X86ISelLowering.cpp revision 32c727cd95a7718e10e225bb9fc00be6681706aa
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "X86FastISel.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Function.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/VectorExtras.h"
29#include "llvm/CodeGen/CallingConvLower.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/PseudoSourceValue.h"
36#include "llvm/CodeGen/SelectionDAG.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Target/TargetOptions.h"
40#include "llvm/ADT/SmallSet.h"
41#include "llvm/ADT/StringExtras.h"
42using namespace llvm;
43
44// Forward declarations.
45static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG);
46
47X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
48  : TargetLowering(TM) {
49  Subtarget = &TM.getSubtarget<X86Subtarget>();
50  X86ScalarSSEf64 = Subtarget->hasSSE2();
51  X86ScalarSSEf32 = Subtarget->hasSSE1();
52  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
53
54  bool Fast = false;
55
56  RegInfo = TM.getRegisterInfo();
57
58  // Set up the TargetLowering object.
59
60  // X86 is weird, it always uses i8 for shift amounts and setcc results.
61  setShiftAmountType(MVT::i8);
62  setSetCCResultContents(ZeroOrOneSetCCResult);
63  setSchedulingPreference(SchedulingForRegPressure);
64  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
65  setStackPointerRegisterToSaveRestore(X86StackPtr);
66
67  if (Subtarget->isTargetDarwin()) {
68    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
69    setUseUnderscoreSetJmp(false);
70    setUseUnderscoreLongJmp(false);
71  } else if (Subtarget->isTargetMingw()) {
72    // MS runtime is weird: it exports _setjmp, but longjmp!
73    setUseUnderscoreSetJmp(true);
74    setUseUnderscoreLongJmp(false);
75  } else {
76    setUseUnderscoreSetJmp(true);
77    setUseUnderscoreLongJmp(true);
78  }
79
80  // Set up the register classes.
81  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
82  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
83  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
84  if (Subtarget->is64Bit())
85    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
86
87  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
88
89  // We don't accept any truncstore of integer registers.
90  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
91  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
92  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
93  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
94  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
95  setTruncStoreAction(MVT::i16, MVT::i8, Expand);
96
97  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
98  // operation.
99  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
100  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
101  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
102
103  if (Subtarget->is64Bit()) {
104    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
105    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
106  } else {
107    if (X86ScalarSSEf64)
108      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
109      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
110    else
111      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
112  }
113
114  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
115  // this operation.
116  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
117  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
118  // SSE has no i16 to fp conversion, only i32
119  if (X86ScalarSSEf32) {
120    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
121    // f32 and f64 cases are Legal, f80 case is not
122    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
123  } else {
124    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
125    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
126  }
127
128  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
129  // are Legal, f80 is custom lowered.
130  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
131  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
132
133  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
134  // this operation.
135  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
136  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
137
138  if (X86ScalarSSEf32) {
139    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
140    // f32 and f64 cases are Legal, f80 case is not
141    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
142  } else {
143    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
144    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
145  }
146
147  // Handle FP_TO_UINT by promoting the destination to a larger signed
148  // conversion.
149  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
150  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
151  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
152
153  if (Subtarget->is64Bit()) {
154    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
155    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
156  } else {
157    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
158      // Expand FP_TO_UINT into a select.
159      // FIXME: We would like to use a Custom expander here eventually to do
160      // the optimal thing for SSE vs. the default expansion in the legalizer.
161      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
162    else
163      // With SSE3 we can use fisttpll to convert to a signed i64.
164      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
165  }
166
167  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
168  if (!X86ScalarSSEf64) {
169    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
170    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
171  }
172
173  // Scalar integer divide and remainder are lowered to use operations that
174  // produce two results, to match the available instructions. This exposes
175  // the two-result form to trivial CSE, which is able to combine x/y and x%y
176  // into a single instruction.
177  //
178  // Scalar integer multiply-high is also lowered to use two-result
179  // operations, to match the available instructions. However, plain multiply
180  // (low) operations are left as Legal, as there are single-result
181  // instructions for this in x86. Using the two-result multiply instructions
182  // when both high and low results are needed must be arranged by dagcombine.
183  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
184  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
185  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
186  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
187  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
188  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
189  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
190  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
191  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
192  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
193  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
194  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
195  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
196  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
197  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
198  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
199  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
200  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
201  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
202  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
203  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
204  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
205  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
206  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
207
208  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
209  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
210  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
211  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
212  if (Subtarget->is64Bit())
213    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
214  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
215  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
216  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
217  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
218  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
219  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
220  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
221  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
222
223  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
224  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
225  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
226  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
227  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
228  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
229  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
230  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
231  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
232  if (Subtarget->is64Bit()) {
233    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
234    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
235    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
236  }
237
238  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
239  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
240
241  // These should be promoted to a larger select which is supported.
242  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
243  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
244  // X86 wants to expand cmov itself.
245  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
246  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
247  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
248  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
249  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
250  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
251  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
252  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
253  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
254  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
255  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
256  if (Subtarget->is64Bit()) {
257    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
258    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
259  }
260  // X86 ret instruction may pop stack.
261  setOperationAction(ISD::RET             , MVT::Other, Custom);
262  if (!Subtarget->is64Bit())
263    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
264
265  // Darwin ABI issue.
266  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
267  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
268  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
269  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
270  if (Subtarget->is64Bit())
271    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
272  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
273  if (Subtarget->is64Bit()) {
274    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
275    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
276    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
277    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
278  }
279  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
280  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
281  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
282  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
283  if (Subtarget->is64Bit()) {
284    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
285    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
286    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
287  }
288
289  if (Subtarget->hasSSE1())
290    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
291
292  if (!Subtarget->hasSSE2())
293    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
294
295  // Expand certain atomics
296  setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i8, Custom);
297  setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i16, Custom);
298  setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i32, Custom);
299  setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i64, Custom);
300
301  setOperationAction(ISD::ATOMIC_LOAD_SUB , MVT::i8, Expand);
302  setOperationAction(ISD::ATOMIC_LOAD_SUB , MVT::i16, Expand);
303  setOperationAction(ISD::ATOMIC_LOAD_SUB , MVT::i32, Expand);
304  setOperationAction(ISD::ATOMIC_LOAD_SUB , MVT::i64, Expand);
305
306  // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
307  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
308  // FIXME - use subtarget debug flags
309  if (!Subtarget->isTargetDarwin() &&
310      !Subtarget->isTargetELF() &&
311      !Subtarget->isTargetCygMing()) {
312    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
313    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
314  }
315
316  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
317  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
318  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
319  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
320  if (Subtarget->is64Bit()) {
321    // FIXME: Verify
322    setExceptionPointerRegister(X86::RAX);
323    setExceptionSelectorRegister(X86::RDX);
324  } else {
325    setExceptionPointerRegister(X86::EAX);
326    setExceptionSelectorRegister(X86::EDX);
327  }
328  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
329
330  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
331
332  setOperationAction(ISD::TRAP, MVT::Other, Legal);
333
334  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
335  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
336  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
337  if (Subtarget->is64Bit()) {
338    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
339    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
340  } else {
341    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
342    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
343  }
344
345  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
346  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
347  if (Subtarget->is64Bit())
348    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
349  if (Subtarget->isTargetCygMing())
350    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
351  else
352    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
353
354  if (X86ScalarSSEf64) {
355    // f32 and f64 use SSE.
356    // Set up the FP register classes.
357    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
358    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
359
360    // Use ANDPD to simulate FABS.
361    setOperationAction(ISD::FABS , MVT::f64, Custom);
362    setOperationAction(ISD::FABS , MVT::f32, Custom);
363
364    // Use XORP to simulate FNEG.
365    setOperationAction(ISD::FNEG , MVT::f64, Custom);
366    setOperationAction(ISD::FNEG , MVT::f32, Custom);
367
368    // Use ANDPD and ORPD to simulate FCOPYSIGN.
369    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
370    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
371
372    // We don't support sin/cos/fmod
373    setOperationAction(ISD::FSIN , MVT::f64, Expand);
374    setOperationAction(ISD::FCOS , MVT::f64, Expand);
375    setOperationAction(ISD::FSIN , MVT::f32, Expand);
376    setOperationAction(ISD::FCOS , MVT::f32, Expand);
377
378    // Expand FP immediates into loads from the stack, except for the special
379    // cases we handle.
380    addLegalFPImmediate(APFloat(+0.0)); // xorpd
381    addLegalFPImmediate(APFloat(+0.0f)); // xorps
382
383    // Floating truncations from f80 and extensions to f80 go through memory.
384    // If optimizing, we lie about this though and handle it in
385    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
386    if (Fast) {
387      setConvertAction(MVT::f32, MVT::f80, Expand);
388      setConvertAction(MVT::f64, MVT::f80, Expand);
389      setConvertAction(MVT::f80, MVT::f32, Expand);
390      setConvertAction(MVT::f80, MVT::f64, Expand);
391    }
392  } else if (X86ScalarSSEf32) {
393    // Use SSE for f32, x87 for f64.
394    // Set up the FP register classes.
395    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
396    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
397
398    // Use ANDPS to simulate FABS.
399    setOperationAction(ISD::FABS , MVT::f32, Custom);
400
401    // Use XORP to simulate FNEG.
402    setOperationAction(ISD::FNEG , MVT::f32, Custom);
403
404    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
405
406    // Use ANDPS and ORPS to simulate FCOPYSIGN.
407    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
408    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
409
410    // We don't support sin/cos/fmod
411    setOperationAction(ISD::FSIN , MVT::f32, Expand);
412    setOperationAction(ISD::FCOS , MVT::f32, Expand);
413
414    // Special cases we handle for FP constants.
415    addLegalFPImmediate(APFloat(+0.0f)); // xorps
416    addLegalFPImmediate(APFloat(+0.0)); // FLD0
417    addLegalFPImmediate(APFloat(+1.0)); // FLD1
418    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
419    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
420
421    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
422    // this though and handle it in InstructionSelectPreprocess so that
423    // dagcombine2 can hack on these.
424    if (Fast) {
425      setConvertAction(MVT::f32, MVT::f64, Expand);
426      setConvertAction(MVT::f32, MVT::f80, Expand);
427      setConvertAction(MVT::f80, MVT::f32, Expand);
428      setConvertAction(MVT::f64, MVT::f32, Expand);
429      // And x87->x87 truncations also.
430      setConvertAction(MVT::f80, MVT::f64, Expand);
431    }
432
433    if (!UnsafeFPMath) {
434      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
435      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
436    }
437  } else {
438    // f32 and f64 in x87.
439    // Set up the FP register classes.
440    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
441    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
442
443    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
444    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
445    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
446    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
447
448    // Floating truncations go through memory.  If optimizing, we lie about
449    // this though and handle it in InstructionSelectPreprocess so that
450    // dagcombine2 can hack on these.
451    if (Fast) {
452      setConvertAction(MVT::f80, MVT::f32, Expand);
453      setConvertAction(MVT::f64, MVT::f32, Expand);
454      setConvertAction(MVT::f80, MVT::f64, Expand);
455    }
456
457    if (!UnsafeFPMath) {
458      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
459      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
460    }
461    addLegalFPImmediate(APFloat(+0.0)); // FLD0
462    addLegalFPImmediate(APFloat(+1.0)); // FLD1
463    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
464    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
465    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
466    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
467    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
468    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
469  }
470
471  // Long double always uses X87.
472  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
473  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
474  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
475  {
476    APFloat TmpFlt(+0.0);
477    TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
478    addLegalFPImmediate(TmpFlt);  // FLD0
479    TmpFlt.changeSign();
480    addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
481    APFloat TmpFlt2(+1.0);
482    TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
483    addLegalFPImmediate(TmpFlt2);  // FLD1
484    TmpFlt2.changeSign();
485    addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
486  }
487
488  if (!UnsafeFPMath) {
489    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
490    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
491  }
492
493  // Always use a library call for pow.
494  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
495  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
496  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
497
498  // First set operation action for all vector types to expand. Then we
499  // will selectively turn on ones that can be effectively codegen'd.
500  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
501       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
502    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
503    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
504    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
505    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
506    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
507    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
508    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
509    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
510    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
511    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
512    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
513    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
514    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
515    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::SimpleValueType)VT, Expand);
516    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::SimpleValueType)VT, Expand);
517    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::SimpleValueType)VT, Expand);
518    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
519    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
520    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
521    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
522    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
523    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
524    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
525    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
526    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
527    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
528    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
529    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
530    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
531    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
532    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
533    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
534    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
535    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
536    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
537    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
538    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
539    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
540  }
541
542  if (Subtarget->hasMMX()) {
543    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
544    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
545    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
546    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
547    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
548
549    // FIXME: add MMX packed arithmetics
550
551    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
552    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
553    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
554    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
555
556    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
557    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
558    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
559    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
560
561    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
562    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
563
564    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
565    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
566    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
567    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
568    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
569    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
570    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
571
572    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
573    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
574    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
575    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
576    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
577    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
578    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
579
580    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
581    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
582    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
583    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
584    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
585    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
586    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
587
588    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
589    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
590    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
591    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
592    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
593    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
594    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
595    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
596    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
597
598    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
599    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
600    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
601    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
602    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
603
604    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
605    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
606    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
607    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
608
609    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
610    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
611    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
612    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
613
614    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
615  }
616
617  if (Subtarget->hasSSE1()) {
618    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
619
620    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
621    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
622    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
623    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
624    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
625    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
626    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
627    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
628    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
629    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
630    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
631    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
632  }
633
634  if (Subtarget->hasSSE2()) {
635    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
636    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
637    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
638    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
639    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
640
641    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
642    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
643    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
644    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
645    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
646    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
647    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
648    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
649    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
650    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
651    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
652    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
653    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
654    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
655    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
656
657    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
658    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
659    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
660    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
661
662    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
663    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
664    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
665    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
666    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
667
668    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
669    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
670      MVT VT = (MVT::SimpleValueType)i;
671      // Do not attempt to custom lower non-power-of-2 vectors
672      if (!isPowerOf2_32(VT.getVectorNumElements()))
673        continue;
674      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
675      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
676      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
677    }
678    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
679    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
680    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
681    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
682    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
683    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
684    if (Subtarget->is64Bit()) {
685      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
686      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
687    }
688
689    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
690    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
691      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
692      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v2i64);
693      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
694      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v2i64);
695      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
696      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v2i64);
697      setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
698      AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v2i64);
699      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
700      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64);
701    }
702
703    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
704
705    // Custom lower v2i64 and v2f64 selects.
706    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
707    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
708    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
709    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
710
711  }
712
713  if (Subtarget->hasSSE41()) {
714    // FIXME: Do we need to handle scalar-to-vector here?
715    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
716    setOperationAction(ISD::MUL,                MVT::v2i64, Legal);
717
718    // i8 and i16 vectors are custom , because the source register and source
719    // source memory operand types are not the same width.  f32 vectors are
720    // custom since the immediate controlling the insert encodes additional
721    // information.
722    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
723    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
724    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Legal);
725    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
726
727    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
728    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
729    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
730    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
731
732    if (Subtarget->is64Bit()) {
733      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
734      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
735    }
736  }
737
738  if (Subtarget->hasSSE42()) {
739    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
740  }
741
742  // We want to custom lower some of our intrinsics.
743  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
744
745  // We have target-specific dag combine patterns for the following nodes:
746  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
747  setTargetDAGCombine(ISD::BUILD_VECTOR);
748  setTargetDAGCombine(ISD::SELECT);
749  setTargetDAGCombine(ISD::STORE);
750
751  computeRegisterProperties();
752
753  // FIXME: These should be based on subtarget info. Plus, the values should
754  // be smaller when we are in optimizing for size mode.
755  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
756  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
757  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
758  allowUnalignedMemoryAccesses = true; // x86 supports it!
759  setPrefLoopAlignment(16);
760}
761
762
763MVT X86TargetLowering::getSetCCResultType(const SDValue &) const {
764  return MVT::i8;
765}
766
767
768/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
769/// the desired ByVal argument alignment.
770static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
771  if (MaxAlign == 16)
772    return;
773  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
774    if (VTy->getBitWidth() == 128)
775      MaxAlign = 16;
776  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
777    unsigned EltAlign = 0;
778    getMaxByValAlign(ATy->getElementType(), EltAlign);
779    if (EltAlign > MaxAlign)
780      MaxAlign = EltAlign;
781  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
782    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
783      unsigned EltAlign = 0;
784      getMaxByValAlign(STy->getElementType(i), EltAlign);
785      if (EltAlign > MaxAlign)
786        MaxAlign = EltAlign;
787      if (MaxAlign == 16)
788        break;
789    }
790  }
791  return;
792}
793
794/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
795/// function arguments in the caller parameter area. For X86, aggregates
796/// that contain SSE vectors are placed at 16-byte boundaries while the rest
797/// are at 4-byte boundaries.
798unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
799  if (Subtarget->is64Bit()) {
800    // Max of 8 and alignment of type.
801    unsigned TyAlign = getTargetData()->getABITypeAlignment(Ty);
802    if (TyAlign > 8)
803      return TyAlign;
804    return 8;
805  }
806
807  unsigned Align = 4;
808  if (Subtarget->hasSSE1())
809    getMaxByValAlign(Ty, Align);
810  return Align;
811}
812
813/// getOptimalMemOpType - Returns the target specific optimal type for load
814/// and store operations as a result of memset, memcpy, and memmove
815/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
816/// determining it.
817MVT
818X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
819                                       bool isSrcConst, bool isSrcStr) const {
820  if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
821    return MVT::v4i32;
822  if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
823    return MVT::v4f32;
824  if (Subtarget->is64Bit() && Size >= 8)
825    return MVT::i64;
826  return MVT::i32;
827}
828
829
830/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
831/// jumptable.
832SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
833                                                      SelectionDAG &DAG) const {
834  if (usesGlobalOffsetTable())
835    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
836  if (!Subtarget->isPICStyleRIPRel())
837    return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
838  return Table;
839}
840
841//===----------------------------------------------------------------------===//
842//               Return Value Calling Convention Implementation
843//===----------------------------------------------------------------------===//
844
845#include "X86GenCallingConv.inc"
846
847/// LowerRET - Lower an ISD::RET node.
848SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
849  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
850
851  SmallVector<CCValAssign, 16> RVLocs;
852  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
853  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
854  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
855  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
856
857  // If this is the first return lowered for this function, add the regs to the
858  // liveout set for the function.
859  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
860    for (unsigned i = 0; i != RVLocs.size(); ++i)
861      if (RVLocs[i].isRegLoc())
862        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
863  }
864  SDValue Chain = Op.getOperand(0);
865
866  // Handle tail call return.
867  Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
868  if (Chain.getOpcode() == X86ISD::TAILCALL) {
869    SDValue TailCall = Chain;
870    SDValue TargetAddress = TailCall.getOperand(1);
871    SDValue StackAdjustment = TailCall.getOperand(2);
872    assert(((TargetAddress.getOpcode() == ISD::Register &&
873               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
874                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
875              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
876              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
877             "Expecting an global address, external symbol, or register");
878    assert(StackAdjustment.getOpcode() == ISD::Constant &&
879           "Expecting a const value");
880
881    SmallVector<SDValue,8> Operands;
882    Operands.push_back(Chain.getOperand(0));
883    Operands.push_back(TargetAddress);
884    Operands.push_back(StackAdjustment);
885    // Copy registers used by the call. Last operand is a flag so it is not
886    // copied.
887    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
888      Operands.push_back(Chain.getOperand(i));
889    }
890    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
891                       Operands.size());
892  }
893
894  // Regular return.
895  SDValue Flag;
896
897  SmallVector<SDValue, 6> RetOps;
898  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
899  // Operand #1 = Bytes To Pop
900  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
901
902  // Copy the result values into the output registers.
903  for (unsigned i = 0; i != RVLocs.size(); ++i) {
904    CCValAssign &VA = RVLocs[i];
905    assert(VA.isRegLoc() && "Can only return in registers!");
906    SDValue ValToCopy = Op.getOperand(i*2+1);
907
908    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
909    // the RET instruction and handled by the FP Stackifier.
910    if (RVLocs[i].getLocReg() == X86::ST0 ||
911        RVLocs[i].getLocReg() == X86::ST1) {
912      // If this is a copy from an xmm register to ST(0), use an FPExtend to
913      // change the value to the FP stack register class.
914      if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT()))
915        ValToCopy = DAG.getNode(ISD::FP_EXTEND, MVT::f80, ValToCopy);
916      RetOps.push_back(ValToCopy);
917      // Don't emit a copytoreg.
918      continue;
919    }
920
921    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), ValToCopy, Flag);
922    Flag = Chain.getValue(1);
923  }
924
925  // The x86-64 ABI for returning structs by value requires that we copy
926  // the sret argument into %rax for the return. We saved the argument into
927  // a virtual register in the entry block, so now we copy the value out
928  // and into %rax.
929  if (Subtarget->is64Bit() &&
930      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
931    MachineFunction &MF = DAG.getMachineFunction();
932    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
933    unsigned Reg = FuncInfo->getSRetReturnReg();
934    if (!Reg) {
935      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
936      FuncInfo->setSRetReturnReg(Reg);
937    }
938    SDValue Val = DAG.getCopyFromReg(Chain, Reg, getPointerTy());
939
940    Chain = DAG.getCopyToReg(Chain, X86::RAX, Val, Flag);
941    Flag = Chain.getValue(1);
942  }
943
944  RetOps[0] = Chain;  // Update chain.
945
946  // Add the flag if we have it.
947  if (Flag.Val)
948    RetOps.push_back(Flag);
949
950  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, &RetOps[0], RetOps.size());
951}
952
953
954/// LowerCallResult - Lower the result values of an ISD::CALL into the
955/// appropriate copies out of appropriate physical registers.  This assumes that
956/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
957/// being lowered.  The returns a SDNode with the same number of values as the
958/// ISD::CALL.
959SDNode *X86TargetLowering::
960LowerCallResult(SDValue Chain, SDValue InFlag, SDNode *TheCall,
961                unsigned CallingConv, SelectionDAG &DAG) {
962
963  // Assign locations to each value returned by this call.
964  SmallVector<CCValAssign, 16> RVLocs;
965  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
966  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
967  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
968
969  SmallVector<SDValue, 8> ResultVals;
970
971  // Copy all of the result registers out of their specified physreg.
972  for (unsigned i = 0; i != RVLocs.size(); ++i) {
973    MVT CopyVT = RVLocs[i].getValVT();
974
975    // If this is a call to a function that returns an fp value on the floating
976    // point stack, but where we prefer to use the value in xmm registers, copy
977    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
978    if ((RVLocs[i].getLocReg() == X86::ST0 ||
979         RVLocs[i].getLocReg() == X86::ST1) &&
980        isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
981      CopyVT = MVT::f80;
982    }
983
984    Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
985                               CopyVT, InFlag).getValue(1);
986    SDValue Val = Chain.getValue(0);
987    InFlag = Chain.getValue(2);
988
989    if (CopyVT != RVLocs[i].getValVT()) {
990      // Round the F80 the right size, which also moves to the appropriate xmm
991      // register.
992      Val = DAG.getNode(ISD::FP_ROUND, RVLocs[i].getValVT(), Val,
993                        // This truncation won't change the value.
994                        DAG.getIntPtrConstant(1));
995    }
996
997    ResultVals.push_back(Val);
998  }
999
1000  // Merge everything together with a MERGE_VALUES node.
1001  ResultVals.push_back(Chain);
1002  return DAG.getMergeValues(TheCall->getVTList(), &ResultVals[0],
1003                            ResultVals.size()).Val;
1004}
1005
1006
1007//===----------------------------------------------------------------------===//
1008//                C & StdCall & Fast Calling Convention implementation
1009//===----------------------------------------------------------------------===//
1010//  StdCall calling convention seems to be standard for many Windows' API
1011//  routines and around. It differs from C calling convention just a little:
1012//  callee should clean up the stack, not caller. Symbols should be also
1013//  decorated in some fancy way :) It doesn't support any vector arguments.
1014//  For info on fast calling convention see Fast Calling Convention (tail call)
1015//  implementation LowerX86_32FastCCCallTo.
1016
1017/// AddLiveIn - This helper function adds the specified physical register to the
1018/// MachineFunction as a live in value.  It also creates a corresponding virtual
1019/// register for it.
1020static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
1021                          const TargetRegisterClass *RC) {
1022  assert(RC->contains(PReg) && "Not the correct regclass!");
1023  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1024  MF.getRegInfo().addLiveIn(PReg, VReg);
1025  return VReg;
1026}
1027
1028/// CallIsStructReturn - Determines whether a CALL node uses struct return
1029/// semantics.
1030static bool CallIsStructReturn(SDValue Op) {
1031  unsigned NumOps = (Op.getNumOperands() - 5) / 2;
1032  if (!NumOps)
1033    return false;
1034
1035  return cast<ARG_FLAGSSDNode>(Op.getOperand(6))->getArgFlags().isSRet();
1036}
1037
1038/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1039/// return semantics.
1040static bool ArgsAreStructReturn(SDValue Op) {
1041  unsigned NumArgs = Op.Val->getNumValues() - 1;
1042  if (!NumArgs)
1043    return false;
1044
1045  return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
1046}
1047
1048/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1049/// the callee to pop its own arguments. Callee pop is necessary to support tail
1050/// calls.
1051bool X86TargetLowering::IsCalleePop(SDValue Op) {
1052  bool IsVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1053  if (IsVarArg)
1054    return false;
1055
1056  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
1057  default:
1058    return false;
1059  case CallingConv::X86_StdCall:
1060    return !Subtarget->is64Bit();
1061  case CallingConv::X86_FastCall:
1062    return !Subtarget->is64Bit();
1063  case CallingConv::Fast:
1064    return PerformTailCallOpt;
1065  }
1066}
1067
1068/// CCAssignFnForNode - Selects the correct CCAssignFn for a CALL or
1069/// FORMAL_ARGUMENTS node.
1070CCAssignFn *X86TargetLowering::CCAssignFnForNode(SDValue Op) const {
1071  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1072
1073  if (Subtarget->is64Bit()) {
1074    if (Subtarget->isTargetWin64())
1075      return CC_X86_Win64_C;
1076    else {
1077      if (CC == CallingConv::Fast && PerformTailCallOpt)
1078        return CC_X86_64_TailCall;
1079      else
1080        return CC_X86_64_C;
1081    }
1082  }
1083
1084  if (CC == CallingConv::X86_FastCall)
1085    return CC_X86_32_FastCall;
1086  else if (CC == CallingConv::Fast && PerformTailCallOpt)
1087    return CC_X86_32_TailCall;
1088  else
1089    return CC_X86_32_C;
1090}
1091
1092/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1093/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1094NameDecorationStyle
1095X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) {
1096  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1097  if (CC == CallingConv::X86_FastCall)
1098    return FastCall;
1099  else if (CC == CallingConv::X86_StdCall)
1100    return StdCall;
1101  return None;
1102}
1103
1104
1105/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1106/// in a register before calling.
1107bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1108  return !IsTailCall && !Is64Bit &&
1109    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1110    Subtarget->isPICStyleGOT();
1111}
1112
1113/// CallRequiresFnAddressInReg - Check whether the call requires the function
1114/// address to be loaded in a register.
1115bool
1116X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1117  return !Is64Bit && IsTailCall &&
1118    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1119    Subtarget->isPICStyleGOT();
1120}
1121
1122/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1123/// by "Src" to address "Dst" with size and alignment information specified by
1124/// the specific parameter attribute. The copy will be passed as a byval
1125/// function parameter.
1126static SDValue
1127CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1128                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG) {
1129  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1130  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(),
1131                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1132}
1133
1134SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG,
1135                                              const CCValAssign &VA,
1136                                              MachineFrameInfo *MFI,
1137                                              unsigned CC,
1138                                              SDValue Root, unsigned i) {
1139  // Create the nodes corresponding to a load from this parameter slot.
1140  ISD::ArgFlagsTy Flags =
1141    cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1142  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1143  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1144
1145  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1146  // changed with more analysis.
1147  // In case of tail call optimization mark all arguments mutable. Since they
1148  // could be overwritten by lowering of arguments in case of a tail call.
1149  int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1150                                  VA.getLocMemOffset(), isImmutable);
1151  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1152  if (Flags.isByVal())
1153    return FIN;
1154  return DAG.getLoad(VA.getValVT(), Root, FIN,
1155                     PseudoSourceValue::getFixedStack(FI), 0);
1156}
1157
1158SDValue
1159X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1160  MachineFunction &MF = DAG.getMachineFunction();
1161  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1162
1163  const Function* Fn = MF.getFunction();
1164  if (Fn->hasExternalLinkage() &&
1165      Subtarget->isTargetCygMing() &&
1166      Fn->getName() == "main")
1167    FuncInfo->setForceFramePointer(true);
1168
1169  // Decorate the function name.
