3384
3385  switch (SetCCOpcode) {
3386  default: assert(false && "Illegal floating point SetCC!");
3387  case ISD::SETOEQ: {  // !PF & ZF
3388    SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
3389    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3390    SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
3391                         Tmp1.getValue(1) };
3392    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3393    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3394  }
3395  case ISD::SETUNE: {  // PF | !ZF
3396    SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
3397    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3398    SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
3399                         Tmp1.getValue(1) };
3400    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3401    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3402  }
3403  }
3404}
3405
3406SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3407  bool addTest = true;
3408  SDOperand Chain = DAG.getEntryNode();
3409  SDOperand Cond  = Op.getOperand(0);
3410  SDOperand CC;
3411  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3412
3413  if (Cond.getOpcode() == ISD::SETCC)
3414    Cond = LowerSETCC(Cond, DAG, Chain);
3415
3416  if (Cond.getOpcode() == X86ISD::SETCC) {
3417    CC = Cond.getOperand(0);
3418
3419    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3420    // (since flag operand cannot be shared). Use it as the condition setting
3421    // operand in place of the X86ISD::SETCC.
3422    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3423    // to use a test instead of duplicating the X86ISD::CMP (for register
3424    // pressure reason)?
3425    SDOperand Cmp = Cond.getOperand(1);
3426    unsigned Opc = Cmp.getOpcode();
3427    bool IllegalFPCMov = !X86ScalarSSE &&
3428      MVT::isFloatingPoint(Op.getValueType()) &&
3429      !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3430    if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
3431        !IllegalFPCMov) {
3432      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3433      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3434      addTest = false;
3435    }
3436  }
3437
3438  if (addTest) {
3439    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3440    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3441    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3442  }
3443
3444  VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
3445  SmallVector<SDOperand, 4> Ops;
3446  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3447  // condition is true.
3448  Ops.push_back(Op.getOperand(2));
3449  Ops.push_back(Op.getOperand(1));
3450  Ops.push_back(CC);
3451  Ops.push_back(Cond.getValue(1));
3452  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3453}
3454
3455SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3456  bool addTest = true;
3457  SDOperand Chain = Op.getOperand(0);
3458  SDOperand Cond  = Op.getOperand(1);
3459  SDOperand Dest  = Op.getOperand(2);
3460  SDOperand CC;
3461  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3462
3463  if (Cond.getOpcode() == ISD::SETCC)
3464    Cond = LowerSETCC(Cond, DAG, Chain);
3465
3466  if (Cond.getOpcode() == X86ISD::SETCC) {
3467    CC = Cond.getOperand(0);
3468
3469    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3470    // (since flag operand cannot be shared). Use it as the condition setting
3471    // operand in place of the X86ISD::SETCC.
3472    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3473    // to use a test instead of duplicating the X86ISD::CMP (for register
3474    // pressure reason)?
3475    SDOperand Cmp = Cond.getOperand(1);
3476    unsigned Opc = Cmp.getOpcode();
3477    if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
3478      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3479      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3480      addTest = false;
3481    }
3482  }
3483
3484  if (addTest) {
3485    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3486    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3487    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3488  }
3489  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
3490                     Cond, Op.getOperand(2), CC, Cond.getValue(1));
3491}
3492
3493SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3494  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3495
3496  if (Subtarget->is64Bit())
3497    return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
3498  else
3499    switch (CallingConv) {
3500    default:
3501      assert(0 && "Unsupported calling convention");
3502    case CallingConv::Fast:
3503      // TODO: Implement fastcc
3504      // Falls through
3505    case CallingConv::C:
3506    case CallingConv::X86_StdCall:
3507      return LowerCCCCallTo(Op, DAG, CallingConv);
3508    case CallingConv::X86_FastCall:
3509      return LowerFastCCCallTo(Op, DAG, CallingConv);
3510    }
3511}
3512
3513
3514// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
3515// Calls to _alloca is needed to probe the stack when allocating more than 4k
3516// bytes in one go. Touching the stack at 4K increments is necessary to ensure
3517// that the guard pages used by the OS virtual memory manager are allocated in
3518// correct sequence.
3519SDOperand X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
3520                                                     SelectionDAG &DAG) {
3521  assert(Subtarget->isTargetCygMing() &&
3522         "This should be used only on Cygwin/Mingw targets");
3523
3524  // Get the inputs.
3525  SDOperand Chain = Op.getOperand(0);
3526  SDOperand Size  = Op.getOperand(1);
3527  // FIXME: Ensure alignment here
3528
3529  TargetLowering::ArgListTy Args;
3530  TargetLowering::ArgListEntry Entry;
3531  MVT::ValueType IntPtr = getPointerTy();
3532  MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
3533  const Type *IntPtrTy = getTargetData()->getIntPtrType();
3534
3535  Entry.Node    = Size;
3536  Entry.Ty      = IntPtrTy;
3537  Entry.isInReg = true; // Should pass in EAX
3538  Args.push_back(Entry);
3539  std::pair<SDOperand, SDOperand> CallResult =
3540    LowerCallTo(Chain, IntPtrTy, false, false, CallingConv::C, false,
3541                DAG.getExternalSymbol("_alloca", IntPtr), Args, DAG);
3542
3543  SDOperand SP = DAG.getCopyFromReg(CallResult.second, X86StackPtr, SPTy);
3544
3545  std::vector<MVT::ValueType> Tys;
3546  Tys.push_back(SPTy);
3547  Tys.push_back(MVT::Other);
3548  SDOperand Ops[2] = { SP, CallResult.second };
3549  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
3550}
3551
3552SDOperand
3553X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
3554  MachineFunction &MF = DAG.getMachineFunction();
3555  const Function* Fn = MF.getFunction();
3556  if (Fn->hasExternalLinkage() &&
3557      Subtarget->isTargetCygMing() &&
3558      Fn->getName() == "main")
3559    MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
3560
3561  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3562  if (Subtarget->is64Bit())
3563    return LowerX86_64CCCArguments(Op, DAG);
3564  else
3565    switch(CC) {
3566    default:
3567      assert(0 && "Unsupported calling convention");
3568    case CallingConv::Fast:
3569      // TODO: implement fastcc.
3570
3571      // Falls through
3572    case CallingConv::C:
3573      return LowerCCCArguments(Op, DAG);
3574    case CallingConv::X86_StdCall:
3575      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
3576      return LowerCCCArguments(Op, DAG, true);
3577    case CallingConv::X86_FastCall:
3578      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
3579      return LowerFastCCArguments(Op, DAG);
3580    }
3581}
3582
3583SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
3584  SDOperand InFlag(0, 0);
3585  SDOperand Chain = Op.getOperand(0);
3586  unsigned Align =
3587    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3588  if (Align == 0) Align = 1;
3589
3590  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3591  // If not DWORD aligned, call memset if size is less than the threshold.
