X86ISelLowering.cpp revision 3464cec4d8cf09f9e1b3b9af9ab7b7d4a6a69a59
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalAlias.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Function.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/LLVMContext.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/MC/MCContext.h"
39#include "llvm/MC/MCExpr.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/Dwarf.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52using namespace llvm;
53using namespace dwarf;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57static cl::opt<bool>
58DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
59
60// Forward declarations.
61static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
62                       SDValue V2);
63
64static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
65
66  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
67
68  if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) {
69    if (is64Bit) return new X8664_MachoTargetObjectFile();
70    return new TargetLoweringObjectFileMachO();
71  } else if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){
72    if (is64Bit) return new X8664_ELFTargetObjectFile(TM);
73    return new X8632_ELFTargetObjectFile(TM);
74  } else if (TM.getSubtarget<X86Subtarget>().isTargetCOFF()) {
75    return new TargetLoweringObjectFileCOFF();
76  }
77  llvm_unreachable("unknown subtarget type");
78}
79
80X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
81  : TargetLowering(TM, createTLOF(TM)) {
82  Subtarget = &TM.getSubtarget<X86Subtarget>();
83  X86ScalarSSEf64 = Subtarget->hasSSE2();
84  X86ScalarSSEf32 = Subtarget->hasSSE1();
85  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
86
87  RegInfo = TM.getRegisterInfo();
88  TD = getTargetData();
89
90  // Set up the TargetLowering object.
91
92  // X86 is weird, it always uses i8 for shift amounts and setcc results.
93  setShiftAmountType(MVT::i8);
94  setBooleanContents(ZeroOrOneBooleanContent);
95  setSchedulingPreference(Sched::RegPressure);
96  setStackPointerRegisterToSaveRestore(X86StackPtr);
97
98  if (Subtarget->isTargetDarwin()) {
99    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
100    setUseUnderscoreSetJmp(false);
101    setUseUnderscoreLongJmp(false);
102  } else if (Subtarget->isTargetMingw()) {
103    // MS runtime is weird: it exports _setjmp, but longjmp!
104    setUseUnderscoreSetJmp(true);
105    setUseUnderscoreLongJmp(false);
106  } else {
107    setUseUnderscoreSetJmp(true);
108    setUseUnderscoreLongJmp(true);
109  }
110
111  // Set up the register classes.
112  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
113  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
114  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
115  if (Subtarget->is64Bit())
116    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
117
118  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
119
120  // We don't accept any truncstore of integer registers.
121  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
122  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
123  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
124  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
125  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
126  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
127
128  // SETOEQ and SETUNE require checking two conditions.
129  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
130  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
131  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
132  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
133  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
134  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
135
136  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
137  // operation.
138  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
139  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
140  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
141
142  if (Subtarget->is64Bit()) {
143    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
144    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
145  } else if (!UseSoftFloat) {
146    // We have an algorithm for SSE2->double, and we turn this into a
147    // 64-bit FILD followed by conditional FADD for other targets.
148    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
149    // We have an algorithm for SSE2, and we turn this into a 64-bit
150    // FILD for other targets.
151    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
152  }
153
154  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
155  // this operation.
156  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
157  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
158
159  if (!UseSoftFloat) {
160    // SSE has no i16 to fp conversion, only i32
161    if (X86ScalarSSEf32) {
162      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
163      // f32 and f64 cases are Legal, f80 case is not
164      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
165    } else {
166      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
167      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
168    }
169  } else {
170    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
171    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
172  }
173
174  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
175  // are Legal, f80 is custom lowered.
176  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
177  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
178
179  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
180  // this operation.
181  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
182  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
183
184  if (X86ScalarSSEf32) {
185    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
186    // f32 and f64 cases are Legal, f80 case is not
187    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
188  } else {
189    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
190    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
191  }
192
193  // Handle FP_TO_UINT by promoting the destination to a larger signed
194  // conversion.
195  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
196  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
197  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
198
199  if (Subtarget->is64Bit()) {
200    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
201    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
202  } else if (!UseSoftFloat) {
203    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
204      // Expand FP_TO_UINT into a select.
