X86ISelLowering.cpp revision 317848f4a11f7fe55afdd6d90ded8444069b56fb
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/ADT/VectorExtras.h"
26#include "llvm/Analysis/ScalarEvolutionExpressions.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/SelectionDAG.h"
31#include "llvm/CodeGen/SSARegMap.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/ADT/StringExtras.h"
36using namespace llvm;
37
38// FIXME: temporary.
39static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden,
40                                  cl::desc("Enable fastcc on X86"));
41X86TargetLowering::X86TargetLowering(TargetMachine &TM)
42  : TargetLowering(TM) {
43  Subtarget = &TM.getSubtarget<X86Subtarget>();
44  X86ScalarSSE = Subtarget->hasSSE2();
45  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
46
47  // Set up the TargetLowering object.
48
49  // X86 is weird, it always uses i8 for shift amounts and setcc results.
50  setShiftAmountType(MVT::i8);
51  setSetCCResultType(MVT::i8);
52  setSetCCResultContents(ZeroOrOneSetCCResult);
53  setSchedulingPreference(SchedulingForRegPressure);
54  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
55  setStackPointerRegisterToSaveRestore(X86StackPtr);
56
57  if (Subtarget->isTargetDarwin()) {
58    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
59    setUseUnderscoreSetJmp(false);
60    setUseUnderscoreLongJmp(false);
61  } else if (Subtarget->isTargetMingw()) {
62    // MS runtime is weird: it exports _setjmp, but longjmp!
63    setUseUnderscoreSetJmp(true);
64    setUseUnderscoreLongJmp(false);
65  } else {
66    setUseUnderscoreSetJmp(true);
67    setUseUnderscoreLongJmp(true);
68  }
69
70  // Add legal addressing mode scale values.
71  addLegalAddressScale(8);
72  addLegalAddressScale(4);
73  addLegalAddressScale(2);
74  // Enter the ones which require both scale + index last. These are more
75  // expensive.
76  addLegalAddressScale(9);
77  addLegalAddressScale(5);
78  addLegalAddressScale(3);
79
80  // Set up the register classes.
81  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
82  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
83  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
84  if (Subtarget->is64Bit())
85    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
86
87  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
88
89  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
90  // operation.
91  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
92  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
93  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
94
95  if (Subtarget->is64Bit()) {
96    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
97    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
98  } else {
99    if (X86ScalarSSE)
100      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
101      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
102    else
103      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
104  }
105
106  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
107  // this operation.
108  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
109  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
110  // SSE has no i16 to fp conversion, only i32
111  if (X86ScalarSSE)
112    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
113  else {
114    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
115    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
116  }
117
118  if (!Subtarget->is64Bit()) {
119    // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode.
120    setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
121    setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
122  }
123
124  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
125  // this operation.
126  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
127  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
128
129  if (X86ScalarSSE) {
130    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
131  } else {
132    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
133    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
134  }
135
136  // Handle FP_TO_UINT by promoting the destination to a larger signed
137  // conversion.
138  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
139  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
140  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
141
142  if (Subtarget->is64Bit()) {
143    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
144    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
145  } else {
146    if (X86ScalarSSE && !Subtarget->hasSSE3())
147      // Expand FP_TO_UINT into a select.
148      // FIXME: We would like to use a Custom expander here eventually to do
149      // the optimal thing for SSE vs. the default expansion in the legalizer.
150      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
151    else
152      // With SSE3 we can use fisttpll to convert to a signed i64.
153      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
154  }
155
156  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
157  if (!X86ScalarSSE) {
158    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
159    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
160  }
161
162  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
163  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
164  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
165  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
166  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
167  if (Subtarget->is64Bit())
168    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
169  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Expand);
170  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Expand);
171  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
172  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
173  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
174
175  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
176  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
177  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
178  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
179  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
180  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
181  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
182  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
183  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
184  if (Subtarget->is64Bit()) {
185    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
186    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
187    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
188  }
189
190  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
191  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
192
193  // These should be promoted to a larger select which is supported.
194  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
195  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
196  // X86 wants to expand cmov itself.
197  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
198  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
199  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
200  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
201  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
202  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
203  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
204  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
205  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
206  if (Subtarget->is64Bit()) {
207    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
208    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
209  }
210  // X86 ret instruction may pop stack.
211  setOperationAction(ISD::RET             , MVT::Other, Custom);
212  // Darwin ABI issue.
213  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
214  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
215  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
216  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
217  if (Subtarget->is64Bit()) {
218    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
219    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
220    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
221    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
222  }
223  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
224  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
225  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
226  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
227  // X86 wants to expand memset / memcpy itself.
228  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
229  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
230
231  // We don't have line number support yet.
232  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
233  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
234  // FIXME - use subtarget debug flags
235  if (!Subtarget->isTargetDarwin() &&
236      !Subtarget->isTargetELF() &&
237      !Subtarget->isTargetCygMing())
238    setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
239
240  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
241  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
242
243  // Use the default implementation.
244  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
245  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
246  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
247  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
248  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
249  if (Subtarget->is64Bit())
250    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
251  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand);
252
253  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
254  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
255
256  if (X86ScalarSSE) {
257    // Set up the FP register classes.
258    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
259    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
260
261    // Use ANDPD to simulate FABS.
262    setOperationAction(ISD::FABS , MVT::f64, Custom);
263    setOperationAction(ISD::FABS , MVT::f32, Custom);
264
265    // Use XORP to simulate FNEG.
266    setOperationAction(ISD::FNEG , MVT::f64, Custom);
267    setOperationAction(ISD::FNEG , MVT::f32, Custom);
268
269    // We don't support sin/cos/fmod
270    setOperationAction(ISD::FSIN , MVT::f64, Expand);
271    setOperationAction(ISD::FCOS , MVT::f64, Expand);
272    setOperationAction(ISD::FREM , MVT::f64, Expand);
273    setOperationAction(ISD::FSIN , MVT::f32, Expand);
274    setOperationAction(ISD::FCOS , MVT::f32, Expand);
275    setOperationAction(ISD::FREM , MVT::f32, Expand);
276
277    // Expand FP immediates into loads from the stack, except for the special
278    // cases we handle.
279    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
280    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
281    addLegalFPImmediate(+0.0); // xorps / xorpd
282  } else {
283    // Set up the FP register classes.
284    addRegisterClass(MVT::f64, X86::RFPRegisterClass);
285
286    setOperationAction(ISD::UNDEF, MVT::f64, Expand);
287
288    if (!UnsafeFPMath) {
289      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
290      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
291    }
292
293    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
294    addLegalFPImmediate(+0.0); // FLD0
295    addLegalFPImmediate(+1.0); // FLD1
296    addLegalFPImmediate(-0.0); // FLD0/FCHS
297    addLegalFPImmediate(-1.0); // FLD1/FCHS
298  }
299
300  // First set operation action for all vector types to expand. Then we
301  // will selectively turn on ones that can be effectively codegen'd.
302  for (unsigned VT = (unsigned)MVT::Vector + 1;
303       VT != (unsigned)MVT::LAST_VALUETYPE; VT++) {
304    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
305    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
306    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
307    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
308    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
309    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
310    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
311    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
312    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
313    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
314    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
315    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
316    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
317    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
318    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
319  }
320
321  if (Subtarget->hasMMX()) {
322    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
323    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
324    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
325
326    // FIXME: add MMX packed arithmetics
327    setOperationAction(ISD::BUILD_VECTOR,     MVT::v8i8,  Expand);
328    setOperationAction(ISD::BUILD_VECTOR,     MVT::v4i16, Expand);
329    setOperationAction(ISD::BUILD_VECTOR,     MVT::v2i32, Expand);
330  }
331
332  if (Subtarget->hasSSE1()) {
333    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
334
335    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
336    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
337    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
338    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
339    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
340    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
341    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
342    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
343    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
344  }
345
346  if (Subtarget->hasSSE2()) {
347    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
348    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
349    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
350    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
351    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
352
353    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
354    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
355    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
356    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
357    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
358    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
359    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
360    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
361    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
362    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
363    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
364
365    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
366    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
367    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
368    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
369    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
370    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
371
372    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
373    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
374      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
375      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
376      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
377    }
378    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
379    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
380    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
381    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
382    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
383    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
384
385    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
386    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
387      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
388      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
389      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
390      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
391      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
392      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
393      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
394      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
395      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
396      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
397    }
398
399    // Custom lower v2i64 and v2f64 selects.
400    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
401    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
402    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
403    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
404  }
405
406  // We want to custom lower some of our intrinsics.
407  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
408
409  // We have target-specific dag combine patterns for the following nodes:
410  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
411  setTargetDAGCombine(ISD::SELECT);
412
413  computeRegisterProperties();
414
415  // FIXME: These should be based on subtarget info. Plus, the values should
416  // be smaller when we are in optimizing for size mode.
417  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
418  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
419  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
420  allowUnalignedMemoryAccesses = true; // x86 supports it!
421}
422
423//===----------------------------------------------------------------------===//
424//                    C Calling Convention implementation
425//===----------------------------------------------------------------------===//
426
427/// AddLiveIn - This helper function adds the specified physical register to the
428/// MachineFunction as a live in value.  It also creates a corresponding virtual
429/// register for it.
430static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
431                          TargetRegisterClass *RC) {
432  assert(RC->contains(PReg) && "Not the correct regclass!");
433  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
434  MF.addLiveIn(PReg, VReg);
435  return VReg;
436}
437
438/// HowToPassCCCArgument - Returns how an formal argument of the specified type
439/// should be passed. If it is through stack, returns the size of the stack
440/// slot; if it is through XMM register, returns the number of XMM registers
441/// are needed.
442static void
443HowToPassCCCArgument(MVT::ValueType ObjectVT, unsigned NumXMMRegs,
444                     unsigned &ObjSize, unsigned &ObjXMMRegs) {
445  ObjXMMRegs = 0;
446
447  switch (ObjectVT) {
448  default: assert(0 && "Unhandled argument type!");
449  case MVT::i8:  ObjSize = 1; break;
450  case MVT::i16: ObjSize = 2; break;
451  case MVT::i32: ObjSize = 4; break;
452  case MVT::i64: ObjSize = 8; break;
453  case MVT::f32: ObjSize = 4; break;
454  case MVT::f64: ObjSize = 8; break;
455  case MVT::v16i8:
456  case MVT::v8i16:
457  case MVT::v4i32:
458  case MVT::v2i64:
459  case MVT::v4f32:
460  case MVT::v2f64:
461    if (NumXMMRegs < 4)
462      ObjXMMRegs = 1;
463    else
464      ObjSize = 16;
465    break;
466  }
467}
468
469SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG) {
470  unsigned NumArgs = Op.Val->getNumValues() - 1;
471  MachineFunction &MF = DAG.getMachineFunction();
472  MachineFrameInfo *MFI = MF.getFrameInfo();
473  SDOperand Root = Op.getOperand(0);
474  std::vector<SDOperand> ArgValues;
475
476  // Add DAG nodes to load the arguments...  On entry to a function on the X86,
477  // the stack frame looks like this:
478  //
479  // [ESP] -- return address
480  // [ESP + 4] -- first argument (leftmost lexically)
481  // [ESP + 8] -- second argument, if first argument is <= 4 bytes in size
482  //    ...
483  //
484  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
485  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
486  static const unsigned XMMArgRegs[] = {
487    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
488  };
489  for (unsigned i = 0; i < NumArgs; ++i) {
490    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
491    unsigned ArgIncrement = 4;
492    unsigned ObjSize = 0;
493    unsigned ObjXMMRegs = 0;
494    HowToPassCCCArgument(ObjectVT, NumXMMRegs, ObjSize, ObjXMMRegs);
495    if (ObjSize > 4)
496      ArgIncrement = ObjSize;
497
498    SDOperand ArgValue;
499    if (ObjXMMRegs) {
500      // Passed in a XMM register.
501      unsigned Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
502                               X86::VR128RegisterClass);
503      ArgValue= DAG.getCopyFromReg(Root, Reg, ObjectVT);
504      ArgValues.push_back(ArgValue);
505      NumXMMRegs += ObjXMMRegs;
506    } else {
507      // XMM arguments have to be aligned on 16-byte boundary.
508      if (ObjSize == 16)
509        ArgOffset = ((ArgOffset + 15) / 16) * 16;
510      // Create the frame index object for this incoming parameter...
511      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
512      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
513      ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
514      ArgValues.push_back(ArgValue);
515      ArgOffset += ArgIncrement;   // Move on to the next argument...
516    }
517  }
518
519  ArgValues.push_back(Root);
520
521  // If the function takes variable number of arguments, make a frame index for
522  // the start of the first vararg value... for expansion of llvm.va_start.
523  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
524  if (isVarArg)
525    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
526  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
527  ReturnAddrIndex = 0;            // No return address slot generated yet.
528  BytesToPopOnReturn = 0;         // Callee pops nothing.
529  BytesCallerReserves = ArgOffset;
530
531  // If this is a struct return on, the callee pops the hidden struct
532  // pointer. This is common for Darwin/X86, Linux & Mingw32 targets.
533  if (MF.getFunction()->getCallingConv() == CallingConv::CSRet)
534    BytesToPopOnReturn = 4;
535
536  // Return the new list of results.
537  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
538                                     Op.Val->value_end());
539  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
540}
541
542
543SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG) {
544  SDOperand Chain     = Op.getOperand(0);
545  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
546  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
547  SDOperand Callee    = Op.getOperand(4);
548  MVT::ValueType RetVT= Op.Val->getValueType(0);
549  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
550
551  // Keep track of the number of XMM regs passed so far.
552  unsigned NumXMMRegs = 0;
553  static const unsigned XMMArgRegs[] = {
554    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
555  };
556
557  // Count how many bytes are to be pushed on the stack.
558  unsigned NumBytes = 0;
559  for (unsigned i = 0; i != NumOps; ++i) {
560    SDOperand Arg = Op.getOperand(5+2*i);
561
562    switch (Arg.getValueType()) {
563    default: assert(0 && "Unexpected ValueType for argument!");
564    case MVT::i8:
565    case MVT::i16:
566    case MVT::i32:
567    case MVT::f32:
568      NumBytes += 4;
569      break;
570    case MVT::i64:
571    case MVT::f64:
572      NumBytes += 8;
573      break;
574    case MVT::v16i8:
575    case MVT::v8i16:
576    case MVT::v4i32:
577    case MVT::v2i64:
578    case MVT::v4f32:
579    case MVT::v2f64:
580      if (NumXMMRegs < 4)
581        ++NumXMMRegs;
582      else {
583        // XMM arguments have to be aligned on 16-byte boundary.
584        NumBytes = ((NumBytes + 15) / 16) * 16;
585        NumBytes += 16;
586      }
587      break;
588    }
589  }
590
591  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
592
593  // Arguments go on the stack in reverse order, as specified by the ABI.
594  unsigned ArgOffset = 0;
595  NumXMMRegs = 0;
596  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
597  std::vector<SDOperand> MemOpChains;
598  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
599  for (unsigned i = 0; i != NumOps; ++i) {
600    SDOperand Arg = Op.getOperand(5+2*i);
601
602    switch (Arg.getValueType()) {
603    default: assert(0 && "Unexpected ValueType for argument!");
604    case MVT::i8:
605    case MVT::i16: {
606      // Promote the integer to 32 bits.  If the input type is signed use a
607      // sign extend, otherwise use a zero extend.
608      unsigned ExtOp =
609        dyn_cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue() ?
610        ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
611      Arg = DAG.getNode(ExtOp, MVT::i32, Arg);
612    }
613    // Fallthrough
614
615    case MVT::i32:
616    case MVT::f32: {
617      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
618      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
619      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
620      ArgOffset += 4;
621      break;
622    }
623    case MVT::i64:
624    case MVT::f64: {
625      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
626      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
627      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
628      ArgOffset += 8;
629      break;
630    }
631    case MVT::v16i8:
632    case MVT::v8i16:
633    case MVT::v4i32:
634    case MVT::v2i64:
635    case MVT::v4f32:
636    case MVT::v2f64:
637      if (NumXMMRegs < 4) {
638        RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
639        NumXMMRegs++;
640      } else {
641        // XMM arguments have to be aligned on 16-byte boundary.
642        ArgOffset = ((ArgOffset + 15) / 16) * 16;
643        SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
644        PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
645        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
646        ArgOffset += 16;
647      }
648    }
649  }
650
651  if (!MemOpChains.empty())
652    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
653                        &MemOpChains[0], MemOpChains.size());
654
655  // Build a sequence of copy-to-reg nodes chained together with token chain
656  // and flag operands which copy the outgoing args into registers.
657  SDOperand InFlag;
658  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
659    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
660                             InFlag);
661    InFlag = Chain.getValue(1);
662  }
663
664  // If the callee is a GlobalAddress node (quite common, every direct call is)
665  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
666  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
667    // We should use extra load for direct calls to dllimported functions in
668    // non-JIT mode.
669    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
670                                        getTargetMachine(), true))
671      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
672  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
673    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
674
675  std::vector<MVT::ValueType> NodeTys;
676  NodeTys.push_back(MVT::Other);   // Returns a chain
677  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
678  std::vector<SDOperand> Ops;
679  Ops.push_back(Chain);
680  Ops.push_back(Callee);
681
682  // Add argument registers to the end of the list so that they are known live
683  // into the call.
684  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
685    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
686                                  RegsToPass[i].second.getValueType()));
687
688  if (InFlag.Val)
689    Ops.push_back(InFlag);
690
691  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
692                      NodeTys, &Ops[0], Ops.size());
693  InFlag = Chain.getValue(1);
694
695  // Create the CALLSEQ_END node.
696  unsigned NumBytesForCalleeToPush = 0;
697
698  // If this is is a call to a struct-return function, the callee
699  // pops the hidden struct pointer, so we have to push it back.
700  // This is common for Darwin/X86, Linux & Mingw32 targets.
701  if (CallingConv == CallingConv::CSRet)
702    NumBytesForCalleeToPush = 4;
703
704  NodeTys.clear();
705  NodeTys.push_back(MVT::Other);   // Returns a chain
706  if (RetVT != MVT::Other)
707    NodeTys.push_back(MVT::Flag);  // Returns a flag for retval copy to use.
708  Ops.clear();
709  Ops.push_back(Chain);
710  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
711  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
712  Ops.push_back(InFlag);
713  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
714  if (RetVT != MVT::Other)
715    InFlag = Chain.getValue(1);
716
717  std::vector<SDOperand> ResultVals;
718  NodeTys.clear();
719  switch (RetVT) {
720  default: assert(0 && "Unknown value type to return!");
721  case MVT::Other: break;
722  case MVT::i8:
723    Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
724    ResultVals.push_back(Chain.getValue(0));
725    NodeTys.push_back(MVT::i8);
726    break;
727  case MVT::i16:
728    Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
729    ResultVals.push_back(Chain.getValue(0));
730    NodeTys.push_back(MVT::i16);
731    break;
732  case MVT::i32:
733    if (Op.Val->getValueType(1) == MVT::i32) {
734      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
735      ResultVals.push_back(Chain.getValue(0));
736      Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32,
737                                 Chain.getValue(2)).getValue(1);
738      ResultVals.push_back(Chain.getValue(0));
739      NodeTys.push_back(MVT::i32);
740    } else {
741      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
742      ResultVals.push_back(Chain.getValue(0));
743    }
744    NodeTys.push_back(MVT::i32);
745    break;
746  case MVT::v16i8:
747  case MVT::v8i16:
748  case MVT::v4i32:
749  case MVT::v2i64:
750  case MVT::v4f32:
751  case MVT::v2f64:
752    Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1);
753    ResultVals.push_back(Chain.getValue(0));
754    NodeTys.push_back(RetVT);
755    break;
756  case MVT::f32:
757  case MVT::f64: {
758    std::vector<MVT::ValueType> Tys;
759    Tys.push_back(MVT::f64);
760    Tys.push_back(MVT::Other);
761    Tys.push_back(MVT::Flag);
762    std::vector<SDOperand> Ops;
763    Ops.push_back(Chain);
764    Ops.push_back(InFlag);
765    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys,
766                                   &Ops[0], Ops.size());
767    Chain  = RetVal.getValue(1);
768    InFlag = RetVal.getValue(2);
769    if (X86ScalarSSE) {
770      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
771      // shouldn't be necessary except that RFP cannot be live across
772      // multiple blocks. When stackifier is fixed, they can be uncoupled.
773      MachineFunction &MF = DAG.getMachineFunction();
774      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
775      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
776      Tys.clear();
777      Tys.push_back(MVT::Other);
778      Ops.clear();
779      Ops.push_back(Chain);
780      Ops.push_back(RetVal);
781      Ops.push_back(StackSlot);
782      Ops.push_back(DAG.getValueType(RetVT));
783      Ops.push_back(InFlag);
784      Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
785      RetVal = DAG.getLoad(RetVT, Chain, StackSlot, NULL, 0);
786      Chain = RetVal.getValue(1);
787    }
788
789    if (RetVT == MVT::f32 && !X86ScalarSSE)
790      // FIXME: we would really like to remember that this FP_ROUND
791      // operation is okay to eliminate if we allow excess FP precision.
792      RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
793    ResultVals.push_back(RetVal);
794    NodeTys.push_back(RetVT);
795    break;
796  }
797  }
798
799  // If the function returns void, just return the chain.
800  if (ResultVals.empty())
801    return Chain;
802
803  // Otherwise, merge everything together with a MERGE_VALUES node.
804  NodeTys.push_back(MVT::Other);
805  ResultVals.push_back(Chain);
806  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
807                              &ResultVals[0], ResultVals.size());
808  return Res.getValue(Op.ResNo);
809}
810
811
812//===----------------------------------------------------------------------===//
813//                 X86-64 C Calling Convention implementation
814//===----------------------------------------------------------------------===//
815
816/// HowToPassX86_64CCCArgument - Returns how an formal argument of the specified
817/// type should be passed. If it is through stack, returns the size of the stack
818/// slot; if it is through integer or XMM register, returns the number of
819/// integer or XMM registers are needed.