3592  // It knows how to align to the right boundary first.
3593  if ((Align & 3) != 0 ||
3594      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
3595    MVT::ValueType IntPtr = getPointerTy();
3596    const Type *IntPtrTy = getTargetData()->getIntPtrType();
3597    TargetLowering::ArgListTy Args;
3598    TargetLowering::ArgListEntry Entry;
3599    Entry.Node = Op.getOperand(1);
3600    Entry.Ty = IntPtrTy;
3601    Args.push_back(Entry);
3602    // Extend the unsigned i8 argument to be an int value for the call.
3603    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
3604    Entry.Ty = IntPtrTy;
3605    Args.push_back(Entry);
3606    Entry.Node = Op.getOperand(3);
3607    Args.push_back(Entry);
3608    std::pair<SDOperand,SDOperand> CallResult =
3609      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3610                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
3611    return CallResult.second;
3612  }
3613
3614  MVT::ValueType AVT;
3615  SDOperand Count;
3616  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3617  unsigned BytesLeft = 0;
3618  bool TwoRepStos = false;
3619  if (ValC) {
3620    unsigned ValReg;
3621    uint64_t Val = ValC->getValue() & 255;
3622
3623    // If the value is a constant, then we can potentially use larger sets.
3624    switch (Align & 3) {
3625      case 2:   // WORD aligned
3626        AVT = MVT::i16;
3627        ValReg = X86::AX;
3628        Val = (Val << 8) | Val;
3629        break;
3630      case 0:  // DWORD aligned
3631        AVT = MVT::i32;
3632        ValReg = X86::EAX;
3633        Val = (Val << 8)  | Val;
3634        Val = (Val << 16) | Val;
3635        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
3636          AVT = MVT::i64;
3637          ValReg = X86::RAX;
3638          Val = (Val << 32) | Val;
3639        }
3640        break;
3641      default:  // Byte aligned
3642        AVT = MVT::i8;
3643        ValReg = X86::AL;
3644        Count = Op.getOperand(3);
3645        break;
3646    }
3647
3648    if (AVT > MVT::i8) {
3649      if (I) {
3650        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3651        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3652        BytesLeft = I->getValue() % UBytes;
3653      } else {
3654        assert(AVT >= MVT::i32 &&
3655               "Do not use rep;stos if not at least DWORD aligned");
3656        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3657                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3658        TwoRepStos = true;
3659      }
3660    }
3661
3662    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
3663                              InFlag);
3664    InFlag = Chain.getValue(1);
3665  } else {
3666    AVT = MVT::i8;
3667    Count  = Op.getOperand(3);
3668    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
3669    InFlag = Chain.getValue(1);
3670  }
3671
3672  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3673                            Count, InFlag);
3674  InFlag = Chain.getValue(1);
3675  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3676                            Op.getOperand(1), InFlag);
3677  InFlag = Chain.getValue(1);
3678
3679  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3680  SmallVector<SDOperand, 8> Ops;
3681  Ops.push_back(Chain);
3682  Ops.push_back(DAG.getValueType(AVT));
3683  Ops.push_back(InFlag);
3684  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3685
3686  if (TwoRepStos) {
3687    InFlag = Chain.getValue(1);
3688    Count = Op.getOperand(3);
3689    MVT::ValueType CVT = Count.getValueType();
3690    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3691                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3692    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3693                              Left, InFlag);
3694    InFlag = Chain.getValue(1);
3695    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3696    Ops.clear();
3697    Ops.push_back(Chain);
3698    Ops.push_back(DAG.getValueType(MVT::i8));
3699    Ops.push_back(InFlag);
3700    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3701  } else if (BytesLeft) {
3702    // Issue stores for the last 1 - 7 bytes.
3703    SDOperand Value;
3704    unsigned Val = ValC->getValue() & 255;
3705    unsigned Offset = I->getValue() - BytesLeft;
3706    SDOperand DstAddr = Op.getOperand(1);
3707    MVT::ValueType AddrVT = DstAddr.getValueType();
3708    if (BytesLeft >= 4) {
3709      Val = (Val << 8)  | Val;
3710      Val = (Val << 16) | Val;
3711      Value = DAG.getConstant(Val, MVT::i32);
3712      Chain = DAG.getStore(Chain, Value,
3713                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3714                                       DAG.getConstant(Offset, AddrVT)),
3715                           NULL, 0);
3716      BytesLeft -= 4;
3717      Offset += 4;
3718    }
3719    if (BytesLeft >= 2) {
3720      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
3721      Chain = DAG.getStore(Chain, Value,
3722                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3723                                       DAG.getConstant(Offset, AddrVT)),
3724                           NULL, 0);
3725      BytesLeft -= 2;
3726      Offset += 2;
3727    }
3728    if (BytesLeft == 1) {
3729      Value = DAG.getConstant(Val, MVT::i8);
3730      Chain = DAG.getStore(Chain, Value,
3731                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3732                                       DAG.getConstant(Offset, AddrVT)),
3733                           NULL, 0);
3734    }
3735  }
3736
3737  return Chain;
3738}
3739
3740SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
3741  SDOperand Chain = Op.getOperand(0);
3742  unsigned Align =
3743    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3744  if (Align == 0) Align = 1;
3745
3746  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3747  // If not DWORD aligned, call memcpy if size is less than the threshold.
3748  // It knows how to align to the right boundary first.