1170  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1171
1172  MachineFrameInfo *MFI = MF.getFrameInfo();
1173  SDValue Root = Op.getOperand(0);
1174  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1175  unsigned CC = MF.getFunction()->getCallingConv();
1176  bool Is64Bit = Subtarget->is64Bit();
1177  bool IsWin64 = Subtarget->isTargetWin64();
1178
1179  assert(!(isVarArg && CC == CallingConv::Fast) &&
1180         "Var args not supported with calling convention fastcc");
1181
1182  // Assign locations to all of the incoming arguments.
1183  SmallVector<CCValAssign, 16> ArgLocs;
1184  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1185  CCInfo.AnalyzeFormalArguments(Op.Val, CCAssignFnForNode(Op));
1186
1187  SmallVector<SDValue, 8> ArgValues;
1188  unsigned LastVal = ~0U;
1189  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1190    CCValAssign &VA = ArgLocs[i];
1191    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1192    // places.
1193    assert(VA.getValNo() != LastVal &&
1194           "Don't support value assigned to multiple locs yet");
1195    LastVal = VA.getValNo();
1196
1197    if (VA.isRegLoc()) {
1198      MVT RegVT = VA.getLocVT();
1199      TargetRegisterClass *RC;
1200      if (RegVT == MVT::i32)
1201        RC = X86::GR32RegisterClass;
1202      else if (Is64Bit && RegVT == MVT::i64)
1203        RC = X86::GR64RegisterClass;
1204      else if (RegVT == MVT::f32)
1205        RC = X86::FR32RegisterClass;
1206      else if (RegVT == MVT::f64)
1207        RC = X86::FR64RegisterClass;
1208      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1209        RC = X86::VR128RegisterClass;
1210      else if (RegVT.isVector()) {
1211        assert(RegVT.getSizeInBits() == 64);
1212        if (!Is64Bit)
1213          RC = X86::VR64RegisterClass;     // MMX values are passed in MMXs.
1214        else {
1215          // Darwin calling convention passes MMX values in either GPRs or
1216          // XMMs in x86-64. Other targets pass them in memory.
1217          if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
1218            RC = X86::VR128RegisterClass;  // MMX values are passed in XMMs.
1219            RegVT = MVT::v2i64;
1220          } else {
1221            RC = X86::GR64RegisterClass;   // v1i64 values are passed in GPRs.
1222            RegVT = MVT::i64;
1223          }
1224        }
1225      } else {
1226        assert(0 && "Unknown argument type!");
1227      }
1228
1229      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1230      SDValue ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1231
1232      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1233      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1234      // right size.
1235      if (VA.getLocInfo() == CCValAssign::SExt)
1236        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1237                               DAG.getValueType(VA.getValVT()));
1238      else if (VA.getLocInfo() == CCValAssign::ZExt)
1239        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1240                               DAG.getValueType(VA.getValVT()));
1241
1242      if (VA.getLocInfo() != CCValAssign::Full)
1243        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1244
1245      // Handle MMX values passed in GPRs.
1246      if (Is64Bit && RegVT != VA.getLocVT()) {
1247        if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
1248          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1249        else if (RC == X86::VR128RegisterClass) {
1250          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i64, ArgValue,
1251                                 DAG.getConstant(0, MVT::i64));
1252          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1253        }
1254      }
1255
1256      ArgValues.push_back(ArgValue);
1257    } else {
1258      assert(VA.isMemLoc());
1259      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1260    }
1261  }
1262
1263  // The x86-64 ABI for returning structs by value requires that we copy
1264  // the sret argument into %rax for the return. Save the argument into
1265  // a virtual register so that we can access it from the return points.
1266  if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1267    MachineFunction &MF = DAG.getMachineFunction();
1268    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1269    unsigned Reg = FuncInfo->getSRetReturnReg();
1270    if (!Reg) {
1271      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1272      FuncInfo->setSRetReturnReg(Reg);
1273    }
1274    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), Reg, ArgValues[0]);
1275    Root = DAG.getNode(ISD::TokenFactor, MVT::Other, Copy, Root);
1276  }
1277
1278  unsigned StackSize = CCInfo.getNextStackOffset();
1279  // align stack specially for tail calls
1280  if (CC == CallingConv::Fast)
1281    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1282
1283  // If the function takes variable number of arguments, make a frame index for
1284  // the start of the first vararg value... for expansion of llvm.va_start.
1285  if (isVarArg) {
1286    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1287      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1288    }
1289    if (Is64Bit) {
1290      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1291
1292      // FIXME: We should really autogenerate these arrays
1293      static const unsigned GPR64ArgRegsWin64[] = {
1294        X86::RCX, X86::RDX, X86::R8,  X86::R9
1295      };
1296      static const unsigned XMMArgRegsWin64[] = {
1297        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1298      };
1299      static const unsigned GPR64ArgRegs64Bit[] = {
1300        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1301      };
1302      static const unsigned XMMArgRegs64Bit[] = {
1303        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1304        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1305      };
1306      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1307
1308      if (IsWin64) {
1309        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1310        GPR64ArgRegs = GPR64ArgRegsWin64;
1311        XMMArgRegs = XMMArgRegsWin64;
1312      } else {
1313        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1314        GPR64ArgRegs = GPR64ArgRegs64Bit;
1315        XMMArgRegs = XMMArgRegs64Bit;
1316      }
1317      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1318                                                       TotalNumIntRegs);
1319      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1320                                                       TotalNumXMMRegs);
1321
1322      // For X86-64, if there are vararg parameters that are passed via
1323      // registers, then we must store them to their spots on the stack so they
1324      // may be loaded by deferencing the result of va_next.
1325      VarArgsGPOffset = NumIntRegs * 8;
1326      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1327      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1328                                                 TotalNumXMMRegs * 16, 16);
1329
1330      // Store the integer parameter registers.
1331      SmallVector<SDValue, 8> MemOps;
1332      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1333      SDValue FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1334                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1335      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1336        unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1337                                  X86::GR64RegisterClass);
1338        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1339        SDValue Store =
1340          DAG.getStore(Val.getValue(1), Val, FIN,
1341                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1342        MemOps.push_back(Store);
1343        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1344                          DAG.getIntPtrConstant(8));
1345      }
1346
1347      // Now store the XMM (fp + vector) parameter registers.
1348      FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1349                        DAG.getIntPtrConstant(VarArgsFPOffset));
1350      for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1351        unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1352                                  X86::VR128RegisterClass);
1353        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1354        SDValue Store =
1355          DAG.getStore(Val.getValue(1), Val, FIN,
1356                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1357        MemOps.push_back(Store);
1358        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1359                          DAG.getIntPtrConstant(16));
1360      }
1361      if (!MemOps.empty())
1362          Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1363                             &MemOps[0], MemOps.size());
1364    }
1365  }
1366
1367  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1368  // arguments and the arguments after the retaddr has been pushed are
1369  // aligned.
1370  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1371      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1372      (StackSize & 7) == 0)
1373    StackSize += 4;
1374
1375  ArgValues.push_back(Root);
1376
1377  // Some CCs need callee pop.
1378  if (IsCalleePop(Op)) {
1379    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1380    BytesCallerReserves = 0;
1381  } else {
1382    BytesToPopOnReturn  = 0; // Callee pops nothing.
1383    // If this is an sret function, the return should pop the hidden pointer.
1384    if (!Is64Bit && ArgsAreStructReturn(Op))
1385      BytesToPopOnReturn = 4;
1386    BytesCallerReserves = StackSize;
1387  }
1388
1389  if (!Is64Bit) {
1390    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1391    if (CC == CallingConv::X86_FastCall)
1392      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1393  }
1394
1395  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1396
1397  // Return the new list of results.
1398  return DAG.getMergeValues(Op.Val->getVTList(), &ArgValues[0],
1399                            ArgValues.size()).getValue(Op.ResNo);
1400}
1401
1402SDValue
1403X86TargetLowering::LowerMemOpCallTo(SDValue Op, SelectionDAG &DAG,
1404                                    const SDValue &StackPtr,
1405                                    const CCValAssign &VA,
1406                                    SDValue Chain,
1407                                    SDValue Arg) {
1408  unsigned LocMemOffset = VA.getLocMemOffset();
1409  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1410  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1411  ISD::ArgFlagsTy Flags =
1412    cast<ARG_FLAGSSDNode>(Op.getOperand(6+2*VA.getValNo()))->getArgFlags();
1413  if (Flags.isByVal()) {
1414    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG);
1415  }
1416  return DAG.getStore(Chain, Arg, PtrOff,
1417                      PseudoSourceValue::getStack(), LocMemOffset);
1418}
1419
1420/// EmitTailCallLoadRetAddr - Emit a load of return adress if tail call
1421/// optimization is performed and it is required.
1422SDValue
1423X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1424                                           SDValue &OutRetAddr,
1425                                           SDValue Chain,
1426                                           bool IsTailCall,
1427                                           bool Is64Bit,
1428                                           int FPDiff) {
1429  if (!IsTailCall || FPDiff==0) return Chain;
1430
1431  // Adjust the Return address stack slot.
1432  MVT VT = getPointerTy();
1433  OutRetAddr = getReturnAddressFrameIndex(DAG);
1434  // Load the "old" Return address.
1435  OutRetAddr = DAG.getLoad(VT, Chain,OutRetAddr, NULL, 0);
1436  return SDValue(OutRetAddr.Val, 1);
1437}
1438
1439/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1440/// optimization is performed and it is required (FPDiff!=0).
1441static SDValue
1442EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1443                         SDValue Chain, SDValue RetAddrFrIdx,
1444                         bool Is64Bit, int FPDiff) {
1445  // Store the return address to the appropriate stack slot.
1446  if (!FPDiff) return Chain;
1447  // Calculate the new stack slot for the return address.
1448  int SlotSize = Is64Bit ? 8 : 4;
1449  int NewReturnAddrFI =
1450    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1451  MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1452  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1453  Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx,
1454                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1455  return Chain;
1456}
1457
1458SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
1459  MachineFunction &MF = DAG.getMachineFunction();
1460  SDValue Chain       = Op.getOperand(0);
1461  unsigned CC         = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1462  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1463  bool IsTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0
1464                        && CC == CallingConv::Fast && PerformTailCallOpt;
1465  SDValue Callee      = Op.getOperand(4);
1466  bool Is64Bit        = Subtarget->is64Bit();
1467  bool IsStructRet    = CallIsStructReturn(Op);
1468
1469  assert(!(isVarArg && CC == CallingConv::Fast) &&
1470         "Var args not supported with calling convention fastcc");
1471
1472  // Analyze operands of the call, assigning locations to each operand.
1473  SmallVector<CCValAssign, 16> ArgLocs;
1474  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1475  CCInfo.AnalyzeCallOperands(Op.Val, CCAssignFnForNode(Op));
1476
1477  // Get a count of how many bytes are to be pushed on the stack.
1478  unsigned NumBytes = CCInfo.getNextStackOffset();
1479  if (CC == CallingConv::Fast)
1480    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1481
1482  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1483  // arguments and the arguments after the retaddr has been pushed are aligned.
1484  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1485      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1486      (NumBytes & 7) == 0)
1487    NumBytes += 4;
1488
1489  int FPDiff = 0;
1490  if (IsTailCall) {
1491    // Lower arguments at fp - stackoffset + fpdiff.
1492    unsigned NumBytesCallerPushed =
1493      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1494    FPDiff = NumBytesCallerPushed - NumBytes;
1495
1496    // Set the delta of movement of the returnaddr stackslot.
1497    // But only set if delta is greater than previous delta.
1498    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1499      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1500  }
1501
1502  // If the address is a load, i.e. indirect function call, move callseq_start
1503  // above the load. This makes it possible for the load to fold into the call.
1504  if (Callee.Val == Chain.Val && ISD::isNormalLoad(Callee.Val) &&
1505      Chain.hasOneUse() && Callee.hasOneUse())
1506    Chain = Chain.getOperand(0);
1507  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes));
1508
1509  SDValue RetAddrFrIdx;
1510  // Load return adress for tail calls.
1511  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1512                                  FPDiff);
1513
1514  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1515  SmallVector<SDValue, 8> MemOpChains;
1516  SDValue StackPtr;
1517
1518  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1519  // of tail call optimization arguments are handle later.
1520  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1521    CCValAssign &VA = ArgLocs[i];
1522    SDValue Arg = Op.getOperand(5+2*VA.getValNo());
1523    bool isByVal = cast<ARG_FLAGSSDNode>(Op.getOperand(6+2*VA.getValNo()))->
1524      getArgFlags().isByVal();
1525
1526    // Promote the value if needed.
1527    switch (VA.getLocInfo()) {
1528    default: assert(0 && "Unknown loc info!");
1529    case CCValAssign::Full: break;
1530    case CCValAssign::SExt:
1531      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1532      break;
1533    case CCValAssign::ZExt:
1534      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1535      break;
1536    case CCValAssign::AExt:
1537      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1538      break;
1539    }
1540
1541    if (VA.isRegLoc()) {
1542      if (Is64Bit) {
1543        MVT RegVT = VA.getLocVT();
1544        if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1545          switch (VA.getLocReg()) {
1546          default:
1547            break;
1548          case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
1549          case X86::R8: {
1550            // Special case: passing MMX values in GPR registers.
1551            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1552            break;
1553          }
1554          case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
1555          case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
1556            // Special case: passing MMX values in XMM registers.
1557            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1558            Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Arg);
1559            Arg = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
1560                              DAG.getNode(ISD::UNDEF, MVT::v2i64), Arg,
1561                              getMOVLMask(2, DAG));
1562            break;
1563          }
1564          }
1565      }
1566      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1567    } else {
1568      if (!IsTailCall || (IsTailCall && isByVal)) {
1569        assert(VA.isMemLoc());
1570        if (StackPtr.Val == 0)
1571          StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1572
1573        MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1574                                               Arg));
1575      }
1576    }
1577  }
1578
1579  if (!MemOpChains.empty())
1580    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1581                        &MemOpChains[0], MemOpChains.size());
1582
1583  // Build a sequence of copy-to-reg nodes chained together with token chain
1584  // and flag operands which copy the outgoing args into registers.
1585  SDValue InFlag;
1586  // Tail call byval lowering might overwrite argument registers so in case of
1587  // tail call optimization the copies to registers are lowered later.
1588  if (!IsTailCall)
1589    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1590      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1591                               InFlag);
1592      InFlag = Chain.getValue(1);
1593    }
1594
1595  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1596  // GOT pointer.
1597  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1598    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1599                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1600                             InFlag);
1601    InFlag = Chain.getValue(1);
1602  }
1603  // If we are tail calling and generating PIC/GOT style code load the address
1604  // of the callee into ecx. The value in ecx is used as target of the tail
1605  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1606  // calls on PIC/GOT architectures. Normally we would just put the address of
1607  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1608  // restored (since ebx is callee saved) before jumping to the target@PLT.
1609  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1610    // Note: The actual moving to ecx is done further down.
1611    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1612    if (G &&  !G->getGlobal()->hasHiddenVisibility() &&
1613        !G->getGlobal()->hasProtectedVisibility())
1614      Callee =  LowerGlobalAddress(Callee, DAG);
1615    else if (isa<ExternalSymbolSDNode>(Callee))
1616      Callee = LowerExternalSymbol(Callee,DAG);
1617  }
1618
1619  if (Is64Bit && isVarArg) {
1620    // From AMD64 ABI document:
1621    // For calls that may call functions that use varargs or stdargs
1622    // (prototype-less calls or calls to functions containing ellipsis (...) in
1623    // the declaration) %al is used as hidden argument to specify the number
1624    // of SSE registers used. The contents of %al do not need to match exactly
1625    // the number of registers, but must be an ubound on the number of SSE
1626    // registers used and is in the range 0 - 8 inclusive.
1627
1628    // FIXME: Verify this on Win64
1629    // Count the number of XMM registers allocated.
1630    static const unsigned XMMArgRegs[] = {
1631      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1632      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1633    };
1634    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1635
1636    Chain = DAG.getCopyToReg(Chain, X86::AL,
1637                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1638    InFlag = Chain.getValue(1);
1639  }
1640
1641
1642  // For tail calls lower the arguments to the 'real' stack slot.
1643  if (IsTailCall) {
1644    SmallVector<SDValue, 8> MemOpChains2;
1645    SDValue FIN;
1646    int FI = 0;
1647    // Do not flag preceeding copytoreg stuff together with the following stuff.
1648    InFlag = SDValue();
1649    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1650      CCValAssign &VA = ArgLocs[i];
1651      if (!VA.isRegLoc()) {
1652        assert(VA.isMemLoc());
1653        SDValue Arg = Op.getOperand(5+2*VA.getValNo());
1654        SDValue FlagsOp = Op.getOperand(6+2*VA.getValNo());
1655        ISD::ArgFlagsTy Flags =
1656          cast<ARG_FLAGSSDNode>(FlagsOp)->getArgFlags();
1657        // Create frame index.
1658        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1659        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1660        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1661        FIN = DAG.getFrameIndex(FI, getPointerTy());
1662
1663        if (Flags.isByVal()) {
1664          // Copy relative to framepointer.
1665          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1666          if (StackPtr.Val == 0)
1667            StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1668          Source = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, Source);
1669
1670          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1671                                                           Flags, DAG));
1672        } else {
1673          // Store relative to framepointer.
1674          MemOpChains2.push_back(
1675            DAG.getStore(Chain, Arg, FIN,
1676                         PseudoSourceValue::getFixedStack(FI), 0));
1677        }
1678      }
1679    }
1680
1681    if (!MemOpChains2.empty())
1682      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1683                          &MemOpChains2[0], MemOpChains2.size());
1684
1685    // Copy arguments to their registers.
1686    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1687      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1688                               InFlag);
1689      InFlag = Chain.getValue(1);
1690    }
1691    InFlag =SDValue();
1692
1693    // Store the return address to the appropriate stack slot.
1694    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1695                                     FPDiff);
1696  }
1697
1698  // If the callee is a GlobalAddress node (quite common, every direct call is)
1699  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1700  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1701    // We should use extra load for direct calls to dllimported functions in
1702    // non-JIT mode.
1703    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1704                                        getTargetMachine(), true))
1705      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1706  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1707    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1708  } else if (IsTailCall) {
1709    unsigned Opc = Is64Bit ? X86::R9 : X86::ECX;
1710
1711    Chain = DAG.getCopyToReg(Chain,
1712                             DAG.getRegister(Opc, getPointerTy()),
1713                             Callee,InFlag);
1714    Callee = DAG.getRegister(Opc, getPointerTy());
1715    // Add register as live out.
1716    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1717  }
1718
1719  // Returns a chain & a flag for retval copy to use.
1720  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1721  SmallVector<SDValue, 8> Ops;
1722
1723  if (IsTailCall) {
1724    Ops.push_back(Chain);
1725    Ops.push_back(DAG.getIntPtrConstant(NumBytes));
1726    Ops.push_back(DAG.getIntPtrConstant(0));
1727    if (InFlag.Val)
1728      Ops.push_back(InFlag);
1729    Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1730    InFlag = Chain.getValue(1);
1731
1732    // Returns a chain & a flag for retval copy to use.
1733    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1734    Ops.clear();
1735  }
1736
1737  Ops.push_back(Chain);
1738  Ops.push_back(Callee);
1739
1740  if (IsTailCall)
1741    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1742
1743  // Add argument registers to the end of the list so that they are known live
1744  // into the call.
1745  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1746    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1747                                  RegsToPass[i].second.getValueType()));
1748
1749  // Add an implicit use GOT pointer in EBX.
1750  if (!IsTailCall && !Is64Bit &&
1751      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1752      Subtarget->isPICStyleGOT())
1753    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1754
1755  // Add an implicit use of AL for x86 vararg functions.
1756  if (Is64Bit && isVarArg)
1757    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1758
1759  if (InFlag.Val)
1760    Ops.push_back(InFlag);
1761
1762  if (IsTailCall) {
1763    assert(InFlag.Val &&
1764           "Flag must be set. Depend on flag being set in LowerRET");
1765    Chain = DAG.getNode(X86ISD::TAILCALL,
1766                        Op.Val->getVTList(), &Ops[0], Ops.size());
1767
1768    return SDValue(Chain.Val, Op.ResNo);
1769  }
1770
1771  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1772  InFlag = Chain.getValue(1);
1773
1774  // Create the CALLSEQ_END node.
1775  unsigned NumBytesForCalleeToPush;
1776  if (IsCalleePop(Op))
1777    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1778  else if (!Is64Bit && IsStructRet)
1779    // If this is is a call to a struct-return function, the callee
1780    // pops the hidden struct pointer, so we have to push it back.
1781    // This is common for Darwin/X86, Linux & Mingw32 targets.
1782    NumBytesForCalleeToPush = 4;
1783  else
1784    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1785
1786  // Returns a flag for retval copy to use.
1787  Chain = DAG.getCALLSEQ_END(Chain,
1788                             DAG.getIntPtrConstant(NumBytes),
1789                             DAG.getIntPtrConstant(NumBytesForCalleeToPush),
1790                             InFlag);
1791  InFlag = Chain.getValue(1);
1792
1793  // Handle result values, copying them out of physregs into vregs that we
1794  // return.
1795  return SDValue(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1796}
1797
1798
1799//===----------------------------------------------------------------------===//
1800//                Fast Calling Convention (tail call) implementation
1801//===----------------------------------------------------------------------===//
1802
1803//  Like std call, callee cleans arguments, convention except that ECX is
1804//  reserved for storing the tail called function address. Only 2 registers are
1805//  free for argument passing (inreg). Tail call optimization is performed
1806//  provided:
1807//                * tailcallopt is enabled
1808//                * caller/callee are fastcc
1809//  On X86_64 architecture with GOT-style position independent code only local
1810//  (within module) calls are supported at the moment.
1811//  To keep the stack aligned according to platform abi the function
1812//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1813//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1814//  If a tail called function callee has more arguments than the caller the
1815//  caller needs to make sure that there is room to move the RETADDR to. This is
1816//  achieved by reserving an area the size of the argument delta right after the
1817//  original REtADDR, but before the saved framepointer or the spilled registers
1818//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1819//  stack layout:
1820//    arg1
1821//    arg2
1822//    RETADDR
1823//    [ new RETADDR
1824//      move area ]
1825//    (possible EBP)
1826//    ESI
1827//    EDI
1828//    local1 ..
1829
1830/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1831/// for a 16 byte align requirement.
1832unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1833                                                        SelectionDAG& DAG) {
1834  if (PerformTailCallOpt) {
1835    MachineFunction &MF = DAG.getMachineFunction();
1836    const TargetMachine &TM = MF.getTarget();
1837    const TargetFrameInfo &TFI = *TM.getFrameInfo();
1838    unsigned StackAlignment = TFI.getStackAlignment();
1839    uint64_t AlignMask = StackAlignment - 1;
1840    int64_t Offset = StackSize;
1841    unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
1842    if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1843      // Number smaller than 12 so just add the difference.
1844      Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1845    } else {
1846      // Mask out lower bits, add stackalignment once plus the 12 bytes.
1847      Offset = ((~AlignMask) & Offset) + StackAlignment +
1848        (StackAlignment-SlotSize);
1849    }
1850    StackSize = Offset;
1851  }
1852  return StackSize;
1853}
1854
1855/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1856/// following the call is a return. A function is eligible if caller/callee
1857/// calling conventions match, currently only fastcc supports tail calls, and
1858/// the function CALL is immediatly followed by a RET.
1859bool X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Call,
1860                                                      SDValue Ret,
1861                                                      SelectionDAG& DAG) const {
1862  if (!PerformTailCallOpt)
1863    return false;
1864
1865  if (CheckTailCallReturnConstraints(Call, Ret)) {
1866    MachineFunction &MF = DAG.getMachineFunction();
1867    unsigned CallerCC = MF.getFunction()->getCallingConv();
1868    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1869    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1870      SDValue Callee = Call.getOperand(4);
1871      // On x86/32Bit PIC/GOT  tail calls are supported.
1872      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1873          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1874        return true;
1875
1876      // Can only do local tail calls (in same module, hidden or protected) on
1877      // x86_64 PIC/GOT at the moment.
1878      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1879        return G->getGlobal()->hasHiddenVisibility()
1880            || G->getGlobal()->hasProtectedVisibility();
1881    }
1882  }
1883
1884  return false;
1885}
1886
1887FastISel *X86TargetLowering::createFastISel(MachineFunction &mf) {
1888  return X86::createFastISel(mf);
1889}
1890
1891
1892//===----------------------------------------------------------------------===//
1893//                           Other Lowering Hooks
1894//===----------------------------------------------------------------------===//
1895
1896
1897SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1898  MachineFunction &MF = DAG.getMachineFunction();
1899  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1900  int ReturnAddrIndex = FuncInfo->getRAIndex();
1901
1902  if (ReturnAddrIndex == 0) {
1903    // Set up a frame object for the return address.
1904    if (Subtarget->is64Bit())
1905      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1906    else
1907      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1908
1909    FuncInfo->setRAIndex(ReturnAddrIndex);
1910  }
1911
1912  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1913}
1914
1915
1916
1917/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1918/// specific condition code. It returns a false if it cannot do a direct
1919/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1920/// needed.
1921static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1922                           unsigned &X86CC, SDValue &LHS, SDValue &RHS,
1923                           SelectionDAG &DAG) {
1924  X86CC = X86::COND_INVALID;
1925  if (!isFP) {
1926    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1927      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1928        // X > -1   -> X == 0, jump !sign.
1929        RHS = DAG.getConstant(0, RHS.getValueType());
1930        X86CC = X86::COND_NS;
1931        return true;
1932      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1933        // X < 0   -> X == 0, jump on sign.
1934        X86CC = X86::COND_S;
1935        return true;
1936      } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1937        // X < 1   -> X <= 0
1938        RHS = DAG.getConstant(0, RHS.getValueType());
1939        X86CC = X86::COND_LE;
1940        return true;
1941      }
1942    }
1943
1944    switch (SetCCOpcode) {
1945    default: break;
1946    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1947    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1948    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1949    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1950    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1951    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1952    case ISD::SETULT: X86CC = X86::COND_B;  break;
1953    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1954    case ISD::SETULE: X86CC = X86::COND_BE; break;
1955    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1956    }
1957  } else {
1958    // On a floating point condition, the flags are set as follows:
1959    // ZF  PF  CF   op
1960    //  0 | 0 | 0 | X > Y
1961    //  0 | 0 | 1 | X < Y
1962    //  1 | 0 | 0 | X == Y
1963    //  1 | 1 | 1 | unordered
1964    bool Flip = false;
1965    switch (SetCCOpcode) {
1966    default: break;
1967    case ISD::SETUEQ:
1968    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1969    case ISD::SETOLT: Flip = true; // Fallthrough
1970    case ISD::SETOGT:
1971    case ISD::SETGT: X86CC = X86::COND_A;  break;
1972    case ISD::SETOLE: Flip = true; // Fallthrough
1973    case ISD::SETOGE:
1974    case ISD::SETGE: X86CC = X86::COND_AE; break;
1975    case ISD::SETUGT: Flip = true; // Fallthrough
1976    case ISD::SETULT:
1977    case ISD::SETLT: X86CC = X86::COND_B;  break;
1978    case ISD::SETUGE: Flip = true; // Fallthrough
1979    case ISD::SETULE:
1980    case ISD::SETLE: X86CC = X86::COND_BE; break;
1981    case ISD::SETONE:
1982    case ISD::SETNE: X86CC = X86::COND_NE; break;
1983    case ISD::SETUO: X86CC = X86::COND_P;  break;
1984    case ISD::SETO:  X86CC = X86::COND_NP; break;
1985    }
1986    if (Flip)
1987      std::swap(LHS, RHS);
1988  }
1989
1990  return X86CC != X86::COND_INVALID;
1991}
1992
1993/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1994/// code. Current x86 isa includes the following FP cmov instructions:
1995/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1996static bool hasFPCMov(unsigned X86CC) {
1997  switch (X86CC) {
1998  default:
1999    return false;
2000  case X86::COND_B:
2001  case X86::COND_BE:
2002  case X86::COND_E:
2003  case X86::COND_P:
2004  case X86::COND_A:
2005  case X86::COND_AE:
2006  case X86::COND_NE:
2007  case X86::COND_NP:
2008    return true;
2009  }
2010}
2011
2012/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2013/// true if Op is undef or if its value falls within the specified range (L, H].
2014static bool isUndefOrInRange(SDValue Op, unsigned Low, unsigned Hi) {
2015  if (Op.getOpcode() == ISD::UNDEF)
2016    return true;
2017
2018  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
2019  return (Val >= Low && Val < Hi);
2020}
2021
2022/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2023/// true if Op is undef or if its value equal to the specified value.
2024static bool isUndefOrEqual(SDValue Op, unsigned Val) {
2025  if (Op.getOpcode() == ISD::UNDEF)
2026    return true;
2027  return cast<ConstantSDNode>(Op)->getValue() == Val;
2028}
2029
2030/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2031/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2032bool X86::isPSHUFDMask(SDNode *N) {
2033  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2034
2035  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
2036    return false;
2037
2038  // Check if the value doesn't reference the second vector.