820static void
821HowToPassX86_64CCCArgument(MVT::ValueType ObjectVT,
822                           unsigned NumIntRegs, unsigned NumXMMRegs,
823                           unsigned &ObjSize, unsigned &ObjIntRegs,
824                           unsigned &ObjXMMRegs) {
825  ObjSize = 0;
826  ObjIntRegs = 0;
827  ObjXMMRegs = 0;
828
829  switch (ObjectVT) {
830  default: assert(0 && "Unhandled argument type!");
831  case MVT::i8:
832  case MVT::i16:
833  case MVT::i32:
834  case MVT::i64:
835    if (NumIntRegs < 6)
836      ObjIntRegs = 1;
837    else {
838      switch (ObjectVT) {
839      default: break;
840      case MVT::i8:  ObjSize = 1; break;
841      case MVT::i16: ObjSize = 2; break;
842      case MVT::i32: ObjSize = 4; break;
843      case MVT::i64: ObjSize = 8; break;
844      }
845    }
846    break;
847  case MVT::f32:
848  case MVT::f64:
849  case MVT::v16i8:
850  case MVT::v8i16:
851  case MVT::v4i32:
852  case MVT::v2i64:
853  case MVT::v4f32:
854  case MVT::v2f64:
855    if (NumXMMRegs < 8)
856      ObjXMMRegs = 1;
857    else {
858      switch (ObjectVT) {
859      default: break;
860      case MVT::f32:  ObjSize = 4; break;
861      case MVT::f64:  ObjSize = 8; break;
862      case MVT::v16i8:
863      case MVT::v8i16:
864      case MVT::v4i32:
865      case MVT::v2i64:
866      case MVT::v4f32:
867      case MVT::v2f64: ObjSize = 16; break;
868    }
869    break;
870  }
871  }
872}
873
874SDOperand
875X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
876  unsigned NumArgs = Op.Val->getNumValues() - 1;
877  MachineFunction &MF = DAG.getMachineFunction();
878  MachineFrameInfo *MFI = MF.getFrameInfo();
879  SDOperand Root = Op.getOperand(0);
880  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
881  std::vector<SDOperand> ArgValues;
882
883  // Add DAG nodes to load the arguments...  On entry to a function on the X86,
884  // the stack frame looks like this:
885  //
886  // [RSP] -- return address
887  // [RSP + 8] -- first nonreg argument (leftmost lexically)
888  // [RSP +16] -- second nonreg argument, if 1st argument is <= 8 bytes in size
889  //    ...
890  //
891  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
892  unsigned NumIntRegs = 0;  // Int regs used for parameter passing.
893  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
894
895  static const unsigned GPR8ArgRegs[] = {
896    X86::DIL, X86::SIL, X86::DL,  X86::CL,  X86::R8B, X86::R9B
897  };
898  static const unsigned GPR16ArgRegs[] = {
899    X86::DI,  X86::SI,  X86::DX,  X86::CX,  X86::R8W, X86::R9W
900  };
901  static const unsigned GPR32ArgRegs[] = {
902    X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
903  };
904  static const unsigned GPR64ArgRegs[] = {
905    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
906  };
907  static const unsigned XMMArgRegs[] = {
908    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
909    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
910  };
911
912  for (unsigned i = 0; i < NumArgs; ++i) {
913    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
914    unsigned ArgIncrement = 8;
915    unsigned ObjSize = 0;
916    unsigned ObjIntRegs = 0;
917    unsigned ObjXMMRegs = 0;
918
919    // FIXME: __int128 and long double support?
920    HowToPassX86_64CCCArgument(ObjectVT, NumIntRegs, NumXMMRegs,
921                               ObjSize, ObjIntRegs, ObjXMMRegs);
922    if (ObjSize > 8)
923      ArgIncrement = ObjSize;
924
925    unsigned Reg = 0;
926    SDOperand ArgValue;
927    if (ObjIntRegs || ObjXMMRegs) {
928      switch (ObjectVT) {
929      default: assert(0 && "Unhandled argument type!");
930      case MVT::i8:
931      case MVT::i16:
932      case MVT::i32:
933      case MVT::i64: {
934        TargetRegisterClass *RC = NULL;
935        switch (ObjectVT) {
936        default: break;
937        case MVT::i8:
938          RC = X86::GR8RegisterClass;
939          Reg = GPR8ArgRegs[NumIntRegs];
940          break;
941        case MVT::i16:
942          RC = X86::GR16RegisterClass;
943          Reg = GPR16ArgRegs[NumIntRegs];
944          break;
945        case MVT::i32:
946          RC = X86::GR32RegisterClass;
947          Reg = GPR32ArgRegs[NumIntRegs];
948          break;
949        case MVT::i64:
950          RC = X86::GR64RegisterClass;
951          Reg = GPR64ArgRegs[NumIntRegs];
952          break;
953        }
954        Reg = AddLiveIn(MF, Reg, RC);
955        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
956        break;
957      }
958      case MVT::f32:
959      case MVT::f64:
960      case MVT::v16i8:
961      case MVT::v8i16:
962      case MVT::v4i32:
963      case MVT::v2i64:
964      case MVT::v4f32:
965      case MVT::v2f64: {
966        TargetRegisterClass *RC= (ObjectVT == MVT::f32) ?
967          X86::FR32RegisterClass : ((ObjectVT == MVT::f64) ?
968                              X86::FR64RegisterClass : X86::VR128RegisterClass);
969        Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], RC);
970        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
971        break;
972      }
973      }
974      NumIntRegs += ObjIntRegs;
975      NumXMMRegs += ObjXMMRegs;
976    } else if (ObjSize) {
977      // XMM arguments have to be aligned on 16-byte boundary.
978      if (ObjSize == 16)
979        ArgOffset = ((ArgOffset + 15) / 16) * 16;
980      // Create the SelectionDAG nodes corresponding to a load from this
981      // parameter.
982      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
983      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
984      ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
985      ArgOffset += ArgIncrement;   // Move on to the next argument.
986    }
987
988    ArgValues.push_back(ArgValue);
989  }
990
991  // If the function takes variable number of arguments, make a frame index for
992  // the start of the first vararg value... for expansion of llvm.va_start.
993  if (isVarArg) {
994    // For X86-64, if there are vararg parameters that are passed via
995    // registers, then we must store them to their spots on the stack so they
996    // may be loaded by deferencing the result of va_next.
997    VarArgsGPOffset = NumIntRegs * 8;
998    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
999    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
1000    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1001
1002    // Store the integer parameter registers.
1003    std::vector<SDOperand> MemOps;
1004    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1005    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1006                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1007    for (; NumIntRegs != 6; ++NumIntRegs) {
1008      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1009                                X86::GR64RegisterClass);
1010      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1011      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1012      MemOps.push_back(Store);
1013      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1014                        DAG.getConstant(8, getPointerTy()));
1015    }
1016
1017    // Now store the XMM (fp + vector) parameter registers.
1018    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1019                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1020    for (; NumXMMRegs != 8; ++NumXMMRegs) {
1021      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1022                                X86::VR128RegisterClass);
1023      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1024      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1025      MemOps.push_back(Store);
1026      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1027                        DAG.getConstant(16, getPointerTy()));
1028    }
1029    if (!MemOps.empty())
1030        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1031                           &MemOps[0], MemOps.size());
1032  }
1033
1034  ArgValues.push_back(Root);
1035
1036  ReturnAddrIndex = 0;     // No return address slot generated yet.
1037  BytesToPopOnReturn = 0;  // Callee pops nothing.
1038  BytesCallerReserves = ArgOffset;
1039
1040  // Return the new list of results.
1041  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
1042                                     Op.Val->value_end());
1043  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
1044}
1045
1046SDOperand
1047X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG) {
1048  SDOperand Chain     = Op.getOperand(0);
1049  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1050  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1051  SDOperand Callee    = Op.getOperand(4);
1052  MVT::ValueType RetVT= Op.Val->getValueType(0);
1053  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1054
1055  // Count how many bytes are to be pushed on the stack.
1056  unsigned NumBytes = 0;
1057  unsigned NumIntRegs = 0;  // Int regs used for parameter passing.
1058  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
1059
1060  static const unsigned GPR8ArgRegs[] = {
1061    X86::DIL, X86::SIL, X86::DL,  X86::CL,  X86::R8B, X86::R9B
1062  };
1063  static const unsigned GPR16ArgRegs[] = {
1064    X86::DI,  X86::SI,  X86::DX,  X86::CX,  X86::R8W, X86::R9W
1065  };
1066  static const unsigned GPR32ArgRegs[] = {
1067    X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
1068  };
1069  static const unsigned GPR64ArgRegs[] = {
1070    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1071  };
1072  static const unsigned XMMArgRegs[] = {
1073    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1074    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1075  };
1076
1077  for (unsigned i = 0; i != NumOps; ++i) {
1078    SDOperand Arg = Op.getOperand(5+2*i);
1079    MVT::ValueType ArgVT = Arg.getValueType();
1080
1081    switch (ArgVT) {
1082    default: assert(0 && "Unknown value type!");
1083    case MVT::i8:
1084    case MVT::i16:
1085    case MVT::i32:
1086    case MVT::i64:
1087      if (NumIntRegs < 6)
1088        ++NumIntRegs;
1089      else
1090        NumBytes += 8;
1091      break;
1092    case MVT::f32:
1093    case MVT::f64:
1094    case MVT::v16i8:
1095    case MVT::v8i16:
1096    case MVT::v4i32:
1097    case MVT::v2i64:
1098    case MVT::v4f32:
1099    case MVT::v2f64:
1100      if (NumXMMRegs < 8)
1101        NumXMMRegs++;
1102      else if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
1103        NumBytes += 8;
1104      else {
1105        // XMM arguments have to be aligned on 16-byte boundary.
1106        NumBytes = ((NumBytes + 15) / 16) * 16;
1107        NumBytes += 16;
1108      }
1109      break;
1110    }
1111  }
1112
1113  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1114
1115  // Arguments go on the stack in reverse order, as specified by the ABI.
1116  unsigned ArgOffset = 0;
1117  NumIntRegs = 0;
1118  NumXMMRegs = 0;
1119  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1120  std::vector<SDOperand> MemOpChains;
1121  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
1122  for (unsigned i = 0; i != NumOps; ++i) {
1123    SDOperand Arg = Op.getOperand(5+2*i);
1124    MVT::ValueType ArgVT = Arg.getValueType();
1125
1126    switch (ArgVT) {
1127    default: assert(0 && "Unexpected ValueType for argument!");
1128    case MVT::i8:
1129    case MVT::i16:
1130    case MVT::i32:
1131    case MVT::i64:
1132      if (NumIntRegs < 6) {
1133        unsigned Reg = 0;
1134        switch (ArgVT) {
1135        default: break;
1136        case MVT::i8:  Reg = GPR8ArgRegs[NumIntRegs];  break;
1137        case MVT::i16: Reg = GPR16ArgRegs[NumIntRegs]; break;
1138        case MVT::i32: Reg = GPR32ArgRegs[NumIntRegs]; break;
1139        case MVT::i64: Reg = GPR64ArgRegs[NumIntRegs]; break;
1140        }
1141        RegsToPass.push_back(std::make_pair(Reg, Arg));
1142        ++NumIntRegs;
1143      } else {
1144        SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1145        PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1146        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1147        ArgOffset += 8;
1148      }
1149      break;
1150    case MVT::f32:
1151    case MVT::f64:
1152    case MVT::v16i8:
1153    case MVT::v8i16:
1154    case MVT::v4i32:
1155    case MVT::v2i64:
1156    case MVT::v4f32:
1157    case MVT::v2f64:
1158      if (NumXMMRegs < 8) {
1159        RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
1160        NumXMMRegs++;
1161      } else {
1162        if (ArgVT != MVT::f32 && ArgVT != MVT::f64) {
1163          // XMM arguments have to be aligned on 16-byte boundary.
1164          ArgOffset = ((ArgOffset + 15) / 16) * 16;
1165        }
1166        SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1167        PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1168        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1169        if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
1170          ArgOffset += 8;
1171        else
1172          ArgOffset += 16;
1173      }
1174    }
1175  }
1176
1177  if (!MemOpChains.empty())
1178    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1179                        &MemOpChains[0], MemOpChains.size());
1180
1181  // Build a sequence of copy-to-reg nodes chained together with token chain
1182  // and flag operands which copy the outgoing args into registers.
1183  SDOperand InFlag;
1184  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1185    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1186                             InFlag);
1187    InFlag = Chain.getValue(1);
1188  }
1189
1190  if (isVarArg) {
1191    // From AMD64 ABI document:
1192    // For calls that may call functions that use varargs or stdargs
1193    // (prototype-less calls or calls to functions containing ellipsis (...) in
1194    // the declaration) %al is used as hidden argument to specify the number
1195    // of SSE registers used. The contents of %al do not need to match exactly
1196    // the number of registers, but must be an ubound on the number of SSE
1197    // registers used and is in the range 0 - 8 inclusive.
1198    Chain = DAG.getCopyToReg(Chain, X86::AL,
1199                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1200    InFlag = Chain.getValue(1);
1201  }
1202
1203  // If the callee is a GlobalAddress node (quite common, every direct call is)
1204  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1205  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1206    // We should use extra load for direct calls to dllimported functions in
1207    // non-JIT mode.
1208    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1209                                        getTargetMachine(), true))
1210      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1211  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1212    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1213
1214  std::vector<MVT::ValueType> NodeTys;
1215  NodeTys.push_back(MVT::Other);   // Returns a chain
1216  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1217  std::vector<SDOperand> Ops;
1218  Ops.push_back(Chain);
1219  Ops.push_back(Callee);
1220
1221  // Add argument registers to the end of the list so that they are known live
1222  // into the call.
1223  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1224    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1225                                  RegsToPass[i].second.getValueType()));
1226
1227  if (InFlag.Val)
1228    Ops.push_back(InFlag);
1229
1230  // FIXME: Do not generate X86ISD::TAILCALL for now.
1231  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1232                      NodeTys, &Ops[0], Ops.size());
1233  InFlag = Chain.getValue(1);
1234
1235  NodeTys.clear();
1236  NodeTys.push_back(MVT::Other);   // Returns a chain
1237  if (RetVT != MVT::Other)
1238    NodeTys.push_back(MVT::Flag);  // Returns a flag for retval copy to use.
1239  Ops.clear();
1240  Ops.push_back(Chain);
1241  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1242  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1243  Ops.push_back(InFlag);
1244  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1245  if (RetVT != MVT::Other)
1246    InFlag = Chain.getValue(1);
1247
1248  std::vector<SDOperand> ResultVals;
1249  NodeTys.clear();
1250  switch (RetVT) {
1251  default: assert(0 && "Unknown value type to return!");
1252  case MVT::Other: break;
1253  case MVT::i8:
1254    Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
1255    ResultVals.push_back(Chain.getValue(0));
1256    NodeTys.push_back(MVT::i8);
1257    break;
1258  case MVT::i16:
1259    Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
1260    ResultVals.push_back(Chain.getValue(0));
1261    NodeTys.push_back(MVT::i16);
1262    break;
1263  case MVT::i32:
1264    Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
1265    ResultVals.push_back(Chain.getValue(0));
1266    NodeTys.push_back(MVT::i32);
1267    break;
1268  case MVT::i64:
1269    if (Op.Val->getValueType(1) == MVT::i64) {
1270      // FIXME: __int128 support?
1271      Chain = DAG.getCopyFromReg(Chain, X86::RAX, MVT::i64, InFlag).getValue(1);
1272      ResultVals.push_back(Chain.getValue(0));
1273      Chain = DAG.getCopyFromReg(Chain, X86::RDX, MVT::i64,
1274                                 Chain.getValue(2)).getValue(1);
1275      ResultVals.push_back(Chain.getValue(0));
1276      NodeTys.push_back(MVT::i64);
1277    } else {
1278      Chain = DAG.getCopyFromReg(Chain, X86::RAX, MVT::i64, InFlag).getValue(1);
1279      ResultVals.push_back(Chain.getValue(0));
1280    }
1281    NodeTys.push_back(MVT::i64);
1282    break;
1283  case MVT::f32:
1284  case MVT::f64:
1285  case MVT::v16i8:
1286  case MVT::v8i16:
1287  case MVT::v4i32:
1288  case MVT::v2i64:
1289  case MVT::v4f32:
1290  case MVT::v2f64:
1291    // FIXME: long double support?
1292    Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1);
1293    ResultVals.push_back(Chain.getValue(0));
1294    NodeTys.push_back(RetVT);
1295    break;
1296  }
1297
1298  // If the function returns void, just return the chain.
1299  if (ResultVals.empty())
1300    return Chain;
1301
1302  // Otherwise, merge everything together with a MERGE_VALUES node.
1303  NodeTys.push_back(MVT::Other);
1304  ResultVals.push_back(Chain);
1305  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1306                              &ResultVals[0], ResultVals.size());
1307  return Res.getValue(Op.ResNo);
1308}
1309
1310//===----------------------------------------------------------------------===//
1311//                    Fast Calling Convention implementation
1312//===----------------------------------------------------------------------===//
1313//
1314// The X86 'fast' calling convention passes up to two integer arguments in
1315// registers (an appropriate portion of EAX/EDX), passes arguments in C order,
1316// and requires that the callee pop its arguments off the stack (allowing proper
1317// tail calls), and has the same return value conventions as C calling convs.
1318//
1319// This calling convention always arranges for the callee pop value to be 8n+4
1320// bytes, which is needed for tail recursion elimination and stack alignment
1321// reasons.
1322//
1323// Note that this can be enhanced in the future to pass fp vals in registers
1324// (when we have a global fp allocator) and do other tricks.
1325//
1326
1327/// HowToPassFastCCArgument - Returns how an formal argument of the specified
1328/// type should be passed. If it is through stack, returns the size of the stack
1329/// slot; if it is through integer or XMM register, returns the number of
1330/// integer or XMM registers are needed.
1331static void
1332HowToPassFastCCArgument(MVT::ValueType ObjectVT,
1333                        unsigned NumIntRegs, unsigned NumXMMRegs,
1334                        unsigned &ObjSize, unsigned &ObjIntRegs,
1335                        unsigned &ObjXMMRegs) {
1336  ObjSize = 0;
1337  ObjIntRegs = 0;
1338  ObjXMMRegs = 0;
1339
1340  switch (ObjectVT) {
1341  default: assert(0 && "Unhandled argument type!");
1342  case MVT::i8:
1343#if FASTCC_NUM_INT_ARGS_INREGS > 0
1344    if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS)
1345      ObjIntRegs = 1;
1346    else
1347#endif
1348      ObjSize = 1;
1349    break;
1350  case MVT::i16:
1351#if FASTCC_NUM_INT_ARGS_INREGS > 0
1352    if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS)
1353      ObjIntRegs = 1;
1354    else
1355#endif
1356      ObjSize = 2;
1357    break;
1358  case MVT::i32:
1359#if FASTCC_NUM_INT_ARGS_INREGS > 0
1360    if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS)
1361      ObjIntRegs = 1;
1362    else
1363#endif
1364      ObjSize = 4;
1365    break;
1366  case MVT::i64:
1367#if FASTCC_NUM_INT_ARGS_INREGS > 0
1368    if (NumIntRegs+2 <= FASTCC_NUM_INT_ARGS_INREGS) {
1369      ObjIntRegs = 2;
1370    } else if (NumIntRegs+1 <= FASTCC_NUM_INT_ARGS_INREGS) {
1371      ObjIntRegs = 1;
1372      ObjSize = 4;
1373    } else
1374#endif
1375      ObjSize = 8;
1376  case MVT::f32:
1377    ObjSize = 4;
1378    break;
1379  case MVT::f64:
1380    ObjSize = 8;
1381    break;
1382  case MVT::v16i8:
1383  case MVT::v8i16:
1384  case MVT::v4i32:
1385  case MVT::v2i64:
1386  case MVT::v4f32:
1387  case MVT::v2f64:
1388    if (NumXMMRegs < 4)
1389      ObjXMMRegs = 1;
1390    else
1391      ObjSize = 16;
1392    break;
1393  }
1394}
1395
1396SDOperand
1397X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
1398  unsigned NumArgs = Op.Val->getNumValues()-1;
1399  MachineFunction &MF = DAG.getMachineFunction();
1400  MachineFrameInfo *MFI = MF.getFrameInfo();
1401  SDOperand Root = Op.getOperand(0);
1402  std::vector<SDOperand> ArgValues;
1403
1404  // Add DAG nodes to load the arguments...  On entry to a function the stack
1405  // frame looks like this:
1406  //
1407  // [ESP] -- return address
1408  // [ESP + 4] -- first nonreg argument (leftmost lexically)
1409  // [ESP + 8] -- second nonreg argument, if 1st argument is <= 4 bytes in size
1410  //    ...
1411  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
1412
1413  // Keep track of the number of integer regs passed so far.  This can be either
1414  // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both
1415  // used).
1416  unsigned NumIntRegs = 0;
1417  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
1418
1419  static const unsigned XMMArgRegs[] = {
1420    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1421  };
1422
1423  for (unsigned i = 0; i < NumArgs; ++i) {
1424    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
1425    unsigned ArgIncrement = 4;
1426    unsigned ObjSize = 0;
1427    unsigned ObjIntRegs = 0;
1428    unsigned ObjXMMRegs = 0;
1429
1430    HowToPassFastCCArgument(ObjectVT, NumIntRegs, NumXMMRegs,
1431                            ObjSize, ObjIntRegs, ObjXMMRegs);
1432    if (ObjSize > 4)
1433      ArgIncrement = ObjSize;
1434
1435    unsigned Reg = 0;
1436    SDOperand ArgValue;
1437    if (ObjIntRegs || ObjXMMRegs) {
1438      switch (ObjectVT) {
1439      default: assert(0 && "Unhandled argument type!");
1440      case MVT::i8:
1441        Reg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::AL,
1442                        X86::GR8RegisterClass);
1443        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i8);
1444        break;
1445      case MVT::i16:
1446        Reg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::AX,
1447                        X86::GR16RegisterClass);
1448        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i16);
1449        break;
1450      case MVT::i32:
1451        Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX,
1452                        X86::GR32RegisterClass);
1453        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
1454        break;
1455      case MVT::i64:
1456        Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX,
1457                        X86::GR32RegisterClass);
1458        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
1459        if (ObjIntRegs == 2) {
1460          Reg = AddLiveIn(MF, X86::EDX, X86::GR32RegisterClass);
1461          SDOperand ArgValue2 = DAG.getCopyFromReg(Root, Reg, MVT::i32);
1462          ArgValue= DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
1463        }
1464        break;
1465      case MVT::v16i8:
1466      case MVT::v8i16:
1467      case MVT::v4i32:
1468      case MVT::v2i64:
1469      case MVT::v4f32:
1470      case MVT::v2f64:
1471        Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], X86::VR128RegisterClass);
1472        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
1473        break;
1474      }
1475      NumIntRegs += ObjIntRegs;
1476      NumXMMRegs += ObjXMMRegs;
1477    }
1478
1479    if (ObjSize) {
1480      // XMM arguments have to be aligned on 16-byte boundary.
1481      if (ObjSize == 16)
1482        ArgOffset = ((ArgOffset + 15) / 16) * 16;
1483      // Create the SelectionDAG nodes corresponding to a load from this
1484      // parameter.
1485      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
1486      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1487      if (ObjectVT == MVT::i64 && ObjIntRegs) {
1488        SDOperand ArgValue2 = DAG.getLoad(Op.Val->getValueType(i), Root, FIN,
1489                                          NULL, 0);
1490        ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
1491      } else
1492        ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
1493      ArgOffset += ArgIncrement;   // Move on to the next argument.
1494    }
1495
1496    ArgValues.push_back(ArgValue);
1497  }
1498
1499  ArgValues.push_back(Root);
1500
1501  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1502  // arguments and the arguments after the retaddr has been pushed are aligned.