3749  if ((Align & 3) != 0 ||
3750      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
3751    MVT::ValueType IntPtr = getPointerTy();
3752    TargetLowering::ArgListTy Args;
3753    TargetLowering::ArgListEntry Entry;
3754    Entry.Ty = getTargetData()->getIntPtrType();
3755    Entry.Node = Op.getOperand(1); Args.push_back(Entry);
3756    Entry.Node = Op.getOperand(2); Args.push_back(Entry);
3757    Entry.Node = Op.getOperand(3); Args.push_back(Entry);
3758    std::pair<SDOperand,SDOperand> CallResult =
3759      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3760                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
3761    return CallResult.second;
3762  }
3763
3764  MVT::ValueType AVT;
3765  SDOperand Count;
3766  unsigned BytesLeft = 0;
3767  bool TwoRepMovs = false;
3768  switch (Align & 3) {
3769    case 2:   // WORD aligned
3770      AVT = MVT::i16;
3771      break;
3772    case 0:  // DWORD aligned
3773      AVT = MVT::i32;
3774      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
3775        AVT = MVT::i64;
3776      break;
3777    default:  // Byte aligned
3778      AVT = MVT::i8;
3779      Count = Op.getOperand(3);
3780      break;
3781  }
3782
3783  if (AVT > MVT::i8) {
3784    if (I) {
3785      unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3786      Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3787      BytesLeft = I->getValue() % UBytes;
3788    } else {
3789      assert(AVT >= MVT::i32 &&
3790             "Do not use rep;movs if not at least DWORD aligned");
3791      Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3792                          Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3793      TwoRepMovs = true;
3794    }
3795  }
3796
3797  SDOperand InFlag(0, 0);
3798  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3799                            Count, InFlag);
3800  InFlag = Chain.getValue(1);
3801  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3802                            Op.getOperand(1), InFlag);
3803  InFlag = Chain.getValue(1);
3804  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
3805                            Op.getOperand(2), InFlag);
3806  InFlag = Chain.getValue(1);
3807
3808  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3809  SmallVector<SDOperand, 8> Ops;
3810  Ops.push_back(Chain);
3811  Ops.push_back(DAG.getValueType(AVT));
3812  Ops.push_back(InFlag);
3813  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
3814
3815  if (TwoRepMovs) {
3816    InFlag = Chain.getValue(1);
3817    Count = Op.getOperand(3);
3818    MVT::ValueType CVT = Count.getValueType();
3819    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3820                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3821    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3822                              Left, InFlag);
3823    InFlag = Chain.getValue(1);
3824    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3825    Ops.clear();
3826    Ops.push_back(Chain);
3827    Ops.push_back(DAG.getValueType(MVT::i8));
3828    Ops.push_back(InFlag);
3829    Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
3830  } else if (BytesLeft) {
3831    // Issue loads and stores for the last 1 - 7 bytes.
3832    unsigned Offset = I->getValue() - BytesLeft;
3833    SDOperand DstAddr = Op.getOperand(1);
3834    MVT::ValueType DstVT = DstAddr.getValueType();
3835    SDOperand SrcAddr = Op.getOperand(2);
3836    MVT::ValueType SrcVT = SrcAddr.getValueType();
3837    SDOperand Value;
3838    if (BytesLeft >= 4) {
3839      Value = DAG.getLoad(MVT::i32, Chain,
3840                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
3841                                      DAG.getConstant(Offset, SrcVT)),
3842                          NULL, 0);
3843      Chain = Value.getValue(1);
3844      Chain = DAG.getStore(Chain, Value,
3845                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
3846                                       DAG.getConstant(Offset, DstVT)),
3847                           NULL, 0);
3848      BytesLeft -= 4;
3849      Offset += 4;
3850    }
3851    if (BytesLeft >= 2) {
3852      Value = DAG.getLoad(MVT::i16, Chain,
3853                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
3854                                      DAG.getConstant(Offset, SrcVT)),
3855                          NULL, 0);
3856      Chain = Value.getValue(1);
3857      Chain = DAG.getStore(Chain, Value,
3858                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
3859                                       DAG.getConstant(Offset, DstVT)),
3860                           NULL, 0);
3861      BytesLeft -= 2;
3862      Offset += 2;
3863    }
3864
3865    if (BytesLeft == 1) {
3866      Value = DAG.getLoad(MVT::i8, Chain,
3867                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
3868                                      DAG.getConstant(Offset, SrcVT)),
3869                          NULL, 0);
3870      Chain = Value.getValue(1);
3871      Chain = DAG.getStore(Chain, Value,
3872                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
3873                                       DAG.getConstant(Offset, DstVT)),
3874                           NULL, 0);
3875    }
3876  }
3877
3878  return Chain;
3879}
3880
3881SDOperand
3882X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
3883  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3884  SDOperand TheOp = Op.getOperand(0);
3885  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
3886  if (Subtarget->is64Bit()) {
3887    SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
3888    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
3889                                         MVT::i64, Copy1.getValue(2));
3890    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
3891                                DAG.getConstant(32, MVT::i8));
3892    SDOperand Ops[] = {
3893      DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
3894    };
3895
3896    Tys = DAG.getVTList(MVT::i64, MVT::Other);
3897    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
3898  }
3899
3900  SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
3901  SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
3902                                       MVT::i32, Copy1.getValue(2));
3903  SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
3904  Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
3905  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
3906}
3907
3908SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
3909  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
3910
3911  if (!Subtarget->is64Bit()) {
3912    // vastart just stores the address of the VarArgsFrameIndex slot into the
3913    // memory location argument.
3914    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
3915    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
3916                        SV->getOffset());
3917  }
3918
3919  // __va_list_tag:
3920  //   gp_offset         (0 - 6 * 8)
3921  //   fp_offset         (48 - 48 + 8 * 16)
3922  //   overflow_arg_area (point to parameters coming in memory).
3923  //   reg_save_area
3924  SmallVector<SDOperand, 8> MemOps;
3925  SDOperand FIN = Op.getOperand(1);
3926  // Store gp_offset
3927  SDOperand Store = DAG.getStore(Op.getOperand(0),
3928                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
3929                                 FIN, SV->getValue(), SV->getOffset());
3930  MemOps.push_back(Store);
3931
3932  // Store fp_offset
3933  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
3934                    DAG.getConstant(4, getPointerTy()));
3935  Store = DAG.getStore(Op.getOperand(0),
3936                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
3937                       FIN, SV->getValue(), SV->getOffset());
3938  MemOps.push_back(Store);
3939
3940  // Store ptr to overflow_arg_area
3941  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
3942                    DAG.getConstant(4, getPointerTy()));
3943  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
3944  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
3945                       SV->getOffset());
3946  MemOps.push_back(Store);
3947
3948  // Store ptr to reg_save_area.
3949  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
3950                    DAG.getConstant(8, getPointerTy()));
3951  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
3952  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
3953                       SV->getOffset());
3954  MemOps.push_back(Store);
3955  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
3956}
3957
3958SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
3959  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
3960  SDOperand Chain = Op.getOperand(0);
3961  SDOperand DstPtr = Op.getOperand(1);
3962  SDOperand SrcPtr = Op.getOperand(2);
3963  SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
3964  SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
3965
3966  SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
3967                       SrcSV->getValue(), SrcSV->getOffset());
3968  Chain = SrcPtr.getValue(1);
3969  for (unsigned i = 0; i < 3; ++i) {
3970    SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
3971                                SrcSV->getValue(), SrcSV->getOffset());
3972    Chain = Val.getValue(1);
3973    Chain = DAG.getStore(Chain, Val, DstPtr,
3974                         DstSV->getValue(), DstSV->getOffset());
3975    if (i == 2)
3976      break;
3977    SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
3978                         DAG.getConstant(8, getPointerTy()));
3979    DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
3980                         DAG.getConstant(8, getPointerTy()));
3981  }
3982  return Chain;
3983}
3984
3985SDOperand
3986X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
3987  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
3988  switch (IntNo) {
3989  default: return SDOperand();    // Don't custom lower most intrinsics.