2039  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2040    SDValue Arg = N->getOperand(i);
2041    if (Arg.getOpcode() == ISD::UNDEF) continue;
2042    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2043    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
2044      return false;
2045  }
2046
2047  return true;
2048}
2049
2050/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2051/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2052bool X86::isPSHUFHWMask(SDNode *N) {
2053  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2054
2055  if (N->getNumOperands() != 8)
2056    return false;
2057
2058  // Lower quadword copied in order.
2059  for (unsigned i = 0; i != 4; ++i) {
2060    SDValue Arg = N->getOperand(i);
2061    if (Arg.getOpcode() == ISD::UNDEF) continue;
2062    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2063    if (cast<ConstantSDNode>(Arg)->getValue() != i)
2064      return false;
2065  }
2066
2067  // Upper quadword shuffled.
2068  for (unsigned i = 4; i != 8; ++i) {
2069    SDValue Arg = N->getOperand(i);
2070    if (Arg.getOpcode() == ISD::UNDEF) continue;
2071    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2072    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2073    if (Val < 4 || Val > 7)
2074      return false;
2075  }
2076
2077  return true;
2078}
2079
2080/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2081/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2082bool X86::isPSHUFLWMask(SDNode *N) {
2083  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2084
2085  if (N->getNumOperands() != 8)
2086    return false;
2087
2088  // Upper quadword copied in order.
2089  for (unsigned i = 4; i != 8; ++i)
2090    if (!isUndefOrEqual(N->getOperand(i), i))
2091      return false;
2092
2093  // Lower quadword shuffled.
2094  for (unsigned i = 0; i != 4; ++i)
2095    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2096      return false;
2097
2098  return true;
2099}
2100
2101/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2102/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2103static bool isSHUFPMask(SDOperandPtr Elems, unsigned NumElems) {
2104  if (NumElems != 2 && NumElems != 4) return false;
2105
2106  unsigned Half = NumElems / 2;
2107  for (unsigned i = 0; i < Half; ++i)
2108    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2109      return false;
2110  for (unsigned i = Half; i < NumElems; ++i)
2111    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2112      return false;
2113
2114  return true;
2115}
2116
2117bool X86::isSHUFPMask(SDNode *N) {
2118  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2119  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2120}
2121
2122/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2123/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2124/// half elements to come from vector 1 (which would equal the dest.) and
2125/// the upper half to come from vector 2.
2126static bool isCommutedSHUFP(SDOperandPtr Ops, unsigned NumOps) {
2127  if (NumOps != 2 && NumOps != 4) return false;
2128
2129  unsigned Half = NumOps / 2;
2130  for (unsigned i = 0; i < Half; ++i)
2131    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2132      return false;
2133  for (unsigned i = Half; i < NumOps; ++i)
2134    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2135      return false;
2136  return true;
2137}
2138
2139static bool isCommutedSHUFP(SDNode *N) {
2140  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2141  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2142}
2143
2144/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2145/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2146bool X86::isMOVHLPSMask(SDNode *N) {
2147  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2148
2149  if (N->getNumOperands() != 4)
2150    return false;
2151
2152  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2153  return isUndefOrEqual(N->getOperand(0), 6) &&
2154         isUndefOrEqual(N->getOperand(1), 7) &&
2155         isUndefOrEqual(N->getOperand(2), 2) &&
2156         isUndefOrEqual(N->getOperand(3), 3);
2157}
2158
2159/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2160/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2161/// <2, 3, 2, 3>
2162bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2163  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2164
2165  if (N->getNumOperands() != 4)
2166    return false;
2167
2168  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2169  return isUndefOrEqual(N->getOperand(0), 2) &&
2170         isUndefOrEqual(N->getOperand(1), 3) &&
2171         isUndefOrEqual(N->getOperand(2), 2) &&
2172         isUndefOrEqual(N->getOperand(3), 3);
2173}
2174
2175/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2176/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2177bool X86::isMOVLPMask(SDNode *N) {
2178  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2179
2180  unsigned NumElems = N->getNumOperands();
2181  if (NumElems != 2 && NumElems != 4)
2182    return false;
2183
2184  for (unsigned i = 0; i < NumElems/2; ++i)
2185    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2186      return false;
2187
2188  for (unsigned i = NumElems/2; i < NumElems; ++i)
2189    if (!isUndefOrEqual(N->getOperand(i), i))
2190      return false;
2191
2192  return true;
2193}
2194
2195/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2196/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2197/// and MOVLHPS.
2198bool X86::isMOVHPMask(SDNode *N) {
2199  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2200
2201  unsigned NumElems = N->getNumOperands();
2202  if (NumElems != 2 && NumElems != 4)
2203    return false;
2204
2205  for (unsigned i = 0; i < NumElems/2; ++i)
2206    if (!isUndefOrEqual(N->getOperand(i), i))
2207      return false;
2208
2209  for (unsigned i = 0; i < NumElems/2; ++i) {
2210    SDValue Arg = N->getOperand(i + NumElems/2);
2211    if (!isUndefOrEqual(Arg, i + NumElems))
2212      return false;
2213  }
2214
2215  return true;
2216}
2217
2218/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2219/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2220bool static isUNPCKLMask(SDOperandPtr Elts, unsigned NumElts,
2221                         bool V2IsSplat = false) {
2222  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2223    return false;
2224
2225  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2226    SDValue BitI  = Elts[i];
2227    SDValue BitI1 = Elts[i+1];
2228    if (!isUndefOrEqual(BitI, j))
2229      return false;
2230    if (V2IsSplat) {
2231      if (isUndefOrEqual(BitI1, NumElts))
2232        return false;
2233    } else {
2234      if (!isUndefOrEqual(BitI1, j + NumElts))
2235        return false;
2236    }
2237  }
2238
2239  return true;
2240}
2241
2242bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2243  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2244  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2245}
2246
2247/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2248/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2249bool static isUNPCKHMask(SDOperandPtr Elts, unsigned NumElts,
2250                         bool V2IsSplat = false) {
2251  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2252    return false;
2253
2254  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2255    SDValue BitI  = Elts[i];
2256    SDValue BitI1 = Elts[i+1];
2257    if (!isUndefOrEqual(BitI, j + NumElts/2))
2258      return false;
2259    if (V2IsSplat) {
2260      if (isUndefOrEqual(BitI1, NumElts))
2261        return false;
2262    } else {
2263      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2264        return false;
2265    }
2266  }
2267
2268  return true;
2269}
2270
2271bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2272  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2273  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2274}
2275
2276/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2277/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2278/// <0, 0, 1, 1>
2279bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2280  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2281
2282  unsigned NumElems = N->getNumOperands();
2283  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2284    return false;
2285
2286  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2287    SDValue BitI  = N->getOperand(i);
2288    SDValue BitI1 = N->getOperand(i+1);
2289
2290    if (!isUndefOrEqual(BitI, j))
2291      return false;
2292    if (!isUndefOrEqual(BitI1, j))
2293      return false;
2294  }
2295
2296  return true;
2297}
2298
2299/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2300/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2301/// <2, 2, 3, 3>
2302bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2303  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2304
2305  unsigned NumElems = N->getNumOperands();
2306  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2307    return false;
2308
2309  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2310    SDValue BitI  = N->getOperand(i);
2311    SDValue BitI1 = N->getOperand(i + 1);
2312
2313    if (!isUndefOrEqual(BitI, j))
2314      return false;
2315    if (!isUndefOrEqual(BitI1, j))
2316      return false;
2317  }
2318
2319  return true;
2320}
2321
2322/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2323/// specifies a shuffle of elements that is suitable for input to MOVSS,
2324/// MOVSD, and MOVD, i.e. setting the lowest element.
2325static bool isMOVLMask(SDOperandPtr Elts, unsigned NumElts) {
2326  if (NumElts != 2 && NumElts != 4)
2327    return false;
2328
2329  if (!isUndefOrEqual(Elts[0], NumElts))
2330    return false;
2331
2332  for (unsigned i = 1; i < NumElts; ++i) {
2333    if (!isUndefOrEqual(Elts[i], i))
2334      return false;
2335  }
2336
2337  return true;
2338}
2339
2340bool X86::isMOVLMask(SDNode *N) {
2341  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2342  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2343}
2344
2345/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2346/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2347/// element of vector 2 and the other elements to come from vector 1 in order.
2348static bool isCommutedMOVL(SDOperandPtr Ops, unsigned NumOps,
2349                           bool V2IsSplat = false,
2350                           bool V2IsUndef = false) {
2351  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2352    return false;
2353
2354  if (!isUndefOrEqual(Ops[0], 0))
2355    return false;
2356
2357  for (unsigned i = 1; i < NumOps; ++i) {
2358    SDValue Arg = Ops[i];
2359    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2360          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2361          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2362      return false;
2363  }
2364
2365  return true;
2366}
2367
2368static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2369                           bool V2IsUndef = false) {
2370  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2371  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2372                        V2IsSplat, V2IsUndef);
2373}
2374
2375/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2376/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2377bool X86::isMOVSHDUPMask(SDNode *N) {
2378  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2379
2380  if (N->getNumOperands() != 4)
2381    return false;
2382
2383  // Expect 1, 1, 3, 3
2384  for (unsigned i = 0; i < 2; ++i) {
2385    SDValue Arg = N->getOperand(i);
2386    if (Arg.getOpcode() == ISD::UNDEF) continue;
2387    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2388    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2389    if (Val != 1) return false;
2390  }
2391
2392  bool HasHi = false;
2393  for (unsigned i = 2; i < 4; ++i) {
2394    SDValue Arg = N->getOperand(i);
2395    if (Arg.getOpcode() == ISD::UNDEF) continue;
2396    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2397    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2398    if (Val != 3) return false;
2399    HasHi = true;
2400  }
2401
2402  // Don't use movshdup if it can be done with a shufps.
2403  return HasHi;
2404}
2405
2406/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2407/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2408bool X86::isMOVSLDUPMask(SDNode *N) {
2409  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2410
2411  if (N->getNumOperands() != 4)
2412    return false;
2413
2414  // Expect 0, 0, 2, 2
2415  for (unsigned i = 0; i < 2; ++i) {
2416    SDValue Arg = N->getOperand(i);
2417    if (Arg.getOpcode() == ISD::UNDEF) continue;
2418    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2419    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2420    if (Val != 0) return false;
2421  }
2422
2423  bool HasHi = false;
2424  for (unsigned i = 2; i < 4; ++i) {
2425    SDValue Arg = N->getOperand(i);
2426    if (Arg.getOpcode() == ISD::UNDEF) continue;
2427    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2428    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2429    if (Val != 2) return false;
2430    HasHi = true;
2431  }
2432
2433  // Don't use movshdup if it can be done with a shufps.
2434  return HasHi;
2435}
2436
2437/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2438/// specifies a identity operation on the LHS or RHS.
2439static bool isIdentityMask(SDNode *N, bool RHS = false) {
2440  unsigned NumElems = N->getNumOperands();
2441  for (unsigned i = 0; i < NumElems; ++i)
2442    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2443      return false;
2444  return true;
2445}
2446
2447/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2448/// a splat of a single element.
2449static bool isSplatMask(SDNode *N) {
2450  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2451
2452  // This is a splat operation if each element of the permute is the same, and
2453  // if the value doesn't reference the second vector.
2454  unsigned NumElems = N->getNumOperands();
2455  SDValue ElementBase;
2456  unsigned i = 0;
2457  for (; i != NumElems; ++i) {
2458    SDValue Elt = N->getOperand(i);
2459    if (isa<ConstantSDNode>(Elt)) {
2460      ElementBase = Elt;
2461      break;
2462    }
2463  }
2464
2465  if (!ElementBase.Val)
2466    return false;
2467
2468  for (; i != NumElems; ++i) {
2469    SDValue Arg = N->getOperand(i);
2470    if (Arg.getOpcode() == ISD::UNDEF) continue;
2471    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2472    if (Arg != ElementBase) return false;
2473  }
2474
2475  // Make sure it is a splat of the first vector operand.
2476  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2477}
2478
2479/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2480/// a splat of a single element and it's a 2 or 4 element mask.
2481bool X86::isSplatMask(SDNode *N) {
2482  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2483
2484  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2485  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2486    return false;
2487  return ::isSplatMask(N);
2488}
2489
2490/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2491/// specifies a splat of zero element.
2492bool X86::isSplatLoMask(SDNode *N) {
2493  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2494
2495  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2496    if (!isUndefOrEqual(N->getOperand(i), 0))
2497      return false;
2498  return true;
2499}
2500
2501/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2502/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2503/// instructions.
2504unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2505  unsigned NumOperands = N->getNumOperands();
2506  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2507  unsigned Mask = 0;
2508  for (unsigned i = 0; i < NumOperands; ++i) {
2509    unsigned Val = 0;
2510    SDValue Arg = N->getOperand(NumOperands-i-1);
2511    if (Arg.getOpcode() != ISD::UNDEF)
2512      Val = cast<ConstantSDNode>(Arg)->getValue();
2513    if (Val >= NumOperands) Val -= NumOperands;
2514    Mask |= Val;
2515    if (i != NumOperands - 1)
2516      Mask <<= Shift;
2517  }
2518
2519  return Mask;
2520}
2521
2522/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2523/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2524/// instructions.
2525unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2526  unsigned Mask = 0;
2527  // 8 nodes, but we only care about the last 4.
2528  for (unsigned i = 7; i >= 4; --i) {
2529    unsigned Val = 0;
2530    SDValue Arg = N->getOperand(i);
2531    if (Arg.getOpcode() != ISD::UNDEF)
2532      Val = cast<ConstantSDNode>(Arg)->getValue();
2533    Mask |= (Val - 4);
2534    if (i != 4)
2535      Mask <<= 2;
2536  }
2537
2538  return Mask;
2539}
2540
2541/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2542/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2543/// instructions.
2544unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2545  unsigned Mask = 0;
2546  // 8 nodes, but we only care about the first 4.
2547  for (int i = 3; i >= 0; --i) {
2548    unsigned Val = 0;
2549    SDValue Arg = N->getOperand(i);
2550    if (Arg.getOpcode() != ISD::UNDEF)
2551      Val = cast<ConstantSDNode>(Arg)->getValue();
2552    Mask |= Val;
2553    if (i != 0)
2554      Mask <<= 2;
2555  }
2556
2557  return Mask;
2558}
2559
2560/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2561/// specifies a 8 element shuffle that can be broken into a pair of
2562/// PSHUFHW and PSHUFLW.
2563static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2564  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2565
2566  if (N->getNumOperands() != 8)
2567    return false;
2568
2569  // Lower quadword shuffled.
2570  for (unsigned i = 0; i != 4; ++i) {
2571    SDValue Arg = N->getOperand(i);
2572    if (Arg.getOpcode() == ISD::UNDEF) continue;
2573    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2574    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2575    if (Val >= 4)
2576      return false;
2577  }
2578
2579  // Upper quadword shuffled.
2580  for (unsigned i = 4; i != 8; ++i) {
2581    SDValue Arg = N->getOperand(i);
2582    if (Arg.getOpcode() == ISD::UNDEF) continue;
2583    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2584    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2585    if (Val < 4 || Val > 7)
2586      return false;
2587  }
2588
2589  return true;
2590}
2591
2592/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2593/// values in ther permute mask.
2594static SDValue CommuteVectorShuffle(SDValue Op, SDValue &V1,
2595                                      SDValue &V2, SDValue &Mask,
2596                                      SelectionDAG &DAG) {
2597  MVT VT = Op.getValueType();
2598  MVT MaskVT = Mask.getValueType();
2599  MVT EltVT = MaskVT.getVectorElementType();
2600  unsigned NumElems = Mask.getNumOperands();
2601  SmallVector<SDValue, 8> MaskVec;
2602
2603  for (unsigned i = 0; i != NumElems; ++i) {
2604    SDValue Arg = Mask.getOperand(i);
2605    if (Arg.getOpcode() == ISD::UNDEF) {
2606      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2607      continue;
2608    }
2609    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2610    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2611    if (Val < NumElems)
2612      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2613    else
2614      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2615  }
2616
2617  std::swap(V1, V2);
2618  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2619  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2620}
2621
2622/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2623/// the two vector operands have swapped position.
2624static
2625SDValue CommuteVectorShuffleMask(SDValue Mask, SelectionDAG &DAG) {
2626  MVT MaskVT = Mask.getValueType();
2627  MVT EltVT = MaskVT.getVectorElementType();
2628  unsigned NumElems = Mask.getNumOperands();
2629  SmallVector<SDValue, 8> MaskVec;
2630  for (unsigned i = 0; i != NumElems; ++i) {
2631    SDValue Arg = Mask.getOperand(i);
2632    if (Arg.getOpcode() == ISD::UNDEF) {
2633      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2634      continue;
2635    }
2636    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2637    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2638    if (Val < NumElems)
2639      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2640    else
2641      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2642  }
2643  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2644}
2645
2646
2647/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2648/// match movhlps. The lower half elements should come from upper half of
2649/// V1 (and in order), and the upper half elements should come from the upper
2650/// half of V2 (and in order).
2651static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2652  unsigned NumElems = Mask->getNumOperands();
2653  if (NumElems != 4)
2654    return false;
2655  for (unsigned i = 0, e = 2; i != e; ++i)
2656    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2657      return false;
2658  for (unsigned i = 2; i != 4; ++i)
2659    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2660      return false;
2661  return true;
2662}
2663
2664/// isScalarLoadToVector - Returns true if the node is a scalar load that
2665/// is promoted to a vector. It also returns the LoadSDNode by reference if
2666/// required.
2667static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2668  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2669    N = N->getOperand(0).Val;
2670    if (ISD::isNON_EXTLoad(N)) {
2671      if (LD)
2672        *LD = cast<LoadSDNode>(N);
2673      return true;
2674    }
2675  }
2676  return false;
2677}
2678
2679/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2680/// match movlp{s|d}. The lower half elements should come from lower half of
2681/// V1 (and in order), and the upper half elements should come from the upper
2682/// half of V2 (and in order). And since V1 will become the source of the
2683/// MOVLP, it must be either a vector load or a scalar load to vector.
2684static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2685  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2686    return false;
2687  // Is V2 is a vector load, don't do this transformation. We will try to use
2688  // load folding shufps op.
2689  if (ISD::isNON_EXTLoad(V2))
2690    return false;
2691
2692  unsigned NumElems = Mask->getNumOperands();
2693  if (NumElems != 2 && NumElems != 4)
2694    return false;
2695  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2696    if (!isUndefOrEqual(Mask->getOperand(i), i))
2697      return false;
2698  for (unsigned i = NumElems/2; i != NumElems; ++i)
2699    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2700      return false;
2701  return true;
2702}
2703
2704/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2705/// all the same.
2706static bool isSplatVector(SDNode *N) {
2707  if (N->getOpcode() != ISD::BUILD_VECTOR)
2708    return false;
2709
2710  SDValue SplatValue = N->getOperand(0);
2711  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2712    if (N->getOperand(i) != SplatValue)
2713      return false;
2714  return true;
2715}
2716
2717/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2718/// to an undef.
2719static bool isUndefShuffle(SDNode *N) {
2720  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2721    return false;
2722
2723  SDValue V1 = N->getOperand(0);
2724  SDValue V2 = N->getOperand(1);
2725  SDValue Mask = N->getOperand(2);
2726  unsigned NumElems = Mask.getNumOperands();
2727  for (unsigned i = 0; i != NumElems; ++i) {
2728    SDValue Arg = Mask.getOperand(i);
2729    if (Arg.getOpcode() != ISD::UNDEF) {
2730      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2731      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2732        return false;
2733      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2734        return false;
2735    }
2736  }
2737  return true;
2738}
2739
2740/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2741/// constant +0.0.
2742static inline bool isZeroNode(SDValue Elt) {
2743  return ((isa<ConstantSDNode>(Elt) &&
2744           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2745          (isa<ConstantFPSDNode>(Elt) &&
2746           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2747}
2748
2749/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2750/// to an zero vector.
2751static bool isZeroShuffle(SDNode *N) {
2752  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2753    return false;
2754
2755  SDValue V1 = N->getOperand(0);
2756  SDValue V2 = N->getOperand(1);
2757  SDValue Mask = N->getOperand(2);
2758  unsigned NumElems = Mask.getNumOperands();
2759  for (unsigned i = 0; i != NumElems; ++i) {
2760    SDValue Arg = Mask.getOperand(i);
2761    if (Arg.getOpcode() == ISD::UNDEF)
2762      continue;
2763
2764    unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2765    if (Idx < NumElems) {
2766      unsigned Opc = V1.Val->getOpcode();
2767      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.Val))
2768        continue;
2769      if (Opc != ISD::BUILD_VECTOR ||
2770          !isZeroNode(V1.Val->getOperand(Idx)))
2771        return false;
2772    } else if (Idx >= NumElems) {
2773      unsigned Opc = V2.Val->getOpcode();
2774      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.Val))
2775        continue;
2776      if (Opc != ISD::BUILD_VECTOR ||
2777          !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2778        return false;
2779    }
2780  }
2781  return true;
2782}
2783
2784/// getZeroVector - Returns a vector of specified type with all zero elements.
2785///
2786static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG) {
2787  assert(VT.isVector() && "Expected a vector type");
2788
2789  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2790  // type.  This ensures they get CSE'd.
2791  SDValue Vec;
2792  if (VT.getSizeInBits() == 64) { // MMX
2793    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2794    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2795  } else if (HasSSE2) {  // SSE2
2796    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2797    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2798  } else { // SSE1
2799    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2800    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4f32, Cst, Cst, Cst, Cst);
2801  }
2802  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2803}
2804
2805/// getOnesVector - Returns a vector of specified type with all bits set.
2806///
2807static SDValue getOnesVector(MVT VT, SelectionDAG &DAG) {
2808  assert(VT.isVector() && "Expected a vector type");
2809
2810  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2811  // type.  This ensures they get CSE'd.
2812  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2813  SDValue Vec;
2814  if (VT.getSizeInBits() == 64)  // MMX
2815    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2816  else                                              // SSE
2817    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2818  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2819}
2820
2821
2822/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2823/// that point to V2 points to its first element.
2824static SDValue NormalizeMask(SDValue Mask, SelectionDAG &DAG) {
2825  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2826
2827  bool Changed = false;
2828  SmallVector<SDValue, 8> MaskVec;
2829  unsigned NumElems = Mask.getNumOperands();
2830  for (unsigned i = 0; i != NumElems; ++i) {
2831    SDValue Arg = Mask.getOperand(i);
2832    if (Arg.getOpcode() != ISD::UNDEF) {
2833      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2834      if (Val > NumElems) {
2835        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2836        Changed = true;
2837      }
2838    }
2839    MaskVec.push_back(Arg);
2840  }
2841
2842  if (Changed)
2843    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2844                       &MaskVec[0], MaskVec.size());
2845  return Mask;
2846}
2847
2848/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2849/// operation of specified width.
2850static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2851  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2852  MVT BaseVT = MaskVT.getVectorElementType();
2853
2854  SmallVector<SDValue, 8> MaskVec;
2855  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2856  for (unsigned i = 1; i != NumElems; ++i)
2857    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2858  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2859}
2860
2861/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2862/// of specified width.
2863static SDValue getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2864  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2865  MVT BaseVT = MaskVT.getVectorElementType();
2866  SmallVector<SDValue, 8> MaskVec;
2867  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2868    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2869    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2870  }
2871  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2872}
2873
2874/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2875/// of specified width.
2876static SDValue getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2877  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2878  MVT BaseVT = MaskVT.getVectorElementType();
2879  unsigned Half = NumElems/2;
2880  SmallVector<SDValue, 8> MaskVec;
2881  for (unsigned i = 0; i != Half; ++i) {
2882    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2883    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2884  }
2885  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2886}
2887
2888/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps
2889/// element #0 of a vector with the specified index, leaving the rest of the
2890/// elements in place.
2891static SDValue getSwapEltZeroMask(unsigned NumElems, unsigned DestElt,
2892                                   SelectionDAG &DAG) {
2893  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2894  MVT BaseVT = MaskVT.getVectorElementType();
2895  SmallVector<SDValue, 8> MaskVec;
2896  // Element #0 of the result gets the elt we are replacing.
2897  MaskVec.push_back(DAG.getConstant(DestElt, BaseVT));
2898  for (unsigned i = 1; i != NumElems; ++i)
2899    MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT));
2900  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2901}
2902
2903/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2904static SDValue PromoteSplat(SDValue Op, SelectionDAG &DAG, bool HasSSE2) {
2905  MVT PVT = HasSSE2 ? MVT::v4i32 : MVT::v4f32;
2906  MVT VT = Op.getValueType();
2907  if (PVT == VT)
2908    return Op;
2909  SDValue V1 = Op.getOperand(0);
2910  SDValue Mask = Op.getOperand(2);
2911  unsigned NumElems = Mask.getNumOperands();
2912  // Special handling of v4f32 -> v4i32.
2913  if (VT != MVT::v4f32) {
2914    Mask = getUnpacklMask(NumElems, DAG);
2915    while (NumElems > 4) {
2916      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2917      NumElems >>= 1;
2918    }
2919    Mask = getZeroVector(MVT::v4i32, true, DAG);
2920  }
2921
2922  V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
2923  SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1,
2924                                  DAG.getNode(ISD::UNDEF, PVT), Mask);
2925  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2926}
2927
2928/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2929/// vector of zero or undef vector.  This produces a shuffle where the low
2930/// element of V2 is swizzled into the zero/undef vector, landing at element
2931/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
2932static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
2933                                             bool isZero, bool HasSSE2,
2934                                             SelectionDAG &DAG) {
2935  MVT VT = V2.getValueType();
2936  SDValue V1 = isZero
2937    ? getZeroVector(VT, HasSSE2, DAG) : DAG.getNode(ISD::UNDEF, VT);
2938  unsigned NumElems = V2.getValueType().getVectorNumElements();
2939  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2940  MVT EVT = MaskVT.getVectorElementType();
2941  SmallVector<SDValue, 16> MaskVec;
2942  for (unsigned i = 0; i != NumElems; ++i)
2943    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
2944      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
2945    else
2946      MaskVec.push_back(DAG.getConstant(i, EVT));
2947  SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2948                               &MaskVec[0], MaskVec.size());
2949  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2950}
2951
2952/// getNumOfConsecutiveZeros - Return the number of elements in a result of
2953/// a shuffle that is zero.
2954static
2955unsigned getNumOfConsecutiveZeros(SDValue Op, SDValue Mask,
2956                                  unsigned NumElems, bool Low,
2957                                  SelectionDAG &DAG) {
2958  unsigned NumZeros = 0;
2959  for (unsigned i = 0; i < NumElems; ++i) {
2960    unsigned Index = Low ? i : NumElems-i-1;
2961    SDValue Idx = Mask.getOperand(Index);
2962    if (Idx.getOpcode() == ISD::UNDEF) {
2963      ++NumZeros;
2964      continue;
2965    }
2966    SDValue Elt = DAG.getShuffleScalarElt(Op.Val, Index);
2967    if (Elt.Val && isZeroNode(Elt))
2968      ++NumZeros;
2969    else
2970      break;
2971  }
2972  return NumZeros;
2973}
2974
2975/// isVectorShift - Returns true if the shuffle can be implemented as a
2976/// logical left or right shift of a vector.