1503  if ((ArgOffset & 7) == 0)
1504    ArgOffset += 4;
1505
1506  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1507  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
1508  ReturnAddrIndex = 0;             // No return address slot generated yet.
1509  BytesToPopOnReturn = ArgOffset;  // Callee pops all stack arguments.
1510  BytesCallerReserves = 0;
1511
1512  // Finally, inform the code generator which regs we return values in.
1513  switch (getValueType(MF.getFunction()->getReturnType())) {
1514  default: assert(0 && "Unknown type!");
1515  case MVT::isVoid: break;
1516  case MVT::i1:
1517  case MVT::i8:
1518  case MVT::i16:
1519  case MVT::i32:
1520    MF.addLiveOut(X86::EAX);
1521    break;
1522  case MVT::i64:
1523    MF.addLiveOut(X86::EAX);
1524    MF.addLiveOut(X86::EDX);
1525    break;
1526  case MVT::f32:
1527  case MVT::f64:
1528    MF.addLiveOut(X86::ST0);
1529    break;
1530  case MVT::v16i8:
1531  case MVT::v8i16:
1532  case MVT::v4i32:
1533  case MVT::v2i64:
1534  case MVT::v4f32:
1535  case MVT::v2f64:
1536    MF.addLiveOut(X86::XMM0);
1537    break;
1538  }
1539
1540  // Return the new list of results.
1541  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
1542                                     Op.Val->value_end());
1543  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
1544}
1545
1546SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1547                                               bool isFastCall) {
1548  SDOperand Chain     = Op.getOperand(0);
1549  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1550  SDOperand Callee    = Op.getOperand(4);
1551  MVT::ValueType RetVT= Op.Val->getValueType(0);
1552  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1553
1554  // Count how many bytes are to be pushed on the stack.
1555  unsigned NumBytes = 0;
1556
1557  // Keep track of the number of integer regs passed so far.  This can be either
1558  // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both
1559  // used).
1560  unsigned NumIntRegs = 0;
1561  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
1562
1563  static const unsigned GPRArgRegs[][2] = {
1564    { X86::AL,  X86::DL },
1565    { X86::AX,  X86::DX },
1566    { X86::EAX, X86::EDX }
1567  };
1568#if 0
1569  static const unsigned FastCallGPRArgRegs[][2] = {
1570    { X86::CL,  X86::DL },
1571    { X86::CX,  X86::DX },
1572    { X86::ECX, X86::EDX }
1573  };
1574#endif
1575  static const unsigned XMMArgRegs[] = {
1576    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1577  };
1578
1579  for (unsigned i = 0; i != NumOps; ++i) {
1580    SDOperand Arg = Op.getOperand(5+2*i);
1581
1582    switch (Arg.getValueType()) {
1583    default: assert(0 && "Unknown value type!");
1584    case MVT::i8:
1585    case MVT::i16:
1586    case MVT::i32: {
1587     unsigned MaxNumIntRegs = (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS);
1588     if (NumIntRegs < MaxNumIntRegs) {
1589       ++NumIntRegs;
1590       break;
1591     }
1592     } // Fall through
1593    case MVT::f32:
1594      NumBytes += 4;
1595      break;
1596    case MVT::f64:
1597      NumBytes += 8;
1598      break;
1599    case MVT::v16i8:
1600    case MVT::v8i16:
1601    case MVT::v4i32:
1602    case MVT::v2i64:
1603    case MVT::v4f32:
1604    case MVT::v2f64:
1605     if (isFastCall) {
1606      assert(0 && "Unknown value type!");
1607     } else {
1608       if (NumXMMRegs < 4)
1609         NumXMMRegs++;
1610       else {
1611         // XMM arguments have to be aligned on 16-byte boundary.
1612         NumBytes = ((NumBytes + 15) / 16) * 16;
1613         NumBytes += 16;
1614       }
1615     }
1616     break;
1617    }
1618  }
1619
1620  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1621  // arguments and the arguments after the retaddr has been pushed are aligned.
1622  if ((NumBytes & 7) == 0)
1623    NumBytes += 4;
1624
1625  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1626
1627  // Arguments go on the stack in reverse order, as specified by the ABI.
1628  unsigned ArgOffset = 0;
1629  NumIntRegs = 0;
1630  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1631  std::vector<SDOperand> MemOpChains;
1632  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
1633  for (unsigned i = 0; i != NumOps; ++i) {
1634    SDOperand Arg = Op.getOperand(5+2*i);
1635
1636    switch (Arg.getValueType()) {
1637    default: assert(0 && "Unexpected ValueType for argument!");
1638    case MVT::i8:
1639    case MVT::i16:
1640    case MVT::i32: {
1641     unsigned MaxNumIntRegs = (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS);
1642     if (NumIntRegs < MaxNumIntRegs) {
1643       RegsToPass.push_back(
1644         std::make_pair(GPRArgRegs[Arg.getValueType()-MVT::i8][NumIntRegs],
1645                        Arg));
1646       ++NumIntRegs;
1647       break;
1648     }
1649     } // Fall through
1650    case MVT::f32: {
1651      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1652      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1653      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1654      ArgOffset += 4;
1655      break;
1656    }
1657    case MVT::f64: {
1658      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1659      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1660      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1661      ArgOffset += 8;
1662      break;
1663    }
1664    case MVT::v16i8:
1665    case MVT::v8i16:
1666    case MVT::v4i32:
1667    case MVT::v2i64:
1668    case MVT::v4f32:
1669    case MVT::v2f64:
1670     if (isFastCall) {
1671       assert(0 && "Unexpected ValueType for argument!");
1672     } else {
1673       if (NumXMMRegs < 4) {
1674         RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
1675         NumXMMRegs++;
1676       } else {
1677         // XMM arguments have to be aligned on 16-byte boundary.
1678         ArgOffset = ((ArgOffset + 15) / 16) * 16;
1679         SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1680         PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1681         MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1682         ArgOffset += 16;
1683       }
1684     }
1685     break;
1686    }
1687  }
1688
1689  if (!MemOpChains.empty())
1690    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1691                        &MemOpChains[0], MemOpChains.size());
1692
1693  // Build a sequence of copy-to-reg nodes chained together with token chain
1694  // and flag operands which copy the outgoing args into registers.
1695  SDOperand InFlag;
1696  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1697    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1698                             InFlag);
1699    InFlag = Chain.getValue(1);
1700  }
1701
1702  // If the callee is a GlobalAddress node (quite common, every direct call is)
1703  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1704  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1705    // We should use extra load for direct calls to dllimported functions in
1706    // non-JIT mode.
1707    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1708                                        getTargetMachine(), true))
1709      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1710  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1711    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1712
1713  std::vector<MVT::ValueType> NodeTys;
1714  NodeTys.push_back(MVT::Other);   // Returns a chain
1715  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1716  std::vector<SDOperand> Ops;
1717  Ops.push_back(Chain);
1718  Ops.push_back(Callee);
1719
1720  // Add argument registers to the end of the list so that they are known live
1721  // into the call.
1722  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1723    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1724                                  RegsToPass[i].second.getValueType()));
1725
1726  if (InFlag.Val)
1727    Ops.push_back(InFlag);
1728
1729  // FIXME: Do not generate X86ISD::TAILCALL for now.
1730  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1731                      NodeTys, &Ops[0], Ops.size());
1732  InFlag = Chain.getValue(1);
1733
1734  NodeTys.clear();
1735  NodeTys.push_back(MVT::Other);   // Returns a chain
1736  if (RetVT != MVT::Other)
1737    NodeTys.push_back(MVT::Flag);  // Returns a flag for retval copy to use.
1738  Ops.clear();
1739  Ops.push_back(Chain);
1740  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1741  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1742  Ops.push_back(InFlag);
1743  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1744  if (RetVT != MVT::Other)
1745    InFlag = Chain.getValue(1);
1746
1747  std::vector<SDOperand> ResultVals;
1748  NodeTys.clear();
1749  switch (RetVT) {
1750  default: assert(0 && "Unknown value type to return!");
1751  case MVT::Other: break;
1752  case MVT::i8:
1753    Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
1754    ResultVals.push_back(Chain.getValue(0));
1755    NodeTys.push_back(MVT::i8);
1756    break;
1757  case MVT::i16:
1758    Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
1759    ResultVals.push_back(Chain.getValue(0));
1760    NodeTys.push_back(MVT::i16);
1761    break;
1762  case MVT::i32:
1763    if (Op.Val->getValueType(1) == MVT::i32) {
1764      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
1765      ResultVals.push_back(Chain.getValue(0));
1766      Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32,
1767                                 Chain.getValue(2)).getValue(1);
1768      ResultVals.push_back(Chain.getValue(0));
1769      NodeTys.push_back(MVT::i32);
1770    } else {
1771      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
1772      ResultVals.push_back(Chain.getValue(0));
1773    }
1774    NodeTys.push_back(MVT::i32);
1775    break;
1776  case MVT::v16i8:
1777  case MVT::v8i16:
1778  case MVT::v4i32:
1779  case MVT::v2i64:
1780  case MVT::v4f32:
1781  case MVT::v2f64:
1782   if (isFastCall) {
1783     assert(0 && "Unknown value type to return!");
1784   } else {
1785     Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1);
1786     ResultVals.push_back(Chain.getValue(0));
1787     NodeTys.push_back(RetVT);
1788   }
1789   break;
1790  case MVT::f32:
1791  case MVT::f64: {
1792    std::vector<MVT::ValueType> Tys;
1793    Tys.push_back(MVT::f64);
1794    Tys.push_back(MVT::Other);
1795    Tys.push_back(MVT::Flag);
1796    std::vector<SDOperand> Ops;
1797    Ops.push_back(Chain);
1798    Ops.push_back(InFlag);
1799    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys,
1800                                   &Ops[0], Ops.size());
1801    Chain  = RetVal.getValue(1);
1802    InFlag = RetVal.getValue(2);
1803    if (X86ScalarSSE) {
1804      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
1805      // shouldn't be necessary except that RFP cannot be live across
1806      // multiple blocks. When stackifier is fixed, they can be uncoupled.
1807      MachineFunction &MF = DAG.getMachineFunction();
1808      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
1809      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
1810      Tys.clear();
1811      Tys.push_back(MVT::Other);
1812      Ops.clear();
1813      Ops.push_back(Chain);
1814      Ops.push_back(RetVal);
1815      Ops.push_back(StackSlot);
1816      Ops.push_back(DAG.getValueType(RetVT));
1817      Ops.push_back(InFlag);
1818      Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
1819      RetVal = DAG.getLoad(RetVT, Chain, StackSlot, NULL, 0);
1820      Chain = RetVal.getValue(1);
1821    }
1822
1823    if (RetVT == MVT::f32 && !X86ScalarSSE)
1824      // FIXME: we would really like to remember that this FP_ROUND
1825      // operation is okay to eliminate if we allow excess FP precision.
1826      RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
1827    ResultVals.push_back(RetVal);
1828    NodeTys.push_back(RetVT);
1829    break;
1830  }
1831  }
1832
1833
1834  // If the function returns void, just return the chain.
1835  if (ResultVals.empty())
1836    return Chain;
1837
1838  // Otherwise, merge everything together with a MERGE_VALUES node.
1839  NodeTys.push_back(MVT::Other);
1840  ResultVals.push_back(Chain);
1841  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1842                              &ResultVals[0], ResultVals.size());
1843  return Res.getValue(Op.ResNo);
1844}
1845
1846//===----------------------------------------------------------------------===//
1847//                  StdCall Calling Convention implementation
1848//===----------------------------------------------------------------------===//
1849//  StdCall calling convention seems to be standard for many Windows' API
1850//  routines and around. It differs from C calling convention just a little:
1851//  callee should clean up the stack, not caller. Symbols should be also
1852//  decorated in some fancy way :) It doesn't support any vector arguments.
1853
1854/// HowToPassStdCallCCArgument - Returns how an formal argument of the specified
1855/// type should be passed. Returns the size of the stack slot
1856static void
1857HowToPassStdCallCCArgument(MVT::ValueType ObjectVT, unsigned &ObjSize) {
1858  switch (ObjectVT) {
1859  default: assert(0 && "Unhandled argument type!");
1860  case MVT::i8:  ObjSize = 1; break;
1861  case MVT::i16: ObjSize = 2; break;
1862  case MVT::i32: ObjSize = 4; break;
1863  case MVT::i64: ObjSize = 8; break;
1864  case MVT::f32: ObjSize = 4; break;
1865  case MVT::f64: ObjSize = 8; break;
1866  }
1867}
1868
1869SDOperand X86TargetLowering::LowerStdCallCCArguments(SDOperand Op,
1870                                                     SelectionDAG &DAG) {
1871  unsigned NumArgs = Op.Val->getNumValues() - 1;
1872  MachineFunction &MF = DAG.getMachineFunction();
1873  MachineFrameInfo *MFI = MF.getFrameInfo();
1874  SDOperand Root = Op.getOperand(0);
1875  std::vector<SDOperand> ArgValues;
1876
1877  // Add DAG nodes to load the arguments...  On entry to a function on the X86,
1878  // the stack frame looks like this:
1879  //
1880  // [ESP] -- return address
1881  // [ESP + 4] -- first argument (leftmost lexically)
1882  // [ESP + 8] -- second argument, if first argument is <= 4 bytes in size
1883  //    ...
1884  //
1885  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
1886  for (unsigned i = 0; i < NumArgs; ++i) {
1887    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
1888    unsigned ArgIncrement = 4;
1889    unsigned ObjSize = 0;
1890    HowToPassStdCallCCArgument(ObjectVT, ObjSize);
1891    if (ObjSize > 4)
1892      ArgIncrement = ObjSize;
1893
1894    SDOperand ArgValue;
1895    // Create the frame index object for this incoming parameter...
1896    int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
1897    SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1898    ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
1899    ArgValues.push_back(ArgValue);
1900    ArgOffset += ArgIncrement;   // Move on to the next argument...
1901  }
1902
1903  ArgValues.push_back(Root);
1904
1905  // If the function takes variable number of arguments, make a frame index for
1906  // the start of the first vararg value... for expansion of llvm.va_start.
1907  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1908  if (isVarArg) {
1909    BytesToPopOnReturn = 0;         // Callee pops nothing.
1910    BytesCallerReserves = ArgOffset;
1911    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
1912  } else {
1913    BytesToPopOnReturn = ArgOffset; // Callee pops everything..
1914    BytesCallerReserves = 0;
1915  }
1916  RegSaveFrameIndex = 0xAAAAAAA;    // X86-64 only.
1917  ReturnAddrIndex = 0;              // No return address slot generated yet.
1918
1919  MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn);
1920
1921  // Return the new list of results.
1922  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
1923                                     Op.Val->value_end());
1924  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
1925}
1926
1927
1928SDOperand X86TargetLowering::LowerStdCallCCCallTo(SDOperand Op,
1929                                                  SelectionDAG &DAG) {
1930  SDOperand Chain     = Op.getOperand(0);
1931  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1932  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1933  SDOperand Callee    = Op.getOperand(4);
1934  MVT::ValueType RetVT= Op.Val->getValueType(0);
1935  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1936
1937  // Count how many bytes are to be pushed on the stack.
1938  unsigned NumBytes = 0;
1939  for (unsigned i = 0; i != NumOps; ++i) {
1940    SDOperand Arg = Op.getOperand(5+2*i);
1941
1942    switch (Arg.getValueType()) {
1943    default: assert(0 && "Unexpected ValueType for argument!");
1944    case MVT::i8:
1945    case MVT::i16:
1946    case MVT::i32:
1947    case MVT::f32:
1948      NumBytes += 4;
1949      break;
1950    case MVT::i64:
1951    case MVT::f64:
1952      NumBytes += 8;
1953      break;
1954    }
1955  }
1956
1957  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1958
1959  // Arguments go on the stack in reverse order, as specified by the ABI.
1960  unsigned ArgOffset = 0;
1961  std::vector<SDOperand> MemOpChains;
1962  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
1963  for (unsigned i = 0; i != NumOps; ++i) {
1964    SDOperand Arg = Op.getOperand(5+2*i);
1965
1966    switch (Arg.getValueType()) {
1967    default: assert(0 && "Unexpected ValueType for argument!");
1968    case MVT::i8:
1969    case MVT::i16: {
1970      // Promote the integer to 32 bits.  If the input type is signed use a
1971      // sign extend, otherwise use a zero extend.
1972      unsigned ExtOp =
1973        dyn_cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue() ?
1974        ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1975      Arg = DAG.getNode(ExtOp, MVT::i32, Arg);
1976    }
1977    // Fallthrough
1978
1979    case MVT::i32:
1980    case MVT::f32: {
1981      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1982      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1983      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1984      ArgOffset += 4;
1985      break;
1986    }
1987    case MVT::i64:
1988    case MVT::f64: {
1989      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1990      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1991      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1992      ArgOffset += 8;
1993      break;
1994    }
1995    }
1996  }
1997
1998  if (!MemOpChains.empty())
1999    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2000                        &MemOpChains[0], MemOpChains.size());
2001
2002  // If the callee is a GlobalAddress node (quite common, every direct call is)
2003  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
2004  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2005    // We should use extra load for direct calls to dllimported functions in
2006    // non-JIT mode.
2007    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
2008                                        getTargetMachine(), true))
2009      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
2010  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2011    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
2012
2013  std::vector<MVT::ValueType> NodeTys;
2014  NodeTys.push_back(MVT::Other);   // Returns a chain
2015  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2016  std::vector<SDOperand> Ops;
2017  Ops.push_back(Chain);
2018  Ops.push_back(Callee);
2019
2020  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
2021                      NodeTys, &Ops[0], Ops.size());
2022  SDOperand InFlag = Chain.getValue(1);
2023
2024  // Create the CALLSEQ_END node.
2025  unsigned NumBytesForCalleeToPush;
2026
2027  if (isVarArg) {
2028    NumBytesForCalleeToPush = 0;
2029  } else {
2030    NumBytesForCalleeToPush = NumBytes;
2031  }
2032
2033  NodeTys.clear();
2034  NodeTys.push_back(MVT::Other);   // Returns a chain
2035  if (RetVT != MVT::Other)
2036    NodeTys.push_back(MVT::Flag);  // Returns a flag for retval copy to use.
2037  Ops.clear();
2038  Ops.push_back(Chain);
2039  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
2040  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
2041  Ops.push_back(InFlag);
2042  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
2043  if (RetVT != MVT::Other)
2044    InFlag = Chain.getValue(1);
2045
2046  std::vector<SDOperand> ResultVals;
2047  NodeTys.clear();
2048  switch (RetVT) {
2049  default: assert(0 && "Unknown value type to return!");
2050  case MVT::Other: break;
2051  case MVT::i8:
2052    Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
2053    ResultVals.push_back(Chain.getValue(0));
2054    NodeTys.push_back(MVT::i8);
2055    break;
2056  case MVT::i16:
2057    Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
2058    ResultVals.push_back(Chain.getValue(0));
2059    NodeTys.push_back(MVT::i16);
2060    break;
2061  case MVT::i32:
2062    if (Op.Val->getValueType(1) == MVT::i32) {
2063      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
2064      ResultVals.push_back(Chain.getValue(0));
2065      Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32,
2066                                 Chain.getValue(2)).getValue(1);
2067      ResultVals.push_back(Chain.getValue(0));
2068      NodeTys.push_back(MVT::i32);
2069    } else {
2070      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
2071      ResultVals.push_back(Chain.getValue(0));
2072    }
2073    NodeTys.push_back(MVT::i32);
2074    break;
2075  case MVT::f32:
2076  case MVT::f64: {
2077    std::vector<MVT::ValueType> Tys;
2078    Tys.push_back(MVT::f64);
2079    Tys.push_back(MVT::Other);
2080    Tys.push_back(MVT::Flag);
2081    std::vector<SDOperand> Ops;
2082    Ops.push_back(Chain);
2083    Ops.push_back(InFlag);
2084    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys,
2085                                   &Ops[0], Ops.size());
2086    Chain  = RetVal.getValue(1);
2087    InFlag = RetVal.getValue(2);
2088    if (X86ScalarSSE) {
2089      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
2090      // shouldn't be necessary except that RFP cannot be live across
2091      // multiple blocks. When stackifier is fixed, they can be uncoupled.
2092      MachineFunction &MF = DAG.getMachineFunction();
2093      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2094      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
2095      Tys.clear();
2096      Tys.push_back(MVT::Other);
2097      Ops.clear();
2098      Ops.push_back(Chain);
2099      Ops.push_back(RetVal);
2100      Ops.push_back(StackSlot);
2101      Ops.push_back(DAG.getValueType(RetVT));
2102      Ops.push_back(InFlag);
2103      Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
2104      RetVal = DAG.getLoad(RetVT, Chain, StackSlot, NULL, 0);
2105      Chain = RetVal.getValue(1);
2106    }
2107
2108    if (RetVT == MVT::f32 && !X86ScalarSSE)
2109      // FIXME: we would really like to remember that this FP_ROUND
2110      // operation is okay to eliminate if we allow excess FP precision.
2111      RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
2112    ResultVals.push_back(RetVal);
2113    NodeTys.push_back(RetVT);
2114    break;
2115  }
2116  }
2117
2118  // If the function returns void, just return the chain.
2119  if (ResultVals.empty())
2120    return Chain;
2121
2122  // Otherwise, merge everything together with a MERGE_VALUES node.
2123  NodeTys.push_back(MVT::Other);
2124  ResultVals.push_back(Chain);
2125  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
2126                              &ResultVals[0], ResultVals.size());
2127  return Res.getValue(Op.ResNo);
2128}
2129
2130//===----------------------------------------------------------------------===//
2131//                  FastCall Calling Convention implementation
2132//===----------------------------------------------------------------------===//
2133//
2134// The X86 'fastcall' calling convention passes up to two integer arguments in
2135// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
2136// and requires that the callee pop its arguments off the stack (allowing proper
2137// tail calls), and has the same return value conventions as C calling convs.
2138//
2139// This calling convention always arranges for the callee pop value to be 8n+4
2140// bytes, which is needed for tail recursion elimination and stack alignment
2141// reasons.
2142//
2143
2144/// HowToPassFastCallCCArgument - Returns how an formal argument of the
2145/// specified type should be passed. If it is through stack, returns the size of
2146/// the stack slot; if it is through integer register, returns the number of
2147/// integer registers are needed.