3990    // Comparison intrinsics.
3991  case Intrinsic::x86_sse_comieq_ss:
3992  case Intrinsic::x86_sse_comilt_ss:
3993  case Intrinsic::x86_sse_comile_ss:
3994  case Intrinsic::x86_sse_comigt_ss:
3995  case Intrinsic::x86_sse_comige_ss:
3996  case Intrinsic::x86_sse_comineq_ss:
3997  case Intrinsic::x86_sse_ucomieq_ss:
3998  case Intrinsic::x86_sse_ucomilt_ss:
3999  case Intrinsic::x86_sse_ucomile_ss:
4000  case Intrinsic::x86_sse_ucomigt_ss:
4001  case Intrinsic::x86_sse_ucomige_ss:
4002  case Intrinsic::x86_sse_ucomineq_ss:
4003  case Intrinsic::x86_sse2_comieq_sd:
4004  case Intrinsic::x86_sse2_comilt_sd:
4005  case Intrinsic::x86_sse2_comile_sd:
4006  case Intrinsic::x86_sse2_comigt_sd:
4007  case Intrinsic::x86_sse2_comige_sd:
4008  case Intrinsic::x86_sse2_comineq_sd:
4009  case Intrinsic::x86_sse2_ucomieq_sd:
4010  case Intrinsic::x86_sse2_ucomilt_sd:
4011  case Intrinsic::x86_sse2_ucomile_sd:
4012  case Intrinsic::x86_sse2_ucomigt_sd:
4013  case Intrinsic::x86_sse2_ucomige_sd:
4014  case Intrinsic::x86_sse2_ucomineq_sd: {
4015    unsigned Opc = 0;
4016    ISD::CondCode CC = ISD::SETCC_INVALID;
4017    switch (IntNo) {
4018    default: break;
4019    case Intrinsic::x86_sse_comieq_ss:
4020    case Intrinsic::x86_sse2_comieq_sd:
4021      Opc = X86ISD::COMI;
4022      CC = ISD::SETEQ;
4023      break;
4024    case Intrinsic::x86_sse_comilt_ss:
4025    case Intrinsic::x86_sse2_comilt_sd:
4026      Opc = X86ISD::COMI;
4027      CC = ISD::SETLT;
4028      break;
4029    case Intrinsic::x86_sse_comile_ss:
4030    case Intrinsic::x86_sse2_comile_sd:
4031      Opc = X86ISD::COMI;
4032      CC = ISD::SETLE;
4033      break;
4034    case Intrinsic::x86_sse_comigt_ss:
4035    case Intrinsic::x86_sse2_comigt_sd:
4036      Opc = X86ISD::COMI;
4037      CC = ISD::SETGT;
4038      break;
4039    case Intrinsic::x86_sse_comige_ss:
4040    case Intrinsic::x86_sse2_comige_sd:
4041      Opc = X86ISD::COMI;
4042      CC = ISD::SETGE;
4043      break;
4044    case Intrinsic::x86_sse_comineq_ss:
4045    case Intrinsic::x86_sse2_comineq_sd:
4046      Opc = X86ISD::COMI;
4047      CC = ISD::SETNE;
4048      break;
4049    case Intrinsic::x86_sse_ucomieq_ss:
4050    case Intrinsic::x86_sse2_ucomieq_sd:
4051      Opc = X86ISD::UCOMI;
4052      CC = ISD::SETEQ;
4053      break;
4054    case Intrinsic::x86_sse_ucomilt_ss:
4055    case Intrinsic::x86_sse2_ucomilt_sd:
4056      Opc = X86ISD::UCOMI;
4057      CC = ISD::SETLT;
4058      break;
4059    case Intrinsic::x86_sse_ucomile_ss:
4060    case Intrinsic::x86_sse2_ucomile_sd:
4061      Opc = X86ISD::UCOMI;
4062      CC = ISD::SETLE;
4063      break;
4064    case Intrinsic::x86_sse_ucomigt_ss:
4065    case Intrinsic::x86_sse2_ucomigt_sd:
4066      Opc = X86ISD::UCOMI;
4067      CC = ISD::SETGT;
4068      break;
4069    case Intrinsic::x86_sse_ucomige_ss:
4070    case Intrinsic::x86_sse2_ucomige_sd:
4071      Opc = X86ISD::UCOMI;
4072      CC = ISD::SETGE;
4073      break;
4074    case Intrinsic::x86_sse_ucomineq_ss:
4075    case Intrinsic::x86_sse2_ucomineq_sd:
4076      Opc = X86ISD::UCOMI;
4077      CC = ISD::SETNE;
4078      break;
4079    }
4080
4081    unsigned X86CC;
4082    SDOperand LHS = Op.getOperand(1);
4083    SDOperand RHS = Op.getOperand(2);
4084    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4085
4086    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4087    SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4088    SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4089    VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4090    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4091    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4092    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4093  }
4094  }
4095}
4096
4097SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4098  // Depths > 0 not supported yet!
4099  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4100    return SDOperand();
4101
4102  // Just load the return address
4103  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4104  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4105}
4106
4107SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4108  // Depths > 0 not supported yet!
4109  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4110    return SDOperand();
4111
4112  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4113  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4114                     DAG.getConstant(4, getPointerTy()));
4115}
4116
4117/// LowerOperation - Provide custom lowering hooks for some operations.