2977static bool isVectorShift(SDValue Op, SDValue Mask, SelectionDAG &DAG,
2978                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
2979  unsigned NumElems = Mask.getNumOperands();
2980
2981  isLeft = true;
2982  unsigned NumZeros= getNumOfConsecutiveZeros(Op, Mask, NumElems, true, DAG);
2983  if (!NumZeros) {
2984    isLeft = false;
2985    NumZeros = getNumOfConsecutiveZeros(Op, Mask, NumElems, false, DAG);
2986    if (!NumZeros)
2987      return false;
2988  }
2989
2990  bool SeenV1 = false;
2991  bool SeenV2 = false;
2992  for (unsigned i = NumZeros; i < NumElems; ++i) {
2993    unsigned Val = isLeft ? (i - NumZeros) : i;
2994    SDValue Idx = Mask.getOperand(isLeft ? i : (i - NumZeros));
2995    if (Idx.getOpcode() == ISD::UNDEF)
2996      continue;
2997    unsigned Index = cast<ConstantSDNode>(Idx)->getValue();
2998    if (Index < NumElems)
2999      SeenV1 = true;
3000    else {
3001      Index -= NumElems;
3002      SeenV2 = true;
3003    }
3004    if (Index != Val)
3005      return false;
3006  }
3007  if (SeenV1 && SeenV2)
3008    return false;
3009
3010  ShVal = SeenV1 ? Op.getOperand(0) : Op.getOperand(1);
3011  ShAmt = NumZeros;
3012  return true;
3013}
3014
3015
3016/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3017///
3018static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3019                                       unsigned NumNonZero, unsigned NumZero,
3020                                       SelectionDAG &DAG, TargetLowering &TLI) {
3021  if (NumNonZero > 8)
3022    return SDValue();
3023
3024  SDValue V(0, 0);
3025  bool First = true;
3026  for (unsigned i = 0; i < 16; ++i) {
3027    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3028    if (ThisIsNonZero && First) {
3029      if (NumZero)
3030        V = getZeroVector(MVT::v8i16, true, DAG);
3031      else
3032        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3033      First = false;
3034    }
3035
3036    if ((i & 1) != 0) {
3037      SDValue ThisElt(0, 0), LastElt(0, 0);
3038      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3039      if (LastIsNonZero) {
3040        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3041      }
3042      if (ThisIsNonZero) {
3043        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3044        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3045                              ThisElt, DAG.getConstant(8, MVT::i8));
3046        if (LastIsNonZero)
3047          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3048      } else
3049        ThisElt = LastElt;
3050
3051      if (ThisElt.Val)
3052        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3053                        DAG.getIntPtrConstant(i/2));
3054    }
3055  }
3056
3057  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3058}
3059
3060/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3061///
3062static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3063                                       unsigned NumNonZero, unsigned NumZero,
3064                                       SelectionDAG &DAG, TargetLowering &TLI) {
3065  if (NumNonZero > 4)
3066    return SDValue();
3067
3068  SDValue V(0, 0);
3069  bool First = true;
3070  for (unsigned i = 0; i < 8; ++i) {
3071    bool isNonZero = (NonZeros & (1 << i)) != 0;
3072    if (isNonZero) {
3073      if (First) {
3074        if (NumZero)
3075          V = getZeroVector(MVT::v8i16, true, DAG);
3076        else
3077          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3078        First = false;
3079      }
3080      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3081                      DAG.getIntPtrConstant(i));
3082    }
3083  }
3084
3085  return V;
3086}
3087
3088/// getVShift - Return a vector logical shift node.
3089///
3090static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp,
3091                           unsigned NumBits, SelectionDAG &DAG,
3092                           const TargetLowering &TLI) {
3093  bool isMMX = VT.getSizeInBits() == 64;
3094  MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3095  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3096  SrcOp = DAG.getNode(ISD::BIT_CONVERT, ShVT, SrcOp);
3097  return DAG.getNode(ISD::BIT_CONVERT, VT,
3098                     DAG.getNode(Opc, ShVT, SrcOp,
3099                              DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3100}
3101
3102SDValue
3103X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3104  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3105  if (ISD::isBuildVectorAllZeros(Op.Val) || ISD::isBuildVectorAllOnes(Op.Val)) {
3106    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3107    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3108    // eliminated on x86-32 hosts.
3109    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3110      return Op;
3111
3112    if (ISD::isBuildVectorAllOnes(Op.Val))
3113      return getOnesVector(Op.getValueType(), DAG);
3114    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG);
3115  }
3116
3117  MVT VT = Op.getValueType();
3118  MVT EVT = VT.getVectorElementType();
3119  unsigned EVTBits = EVT.getSizeInBits();
3120
3121  unsigned NumElems = Op.getNumOperands();
3122  unsigned NumZero  = 0;
3123  unsigned NumNonZero = 0;
3124  unsigned NonZeros = 0;
3125  bool IsAllConstants = true;
3126  SmallSet<SDValue, 8> Values;
3127  for (unsigned i = 0; i < NumElems; ++i) {
3128    SDValue Elt = Op.getOperand(i);
3129    if (Elt.getOpcode() == ISD::UNDEF)
3130      continue;
3131    Values.insert(Elt);
3132    if (Elt.getOpcode() != ISD::Constant &&
3133        Elt.getOpcode() != ISD::ConstantFP)
3134      IsAllConstants = false;
3135    if (isZeroNode(Elt))
3136      NumZero++;
3137    else {
3138      NonZeros |= (1 << i);
3139      NumNonZero++;
3140    }
3141  }
3142
3143  if (NumNonZero == 0) {
3144    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3145    return DAG.getNode(ISD::UNDEF, VT);
3146  }
3147
3148  // Special case for single non-zero, non-undef, element.
3149  if (NumNonZero == 1 && NumElems <= 4) {
3150    unsigned Idx = CountTrailingZeros_32(NonZeros);
3151    SDValue Item = Op.getOperand(Idx);
3152
3153    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3154    // the value are obviously zero, truncate the value to i32 and do the
3155    // insertion that way.  Only do this if the value is non-constant or if the
3156    // value is a constant being inserted into element 0.  It is cheaper to do
3157    // a constant pool load than it is to do a movd + shuffle.
3158    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3159        (!IsAllConstants || Idx == 0)) {
3160      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3161        // Handle MMX and SSE both.
3162        MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3163        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3164
3165        // Truncate the value (which may itself be a constant) to i32, and
3166        // convert it to a vector with movd (S2V+shuffle to zero extend).
3167        Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item);
3168        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item);
3169        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3170                                           Subtarget->hasSSE2(), DAG);
3171
3172        // Now we have our 32-bit value zero extended in the low element of
3173        // a vector.  If Idx != 0, swizzle it into place.
3174        if (Idx != 0) {
3175          SDValue Ops[] = {
3176            Item, DAG.getNode(ISD::UNDEF, Item.getValueType()),
3177            getSwapEltZeroMask(VecElts, Idx, DAG)
3178          };
3179          Item = DAG.getNode(ISD::VECTOR_SHUFFLE, VecVT, Ops, 3);
3180        }
3181        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Item);
3182      }
3183    }
3184
3185    // If we have a constant or non-constant insertion into the low element of
3186    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3187    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3188    // depending on what the source datatype is.  Because we can only get here
3189    // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
3190    if (Idx == 0 &&
3191        // Don't do this for i64 values on x86-32.
3192        (EVT != MVT::i64 || Subtarget->is64Bit())) {
3193      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3194      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3195      return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3196                                         Subtarget->hasSSE2(), DAG);
3197    }
3198
3199    // Is it a vector logical left shift?
3200    if (NumElems == 2 && Idx == 1 &&
3201        isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
3202      unsigned NumBits = VT.getSizeInBits();
3203      return getVShift(true, VT,
3204                       DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(1)),
3205                       NumBits/2, DAG, *this);
3206    }
3207
3208    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3209      return SDValue();
3210
3211    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3212    // is a non-constant being inserted into an element other than the low one,
3213    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3214    // movd/movss) to move this into the low element, then shuffle it into
3215    // place.
3216    if (EVTBits == 32) {
3217      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3218
3219      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3220      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3221                                         Subtarget->hasSSE2(), DAG);
3222      MVT MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3223      MVT MaskEVT = MaskVT.getVectorElementType();
3224      SmallVector<SDValue, 8> MaskVec;
3225      for (unsigned i = 0; i < NumElems; i++)
3226        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3227      SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3228                                   &MaskVec[0], MaskVec.size());
3229      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3230                         DAG.getNode(ISD::UNDEF, VT), Mask);
3231    }
3232  }
3233
3234  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3235  if (Values.size() == 1)
3236    return SDValue();
3237
3238  // A vector full of immediates; various special cases are already
3239  // handled, so this is best done with a single constant-pool load.
3240  if (IsAllConstants)
3241    return SDValue();
3242
3243  // Let legalizer expand 2-wide build_vectors.
3244  if (EVTBits == 64) {
3245    if (NumNonZero == 1) {
3246      // One half is zero or undef.
3247      unsigned Idx = CountTrailingZeros_32(NonZeros);
3248      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT,
3249                                 Op.getOperand(Idx));
3250      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3251                                         Subtarget->hasSSE2(), DAG);
3252    }
3253    return SDValue();
3254  }
3255
3256  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3257  if (EVTBits == 8 && NumElems == 16) {
3258    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3259                                        *this);
3260    if (V.Val) return V;
3261  }
3262
3263  if (EVTBits == 16 && NumElems == 8) {
3264    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3265                                        *this);
3266    if (V.Val) return V;
3267  }
3268
3269  // If element VT is == 32 bits, turn it into a number of shuffles.
3270  SmallVector<SDValue, 8> V;
3271  V.resize(NumElems);
3272  if (NumElems == 4 && NumZero > 0) {
3273    for (unsigned i = 0; i < 4; ++i) {
3274      bool isZero = !(NonZeros & (1 << i));
3275      if (isZero)
3276        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG);
3277      else
3278        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3279    }
3280
3281    for (unsigned i = 0; i < 2; ++i) {
3282      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3283        default: break;
3284        case 0:
3285          V[i] = V[i*2];  // Must be a zero vector.
3286          break;
3287        case 1:
3288          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3289                             getMOVLMask(NumElems, DAG));
3290          break;
3291        case 2:
3292          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3293                             getMOVLMask(NumElems, DAG));
3294          break;
3295        case 3:
3296          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3297                             getUnpacklMask(NumElems, DAG));
3298          break;
3299      }
3300    }
3301
3302    MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3303    MVT EVT = MaskVT.getVectorElementType();
3304    SmallVector<SDValue, 8> MaskVec;
3305    bool Reverse = (NonZeros & 0x3) == 2;
3306    for (unsigned i = 0; i < 2; ++i)
3307      if (Reverse)
3308        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3309      else
3310        MaskVec.push_back(DAG.getConstant(i, EVT));
3311    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3312    for (unsigned i = 0; i < 2; ++i)
3313      if (Reverse)
3314        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3315      else
3316        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3317    SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3318                                     &MaskVec[0], MaskVec.size());
3319    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3320  }
3321
3322  if (Values.size() > 2) {
3323    // Expand into a number of unpckl*.
3324    // e.g. for v4f32
3325    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3326    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3327    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3328    SDValue UnpckMask = getUnpacklMask(NumElems, DAG);
3329    for (unsigned i = 0; i < NumElems; ++i)
3330      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3331    NumElems >>= 1;
3332    while (NumElems != 0) {
3333      for (unsigned i = 0; i < NumElems; ++i)
3334        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3335                           UnpckMask);
3336      NumElems >>= 1;
3337    }
3338    return V[0];
3339  }
3340
3341  return SDValue();
3342}
3343
3344static
3345SDValue LowerVECTOR_SHUFFLEv8i16(SDValue V1, SDValue V2,
3346                                 SDValue PermMask, SelectionDAG &DAG,
3347                                 TargetLowering &TLI) {
3348  SDValue NewV;
3349  MVT MaskVT = MVT::getIntVectorWithNumElements(8);
3350  MVT MaskEVT = MaskVT.getVectorElementType();
3351  MVT PtrVT = TLI.getPointerTy();
3352  SmallVector<SDValue, 8> MaskElts(PermMask.Val->op_begin(),
3353                                   PermMask.Val->op_end());
3354
3355  // First record which half of which vector the low elements come from.
3356  SmallVector<unsigned, 4> LowQuad(4);
3357  for (unsigned i = 0; i < 4; ++i) {
3358    SDValue Elt = MaskElts[i];
3359    if (Elt.getOpcode() == ISD::UNDEF)
3360      continue;
3361    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3362    int QuadIdx = EltIdx / 4;
3363    ++LowQuad[QuadIdx];
3364  }
3365
3366  int BestLowQuad = -1;
3367  unsigned MaxQuad = 1;
3368  for (unsigned i = 0; i < 4; ++i) {
3369    if (LowQuad[i] > MaxQuad) {
3370      BestLowQuad = i;
3371      MaxQuad = LowQuad[i];
3372    }
3373  }
3374
3375  // Record which half of which vector the high elements come from.
3376  SmallVector<unsigned, 4> HighQuad(4);
3377  for (unsigned i = 4; i < 8; ++i) {
3378    SDValue Elt = MaskElts[i];
3379    if (Elt.getOpcode() == ISD::UNDEF)
3380      continue;
3381    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3382    int QuadIdx = EltIdx / 4;
3383    ++HighQuad[QuadIdx];
3384  }
3385
3386  int BestHighQuad = -1;
3387  MaxQuad = 1;
3388  for (unsigned i = 0; i < 4; ++i) {
3389    if (HighQuad[i] > MaxQuad) {
3390      BestHighQuad = i;
3391      MaxQuad = HighQuad[i];
3392    }
3393  }
3394
3395  // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
3396  if (BestLowQuad != -1 || BestHighQuad != -1) {
3397    // First sort the 4 chunks in order using shufpd.
3398    SmallVector<SDValue, 8> MaskVec;
3399
3400    if (BestLowQuad != -1)
3401      MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
3402    else
3403      MaskVec.push_back(DAG.getConstant(0, MVT::i32));
3404
3405    if (BestHighQuad != -1)
3406      MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
3407    else
3408      MaskVec.push_back(DAG.getConstant(1, MVT::i32));
3409
3410    SDValue Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
3411    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
3412                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
3413                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
3414    NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
3415
3416    // Now sort high and low parts separately.
3417    BitVector InOrder(8);
3418    if (BestLowQuad != -1) {
3419      // Sort lower half in order using PSHUFLW.
3420      MaskVec.clear();
3421      bool AnyOutOrder = false;
3422
3423      for (unsigned i = 0; i != 4; ++i) {
3424        SDValue Elt = MaskElts[i];
3425        if (Elt.getOpcode() == ISD::UNDEF) {
3426          MaskVec.push_back(Elt);
3427          InOrder.set(i);
3428        } else {
3429          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3430          if (EltIdx != i)
3431            AnyOutOrder = true;
3432
3433          MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
3434
3435          // If this element is in the right place after this shuffle, then
3436          // remember it.
3437          if ((int)(EltIdx / 4) == BestLowQuad)
3438            InOrder.set(i);
3439        }
3440      }
3441      if (AnyOutOrder) {
3442        for (unsigned i = 4; i != 8; ++i)
3443          MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3444        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3445        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3446      }
3447    }
3448
3449    if (BestHighQuad != -1) {
3450      // Sort high half in order using PSHUFHW if possible.
3451      MaskVec.clear();
3452
3453      for (unsigned i = 0; i != 4; ++i)
3454        MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3455
3456      bool AnyOutOrder = false;
3457      for (unsigned i = 4; i != 8; ++i) {
3458        SDValue Elt = MaskElts[i];
3459        if (Elt.getOpcode() == ISD::UNDEF) {
3460          MaskVec.push_back(Elt);
3461          InOrder.set(i);
3462        } else {
3463          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3464          if (EltIdx != i)
3465            AnyOutOrder = true;
3466
3467          MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
3468
3469          // If this element is in the right place after this shuffle, then
3470          // remember it.
3471          if ((int)(EltIdx / 4) == BestHighQuad)
3472            InOrder.set(i);
3473        }
3474      }
3475
3476      if (AnyOutOrder) {
3477        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3478        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3479      }
3480    }
3481
3482    // The other elements are put in the right place using pextrw and pinsrw.
3483    for (unsigned i = 0; i != 8; ++i) {
3484      if (InOrder[i])
3485        continue;
3486      SDValue Elt = MaskElts[i];
3487      if (Elt.getOpcode() == ISD::UNDEF)
3488        continue;
3489      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3490      SDValue ExtOp = (EltIdx < 8)
3491        ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3492                      DAG.getConstant(EltIdx, PtrVT))
3493        : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3494                      DAG.getConstant(EltIdx - 8, PtrVT));
3495      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3496                         DAG.getConstant(i, PtrVT));
3497    }
3498
3499    return NewV;
3500  }
3501
3502  // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use as
3503  // few as possible. First, let's find out how many elements are already in the
3504  // right order.
3505  unsigned V1InOrder = 0;
3506  unsigned V1FromV1 = 0;
3507  unsigned V2InOrder = 0;
3508  unsigned V2FromV2 = 0;
3509  SmallVector<SDValue, 8> V1Elts;
3510  SmallVector<SDValue, 8> V2Elts;
3511  for (unsigned i = 0; i < 8; ++i) {
3512    SDValue Elt = MaskElts[i];
3513    if (Elt.getOpcode() == ISD::UNDEF) {
3514      V1Elts.push_back(Elt);
3515      V2Elts.push_back(Elt);
3516      ++V1InOrder;
3517      ++V2InOrder;
3518      continue;
3519    }
3520    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3521    if (EltIdx == i) {
3522      V1Elts.push_back(Elt);
3523      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3524      ++V1InOrder;
3525    } else if (EltIdx == i+8) {
3526      V1Elts.push_back(Elt);
3527      V2Elts.push_back(DAG.getConstant(i, MaskEVT));
3528      ++V2InOrder;
3529    } else if (EltIdx < 8) {
3530      V1Elts.push_back(Elt);
3531      ++V1FromV1;
3532    } else {
3533      V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
3534      ++V2FromV2;
3535    }
3536  }
3537
3538  if (V2InOrder > V1InOrder) {
3539    PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3540    std::swap(V1, V2);
3541    std::swap(V1Elts, V2Elts);
3542    std::swap(V1FromV1, V2FromV2);
3543  }
3544
3545  if ((V1FromV1 + V1InOrder) != 8) {
3546    // Some elements are from V2.
3547    if (V1FromV1) {
3548      // If there are elements that are from V1 but out of place,
3549      // then first sort them in place
3550      SmallVector<SDValue, 8> MaskVec;
3551      for (unsigned i = 0; i < 8; ++i) {
3552        SDValue Elt = V1Elts[i];
3553        if (Elt.getOpcode() == ISD::UNDEF) {
3554          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3555          continue;
3556        }
3557        unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3558        if (EltIdx >= 8)
3559          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3560        else
3561          MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
3562      }
3563      SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3564      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
3565    }
3566
3567    NewV = V1;
3568    for (unsigned i = 0; i < 8; ++i) {
3569      SDValue Elt = V1Elts[i];
3570      if (Elt.getOpcode() == ISD::UNDEF)
3571        continue;
3572      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3573      if (EltIdx < 8)
3574        continue;
3575      SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3576                                    DAG.getConstant(EltIdx - 8, PtrVT));
3577      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3578                         DAG.getConstant(i, PtrVT));
3579    }
3580    return NewV;
3581  } else {
3582    // All elements are from V1.
3583    NewV = V1;
3584    for (unsigned i = 0; i < 8; ++i) {
3585      SDValue Elt = V1Elts[i];
3586      if (Elt.getOpcode() == ISD::UNDEF)
3587        continue;
3588      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3589      SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3590                                    DAG.getConstant(EltIdx, PtrVT));
3591      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3592                         DAG.getConstant(i, PtrVT));
3593    }
3594    return NewV;
3595  }
3596}
3597
3598/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3599/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3600/// done when every pair / quad of shuffle mask elements point to elements in
3601/// the right sequence. e.g.
3602/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3603static
3604SDValue RewriteAsNarrowerShuffle(SDValue V1, SDValue V2,
3605                                MVT VT,
3606                                SDValue PermMask, SelectionDAG &DAG,
3607                                TargetLowering &TLI) {
3608  unsigned NumElems = PermMask.getNumOperands();
3609  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3610  MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3611  MVT MaskEltVT = MaskVT.getVectorElementType();
3612  MVT NewVT = MaskVT;
3613  switch (VT.getSimpleVT()) {
3614  default: assert(false && "Unexpected!");
3615  case MVT::v4f32: NewVT = MVT::v2f64; break;
3616  case MVT::v4i32: NewVT = MVT::v2i64; break;
3617  case MVT::v8i16: NewVT = MVT::v4i32; break;
3618  case MVT::v16i8: NewVT = MVT::v4i32; break;
3619  }
3620
3621  if (NewWidth == 2) {
3622    if (VT.isInteger())
3623      NewVT = MVT::v2i64;
3624    else
3625      NewVT = MVT::v2f64;
3626  }
3627  unsigned Scale = NumElems / NewWidth;
3628  SmallVector<SDValue, 8> MaskVec;
3629  for (unsigned i = 0; i < NumElems; i += Scale) {
3630    unsigned StartIdx = ~0U;
3631    for (unsigned j = 0; j < Scale; ++j) {
3632      SDValue Elt = PermMask.getOperand(i+j);
3633      if (Elt.getOpcode() == ISD::UNDEF)
3634        continue;
3635      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3636      if (StartIdx == ~0U)
3637        StartIdx = EltIdx - (EltIdx % Scale);
3638      if (EltIdx != StartIdx + j)
3639        return SDValue();
3640    }
3641    if (StartIdx == ~0U)
3642      MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEltVT));
3643    else
3644      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MaskEltVT));
3645  }
3646
3647  V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
3648  V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
3649  return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
3650                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3651                                 &MaskVec[0], MaskVec.size()));
3652}
3653
3654/// getVZextMovL - Return a zero-extending vector move low node.
3655///
3656static SDValue getVZextMovL(MVT VT, MVT OpVT,
3657                              SDValue SrcOp, SelectionDAG &DAG,
3658                              const X86Subtarget *Subtarget) {
3659  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3660    LoadSDNode *LD = NULL;
3661    if (!isScalarLoadToVector(SrcOp.Val, &LD))
3662      LD = dyn_cast<LoadSDNode>(SrcOp);
3663    if (!LD) {
3664      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3665      // instead.
3666      MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3667      if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
3668          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3669          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3670          SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
3671        // PR2108
3672        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3673        return DAG.getNode(ISD::BIT_CONVERT, VT,
3674                           DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3675                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, OpVT,
3676                                                   SrcOp.getOperand(0).getOperand(0))));
3677      }
3678    }
3679  }
3680
3681  return DAG.getNode(ISD::BIT_CONVERT, VT,
3682                     DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3683                                 DAG.getNode(ISD::BIT_CONVERT, OpVT, SrcOp)));
3684}
3685
3686/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3687/// shuffles.
3688static SDValue
3689LowerVECTOR_SHUFFLE_4wide(SDValue V1, SDValue V2,
3690                          SDValue PermMask, MVT VT, SelectionDAG &DAG) {
3691  MVT MaskVT = PermMask.getValueType();
3692  MVT MaskEVT = MaskVT.getVectorElementType();
3693  SmallVector<std::pair<int, int>, 8> Locs;
3694  Locs.reserve(4);
3695  SmallVector<SDValue, 8> Mask1(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3696  unsigned NumHi = 0;
3697  unsigned NumLo = 0;
3698  for (unsigned i = 0; i != 4; ++i) {
3699    SDValue Elt = PermMask.getOperand(i);
3700    if (Elt.getOpcode() == ISD::UNDEF) {
3701      Locs[i] = std::make_pair(-1, -1);
3702    } else {
3703      unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3704      assert(Val < 8 && "Invalid VECTOR_SHUFFLE index!");
3705      if (Val < 4) {
3706        Locs[i] = std::make_pair(0, NumLo);
3707        Mask1[NumLo] = Elt;
3708        NumLo++;
3709      } else {
3710        Locs[i] = std::make_pair(1, NumHi);
3711        if (2+NumHi < 4)
3712          Mask1[2+NumHi] = Elt;
3713        NumHi++;
3714      }
3715    }
3716  }
3717
3718  if (NumLo <= 2 && NumHi <= 2) {
3719    // If no more than two elements come from either vector. This can be
3720    // implemented with two shuffles. First shuffle gather the elements.
3721    // The second shuffle, which takes the first shuffle as both of its
3722    // vector operands, put the elements into the right order.
3723    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3724                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3725                                 &Mask1[0], Mask1.size()));
3726
3727    SmallVector<SDValue, 8> Mask2(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3728    for (unsigned i = 0; i != 4; ++i) {
3729      if (Locs[i].first == -1)
3730        continue;
3731      else {
3732        unsigned Idx = (i < 2) ? 0 : 4;
3733        Idx += Locs[i].first * 2 + Locs[i].second;
3734        Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3735      }
3736    }
3737
3738    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3739                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3740                                   &Mask2[0], Mask2.size()));
3741  } else if (NumLo == 3 || NumHi == 3) {
3742    // Otherwise, we must have three elements from one vector, call it X, and
3743    // one element from the other, call it Y.  First, use a shufps to build an
3744    // intermediate vector with the one element from Y and the element from X
3745    // that will be in the same half in the final destination (the indexes don't
3746    // matter). Then, use a shufps to build the final vector, taking the half
3747    // containing the element from Y from the intermediate, and the other half
3748    // from X.
3749    if (NumHi == 3) {
3750      // Normalize it so the 3 elements come from V1.
3751      PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3752      std::swap(V1, V2);
3753    }
3754
3755    // Find the element from V2.
3756    unsigned HiIndex;
3757    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
3758      SDValue Elt = PermMask.getOperand(HiIndex);
3759      if (Elt.getOpcode() == ISD::UNDEF)
3760        continue;
3761      unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3762      if (Val >= 4)
3763        break;
3764    }
3765
3766    Mask1[0] = PermMask.getOperand(HiIndex);
3767    Mask1[1] = DAG.getNode(ISD::UNDEF, MaskEVT);
3768    Mask1[2] = PermMask.getOperand(HiIndex^1);
3769    Mask1[3] = DAG.getNode(ISD::UNDEF, MaskEVT);
3770    V2 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3771                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3772
3773    if (HiIndex >= 2) {
3774      Mask1[0] = PermMask.getOperand(0);
3775      Mask1[1] = PermMask.getOperand(1);
3776      Mask1[2] = DAG.getConstant(HiIndex & 1 ? 6 : 4, MaskEVT);
3777      Mask1[3] = DAG.getConstant(HiIndex & 1 ? 4 : 6, MaskEVT);
3778      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3779                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3780    } else {
3781      Mask1[0] = DAG.getConstant(HiIndex & 1 ? 2 : 0, MaskEVT);
3782      Mask1[1] = DAG.getConstant(HiIndex & 1 ? 0 : 2, MaskEVT);
3783      Mask1[2] = PermMask.getOperand(2);
3784      Mask1[3] = PermMask.getOperand(3);
3785      if (Mask1[2].getOpcode() != ISD::UNDEF)
3786        Mask1[2] = DAG.getConstant(cast<ConstantSDNode>(Mask1[2])->getValue()+4,
3787                                   MaskEVT);
3788      if (Mask1[3].getOpcode() != ISD::UNDEF)
3789        Mask1[3] = DAG.getConstant(cast<ConstantSDNode>(Mask1[3])->getValue()+4,
3790                                   MaskEVT);
3791      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V2, V1,
3792                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3793    }
3794  }
3795
3796  // Break it into (shuffle shuffle_hi, shuffle_lo).
3797  Locs.clear();
3798  SmallVector<SDValue,8> LoMask(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3799  SmallVector<SDValue,8> HiMask(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3800  SmallVector<SDValue,8> *MaskPtr = &LoMask;
3801  unsigned MaskIdx = 0;
3802  unsigned LoIdx = 0;
3803  unsigned HiIdx = 2;
3804  for (unsigned i = 0; i != 4; ++i) {
3805    if (i == 2) {
3806      MaskPtr = &HiMask;
3807      MaskIdx = 1;
3808      LoIdx = 0;
3809      HiIdx = 2;
3810    }
3811    SDValue Elt = PermMask.getOperand(i);
3812    if (Elt.getOpcode() == ISD::UNDEF) {
3813      Locs[i] = std::make_pair(-1, -1);
3814    } else if (cast<ConstantSDNode>(Elt)->getValue() < 4) {
3815      Locs[i] = std::make_pair(MaskIdx, LoIdx);
3816      (*MaskPtr)[LoIdx] = Elt;
3817      LoIdx++;
3818    } else {
3819      Locs[i] = std::make_pair(MaskIdx, HiIdx);
3820      (*MaskPtr)[HiIdx] = Elt;
3821      HiIdx++;
3822    }
3823  }
3824
3825  SDValue LoShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3826                                    DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3827                                                &LoMask[0], LoMask.size()));
3828  SDValue HiShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3829                                    DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3830                                                &HiMask[0], HiMask.size()));
3831  SmallVector<SDValue, 8> MaskOps;
3832  for (unsigned i = 0; i != 4; ++i) {
3833    if (Locs[i].first == -1) {
3834      MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3835    } else {
3836      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
3837      MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3838    }
3839  }
3840  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3841                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3842                                 &MaskOps[0], MaskOps.size()));
3843}
3844
3845SDValue
3846X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3847  SDValue V1 = Op.getOperand(0);
3848  SDValue V2 = Op.getOperand(1);
3849  SDValue PermMask = Op.getOperand(2);
3850  MVT VT = Op.getValueType();
3851  unsigned NumElems = PermMask.getNumOperands();
3852  bool isMMX = VT.getSizeInBits() == 64;
3853  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3854  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3855  bool V1IsSplat = false;
3856  bool V2IsSplat = false;
3857
3858  if (isUndefShuffle(Op.Val))
3859    return DAG.getNode(ISD::UNDEF, VT);
3860
3861  if (isZeroShuffle(Op.Val))
3862    return getZeroVector(VT, Subtarget->hasSSE2(), DAG);
3863
3864  if (isIdentityMask(PermMask.Val))
3865    return V1;
3866  else if (isIdentityMask(PermMask.Val, true))
3867    return V2;
3868
3869  if (isSplatMask(PermMask.Val)) {
3870    if (isMMX || NumElems < 4) return Op;
3871    // Promote it to a v4{if}32 splat.