2148static void
2149HowToPassFastCallCCArgument(MVT::ValueType ObjectVT,
2150                            unsigned NumIntRegs,
2151                            unsigned &ObjSize,
2152                            unsigned &ObjIntRegs)
2153{
2154  ObjSize = 0;
2155  ObjIntRegs = 0;
2156
2157  switch (ObjectVT) {
2158  default: assert(0 && "Unhandled argument type!");
2159  case MVT::i8:
2160   if (NumIntRegs < 2)
2161     ObjIntRegs = 1;
2162   else
2163     ObjSize = 1;
2164   break;
2165  case MVT::i16:
2166   if (NumIntRegs < 2)
2167     ObjIntRegs = 1;
2168   else
2169     ObjSize = 2;
2170   break;
2171  case MVT::i32:
2172   if (NumIntRegs < 2)
2173     ObjIntRegs = 1;
2174   else
2175     ObjSize = 4;
2176    break;
2177  case MVT::i64:
2178   if (NumIntRegs+2 <= 2) {
2179     ObjIntRegs = 2;
2180   } else if (NumIntRegs+1 <= 2) {
2181     ObjIntRegs = 1;
2182     ObjSize = 4;
2183   } else
2184     ObjSize = 8;
2185   case MVT::f32:
2186    ObjSize = 4;
2187    break;
2188   case MVT::f64:
2189    ObjSize = 8;
2190    break;
2191  }
2192}
2193
2194SDOperand
2195X86TargetLowering::LowerFastCallCCArguments(SDOperand Op, SelectionDAG &DAG) {
2196  unsigned NumArgs = Op.Val->getNumValues()-1;
2197  MachineFunction &MF = DAG.getMachineFunction();
2198  MachineFrameInfo *MFI = MF.getFrameInfo();
2199  SDOperand Root = Op.getOperand(0);
2200  std::vector<SDOperand> ArgValues;
2201
2202  // Add DAG nodes to load the arguments...  On entry to a function the stack
2203  // frame looks like this:
2204  //
2205  // [ESP] -- return address
2206  // [ESP + 4] -- first nonreg argument (leftmost lexically)
2207  // [ESP + 8] -- second nonreg argument, if 1st argument is <= 4 bytes in size
2208  //    ...
2209  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
2210
2211  // Keep track of the number of integer regs passed so far.  This can be either
2212  // 0 (neither ECX or EDX used), 1 (ECX is used) or 2 (ECX and EDX are both
2213  // used).
2214  unsigned NumIntRegs = 0;
2215
2216  for (unsigned i = 0; i < NumArgs; ++i) {
2217    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
2218    unsigned ArgIncrement = 4;
2219    unsigned ObjSize = 0;
2220    unsigned ObjIntRegs = 0;
2221
2222    HowToPassFastCallCCArgument(ObjectVT, NumIntRegs, ObjSize, ObjIntRegs);
2223    if (ObjSize > 4)
2224      ArgIncrement = ObjSize;
2225
2226    unsigned Reg = 0;
2227    SDOperand ArgValue;
2228    if (ObjIntRegs) {
2229      switch (ObjectVT) {
2230      default: assert(0 && "Unhandled argument type!");
2231      case MVT::i8:
2232        Reg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::CL,
2233                        X86::GR8RegisterClass);
2234        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i8);
2235        break;
2236      case MVT::i16:
2237        Reg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::CX,
2238                        X86::GR16RegisterClass);
2239        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i16);
2240        break;
2241      case MVT::i32:
2242        Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::ECX,
2243                        X86::GR32RegisterClass);
2244        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
2245        break;
2246      case MVT::i64:
2247        Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::ECX,
2248                        X86::GR32RegisterClass);
2249        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
2250        if (ObjIntRegs == 2) {
2251          Reg = AddLiveIn(MF, X86::EDX, X86::GR32RegisterClass);
2252          SDOperand ArgValue2 = DAG.getCopyFromReg(Root, Reg, MVT::i32);
2253          ArgValue= DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
2254        }
2255        break;
2256      }
2257
2258      NumIntRegs += ObjIntRegs;
2259    }
2260
2261    if (ObjSize) {
2262      // Create the SelectionDAG nodes corresponding to a load from this
2263      // parameter.
2264      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
2265      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
2266      if (ObjectVT == MVT::i64 && ObjIntRegs) {
2267        SDOperand ArgValue2 = DAG.getLoad(Op.Val->getValueType(i), Root, FIN,
2268                                          NULL, 0);
2269        ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
2270      } else
2271        ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
2272      ArgOffset += ArgIncrement;   // Move on to the next argument.
2273    }
2274
2275    ArgValues.push_back(ArgValue);
2276  }
2277
2278  ArgValues.push_back(Root);
2279
2280  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
2281  // arguments and the arguments after the retaddr has been pushed are aligned.
2282  if ((ArgOffset & 7) == 0)
2283    ArgOffset += 4;
2284
2285  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
2286  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
2287  ReturnAddrIndex = 0;             // No return address slot generated yet.
2288  BytesToPopOnReturn = ArgOffset;  // Callee pops all stack arguments.
2289  BytesCallerReserves = 0;
2290
2291  MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn);
2292
2293  // Finally, inform the code generator which regs we return values in.
2294  switch (getValueType(MF.getFunction()->getReturnType())) {
2295  default: assert(0 && "Unknown type!");
2296  case MVT::isVoid: break;
2297  case MVT::i1:
2298  case MVT::i8:
2299  case MVT::i16:
2300  case MVT::i32:
2301    MF.addLiveOut(X86::ECX);
2302    break;
2303  case MVT::i64:
2304    MF.addLiveOut(X86::ECX);
2305    MF.addLiveOut(X86::EDX);
2306    break;
2307  case MVT::f32:
2308  case MVT::f64:
2309    MF.addLiveOut(X86::ST0);
2310    break;
2311  }
2312
2313  // Return the new list of results.
2314  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
2315                                     Op.Val->value_end());
2316  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
2317}
2318
2319SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2320  if (ReturnAddrIndex == 0) {
2321    // Set up a frame object for the return address.
2322    MachineFunction &MF = DAG.getMachineFunction();
2323    if (Subtarget->is64Bit())
2324      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
2325    else
2326      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
2327  }
2328
2329  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2330}
2331
2332
2333
2334std::pair<SDOperand, SDOperand> X86TargetLowering::
2335LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth,
2336                        SelectionDAG &DAG) {
2337  SDOperand Result;
2338  if (Depth)        // Depths > 0 not supported yet!
2339    Result = DAG.getConstant(0, getPointerTy());
2340  else {
2341    SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
2342    if (!isFrameAddress)
2343      // Just load the return address
2344      Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI,
2345                           NULL, 0);
2346    else
2347      Result = DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
2348                           DAG.getConstant(4, getPointerTy()));
2349  }
2350  return std::make_pair(Result, Chain);
2351}
2352
2353/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
2354/// specific condition code. It returns a false if it cannot do a direct
2355/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
2356/// needed.
2357static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2358                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
2359                           SelectionDAG &DAG) {
2360  X86CC = X86::COND_INVALID;
2361  if (!isFP) {
2362    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2363      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2364        // X > -1   -> X == 0, jump !sign.
2365        RHS = DAG.getConstant(0, RHS.getValueType());
2366        X86CC = X86::COND_NS;
2367        return true;
2368      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2369        // X < 0   -> X == 0, jump on sign.
2370        X86CC = X86::COND_S;
2371        return true;
2372      }
2373    }
2374
2375    switch (SetCCOpcode) {
2376    default: break;
2377    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
2378    case ISD::SETGT:  X86CC = X86::COND_G;  break;
2379    case ISD::SETGE:  X86CC = X86::COND_GE; break;
2380    case ISD::SETLT:  X86CC = X86::COND_L;  break;
2381    case ISD::SETLE:  X86CC = X86::COND_LE; break;
2382    case ISD::SETNE:  X86CC = X86::COND_NE; break;
2383    case ISD::SETULT: X86CC = X86::COND_B;  break;
2384    case ISD::SETUGT: X86CC = X86::COND_A;  break;
2385    case ISD::SETULE: X86CC = X86::COND_BE; break;
2386    case ISD::SETUGE: X86CC = X86::COND_AE; break;
2387    }
2388  } else {
2389    // On a floating point condition, the flags are set as follows:
2390    // ZF  PF  CF   op
2391    //  0 | 0 | 0 | X > Y
2392    //  0 | 0 | 1 | X < Y
2393    //  1 | 0 | 0 | X == Y
2394    //  1 | 1 | 1 | unordered
2395    bool Flip = false;
2396    switch (SetCCOpcode) {
2397    default: break;
2398    case ISD::SETUEQ:
2399    case ISD::SETEQ: X86CC = X86::COND_E;  break;
2400    case ISD::SETOLT: Flip = true; // Fallthrough
2401    case ISD::SETOGT:
2402    case ISD::SETGT: X86CC = X86::COND_A;  break;
2403    case ISD::SETOLE: Flip = true; // Fallthrough
2404    case ISD::SETOGE:
2405    case ISD::SETGE: X86CC = X86::COND_AE; break;
2406    case ISD::SETUGT: Flip = true; // Fallthrough
2407    case ISD::SETULT:
2408    case ISD::SETLT: X86CC = X86::COND_B;  break;
2409    case ISD::SETUGE: Flip = true; // Fallthrough
2410    case ISD::SETULE:
2411    case ISD::SETLE: X86CC = X86::COND_BE; break;
2412    case ISD::SETONE:
2413    case ISD::SETNE: X86CC = X86::COND_NE; break;
2414    case ISD::SETUO: X86CC = X86::COND_P;  break;
2415    case ISD::SETO:  X86CC = X86::COND_NP; break;
2416    }
2417    if (Flip)
2418      std::swap(LHS, RHS);
2419  }
2420
2421  return X86CC != X86::COND_INVALID;
2422}
2423
2424/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2425/// code. Current x86 isa includes the following FP cmov instructions:
2426/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2427static bool hasFPCMov(unsigned X86CC) {
2428  switch (X86CC) {
2429  default:
2430    return false;
2431  case X86::COND_B:
2432  case X86::COND_BE:
2433  case X86::COND_E:
2434  case X86::COND_P:
2435  case X86::COND_A:
2436  case X86::COND_AE:
2437  case X86::COND_NE:
2438  case X86::COND_NP:
2439    return true;
2440  }
2441}
2442
2443/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2444/// true if Op is undef or if its value falls within the specified range (L, H].
2445static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
2446  if (Op.getOpcode() == ISD::UNDEF)
2447    return true;
2448
2449  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
2450  return (Val >= Low && Val < Hi);
2451}
2452
2453/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2454/// true if Op is undef or if its value equal to the specified value.
2455static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
2456  if (Op.getOpcode() == ISD::UNDEF)
2457    return true;
2458  return cast<ConstantSDNode>(Op)->getValue() == Val;
2459}
2460
2461/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2462/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2463bool X86::isPSHUFDMask(SDNode *N) {
2464  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2465
2466  if (N->getNumOperands() != 4)
2467    return false;
2468
2469  // Check if the value doesn't reference the second vector.
2470  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2471    SDOperand Arg = N->getOperand(i);
2472    if (Arg.getOpcode() == ISD::UNDEF) continue;
2473    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2474    if (cast<ConstantSDNode>(Arg)->getValue() >= 4)
2475      return false;
2476  }
2477
2478  return true;
2479}
2480
2481/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2482/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2483bool X86::isPSHUFHWMask(SDNode *N) {
2484  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2485
2486  if (N->getNumOperands() != 8)
2487    return false;
2488
2489  // Lower quadword copied in order.
2490  for (unsigned i = 0; i != 4; ++i) {
2491    SDOperand Arg = N->getOperand(i);
2492    if (Arg.getOpcode() == ISD::UNDEF) continue;
2493    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2494    if (cast<ConstantSDNode>(Arg)->getValue() != i)
2495      return false;
2496  }
2497
2498  // Upper quadword shuffled.
2499  for (unsigned i = 4; i != 8; ++i) {
2500    SDOperand Arg = N->getOperand(i);
2501    if (Arg.getOpcode() == ISD::UNDEF) continue;
2502    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2503    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2504    if (Val < 4 || Val > 7)
2505      return false;
2506  }
2507
2508  return true;
2509}
2510
2511/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2512/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2513bool X86::isPSHUFLWMask(SDNode *N) {
2514  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2515
2516  if (N->getNumOperands() != 8)
2517    return false;
2518
2519  // Upper quadword copied in order.
2520  for (unsigned i = 4; i != 8; ++i)
2521    if (!isUndefOrEqual(N->getOperand(i), i))
2522      return false;
2523
2524  // Lower quadword shuffled.
2525  for (unsigned i = 0; i != 4; ++i)
2526    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2527      return false;
2528
2529  return true;
2530}
2531
2532/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2533/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2534static bool isSHUFPMask(std::vector<SDOperand> &N) {
2535  unsigned NumElems = N.size();
2536  if (NumElems != 2 && NumElems != 4) return false;
2537
2538  unsigned Half = NumElems / 2;
2539  for (unsigned i = 0; i < Half; ++i)
2540    if (!isUndefOrInRange(N[i], 0, NumElems))
2541      return false;
2542  for (unsigned i = Half; i < NumElems; ++i)
2543    if (!isUndefOrInRange(N[i], NumElems, NumElems*2))
2544      return false;
2545
2546  return true;
2547}
2548
2549bool X86::isSHUFPMask(SDNode *N) {
2550  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2551  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2552  return ::isSHUFPMask(Ops);
2553}
2554
2555/// isCommutedSHUFP - Returns true if the shuffle mask is except
2556/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2557/// half elements to come from vector 1 (which would equal the dest.) and
2558/// the upper half to come from vector 2.
2559static bool isCommutedSHUFP(std::vector<SDOperand> &Ops) {
2560  unsigned NumElems = Ops.size();
2561  if (NumElems != 2 && NumElems != 4) return false;
2562
2563  unsigned Half = NumElems / 2;
2564  for (unsigned i = 0; i < Half; ++i)
2565    if (!isUndefOrInRange(Ops[i], NumElems, NumElems*2))
2566      return false;
2567  for (unsigned i = Half; i < NumElems; ++i)
2568    if (!isUndefOrInRange(Ops[i], 0, NumElems))
2569      return false;
2570  return true;
2571}
2572
2573static bool isCommutedSHUFP(SDNode *N) {
2574  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2575  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2576  return isCommutedSHUFP(Ops);
2577}
2578
2579/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2580/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2581bool X86::isMOVHLPSMask(SDNode *N) {
2582  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2583
2584  if (N->getNumOperands() != 4)
2585    return false;
2586
2587  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2588  return isUndefOrEqual(N->getOperand(0), 6) &&
2589         isUndefOrEqual(N->getOperand(1), 7) &&
2590         isUndefOrEqual(N->getOperand(2), 2) &&
2591         isUndefOrEqual(N->getOperand(3), 3);
2592}
2593
2594/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2595/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2596/// <2, 3, 2, 3>
2597bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2598  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2599
2600  if (N->getNumOperands() != 4)
2601    return false;
2602
2603  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2604  return isUndefOrEqual(N->getOperand(0), 2) &&
2605         isUndefOrEqual(N->getOperand(1), 3) &&
2606         isUndefOrEqual(N->getOperand(2), 2) &&
2607         isUndefOrEqual(N->getOperand(3), 3);
2608}
2609
2610/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2611/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2612bool X86::isMOVLPMask(SDNode *N) {
2613  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2614
2615  unsigned NumElems = N->getNumOperands();
2616  if (NumElems != 2 && NumElems != 4)
2617    return false;
2618
2619  for (unsigned i = 0; i < NumElems/2; ++i)
2620    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2621      return false;
2622
2623  for (unsigned i = NumElems/2; i < NumElems; ++i)
2624    if (!isUndefOrEqual(N->getOperand(i), i))
2625      return false;
2626
2627  return true;
2628}
2629
2630/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2631/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2632/// and MOVLHPS.
2633bool X86::isMOVHPMask(SDNode *N) {
2634  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2635
2636  unsigned NumElems = N->getNumOperands();
2637  if (NumElems != 2 && NumElems != 4)
2638    return false;
2639
2640  for (unsigned i = 0; i < NumElems/2; ++i)
2641    if (!isUndefOrEqual(N->getOperand(i), i))
2642      return false;
2643
2644  for (unsigned i = 0; i < NumElems/2; ++i) {
2645    SDOperand Arg = N->getOperand(i + NumElems/2);
2646    if (!isUndefOrEqual(Arg, i + NumElems))
2647      return false;
2648  }
2649
2650  return true;
2651}
2652
2653/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2654/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2655bool static isUNPCKLMask(std::vector<SDOperand> &N, bool V2IsSplat = false) {
2656  unsigned NumElems = N.size();
2657  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2658    return false;
2659
2660  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2661    SDOperand BitI  = N[i];
2662    SDOperand BitI1 = N[i+1];
2663    if (!isUndefOrEqual(BitI, j))
2664      return false;
2665    if (V2IsSplat) {
2666      if (isUndefOrEqual(BitI1, NumElems))
2667        return false;
2668    } else {
2669      if (!isUndefOrEqual(BitI1, j + NumElems))
2670        return false;
2671    }
2672  }
2673
2674  return true;
2675}
2676
2677bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2678  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2679  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2680  return ::isUNPCKLMask(Ops, V2IsSplat);
2681}
2682
2683/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2684/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2685bool static isUNPCKHMask(std::vector<SDOperand> &N, bool V2IsSplat = false) {
2686  unsigned NumElems = N.size();
2687  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2688    return false;
2689
2690  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2691    SDOperand BitI  = N[i];
2692    SDOperand BitI1 = N[i+1];
2693    if (!isUndefOrEqual(BitI, j + NumElems/2))
2694      return false;
2695    if (V2IsSplat) {
2696      if (isUndefOrEqual(BitI1, NumElems))
2697        return false;
2698    } else {
2699      if (!isUndefOrEqual(BitI1, j + NumElems/2 + NumElems))
2700        return false;
2701    }
2702  }
2703
2704  return true;
2705}
2706
2707bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2708  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2709  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2710  return ::isUNPCKHMask(Ops, V2IsSplat);
2711}
2712
2713/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2714/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2715/// <0, 0, 1, 1>
2716bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2717  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2718
2719  unsigned NumElems = N->getNumOperands();
2720  if (NumElems != 4 && NumElems != 8 && NumElems != 16)
2721    return false;
2722
2723  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2724    SDOperand BitI  = N->getOperand(i);
2725    SDOperand BitI1 = N->getOperand(i+1);
2726
2727    if (!isUndefOrEqual(BitI, j))
2728      return false;
2729    if (!isUndefOrEqual(BitI1, j))
2730      return false;
2731  }
2732
2733  return true;
2734}
2735
2736/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2737/// specifies a shuffle of elements that is suitable for input to MOVSS,
2738/// MOVSD, and MOVD, i.e. setting the lowest element.
2739static bool isMOVLMask(std::vector<SDOperand> &N) {
2740  unsigned NumElems = N.size();
2741  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2742    return false;
2743
2744  if (!isUndefOrEqual(N[0], NumElems))
2745    return false;
2746
2747  for (unsigned i = 1; i < NumElems; ++i) {
2748    SDOperand Arg = N[i];
2749    if (!isUndefOrEqual(Arg, i))
2750      return false;
2751  }
2752
2753  return true;
2754}
2755
2756bool X86::isMOVLMask(SDNode *N) {
2757  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2758  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2759  return ::isMOVLMask(Ops);
2760}
2761
2762/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2763/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2764/// element of vector 2 and the other elements to come from vector 1 in order.
2765static bool isCommutedMOVL(std::vector<SDOperand> &Ops, bool V2IsSplat = false,
2766                           bool V2IsUndef = false) {
2767  unsigned NumElems = Ops.size();
2768  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2769    return false;
2770
2771  if (!isUndefOrEqual(Ops[0], 0))
2772    return false;
2773
2774  for (unsigned i = 1; i < NumElems; ++i) {
2775    SDOperand Arg = Ops[i];
2776    if (!(isUndefOrEqual(Arg, i+NumElems) ||
2777          (V2IsUndef && isUndefOrInRange(Arg, NumElems, NumElems*2)) ||
2778          (V2IsSplat && isUndefOrEqual(Arg, NumElems))))
2779      return false;
2780  }
2781
2782  return true;
2783}
2784
2785static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2786                           bool V2IsUndef = false) {
2787  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2788  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2789  return isCommutedMOVL(Ops, V2IsSplat, V2IsUndef);
2790}
2791
2792/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2793/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2794bool X86::isMOVSHDUPMask(SDNode *N) {
2795  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2796
2797  if (N->getNumOperands() != 4)
2798    return false;
2799
2800  // Expect 1, 1, 3, 3
2801  for (unsigned i = 0; i < 2; ++i) {
2802    SDOperand Arg = N->getOperand(i);
2803    if (Arg.getOpcode() == ISD::UNDEF) continue;
2804    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2805    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2806    if (Val != 1) return false;
2807  }
2808
2809  bool HasHi = false;
2810  for (unsigned i = 2; i < 4; ++i) {
2811    SDOperand Arg = N->getOperand(i);
2812    if (Arg.getOpcode() == ISD::UNDEF) continue;
2813    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2814    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2815    if (Val != 3) return false;
2816    HasHi = true;
2817  }
2818
2819  // Don't use movshdup if it can be done with a shufps.
2820  return HasHi;
2821}
2822
2823/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2824/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2825bool X86::isMOVSLDUPMask(SDNode *N) {
2826  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2827
2828  if (N->getNumOperands() != 4)
2829    return false;
2830
2831  // Expect 0, 0, 2, 2
2832  for (unsigned i = 0; i < 2; ++i) {
2833    SDOperand Arg = N->getOperand(i);
2834    if (Arg.getOpcode() == ISD::UNDEF) continue;
2835    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2836    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2837    if (Val != 0) return false;
2838  }
2839
2840  bool HasHi = false;
2841  for (unsigned i = 2; i < 4; ++i) {
2842    SDOperand Arg = N->getOperand(i);
2843    if (Arg.getOpcode() == ISD::UNDEF) continue;
2844    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2845    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2846    if (Val != 2) return false;
2847    HasHi = true;
2848  }
2849
2850  // Don't use movshdup if it can be done with a shufps.
2851  return HasHi;
2852}
2853
2854/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2855/// a splat of a single element.
2856static bool isSplatMask(SDNode *N) {
2857  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2858
2859  // This is a splat operation if each element of the permute is the same, and
2860  // if the value doesn't reference the second vector.
2861  unsigned NumElems = N->getNumOperands();
2862  SDOperand ElementBase;
2863  unsigned i = 0;
2864  for (; i != NumElems; ++i) {
2865    SDOperand Elt = N->getOperand(i);
2866    if (isa<ConstantSDNode>(Elt)) {
2867      ElementBase = Elt;
2868      break;
2869    }
2870  }
2871
2872  if (!ElementBase.Val)
2873    return false;
2874
2875  for (; i != NumElems; ++i) {
2876    SDOperand Arg = N->getOperand(i);
2877    if (Arg.getOpcode() == ISD::UNDEF) continue;
2878    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2879    if (Arg != ElementBase) return false;
2880  }
2881
2882  // Make sure it is a splat of the first vector operand.
2883  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2884}
2885
2886/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2887/// a splat of a single element and it's a 2 or 4 element mask.
2888bool X86::isSplatMask(SDNode *N) {
2889  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2890
2891  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2892  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2893    return false;
2894  return ::isSplatMask(N);
2895}
2896
2897/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2898/// specifies a splat of zero element.
2899bool X86::isSplatLoMask(SDNode *N) {
2900  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2901
2902  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2903    if (!isUndefOrEqual(N->getOperand(i), 0))
2904      return false;
2905  return true;
2906}
2907
2908/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2909/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2910/// instructions.