4118///
4119SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4120  switch (Op.getOpcode()) {
4121  default: assert(0 && "Should not custom lower this!");
4122  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4123  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4124  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4125  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
4126  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4127  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4128  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4129  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4130  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
4131  case ISD::SHL_PARTS:
4132  case ISD::SRA_PARTS:
4133  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
4134  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4135  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
4136  case ISD::FABS:               return LowerFABS(Op, DAG);
4137  case ISD::FNEG:               return LowerFNEG(Op, DAG);
4138  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
4139  case ISD::SETCC:              return LowerSETCC(Op, DAG, DAG.getEntryNode());
4140  case ISD::SELECT:             return LowerSELECT(Op, DAG);
4141  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
4142  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4143  case ISD::CALL:               return LowerCALL(Op, DAG);
4144  case ISD::RET:                return LowerRET(Op, DAG);
4145  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
4146  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
4147  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
4148  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
4149  case ISD::VASTART:            return LowerVASTART(Op, DAG);
4150  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
4151  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4152  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4153  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4154  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
4155  }
4156  return SDOperand();
4157}
4158
4159const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4160  switch (Opcode) {
4161  default: return NULL;
4162  case X86ISD::SHLD:               return "X86ISD::SHLD";
4163  case X86ISD::SHRD:               return "X86ISD::SHRD";
4164  case X86ISD::FAND:               return "X86ISD::FAND";
4165  case X86ISD::FOR:                return "X86ISD::FOR";
4166  case X86ISD::FXOR:               return "X86ISD::FXOR";
4167  case X86ISD::FSRL:               return "X86ISD::FSRL";
4168  case X86ISD::FILD:               return "X86ISD::FILD";
4169  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
4170  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4171  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4172  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4173  case X86ISD::FLD:                return "X86ISD::FLD";
4174  case X86ISD::FST:                return "X86ISD::FST";
4175  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
4176  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
4177  case X86ISD::CALL:               return "X86ISD::CALL";
4178  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
4179  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
4180  case X86ISD::CMP:                return "X86ISD::CMP";
4181  case X86ISD::COMI:               return "X86ISD::COMI";
4182  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
4183  case X86ISD::SETCC:              return "X86ISD::SETCC";
4184  case X86ISD::CMOV:               return "X86ISD::CMOV";
4185  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
4186  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
4187  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
4188  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
4189  case X86ISD::LOAD_PACK:          return "X86ISD::LOAD_PACK";
4190  case X86ISD::LOAD_UA:            return "X86ISD::LOAD_UA";
4191  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
4192  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
4193  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
4194  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
4195  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
4196  case X86ISD::FMAX:               return "X86ISD::FMAX";
4197  case X86ISD::FMIN:               return "X86ISD::FMIN";
4198  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
4199  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
4200  }
4201}
4202
4203// isLegalAddressingMode - Return true if the addressing mode represented
4204// by AM is legal for this target, for a load/store of the specified type.
4205bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
4206                                              const Type *Ty) const {
4207  // X86 supports extremely general addressing modes.
4208
4209  // X86 allows a sign-extended 32-bit immediate field as a displacement.
4210  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
4211    return false;
4212
4213  if (AM.BaseGV) {
4214    // X86-64 only supports addr of globals in small code model.
4215    if (Subtarget->is64Bit() &&
4216        getTargetMachine().getCodeModel() != CodeModel::Small)
4217      return false;
4218
4219    // We can only fold this if we don't need a load either.
4220    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
4221      return false;
4222  }
4223
4224  switch (AM.Scale) {
4225  case 0:
4226  case 1:
4227  case 2:
4228  case 4:
4229  case 8:
4230    // These scales always work.
4231    break;
4232  case 3:
4233  case 5:
4234  case 9:
4235    // These scales are formed with basereg+scalereg.  Only accept if there is
4236    // no basereg yet.
4237    if (AM.HasBaseReg)
4238      return false;
4239    break;
4240  default:  // Other stuff never works.
4241    return false;
4242  }
4243
4244  return true;
4245}
4246
4247
4248/// isShuffleMaskLegal - Targets can use this to indicate that they only
4249/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4250/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4251/// are assumed to be legal.
4252bool
4253X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4254  // Only do shuffles on 128-bit vector types for now.
4255  if (MVT::getSizeInBits(VT) == 64) return false;
4256  return (Mask.Val->getNumOperands() <= 4 ||
4257          isSplatMask(Mask.Val)  ||
4258          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4259          X86::isUNPCKLMask(Mask.Val) ||
4260          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4261          X86::isUNPCKH_v_undef_Mask(Mask.Val) ||
4262          X86::isUNPCKHMask(Mask.Val));
4263}
4264
4265bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4266                                               MVT::ValueType EVT,
4267                                               SelectionDAG &DAG) const {
4268  unsigned NumElts = BVOps.size();
4269  // Only do shuffles on 128-bit vector types for now.
4270  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4271  if (NumElts == 2) return true;
4272  if (NumElts == 4) {
4273    return (isMOVLMask(&BVOps[0], 4)  ||
4274            isCommutedMOVL(&BVOps[0], 4, true) ||
4275            isSHUFPMask(&BVOps[0], 4) ||
4276            isCommutedSHUFP(&BVOps[0], 4));
4277  }
4278  return false;
4279}
4280
4281//===----------------------------------------------------------------------===//
4282//                           X86 Scheduler Hooks
4283//===----------------------------------------------------------------------===//
4284
4285MachineBasicBlock *
4286X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4287                                           MachineBasicBlock *BB) {
4288  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4289  switch (MI->getOpcode()) {
4290  default: assert(false && "Unexpected instr type to insert");
4291  case X86::CMOV_FR32:
4292  case X86::CMOV_FR64:
4293  case X86::CMOV_V4F32:
4294  case X86::CMOV_V2F64:
4295  case X86::CMOV_V2I64: {
4296    // To "insert" a SELECT_CC instruction, we actually have to insert the
4297    // diamond control-flow pattern.  The incoming instruction knows the
4298    // destination vreg to set, the condition code register to branch on, the
4299    // true/false values to select between, and a branch opcode to use.
4300    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4301    ilist<MachineBasicBlock>::iterator It = BB;
4302    ++It;
4303
4304    //  thisMBB:
4305    //  ...
4306    //   TrueVal = ...
4307    //   cmpTY ccX, r1, r2
4308    //   bCC copy1MBB
4309    //   fallthrough --> copy0MBB
4310    MachineBasicBlock *thisMBB = BB;
4311    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4312    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4313    unsigned Opc =
4314      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4315    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4316    MachineFunction *F = BB->getParent();
4317    F->getBasicBlockList().insert(It, copy0MBB);
4318    F->getBasicBlockList().insert(It, sinkMBB);
4319    // Update machine-CFG edges by first adding all successors of the current
4320    // block to the new block which will contain the Phi node for the select.
4321    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4322        e = BB->succ_end(); i != e; ++i)
4323      sinkMBB->addSuccessor(*i);
4324    // Next, remove all successors of the current block, and add the true
4325    // and fallthrough blocks as its successors.
4326    while(!BB->succ_empty())
4327      BB->removeSuccessor(BB->succ_begin());
4328    BB->addSuccessor(copy0MBB);
4329    BB->addSuccessor(sinkMBB);
4330
4331    //  copy0MBB:
4332    //   %FalseValue = ...