3872    return PromoteSplat(Op, DAG, Subtarget->hasSSE2());
3873  }
3874
3875  // If the shuffle can be profitably rewritten as a narrower shuffle, then
3876  // do it!
3877  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
3878    SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3879    if (NewOp.Val)
3880      return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3881  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
3882    // FIXME: Figure out a cleaner way to do this.
3883    // Try to make use of movq to zero out the top part.
3884    if (ISD::isBuildVectorAllZeros(V2.Val)) {
3885      SDValue NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
3886                                                 DAG, *this);
3887      if (NewOp.Val) {
3888        SDValue NewV1 = NewOp.getOperand(0);
3889        SDValue NewV2 = NewOp.getOperand(1);
3890        SDValue NewMask = NewOp.getOperand(2);
3891        if (isCommutedMOVL(NewMask.Val, true, false)) {
3892          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
3893          return getVZextMovL(VT, NewOp.getValueType(), NewV2, DAG, Subtarget);
3894        }
3895      }
3896    } else if (ISD::isBuildVectorAllZeros(V1.Val)) {
3897      SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
3898                                                DAG, *this);
3899      if (NewOp.Val && X86::isMOVLMask(NewOp.getOperand(2).Val))
3900        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
3901                             DAG, Subtarget);
3902    }
3903  }
3904
3905  // Check if this can be converted into a logical shift.
3906  bool isLeft = false;
3907  unsigned ShAmt = 0;
3908  SDValue ShVal;
3909  bool isShift = isVectorShift(Op, PermMask, DAG, isLeft, ShVal, ShAmt);
3910  if (isShift && ShVal.hasOneUse()) {
3911    // If the shifted value has multiple uses, it may be cheaper to use
3912    // v_set0 + movlhps or movhlps, etc.
3913    MVT EVT = VT.getVectorElementType();
3914    ShAmt *= EVT.getSizeInBits();
3915    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
3916  }
3917
3918  if (X86::isMOVLMask(PermMask.Val)) {
3919    if (V1IsUndef)
3920      return V2;
3921    if (ISD::isBuildVectorAllZeros(V1.Val))
3922      return getVZextMovL(VT, VT, V2, DAG, Subtarget);
3923    if (!isMMX)
3924      return Op;
3925  }
3926
3927  if (!isMMX && (X86::isMOVSHDUPMask(PermMask.Val) ||
3928                 X86::isMOVSLDUPMask(PermMask.Val) ||
3929                 X86::isMOVHLPSMask(PermMask.Val) ||
3930                 X86::isMOVHPMask(PermMask.Val) ||
3931                 X86::isMOVLPMask(PermMask.Val)))
3932    return Op;
3933
3934  if (ShouldXformToMOVHLPS(PermMask.Val) ||
3935      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3936    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3937
3938  if (isShift) {
3939    // No better options. Use a vshl / vsrl.
3940    MVT EVT = VT.getVectorElementType();
3941    ShAmt *= EVT.getSizeInBits();
3942    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
3943  }
3944
3945  bool Commuted = false;
3946  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
3947  // 1,1,1,1 -> v8i16 though.
3948  V1IsSplat = isSplatVector(V1.Val);
3949  V2IsSplat = isSplatVector(V2.Val);
3950
3951  // Canonicalize the splat or undef, if present, to be on the RHS.
3952  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3953    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3954    std::swap(V1IsSplat, V2IsSplat);
3955    std::swap(V1IsUndef, V2IsUndef);
3956    Commuted = true;
3957  }
3958
3959  // FIXME: Figure out a cleaner way to do this.
3960  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3961    if (V2IsUndef) return V1;
3962    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3963    if (V2IsSplat) {
3964      // V2 is a splat, so the mask may be malformed. That is, it may point
3965      // to any V2 element. The instruction selectior won't like this. Get
3966      // a corrected mask and commute to form a proper MOVS{S|D}.
3967      SDValue NewMask = getMOVLMask(NumElems, DAG);
3968      if (NewMask.Val != PermMask.Val)
3969        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3970    }
3971    return Op;
3972  }
3973
3974  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3975      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3976      X86::isUNPCKLMask(PermMask.Val) ||
3977      X86::isUNPCKHMask(PermMask.Val))
3978    return Op;
3979
3980  if (V2IsSplat) {
3981    // Normalize mask so all entries that point to V2 points to its first
3982    // element then try to match unpck{h|l} again. If match, return a
3983    // new vector_shuffle with the corrected mask.
3984    SDValue NewMask = NormalizeMask(PermMask, DAG);
3985    if (NewMask.Val != PermMask.Val) {
3986      if (X86::isUNPCKLMask(PermMask.Val, true)) {
3987        SDValue NewMask = getUnpacklMask(NumElems, DAG);
3988        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3989      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3990        SDValue NewMask = getUnpackhMask(NumElems, DAG);
3991        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3992      }
3993    }
3994  }
3995
3996  // Normalize the node to match x86 shuffle ops if needed
3997  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3998      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3999
4000  if (Commuted) {
4001    // Commute is back and try unpck* again.
4002    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4003    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
4004        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
4005        X86::isUNPCKLMask(PermMask.Val) ||
4006        X86::isUNPCKHMask(PermMask.Val))
4007      return Op;
4008  }
4009
4010  // Try PSHUF* first, then SHUFP*.
4011  // MMX doesn't have PSHUFD but it does have PSHUFW. While it's theoretically
4012  // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
4013  if (isMMX && NumElems == 4 && X86::isPSHUFDMask(PermMask.Val)) {
4014    if (V2.getOpcode() != ISD::UNDEF)
4015      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
4016                         DAG.getNode(ISD::UNDEF, VT), PermMask);
4017    return Op;
4018  }
4019
4020  if (!isMMX) {
4021    if (Subtarget->hasSSE2() &&
4022        (X86::isPSHUFDMask(PermMask.Val) ||
4023         X86::isPSHUFHWMask(PermMask.Val) ||
4024         X86::isPSHUFLWMask(PermMask.Val))) {
4025      MVT RVT = VT;
4026      if (VT == MVT::v4f32) {
4027        RVT = MVT::v4i32;
4028        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT,
4029                         DAG.getNode(ISD::BIT_CONVERT, RVT, V1),
4030                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
4031      } else if (V2.getOpcode() != ISD::UNDEF)
4032        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT, V1,
4033                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
4034      if (RVT != VT)
4035        Op = DAG.getNode(ISD::BIT_CONVERT, VT, Op);
4036      return Op;
4037    }
4038
4039    // Binary or unary shufps.
4040    if (X86::isSHUFPMask(PermMask.Val) ||
4041        (V2.getOpcode() == ISD::UNDEF && X86::isPSHUFDMask(PermMask.Val)))
4042      return Op;
4043  }
4044
4045  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4046  if (VT == MVT::v8i16) {
4047    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
4048    if (NewOp.Val)
4049      return NewOp;
4050  }
4051
4052  // Handle all 4 wide cases with a number of shuffles except for MMX.
4053  if (NumElems == 4 && !isMMX)
4054    return LowerVECTOR_SHUFFLE_4wide(V1, V2, PermMask, VT, DAG);
4055
4056  return SDValue();
4057}
4058
4059SDValue
4060X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4061                                                SelectionDAG &DAG) {
4062  MVT VT = Op.getValueType();
4063  if (VT.getSizeInBits() == 8) {
4064    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32,
4065                                    Op.getOperand(0), Op.getOperand(1));
4066    SDValue Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
4067                                    DAG.getValueType(VT));
4068    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4069  } else if (VT.getSizeInBits() == 16) {
4070    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32,
4071                                    Op.getOperand(0), Op.getOperand(1));
4072    SDValue Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
4073                                    DAG.getValueType(VT));
4074    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4075  } else if (VT == MVT::f32) {
4076    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4077    // the result back to FR32 register. It's only worth matching if the
4078    // result has a single use which is a store or a bitcast to i32.
4079    if (!Op.hasOneUse())
4080      return SDValue();
4081    SDNode *User = *Op.Val->use_begin();
4082    if (User->getOpcode() != ISD::STORE &&
4083        (User->getOpcode() != ISD::BIT_CONVERT ||
4084         User->getValueType(0) != MVT::i32))
4085      return SDValue();
4086    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4087                    DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Op.getOperand(0)),
4088                                    Op.getOperand(1));
4089    return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Extract);
4090  }
4091  return SDValue();
4092}
4093
4094
4095SDValue
4096X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4097  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4098    return SDValue();
4099
4100  if (Subtarget->hasSSE41()) {
4101    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4102    if (Res.Val)
4103      return Res;
4104  }
4105
4106  MVT VT = Op.getValueType();
4107  // TODO: handle v16i8.
4108  if (VT.getSizeInBits() == 16) {
4109    SDValue Vec = Op.getOperand(0);
4110    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4111    if (Idx == 0)
4112      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
4113                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4114                                 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
4115                                     Op.getOperand(1)));
4116    // Transform it so it match pextrw which produces a 32-bit result.
4117    MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
4118    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
4119                                    Op.getOperand(0), Op.getOperand(1));
4120    SDValue Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
4121                                    DAG.getValueType(VT));
4122    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4123  } else if (VT.getSizeInBits() == 32) {
4124    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4125    if (Idx == 0)
4126      return Op;
4127    // SHUFPS the element to the lowest double word, then movss.
4128    MVT MaskVT = MVT::getIntVectorWithNumElements(4);
4129    SmallVector<SDValue, 8> IdxVec;
4130    IdxVec.
4131      push_back(DAG.getConstant(Idx, MaskVT.getVectorElementType()));
4132    IdxVec.
4133      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4134    IdxVec.
4135      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4136    IdxVec.
4137      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4138    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4139                                 &IdxVec[0], IdxVec.size());
4140    SDValue Vec = Op.getOperand(0);
4141    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4142                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4143    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4144                       DAG.getIntPtrConstant(0));
4145  } else if (VT.getSizeInBits() == 64) {
4146    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4147    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4148    //        to match extract_elt for f64.
4149    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4150    if (Idx == 0)
4151      return Op;
4152
4153    // UNPCKHPD the element to the lowest double word, then movsd.
4154    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4155    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4156    MVT MaskVT = MVT::getIntVectorWithNumElements(2);
4157    SmallVector<SDValue, 8> IdxVec;
4158    IdxVec.push_back(DAG.getConstant(1, MaskVT.getVectorElementType()));
4159    IdxVec.
4160      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4161    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4162                                 &IdxVec[0], IdxVec.size());
4163    SDValue Vec = Op.getOperand(0);
4164    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4165                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4166    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4167                       DAG.getIntPtrConstant(0));
4168  }
4169
4170  return SDValue();
4171}
4172
4173SDValue
4174X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4175  MVT VT = Op.getValueType();
4176  MVT EVT = VT.getVectorElementType();
4177
4178  SDValue N0 = Op.getOperand(0);
4179  SDValue N1 = Op.getOperand(1);
4180  SDValue N2 = Op.getOperand(2);
4181
4182  if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4183      isa<ConstantSDNode>(N2)) {
4184    unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4185                                                  : X86ISD::PINSRW;
4186    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4187    // argument.
4188    if (N1.getValueType() != MVT::i32)
4189      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4190    if (N2.getValueType() != MVT::i32)
4191      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
4192    return DAG.getNode(Opc, VT, N0, N1, N2);
4193  } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4194    // Bits [7:6] of the constant are the source select.  This will always be
4195    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4196    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4197    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4198    // Bits [5:4] of the constant are the destination select.  This is the
4199    //  value of the incoming immediate.
4200    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4201    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4202    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue() << 4);
4203    return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2);
4204  }
4205  return SDValue();
4206}
4207
4208SDValue
4209X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4210  MVT VT = Op.getValueType();
4211  MVT EVT = VT.getVectorElementType();
4212
4213  if (Subtarget->hasSSE41())
4214    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4215
4216  if (EVT == MVT::i8)
4217    return SDValue();
4218
4219  SDValue N0 = Op.getOperand(0);
4220  SDValue N1 = Op.getOperand(1);
4221  SDValue N2 = Op.getOperand(2);
4222
4223  if (EVT.getSizeInBits() == 16) {
4224    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4225    // as its second argument.
4226    if (N1.getValueType() != MVT::i32)
4227      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4228    if (N2.getValueType() != MVT::i32)
4229      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
4230    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
4231  }
4232  return SDValue();
4233}
4234
4235SDValue
4236X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4237  if (Op.getValueType() == MVT::v2f32)
4238    return DAG.getNode(ISD::BIT_CONVERT, MVT::v2f32,
4239                       DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i32,
4240                                   DAG.getNode(ISD::BIT_CONVERT, MVT::i32,
4241                                               Op.getOperand(0))));
4242
4243  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
4244  MVT VT = MVT::v2i32;
4245  switch (Op.getValueType().getSimpleVT()) {
4246  default: break;
4247  case MVT::v16i8:
4248  case MVT::v8i16:
4249    VT = MVT::v4i32;
4250    break;
4251  }
4252  return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(),
4253                     DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt));
4254}
4255
4256// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4257// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4258// one of the above mentioned nodes. It has to be wrapped because otherwise
4259// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4260// be used to form addressing mode. These wrapped nodes will be selected
4261// into MOV32ri.
4262SDValue
4263X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4264  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4265  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(),
4266                                               getPointerTy(),
4267                                               CP->getAlignment());
4268  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4269  // With PIC, the address is actually $g + Offset.
4270  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4271      !Subtarget->isPICStyleRIPRel()) {
4272    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4273                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4274                         Result);
4275  }
4276
4277  return Result;
4278}
4279
4280SDValue
4281X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4282  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4283  SDValue Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
4284  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4285  // With PIC, the address is actually $g + Offset.
4286  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4287      !Subtarget->isPICStyleRIPRel()) {
4288    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4289                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4290                         Result);
4291  }
4292
4293  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4294  // load the value at address GV, not the value of GV itself. This means that
4295  // the GlobalAddress must be in the base or index register of the address, not
4296  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4297  // The same applies for external symbols during PIC codegen
4298  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
4299    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result,
4300                         PseudoSourceValue::getGOT(), 0);
4301
4302  return Result;
4303}
4304
4305// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4306static SDValue
4307LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4308                                const MVT PtrVT) {
4309  SDValue InFlag;
4310  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
4311                                     DAG.getNode(X86ISD::GlobalBaseReg,
4312                                                 PtrVT), InFlag);
4313  InFlag = Chain.getValue(1);
4314
4315  // emit leal symbol@TLSGD(,%ebx,1), %eax
4316  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4317  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4318                                             GA->getValueType(0),
4319                                             GA->getOffset());
4320  SDValue Ops[] = { Chain,  TGA, InFlag };
4321  SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
4322  InFlag = Result.getValue(2);
4323  Chain = Result.getValue(1);
4324
4325  // call ___tls_get_addr. This function receives its argument in
4326  // the register EAX.
4327  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
4328  InFlag = Chain.getValue(1);
4329
4330  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4331  SDValue Ops1[] = { Chain,
4332                      DAG.getTargetExternalSymbol("___tls_get_addr",
4333                                                  PtrVT),
4334                      DAG.getRegister(X86::EAX, PtrVT),
4335                      DAG.getRegister(X86::EBX, PtrVT),
4336                      InFlag };
4337  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
4338  InFlag = Chain.getValue(1);
4339
4340  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
4341}
4342
4343// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4344static SDValue
4345LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4346                                const MVT PtrVT) {
4347  SDValue InFlag, Chain;
4348
4349  // emit leaq symbol@TLSGD(%rip), %rdi
4350  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4351  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4352                                             GA->getValueType(0),
4353                                             GA->getOffset());
4354  SDValue Ops[]  = { DAG.getEntryNode(), TGA};
4355  SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 2);
4356  Chain  = Result.getValue(1);
4357  InFlag = Result.getValue(2);
4358
4359  // call __tls_get_addr. This function receives its argument in
4360  // the register RDI.
4361  Chain = DAG.getCopyToReg(Chain, X86::RDI, Result, InFlag);
4362  InFlag = Chain.getValue(1);
4363
4364  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4365  SDValue Ops1[] = { Chain,
4366                      DAG.getTargetExternalSymbol("__tls_get_addr",
4367                                                  PtrVT),
4368                      DAG.getRegister(X86::RDI, PtrVT),
4369                      InFlag };
4370  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 4);
4371  InFlag = Chain.getValue(1);
4372
4373  return DAG.getCopyFromReg(Chain, X86::RAX, PtrVT, InFlag);
4374}
4375
4376// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4377// "local exec" model.
4378static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4379                                     const MVT PtrVT) {
4380  // Get the Thread Pointer
4381  SDValue ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
4382  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4383  // exec)
4384  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4385                                             GA->getValueType(0),
4386                                             GA->getOffset());
4387  SDValue Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
4388
4389  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
4390    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset,
4391                         PseudoSourceValue::getGOT(), 0);
4392
4393  // The address of the thread local variable is the add of the thread
4394  // pointer with the offset of the variable.
4395  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
4396}
4397
4398SDValue
4399X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4400  // TODO: implement the "local dynamic" model
4401  // TODO: implement the "initial exec"model for pic executables
4402  assert(Subtarget->isTargetELF() &&
4403         "TLS not implemented for non-ELF targets");
4404  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4405  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
4406  // otherwise use the "Local Exec"TLS Model
4407  if (Subtarget->is64Bit()) {
4408    return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4409  } else {
4410    if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4411      return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4412    else
4413      return LowerToTLSExecModel(GA, DAG, getPointerTy());
4414  }
4415}
4416
4417SDValue
4418X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4419  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4420  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4421  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4422  // With PIC, the address is actually $g + Offset.
4423  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4424      !Subtarget->isPICStyleRIPRel()) {
4425    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4426                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4427                         Result);
4428  }
4429
4430  return Result;
4431}
4432
4433SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4434  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4435  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4436  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4437  // With PIC, the address is actually $g + Offset.
4438  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4439      !Subtarget->isPICStyleRIPRel()) {
4440    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4441                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4442                         Result);
4443  }
4444
4445  return Result;
4446}
4447
4448/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4449/// take a 2 x i32 value to shift plus a shift amount.
4450SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4451  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4452  MVT VT = Op.getValueType();
4453  unsigned VTBits = VT.getSizeInBits();
4454  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4455  SDValue ShOpLo = Op.getOperand(0);
4456  SDValue ShOpHi = Op.getOperand(1);
4457  SDValue ShAmt  = Op.getOperand(2);
4458  SDValue Tmp1 = isSRA ?
4459    DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) :
4460    DAG.getConstant(0, VT);
4461
4462  SDValue Tmp2, Tmp3;
4463  if (Op.getOpcode() == ISD::SHL_PARTS) {
4464    Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt);
4465    Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt);
4466  } else {
4467    Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt);
4468    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt);
4469  }
4470
4471  SDValue AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
4472                                  DAG.getConstant(VTBits, MVT::i8));
4473  SDValue Cond = DAG.getNode(X86ISD::CMP, VT,
4474                               AndNode, DAG.getConstant(0, MVT::i8));
4475
4476  SDValue Hi, Lo;
4477  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4478  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4479  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4480
4481  if (Op.getOpcode() == ISD::SHL_PARTS) {
4482    Hi = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
4483    Lo = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
4484  } else {
4485    Lo = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
4486    Hi = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
4487  }
4488
4489  SDValue Ops[2] = { Lo, Hi };
4490  return DAG.getMergeValues(Ops, 2);
4491}
4492
4493SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4494  MVT SrcVT = Op.getOperand(0).getValueType();
4495  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4496         "Unknown SINT_TO_FP to lower!");
4497
4498  // These are really Legal; caller falls through into that case.
4499  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4500    return SDValue();
4501  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
4502      Subtarget->is64Bit())
4503    return SDValue();
4504
4505  unsigned Size = SrcVT.getSizeInBits()/8;
4506  MachineFunction &MF = DAG.getMachineFunction();
4507  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4508  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4509  SDValue Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
4510                                 StackSlot,
4511                                 PseudoSourceValue::getFixedStack(SSFI), 0);
4512
4513  // Build the FILD
4514  SDVTList Tys;
4515  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4516  if (useSSE)
4517    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4518  else
4519    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4520  SmallVector<SDValue, 8> Ops;
4521  Ops.push_back(Chain);
4522  Ops.push_back(StackSlot);
4523  Ops.push_back(DAG.getValueType(SrcVT));
4524  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD,
4525                                 Tys, &Ops[0], Ops.size());
4526
4527  if (useSSE) {
4528    Chain = Result.getValue(1);
4529    SDValue InFlag = Result.getValue(2);
4530
4531    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4532    // shouldn't be necessary except that RFP cannot be live across
4533    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4534    MachineFunction &MF = DAG.getMachineFunction();
4535    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4536    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4537    Tys = DAG.getVTList(MVT::Other);
4538    SmallVector<SDValue, 8> Ops;
4539    Ops.push_back(Chain);
4540    Ops.push_back(Result);
4541    Ops.push_back(StackSlot);
4542    Ops.push_back(DAG.getValueType(Op.getValueType()));
4543    Ops.push_back(InFlag);
4544    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4545    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
4546                         PseudoSourceValue::getFixedStack(SSFI), 0);
4547  }
4548
4549  return Result;
4550}
4551
4552std::pair<SDValue,SDValue> X86TargetLowering::
4553FP_TO_SINTHelper(SDValue Op, SelectionDAG &DAG) {
4554  assert(Op.getValueType().getSimpleVT() <= MVT::i64 &&
4555         Op.getValueType().getSimpleVT() >= MVT::i16 &&
4556         "Unknown FP_TO_SINT to lower!");
4557
4558  // These are really Legal.
4559  if (Op.getValueType() == MVT::i32 &&
4560      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4561    return std::make_pair(SDValue(), SDValue());
4562  if (Subtarget->is64Bit() &&
4563      Op.getValueType() == MVT::i64 &&
4564      Op.getOperand(0).getValueType() != MVT::f80)
4565    return std::make_pair(SDValue(), SDValue());
4566
4567  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4568  // stack slot.
4569  MachineFunction &MF = DAG.getMachineFunction();
4570  unsigned MemSize = Op.getValueType().getSizeInBits()/8;
4571  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4572  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4573  unsigned Opc;
4574  switch (Op.getValueType().getSimpleVT()) {
4575  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4576  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4577  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4578  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4579  }
4580
4581  SDValue Chain = DAG.getEntryNode();
4582  SDValue Value = Op.getOperand(0);
4583  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
4584    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4585    Chain = DAG.getStore(Chain, Value, StackSlot,
4586                         PseudoSourceValue::getFixedStack(SSFI), 0);
4587    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4588    SDValue Ops[] = {
4589      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4590    };
4591    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
4592    Chain = Value.getValue(1);
4593    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4594    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4595  }
4596
4597  // Build the FP_TO_INT*_IN_MEM
4598  SDValue Ops[] = { Chain, Value, StackSlot };
4599  SDValue FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
4600
4601  return std::make_pair(FIST, StackSlot);
4602}
4603
4604SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
4605  std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(Op, DAG);
4606  SDValue FIST = Vals.first, StackSlot = Vals.second;
4607  if (FIST.Val == 0) return SDValue();
4608
4609  // Load the result.
4610  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4611}
4612
4613SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) {
4614  std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(SDValue(N, 0), DAG);
4615  SDValue FIST = Vals.first, StackSlot = Vals.second;
4616  if (FIST.Val == 0) return 0;
4617
4618  MVT VT = N->getValueType(0);
4619
4620  // Return a load from the stack slot.
4621  SDValue Res = DAG.getLoad(VT, FIST, StackSlot, NULL, 0);
4622
4623  // Use MERGE_VALUES to drop the chain result value and get a node with one
4624  // result.  This requires turning off getMergeValues simplification, since
4625  // otherwise it will give us Res back.
4626  return DAG.getMergeValues(&Res, 1, false).Val;
4627}
4628
4629SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
4630  MVT VT = Op.getValueType();
4631  MVT EltVT = VT;
4632  if (VT.isVector())
4633    EltVT = VT.getVectorElementType();
4634  std::vector<Constant*> CV;
4635  if (EltVT == MVT::f64) {
4636    Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
4637    CV.push_back(C);
4638    CV.push_back(C);
4639  } else {
4640    Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
4641    CV.push_back(C);
4642    CV.push_back(C);
4643    CV.push_back(C);
4644    CV.push_back(C);
4645  }
4646  Constant *C = ConstantVector::get(CV);
4647  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4648  SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4649                               PseudoSourceValue::getConstantPool(), 0,
4650                               false, 16);
4651  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4652}
4653
4654SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
4655  MVT VT = Op.getValueType();
4656  MVT EltVT = VT;
4657  unsigned EltNum = 1;
4658  if (VT.isVector()) {
4659    EltVT = VT.getVectorElementType();
4660    EltNum = VT.getVectorNumElements();
4661  }
4662  std::vector<Constant*> CV;
4663  if (EltVT == MVT::f64) {
4664    Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
4665    CV.push_back(C);
4666    CV.push_back(C);
4667  } else {
4668    Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
4669    CV.push_back(C);
4670    CV.push_back(C);
4671    CV.push_back(C);
4672    CV.push_back(C);
4673  }
4674  Constant *C = ConstantVector::get(CV);
4675  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4676  SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4677                               PseudoSourceValue::getConstantPool(), 0,
4678                               false, 16);
4679  if (VT.isVector()) {
4680    return DAG.getNode(ISD::BIT_CONVERT, VT,
4681                       DAG.getNode(ISD::XOR, MVT::v2i64,
4682                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4683                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4684  } else {
4685    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4686  }
4687}
4688
4689SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
4690  SDValue Op0 = Op.getOperand(0);
4691  SDValue Op1 = Op.getOperand(1);
4692  MVT VT = Op.getValueType();
4693  MVT SrcVT = Op1.getValueType();
4694
4695  // If second operand is smaller, extend it first.
4696  if (SrcVT.bitsLT(VT)) {
4697    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4698    SrcVT = VT;
4699  }
4700  // And if it is bigger, shrink it first.
4701  if (SrcVT.bitsGT(VT)) {
4702    Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1));
4703    SrcVT = VT;
4704  }
4705
4706  // At this point the operands and the result should have the same
4707  // type, and that won't be f80 since that is not custom lowered.
4708
4709  // First get the sign bit of second operand.
4710  std::vector<Constant*> CV;
4711  if (SrcVT == MVT::f64) {
4712    CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
4713    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4714  } else {
4715    CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
4716    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4717    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4718    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4719  }
4720  Constant *C = ConstantVector::get(CV);
4721  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4722  SDValue Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx,
4723                                PseudoSourceValue::getConstantPool(), 0,
4724                                false, 16);
4725  SDValue SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4726
4727  // Shift sign bit right or left if the two operands have different types.
4728  if (SrcVT.bitsGT(VT)) {
4729    // Op0 is MVT::f32, Op1 is MVT::f64.
4730    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4731    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4732                          DAG.getConstant(32, MVT::i32));
4733    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4734    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4735                          DAG.getIntPtrConstant(0));
4736  }
4737
4738  // Clear first operand sign bit.
4739  CV.clear();
4740  if (VT == MVT::f64) {
4741    CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
4742    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4743  } else {
4744    CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
4745    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4746    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4747    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4748  }
4749  C = ConstantVector::get(CV);
4750  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4751  SDValue Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4752                                PseudoSourceValue::getConstantPool(), 0,
4753                                false, 16);
4754  SDValue Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4755
4756  // Or the value with the sign bit.
4757  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4758}
4759
4760SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
4761  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
4762  SDValue Cond;
4763  SDValue Op0 = Op.getOperand(0);
4764  SDValue Op1 = Op.getOperand(1);
4765  SDValue CC = Op.getOperand(2);
4766  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4767  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
4768  unsigned X86CC;
4769
4770  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
4771                     Op0, Op1, DAG)) {
4772    Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4773    return DAG.getNode(X86ISD::SETCC, MVT::i8,
4774                       DAG.getConstant(X86CC, MVT::i8), Cond);
4775  }
4776
4777  assert(isFP && "Illegal integer SetCC!");
4778
4779  Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4780  switch (SetCCOpcode) {
4781  default: assert(false && "Illegal floating point SetCC!");
4782  case ISD::SETOEQ: {  // !PF & ZF
4783    SDValue Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4784                                 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
4785    SDValue Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4786                                 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4787    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4788  }
4789  case ISD::SETUNE: {  // PF | !ZF
4790    SDValue Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4791                                 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
4792    SDValue Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4793                                 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4794    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4795  }
4796  }
4797}
4798
4799SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
4800  SDValue Cond;
4801  SDValue Op0 = Op.getOperand(0);
4802  SDValue Op1 = Op.getOperand(1);
4803  SDValue CC = Op.getOperand(2);
4804  MVT VT = Op.getValueType();
4805  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4806  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
4807
4808  if (isFP) {
4809    unsigned SSECC = 8;
4810    MVT VT0 = Op0.getValueType();
4811    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
4812    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
4813    bool Swap = false;
4814
4815    switch (SetCCOpcode) {
4816    default: break;
4817    case ISD::SETOEQ:
4818    case ISD::SETEQ:  SSECC = 0; break;
4819    case ISD::SETOGT:
4820    case ISD::SETGT: Swap = true; // Fallthrough
4821    case ISD::SETLT:
4822    case ISD::SETOLT: SSECC = 1; break;
4823    case ISD::SETOGE:
4824    case ISD::SETGE: Swap = true; // Fallthrough
4825    case ISD::SETLE:
4826    case ISD::SETOLE: SSECC = 2; break;
4827    case ISD::SETUO:  SSECC = 3; break;
4828    case ISD::SETUNE:
4829    case ISD::SETNE:  SSECC = 4; break;
4830    case ISD::SETULE: Swap = true;
4831    case ISD::SETUGE: SSECC = 5; break;
4832    case ISD::SETULT: Swap = true;
4833    case ISD::SETUGT: SSECC = 6; break;
4834    case ISD::SETO:   SSECC = 7; break;
4835    }
4836    if (Swap)
4837      std::swap(Op0, Op1);
4838
4839    // In the two special cases we can't handle, emit two comparisons.