2911unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2912  unsigned NumOperands = N->getNumOperands();
2913  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2914  unsigned Mask = 0;
2915  for (unsigned i = 0; i < NumOperands; ++i) {
2916    unsigned Val = 0;
2917    SDOperand Arg = N->getOperand(NumOperands-i-1);
2918    if (Arg.getOpcode() != ISD::UNDEF)
2919      Val = cast<ConstantSDNode>(Arg)->getValue();
2920    if (Val >= NumOperands) Val -= NumOperands;
2921    Mask |= Val;
2922    if (i != NumOperands - 1)
2923      Mask <<= Shift;
2924  }
2925
2926  return Mask;
2927}
2928
2929/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2930/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2931/// instructions.
2932unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2933  unsigned Mask = 0;
2934  // 8 nodes, but we only care about the last 4.
2935  for (unsigned i = 7; i >= 4; --i) {
2936    unsigned Val = 0;
2937    SDOperand Arg = N->getOperand(i);
2938    if (Arg.getOpcode() != ISD::UNDEF)
2939      Val = cast<ConstantSDNode>(Arg)->getValue();
2940    Mask |= (Val - 4);
2941    if (i != 4)
2942      Mask <<= 2;
2943  }
2944
2945  return Mask;
2946}
2947
2948/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2949/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2950/// instructions.
2951unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2952  unsigned Mask = 0;
2953  // 8 nodes, but we only care about the first 4.
2954  for (int i = 3; i >= 0; --i) {
2955    unsigned Val = 0;
2956    SDOperand Arg = N->getOperand(i);
2957    if (Arg.getOpcode() != ISD::UNDEF)
2958      Val = cast<ConstantSDNode>(Arg)->getValue();
2959    Mask |= Val;
2960    if (i != 0)
2961      Mask <<= 2;
2962  }
2963
2964  return Mask;
2965}
2966
2967/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2968/// specifies a 8 element shuffle that can be broken into a pair of
2969/// PSHUFHW and PSHUFLW.
2970static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2971  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2972
2973  if (N->getNumOperands() != 8)
2974    return false;
2975
2976  // Lower quadword shuffled.
2977  for (unsigned i = 0; i != 4; ++i) {
2978    SDOperand Arg = N->getOperand(i);
2979    if (Arg.getOpcode() == ISD::UNDEF) continue;
2980    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2981    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2982    if (Val > 4)
2983      return false;
2984  }
2985
2986  // Upper quadword shuffled.
2987  for (unsigned i = 4; i != 8; ++i) {
2988    SDOperand Arg = N->getOperand(i);
2989    if (Arg.getOpcode() == ISD::UNDEF) continue;
2990    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2991    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2992    if (Val < 4 || Val > 7)
2993      return false;
2994  }
2995
2996  return true;
2997}
2998
2999/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
3000/// values in ther permute mask.
3001static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
3002                                      SDOperand &V2, SDOperand &Mask,
3003                                      SelectionDAG &DAG) {
3004  MVT::ValueType VT = Op.getValueType();
3005  MVT::ValueType MaskVT = Mask.getValueType();
3006  MVT::ValueType EltVT = MVT::getVectorBaseType(MaskVT);
3007  unsigned NumElems = Mask.getNumOperands();
3008  std::vector<SDOperand> MaskVec;
3009
3010  for (unsigned i = 0; i != NumElems; ++i) {
3011    SDOperand Arg = Mask.getOperand(i);
3012    if (Arg.getOpcode() == ISD::UNDEF) {
3013      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
3014      continue;
3015    }
3016    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
3017    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
3018    if (Val < NumElems)
3019      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
3020    else
3021      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
3022  }
3023
3024  std::swap(V1, V2);
3025  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3026  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3027}
3028
3029/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3030/// match movhlps. The lower half elements should come from upper half of
3031/// V1 (and in order), and the upper half elements should come from the upper
3032/// half of V2 (and in order).
3033static bool ShouldXformToMOVHLPS(SDNode *Mask) {
3034  unsigned NumElems = Mask->getNumOperands();
3035  if (NumElems != 4)
3036    return false;
3037  for (unsigned i = 0, e = 2; i != e; ++i)
3038    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
3039      return false;
3040  for (unsigned i = 2; i != 4; ++i)
3041    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
3042      return false;
3043  return true;
3044}
3045
3046/// isScalarLoadToVector - Returns true if the node is a scalar load that
3047/// is promoted to a vector.
3048static inline bool isScalarLoadToVector(SDNode *N) {
3049  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
3050    N = N->getOperand(0).Val;
3051    return ISD::isNON_EXTLoad(N);
3052  }
3053  return false;
3054}
3055
3056/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3057/// match movlp{s|d}. The lower half elements should come from lower half of
3058/// V1 (and in order), and the upper half elements should come from the upper
3059/// half of V2 (and in order). And since V1 will become the source of the
3060/// MOVLP, it must be either a vector load or a scalar load to vector.
3061static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
3062  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3063    return false;
3064  // Is V2 is a vector load, don't do this transformation. We will try to use
3065  // load folding shufps op.
3066  if (ISD::isNON_EXTLoad(V2))
3067    return false;
3068
3069  unsigned NumElems = Mask->getNumOperands();
3070  if (NumElems != 2 && NumElems != 4)
3071    return false;
3072  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3073    if (!isUndefOrEqual(Mask->getOperand(i), i))
3074      return false;
3075  for (unsigned i = NumElems/2; i != NumElems; ++i)
3076    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
3077      return false;
3078  return true;
3079}
3080
3081/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3082/// all the same.
3083static bool isSplatVector(SDNode *N) {
3084  if (N->getOpcode() != ISD::BUILD_VECTOR)
3085    return false;
3086
3087  SDOperand SplatValue = N->getOperand(0);
3088  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3089    if (N->getOperand(i) != SplatValue)
3090      return false;
3091  return true;
3092}
3093
3094/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3095/// to an undef.
3096static bool isUndefShuffle(SDNode *N) {
3097  if (N->getOpcode() != ISD::BUILD_VECTOR)
3098    return false;
3099
3100  SDOperand V1 = N->getOperand(0);
3101  SDOperand V2 = N->getOperand(1);
3102  SDOperand Mask = N->getOperand(2);
3103  unsigned NumElems = Mask.getNumOperands();
3104  for (unsigned i = 0; i != NumElems; ++i) {
3105    SDOperand Arg = Mask.getOperand(i);
3106    if (Arg.getOpcode() != ISD::UNDEF) {
3107      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
3108      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
3109        return false;
3110      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
3111        return false;
3112    }
3113  }
3114  return true;
3115}
3116
3117/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3118/// that point to V2 points to its first element.
3119static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
3120  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
3121
3122  bool Changed = false;
3123  std::vector<SDOperand> MaskVec;
3124  unsigned NumElems = Mask.getNumOperands();
3125  for (unsigned i = 0; i != NumElems; ++i) {
3126    SDOperand Arg = Mask.getOperand(i);
3127    if (Arg.getOpcode() != ISD::UNDEF) {
3128      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
3129      if (Val > NumElems) {
3130        Arg = DAG.getConstant(NumElems, Arg.getValueType());
3131        Changed = true;
3132      }
3133    }
3134    MaskVec.push_back(Arg);
3135  }
3136
3137  if (Changed)
3138    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
3139                       &MaskVec[0], MaskVec.size());
3140  return Mask;
3141}
3142
3143/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3144/// operation of specified width.
3145static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
3146  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3147  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3148
3149  std::vector<SDOperand> MaskVec;
3150  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
3151  for (unsigned i = 1; i != NumElems; ++i)
3152    MaskVec.push_back(DAG.getConstant(i, BaseVT));
3153  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3154}
3155
3156/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
3157/// of specified width.
3158static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
3159  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3160  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3161  std::vector<SDOperand> MaskVec;
3162  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3163    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
3164    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
3165  }
3166  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3167}
3168
3169/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
3170/// of specified width.
3171static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
3172  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3173  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3174  unsigned Half = NumElems/2;
3175  std::vector<SDOperand> MaskVec;
3176  for (unsigned i = 0; i != Half; ++i) {
3177    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
3178    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
3179  }
3180  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3181}
3182
3183/// getZeroVector - Returns a vector of specified type with all zero elements.
3184///
3185static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
3186  assert(MVT::isVector(VT) && "Expected a vector type");
3187  unsigned NumElems = getVectorNumElements(VT);
3188  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
3189  bool isFP = MVT::isFloatingPoint(EVT);
3190  SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
3191  std::vector<SDOperand> ZeroVec(NumElems, Zero);
3192  return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
3193}
3194
3195/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
3196///
3197static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
3198  SDOperand V1 = Op.getOperand(0);
3199  SDOperand Mask = Op.getOperand(2);
3200  MVT::ValueType VT = Op.getValueType();
3201  unsigned NumElems = Mask.getNumOperands();
3202  Mask = getUnpacklMask(NumElems, DAG);
3203  while (NumElems != 4) {
3204    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
3205    NumElems >>= 1;
3206  }
3207  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
3208
3209  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3210  Mask = getZeroVector(MaskVT, DAG);
3211  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
3212                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
3213  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
3214}
3215
3216/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3217/// constant +0.0.
3218static inline bool isZeroNode(SDOperand Elt) {
3219  return ((isa<ConstantSDNode>(Elt) &&
3220           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
3221          (isa<ConstantFPSDNode>(Elt) &&
3222           cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0)));
3223}
3224
3225/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3226/// vector and zero or undef vector.
3227static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
3228                                             unsigned NumElems, unsigned Idx,
3229                                             bool isZero, SelectionDAG &DAG) {
3230  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
3231  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3232  MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
3233  SDOperand Zero = DAG.getConstant(0, EVT);
3234  std::vector<SDOperand> MaskVec(NumElems, Zero);
3235  MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
3236  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3237                               &MaskVec[0], MaskVec.size());
3238  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3239}
3240
3241/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3242///
3243static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
3244                                       unsigned NumNonZero, unsigned NumZero,
3245                                       SelectionDAG &DAG, TargetLowering &TLI) {
3246  if (NumNonZero > 8)
3247    return SDOperand();
3248
3249  SDOperand V(0, 0);
3250  bool First = true;
3251  for (unsigned i = 0; i < 16; ++i) {
3252    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3253    if (ThisIsNonZero && First) {
3254      if (NumZero)
3255        V = getZeroVector(MVT::v8i16, DAG);
3256      else
3257        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3258      First = false;
3259    }
3260
3261    if ((i & 1) != 0) {
3262      SDOperand ThisElt(0, 0), LastElt(0, 0);
3263      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3264      if (LastIsNonZero) {
3265        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3266      }
3267      if (ThisIsNonZero) {
3268        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3269        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3270                              ThisElt, DAG.getConstant(8, MVT::i8));
3271        if (LastIsNonZero)
3272          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3273      } else
3274        ThisElt = LastElt;
3275
3276      if (ThisElt.Val)
3277        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3278                        DAG.getConstant(i/2, TLI.getPointerTy()));
3279    }
3280  }
3281
3282  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3283}
3284
3285/// LowerBuildVectorv16i8 - Custom lower build_vector of v8i16.
3286///
3287static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
3288                                       unsigned NumNonZero, unsigned NumZero,
3289                                       SelectionDAG &DAG, TargetLowering &TLI) {
3290  if (NumNonZero > 4)
3291    return SDOperand();
3292
3293  SDOperand V(0, 0);
3294  bool First = true;
3295  for (unsigned i = 0; i < 8; ++i) {
3296    bool isNonZero = (NonZeros & (1 << i)) != 0;
3297    if (isNonZero) {
3298      if (First) {
3299        if (NumZero)
3300          V = getZeroVector(MVT::v8i16, DAG);
3301        else
3302          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3303        First = false;
3304      }
3305      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3306                      DAG.getConstant(i, TLI.getPointerTy()));
3307    }
3308  }
3309
3310  return V;
3311}
3312
3313SDOperand
3314X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3315  // All zero's are handled with pxor.
3316  if (ISD::isBuildVectorAllZeros(Op.Val))
3317    return Op;
3318
3319  // All one's are handled with pcmpeqd.
3320  if (ISD::isBuildVectorAllOnes(Op.Val))
3321    return Op;
3322
3323  MVT::ValueType VT = Op.getValueType();
3324  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
3325  unsigned EVTBits = MVT::getSizeInBits(EVT);
3326
3327  unsigned NumElems = Op.getNumOperands();
3328  unsigned NumZero  = 0;
3329  unsigned NumNonZero = 0;
3330  unsigned NonZeros = 0;
3331  std::set<SDOperand> Values;
3332  for (unsigned i = 0; i < NumElems; ++i) {
3333    SDOperand Elt = Op.getOperand(i);
3334    if (Elt.getOpcode() != ISD::UNDEF) {
3335      Values.insert(Elt);
3336      if (isZeroNode(Elt))
3337        NumZero++;
3338      else {
3339        NonZeros |= (1 << i);
3340        NumNonZero++;
3341      }
3342    }
3343  }
3344
3345  if (NumNonZero == 0)
3346    // Must be a mix of zero and undef. Return a zero vector.
3347    return getZeroVector(VT, DAG);
3348
3349  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3350  if (Values.size() == 1)
3351    return SDOperand();
3352
3353  // Special case for single non-zero element.
3354  if (NumNonZero == 1) {
3355    unsigned Idx = CountTrailingZeros_32(NonZeros);
3356    SDOperand Item = Op.getOperand(Idx);
3357    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3358    if (Idx == 0)
3359      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3360      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
3361                                         NumZero > 0, DAG);
3362
3363    if (EVTBits == 32) {
3364      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3365      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
3366                                         DAG);
3367      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3368      MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
3369      std::vector<SDOperand> MaskVec;
3370      for (unsigned i = 0; i < NumElems; i++)
3371        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3372      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3373                                   &MaskVec[0], MaskVec.size());
3374      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3375                         DAG.getNode(ISD::UNDEF, VT), Mask);
3376    }
3377  }
3378
3379  // Let legalizer expand 2-wide build_vector's.
3380  if (EVTBits == 64)
3381    return SDOperand();
3382
3383  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3384  if (EVTBits == 8) {
3385    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3386                                        *this);
3387    if (V.Val) return V;
3388  }
3389
3390  if (EVTBits == 16) {
3391    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3392                                        *this);
3393    if (V.Val) return V;
3394  }
3395
3396  // If element VT is == 32 bits, turn it into a number of shuffles.
3397  std::vector<SDOperand> V(NumElems);
3398  if (NumElems == 4 && NumZero > 0) {
3399    for (unsigned i = 0; i < 4; ++i) {
3400      bool isZero = !(NonZeros & (1 << i));
3401      if (isZero)
3402        V[i] = getZeroVector(VT, DAG);
3403      else
3404        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3405    }
3406
3407    for (unsigned i = 0; i < 2; ++i) {
3408      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3409        default: break;
3410        case 0:
3411          V[i] = V[i*2];  // Must be a zero vector.
3412          break;
3413        case 1:
3414          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3415                             getMOVLMask(NumElems, DAG));
3416          break;
3417        case 2:
3418          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3419                             getMOVLMask(NumElems, DAG));
3420          break;
3421        case 3:
3422          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3423                             getUnpacklMask(NumElems, DAG));
3424          break;
3425      }
3426    }
3427
3428    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
3429    // clears the upper bits.
3430    // FIXME: we can do the same for v4f32 case when we know both parts of
3431    // the lower half come from scalar_to_vector (loadf32). We should do
3432    // that in post legalizer dag combiner with target specific hooks.
3433    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
3434      return V[0];
3435    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3436    MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
3437    std::vector<SDOperand> MaskVec;
3438    bool Reverse = (NonZeros & 0x3) == 2;
3439    for (unsigned i = 0; i < 2; ++i)
3440      if (Reverse)
3441        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3442      else
3443        MaskVec.push_back(DAG.getConstant(i, EVT));
3444    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3445    for (unsigned i = 0; i < 2; ++i)
3446      if (Reverse)
3447        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3448      else
3449        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3450    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3451                                     &MaskVec[0], MaskVec.size());
3452    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3453  }
3454
3455  if (Values.size() > 2) {
3456    // Expand into a number of unpckl*.
3457    // e.g. for v4f32
3458    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3459    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3460    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3461    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3462    for (unsigned i = 0; i < NumElems; ++i)
3463      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3464    NumElems >>= 1;
3465    while (NumElems != 0) {
3466      for (unsigned i = 0; i < NumElems; ++i)
3467        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3468                           UnpckMask);
3469      NumElems >>= 1;
3470    }
3471    return V[0];
3472  }
3473
3474  return SDOperand();
3475}
3476
3477SDOperand
3478X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3479  SDOperand V1 = Op.getOperand(0);
3480  SDOperand V2 = Op.getOperand(1);
3481  SDOperand PermMask = Op.getOperand(2);
3482  MVT::ValueType VT = Op.getValueType();
3483  unsigned NumElems = PermMask.getNumOperands();
3484  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3485  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3486  bool V1IsSplat = false;
3487  bool V2IsSplat = false;
3488
3489  if (isUndefShuffle(Op.Val))
3490    return DAG.getNode(ISD::UNDEF, VT);
3491
3492  if (isSplatMask(PermMask.Val)) {
3493    if (NumElems <= 4) return Op;
3494    // Promote it to a v4i32 splat.
3495    return PromoteSplat(Op, DAG);
3496  }
3497
3498  if (X86::isMOVLMask(PermMask.Val))
3499    return (V1IsUndef) ? V2 : Op;
3500
3501  if (X86::isMOVSHDUPMask(PermMask.Val) ||
3502      X86::isMOVSLDUPMask(PermMask.Val) ||
3503      X86::isMOVHLPSMask(PermMask.Val) ||
3504      X86::isMOVHPMask(PermMask.Val) ||
3505      X86::isMOVLPMask(PermMask.Val))
3506    return Op;
3507
3508  if (ShouldXformToMOVHLPS(PermMask.Val) ||
3509      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3510    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3511
3512  bool Commuted = false;
3513  V1IsSplat = isSplatVector(V1.Val);
3514  V2IsSplat = isSplatVector(V2.Val);
3515  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3516    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3517    std::swap(V1IsSplat, V2IsSplat);
3518    std::swap(V1IsUndef, V2IsUndef);
3519    Commuted = true;
3520  }
3521
3522  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3523    if (V2IsUndef) return V1;
3524    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3525    if (V2IsSplat) {
3526      // V2 is a splat, so the mask may be malformed. That is, it may point
3527      // to any V2 element. The instruction selectior won't like this. Get
3528      // a corrected mask and commute to form a proper MOVS{S|D}.
3529      SDOperand NewMask = getMOVLMask(NumElems, DAG);
3530      if (NewMask.Val != PermMask.Val)
3531        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3532    }
3533    return Op;
3534  }
3535
3536  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3537      X86::isUNPCKLMask(PermMask.Val) ||
3538      X86::isUNPCKHMask(PermMask.Val))
3539    return Op;
3540
3541  if (V2IsSplat) {
3542    // Normalize mask so all entries that point to V2 points to its first
3543    // element then try to match unpck{h|l} again. If match, return a
3544    // new vector_shuffle with the corrected mask.
3545    SDOperand NewMask = NormalizeMask(PermMask, DAG);
3546    if (NewMask.Val != PermMask.Val) {
3547      if (X86::isUNPCKLMask(PermMask.Val, true)) {
3548        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3549        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3550      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3551        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3552        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3553      }
3554    }
3555  }
3556
3557  // Normalize the node to match x86 shuffle ops if needed
3558  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3559      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3560
3561  if (Commuted) {
3562    // Commute is back and try unpck* again.
3563    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3564    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3565        X86::isUNPCKLMask(PermMask.Val) ||
3566        X86::isUNPCKHMask(PermMask.Val))
3567      return Op;
3568  }
3569
3570  // If VT is integer, try PSHUF* first, then SHUFP*.
3571  if (MVT::isInteger(VT)) {
3572    if (X86::isPSHUFDMask(PermMask.Val) ||
3573        X86::isPSHUFHWMask(PermMask.Val) ||
3574        X86::isPSHUFLWMask(PermMask.Val)) {
3575      if (V2.getOpcode() != ISD::UNDEF)
3576        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3577                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3578      return Op;
3579    }
3580
3581    if (X86::isSHUFPMask(PermMask.Val))
3582      return Op;
3583
3584    // Handle v8i16 shuffle high / low shuffle node pair.
3585    if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
3586      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3587      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3588      std::vector<SDOperand> MaskVec;
3589      for (unsigned i = 0; i != 4; ++i)
3590        MaskVec.push_back(PermMask.getOperand(i));
3591      for (unsigned i = 4; i != 8; ++i)
3592        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3593      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3594                                   &MaskVec[0], MaskVec.size());
3595      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3596      MaskVec.clear();
3597      for (unsigned i = 0; i != 4; ++i)
3598        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3599      for (unsigned i = 4; i != 8; ++i)
3600        MaskVec.push_back(PermMask.getOperand(i));
3601      Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
3602      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3603    }
3604  } else {
3605    // Floating point cases in the other order.
3606    if (X86::isSHUFPMask(PermMask.Val))
3607      return Op;
3608    if (X86::isPSHUFDMask(PermMask.Val) ||
3609        X86::isPSHUFHWMask(PermMask.Val) ||
3610        X86::isPSHUFLWMask(PermMask.Val)) {
3611      if (V2.getOpcode() != ISD::UNDEF)
3612        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3613                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3614      return Op;
3615    }
3616  }
3617
3618  if (NumElems == 4) {
3619    MVT::ValueType MaskVT = PermMask.getValueType();
3620    MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
3621    std::vector<std::pair<int, int> > Locs;
3622    Locs.reserve(NumElems);
3623    std::vector<SDOperand> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3624    std::vector<SDOperand> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3625    unsigned NumHi = 0;
3626    unsigned NumLo = 0;
3627    // If no more than two elements come from either vector. This can be
3628    // implemented with two shuffles. First shuffle gather the elements.
3629    // The second shuffle, which takes the first shuffle as both of its
3630    // vector operands, put the elements into the right order.
3631    for (unsigned i = 0; i != NumElems; ++i) {
3632      SDOperand Elt = PermMask.getOperand(i);
3633      if (Elt.getOpcode() == ISD::UNDEF) {
3634        Locs[i] = std::make_pair(-1, -1);
3635      } else {
3636        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3637        if (Val < NumElems) {
3638          Locs[i] = std::make_pair(0, NumLo);
3639          Mask1[NumLo] = Elt;
3640          NumLo++;
3641        } else {
3642          Locs[i] = std::make_pair(1, NumHi);
3643          if (2+NumHi < NumElems)
3644            Mask1[2+NumHi] = Elt;
3645          NumHi++;
3646        }
3647      }
3648    }
3649    if (NumLo <= 2 && NumHi <= 2) {
3650      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3651                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3652                                   &Mask1[0], Mask1.size()));
3653      for (unsigned i = 0; i != NumElems; ++i) {
3654        if (Locs[i].first == -1)
3655          continue;
3656        else {
3657          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3658          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3659          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3660        }
3661      }
3662
3663      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3664                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3665                                     &Mask2[0], Mask2.size()));
3666    }
3667
3668    // Break it into (shuffle shuffle_hi, shuffle_lo).