4333    //   # fallthrough to sinkMBB
4334    BB = copy0MBB;
4335
4336    // Update machine-CFG edges
4337    BB->addSuccessor(sinkMBB);
4338
4339    //  sinkMBB:
4340    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4341    //  ...
4342    BB = sinkMBB;
4343    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4344      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4345      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4346
4347    delete MI;   // The pseudo instruction is gone now.
4348    return BB;
4349  }
4350
4351  case X86::FP_TO_INT16_IN_MEM:
4352  case X86::FP_TO_INT32_IN_MEM:
4353  case X86::FP_TO_INT64_IN_MEM: {
4354    // Change the floating point control register to use "round towards zero"
4355    // mode when truncating to an integer value.
4356    MachineFunction *F = BB->getParent();
4357    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4358    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4359
4360    // Load the old value of the high byte of the control word...
4361    unsigned OldCW =
4362      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4363    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4364
4365    // Set the high part to be round to zero...
4366    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4367      .addImm(0xC7F);
4368
4369    // Reload the modified control word now...
4370    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4371
4372    // Restore the memory image of control word to original value
4373    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4374      .addReg(OldCW);
4375
4376    // Get the X86 opcode to use.
4377    unsigned Opc;
4378    switch (MI->getOpcode()) {
4379    default: assert(0 && "illegal opcode!");
4380    case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break;
4381    case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break;
4382    case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break;
4383    }
4384
4385    X86AddressMode AM;
4386    MachineOperand &Op = MI->getOperand(0);
4387    if (Op.isRegister()) {
4388      AM.BaseType = X86AddressMode::RegBase;
4389      AM.Base.Reg = Op.getReg();
4390    } else {
4391      AM.BaseType = X86AddressMode::FrameIndexBase;
4392      AM.Base.FrameIndex = Op.getFrameIndex();
4393    }
4394    Op = MI->getOperand(1);
4395    if (Op.isImmediate())
4396      AM.Scale = Op.getImm();
4397    Op = MI->getOperand(2);
4398    if (Op.isImmediate())
4399      AM.IndexReg = Op.getImm();
4400    Op = MI->getOperand(3);
4401    if (Op.isGlobalAddress()) {
4402      AM.GV = Op.getGlobal();
4403    } else {
4404      AM.Disp = Op.getImm();
4405    }
4406    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
4407                      .addReg(MI->getOperand(4).getReg());
4408
4409    // Reload the original control word now.
4410    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4411
4412    delete MI;   // The pseudo instruction is gone now.
4413    return BB;
4414  }
4415  }
4416}
4417
4418//===----------------------------------------------------------------------===//
4419//                           X86 Optimization Hooks
4420//===----------------------------------------------------------------------===//
4421
4422void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
4423                                                       uint64_t Mask,
4424                                                       uint64_t &KnownZero,
4425                                                       uint64_t &KnownOne,
4426                                                       unsigned Depth) const {
4427  unsigned Opc = Op.getOpcode();
4428  assert((Opc >= ISD::BUILTIN_OP_END ||
4429          Opc == ISD::INTRINSIC_WO_CHAIN ||
4430          Opc == ISD::INTRINSIC_W_CHAIN ||
4431          Opc == ISD::INTRINSIC_VOID) &&
4432         "Should use MaskedValueIsZero if you don't know whether Op"
4433         " is a target node!");
4434
4435  KnownZero = KnownOne = 0;   // Don't know anything.
4436  switch (Opc) {
4437  default: break;
4438  case X86ISD::SETCC:
4439    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
4440    break;
4441  }
4442}
4443
4444/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4445/// element of the result of the vector shuffle.
4446static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
4447  MVT::ValueType VT = N->getValueType(0);
4448  SDOperand PermMask = N->getOperand(2);
4449  unsigned NumElems = PermMask.getNumOperands();
4450  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
4451  i %= NumElems;
4452  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4453    return (i == 0)
4454      ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
4455  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
4456    SDOperand Idx = PermMask.getOperand(i);
4457    if (Idx.getOpcode() == ISD::UNDEF)
4458      return DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
4459    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
4460  }
4461  return SDOperand();
4462}
4463
4464/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
4465/// node is a GlobalAddress + an offset.
4466static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
4467  unsigned Opc = N->getOpcode();
4468  if (Opc == X86ISD::Wrapper) {
4469    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
4470      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
4471      return true;
4472    }
4473  } else if (Opc == ISD::ADD) {
4474    SDOperand N1 = N->getOperand(0);
4475    SDOperand N2 = N->getOperand(1);
4476    if (isGAPlusOffset(N1.Val, GA, Offset)) {
4477      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
4478      if (V) {
4479        Offset += V->getSignExtended();
4480        return true;
4481      }
4482    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
4483      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
4484      if (V) {
4485        Offset += V->getSignExtended();
4486        return true;
4487      }
4488    }
4489  }
4490  return false;
4491}
4492
4493/// isConsecutiveLoad - Returns true if N is loading from an address of Base
4494/// + Dist * Size.
4495static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
4496                              MachineFrameInfo *MFI) {
4497  if (N->getOperand(0).Val != Base->getOperand(0).Val)
4498    return false;
4499
4500  SDOperand Loc = N->getOperand(1);
4501  SDOperand BaseLoc = Base->getOperand(1);
4502  if (Loc.getOpcode() == ISD::FrameIndex) {
4503    if (BaseLoc.getOpcode() != ISD::FrameIndex)
4504      return false;
4505    int FI  = dyn_cast<FrameIndexSDNode>(Loc)->getIndex();
4506    int BFI = dyn_cast<FrameIndexSDNode>(BaseLoc)->getIndex();
4507    int FS  = MFI->getObjectSize(FI);
4508    int BFS = MFI->getObjectSize(BFI);
4509    if (FS != BFS || FS != Size) return false;
4510    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
4511  } else {
4512    GlobalValue *GV1 = NULL;
4513    GlobalValue *GV2 = NULL;
4514    int64_t Offset1 = 0;
4515    int64_t Offset2 = 0;
4516    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
4517    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
4518    if (isGA1 && isGA2 && GV1 == GV2)
4519      return Offset1 == (Offset2 + Dist*Size);
4520  }
4521
4522  return false;
4523}
4524
4525static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
4526                              const X86Subtarget *Subtarget) {
4527  GlobalValue *GV;
4528  int64_t Offset;
4529  if (isGAPlusOffset(Base, GV, Offset))
4530    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
4531  else {
4532    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
4533    int BFI = dyn_cast<FrameIndexSDNode>(Base)->getIndex();
4534    if (BFI < 0)
4535      // Fixed objects do not specify alignment, however the offsets are known.