4840    if (SSECC == 8) {
4841      if (SetCCOpcode == ISD::SETUEQ) {
4842        SDValue UNORD, EQ;
4843        UNORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
4844        EQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
4845        return DAG.getNode(ISD::OR, VT, UNORD, EQ);
4846      }
4847      else if (SetCCOpcode == ISD::SETONE) {
4848        SDValue ORD, NEQ;
4849        ORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
4850        NEQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
4851        return DAG.getNode(ISD::AND, VT, ORD, NEQ);
4852      }
4853      assert(0 && "Illegal FP comparison");
4854    }
4855    // Handle all other FP comparisons here.
4856    return DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
4857  }
4858
4859  // We are handling one of the integer comparisons here.  Since SSE only has
4860  // GT and EQ comparisons for integer, swapping operands and multiple
4861  // operations may be required for some comparisons.
4862  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
4863  bool Swap = false, Invert = false, FlipSigns = false;
4864
4865  switch (VT.getSimpleVT()) {
4866  default: break;
4867  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
4868  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
4869  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
4870  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
4871  }
4872
4873  switch (SetCCOpcode) {
4874  default: break;
4875  case ISD::SETNE:  Invert = true;
4876  case ISD::SETEQ:  Opc = EQOpc; break;
4877  case ISD::SETLT:  Swap = true;
4878  case ISD::SETGT:  Opc = GTOpc; break;
4879  case ISD::SETGE:  Swap = true;
4880  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
4881  case ISD::SETULT: Swap = true;
4882  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
4883  case ISD::SETUGE: Swap = true;
4884  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
4885  }
4886  if (Swap)
4887    std::swap(Op0, Op1);
4888
4889  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
4890  // bits of the inputs before performing those operations.
4891  if (FlipSigns) {
4892    MVT EltVT = VT.getVectorElementType();
4893    SDValue SignBit = DAG.getConstant(EltVT.getIntegerVTSignBit(), EltVT);
4894    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
4895    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, VT, &SignBits[0],
4896                                    SignBits.size());
4897    Op0 = DAG.getNode(ISD::XOR, VT, Op0, SignVec);
4898    Op1 = DAG.getNode(ISD::XOR, VT, Op1, SignVec);
4899  }
4900
4901  SDValue Result = DAG.getNode(Opc, VT, Op0, Op1);
4902
4903  // If the logical-not of the result is required, perform that now.
4904  if (Invert) {
4905    MVT EltVT = VT.getVectorElementType();
4906    SDValue NegOne = DAG.getConstant(EltVT.getIntegerVTBitMask(), EltVT);
4907    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOne);
4908    SDValue NegOneV = DAG.getNode(ISD::BUILD_VECTOR, VT, &NegOnes[0],
4909                                    NegOnes.size());
4910    Result = DAG.getNode(ISD::XOR, VT, Result, NegOneV);
4911  }
4912  return Result;
4913}
4914
4915SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
4916  bool addTest = true;
4917  SDValue Cond  = Op.getOperand(0);
4918  SDValue CC;
4919
4920  if (Cond.getOpcode() == ISD::SETCC)
4921    Cond = LowerSETCC(Cond, DAG);
4922
4923  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4924  // setting operand in place of the X86ISD::SETCC.
4925  if (Cond.getOpcode() == X86ISD::SETCC) {
4926    CC = Cond.getOperand(0);
4927
4928    SDValue Cmp = Cond.getOperand(1);
4929    unsigned Opc = Cmp.getOpcode();
4930    MVT VT = Op.getValueType();
4931
4932    bool IllegalFPCMov = false;
4933    if (VT.isFloatingPoint() && !VT.isVector() &&
4934        !isScalarFPTypeInSSEReg(VT))  // FPStack?
4935      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4936
4937    if ((Opc == X86ISD::CMP ||
4938         Opc == X86ISD::COMI ||
4939         Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
4940      Cond = Cmp;
4941      addTest = false;
4942    }
4943  }
4944
4945  if (addTest) {
4946    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4947    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4948  }
4949
4950  const MVT *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4951                                                    MVT::Flag);
4952  SmallVector<SDValue, 4> Ops;
4953  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4954  // condition is true.
4955  Ops.push_back(Op.getOperand(2));
4956  Ops.push_back(Op.getOperand(1));
4957  Ops.push_back(CC);
4958  Ops.push_back(Cond);
4959  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
4960}
4961
4962SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
4963  bool addTest = true;
4964  SDValue Chain = Op.getOperand(0);
4965  SDValue Cond  = Op.getOperand(1);
4966  SDValue Dest  = Op.getOperand(2);
4967  SDValue CC;
4968
4969  if (Cond.getOpcode() == ISD::SETCC)
4970    Cond = LowerSETCC(Cond, DAG);
4971
4972  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4973  // setting operand in place of the X86ISD::SETCC.
4974  if (Cond.getOpcode() == X86ISD::SETCC) {
4975    CC = Cond.getOperand(0);
4976
4977    SDValue Cmp = Cond.getOperand(1);
4978    unsigned Opc = Cmp.getOpcode();
4979    if (Opc == X86ISD::CMP ||
4980        Opc == X86ISD::COMI ||
4981        Opc == X86ISD::UCOMI) {
4982      Cond = Cmp;
4983      addTest = false;
4984    }
4985  }
4986
4987  if (addTest) {
4988    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4989    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4990  }
4991  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
4992                     Chain, Op.getOperand(2), CC, Cond);
4993}
4994
4995
4996// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
4997// Calls to _alloca is needed to probe the stack when allocating more than 4k
4998// bytes in one go. Touching the stack at 4K increments is necessary to ensure
4999// that the guard pages used by the OS virtual memory manager are allocated in
5000// correct sequence.
5001SDValue
5002X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5003                                           SelectionDAG &DAG) {
5004  assert(Subtarget->isTargetCygMing() &&
5005         "This should be used only on Cygwin/Mingw targets");
5006
5007  // Get the inputs.
5008  SDValue Chain = Op.getOperand(0);
5009  SDValue Size  = Op.getOperand(1);
5010  // FIXME: Ensure alignment here
5011
5012  SDValue Flag;
5013
5014  MVT IntPtr = getPointerTy();
5015  MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5016
5017  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0));
5018
5019  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
5020  Flag = Chain.getValue(1);
5021
5022  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5023  SDValue Ops[] = { Chain,
5024                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
5025                      DAG.getRegister(X86::EAX, IntPtr),
5026                      DAG.getRegister(X86StackPtr, SPTy),
5027                      Flag };
5028  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 5);
5029  Flag = Chain.getValue(1);
5030
5031  Chain = DAG.getCALLSEQ_END(Chain,
5032                             DAG.getIntPtrConstant(0),
5033                             DAG.getIntPtrConstant(0),
5034                             Flag);
5035
5036  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
5037
5038  SDValue Ops1[2] = { Chain.getValue(0), Chain };
5039  return DAG.getMergeValues(Ops1, 2);
5040}
5041
5042SDValue
5043X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG,
5044                                        SDValue Chain,
5045                                        SDValue Dst, SDValue Src,
5046                                        SDValue Size, unsigned Align,
5047                                        const Value *DstSV, uint64_t DstSVOff) {
5048  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5049
5050  /// If not DWORD aligned or size is more than the threshold, call the library.
5051  /// The libc version is likely to be faster for these cases. It can use the
5052  /// address value and run time information about the CPU.
5053  if ((Align & 3) != 0 ||
5054      !ConstantSize ||
5055      ConstantSize->getValue() > getSubtarget()->getMaxInlineSizeThreshold()) {
5056    SDValue InFlag(0, 0);
5057
5058    // Check to see if there is a specialized entry-point for memory zeroing.
5059    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5060    if (const char *bzeroEntry =
5061          V && V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5062      MVT IntPtr = getPointerTy();
5063      const Type *IntPtrTy = getTargetData()->getIntPtrType();
5064      TargetLowering::ArgListTy Args;
5065      TargetLowering::ArgListEntry Entry;
5066      Entry.Node = Dst;
5067      Entry.Ty = IntPtrTy;
5068      Args.push_back(Entry);
5069      Entry.Node = Size;
5070      Args.push_back(Entry);
5071      std::pair<SDValue,SDValue> CallResult =
5072        LowerCallTo(Chain, Type::VoidTy, false, false, false, CallingConv::C,
5073                    false, DAG.getExternalSymbol(bzeroEntry, IntPtr),
5074                    Args, DAG);
5075      return CallResult.second;
5076    }
5077
5078    // Otherwise have the target-independent code call memset.
5079    return SDValue();
5080  }
5081
5082  uint64_t SizeVal = ConstantSize->getValue();
5083  SDValue InFlag(0, 0);
5084  MVT AVT;
5085  SDValue Count;
5086  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5087  unsigned BytesLeft = 0;
5088  bool TwoRepStos = false;
5089  if (ValC) {
5090    unsigned ValReg;
5091    uint64_t Val = ValC->getValue() & 255;
5092
5093    // If the value is a constant, then we can potentially use larger sets.
5094    switch (Align & 3) {
5095    case 2:   // WORD aligned
5096      AVT = MVT::i16;
5097      ValReg = X86::AX;
5098      Val = (Val << 8) | Val;
5099      break;
5100    case 0:  // DWORD aligned
5101      AVT = MVT::i32;
5102      ValReg = X86::EAX;
5103      Val = (Val << 8)  | Val;
5104      Val = (Val << 16) | Val;
5105      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
5106        AVT = MVT::i64;
5107        ValReg = X86::RAX;
5108        Val = (Val << 32) | Val;
5109      }
5110      break;
5111    default:  // Byte aligned
5112      AVT = MVT::i8;
5113      ValReg = X86::AL;
5114      Count = DAG.getIntPtrConstant(SizeVal);
5115      break;
5116    }
5117
5118    if (AVT.bitsGT(MVT::i8)) {
5119      unsigned UBytes = AVT.getSizeInBits() / 8;
5120      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5121      BytesLeft = SizeVal % UBytes;
5122    }
5123
5124    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
5125                              InFlag);
5126    InFlag = Chain.getValue(1);
5127  } else {
5128    AVT = MVT::i8;
5129    Count  = DAG.getIntPtrConstant(SizeVal);
5130    Chain  = DAG.getCopyToReg(Chain, X86::AL, Src, InFlag);
5131    InFlag = Chain.getValue(1);
5132  }
5133
5134  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
5135                            Count, InFlag);
5136  InFlag = Chain.getValue(1);
5137  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
5138                            Dst, InFlag);
5139  InFlag = Chain.getValue(1);
5140
5141  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5142  SmallVector<SDValue, 8> Ops;
5143  Ops.push_back(Chain);
5144  Ops.push_back(DAG.getValueType(AVT));
5145  Ops.push_back(InFlag);
5146  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
5147
5148  if (TwoRepStos) {
5149    InFlag = Chain.getValue(1);
5150    Count  = Size;
5151    MVT CVT = Count.getValueType();
5152    SDValue Left = DAG.getNode(ISD::AND, CVT, Count,
5153                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
5154    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
5155                              Left, InFlag);
5156    InFlag = Chain.getValue(1);
5157    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5158    Ops.clear();
5159    Ops.push_back(Chain);
5160    Ops.push_back(DAG.getValueType(MVT::i8));
5161    Ops.push_back(InFlag);
5162    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
5163  } else if (BytesLeft) {
5164    // Handle the last 1 - 7 bytes.
5165    unsigned Offset = SizeVal - BytesLeft;
5166    MVT AddrVT = Dst.getValueType();
5167    MVT SizeVT = Size.getValueType();
5168
5169    Chain = DAG.getMemset(Chain,
5170                          DAG.getNode(ISD::ADD, AddrVT, Dst,
5171                                      DAG.getConstant(Offset, AddrVT)),
5172                          Src,
5173                          DAG.getConstant(BytesLeft, SizeVT),
5174                          Align, DstSV, DstSVOff + Offset);
5175  }
5176
5177  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5178  return Chain;
5179}
5180
5181SDValue
5182X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG,
5183                                      SDValue Chain, SDValue Dst, SDValue Src,
5184                                      SDValue Size, unsigned Align,
5185                                      bool AlwaysInline,
5186                                      const Value *DstSV, uint64_t DstSVOff,
5187                                      const Value *SrcSV, uint64_t SrcSVOff) {
5188  // This requires the copy size to be a constant, preferrably
5189  // within a subtarget-specific limit.
5190  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5191  if (!ConstantSize)
5192    return SDValue();
5193  uint64_t SizeVal = ConstantSize->getValue();
5194  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
5195    return SDValue();
5196
5197  /// If not DWORD aligned, call the library.
5198  if ((Align & 3) != 0)
5199    return SDValue();
5200
5201  // DWORD aligned
5202  MVT AVT = MVT::i32;
5203  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
5204    AVT = MVT::i64;
5205
5206  unsigned UBytes = AVT.getSizeInBits() / 8;
5207  unsigned CountVal = SizeVal / UBytes;
5208  SDValue Count = DAG.getIntPtrConstant(CountVal);
5209  unsigned BytesLeft = SizeVal % UBytes;
5210
5211  SDValue InFlag(0, 0);
5212  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
5213                            Count, InFlag);
5214  InFlag = Chain.getValue(1);
5215  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
5216                            Dst, InFlag);
5217  InFlag = Chain.getValue(1);
5218  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
5219                            Src, InFlag);
5220  InFlag = Chain.getValue(1);
5221
5222  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5223  SmallVector<SDValue, 8> Ops;
5224  Ops.push_back(Chain);
5225  Ops.push_back(DAG.getValueType(AVT));
5226  Ops.push_back(InFlag);
5227  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
5228
5229  SmallVector<SDValue, 4> Results;
5230  Results.push_back(RepMovs);
5231  if (BytesLeft) {
5232    // Handle the last 1 - 7 bytes.
5233    unsigned Offset = SizeVal - BytesLeft;
5234    MVT DstVT = Dst.getValueType();
5235    MVT SrcVT = Src.getValueType();
5236    MVT SizeVT = Size.getValueType();
5237    Results.push_back(DAG.getMemcpy(Chain,
5238                                    DAG.getNode(ISD::ADD, DstVT, Dst,
5239                                                DAG.getConstant(Offset, DstVT)),
5240                                    DAG.getNode(ISD::ADD, SrcVT, Src,
5241                                                DAG.getConstant(Offset, SrcVT)),
5242                                    DAG.getConstant(BytesLeft, SizeVT),
5243                                    Align, AlwaysInline,
5244                                    DstSV, DstSVOff + Offset,
5245                                    SrcSV, SrcSVOff + Offset));
5246  }
5247
5248  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Results[0], Results.size());
5249}
5250
5251/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain
5252SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){
5253  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5254  SDValue TheChain = N->getOperand(0);
5255  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
5256  if (Subtarget->is64Bit()) {
5257    SDValue rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
5258    SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX,
5259                                       MVT::i64, rax.getValue(2));
5260    SDValue Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
5261                                DAG.getConstant(32, MVT::i8));
5262    SDValue Ops[] = {
5263      DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1)
5264    };
5265
5266    return DAG.getMergeValues(Ops, 2).Val;
5267  }
5268
5269  SDValue eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
5270  SDValue edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX,
5271                                       MVT::i32, eax.getValue(2));
5272  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
5273  SDValue Ops[] = { eax, edx };
5274  Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2);
5275
5276  // Use a MERGE_VALUES to return the value and chain.
5277  Ops[1] = edx.getValue(1);
5278  return DAG.getMergeValues(Ops, 2).Val;
5279}
5280
5281SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
5282  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5283
5284  if (!Subtarget->is64Bit()) {
5285    // vastart just stores the address of the VarArgsFrameIndex slot into the
5286    // memory location argument.
5287    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5288    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0);
5289  }
5290
5291  // __va_list_tag:
5292  //   gp_offset         (0 - 6 * 8)
5293  //   fp_offset         (48 - 48 + 8 * 16)
5294  //   overflow_arg_area (point to parameters coming in memory).
5295  //   reg_save_area
5296  SmallVector<SDValue, 8> MemOps;
5297  SDValue FIN = Op.getOperand(1);
5298  // Store gp_offset
5299  SDValue Store = DAG.getStore(Op.getOperand(0),
5300                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
5301                                 FIN, SV, 0);
5302  MemOps.push_back(Store);
5303
5304  // Store fp_offset
5305  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
5306  Store = DAG.getStore(Op.getOperand(0),
5307                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
5308                       FIN, SV, 0);
5309  MemOps.push_back(Store);
5310
5311  // Store ptr to overflow_arg_area
5312  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
5313  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5314  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0);
5315  MemOps.push_back(Store);
5316
5317  // Store ptr to reg_save_area.
5318  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
5319  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
5320  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0);
5321  MemOps.push_back(Store);
5322  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
5323}
5324
5325SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
5326  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5327  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
5328  SDValue Chain = Op.getOperand(0);
5329  SDValue SrcPtr = Op.getOperand(1);
5330  SDValue SrcSV = Op.getOperand(2);
5331
5332  assert(0 && "VAArgInst is not yet implemented for x86-64!");
5333  abort();
5334  return SDValue();
5335}
5336
5337SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
5338  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5339  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
5340  SDValue Chain = Op.getOperand(0);
5341  SDValue DstPtr = Op.getOperand(1);
5342  SDValue SrcPtr = Op.getOperand(2);
5343  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
5344  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5345
5346  return DAG.getMemcpy(Chain, DstPtr, SrcPtr,
5347                       DAG.getIntPtrConstant(24), 8, false,
5348                       DstSV, 0, SrcSV, 0);
5349}
5350
5351SDValue
5352X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
5353  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
5354  switch (IntNo) {
5355  default: return SDValue();    // Don't custom lower most intrinsics.
5356  // Comparison intrinsics.
5357  case Intrinsic::x86_sse_comieq_ss:
5358  case Intrinsic::x86_sse_comilt_ss:
5359  case Intrinsic::x86_sse_comile_ss:
5360  case Intrinsic::x86_sse_comigt_ss:
5361  case Intrinsic::x86_sse_comige_ss:
5362  case Intrinsic::x86_sse_comineq_ss:
5363  case Intrinsic::x86_sse_ucomieq_ss:
5364  case Intrinsic::x86_sse_ucomilt_ss:
5365  case Intrinsic::x86_sse_ucomile_ss:
5366  case Intrinsic::x86_sse_ucomigt_ss:
5367  case Intrinsic::x86_sse_ucomige_ss:
5368  case Intrinsic::x86_sse_ucomineq_ss:
5369  case Intrinsic::x86_sse2_comieq_sd:
5370  case Intrinsic::x86_sse2_comilt_sd:
5371  case Intrinsic::x86_sse2_comile_sd:
5372  case Intrinsic::x86_sse2_comigt_sd:
5373  case Intrinsic::x86_sse2_comige_sd:
5374  case Intrinsic::x86_sse2_comineq_sd:
5375  case Intrinsic::x86_sse2_ucomieq_sd:
5376  case Intrinsic::x86_sse2_ucomilt_sd:
5377  case Intrinsic::x86_sse2_ucomile_sd:
5378  case Intrinsic::x86_sse2_ucomigt_sd:
5379  case Intrinsic::x86_sse2_ucomige_sd:
5380  case Intrinsic::x86_sse2_ucomineq_sd: {
5381    unsigned Opc = 0;
5382    ISD::CondCode CC = ISD::SETCC_INVALID;
5383    switch (IntNo) {
5384    default: break;
5385    case Intrinsic::x86_sse_comieq_ss:
5386    case Intrinsic::x86_sse2_comieq_sd:
5387      Opc = X86ISD::COMI;
5388      CC = ISD::SETEQ;
5389      break;
5390    case Intrinsic::x86_sse_comilt_ss:
5391    case Intrinsic::x86_sse2_comilt_sd:
5392      Opc = X86ISD::COMI;
5393      CC = ISD::SETLT;
5394      break;
5395    case Intrinsic::x86_sse_comile_ss:
5396    case Intrinsic::x86_sse2_comile_sd:
5397      Opc = X86ISD::COMI;
5398      CC = ISD::SETLE;
5399      break;
5400    case Intrinsic::x86_sse_comigt_ss:
5401    case Intrinsic::x86_sse2_comigt_sd:
5402      Opc = X86ISD::COMI;
5403      CC = ISD::SETGT;
5404      break;
5405    case Intrinsic::x86_sse_comige_ss:
5406    case Intrinsic::x86_sse2_comige_sd:
5407      Opc = X86ISD::COMI;
5408      CC = ISD::SETGE;
5409      break;
5410    case Intrinsic::x86_sse_comineq_ss:
5411    case Intrinsic::x86_sse2_comineq_sd:
5412      Opc = X86ISD::COMI;
5413      CC = ISD::SETNE;
5414      break;
5415    case Intrinsic::x86_sse_ucomieq_ss:
5416    case Intrinsic::x86_sse2_ucomieq_sd:
5417      Opc = X86ISD::UCOMI;
5418      CC = ISD::SETEQ;
5419      break;
5420    case Intrinsic::x86_sse_ucomilt_ss:
5421    case Intrinsic::x86_sse2_ucomilt_sd:
5422      Opc = X86ISD::UCOMI;
5423      CC = ISD::SETLT;
5424      break;
5425    case Intrinsic::x86_sse_ucomile_ss:
5426    case Intrinsic::x86_sse2_ucomile_sd:
5427      Opc = X86ISD::UCOMI;
5428      CC = ISD::SETLE;
5429      break;
5430    case Intrinsic::x86_sse_ucomigt_ss:
5431    case Intrinsic::x86_sse2_ucomigt_sd:
5432      Opc = X86ISD::UCOMI;
5433      CC = ISD::SETGT;
5434      break;
5435    case Intrinsic::x86_sse_ucomige_ss:
5436    case Intrinsic::x86_sse2_ucomige_sd:
5437      Opc = X86ISD::UCOMI;
5438      CC = ISD::SETGE;
5439      break;
5440    case Intrinsic::x86_sse_ucomineq_ss:
5441    case Intrinsic::x86_sse2_ucomineq_sd:
5442      Opc = X86ISD::UCOMI;
5443      CC = ISD::SETNE;
5444      break;
5445    }
5446
5447    unsigned X86CC;
5448    SDValue LHS = Op.getOperand(1);
5449    SDValue RHS = Op.getOperand(2);
5450    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
5451
5452    SDValue Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
5453    SDValue SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
5454                                DAG.getConstant(X86CC, MVT::i8), Cond);
5455    return DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, SetCC);
5456  }
5457
5458  // Fix vector shift instructions where the last operand is a non-immediate
5459  // i32 value.
5460  case Intrinsic::x86_sse2_pslli_w:
5461  case Intrinsic::x86_sse2_pslli_d:
5462  case Intrinsic::x86_sse2_pslli_q:
5463  case Intrinsic::x86_sse2_psrli_w:
5464  case Intrinsic::x86_sse2_psrli_d:
5465  case Intrinsic::x86_sse2_psrli_q:
5466  case Intrinsic::x86_sse2_psrai_w:
5467  case Intrinsic::x86_sse2_psrai_d:
5468  case Intrinsic::x86_mmx_pslli_w:
5469  case Intrinsic::x86_mmx_pslli_d:
5470  case Intrinsic::x86_mmx_pslli_q:
5471  case Intrinsic::x86_mmx_psrli_w:
5472  case Intrinsic::x86_mmx_psrli_d:
5473  case Intrinsic::x86_mmx_psrli_q:
5474  case Intrinsic::x86_mmx_psrai_w:
5475  case Intrinsic::x86_mmx_psrai_d: {
5476    SDValue ShAmt = Op.getOperand(2);
5477    if (isa<ConstantSDNode>(ShAmt))
5478      return SDValue();
5479
5480    unsigned NewIntNo = 0;
5481    MVT ShAmtVT = MVT::v4i32;
5482    switch (IntNo) {
5483    case Intrinsic::x86_sse2_pslli_w:
5484      NewIntNo = Intrinsic::x86_sse2_psll_w;
5485      break;
5486    case Intrinsic::x86_sse2_pslli_d:
5487      NewIntNo = Intrinsic::x86_sse2_psll_d;
5488      break;
5489    case Intrinsic::x86_sse2_pslli_q:
5490      NewIntNo = Intrinsic::x86_sse2_psll_q;
5491      break;
5492    case Intrinsic::x86_sse2_psrli_w:
5493      NewIntNo = Intrinsic::x86_sse2_psrl_w;
5494      break;
5495    case Intrinsic::x86_sse2_psrli_d:
5496      NewIntNo = Intrinsic::x86_sse2_psrl_d;
5497      break;
5498    case Intrinsic::x86_sse2_psrli_q:
5499      NewIntNo = Intrinsic::x86_sse2_psrl_q;
5500      break;
5501    case Intrinsic::x86_sse2_psrai_w:
5502      NewIntNo = Intrinsic::x86_sse2_psra_w;
5503      break;
5504    case Intrinsic::x86_sse2_psrai_d:
5505      NewIntNo = Intrinsic::x86_sse2_psra_d;
5506      break;
5507    default: {
5508      ShAmtVT = MVT::v2i32;
5509      switch (IntNo) {
5510      case Intrinsic::x86_mmx_pslli_w:
5511        NewIntNo = Intrinsic::x86_mmx_psll_w;
5512        break;
5513      case Intrinsic::x86_mmx_pslli_d:
5514        NewIntNo = Intrinsic::x86_mmx_psll_d;
5515        break;
5516      case Intrinsic::x86_mmx_pslli_q:
5517        NewIntNo = Intrinsic::x86_mmx_psll_q;
5518        break;
5519      case Intrinsic::x86_mmx_psrli_w:
5520        NewIntNo = Intrinsic::x86_mmx_psrl_w;
5521        break;
5522      case Intrinsic::x86_mmx_psrli_d:
5523        NewIntNo = Intrinsic::x86_mmx_psrl_d;
5524        break;
5525      case Intrinsic::x86_mmx_psrli_q:
5526        NewIntNo = Intrinsic::x86_mmx_psrl_q;
5527        break;
5528      case Intrinsic::x86_mmx_psrai_w:
5529        NewIntNo = Intrinsic::x86_mmx_psra_w;
5530        break;
5531      case Intrinsic::x86_mmx_psrai_d:
5532        NewIntNo = Intrinsic::x86_mmx_psra_d;
5533        break;
5534      default: abort();  // Can't reach here.
5535      }
5536      break;
5537    }
5538    }
5539    MVT VT = Op.getValueType();
5540    ShAmt = DAG.getNode(ISD::BIT_CONVERT, VT,
5541                        DAG.getNode(ISD::SCALAR_TO_VECTOR, ShAmtVT, ShAmt));
5542    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
5543                       DAG.getConstant(NewIntNo, MVT::i32),
5544                       Op.getOperand(1), ShAmt);
5545  }
5546  }
5547}
5548
5549SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
5550  // Depths > 0 not supported yet!
5551  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5552    return SDValue();
5553
5554  // Just load the return address
5555  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
5556  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
5557}
5558
5559SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
5560  // Depths > 0 not supported yet!
5561  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5562    return SDValue();
5563
5564  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
5565  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
5566                     DAG.getIntPtrConstant(!Subtarget->is64Bit() ? 4 : 8));
5567}
5568
5569SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
5570                                                       SelectionDAG &DAG) {
5571  // Is not yet supported on x86-64
5572  if (Subtarget->is64Bit())
5573    return SDValue();
5574
5575  return DAG.getIntPtrConstant(8);
5576}
5577
5578SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
5579{
5580  assert(!Subtarget->is64Bit() &&
5581         "Lowering of eh_return builtin is not supported yet on x86-64");
5582
5583  MachineFunction &MF = DAG.getMachineFunction();
5584  SDValue Chain     = Op.getOperand(0);
5585  SDValue Offset    = Op.getOperand(1);
5586  SDValue Handler   = Op.getOperand(2);
5587
5588  SDValue Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
5589                                    getPointerTy());
5590
5591  SDValue StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
5592                                    DAG.getIntPtrConstant(-4UL));
5593  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
5594  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
5595  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
5596  MF.getRegInfo().addLiveOut(X86::ECX);
5597
5598  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
5599                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
5600}
5601
5602SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
5603                                             SelectionDAG &DAG) {
5604  SDValue Root = Op.getOperand(0);
5605  SDValue Trmp = Op.getOperand(1); // trampoline
5606  SDValue FPtr = Op.getOperand(2); // nested function
5607  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
5608
5609  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5610
5611  const X86InstrInfo *TII =
5612    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
5613
5614  if (Subtarget->is64Bit()) {
5615    SDValue OutChains[6];
5616
5617    // Large code-model.