3669    Locs.clear();
3670    std::vector<SDOperand> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3671    std::vector<SDOperand> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3672    std::vector<SDOperand> *MaskPtr = &LoMask;
3673    unsigned MaskIdx = 0;
3674    unsigned LoIdx = 0;
3675    unsigned HiIdx = NumElems/2;
3676    for (unsigned i = 0; i != NumElems; ++i) {
3677      if (i == NumElems/2) {
3678        MaskPtr = &HiMask;
3679        MaskIdx = 1;
3680        LoIdx = 0;
3681        HiIdx = NumElems/2;
3682      }
3683      SDOperand Elt = PermMask.getOperand(i);
3684      if (Elt.getOpcode() == ISD::UNDEF) {
3685        Locs[i] = std::make_pair(-1, -1);
3686      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3687        Locs[i] = std::make_pair(MaskIdx, LoIdx);
3688        (*MaskPtr)[LoIdx] = Elt;
3689        LoIdx++;
3690      } else {
3691        Locs[i] = std::make_pair(MaskIdx, HiIdx);
3692        (*MaskPtr)[HiIdx] = Elt;
3693        HiIdx++;
3694      }
3695    }
3696
3697    SDOperand LoShuffle =
3698      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3699                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3700                              &LoMask[0], LoMask.size()));
3701    SDOperand HiShuffle =
3702      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3703                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3704                              &HiMask[0], HiMask.size()));
3705    std::vector<SDOperand> MaskOps;
3706    for (unsigned i = 0; i != NumElems; ++i) {
3707      if (Locs[i].first == -1) {
3708        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3709      } else {
3710        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3711        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3712      }
3713    }
3714    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3715                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3716                                   &MaskOps[0], MaskOps.size()));
3717  }
3718
3719  return SDOperand();
3720}
3721
3722SDOperand
3723X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3724  if (!isa<ConstantSDNode>(Op.getOperand(1)))
3725    return SDOperand();
3726
3727  MVT::ValueType VT = Op.getValueType();
3728  // TODO: handle v16i8.
3729  if (MVT::getSizeInBits(VT) == 16) {
3730    // Transform it so it match pextrw which produces a 32-bit result.
3731    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3732    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3733                                    Op.getOperand(0), Op.getOperand(1));
3734    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3735                                    DAG.getValueType(VT));
3736    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3737  } else if (MVT::getSizeInBits(VT) == 32) {
3738    SDOperand Vec = Op.getOperand(0);
3739    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3740    if (Idx == 0)
3741      return Op;
3742    // SHUFPS the element to the lowest double word, then movss.
3743    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3744    std::vector<SDOperand> IdxVec;
3745    IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorBaseType(MaskVT)));
3746    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3747    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3748    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3749    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3750                                 &IdxVec[0], IdxVec.size());
3751    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3752                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3753    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3754                       DAG.getConstant(0, getPointerTy()));
3755  } else if (MVT::getSizeInBits(VT) == 64) {
3756    SDOperand Vec = Op.getOperand(0);
3757    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3758    if (Idx == 0)
3759      return Op;
3760
3761    // UNPCKHPD the element to the lowest double word, then movsd.
3762    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3763    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3764    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3765    std::vector<SDOperand> IdxVec;
3766    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorBaseType(MaskVT)));
3767    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3768    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3769                                 &IdxVec[0], IdxVec.size());
3770    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3771                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3772    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3773                       DAG.getConstant(0, getPointerTy()));
3774  }
3775
3776  return SDOperand();
3777}
3778
3779SDOperand
3780X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3781  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3782  // as its second argument.
3783  MVT::ValueType VT = Op.getValueType();
3784  MVT::ValueType BaseVT = MVT::getVectorBaseType(VT);
3785  SDOperand N0 = Op.getOperand(0);
3786  SDOperand N1 = Op.getOperand(1);
3787  SDOperand N2 = Op.getOperand(2);
3788  if (MVT::getSizeInBits(BaseVT) == 16) {
3789    if (N1.getValueType() != MVT::i32)
3790      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3791    if (N2.getValueType() != MVT::i32)
3792      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(), MVT::i32);
3793    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3794  } else if (MVT::getSizeInBits(BaseVT) == 32) {
3795    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3796    if (Idx == 0) {
3797      // Use a movss.
3798      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3799      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3800      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3801      std::vector<SDOperand> MaskVec;
3802      MaskVec.push_back(DAG.getConstant(4, BaseVT));
3803      for (unsigned i = 1; i <= 3; ++i)
3804        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3805      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3806                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3807                                     &MaskVec[0], MaskVec.size()));
3808    } else {
3809      // Use two pinsrw instructions to insert a 32 bit value.
3810      Idx <<= 1;
3811      if (MVT::isFloatingPoint(N1.getValueType())) {
3812        if (ISD::isNON_EXTLoad(N1.Val)) {
3813          // Just load directly from f32mem to GR32.
3814          LoadSDNode *LD = cast<LoadSDNode>(N1);
3815          N1 = DAG.getLoad(MVT::i32, LD->getChain(), LD->getBasePtr(),
3816                           LD->getSrcValue(), LD->getSrcValueOffset());
3817        } else {
3818          N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3819          N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3820          N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3821                           DAG.getConstant(0, getPointerTy()));
3822        }
3823      }
3824      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3825      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3826                       DAG.getConstant(Idx, getPointerTy()));
3827      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3828      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3829                       DAG.getConstant(Idx+1, getPointerTy()));
3830      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3831    }
3832  }
3833
3834  return SDOperand();
3835}
3836
3837SDOperand
3838X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3839  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3840  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3841}
3842
3843// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3844// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3845// one of the above mentioned nodes. It has to be wrapped because otherwise
3846// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3847// be used to form addressing mode. These wrapped nodes will be selected
3848// into MOV32ri.
3849SDOperand
3850X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3851  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3852  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3853                                               getPointerTy(),
3854                                               CP->getAlignment());
3855  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3856  if (Subtarget->isTargetDarwin()) {
3857    // With PIC, the address is actually $g + Offset.
3858    if (!Subtarget->is64Bit() &&
3859        getTargetMachine().getRelocationModel() == Reloc::PIC_)
3860      Result = DAG.getNode(ISD::ADD, getPointerTy(),
3861                    DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result);
3862  }
3863
3864  return Result;
3865}
3866
3867SDOperand
3868X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3869  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3870  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3871  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3872  if (Subtarget->isTargetDarwin()) {
3873    // With PIC, the address is actually $g + Offset.
3874    if (!Subtarget->is64Bit() &&
3875        getTargetMachine().getRelocationModel() == Reloc::PIC_)
3876      Result = DAG.getNode(ISD::ADD, getPointerTy(),
3877                           DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3878                           Result);
3879  }
3880
3881  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3882  // load the value at address GV, not the value of GV itself. This means that
3883  // the GlobalAddress must be in the base or index register of the address, not
3884  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3885  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3886    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3887
3888  return Result;
3889}
3890
3891SDOperand
3892X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3893  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3894  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3895  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3896  if (Subtarget->isTargetDarwin()) {
3897    // With PIC, the address is actually $g + Offset.
3898    if (!Subtarget->is64Bit() &&
3899        getTargetMachine().getRelocationModel() == Reloc::PIC_)
3900      Result = DAG.getNode(ISD::ADD, getPointerTy(),
3901                           DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3902                           Result);
3903  }
3904
3905  return Result;
3906}
3907
3908SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3909    assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3910           "Not an i64 shift!");
3911    bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3912    SDOperand ShOpLo = Op.getOperand(0);
3913    SDOperand ShOpHi = Op.getOperand(1);
3914    SDOperand ShAmt  = Op.getOperand(2);
3915    SDOperand Tmp1 = isSRA ?
3916      DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3917      DAG.getConstant(0, MVT::i32);
3918
3919    SDOperand Tmp2, Tmp3;
3920    if (Op.getOpcode() == ISD::SHL_PARTS) {
3921      Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3922      Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3923    } else {
3924      Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3925      Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3926    }
3927
3928    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3929    SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3930                                    DAG.getConstant(32, MVT::i8));
3931    SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3932    SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3933
3934    SDOperand Hi, Lo;
3935    SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3936
3937    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3938    SmallVector<SDOperand, 4> Ops;
3939    if (Op.getOpcode() == ISD::SHL_PARTS) {
3940      Ops.push_back(Tmp2);
3941      Ops.push_back(Tmp3);
3942      Ops.push_back(CC);
3943      Ops.push_back(InFlag);
3944      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3945      InFlag = Hi.getValue(1);
3946
3947      Ops.clear();
3948      Ops.push_back(Tmp3);
3949      Ops.push_back(Tmp1);
3950      Ops.push_back(CC);
3951      Ops.push_back(InFlag);
3952      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3953    } else {
3954      Ops.push_back(Tmp2);
3955      Ops.push_back(Tmp3);
3956      Ops.push_back(CC);
3957      Ops.push_back(InFlag);
3958      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3959      InFlag = Lo.getValue(1);
3960
3961      Ops.clear();
3962      Ops.push_back(Tmp3);
3963      Ops.push_back(Tmp1);
3964      Ops.push_back(CC);
3965      Ops.push_back(InFlag);
3966      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3967    }
3968
3969    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3970    Ops.clear();
3971    Ops.push_back(Lo);
3972    Ops.push_back(Hi);
3973    return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3974}
3975
3976SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3977  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3978         Op.getOperand(0).getValueType() >= MVT::i16 &&
3979         "Unknown SINT_TO_FP to lower!");
3980
3981  SDOperand Result;
3982  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3983  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3984  MachineFunction &MF = DAG.getMachineFunction();
3985  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3986  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3987  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3988                                 StackSlot, NULL, 0);
3989
3990  // Build the FILD
3991  std::vector<MVT::ValueType> Tys;
3992  Tys.push_back(MVT::f64);
3993  Tys.push_back(MVT::Other);
3994  if (X86ScalarSSE) Tys.push_back(MVT::Flag);
3995  std::vector<SDOperand> Ops;
3996  Ops.push_back(Chain);
3997  Ops.push_back(StackSlot);
3998  Ops.push_back(DAG.getValueType(SrcVT));
3999  Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
4000                       Tys, &Ops[0], Ops.size());
4001
4002  if (X86ScalarSSE) {
4003    Chain = Result.getValue(1);
4004    SDOperand InFlag = Result.getValue(2);
4005
4006    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4007    // shouldn't be necessary except that RFP cannot be live across
4008    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4009    MachineFunction &MF = DAG.getMachineFunction();
4010    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4011    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4012    std::vector<MVT::ValueType> Tys;
4013    Tys.push_back(MVT::Other);
4014    std::vector<SDOperand> Ops;
4015    Ops.push_back(Chain);
4016    Ops.push_back(Result);
4017    Ops.push_back(StackSlot);
4018    Ops.push_back(DAG.getValueType(Op.getValueType()));
4019    Ops.push_back(InFlag);
4020    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4021    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
4022  }
4023
4024  return Result;
4025}
4026
4027SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
4028  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
4029         "Unknown FP_TO_SINT to lower!");
4030  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4031  // stack slot.
4032  MachineFunction &MF = DAG.getMachineFunction();
4033  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
4034  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4035  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4036
4037  unsigned Opc;
4038  switch (Op.getValueType()) {
4039    default: assert(0 && "Invalid FP_TO_SINT to lower!");
4040    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4041    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4042    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4043  }
4044
4045  SDOperand Chain = DAG.getEntryNode();
4046  SDOperand Value = Op.getOperand(0);
4047  if (X86ScalarSSE) {
4048    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4049    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
4050    std::vector<MVT::ValueType> Tys;
4051    Tys.push_back(MVT::f64);
4052    Tys.push_back(MVT::Other);
4053    std::vector<SDOperand> Ops;
4054    Ops.push_back(Chain);
4055    Ops.push_back(StackSlot);
4056    Ops.push_back(DAG.getValueType(Op.getOperand(0).getValueType()));
4057    Value = DAG.getNode(X86ISD::FLD, Tys, &Ops[0], Ops.size());
4058    Chain = Value.getValue(1);
4059    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4060    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4061  }
4062
4063  // Build the FP_TO_INT*_IN_MEM
4064  std::vector<SDOperand> Ops;
4065  Ops.push_back(Chain);
4066  Ops.push_back(Value);
4067  Ops.push_back(StackSlot);
4068  SDOperand FIST = DAG.getNode(Opc, MVT::Other, &Ops[0], Ops.size());
4069
4070  // Load the result.
4071  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4072}
4073
4074SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
4075  MVT::ValueType VT = Op.getValueType();
4076  const Type *OpNTy =  MVT::getTypeForValueType(VT);
4077  std::vector<Constant*> CV;
4078  if (VT == MVT::f64) {
4079    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63))));
4080    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4081  } else {
4082    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31))));
4083    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4084    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4085    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4086  }
4087  Constant *CS = ConstantStruct::get(CV);
4088  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
4089  std::vector<MVT::ValueType> Tys;
4090  Tys.push_back(VT);
4091  Tys.push_back(MVT::Other);
4092  SmallVector<SDOperand, 3> Ops;
4093  Ops.push_back(DAG.getEntryNode());
4094  Ops.push_back(CPIdx);
4095  Ops.push_back(DAG.getSrcValue(NULL));
4096  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
4097  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4098}
4099
4100SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
4101  MVT::ValueType VT = Op.getValueType();
4102  const Type *OpNTy =  MVT::getTypeForValueType(VT);
4103  std::vector<Constant*> CV;
4104  if (VT == MVT::f64) {
4105    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63)));
4106    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4107  } else {
4108    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31)));
4109    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4110    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4111    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4112  }
4113  Constant *CS = ConstantStruct::get(CV);
4114  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
4115  std::vector<MVT::ValueType> Tys;
4116  Tys.push_back(VT);
4117  Tys.push_back(MVT::Other);
4118  SmallVector<SDOperand, 3> Ops;
4119  Ops.push_back(DAG.getEntryNode());
4120  Ops.push_back(CPIdx);
4121  Ops.push_back(DAG.getSrcValue(NULL));
4122  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
4123  return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4124}
4125
4126SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
4127                                        SDOperand Chain) {
4128  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
4129  SDOperand Cond;
4130  SDOperand Op0 = Op.getOperand(0);
4131  SDOperand Op1 = Op.getOperand(1);
4132  SDOperand CC = Op.getOperand(2);
4133  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4134  const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4135  const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4136  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
4137  unsigned X86CC;
4138
4139  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
4140                     Op0, Op1, DAG)) {
4141    SDOperand Ops1[] = { Chain, Op0, Op1 };
4142    Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
4143    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4144    return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
4145  }
4146
4147  assert(isFP && "Illegal integer SetCC!");
4148
4149  SDOperand COps[] = { Chain, Op0, Op1 };
4150  Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
4151
4152  switch (SetCCOpcode) {
4153  default: assert(false && "Illegal floating point SetCC!");
4154  case ISD::SETOEQ: {  // !PF & ZF
4155    SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
4156    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
4157    SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
4158                         Tmp1.getValue(1) };
4159    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
4160    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4161  }
4162  case ISD::SETUNE: {  // PF | !ZF
4163    SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
4164    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
4165    SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
4166                         Tmp1.getValue(1) };
4167    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
4168    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4169  }
4170  }
4171}
4172
4173SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4174  bool addTest = true;
4175  SDOperand Chain = DAG.getEntryNode();
4176  SDOperand Cond  = Op.getOperand(0);
4177  SDOperand CC;
4178  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4179
4180  if (Cond.getOpcode() == ISD::SETCC)
4181    Cond = LowerSETCC(Cond, DAG, Chain);
4182
4183  if (Cond.getOpcode() == X86ISD::SETCC) {
4184    CC = Cond.getOperand(0);
4185
4186    // If condition flag is set by a X86ISD::CMP, then make a copy of it
4187    // (since flag operand cannot be shared). Use it as the condition setting
4188    // operand in place of the X86ISD::SETCC.
4189    // If the X86ISD::SETCC has more than one use, then perhaps it's better
4190    // to use a test instead of duplicating the X86ISD::CMP (for register
4191    // pressure reason)?
4192    SDOperand Cmp = Cond.getOperand(1);
4193    unsigned Opc = Cmp.getOpcode();
4194    bool IllegalFPCMov = !X86ScalarSSE &&
4195      MVT::isFloatingPoint(Op.getValueType()) &&
4196      !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4197    if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
4198        !IllegalFPCMov) {
4199      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
4200      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
4201      addTest = false;
4202    }
4203  }
4204
4205  if (addTest) {
4206    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4207    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
4208    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
4209  }
4210
4211  VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
4212  SmallVector<SDOperand, 4> Ops;
4213  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4214  // condition is true.
4215  Ops.push_back(Op.getOperand(2));
4216  Ops.push_back(Op.getOperand(1));
4217  Ops.push_back(CC);
4218  Ops.push_back(Cond.getValue(1));
4219  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
4220}
4221
4222SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4223  bool addTest = true;
4224  SDOperand Chain = Op.getOperand(0);
4225  SDOperand Cond  = Op.getOperand(1);
4226  SDOperand Dest  = Op.getOperand(2);
4227  SDOperand CC;
4228  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4229
4230  if (Cond.getOpcode() == ISD::SETCC)
4231    Cond = LowerSETCC(Cond, DAG, Chain);
4232
4233  if (Cond.getOpcode() == X86ISD::SETCC) {
4234    CC = Cond.getOperand(0);
4235
4236    // If condition flag is set by a X86ISD::CMP, then make a copy of it
4237    // (since flag operand cannot be shared). Use it as the condition setting
4238    // operand in place of the X86ISD::SETCC.
4239    // If the X86ISD::SETCC has more than one use, then perhaps it's better
4240    // to use a test instead of duplicating the X86ISD::CMP (for register
4241    // pressure reason)?
4242    SDOperand Cmp = Cond.getOperand(1);
4243    unsigned Opc = Cmp.getOpcode();
4244    if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
4245      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
4246      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
4247      addTest = false;
4248    }
4249  }
4250
4251  if (addTest) {
4252    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4253    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
4254    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
4255  }
4256  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
4257                     Cond, Op.getOperand(2), CC, Cond.getValue(1));
4258}
4259
4260SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
4261  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4262  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4263  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4264  if (Subtarget->isTargetDarwin()) {
4265    // With PIC, the address is actually $g + Offset.
4266    if (!Subtarget->is64Bit() &&
4267        getTargetMachine().getRelocationModel() == Reloc::PIC_)
4268      Result = DAG.getNode(ISD::ADD, getPointerTy(),
4269                           DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4270                           Result);
4271  }
4272
4273  return Result;
4274}
4275
4276SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
4277  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4278
4279  if (Subtarget->is64Bit())
4280    return LowerX86_64CCCCallTo(Op, DAG);
4281  else
4282    switch (CallingConv) {
4283    default:
4284      assert(0 && "Unsupported calling convention");
4285    case CallingConv::Fast:
4286      if (EnableFastCC) {
4287        return LowerFastCCCallTo(Op, DAG, false);
4288      }
4289      // Falls through
4290    case CallingConv::C:
4291    case CallingConv::CSRet:
4292      return LowerCCCCallTo(Op, DAG);
4293    case CallingConv::X86_StdCall:
4294      return LowerStdCallCCCallTo(Op, DAG);
4295    case CallingConv::X86_FastCall:
4296      return LowerFastCCCallTo(Op, DAG, true);
4297    }
4298}
4299
4300SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
4301  SDOperand Copy;
4302
4303  switch(Op.getNumOperands()) {
4304    default:
4305      assert(0 && "Do not know how to return this many arguments!");
4306      abort();
4307    case 1:    // ret void.
4308      return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Op.getOperand(0),
4309                        DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
4310    case 3: {
4311      MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
4312
4313      if (MVT::isVector(ArgVT) ||
4314          (Subtarget->is64Bit() && MVT::isFloatingPoint(ArgVT))) {
4315        // Integer or FP vector result -> XMM0.
4316        if (DAG.getMachineFunction().liveout_empty())
4317          DAG.getMachineFunction().addLiveOut(X86::XMM0);
4318        Copy = DAG.getCopyToReg(Op.getOperand(0), X86::XMM0, Op.getOperand(1),
4319                                SDOperand());
4320      } else if (MVT::isInteger(ArgVT)) {
4321        // Integer result -> EAX / RAX.
4322        // The C calling convention guarantees the return value has been
4323        // promoted to at least MVT::i32. The X86-64 ABI doesn't require the
4324        // value to be promoted MVT::i64. So we don't have to extend it to
4325        // 64-bit. Return the value in EAX, but mark RAX as liveout.
4326        unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
4327        if (DAG.getMachineFunction().liveout_empty())
4328          DAG.getMachineFunction().addLiveOut(Reg);
4329
4330        Reg = (ArgVT == MVT::i64) ? X86::RAX : X86::EAX;
4331        Copy = DAG.getCopyToReg(Op.getOperand(0), Reg, Op.getOperand(1),
4332                                SDOperand());
4333      } else if (!X86ScalarSSE) {
4334        // FP return with fp-stack value.
4335        if (DAG.getMachineFunction().liveout_empty())
4336          DAG.getMachineFunction().addLiveOut(X86::ST0);
4337
4338        std::vector<MVT::ValueType> Tys;
4339        Tys.push_back(MVT::Other);
4340        Tys.push_back(MVT::Flag);
4341        std::vector<SDOperand> Ops;
4342        Ops.push_back(Op.getOperand(0));
4343        Ops.push_back(Op.getOperand(1));
4344        Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, &Ops[0], Ops.size());
4345      } else {
4346        // FP return with ScalarSSE (return on fp-stack).
4347        if (DAG.getMachineFunction().liveout_empty())
4348          DAG.getMachineFunction().addLiveOut(X86::ST0);
4349
4350        SDOperand MemLoc;
4351        SDOperand Chain = Op.getOperand(0);
4352        SDOperand Value = Op.getOperand(1);
4353
4354        if (ISD::isNON_EXTLoad(Value.Val) &&
4355            (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
4356          Chain  = Value.getOperand(0);
4357          MemLoc = Value.getOperand(1);
4358        } else {
4359          // Spill the value to memory and reload it into top of stack.