4536      return ((Subtarget->getStackAlignment() % 16) == 0 &&
4537              (MFI->getObjectOffset(BFI) % 16) == 0);
4538    else
4539      return MFI->getObjectAlignment(BFI) >= 16;
4540  }
4541  return false;
4542}
4543
4544
4545/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
4546/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
4547/// if the load addresses are consecutive, non-overlapping, and in the right
4548/// order.
4549static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
4550                                       const X86Subtarget *Subtarget) {
4551  MachineFunction &MF = DAG.getMachineFunction();
4552  MachineFrameInfo *MFI = MF.getFrameInfo();
4553  MVT::ValueType VT = N->getValueType(0);
4554  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
4555  SDOperand PermMask = N->getOperand(2);
4556  int NumElems = (int)PermMask.getNumOperands();
4557  SDNode *Base = NULL;
4558  for (int i = 0; i < NumElems; ++i) {
4559    SDOperand Idx = PermMask.getOperand(i);
4560    if (Idx.getOpcode() == ISD::UNDEF) {
4561      if (!Base) return SDOperand();
4562    } else {
4563      SDOperand Arg =
4564        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
4565      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
4566        return SDOperand();
4567      if (!Base)
4568        Base = Arg.Val;
4569      else if (!isConsecutiveLoad(Arg.Val, Base,
4570                                  i, MVT::getSizeInBits(EVT)/8,MFI))
4571        return SDOperand();
4572    }
4573  }
4574
4575  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
4576  if (isAlign16) {
4577    LoadSDNode *LD = cast<LoadSDNode>(Base);
4578    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4579                       LD->getSrcValueOffset());
4580  } else {
4581    // Just use movups, it's shorter.
4582    SDVTList Tys = DAG.getVTList(MVT::v4f32, MVT::Other);
4583    SmallVector<SDOperand, 3> Ops;
4584    Ops.push_back(Base->getOperand(0));
4585    Ops.push_back(Base->getOperand(1));
4586    Ops.push_back(Base->getOperand(2));
4587    return DAG.getNode(ISD::BIT_CONVERT, VT,
4588                       DAG.getNode(X86ISD::LOAD_UA, Tys, &Ops[0], Ops.size()));
4589  }
4590}
4591
4592/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
4593static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
4594                                      const X86Subtarget *Subtarget) {
4595  SDOperand Cond = N->getOperand(0);
4596
4597  // If we have SSE[12] support, try to form min/max nodes.
4598  if (Subtarget->hasSSE2() &&
4599      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
4600    if (Cond.getOpcode() == ISD::SETCC) {
4601      // Get the LHS/RHS of the select.
4602      SDOperand LHS = N->getOperand(1);
4603      SDOperand RHS = N->getOperand(2);
4604      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
4605
4606      unsigned Opcode = 0;
4607      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
4608        switch (CC) {
4609        default: break;
4610        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
4611        case ISD::SETULE:
4612        case ISD::SETLE:
4613          if (!UnsafeFPMath) break;
4614          // FALL THROUGH.
4615        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
4616        case ISD::SETLT:
4617          Opcode = X86ISD::FMIN;
4618          break;
4619
4620        case ISD::SETOGT: // (X > Y) ? X : Y -> max
4621        case ISD::SETUGT:
4622        case ISD::SETGT:
4623          if (!UnsafeFPMath) break;
4624          // FALL THROUGH.
4625        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
4626        case ISD::SETGE:
4627          Opcode = X86ISD::FMAX;
4628          break;
4629        }
4630      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
4631        switch (CC) {
4632        default: break;
4633        case ISD::SETOGT: // (X > Y) ? Y : X -> min
4634        case ISD::SETUGT:
4635        case ISD::SETGT:
4636          if (!UnsafeFPMath) break;
4637          // FALL THROUGH.
4638        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
4639        case ISD::SETGE:
4640          Opcode = X86ISD::FMIN;
4641          break;
4642
4643        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
4644        case ISD::SETULE:
4645        case ISD::SETLE:
4646          if (!UnsafeFPMath) break;
4647          // FALL THROUGH.
4648        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
4649        case ISD::SETLT:
4650          Opcode = X86ISD::FMAX;
4651          break;
4652        }
4653      }
4654
4655      if (Opcode)
4656        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
4657    }
4658
4659  }
4660
4661  return SDOperand();
4662}
4663
4664
4665SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
4666                                               DAGCombinerInfo &DCI) const {
4667  SelectionDAG &DAG = DCI.DAG;
4668  switch (N->getOpcode()) {
4669  default: break;
4670  case ISD::VECTOR_SHUFFLE:
4671    return PerformShuffleCombine(N, DAG, Subtarget);
4672  case ISD::SELECT:
4673    return PerformSELECTCombine(N, DAG, Subtarget);
4674  }
4675
4676  return SDOperand();
4677}
4678
4679//===----------------------------------------------------------------------===//
4680//                           X86 Inline Assembly Support
4681//===----------------------------------------------------------------------===//
4682
4683/// getConstraintType - Given a constraint letter, return the type of
4684/// constraint it is for this target.
4685X86TargetLowering::ConstraintType
4686X86TargetLowering::getConstraintType(const std::string &Constraint) const {
4687  if (Constraint.size() == 1) {
4688    switch (Constraint[0]) {
4689    case 'A':
4690    case 'r':
4691    case 'R':
4692    case 'l':
4693    case 'q':
4694    case 'Q':
4695    case 'x':
4696    case 'Y':
4697      return C_RegisterClass;
4698    default:
4699      break;
4700    }
4701  }
4702  return TargetLowering::getConstraintType(Constraint);
4703}
4704
4705/// isOperandValidForConstraint - Return the specified operand (possibly
4706/// modified) if the specified SDOperand is valid for the specified target
4707/// constraint letter, otherwise return null.
4708SDOperand X86TargetLowering::
4709isOperandValidForConstraint(SDOperand Op, char Constraint, SelectionDAG &DAG) {
4710  switch (Constraint) {
4711  default: break;
4712  case 'I':
4713    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4714      if (C->getValue() <= 31)
4715        return Op;
4716    }
4717    return SDOperand(0,0);
4718  case 'N':
4719    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4720      if (C->getValue() <= 255)
4721        return Op;
4722    }
4723    return SDOperand(0,0);
4724  case 'i':
4725    // Literal immediates are always ok.
4726    if (isa<ConstantSDNode>(Op)) return Op;
4727
4728    // If we are in non-pic codegen mode, we allow the address of a global to
4729    // be used with 'i'.
4730    if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
4731      if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4732        return SDOperand(0, 0);
4733
4734      if (GA->getOpcode() != ISD::TargetGlobalAddress)
4735        Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
4736                                        GA->getOffset());
4737      return Op;
4738    }
4739
4740    // Otherwise, not valid for this mode.