5618
5619    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
5620    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
5621
5622    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
5623    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
5624
5625    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
5626
5627    // Load the pointer to the nested function into R11.
5628    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
5629    SDValue Addr = Trmp;
5630    OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5631                                TrmpAddr, 0);
5632
5633    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64));
5634    OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2);
5635
5636    // Load the 'nest' parameter value into R10.
5637    // R10 is specified in X86CallingConv.td
5638    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
5639    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64));
5640    OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5641                                TrmpAddr, 10);
5642
5643    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64));
5644    OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2);
5645
5646    // Jump to the nested function.
5647    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
5648    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64));
5649    OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5650                                TrmpAddr, 20);
5651
5652    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
5653    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64));
5654    OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr,
5655                                TrmpAddr, 22);
5656
5657    SDValue Ops[] =
5658      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) };
5659    return DAG.getMergeValues(Ops, 2);
5660  } else {
5661    const Function *Func =
5662      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
5663    unsigned CC = Func->getCallingConv();
5664    unsigned NestReg;
5665
5666    switch (CC) {
5667    default:
5668      assert(0 && "Unsupported calling convention");
5669    case CallingConv::C:
5670    case CallingConv::X86_StdCall: {
5671      // Pass 'nest' parameter in ECX.
5672      // Must be kept in sync with X86CallingConv.td
5673      NestReg = X86::ECX;
5674
5675      // Check that ECX wasn't needed by an 'inreg' parameter.
5676      const FunctionType *FTy = Func->getFunctionType();
5677      const PAListPtr &Attrs = Func->getParamAttrs();
5678
5679      if (!Attrs.isEmpty() && !Func->isVarArg()) {
5680        unsigned InRegCount = 0;
5681        unsigned Idx = 1;
5682
5683        for (FunctionType::param_iterator I = FTy->param_begin(),
5684             E = FTy->param_end(); I != E; ++I, ++Idx)
5685          if (Attrs.paramHasAttr(Idx, ParamAttr::InReg))
5686            // FIXME: should only count parameters that are lowered to integers.
5687            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
5688
5689        if (InRegCount > 2) {
5690          cerr << "Nest register in use - reduce number of inreg parameters!\n";
5691          abort();
5692        }
5693      }
5694      break;
5695    }
5696    case CallingConv::X86_FastCall:
5697      // Pass 'nest' parameter in EAX.
5698      // Must be kept in sync with X86CallingConv.td
5699      NestReg = X86::EAX;
5700      break;
5701    }
5702
5703    SDValue OutChains[4];
5704    SDValue Addr, Disp;
5705
5706    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
5707    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
5708
5709    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
5710    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
5711    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
5712                                Trmp, TrmpAddr, 0);
5713
5714    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
5715    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1);
5716
5717    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
5718    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
5719    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
5720                                TrmpAddr, 5, false, 1);
5721
5722    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
5723    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1);
5724
5725    SDValue Ops[] =
5726      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
5727    return DAG.getMergeValues(Ops, 2);
5728  }
5729}
5730
5731SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
5732  /*
5733   The rounding mode is in bits 11:10 of FPSR, and has the following
5734   settings:
5735     00 Round to nearest
5736     01 Round to -inf
5737     10 Round to +inf
5738     11 Round to 0
5739
5740  FLT_ROUNDS, on the other hand, expects the following:
5741    -1 Undefined
5742     0 Round to 0
5743     1 Round to nearest
5744     2 Round to +inf
5745     3 Round to -inf
5746
5747  To perform the conversion, we do:
5748    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
5749  */
5750
5751  MachineFunction &MF = DAG.getMachineFunction();
5752  const TargetMachine &TM = MF.getTarget();
5753  const TargetFrameInfo &TFI = *TM.getFrameInfo();
5754  unsigned StackAlignment = TFI.getStackAlignment();
5755  MVT VT = Op.getValueType();
5756
5757  // Save FP Control Word to stack slot
5758  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
5759  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5760
5761  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
5762                                DAG.getEntryNode(), StackSlot);
5763
5764  // Load FP Control Word from stack slot
5765  SDValue CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
5766
5767  // Transform as necessary
5768  SDValue CWD1 =
5769    DAG.getNode(ISD::SRL, MVT::i16,
5770                DAG.getNode(ISD::AND, MVT::i16,
5771                            CWD, DAG.getConstant(0x800, MVT::i16)),
5772                DAG.getConstant(11, MVT::i8));
5773  SDValue CWD2 =
5774    DAG.getNode(ISD::SRL, MVT::i16,
5775                DAG.getNode(ISD::AND, MVT::i16,
5776                            CWD, DAG.getConstant(0x400, MVT::i16)),
5777                DAG.getConstant(9, MVT::i8));
5778
5779  SDValue RetVal =
5780    DAG.getNode(ISD::AND, MVT::i16,
5781                DAG.getNode(ISD::ADD, MVT::i16,
5782                            DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
5783                            DAG.getConstant(1, MVT::i16)),
5784                DAG.getConstant(3, MVT::i16));
5785
5786
5787  return DAG.getNode((VT.getSizeInBits() < 16 ?
5788                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
5789}
5790
5791SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
5792  MVT VT = Op.getValueType();
5793  MVT OpVT = VT;
5794  unsigned NumBits = VT.getSizeInBits();
5795
5796  Op = Op.getOperand(0);
5797  if (VT == MVT::i8) {
5798    // Zero extend to i32 since there is not an i8 bsr.
5799    OpVT = MVT::i32;
5800    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5801  }
5802
5803  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
5804  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5805  Op = DAG.getNode(X86ISD::BSR, VTs, Op);
5806
5807  // If src is zero (i.e. bsr sets ZF), returns NumBits.
5808  SmallVector<SDValue, 4> Ops;
5809  Ops.push_back(Op);
5810  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
5811  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5812  Ops.push_back(Op.getValue(1));
5813  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5814
5815  // Finally xor with NumBits-1.
5816  Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
5817
5818  if (VT == MVT::i8)
5819    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5820  return Op;
5821}
5822
5823SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
5824  MVT VT = Op.getValueType();
5825  MVT OpVT = VT;
5826  unsigned NumBits = VT.getSizeInBits();
5827
5828  Op = Op.getOperand(0);
5829  if (VT == MVT::i8) {
5830    OpVT = MVT::i32;
5831    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5832  }
5833
5834  // Issue a bsf (scan bits forward) which also sets EFLAGS.
5835  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5836  Op = DAG.getNode(X86ISD::BSF, VTs, Op);
5837
5838  // If src is zero (i.e. bsf sets ZF), returns NumBits.
5839  SmallVector<SDValue, 4> Ops;
5840  Ops.push_back(Op);
5841  Ops.push_back(DAG.getConstant(NumBits, OpVT));
5842  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5843  Ops.push_back(Op.getValue(1));
5844  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5845
5846  if (VT == MVT::i8)
5847    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5848  return Op;
5849}
5850
5851SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
5852  MVT T = Op.getValueType();
5853  unsigned Reg = 0;
5854  unsigned size = 0;
5855  switch(T.getSimpleVT()) {
5856  default:
5857    assert(false && "Invalid value type!");
5858  case MVT::i8:  Reg = X86::AL;  size = 1; break;
5859  case MVT::i16: Reg = X86::AX;  size = 2; break;
5860  case MVT::i32: Reg = X86::EAX; size = 4; break;
5861  case MVT::i64:
5862    if (Subtarget->is64Bit()) {
5863      Reg = X86::RAX; size = 8;
5864    } else //Should go away when LowerType stuff lands
5865      return SDValue(ExpandATOMIC_CMP_SWAP(Op.Val, DAG), 0);
5866    break;
5867  };
5868  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg,
5869                                    Op.getOperand(3), SDValue());
5870  SDValue Ops[] = { cpIn.getValue(0),
5871                      Op.getOperand(1),
5872                      Op.getOperand(2),
5873                      DAG.getTargetConstant(size, MVT::i8),
5874                      cpIn.getValue(1) };
5875  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5876  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5);
5877  SDValue cpOut =
5878    DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1));
5879  return cpOut;
5880}
5881
5882SDNode* X86TargetLowering::ExpandATOMIC_CMP_SWAP(SDNode* Op, SelectionDAG &DAG) {
5883  MVT T = Op->getValueType(0);
5884  assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
5885  SDValue cpInL, cpInH;
5886  cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
5887                      DAG.getConstant(0, MVT::i32));
5888  cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
5889                      DAG.getConstant(1, MVT::i32));
5890  cpInL = DAG.getCopyToReg(Op->getOperand(0), X86::EAX,
5891                           cpInL, SDValue());
5892  cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX,
5893                           cpInH, cpInL.getValue(1));
5894  SDValue swapInL, swapInH;
5895  swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
5896                        DAG.getConstant(0, MVT::i32));
5897  swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
5898                        DAG.getConstant(1, MVT::i32));
5899  swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX,
5900                             swapInL, cpInH.getValue(1));
5901  swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX,
5902                             swapInH, swapInL.getValue(1));
5903  SDValue Ops[] = { swapInH.getValue(0),
5904                      Op->getOperand(1),
5905                      swapInH.getValue(1)};
5906  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5907  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3);
5908  SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32,
5909                                        Result.getValue(1));
5910  SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32,
5911                                        cpOutL.getValue(2));
5912  SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
5913  SDValue ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2);
5914  SDValue Vals[2] = { ResultVal, cpOutH.getValue(1) };
5915  return DAG.getMergeValues(Vals, 2).Val;
5916}
5917
5918SDNode* X86TargetLowering::ExpandATOMIC_LOAD_SUB(SDNode* Op, SelectionDAG &DAG) {
5919  MVT T = Op->getValueType(0);
5920  SDValue negOp = DAG.getNode(ISD::SUB, T,
5921                                DAG.getConstant(0, T), Op->getOperand(2));
5922  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, Op->getOperand(0),
5923                       Op->getOperand(1), negOp,
5924                       cast<AtomicSDNode>(Op)->getSrcValue(),
5925                       cast<AtomicSDNode>(Op)->getAlignment()).Val;
5926}
5927
5928/// LowerOperation - Provide custom lowering hooks for some operations.
5929///
5930SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
5931  switch (Op.getOpcode()) {
5932  default: assert(0 && "Should not custom lower this!");
5933  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
5934  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5935  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5936  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5937  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
5938  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5939  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5940  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5941  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5942  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
5943  case ISD::SHL_PARTS:
5944  case ISD::SRA_PARTS:
5945  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
5946  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
5947  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
5948  case ISD::FABS:               return LowerFABS(Op, DAG);
5949  case ISD::FNEG:               return LowerFNEG(Op, DAG);
5950  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
5951  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5952  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
5953  case ISD::SELECT:             return LowerSELECT(Op, DAG);
5954  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
5955  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5956  case ISD::CALL:               return LowerCALL(Op, DAG);
5957  case ISD::RET:                return LowerRET(Op, DAG);
5958  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
5959  case ISD::VASTART:            return LowerVASTART(Op, DAG);
5960  case ISD::VAARG:              return LowerVAARG(Op, DAG);
5961  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
5962  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5963  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5964  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5965  case ISD::FRAME_TO_ARGS_OFFSET:
5966                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
5967  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
5968  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
5969  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
5970  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5971  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
5972  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
5973
5974  // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands.
5975  case ISD::READCYCLECOUNTER:
5976    return SDValue(ExpandREADCYCLECOUNTER(Op.Val, DAG), 0);
5977  }
5978}
5979
5980/// ReplaceNodeResults - Replace a node with an illegal result type
5981/// with a new node built out of custom code.
5982SDNode *X86TargetLowering::ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) {
5983  switch (N->getOpcode()) {
5984  default: assert(0 && "Should not custom lower this!");
5985  case ISD::FP_TO_SINT:         return ExpandFP_TO_SINT(N, DAG);
5986  case ISD::READCYCLECOUNTER:   return ExpandREADCYCLECOUNTER(N, DAG);
5987  case ISD::ATOMIC_CMP_SWAP:    return ExpandATOMIC_CMP_SWAP(N, DAG);
5988  case ISD::ATOMIC_LOAD_SUB:    return ExpandATOMIC_LOAD_SUB(N,DAG);
5989  }
5990}
5991
5992const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
5993  switch (Opcode) {
5994  default: return NULL;
5995  case X86ISD::BSF:                return "X86ISD::BSF";
5996  case X86ISD::BSR:                return "X86ISD::BSR";
5997  case X86ISD::SHLD:               return "X86ISD::SHLD";
5998  case X86ISD::SHRD:               return "X86ISD::SHRD";
5999  case X86ISD::FAND:               return "X86ISD::FAND";
6000  case X86ISD::FOR:                return "X86ISD::FOR";
6001  case X86ISD::FXOR:               return "X86ISD::FXOR";
6002  case X86ISD::FSRL:               return "X86ISD::FSRL";
6003  case X86ISD::FILD:               return "X86ISD::FILD";
6004  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
6005  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
6006  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
6007  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
6008  case X86ISD::FLD:                return "X86ISD::FLD";
6009  case X86ISD::FST:                return "X86ISD::FST";
6010  case X86ISD::CALL:               return "X86ISD::CALL";
6011  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
6012  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
6013  case X86ISD::CMP:                return "X86ISD::CMP";
6014  case X86ISD::COMI:               return "X86ISD::COMI";
6015  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
6016  case X86ISD::SETCC:              return "X86ISD::SETCC";
6017  case X86ISD::CMOV:               return "X86ISD::CMOV";
6018  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
6019  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
6020  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
6021  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
6022  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
6023  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
6024  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
6025  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
6026  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
6027  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
6028  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
6029  case X86ISD::FMAX:               return "X86ISD::FMAX";
6030  case X86ISD::FMIN:               return "X86ISD::FMIN";
6031  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
6032  case X86ISD::FRCP:               return "X86ISD::FRCP";
6033  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
6034  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
6035  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
6036  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
6037  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
6038  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
6039  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
6040  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
6041  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
6042  case X86ISD::VSHL:               return "X86ISD::VSHL";
6043  case X86ISD::VSRL:               return "X86ISD::VSRL";
6044  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
6045  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
6046  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
6047  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
6048  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
6049  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
6050  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
6051  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
6052  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
6053  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
6054  }
6055}
6056
6057// isLegalAddressingMode - Return true if the addressing mode represented
6058// by AM is legal for this target, for a load/store of the specified type.
6059bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6060                                              const Type *Ty) const {
6061  // X86 supports extremely general addressing modes.
6062
6063  // X86 allows a sign-extended 32-bit immediate field as a displacement.
6064  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
6065    return false;
6066
6067  if (AM.BaseGV) {
6068    // We can only fold this if we don't need an extra load.
6069    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
6070      return false;
6071
6072    // X86-64 only supports addr of globals in small code model.
6073    if (Subtarget->is64Bit()) {
6074      if (getTargetMachine().getCodeModel() != CodeModel::Small)
6075        return false;
6076      // If lower 4G is not available, then we must use rip-relative addressing.
6077      if (AM.BaseOffs || AM.Scale > 1)
6078        return false;
6079    }
6080  }
6081
6082  switch (AM.Scale) {
6083  case 0:
6084  case 1:
6085  case 2:
6086  case 4:
6087  case 8:
6088    // These scales always work.
6089    break;
6090  case 3:
6091  case 5:
6092  case 9:
6093    // These scales are formed with basereg+scalereg.  Only accept if there is
6094    // no basereg yet.
6095    if (AM.HasBaseReg)
6096      return false;
6097    break;
6098  default:  // Other stuff never works.
6099    return false;
6100  }
6101
6102  return true;
6103}
6104
6105
6106bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
6107  if (!Ty1->isInteger() || !Ty2->isInteger())
6108    return false;
6109  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6110  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6111  if (NumBits1 <= NumBits2)
6112    return false;
6113  return Subtarget->is64Bit() || NumBits1 < 64;
6114}
6115
6116bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
6117  if (!VT1.isInteger() || !VT2.isInteger())
6118    return false;
6119  unsigned NumBits1 = VT1.getSizeInBits();
6120  unsigned NumBits2 = VT2.getSizeInBits();
6121  if (NumBits1 <= NumBits2)
6122    return false;
6123  return Subtarget->is64Bit() || NumBits1 < 64;
6124}
6125
6126/// isShuffleMaskLegal - Targets can use this to indicate that they only
6127/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6128/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6129/// are assumed to be legal.
6130bool
6131X86TargetLowering::isShuffleMaskLegal(SDValue Mask, MVT VT) const {
6132  // Only do shuffles on 128-bit vector types for now.
6133  if (VT.getSizeInBits() == 64) return false;
6134  return (Mask.Val->getNumOperands() <= 4 ||
6135          isIdentityMask(Mask.Val) ||
6136          isIdentityMask(Mask.Val, true) ||
6137          isSplatMask(Mask.Val)  ||
6138          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
6139          X86::isUNPCKLMask(Mask.Val) ||
6140          X86::isUNPCKHMask(Mask.Val) ||
6141          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
6142          X86::isUNPCKH_v_undef_Mask(Mask.Val));
6143}
6144
6145bool
6146X86TargetLowering::isVectorClearMaskLegal(const std::vector<SDValue> &BVOps,
6147                                          MVT EVT, SelectionDAG &DAG) const {
6148  unsigned NumElts = BVOps.size();
6149  // Only do shuffles on 128-bit vector types for now.
6150  if (EVT.getSizeInBits() * NumElts == 64) return false;
6151  if (NumElts == 2) return true;
6152  if (NumElts == 4) {
6153    return (isMOVLMask(&BVOps[0], 4)  ||
6154            isCommutedMOVL(&BVOps[0], 4, true) ||
6155            isSHUFPMask(&BVOps[0], 4) ||
6156            isCommutedSHUFP(&BVOps[0], 4));
6157  }
6158  return false;
6159}
6160
6161//===----------------------------------------------------------------------===//
6162//                           X86 Scheduler Hooks
6163//===----------------------------------------------------------------------===//
6164
6165// private utility function
6166MachineBasicBlock *
6167X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
6168                                                       MachineBasicBlock *MBB,
6169                                                       unsigned regOpc,
6170                                                       unsigned immOpc,
6171                                                       unsigned LoadOpc,
6172                                                       unsigned CXchgOpc,
6173                                                       unsigned copyOpc,
6174                                                       unsigned notOpc,
6175                                                       unsigned EAXreg,
6176                                                       TargetRegisterClass *RC,
6177                                                       bool invSrc) {
6178  // For the atomic bitwise operator, we generate
6179  //   thisMBB:
6180  //   newMBB:
6181  //     ld  t1 = [bitinstr.addr]
6182  //     op  t2 = t1, [bitinstr.val]
6183  //     mov EAX = t1
6184  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
6185  //     bz  newMBB
6186  //     fallthrough -->nextMBB
6187  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6188  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6189  MachineFunction::iterator MBBIter = MBB;
6190  ++MBBIter;
6191
6192  /// First build the CFG
6193  MachineFunction *F = MBB->getParent();
6194  MachineBasicBlock *thisMBB = MBB;
6195  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6196  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6197  F->insert(MBBIter, newMBB);
6198  F->insert(MBBIter, nextMBB);
6199
6200  // Move all successors to thisMBB to nextMBB
6201  nextMBB->transferSuccessors(thisMBB);
6202
6203  // Update thisMBB to fall through to newMBB
6204  thisMBB->addSuccessor(newMBB);
6205
6206  // newMBB jumps to itself and fall through to nextMBB
6207  newMBB->addSuccessor(nextMBB);
6208  newMBB->addSuccessor(newMBB);
6209
6210  // Insert instructions into newMBB based on incoming instruction
6211  assert(bInstr->getNumOperands() < 8 && "unexpected number of operands");
6212  MachineOperand& destOper = bInstr->getOperand(0);
6213  MachineOperand* argOpers[6];
6214  int numArgs = bInstr->getNumOperands() - 1;
6215  for (int i=0; i < numArgs; ++i)
6216    argOpers[i] = &bInstr->getOperand(i+1);
6217
6218  // x86 address has 4 operands: base, index, scale, and displacement
6219  int lastAddrIndx = 3; // [0,3]
6220  int valArgIndx = 4;
6221
6222  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
6223  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(LoadOpc), t1);
6224  for (int i=0; i <= lastAddrIndx; ++i)
6225    (*MIB).addOperand(*argOpers[i]);
6226
6227  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
6228  if (invSrc) {
6229    MIB = BuildMI(newMBB, TII->get(notOpc), tt).addReg(t1);
6230  }
6231  else
6232    tt = t1;
6233
6234  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
6235  assert(   (argOpers[valArgIndx]->isReg() || argOpers[valArgIndx]->isImm())
6236         && "invalid operand");
6237  if (argOpers[valArgIndx]->isReg())
6238    MIB = BuildMI(newMBB, TII->get(regOpc), t2);
6239  else
6240    MIB = BuildMI(newMBB, TII->get(immOpc), t2);
6241  MIB.addReg(tt);
6242  (*MIB).addOperand(*argOpers[valArgIndx]);
6243
6244  MIB = BuildMI(newMBB, TII->get(copyOpc), EAXreg);
6245  MIB.addReg(t1);
6246
6247  MIB = BuildMI(newMBB, TII->get(CXchgOpc));
6248  for (int i=0; i <= lastAddrIndx; ++i)
6249    (*MIB).addOperand(*argOpers[i]);
6250  MIB.addReg(t2);
6251  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6252  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
6253
6254  MIB = BuildMI(newMBB, TII->get(copyOpc), destOper.getReg());
6255  MIB.addReg(EAXreg);
6256
6257  // insert branch
6258  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6259
6260  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
6261  return nextMBB;
6262}
6263
6264// private utility function
6265MachineBasicBlock *
6266X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
6267                                                      MachineBasicBlock *MBB,
6268                                                      unsigned cmovOpc) {
6269  // For the atomic min/max operator, we generate
6270  //   thisMBB:
6271  //   newMBB:
6272  //     ld t1 = [min/max.addr]
6273  //     mov t2 = [min/max.val]
6274  //     cmp  t1, t2
6275  //     cmov[cond] t2 = t1
6276  //     mov EAX = t1
6277  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
6278  //     bz   newMBB
6279  //     fallthrough -->nextMBB
6280  //
6281  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6282  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6283  MachineFunction::iterator MBBIter = MBB;
6284  ++MBBIter;
6285
6286  /// First build the CFG
6287  MachineFunction *F = MBB->getParent();
6288  MachineBasicBlock *thisMBB = MBB;
6289  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6290  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6291  F->insert(MBBIter, newMBB);
6292  F->insert(MBBIter, nextMBB);
6293
6294  // Move all successors to thisMBB to nextMBB
6295  nextMBB->transferSuccessors(thisMBB);
6296
6297  // Update thisMBB to fall through to newMBB
6298  thisMBB->addSuccessor(newMBB);
6299
6300  // newMBB jumps to newMBB and fall through to nextMBB
6301  newMBB->addSuccessor(nextMBB);
6302  newMBB->addSuccessor(newMBB);
6303
6304  // Insert instructions into newMBB based on incoming instruction
6305  assert(mInstr->getNumOperands() < 8 && "unexpected number of operands");
6306  MachineOperand& destOper = mInstr->getOperand(0);
6307  MachineOperand* argOpers[6];
6308  int numArgs = mInstr->getNumOperands() - 1;
6309  for (int i=0; i < numArgs; ++i)
6310    argOpers[i] = &mInstr->getOperand(i+1);
6311
6312  // x86 address has 4 operands: base, index, scale, and displacement
6313  int lastAddrIndx = 3; // [0,3]
6314  int valArgIndx = 4;
6315
6316  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6317  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1);
6318  for (int i=0; i <= lastAddrIndx; ++i)
6319    (*MIB).addOperand(*argOpers[i]);
6320
6321  // We only support register and immediate values
6322  assert(   (argOpers[valArgIndx]->isReg() || argOpers[valArgIndx]->isImm())
6323         && "invalid operand");
6324
6325  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6326  if (argOpers[valArgIndx]->isReg())
6327    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
6328  else
6329    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
6330  (*MIB).addOperand(*argOpers[valArgIndx]);
6331
6332  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX);
6333  MIB.addReg(t1);
6334
6335  MIB = BuildMI(newMBB, TII->get(X86::CMP32rr));
6336  MIB.addReg(t1);
6337  MIB.addReg(t2);
6338
6339  // Generate movc
6340  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6341  MIB = BuildMI(newMBB, TII->get(cmovOpc),t3);
6342  MIB.addReg(t2);
6343  MIB.addReg(t1);
6344
6345  // Cmp and exchange if none has modified the memory location
6346  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32));
6347  for (int i=0; i <= lastAddrIndx; ++i)
6348    (*MIB).addOperand(*argOpers[i]);
6349  MIB.addReg(t3);
6350  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6351  (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
6352
6353  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg());
6354  MIB.addReg(X86::EAX);
6355
6356  // insert branch
6357  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6358
6359  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
6360  return nextMBB;
6361}
6362
6363
6364MachineBasicBlock *
6365X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6366                                               MachineBasicBlock *BB) {
6367  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6368  switch (MI->getOpcode()) {
6369  default: assert(false && "Unexpected instr type to insert");
6370  case X86::CMOV_FR32:
6371  case X86::CMOV_FR64:
6372  case X86::CMOV_V4F32:
6373  case X86::CMOV_V2F64:
6374  case X86::CMOV_V2I64: {
6375    // To "insert" a SELECT_CC instruction, we actually have to insert the
6376    // diamond control-flow pattern.  The incoming instruction knows the
6377    // destination vreg to set, the condition code register to branch on, the
6378    // true/false values to select between, and a branch opcode to use.
6379    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6380    MachineFunction::iterator It = BB;
6381    ++It;
6382
6383    //  thisMBB:
6384    //  ...
6385    //   TrueVal = ...
6386    //   cmpTY ccX, r1, r2
6387    //   bCC copy1MBB
6388    //   fallthrough --> copy0MBB
6389    MachineBasicBlock *thisMBB = BB;
6390    MachineFunction *F = BB->getParent();
6391    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6392    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
6393    unsigned Opc =
6394      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
6395    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
6396    F->insert(It, copy0MBB);
6397    F->insert(It, sinkMBB);
6398    // Update machine-CFG edges by transferring all successors of the current
6399    // block to the new block which will contain the Phi node for the select.
6400    sinkMBB->transferSuccessors(BB);
6401
6402    // Add the true and fallthrough blocks as its successors.
6403    BB->addSuccessor(copy0MBB);
6404    BB->addSuccessor(sinkMBB);
6405
6406    //  copy0MBB:
6407    //   %FalseValue = ...
6408    //   # fallthrough to sinkMBB
6409    BB = copy0MBB;
6410
6411    // Update machine-CFG edges
6412    BB->addSuccessor(sinkMBB);
6413
6414    //  sinkMBB:
6415    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6416    //  ...
6417    BB = sinkMBB;
6418    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
6419      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6420      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6421
6422    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
6423    return BB;
6424  }
6425
6426  case X86::FP32_TO_INT16_IN_MEM:
6427  case X86::FP32_TO_INT32_IN_MEM:
6428  case X86::FP32_TO_INT64_IN_MEM:
6429  case X86::FP64_TO_INT16_IN_MEM:
6430  case X86::FP64_TO_INT32_IN_MEM:
6431  case X86::FP64_TO_INT64_IN_MEM:
6432  case X86::FP80_TO_INT16_IN_MEM:
6433  case X86::FP80_TO_INT32_IN_MEM:
6434  case X86::FP80_TO_INT64_IN_MEM: {
6435    // Change the floating point control register to use "round towards zero"
6436    // mode when truncating to an integer value.
6437    MachineFunction *F = BB->getParent();
6438    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
6439    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
6440
6441    // Load the old value of the high byte of the control word...
6442    unsigned OldCW =
6443      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
6444    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
6445
6446    // Set the high part to be round to zero...
6447    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
6448      .addImm(0xC7F);
6449
6450    // Reload the modified control word now...
6451    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
6452
6453    // Restore the memory image of control word to original value
6454    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
6455      .addReg(OldCW);
6456
6457    // Get the X86 opcode to use.