4360          unsigned Size = MVT::getSizeInBits(ArgVT)/8;
4361          MachineFunction &MF = DAG.getMachineFunction();
4362          int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4363          MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
4364          Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
4365        }
4366        std::vector<MVT::ValueType> Tys;
4367        Tys.push_back(MVT::f64);
4368        Tys.push_back(MVT::Other);
4369        std::vector<SDOperand> Ops;
4370        Ops.push_back(Chain);
4371        Ops.push_back(MemLoc);
4372        Ops.push_back(DAG.getValueType(ArgVT));
4373        Copy = DAG.getNode(X86ISD::FLD, Tys, &Ops[0], Ops.size());
4374        Tys.clear();
4375        Tys.push_back(MVT::Other);
4376        Tys.push_back(MVT::Flag);
4377        Ops.clear();
4378        Ops.push_back(Copy.getValue(1));
4379        Ops.push_back(Copy);
4380        Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, &Ops[0], Ops.size());
4381      }
4382      break;
4383    }
4384    case 5: {
4385      unsigned Reg1 = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
4386      unsigned Reg2 = Subtarget->is64Bit() ? X86::RDX : X86::EDX;
4387      if (DAG.getMachineFunction().liveout_empty()) {
4388        DAG.getMachineFunction().addLiveOut(Reg1);
4389        DAG.getMachineFunction().addLiveOut(Reg2);
4390      }
4391
4392      Copy = DAG.getCopyToReg(Op.getOperand(0), Reg2, Op.getOperand(3),
4393                              SDOperand());
4394      Copy = DAG.getCopyToReg(Copy, Reg1, Op.getOperand(1), Copy.getValue(1));
4395      break;
4396    }
4397  }
4398  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other,
4399                     Copy, DAG.getConstant(getBytesToPopOnReturn(), MVT::i16),
4400                     Copy.getValue(1));
4401}
4402
4403SDOperand
4404X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
4405  MachineFunction &MF = DAG.getMachineFunction();
4406  const Function* Fn = MF.getFunction();
4407  if (Fn->hasExternalLinkage() &&
4408      Subtarget->isTargetCygMing() &&
4409      Fn->getName() == "main")
4410    MF.getInfo<X86FunctionInfo>()->setForceFramePointer(true);
4411
4412  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4413  if (Subtarget->is64Bit())
4414    return LowerX86_64CCCArguments(Op, DAG);
4415  else
4416    switch(CC) {
4417    default:
4418      assert(0 && "Unsupported calling convention");
4419    case CallingConv::Fast:
4420      if (EnableFastCC) {
4421        return LowerFastCCArguments(Op, DAG);
4422      }
4423      // Falls through
4424    case CallingConv::C:
4425    case CallingConv::CSRet:
4426      return LowerCCCArguments(Op, DAG);
4427    case CallingConv::X86_StdCall:
4428      MF.getInfo<X86FunctionInfo>()->setDecorationStyle(StdCall);
4429      return LowerStdCallCCArguments(Op, DAG);
4430    case CallingConv::X86_FastCall:
4431      MF.getInfo<X86FunctionInfo>()->setDecorationStyle(FastCall);
4432      return LowerFastCallCCArguments(Op, DAG);
4433    }
4434}
4435
4436SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4437  SDOperand InFlag(0, 0);
4438  SDOperand Chain = Op.getOperand(0);
4439  unsigned Align =
4440    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4441  if (Align == 0) Align = 1;
4442
4443  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4444  // If not DWORD aligned, call memset if size is less than the threshold.
4445  // It knows how to align to the right boundary first.
4446  if ((Align & 3) != 0 ||
4447      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
4448    MVT::ValueType IntPtr = getPointerTy();
4449    const Type *IntPtrTy = getTargetData()->getIntPtrType();
4450    TargetLowering::ArgListTy Args;
4451    TargetLowering::ArgListEntry Entry;
4452    Entry.Node = Op.getOperand(1);
4453    Entry.Ty = IntPtrTy;
4454    Entry.isSigned = false;
4455    Args.push_back(Entry);
4456    // Extend the ubyte argument to be an int value for the call.
4457    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4458    Entry.Ty = IntPtrTy;
4459    Entry.isSigned = false;
4460    Args.push_back(Entry);
4461    Entry.Node = Op.getOperand(3);
4462    Args.push_back(Entry);
4463    std::pair<SDOperand,SDOperand> CallResult =
4464      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4465                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4466    return CallResult.second;
4467  }
4468
4469  MVT::ValueType AVT;
4470  SDOperand Count;
4471  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4472  unsigned BytesLeft = 0;
4473  bool TwoRepStos = false;
4474  if (ValC) {
4475    unsigned ValReg;
4476    uint64_t Val = ValC->getValue() & 255;
4477
4478    // If the value is a constant, then we can potentially use larger sets.
4479    switch (Align & 3) {
4480      case 2:   // WORD aligned
4481        AVT = MVT::i16;
4482        ValReg = X86::AX;
4483        Val = (Val << 8) | Val;
4484        break;
4485      case 0:  // DWORD aligned
4486        AVT = MVT::i32;
4487        ValReg = X86::EAX;
4488        Val = (Val << 8)  | Val;
4489        Val = (Val << 16) | Val;
4490        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
4491          AVT = MVT::i64;
4492          ValReg = X86::RAX;
4493          Val = (Val << 32) | Val;
4494        }
4495        break;
4496      default:  // Byte aligned
4497        AVT = MVT::i8;
4498        ValReg = X86::AL;
4499        Count = Op.getOperand(3);
4500        break;
4501    }
4502
4503    if (AVT > MVT::i8) {
4504      if (I) {
4505        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4506        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4507        BytesLeft = I->getValue() % UBytes;
4508      } else {
4509        assert(AVT >= MVT::i32 &&
4510               "Do not use rep;stos if not at least DWORD aligned");
4511        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4512                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4513        TwoRepStos = true;
4514      }
4515    }
4516
4517    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4518                              InFlag);
4519    InFlag = Chain.getValue(1);
4520  } else {
4521    AVT = MVT::i8;
4522    Count  = Op.getOperand(3);
4523    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4524    InFlag = Chain.getValue(1);
4525  }
4526
4527  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4528                            Count, InFlag);
4529  InFlag = Chain.getValue(1);
4530  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4531                            Op.getOperand(1), InFlag);
4532  InFlag = Chain.getValue(1);
4533
4534  std::vector<MVT::ValueType> Tys;
4535  Tys.push_back(MVT::Other);
4536  Tys.push_back(MVT::Flag);
4537  std::vector<SDOperand> Ops;
4538  Ops.push_back(Chain);
4539  Ops.push_back(DAG.getValueType(AVT));
4540  Ops.push_back(InFlag);
4541  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4542
4543  if (TwoRepStos) {
4544    InFlag = Chain.getValue(1);
4545    Count = Op.getOperand(3);
4546    MVT::ValueType CVT = Count.getValueType();
4547    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4548                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4549    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4550                              Left, InFlag);
4551    InFlag = Chain.getValue(1);
4552    Tys.clear();
4553    Tys.push_back(MVT::Other);
4554    Tys.push_back(MVT::Flag);
4555    Ops.clear();
4556    Ops.push_back(Chain);
4557    Ops.push_back(DAG.getValueType(MVT::i8));
4558    Ops.push_back(InFlag);
4559    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4560  } else if (BytesLeft) {
4561    // Issue stores for the last 1 - 7 bytes.
4562    SDOperand Value;
4563    unsigned Val = ValC->getValue() & 255;
4564    unsigned Offset = I->getValue() - BytesLeft;
4565    SDOperand DstAddr = Op.getOperand(1);
4566    MVT::ValueType AddrVT = DstAddr.getValueType();
4567    if (BytesLeft >= 4) {
4568      Val = (Val << 8)  | Val;
4569      Val = (Val << 16) | Val;
4570      Value = DAG.getConstant(Val, MVT::i32);
4571      Chain = DAG.getStore(Chain, Value,
4572                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4573                                       DAG.getConstant(Offset, AddrVT)),
4574                           NULL, 0);
4575      BytesLeft -= 4;
4576      Offset += 4;
4577    }
4578    if (BytesLeft >= 2) {
4579      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4580      Chain = DAG.getStore(Chain, Value,
4581                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4582                                       DAG.getConstant(Offset, AddrVT)),
4583                           NULL, 0);
4584      BytesLeft -= 2;
4585      Offset += 2;
4586    }
4587    if (BytesLeft == 1) {
4588      Value = DAG.getConstant(Val, MVT::i8);
4589      Chain = DAG.getStore(Chain, Value,
4590                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4591                                       DAG.getConstant(Offset, AddrVT)),
4592                           NULL, 0);
4593    }
4594  }
4595
4596  return Chain;
4597}
4598
4599SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
4600  SDOperand Chain = Op.getOperand(0);
4601  unsigned Align =
4602    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4603  if (Align == 0) Align = 1;
4604
4605  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4606  // If not DWORD aligned, call memcpy if size is less than the threshold.
4607  // It knows how to align to the right boundary first.
4608  if ((Align & 3) != 0 ||
4609      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
4610    MVT::ValueType IntPtr = getPointerTy();
4611    TargetLowering::ArgListTy Args;
4612    TargetLowering::ArgListEntry Entry;
4613    Entry.Ty = getTargetData()->getIntPtrType(); Entry.isSigned = false;
4614    Entry.Node = Op.getOperand(1); Args.push_back(Entry);
4615    Entry.Node = Op.getOperand(2); Args.push_back(Entry);
4616    Entry.Node = Op.getOperand(3); Args.push_back(Entry);
4617    std::pair<SDOperand,SDOperand> CallResult =
4618      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4619                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
4620    return CallResult.second;
4621  }
4622
4623  MVT::ValueType AVT;
4624  SDOperand Count;
4625  unsigned BytesLeft = 0;
4626  bool TwoRepMovs = false;
4627  switch (Align & 3) {
4628    case 2:   // WORD aligned
4629      AVT = MVT::i16;
4630      break;
4631    case 0:  // DWORD aligned
4632      AVT = MVT::i32;
4633      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
4634        AVT = MVT::i64;
4635      break;
4636    default:  // Byte aligned
4637      AVT = MVT::i8;
4638      Count = Op.getOperand(3);
4639      break;
4640  }
4641
4642  if (AVT > MVT::i8) {
4643    if (I) {
4644      unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4645      Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4646      BytesLeft = I->getValue() % UBytes;
4647    } else {
4648      assert(AVT >= MVT::i32 &&
4649             "Do not use rep;movs if not at least DWORD aligned");
4650      Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4651                          Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4652      TwoRepMovs = true;
4653    }
4654  }
4655
4656  SDOperand InFlag(0, 0);
4657  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4658                            Count, InFlag);
4659  InFlag = Chain.getValue(1);
4660  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4661                            Op.getOperand(1), InFlag);
4662  InFlag = Chain.getValue(1);
4663  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4664                            Op.getOperand(2), InFlag);
4665  InFlag = Chain.getValue(1);
4666
4667  std::vector<MVT::ValueType> Tys;
4668  Tys.push_back(MVT::Other);
4669  Tys.push_back(MVT::Flag);
4670  std::vector<SDOperand> Ops;
4671  Ops.push_back(Chain);
4672  Ops.push_back(DAG.getValueType(AVT));
4673  Ops.push_back(InFlag);
4674  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4675
4676  if (TwoRepMovs) {
4677    InFlag = Chain.getValue(1);
4678    Count = Op.getOperand(3);
4679    MVT::ValueType CVT = Count.getValueType();
4680    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4681                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4682    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4683                              Left, InFlag);
4684    InFlag = Chain.getValue(1);
4685    Tys.clear();
4686    Tys.push_back(MVT::Other);
4687    Tys.push_back(MVT::Flag);
4688    Ops.clear();
4689    Ops.push_back(Chain);
4690    Ops.push_back(DAG.getValueType(MVT::i8));
4691    Ops.push_back(InFlag);
4692    Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4693  } else if (BytesLeft) {
4694    // Issue loads and stores for the last 1 - 7 bytes.
4695    unsigned Offset = I->getValue() - BytesLeft;
4696    SDOperand DstAddr = Op.getOperand(1);
4697    MVT::ValueType DstVT = DstAddr.getValueType();
4698    SDOperand SrcAddr = Op.getOperand(2);
4699    MVT::ValueType SrcVT = SrcAddr.getValueType();
4700    SDOperand Value;
4701    if (BytesLeft >= 4) {
4702      Value = DAG.getLoad(MVT::i32, Chain,
4703                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4704                                      DAG.getConstant(Offset, SrcVT)),
4705                          NULL, 0);
4706      Chain = Value.getValue(1);
4707      Chain = DAG.getStore(Chain, Value,
4708                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4709                                       DAG.getConstant(Offset, DstVT)),
4710                           NULL, 0);
4711      BytesLeft -= 4;
4712      Offset += 4;
4713    }
4714    if (BytesLeft >= 2) {
4715      Value = DAG.getLoad(MVT::i16, Chain,
4716                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4717                                      DAG.getConstant(Offset, SrcVT)),
4718                          NULL, 0);
4719      Chain = Value.getValue(1);
4720      Chain = DAG.getStore(Chain, Value,
4721                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4722                                       DAG.getConstant(Offset, DstVT)),
4723                           NULL, 0);
4724      BytesLeft -= 2;
4725      Offset += 2;
4726    }
4727
4728    if (BytesLeft == 1) {
4729      Value = DAG.getLoad(MVT::i8, Chain,
4730                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4731                                      DAG.getConstant(Offset, SrcVT)),
4732                          NULL, 0);
4733      Chain = Value.getValue(1);
4734      Chain = DAG.getStore(Chain, Value,
4735                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4736                                       DAG.getConstant(Offset, DstVT)),
4737                           NULL, 0);
4738    }
4739  }
4740
4741  return Chain;
4742}
4743
4744SDOperand
4745X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4746  std::vector<MVT::ValueType> Tys;
4747  Tys.push_back(MVT::Other);
4748  Tys.push_back(MVT::Flag);
4749  std::vector<SDOperand> Ops;
4750  Ops.push_back(Op.getOperand(0));
4751  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &Ops[0], Ops.size());
4752  Ops.clear();
4753  if (Subtarget->is64Bit()) {
4754    SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4755    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4756                                         MVT::i64, Copy1.getValue(2));
4757    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4758                                DAG.getConstant(32, MVT::i8));
4759    Ops.push_back(DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp));
4760    Ops.push_back(Copy2.getValue(1));
4761    Tys[0] = MVT::i64;
4762    Tys[1] = MVT::Other;
4763  } else {
4764    SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4765    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4766                                         MVT::i32, Copy1.getValue(2));
4767    Ops.push_back(Copy1);
4768    Ops.push_back(Copy2);
4769    Ops.push_back(Copy2.getValue(1));
4770    Tys[0] = Tys[1] = MVT::i32;
4771    Tys.push_back(MVT::Other);
4772  }
4773  return DAG.getNode(ISD::MERGE_VALUES, Tys, &Ops[0], Ops.size());
4774}
4775
4776SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4777  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4778
4779  if (!Subtarget->is64Bit()) {
4780    // vastart just stores the address of the VarArgsFrameIndex slot into the
4781    // memory location argument.
4782    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4783    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4784                        SV->getOffset());
4785  }
4786
4787  // __va_list_tag:
4788  //   gp_offset         (0 - 6 * 8)
4789  //   fp_offset         (48 - 48 + 8 * 16)
4790  //   overflow_arg_area (point to parameters coming in memory).
4791  //   reg_save_area
4792  std::vector<SDOperand> MemOps;
4793  SDOperand FIN = Op.getOperand(1);
4794  // Store gp_offset
4795  SDOperand Store = DAG.getStore(Op.getOperand(0),
4796                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4797                                 FIN, SV->getValue(), SV->getOffset());
4798  MemOps.push_back(Store);
4799
4800  // Store fp_offset
4801  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4802                    DAG.getConstant(4, getPointerTy()));
4803  Store = DAG.getStore(Op.getOperand(0),
4804                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4805                       FIN, SV->getValue(), SV->getOffset());
4806  MemOps.push_back(Store);
4807
4808  // Store ptr to overflow_arg_area
4809  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4810                    DAG.getConstant(4, getPointerTy()));
4811  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4812  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4813                       SV->getOffset());
4814  MemOps.push_back(Store);
4815
4816  // Store ptr to reg_save_area.
4817  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4818                    DAG.getConstant(8, getPointerTy()));
4819  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4820  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4821                       SV->getOffset());
4822  MemOps.push_back(Store);
4823  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4824}
4825
4826SDOperand
4827X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4828  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4829  switch (IntNo) {
4830  default: return SDOperand();    // Don't custom lower most intrinsics.
4831    // Comparison intrinsics.
4832  case Intrinsic::x86_sse_comieq_ss:
4833  case Intrinsic::x86_sse_comilt_ss:
4834  case Intrinsic::x86_sse_comile_ss:
4835  case Intrinsic::x86_sse_comigt_ss:
4836  case Intrinsic::x86_sse_comige_ss:
4837  case Intrinsic::x86_sse_comineq_ss:
4838  case Intrinsic::x86_sse_ucomieq_ss:
4839  case Intrinsic::x86_sse_ucomilt_ss:
4840  case Intrinsic::x86_sse_ucomile_ss:
4841  case Intrinsic::x86_sse_ucomigt_ss:
4842  case Intrinsic::x86_sse_ucomige_ss:
4843  case Intrinsic::x86_sse_ucomineq_ss:
4844  case Intrinsic::x86_sse2_comieq_sd:
4845  case Intrinsic::x86_sse2_comilt_sd:
4846  case Intrinsic::x86_sse2_comile_sd:
4847  case Intrinsic::x86_sse2_comigt_sd:
4848  case Intrinsic::x86_sse2_comige_sd:
4849  case Intrinsic::x86_sse2_comineq_sd:
4850  case Intrinsic::x86_sse2_ucomieq_sd:
4851  case Intrinsic::x86_sse2_ucomilt_sd:
4852  case Intrinsic::x86_sse2_ucomile_sd:
4853  case Intrinsic::x86_sse2_ucomigt_sd:
4854  case Intrinsic::x86_sse2_ucomige_sd:
4855  case Intrinsic::x86_sse2_ucomineq_sd: {
4856    unsigned Opc = 0;
4857    ISD::CondCode CC = ISD::SETCC_INVALID;
4858    switch (IntNo) {
4859    default: break;
4860    case Intrinsic::x86_sse_comieq_ss:
4861    case Intrinsic::x86_sse2_comieq_sd:
4862      Opc = X86ISD::COMI;
4863      CC = ISD::SETEQ;
4864      break;
4865    case Intrinsic::x86_sse_comilt_ss:
4866    case Intrinsic::x86_sse2_comilt_sd:
4867      Opc = X86ISD::COMI;
4868      CC = ISD::SETLT;
4869      break;
4870    case Intrinsic::x86_sse_comile_ss:
4871    case Intrinsic::x86_sse2_comile_sd:
4872      Opc = X86ISD::COMI;
4873      CC = ISD::SETLE;
4874      break;
4875    case Intrinsic::x86_sse_comigt_ss:
4876    case Intrinsic::x86_sse2_comigt_sd:
4877      Opc = X86ISD::COMI;
4878      CC = ISD::SETGT;
4879      break;
4880    case Intrinsic::x86_sse_comige_ss:
4881    case Intrinsic::x86_sse2_comige_sd:
4882      Opc = X86ISD::COMI;
4883      CC = ISD::SETGE;
4884      break;
4885    case Intrinsic::x86_sse_comineq_ss:
4886    case Intrinsic::x86_sse2_comineq_sd:
4887      Opc = X86ISD::COMI;
4888      CC = ISD::SETNE;
4889      break;
4890    case Intrinsic::x86_sse_ucomieq_ss:
4891    case Intrinsic::x86_sse2_ucomieq_sd:
4892      Opc = X86ISD::UCOMI;
4893      CC = ISD::SETEQ;
4894      break;
4895    case Intrinsic::x86_sse_ucomilt_ss:
4896    case Intrinsic::x86_sse2_ucomilt_sd:
4897      Opc = X86ISD::UCOMI;
4898      CC = ISD::SETLT;
4899      break;
4900    case Intrinsic::x86_sse_ucomile_ss:
4901    case Intrinsic::x86_sse2_ucomile_sd:
4902      Opc = X86ISD::UCOMI;
4903      CC = ISD::SETLE;
4904      break;
4905    case Intrinsic::x86_sse_ucomigt_ss:
4906    case Intrinsic::x86_sse2_ucomigt_sd:
4907      Opc = X86ISD::UCOMI;
4908      CC = ISD::SETGT;
4909      break;
4910    case Intrinsic::x86_sse_ucomige_ss:
4911    case Intrinsic::x86_sse2_ucomige_sd:
4912      Opc = X86ISD::UCOMI;
4913      CC = ISD::SETGE;
4914      break;
4915    case Intrinsic::x86_sse_ucomineq_ss:
4916    case Intrinsic::x86_sse2_ucomineq_sd:
4917      Opc = X86ISD::UCOMI;
4918      CC = ISD::SETNE;
4919      break;
4920    }
4921
4922    unsigned X86CC;
4923    SDOperand LHS = Op.getOperand(1);
4924    SDOperand RHS = Op.getOperand(2);
4925    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4926
4927    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4928    SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4929    SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4930    VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4931    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4932    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4933    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4934  }
4935  }
4936}
4937
4938/// LowerOperation - Provide custom lowering hooks for some operations.
4939///
4940SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4941  switch (Op.getOpcode()) {
4942  default: assert(0 && "Should not custom lower this!");
4943  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4944  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4945  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4946  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
4947  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4948  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4949  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4950  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
4951  case ISD::SHL_PARTS:
4952  case ISD::SRA_PARTS:
4953  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
4954  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4955  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
4956  case ISD::FABS:               return LowerFABS(Op, DAG);
4957  case ISD::FNEG:               return LowerFNEG(Op, DAG);
4958  case ISD::SETCC:              return LowerSETCC(Op, DAG, DAG.getEntryNode());
4959  case ISD::SELECT:             return LowerSELECT(Op, DAG);
4960  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
4961  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4962  case ISD::CALL:               return LowerCALL(Op, DAG);
4963  case ISD::RET:                return LowerRET(Op, DAG);
4964  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
4965  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
4966  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
4967  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
4968  case ISD::VASTART:            return LowerVASTART(Op, DAG);
4969  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4970  }
4971}
4972
4973const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4974  switch (Opcode) {
4975  default: return NULL;
4976  case X86ISD::SHLD:               return "X86ISD::SHLD";
4977  case X86ISD::SHRD:               return "X86ISD::SHRD";
4978  case X86ISD::FAND:               return "X86ISD::FAND";
4979  case X86ISD::FXOR:               return "X86ISD::FXOR";
4980  case X86ISD::FILD:               return "X86ISD::FILD";
4981  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
4982  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4983  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4984  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4985  case X86ISD::FLD:                return "X86ISD::FLD";
4986  case X86ISD::FST:                return "X86ISD::FST";
4987  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
4988  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
4989  case X86ISD::CALL:               return "X86ISD::CALL";
4990  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
4991  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
4992  case X86ISD::CMP:                return "X86ISD::CMP";
4993  case X86ISD::COMI:               return "X86ISD::COMI";
4994  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
4995  case X86ISD::SETCC:              return "X86ISD::SETCC";
4996  case X86ISD::CMOV:               return "X86ISD::CMOV";
4997  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
4998  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
4999  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
5000  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
5001  case X86ISD::LOAD_PACK:          return "X86ISD::LOAD_PACK";
5002  case X86ISD::LOAD_UA:            return "X86ISD::LOAD_UA";
5003  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
5004  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
5005  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
5006  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
5007  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
5008  case X86ISD::FMAX:               return "X86ISD::FMAX";
5009  case X86ISD::FMIN:               return "X86ISD::FMIN";
5010  }
5011}
5012
5013/// isLegalAddressImmediate - Return true if the integer value or
5014/// GlobalValue can be used as the offset of the target addressing mode.