4741    return SDOperand(0, 0);
4742  }
4743  return TargetLowering::isOperandValidForConstraint(Op, Constraint, DAG);
4744}
4745
4746std::vector<unsigned> X86TargetLowering::
4747getRegClassForInlineAsmConstraint(const std::string &Constraint,
4748                                  MVT::ValueType VT) const {
4749  if (Constraint.size() == 1) {
4750    // FIXME: not handling fp-stack yet!
4751    switch (Constraint[0]) {      // GCC X86 Constraint Letters
4752    default: break;  // Unknown constraint letter
4753    case 'A':   // EAX/EDX
4754      if (VT == MVT::i32 || VT == MVT::i64)
4755        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
4756      break;
4757    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
4758    case 'Q':   // Q_REGS
4759      if (VT == MVT::i32)
4760        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
4761      else if (VT == MVT::i16)
4762        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
4763      else if (VT == MVT::i8)
4764        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
4765        break;
4766    }
4767  }
4768
4769  return std::vector<unsigned>();
4770}
4771
4772std::pair<unsigned, const TargetRegisterClass*>
4773X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4774                                                MVT::ValueType VT) const {
4775  // First, see if this is a constraint that directly corresponds to an LLVM
4776  // register class.
4777  if (Constraint.size() == 1) {
4778    // GCC Constraint Letters
4779    switch (Constraint[0]) {
4780    default: break;
4781    case 'r':   // GENERAL_REGS
4782    case 'R':   // LEGACY_REGS
4783    case 'l':   // INDEX_REGS
4784      if (VT == MVT::i64 && Subtarget->is64Bit())
4785        return std::make_pair(0U, X86::GR64RegisterClass);
4786      if (VT == MVT::i32)
4787        return std::make_pair(0U, X86::GR32RegisterClass);
4788      else if (VT == MVT::i16)
4789        return std::make_pair(0U, X86::GR16RegisterClass);
4790      else if (VT == MVT::i8)
4791        return std::make_pair(0U, X86::GR8RegisterClass);
4792      break;
4793    case 'y':   // MMX_REGS if MMX allowed.
4794      if (!Subtarget->hasMMX()) break;
4795      return std::make_pair(0U, X86::VR64RegisterClass);
4796      break;
4797    case 'Y':   // SSE_REGS if SSE2 allowed
4798      if (!Subtarget->hasSSE2()) break;
4799      // FALL THROUGH.
4800    case 'x':   // SSE_REGS if SSE1 allowed
4801      if (!Subtarget->hasSSE1()) break;
4802
4803      switch (VT) {
4804      default: break;
4805      // Scalar SSE types.
4806      case MVT::f32:
4807      case MVT::i32:
4808        return std::make_pair(0U, X86::FR32RegisterClass);
4809      case MVT::f64:
4810      case MVT::i64:
4811        return std::make_pair(0U, X86::FR64RegisterClass);
4812      // Vector types.
4813      case MVT::Vector:
4814      case MVT::v16i8:
4815      case MVT::v8i16:
4816      case MVT::v4i32:
4817      case MVT::v2i64:
4818      case MVT::v4f32:
4819      case MVT::v2f64:
4820        return std::make_pair(0U, X86::VR128RegisterClass);
4821      }
4822      break;
4823    }
4824  }
4825
4826  // Use the default implementation in TargetLowering to convert the register
4827  // constraint into a member of a register class.
4828  std::pair<unsigned, const TargetRegisterClass*> Res;
4829  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4830
4831  // Not found as a standard register?
4832  if (Res.second == 0) {
4833    // GCC calls "st(0)" just plain "st".
4834    if (StringsEqualNoCase("{st}", Constraint)) {
4835      Res.first = X86::ST0;
4836      Res.second = X86::RSTRegisterClass;
4837    }
4838
4839    return Res;
4840  }
4841
4842  // Otherwise, check to see if this is a register class of the wrong value
4843  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
4844  // turn into {ax},{dx}.
4845  if (Res.second->hasType(VT))
4846    return Res;   // Correct type already, nothing to do.
4847
4848  // All of the single-register GCC register classes map their values onto
4849  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
4850  // really want an 8-bit or 32-bit register, map to the appropriate register
4851  // class and return the appropriate register.
4852  if (Res.second != X86::GR16RegisterClass)
4853    return Res;
4854
4855  if (VT == MVT::i8) {
4856    unsigned DestReg = 0;
4857    switch (Res.first) {
4858    default: break;
4859    case X86::AX: DestReg = X86::AL; break;
4860    case X86::DX: DestReg = X86::DL; break;
4861    case X86::CX: DestReg = X86::CL; break;
4862    case X86::BX: DestReg = X86::BL; break;
4863    }
4864    if (DestReg) {
4865      Res.first = DestReg;
4866      Res.second = Res.second = X86::GR8RegisterClass;
4867    }
4868  } else if (VT == MVT::i32) {
4869    unsigned DestReg = 0;
4870    switch (Res.first) {
4871    default: break;
4872    case X86::AX: DestReg = X86::EAX; break;
4873    case X86::DX: DestReg = X86::EDX; break;
4874    case X86::CX: DestReg = X86::ECX; break;
4875    case X86::BX: DestReg = X86::EBX; break;
4876    case X86::SI: DestReg = X86::ESI; break;
4877    case X86::DI: DestReg = X86::EDI; break;
4878    case X86::BP: DestReg = X86::EBP; break;
4879    case X86::SP: DestReg = X86::ESP; break;
4880    }
4881    if (DestReg) {
4882      Res.first = DestReg;
4883      Res.second = Res.second = X86::GR32RegisterClass;
4884    }
4885  } else if (VT == MVT::i64) {
4886    unsigned DestReg = 0;
4887    switch (Res.first) {
4888    default: break;
4889    case X86::AX: DestReg = X86::RAX; break;
4890    case X86::DX: DestReg = X86::RDX; break;
4891    case X86::CX: DestReg = X86::RCX; break;
4892    case X86::BX: DestReg = X86::RBX; break;
4893    case X86::SI: DestReg = X86::RSI; break;
4894    case X86::DI: DestReg = X86::RDI; break;
4895    case X86::BP: DestReg = X86::RBP; break;
4896    case X86::SP: DestReg = X86::RSP; break;
4897    }
4898    if (DestReg) {
4899      Res.first = DestReg;
4900      Res.second = Res.second = X86::GR64RegisterClass;
4901    }
4902  }
4903
4904  return Res;
4905}
4906