6458    unsigned Opc;
6459    switch (MI->getOpcode()) {
6460    default: assert(0 && "illegal opcode!");
6461    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
6462    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
6463    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
6464    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
6465    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
6466    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
6467    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
6468    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
6469    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
6470    }
6471
6472    X86AddressMode AM;
6473    MachineOperand &Op = MI->getOperand(0);
6474    if (Op.isRegister()) {
6475      AM.BaseType = X86AddressMode::RegBase;
6476      AM.Base.Reg = Op.getReg();
6477    } else {
6478      AM.BaseType = X86AddressMode::FrameIndexBase;
6479      AM.Base.FrameIndex = Op.getIndex();
6480    }
6481    Op = MI->getOperand(1);
6482    if (Op.isImmediate())
6483      AM.Scale = Op.getImm();
6484    Op = MI->getOperand(2);
6485    if (Op.isImmediate())
6486      AM.IndexReg = Op.getImm();
6487    Op = MI->getOperand(3);
6488    if (Op.isGlobalAddress()) {
6489      AM.GV = Op.getGlobal();
6490    } else {
6491      AM.Disp = Op.getImm();
6492    }
6493    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
6494                      .addReg(MI->getOperand(4).getReg());
6495
6496    // Reload the original control word now.
6497    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
6498
6499    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
6500    return BB;
6501  }
6502  case X86::ATOMAND32:
6503    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
6504                                               X86::AND32ri, X86::MOV32rm,
6505                                               X86::LCMPXCHG32, X86::MOV32rr,
6506                                               X86::NOT32r, X86::EAX,
6507                                               X86::GR32RegisterClass);
6508  case X86::ATOMOR32:
6509    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
6510                                               X86::OR32ri, X86::MOV32rm,
6511                                               X86::LCMPXCHG32, X86::MOV32rr,
6512                                               X86::NOT32r, X86::EAX,
6513                                               X86::GR32RegisterClass);
6514  case X86::ATOMXOR32:
6515    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
6516                                               X86::XOR32ri, X86::MOV32rm,
6517                                               X86::LCMPXCHG32, X86::MOV32rr,
6518                                               X86::NOT32r, X86::EAX,
6519                                               X86::GR32RegisterClass);
6520  case X86::ATOMNAND32:
6521    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
6522                                               X86::AND32ri, X86::MOV32rm,
6523                                               X86::LCMPXCHG32, X86::MOV32rr,
6524                                               X86::NOT32r, X86::EAX,
6525                                               X86::GR32RegisterClass, true);
6526  case X86::ATOMMIN32:
6527    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
6528  case X86::ATOMMAX32:
6529    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
6530  case X86::ATOMUMIN32:
6531    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
6532  case X86::ATOMUMAX32:
6533    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
6534
6535  case X86::ATOMAND16:
6536    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
6537                                               X86::AND16ri, X86::MOV16rm,
6538                                               X86::LCMPXCHG16, X86::MOV16rr,
6539                                               X86::NOT16r, X86::AX,
6540                                               X86::GR16RegisterClass);
6541  case X86::ATOMOR16:
6542    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
6543                                               X86::OR16ri, X86::MOV16rm,
6544                                               X86::LCMPXCHG16, X86::MOV16rr,
6545                                               X86::NOT16r, X86::AX,
6546                                               X86::GR16RegisterClass);
6547  case X86::ATOMXOR16:
6548    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
6549                                               X86::XOR16ri, X86::MOV16rm,
6550                                               X86::LCMPXCHG16, X86::MOV16rr,
6551                                               X86::NOT16r, X86::AX,
6552                                               X86::GR16RegisterClass);
6553  case X86::ATOMNAND16:
6554    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
6555                                               X86::AND16ri, X86::MOV16rm,
6556                                               X86::LCMPXCHG16, X86::MOV16rr,
6557                                               X86::NOT16r, X86::AX,
6558                                               X86::GR16RegisterClass, true);
6559  case X86::ATOMMIN16:
6560    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
6561  case X86::ATOMMAX16:
6562    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
6563  case X86::ATOMUMIN16:
6564    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
6565  case X86::ATOMUMAX16:
6566    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
6567
6568  case X86::ATOMAND8:
6569    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
6570                                               X86::AND8ri, X86::MOV8rm,
6571                                               X86::LCMPXCHG8, X86::MOV8rr,
6572                                               X86::NOT8r, X86::AL,
6573                                               X86::GR8RegisterClass);
6574  case X86::ATOMOR8:
6575    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
6576                                               X86::OR8ri, X86::MOV8rm,
6577                                               X86::LCMPXCHG8, X86::MOV8rr,
6578                                               X86::NOT8r, X86::AL,
6579                                               X86::GR8RegisterClass);
6580  case X86::ATOMXOR8:
6581    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
6582                                               X86::XOR8ri, X86::MOV8rm,
6583                                               X86::LCMPXCHG8, X86::MOV8rr,
6584                                               X86::NOT8r, X86::AL,
6585                                               X86::GR8RegisterClass);
6586  case X86::ATOMNAND8:
6587    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
6588                                               X86::AND8ri, X86::MOV8rm,
6589                                               X86::LCMPXCHG8, X86::MOV8rr,
6590                                               X86::NOT8r, X86::AL,
6591                                               X86::GR8RegisterClass, true);
6592  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
6593  case X86::ATOMAND64:
6594    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
6595                                               X86::AND64ri32, X86::MOV64rm,
6596                                               X86::LCMPXCHG64, X86::MOV64rr,
6597                                               X86::NOT64r, X86::RAX,
6598                                               X86::GR64RegisterClass);
6599  case X86::ATOMOR64:
6600    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
6601                                               X86::OR64ri32, X86::MOV64rm,
6602                                               X86::LCMPXCHG64, X86::MOV64rr,
6603                                               X86::NOT64r, X86::RAX,
6604                                               X86::GR64RegisterClass);
6605  case X86::ATOMXOR64:
6606    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
6607                                               X86::XOR64ri32, X86::MOV64rm,
6608                                               X86::LCMPXCHG64, X86::MOV64rr,
6609                                               X86::NOT64r, X86::RAX,
6610                                               X86::GR64RegisterClass);
6611  case X86::ATOMNAND64:
6612    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
6613                                               X86::AND64ri32, X86::MOV64rm,
6614                                               X86::LCMPXCHG64, X86::MOV64rr,
6615                                               X86::NOT64r, X86::RAX,
6616                                               X86::GR64RegisterClass, true);
6617  case X86::ATOMMIN64:
6618    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
6619  case X86::ATOMMAX64:
6620    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
6621  case X86::ATOMUMIN64:
6622    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
6623  case X86::ATOMUMAX64:
6624    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
6625  }
6626}
6627
6628//===----------------------------------------------------------------------===//
6629//                           X86 Optimization Hooks
6630//===----------------------------------------------------------------------===//
6631
6632void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
6633                                                       const APInt &Mask,
6634                                                       APInt &KnownZero,
6635                                                       APInt &KnownOne,
6636                                                       const SelectionDAG &DAG,
6637                                                       unsigned Depth) const {
6638  unsigned Opc = Op.getOpcode();
6639  assert((Opc >= ISD::BUILTIN_OP_END ||
6640          Opc == ISD::INTRINSIC_WO_CHAIN ||
6641          Opc == ISD::INTRINSIC_W_CHAIN ||
6642          Opc == ISD::INTRINSIC_VOID) &&
6643         "Should use MaskedValueIsZero if you don't know whether Op"
6644         " is a target node!");
6645
6646  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
6647  switch (Opc) {
6648  default: break;
6649  case X86ISD::SETCC:
6650    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
6651                                       Mask.getBitWidth() - 1);
6652    break;
6653  }
6654}
6655
6656/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
6657/// node is a GlobalAddress + offset.
6658bool X86TargetLowering::isGAPlusOffset(SDNode *N,
6659                                       GlobalValue* &GA, int64_t &Offset) const{
6660  if (N->getOpcode() == X86ISD::Wrapper) {
6661    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
6662      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
6663      return true;
6664    }
6665  }
6666  return TargetLowering::isGAPlusOffset(N, GA, Offset);
6667}
6668
6669static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
6670                               const TargetLowering &TLI) {
6671  GlobalValue *GV;
6672  int64_t Offset = 0;
6673  if (TLI.isGAPlusOffset(Base, GV, Offset))
6674    return (GV->getAlignment() >= N && (Offset % N) == 0);
6675  // DAG combine handles the stack object case.
6676  return false;
6677}
6678
6679static bool EltsFromConsecutiveLoads(SDNode *N, SDValue PermMask,
6680                                     unsigned NumElems, MVT EVT,
6681                                     SDNode *&Base,
6682                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
6683                                     const TargetLowering &TLI) {
6684  Base = NULL;
6685  for (unsigned i = 0; i < NumElems; ++i) {
6686    SDValue Idx = PermMask.getOperand(i);
6687    if (Idx.getOpcode() == ISD::UNDEF) {
6688      if (!Base)
6689        return false;
6690      continue;
6691    }
6692
6693    SDValue Elt = DAG.getShuffleScalarElt(N, i);
6694    if (!Elt.Val ||
6695        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.Val)))
6696      return false;
6697    if (!Base) {
6698      Base = Elt.Val;
6699      if (Base->getOpcode() == ISD::UNDEF)
6700        return false;
6701      continue;
6702    }
6703    if (Elt.getOpcode() == ISD::UNDEF)
6704      continue;
6705
6706    if (!TLI.isConsecutiveLoad(Elt.Val, Base,
6707                               EVT.getSizeInBits()/8, i, MFI))
6708      return false;
6709  }
6710  return true;
6711}
6712
6713/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
6714/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
6715/// if the load addresses are consecutive, non-overlapping, and in the right
6716/// order.
6717static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
6718                                       const TargetLowering &TLI) {
6719  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6720  MVT VT = N->getValueType(0);
6721  MVT EVT = VT.getVectorElementType();
6722  SDValue PermMask = N->getOperand(2);
6723  unsigned NumElems = PermMask.getNumOperands();
6724  SDNode *Base = NULL;
6725  if (!EltsFromConsecutiveLoads(N, PermMask, NumElems, EVT, Base,
6726                                DAG, MFI, TLI))
6727    return SDValue();
6728
6729  LoadSDNode *LD = cast<LoadSDNode>(Base);
6730  if (isBaseAlignmentOfN(16, Base->getOperand(1).Val, TLI))
6731    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
6732                       LD->getSrcValueOffset(), LD->isVolatile());
6733  return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
6734                     LD->getSrcValueOffset(), LD->isVolatile(),
6735                     LD->getAlignment());
6736}
6737
6738/// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd.
6739static SDValue PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG,
6740                                           const X86Subtarget *Subtarget,
6741                                           const TargetLowering &TLI) {
6742  unsigned NumOps = N->getNumOperands();
6743
6744  // Ignore single operand BUILD_VECTOR.
6745  if (NumOps == 1)
6746    return SDValue();
6747
6748  MVT VT = N->getValueType(0);
6749  MVT EVT = VT.getVectorElementType();
6750  if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit())
6751    // We are looking for load i64 and zero extend. We want to transform
6752    // it before legalizer has a chance to expand it. Also look for i64
6753    // BUILD_PAIR bit casted to f64.
6754    return SDValue();
6755  // This must be an insertion into a zero vector.
6756  SDValue HighElt = N->getOperand(1);
6757  if (!isZeroNode(HighElt))
6758    return SDValue();
6759
6760  // Value must be a load.
6761  SDNode *Base = N->getOperand(0).Val;
6762  if (!isa<LoadSDNode>(Base)) {
6763    if (Base->getOpcode() != ISD::BIT_CONVERT)
6764      return SDValue();
6765    Base = Base->getOperand(0).Val;
6766    if (!isa<LoadSDNode>(Base))
6767      return SDValue();
6768  }
6769
6770  // Transform it into VZEXT_LOAD addr.
6771  LoadSDNode *LD = cast<LoadSDNode>(Base);
6772
6773  // Load must not be an extload.
6774  if (LD->getExtensionType() != ISD::NON_EXTLOAD)
6775    return SDValue();
6776
6777  return DAG.getNode(X86ISD::VZEXT_LOAD, VT, LD->getChain(), LD->getBasePtr());
6778}
6779
6780/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
6781static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
6782                                      const X86Subtarget *Subtarget) {
6783  SDValue Cond = N->getOperand(0);
6784
6785  // If we have SSE[12] support, try to form min/max nodes.
6786  if (Subtarget->hasSSE2() &&
6787      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
6788    if (Cond.getOpcode() == ISD::SETCC) {
6789      // Get the LHS/RHS of the select.
6790      SDValue LHS = N->getOperand(1);
6791      SDValue RHS = N->getOperand(2);
6792      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
6793
6794      unsigned Opcode = 0;
6795      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
6796        switch (CC) {
6797        default: break;
6798        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
6799        case ISD::SETULE:
6800        case ISD::SETLE:
6801          if (!UnsafeFPMath) break;
6802          // FALL THROUGH.
6803        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
6804        case ISD::SETLT:
6805          Opcode = X86ISD::FMIN;
6806          break;
6807
6808        case ISD::SETOGT: // (X > Y) ? X : Y -> max
6809        case ISD::SETUGT:
6810        case ISD::SETGT:
6811          if (!UnsafeFPMath) break;
6812          // FALL THROUGH.
6813        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
6814        case ISD::SETGE:
6815          Opcode = X86ISD::FMAX;
6816          break;
6817        }
6818      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
6819        switch (CC) {
6820        default: break;
6821        case ISD::SETOGT: // (X > Y) ? Y : X -> min
6822        case ISD::SETUGT:
6823        case ISD::SETGT:
6824          if (!UnsafeFPMath) break;
6825          // FALL THROUGH.
6826        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
6827        case ISD::SETGE:
6828          Opcode = X86ISD::FMIN;
6829          break;
6830
6831        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
6832        case ISD::SETULE:
6833        case ISD::SETLE:
6834          if (!UnsafeFPMath) break;
6835          // FALL THROUGH.
6836        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
6837        case ISD::SETLT:
6838          Opcode = X86ISD::FMAX;
6839          break;
6840        }
6841      }
6842
6843      if (Opcode)
6844        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
6845    }
6846
6847  }
6848
6849  return SDValue();
6850}
6851
6852/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
6853static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
6854                                     const X86Subtarget *Subtarget) {
6855  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
6856  // the FP state in cases where an emms may be missing.
6857  // A preferable solution to the general problem is to figure out the right
6858  // places to insert EMMS.  This qualifies as a quick hack.
6859  StoreSDNode *St = cast<StoreSDNode>(N);
6860  if (St->getValue().getValueType().isVector() &&
6861      St->getValue().getValueType().getSizeInBits() == 64 &&
6862      isa<LoadSDNode>(St->getValue()) &&
6863      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
6864      St->getChain().hasOneUse() && !St->isVolatile()) {
6865    SDNode* LdVal = St->getValue().Val;
6866    LoadSDNode *Ld = 0;
6867    int TokenFactorIndex = -1;
6868    SmallVector<SDValue, 8> Ops;
6869    SDNode* ChainVal = St->getChain().Val;
6870    // Must be a store of a load.  We currently handle two cases:  the load
6871    // is a direct child, and it's under an intervening TokenFactor.  It is
6872    // possible to dig deeper under nested TokenFactors.
6873    if (ChainVal == LdVal)
6874      Ld = cast<LoadSDNode>(St->getChain());
6875    else if (St->getValue().hasOneUse() &&
6876             ChainVal->getOpcode() == ISD::TokenFactor) {
6877      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
6878        if (ChainVal->getOperand(i).Val == LdVal) {
6879          TokenFactorIndex = i;
6880          Ld = cast<LoadSDNode>(St->getValue());
6881        } else
6882          Ops.push_back(ChainVal->getOperand(i));
6883      }
6884    }
6885    if (Ld) {
6886      // If we are a 64-bit capable x86, lower to a single movq load/store pair.
6887      if (Subtarget->is64Bit()) {
6888        SDValue NewLd = DAG.getLoad(MVT::i64, Ld->getChain(),
6889                                      Ld->getBasePtr(), Ld->getSrcValue(),
6890                                      Ld->getSrcValueOffset(), Ld->isVolatile(),
6891                                      Ld->getAlignment());
6892        SDValue NewChain = NewLd.getValue(1);
6893        if (TokenFactorIndex != -1) {
6894          Ops.push_back(NewChain);
6895          NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
6896                                 Ops.size());
6897        }
6898        return DAG.getStore(NewChain, NewLd, St->getBasePtr(),
6899                            St->getSrcValue(), St->getSrcValueOffset(),
6900                            St->isVolatile(), St->getAlignment());
6901      }
6902
6903      // Otherwise, lower to two 32-bit copies.
6904      SDValue LoAddr = Ld->getBasePtr();
6905      SDValue HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
6906                                     DAG.getConstant(4, MVT::i32));
6907
6908      SDValue LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr,
6909                                   Ld->getSrcValue(), Ld->getSrcValueOffset(),
6910                                   Ld->isVolatile(), Ld->getAlignment());
6911      SDValue HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr,
6912                                   Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
6913                                   Ld->isVolatile(),
6914                                   MinAlign(Ld->getAlignment(), 4));
6915
6916      SDValue NewChain = LoLd.getValue(1);
6917      if (TokenFactorIndex != -1) {
6918        Ops.push_back(LoLd);
6919        Ops.push_back(HiLd);
6920        NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
6921                               Ops.size());
6922      }
6923
6924      LoAddr = St->getBasePtr();
6925      HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
6926                           DAG.getConstant(4, MVT::i32));
6927
6928      SDValue LoSt = DAG.getStore(NewChain, LoLd, LoAddr,
6929                          St->getSrcValue(), St->getSrcValueOffset(),
6930                          St->isVolatile(), St->getAlignment());
6931      SDValue HiSt = DAG.getStore(NewChain, HiLd, HiAddr,
6932                                    St->getSrcValue(), St->getSrcValueOffset()+4,
6933                                    St->isVolatile(),
6934                                    MinAlign(St->getAlignment(), 4));
6935      return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt);
6936    }
6937  }
6938  return SDValue();
6939}
6940
6941/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
6942/// X86ISD::FXOR nodes.
6943static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
6944  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
6945  // F[X]OR(0.0, x) -> x
6946  // F[X]OR(x, 0.0) -> x
6947  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
6948    if (C->getValueAPF().isPosZero())
6949      return N->getOperand(1);
6950  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
6951    if (C->getValueAPF().isPosZero())
6952      return N->getOperand(0);
6953  return SDValue();
6954}
6955
6956/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
6957static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
6958  // FAND(0.0, x) -> 0.0
6959  // FAND(x, 0.0) -> 0.0
6960  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
6961    if (C->getValueAPF().isPosZero())
6962      return N->getOperand(0);
6963  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
6964    if (C->getValueAPF().isPosZero())
6965      return N->getOperand(1);
6966  return SDValue();
6967}
6968
6969
6970SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
6971                                               DAGCombinerInfo &DCI) const {
6972  SelectionDAG &DAG = DCI.DAG;
6973  switch (N->getOpcode()) {
6974  default: break;
6975  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
6976  case ISD::BUILD_VECTOR:
6977    return PerformBuildVectorCombine(N, DAG, Subtarget, *this);
6978  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
6979  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
6980  case X86ISD::FXOR:
6981  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
6982  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
6983  }
6984
6985  return SDValue();
6986}
6987
6988//===----------------------------------------------------------------------===//
6989//                           X86 Inline Assembly Support
6990//===----------------------------------------------------------------------===//
6991
6992/// getConstraintType - Given a constraint letter, return the type of
6993/// constraint it is for this target.
6994X86TargetLowering::ConstraintType
6995X86TargetLowering::getConstraintType(const std::string &Constraint) const {
6996  if (Constraint.size() == 1) {
6997    switch (Constraint[0]) {
6998    case 'A':
6999    case 'f':
7000    case 'r':
7001    case 'R':
7002    case 'l':
7003    case 'q':
7004    case 'Q':
7005    case 'x':
7006    case 'y':
7007    case 'Y':
7008      return C_RegisterClass;
7009    default:
7010      break;
7011    }
7012  }
7013  return TargetLowering::getConstraintType(Constraint);
7014}
7015
7016/// LowerXConstraint - try to replace an X constraint, which matches anything,
7017/// with another that has more specific requirements based on the type of the
7018/// corresponding operand.
7019const char *X86TargetLowering::
7020LowerXConstraint(MVT ConstraintVT) const {
7021  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
7022  // 'f' like normal targets.
7023  if (ConstraintVT.isFloatingPoint()) {
7024    if (Subtarget->hasSSE2())
7025      return "Y";
7026    if (Subtarget->hasSSE1())
7027      return "x";
7028  }
7029
7030  return TargetLowering::LowerXConstraint(ConstraintVT);
7031}
7032
7033/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
7034/// vector.  If it is invalid, don't add anything to Ops.
7035void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
7036                                                     char Constraint,
7037                                                     std::vector<SDValue>&Ops,
7038                                                     SelectionDAG &DAG) const {
7039  SDValue Result(0, 0);
7040
7041  switch (Constraint) {
7042  default: break;
7043  case 'I':
7044    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
7045      if (C->getValue() <= 31) {
7046        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
7047        break;
7048      }
7049    }
7050    return;
7051  case 'N':
7052    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
7053      if (C->getValue() <= 255) {
7054        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
7055        break;
7056      }
7057    }
7058    return;
7059  case 'i': {
7060    // Literal immediates are always ok.
7061    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
7062      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
7063      break;
7064    }
7065
7066    // If we are in non-pic codegen mode, we allow the address of a global (with
7067    // an optional displacement) to be used with 'i'.
7068    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
7069    int64_t Offset = 0;
7070
7071    // Match either (GA) or (GA+C)
7072    if (GA) {
7073      Offset = GA->getOffset();
7074    } else if (Op.getOpcode() == ISD::ADD) {
7075      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7076      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
7077      if (C && GA) {
7078        Offset = GA->getOffset()+C->getValue();
7079      } else {
7080        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7081        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
7082        if (C && GA)
7083          Offset = GA->getOffset()+C->getValue();
7084        else
7085          C = 0, GA = 0;
7086      }
7087    }
7088
7089    if (GA) {
7090      // If addressing this global requires a load (e.g. in PIC mode), we can't
7091      // match.
7092      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
7093                                         false))
7094        return;
7095
7096      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
7097                                      Offset);
7098      Result = Op;
7099      break;
7100    }
7101
7102    // Otherwise, not valid for this mode.
7103    return;
7104  }
7105  }
7106
7107  if (Result.Val) {
7108    Ops.push_back(Result);
7109    return;
7110  }
7111  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
7112}
7113
7114std::vector<unsigned> X86TargetLowering::
7115getRegClassForInlineAsmConstraint(const std::string &Constraint,
7116                                  MVT VT) const {
7117  if (Constraint.size() == 1) {
7118    // FIXME: not handling fp-stack yet!
7119    switch (Constraint[0]) {      // GCC X86 Constraint Letters
7120    default: break;  // Unknown constraint letter
7121    case 'A':   // EAX/EDX
7122      if (VT == MVT::i32 || VT == MVT::i64)
7123        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
7124      break;
7125    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
7126    case 'Q':   // Q_REGS
7127      if (VT == MVT::i32)
7128        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
7129      else if (VT == MVT::i16)
7130        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
7131      else if (VT == MVT::i8)
7132        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
7133      else if (VT == MVT::i64)
7134        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
7135      break;
7136    }
7137  }
7138
7139  return std::vector<unsigned>();
7140}
7141
7142std::pair<unsigned, const TargetRegisterClass*>
7143X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
7144                                                MVT VT) const {
7145  // First, see if this is a constraint that directly corresponds to an LLVM
7146  // register class.
7147  if (Constraint.size() == 1) {
7148    // GCC Constraint Letters
7149    switch (Constraint[0]) {
7150    default: break;
7151    case 'r':   // GENERAL_REGS
7152    case 'R':   // LEGACY_REGS
7153    case 'l':   // INDEX_REGS
7154      if (VT == MVT::i64 && Subtarget->is64Bit())
7155        return std::make_pair(0U, X86::GR64RegisterClass);
7156      if (VT == MVT::i32)
7157        return std::make_pair(0U, X86::GR32RegisterClass);
7158      else if (VT == MVT::i16)
7159        return std::make_pair(0U, X86::GR16RegisterClass);
7160      else if (VT == MVT::i8)
7161        return std::make_pair(0U, X86::GR8RegisterClass);
7162      break;
7163    case 'f':  // FP Stack registers.
7164      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
7165      // value to the correct fpstack register class.
7166      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
7167        return std::make_pair(0U, X86::RFP32RegisterClass);
7168      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
7169        return std::make_pair(0U, X86::RFP64RegisterClass);
7170      return std::make_pair(0U, X86::RFP80RegisterClass);
7171    case 'y':   // MMX_REGS if MMX allowed.
7172      if (!Subtarget->hasMMX()) break;
7173      return std::make_pair(0U, X86::VR64RegisterClass);
7174      break;
7175    case 'Y':   // SSE_REGS if SSE2 allowed
7176      if (!Subtarget->hasSSE2()) break;
7177      // FALL THROUGH.
7178    case 'x':   // SSE_REGS if SSE1 allowed
7179      if (!Subtarget->hasSSE1()) break;
7180
7181      switch (VT.getSimpleVT()) {
7182      default: break;
7183      // Scalar SSE types.
7184      case MVT::f32:
7185      case MVT::i32:
7186        return std::make_pair(0U, X86::FR32RegisterClass);
7187      case MVT::f64:
7188      case MVT::i64:
7189        return std::make_pair(0U, X86::FR64RegisterClass);
7190      // Vector types.
7191      case MVT::v16i8:
7192      case MVT::v8i16:
7193      case MVT::v4i32:
7194      case MVT::v2i64:
7195      case MVT::v4f32:
7196      case MVT::v2f64:
7197        return std::make_pair(0U, X86::VR128RegisterClass);
7198      }
7199      break;
7200    }
7201  }
7202
7203  // Use the default implementation in TargetLowering to convert the register
7204  // constraint into a member of a register class.
7205  std::pair<unsigned, const TargetRegisterClass*> Res;
7206  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
7207
7208  // Not found as a standard register?
7209  if (Res.second == 0) {
7210    // GCC calls "st(0)" just plain "st".
7211    if (StringsEqualNoCase("{st}", Constraint)) {
7212      Res.first = X86::ST0;
7213      Res.second = X86::RFP80RegisterClass;
7214    }
7215
7216    return Res;
7217  }
7218
7219  // Otherwise, check to see if this is a register class of the wrong value
7220  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
7221  // turn into {ax},{dx}.
7222  if (Res.second->hasType(VT))
7223    return Res;   // Correct type already, nothing to do.
7224
7225  // All of the single-register GCC register classes map their values onto
7226  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
7227  // really want an 8-bit or 32-bit register, map to the appropriate register
7228  // class and return the appropriate register.
7229  if (Res.second != X86::GR16RegisterClass)
7230    return Res;
7231
7232  if (VT == MVT::i8) {
7233    unsigned DestReg = 0;
7234    switch (Res.first) {
7235    default: break;
7236    case X86::AX: DestReg = X86::AL; break;
7237    case X86::DX: DestReg = X86::DL; break;
7238    case X86::CX: DestReg = X86::CL; break;
7239    case X86::BX: DestReg = X86::BL; break;
7240    }
7241    if (DestReg) {
7242      Res.first = DestReg;
7243      Res.second = Res.second = X86::GR8RegisterClass;
7244    }
7245  } else if (VT == MVT::i32) {
7246    unsigned DestReg = 0;
7247    switch (Res.first) {
7248    default: break;
7249    case X86::AX: DestReg = X86::EAX; break;
7250    case X86::DX: DestReg = X86::EDX; break;
7251    case X86::CX: DestReg = X86::ECX; break;
7252    case X86::BX: DestReg = X86::EBX; break;
7253    case X86::SI: DestReg = X86::ESI; break;
7254    case X86::DI: DestReg = X86::EDI; break;
7255    case X86::BP: DestReg = X86::EBP; break;
7256    case X86::SP: DestReg = X86::ESP; break;
7257    }
7258    if (DestReg) {
7259      Res.first = DestReg;
7260      Res.second = Res.second = X86::GR32RegisterClass;
7261    }
7262  } else if (VT == MVT::i64) {
7263    unsigned DestReg = 0;
7264    switch (Res.first) {
7265    default: break;
7266    case X86::AX: DestReg = X86::RAX; break;
7267    case X86::DX: DestReg = X86::RDX; break;
7268    case X86::CX: DestReg = X86::RCX; break;
7269    case X86::BX: DestReg = X86::RBX; break;
7270    case X86::SI: DestReg = X86::RSI; break;
7271    case X86::DI: DestReg = X86::RDI; break;
7272    case X86::BP: DestReg = X86::RBP; break;
7273    case X86::SP: DestReg = X86::RSP; break;
7274    }
7275    if (DestReg) {
7276      Res.first = DestReg;
7277      Res.second = Res.second = X86::GR64RegisterClass;
7278    }
7279  }
7280
7281  return Res;
7282}
7283