5015bool X86TargetLowering::isLegalAddressImmediate(int64_t V) const {
5016  // X86 allows a sign-extended 32-bit immediate field.
5017  return (V > -(1LL << 32) && V < (1LL << 32)-1);
5018}
5019
5020bool X86TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
5021  // In 64-bit mode, GV is 64-bit so it won't fit in the 32-bit displacement
5022  // field unless we are in small code model.
5023  if (Subtarget->is64Bit() &&
5024      getTargetMachine().getCodeModel() != CodeModel::Small)
5025    return false;
5026
5027  return (!Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false));
5028}
5029
5030/// isShuffleMaskLegal - Targets can use this to indicate that they only
5031/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5032/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5033/// are assumed to be legal.
5034bool
5035X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
5036  // Only do shuffles on 128-bit vector types for now.
5037  if (MVT::getSizeInBits(VT) == 64) return false;
5038  return (Mask.Val->getNumOperands() <= 4 ||
5039          isSplatMask(Mask.Val)  ||
5040          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
5041          X86::isUNPCKLMask(Mask.Val) ||
5042          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
5043          X86::isUNPCKHMask(Mask.Val));
5044}
5045
5046bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
5047                                               MVT::ValueType EVT,
5048                                               SelectionDAG &DAG) const {
5049  unsigned NumElts = BVOps.size();
5050  // Only do shuffles on 128-bit vector types for now.
5051  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
5052  if (NumElts == 2) return true;
5053  if (NumElts == 4) {
5054    return (isMOVLMask(BVOps)  || isCommutedMOVL(BVOps, true) ||
5055            isSHUFPMask(BVOps) || isCommutedSHUFP(BVOps));
5056  }
5057  return false;
5058}
5059
5060//===----------------------------------------------------------------------===//
5061//                           X86 Scheduler Hooks
5062//===----------------------------------------------------------------------===//
5063
5064MachineBasicBlock *
5065X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
5066                                           MachineBasicBlock *BB) {
5067  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5068  switch (MI->getOpcode()) {
5069  default: assert(false && "Unexpected instr type to insert");
5070  case X86::CMOV_FR32:
5071  case X86::CMOV_FR64:
5072  case X86::CMOV_V4F32:
5073  case X86::CMOV_V2F64:
5074  case X86::CMOV_V2I64: {
5075    // To "insert" a SELECT_CC instruction, we actually have to insert the
5076    // diamond control-flow pattern.  The incoming instruction knows the
5077    // destination vreg to set, the condition code register to branch on, the
5078    // true/false values to select between, and a branch opcode to use.
5079    const BasicBlock *LLVM_BB = BB->getBasicBlock();
5080    ilist<MachineBasicBlock>::iterator It = BB;
5081    ++It;
5082
5083    //  thisMBB:
5084    //  ...
5085    //   TrueVal = ...
5086    //   cmpTY ccX, r1, r2
5087    //   bCC copy1MBB
5088    //   fallthrough --> copy0MBB
5089    MachineBasicBlock *thisMBB = BB;
5090    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
5091    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
5092    unsigned Opc =
5093      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
5094    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
5095    MachineFunction *F = BB->getParent();
5096    F->getBasicBlockList().insert(It, copy0MBB);
5097    F->getBasicBlockList().insert(It, sinkMBB);
5098    // Update machine-CFG edges by first adding all successors of the current
5099    // block to the new block which will contain the Phi node for the select.
5100    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
5101        e = BB->succ_end(); i != e; ++i)
5102      sinkMBB->addSuccessor(*i);
5103    // Next, remove all successors of the current block, and add the true
5104    // and fallthrough blocks as its successors.
5105    while(!BB->succ_empty())
5106      BB->removeSuccessor(BB->succ_begin());
5107    BB->addSuccessor(copy0MBB);
5108    BB->addSuccessor(sinkMBB);
5109
5110    //  copy0MBB:
5111    //   %FalseValue = ...
5112    //   # fallthrough to sinkMBB
5113    BB = copy0MBB;
5114
5115    // Update machine-CFG edges
5116    BB->addSuccessor(sinkMBB);
5117
5118    //  sinkMBB:
5119    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5120    //  ...
5121    BB = sinkMBB;
5122    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
5123      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5124      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5125
5126    delete MI;   // The pseudo instruction is gone now.
5127    return BB;
5128  }
5129
5130  case X86::FP_TO_INT16_IN_MEM:
5131  case X86::FP_TO_INT32_IN_MEM:
5132  case X86::FP_TO_INT64_IN_MEM: {
5133    // Change the floating point control register to use "round towards zero"
5134    // mode when truncating to an integer value.
5135    MachineFunction *F = BB->getParent();
5136    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
5137    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
5138
5139    // Load the old value of the high byte of the control word...
5140    unsigned OldCW =
5141      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
5142    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
5143
5144    // Set the high part to be round to zero...
5145    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
5146      .addImm(0xC7F);
5147
5148    // Reload the modified control word now...
5149    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5150
5151    // Restore the memory image of control word to original value
5152    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
5153      .addReg(OldCW);
5154
5155    // Get the X86 opcode to use.
5156    unsigned Opc;
5157    switch (MI->getOpcode()) {
5158    default: assert(0 && "illegal opcode!");
5159    case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break;
5160    case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break;
5161    case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break;
5162    }
5163
5164    X86AddressMode AM;
5165    MachineOperand &Op = MI->getOperand(0);
5166    if (Op.isRegister()) {
5167      AM.BaseType = X86AddressMode::RegBase;
5168      AM.Base.Reg = Op.getReg();
5169    } else {
5170      AM.BaseType = X86AddressMode::FrameIndexBase;
5171      AM.Base.FrameIndex = Op.getFrameIndex();
5172    }
5173    Op = MI->getOperand(1);
5174    if (Op.isImmediate())
5175      AM.Scale = Op.getImm();
5176    Op = MI->getOperand(2);
5177    if (Op.isImmediate())
5178      AM.IndexReg = Op.getImm();
5179    Op = MI->getOperand(3);
5180    if (Op.isGlobalAddress()) {
5181      AM.GV = Op.getGlobal();
5182    } else {
5183      AM.Disp = Op.getImm();
5184    }
5185    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
5186                      .addReg(MI->getOperand(4).getReg());
5187
5188    // Reload the original control word now.
5189    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5190
5191    delete MI;   // The pseudo instruction is gone now.
5192    return BB;
5193  }
5194  }
5195}
5196
5197//===----------------------------------------------------------------------===//
5198//                           X86 Optimization Hooks
5199//===----------------------------------------------------------------------===//
5200
5201void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
5202                                                       uint64_t Mask,
5203                                                       uint64_t &KnownZero,
5204                                                       uint64_t &KnownOne,
5205                                                       unsigned Depth) const {
5206  unsigned Opc = Op.getOpcode();
5207  assert((Opc >= ISD::BUILTIN_OP_END ||
5208          Opc == ISD::INTRINSIC_WO_CHAIN ||
5209          Opc == ISD::INTRINSIC_W_CHAIN ||
5210          Opc == ISD::INTRINSIC_VOID) &&
5211         "Should use MaskedValueIsZero if you don't know whether Op"
5212         " is a target node!");
5213
5214  KnownZero = KnownOne = 0;   // Don't know anything.
5215  switch (Opc) {
5216  default: break;
5217  case X86ISD::SETCC:
5218    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
5219    break;
5220  }
5221}
5222
5223/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5224/// element of the result of the vector shuffle.
5225static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
5226  MVT::ValueType VT = N->getValueType(0);
5227  SDOperand PermMask = N->getOperand(2);
5228  unsigned NumElems = PermMask.getNumOperands();
5229  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
5230  i %= NumElems;
5231  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5232    return (i == 0)
5233      ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
5234  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
5235    SDOperand Idx = PermMask.getOperand(i);
5236    if (Idx.getOpcode() == ISD::UNDEF)
5237      return DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
5238    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
5239  }
5240  return SDOperand();
5241}
5242
5243/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
5244/// node is a GlobalAddress + an offset.
5245static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
5246  unsigned Opc = N->getOpcode();
5247  if (Opc == X86ISD::Wrapper) {
5248    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
5249      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
5250      return true;
5251    }
5252  } else if (Opc == ISD::ADD) {
5253    SDOperand N1 = N->getOperand(0);
5254    SDOperand N2 = N->getOperand(1);
5255    if (isGAPlusOffset(N1.Val, GA, Offset)) {
5256      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
5257      if (V) {
5258        Offset += V->getSignExtended();
5259        return true;
5260      }
5261    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
5262      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
5263      if (V) {
5264        Offset += V->getSignExtended();
5265        return true;
5266      }
5267    }
5268  }
5269  return false;
5270}
5271
5272/// isConsecutiveLoad - Returns true if N is loading from an address of Base
5273/// + Dist * Size.
5274static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
5275                              MachineFrameInfo *MFI) {
5276  if (N->getOperand(0).Val != Base->getOperand(0).Val)
5277    return false;
5278
5279  SDOperand Loc = N->getOperand(1);
5280  SDOperand BaseLoc = Base->getOperand(1);
5281  if (Loc.getOpcode() == ISD::FrameIndex) {
5282    if (BaseLoc.getOpcode() != ISD::FrameIndex)
5283      return false;
5284    int FI  = dyn_cast<FrameIndexSDNode>(Loc)->getIndex();
5285    int BFI = dyn_cast<FrameIndexSDNode>(BaseLoc)->getIndex();
5286    int FS  = MFI->getObjectSize(FI);
5287    int BFS = MFI->getObjectSize(BFI);
5288    if (FS != BFS || FS != Size) return false;
5289    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
5290  } else {
5291    GlobalValue *GV1 = NULL;
5292    GlobalValue *GV2 = NULL;
5293    int64_t Offset1 = 0;
5294    int64_t Offset2 = 0;
5295    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
5296    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
5297    if (isGA1 && isGA2 && GV1 == GV2)
5298      return Offset1 == (Offset2 + Dist*Size);
5299  }
5300
5301  return false;
5302}
5303
5304static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
5305                              const X86Subtarget *Subtarget) {
5306  GlobalValue *GV;
5307  int64_t Offset;
5308  if (isGAPlusOffset(Base, GV, Offset))
5309    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
5310  else {
5311    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
5312    int BFI = dyn_cast<FrameIndexSDNode>(Base)->getIndex();
5313    if (BFI < 0)
5314      // Fixed objects do not specify alignment, however the offsets are known.
5315      return ((Subtarget->getStackAlignment() % 16) == 0 &&
5316              (MFI->getObjectOffset(BFI) % 16) == 0);
5317    else
5318      return MFI->getObjectAlignment(BFI) >= 16;
5319  }
5320  return false;
5321}
5322
5323
5324/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5325/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5326/// if the load addresses are consecutive, non-overlapping, and in the right
5327/// order.
5328static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
5329                                       const X86Subtarget *Subtarget) {
5330  MachineFunction &MF = DAG.getMachineFunction();
5331  MachineFrameInfo *MFI = MF.getFrameInfo();
5332  MVT::ValueType VT = N->getValueType(0);
5333  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
5334  SDOperand PermMask = N->getOperand(2);
5335  int NumElems = (int)PermMask.getNumOperands();
5336  SDNode *Base = NULL;
5337  for (int i = 0; i < NumElems; ++i) {
5338    SDOperand Idx = PermMask.getOperand(i);
5339    if (Idx.getOpcode() == ISD::UNDEF) {
5340      if (!Base) return SDOperand();
5341    } else {
5342      SDOperand Arg =
5343        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
5344      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
5345        return SDOperand();
5346      if (!Base)
5347        Base = Arg.Val;
5348      else if (!isConsecutiveLoad(Arg.Val, Base,
5349                                  i, MVT::getSizeInBits(EVT)/8,MFI))
5350        return SDOperand();
5351    }
5352  }
5353
5354  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
5355  if (isAlign16) {
5356    LoadSDNode *LD = cast<LoadSDNode>(Base);
5357    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5358                       LD->getSrcValueOffset());
5359  } else {
5360    // Just use movups, it's shorter.
5361    std::vector<MVT::ValueType> Tys;
5362    Tys.push_back(MVT::v4f32);
5363    Tys.push_back(MVT::Other);
5364    SmallVector<SDOperand, 3> Ops;
5365    Ops.push_back(Base->getOperand(0));
5366    Ops.push_back(Base->getOperand(1));
5367    Ops.push_back(Base->getOperand(2));
5368    return DAG.getNode(ISD::BIT_CONVERT, VT,
5369                       DAG.getNode(X86ISD::LOAD_UA, Tys, &Ops[0], Ops.size()));
5370  }
5371}
5372
5373/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5374static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5375                                      const X86Subtarget *Subtarget) {
5376  SDOperand Cond = N->getOperand(0);
5377
5378  // If we have SSE[12] support, try to form min/max nodes.
5379  if (Subtarget->hasSSE2() &&
5380      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5381    if (Cond.getOpcode() == ISD::SETCC) {
5382      // Get the LHS/RHS of the select.
5383      SDOperand LHS = N->getOperand(1);
5384      SDOperand RHS = N->getOperand(2);
5385      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5386
5387      unsigned Opcode = 0;
5388      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5389        switch (CC) {
5390        default: break;
5391        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
5392        case ISD::SETULE:
5393        case ISD::SETLE:
5394          if (!UnsafeFPMath) break;
5395          // FALL THROUGH.
5396        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
5397        case ISD::SETLT:
5398          Opcode = X86ISD::FMIN;
5399          break;
5400
5401        case ISD::SETOGT: // (X > Y) ? X : Y -> max
5402        case ISD::SETUGT:
5403        case ISD::SETGT:
5404          if (!UnsafeFPMath) break;
5405          // FALL THROUGH.
5406        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
5407        case ISD::SETGE:
5408          Opcode = X86ISD::FMAX;
5409          break;
5410        }
5411      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5412        switch (CC) {
5413        default: break;
5414        case ISD::SETOGT: // (X > Y) ? Y : X -> min
5415        case ISD::SETUGT:
5416        case ISD::SETGT:
5417          if (!UnsafeFPMath) break;
5418          // FALL THROUGH.
5419        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
5420        case ISD::SETGE:
5421          Opcode = X86ISD::FMIN;
5422          break;
5423
5424        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
5425        case ISD::SETULE:
5426        case ISD::SETLE:
5427          if (!UnsafeFPMath) break;
5428          // FALL THROUGH.
5429        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
5430        case ISD::SETLT:
5431          Opcode = X86ISD::FMAX;
5432          break;
5433        }
5434      }
5435
5436      if (Opcode)
5437        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5438    }
5439
5440  }
5441
5442  return SDOperand();
5443}
5444
5445
5446SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5447                                               DAGCombinerInfo &DCI) const {
5448  SelectionDAG &DAG = DCI.DAG;
5449  switch (N->getOpcode()) {
5450  default: break;
5451  case ISD::VECTOR_SHUFFLE:
5452    return PerformShuffleCombine(N, DAG, Subtarget);
5453  case ISD::SELECT:
5454    return PerformSELECTCombine(N, DAG, Subtarget);
5455  }
5456
5457  return SDOperand();
5458}
5459
5460//===----------------------------------------------------------------------===//
5461//                           X86 Inline Assembly Support
5462//===----------------------------------------------------------------------===//
5463
5464/// getConstraintType - Given a constraint letter, return the type of
5465/// constraint it is for this target.
5466X86TargetLowering::ConstraintType
5467X86TargetLowering::getConstraintType(char ConstraintLetter) const {
5468  switch (ConstraintLetter) {
5469  case 'A':
5470  case 'r':
5471  case 'R':
5472  case 'l':
5473  case 'q':
5474  case 'Q':
5475  case 'x':
5476  case 'Y':
5477    return C_RegisterClass;
5478  default: return TargetLowering::getConstraintType(ConstraintLetter);
5479  }
5480}
5481
5482/// isOperandValidForConstraint - Return the specified operand (possibly
5483/// modified) if the specified SDOperand is valid for the specified target
5484/// constraint letter, otherwise return null.
5485SDOperand X86TargetLowering::
5486isOperandValidForConstraint(SDOperand Op, char Constraint, SelectionDAG &DAG) {
5487  switch (Constraint) {
5488  default: break;
5489  case 'i':
5490    // Literal immediates are always ok.
5491    if (isa<ConstantSDNode>(Op)) return Op;
5492
5493    // If we are in non-pic codegen mode, we allow the address of a global to
5494    // be used with 'i'.
5495    if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5496      if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
5497        return SDOperand(0, 0);
5498
5499      if (GA->getOpcode() != ISD::TargetGlobalAddress)
5500        Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5501                                        GA->getOffset());
5502      return Op;
5503    }
5504
5505    // Otherwise, not valid for this mode.
5506    return SDOperand(0, 0);
5507  }
5508  return TargetLowering::isOperandValidForConstraint(Op, Constraint, DAG);
5509}
5510
5511
5512std::vector<unsigned> X86TargetLowering::
5513getRegClassForInlineAsmConstraint(const std::string &Constraint,
5514                                  MVT::ValueType VT) const {
5515  if (Constraint.size() == 1) {
5516    // FIXME: not handling fp-stack yet!
5517    // FIXME: not handling MMX registers yet ('y' constraint).
5518    switch (Constraint[0]) {      // GCC X86 Constraint Letters
5519    default: break;  // Unknown constraint letter
5520    case 'A':   // EAX/EDX
5521      if (VT == MVT::i32 || VT == MVT::i64)
5522        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5523      break;
5524    case 'r':   // GENERAL_REGS
5525    case 'R':   // LEGACY_REGS
5526      if (VT == MVT::i64 && Subtarget->is64Bit())
5527        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
5528                                     X86::RSI, X86::RDI, X86::RBP, X86::RSP,
5529                                     X86::R8,  X86::R9,  X86::R10, X86::R11,
5530                                     X86::R12, X86::R13, X86::R14, X86::R15, 0);
5531      if (VT == MVT::i32)
5532        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
5533                                     X86::ESI, X86::EDI, X86::EBP, X86::ESP, 0);
5534      else if (VT == MVT::i16)
5535        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
5536                                     X86::SI, X86::DI, X86::BP, X86::SP, 0);
5537      else if (VT == MVT::i8)
5538        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
5539      break;
5540    case 'l':   // INDEX_REGS
5541      if (VT == MVT::i32)
5542        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
5543                                     X86::ESI, X86::EDI, X86::EBP, 0);
5544      else if (VT == MVT::i16)
5545        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
5546                                     X86::SI, X86::DI, X86::BP, 0);
5547      else if (VT == MVT::i8)
5548        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
5549      break;
5550    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
5551    case 'Q':   // Q_REGS
5552      if (VT == MVT::i32)
5553        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5554      else if (VT == MVT::i16)
5555        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5556      else if (VT == MVT::i8)
5557        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
5558        break;
5559    case 'x':   // SSE_REGS if SSE1 allowed
5560      if (Subtarget->hasSSE1())
5561        return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
5562                                     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
5563                                     0);
5564      return std::vector<unsigned>();
5565    case 'Y':   // SSE_REGS if SSE2 allowed
5566      if (Subtarget->hasSSE2())
5567        return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
5568                                     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
5569                                     0);
5570      return std::vector<unsigned>();
5571    }
5572  }
5573
5574  return std::vector<unsigned>();
5575}
5576
5577std::pair<unsigned, const TargetRegisterClass*>
5578X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5579                                                MVT::ValueType VT) const {
5580  // Use the default implementation in TargetLowering to convert the register
5581  // constraint into a member of a register class.
5582  std::pair<unsigned, const TargetRegisterClass*> Res;
5583  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5584
5585  // Not found as a standard register?
5586  if (Res.second == 0) {
5587    // GCC calls "st(0)" just plain "st".
5588    if (StringsEqualNoCase("{st}", Constraint)) {
5589      Res.first = X86::ST0;
5590      Res.second = X86::RSTRegisterClass;
5591    }
5592
5593    return Res;
5594  }
5595
5596  // Otherwise, check to see if this is a register class of the wrong value
5597  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5598  // turn into {ax},{dx}.
5599  if (Res.second->hasType(VT))
5600    return Res;   // Correct type already, nothing to do.
5601
5602  // All of the single-register GCC register classes map their values onto
5603  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
5604  // really want an 8-bit or 32-bit register, map to the appropriate register
5605  // class and return the appropriate register.
5606  if (Res.second != X86::GR16RegisterClass)
5607    return Res;
5608
5609  if (VT == MVT::i8) {
5610    unsigned DestReg = 0;
5611    switch (Res.first) {
5612    default: break;
5613    case X86::AX: DestReg = X86::AL; break;
5614    case X86::DX: DestReg = X86::DL; break;
5615    case X86::CX: DestReg = X86::CL; break;
5616    case X86::BX: DestReg = X86::BL; break;
5617    }
5618    if (DestReg) {
5619      Res.first = DestReg;
5620      Res.second = Res.second = X86::GR8RegisterClass;
5621    }
5622  } else if (VT == MVT::i32) {
5623    unsigned DestReg = 0;
5624    switch (Res.first) {
5625    default: break;
5626    case X86::AX: DestReg = X86::EAX; break;
5627    case X86::DX: DestReg = X86::EDX; break;
5628    case X86::CX: DestReg = X86::ECX; break;
5629    case X86::BX: DestReg = X86::EBX; break;
5630    case X86::SI: DestReg = X86::ESI; break;
5631    case X86::DI: DestReg = X86::EDI; break;
5632    case X86::BP: DestReg = X86::EBP; break;
5633    case X86::SP: DestReg = X86::ESP; break;
5634    }
5635    if (DestReg) {
5636      Res.first = DestReg;
5637      Res.second = Res.second = X86::GR32RegisterClass;
5638    }
5639  } else if (VT == MVT::i64) {
5640    unsigned DestReg = 0;
5641    switch (Res.first) {
5642    default: break;
5643    case X86::AX: DestReg = X86::RAX; break;
5644    case X86::DX: DestReg = X86::RDX; break;
5645    case X86::CX: DestReg = X86::RCX; break;
5646    case X86::BX: DestReg = X86::RBX; break;
5647    case X86::SI: DestReg = X86::RSI; break;
5648    case X86::DI: DestReg = X86::RDI; break;
5649    case X86::BP: DestReg = X86::RBP; break;
5650    case X86::SP: DestReg = X86::RSP; break;
5651    }
5652    if (DestReg) {
5653      Res.first = DestReg;
5654      Res.second = Res.second = X86::GR64RegisterClass;
5655    }
5656  }
5657
5658  return Res;
5659}
5660