205      // FIXME: We would like to use a Custom expander here eventually to do
206      // the optimal thing for SSE vs. the default expansion in the legalizer.
207      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
208    else
209      // With SSE3 we can use fisttpll to convert to a signed i64; without
210      // SSE, we're stuck with a fistpll.
211      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
212  }
213
214  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
215  if (!X86ScalarSSEf64) {
216    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
217    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
218    if (Subtarget->is64Bit()) {
219      setOperationAction(ISD::BIT_CONVERT    , MVT::f64  , Expand);
220      // Without SSE, i64->f64 goes through memory; i64->MMX is Legal.
221      if (Subtarget->hasMMX() && !DisableMMX)
222        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Custom);
223      else
224        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Expand);
225    }
226  }
227
228  // Scalar integer divide and remainder are lowered to use operations that
229  // produce two results, to match the available instructions. This exposes
230  // the two-result form to trivial CSE, which is able to combine x/y and x%y
231  // into a single instruction.
232  //
233  // Scalar integer multiply-high is also lowered to use two-result
234  // operations, to match the available instructions. However, plain multiply
235  // (low) operations are left as Legal, as there are single-result
236  // instructions for this in x86. Using the two-result multiply instructions
237  // when both high and low results are needed must be arranged by dagcombine.
238  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
239  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
240  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
241  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
242  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
243  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
244  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
245  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
246  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
247  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
248  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
249  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
250  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
251  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
252  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
253  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
254  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
255  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
256  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
257  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
258  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
259  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
260  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
261  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
262
263  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
264  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
265  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
266  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
267  if (Subtarget->is64Bit())
268    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
269  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
270  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
271  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
272  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
273  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
274  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
275  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
276  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
277
278  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
279  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
280  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
281  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
282  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
283  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
284  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
285  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
286  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
287  if (Subtarget->is64Bit()) {
288    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
289    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
290    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
291  }
292
293  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
294  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
295
296  // These should be promoted to a larger select which is supported.
297  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
298  // X86 wants to expand cmov itself.
299  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
300  setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
301  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
302  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
303  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
304  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
305  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
306  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
307  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
308  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
309  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
310  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
313    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
314  }
315  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
316
317  // Darwin ABI issue.
318  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
319  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
320  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
321  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
322  if (Subtarget->is64Bit())
323    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
324  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
325  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
326  if (Subtarget->is64Bit()) {
327    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
328    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
329    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
330    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
331    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
332  }
333  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
334  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
335  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
336  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
337  if (Subtarget->is64Bit()) {
338    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
339    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
340    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
341  }
342
343  if (Subtarget->hasSSE1())
344    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
345
346  // We may not have a libcall for MEMBARRIER so we should lower this.
347  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
348
349  // On X86 and X86-64, atomic operations are lowered to locked instructions.
350  // Locked instructions, in turn, have implicit fence semantics (all memory
351  // operations are flushed before issuing the locked instruction, and they
352  // are not buffered), so we can fold away the common pattern of
353  // fence-atomic-fence.
354  setShouldFoldAtomicFences(true);
355
356  // Expand certain atomics
357  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
358  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
359  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
360  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
361
362  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
363  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
364  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
365  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
366
367  if (!Subtarget->is64Bit()) {
368    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
369    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
370    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
371    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
372    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
373    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
374    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
375  }
376
377  // FIXME - use subtarget debug flags
378  if (!Subtarget->isTargetDarwin() &&
379      !Subtarget->isTargetELF() &&
380      !Subtarget->isTargetCygMing()) {
381    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
382  }
383
384  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
385  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
386  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
387  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
388  if (Subtarget->is64Bit()) {
389    setExceptionPointerRegister(X86::RAX);
390    setExceptionSelectorRegister(X86::RDX);
391  } else {
392    setExceptionPointerRegister(X86::EAX);
393    setExceptionSelectorRegister(X86::EDX);
394  }
395  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
396  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
397
398  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
399
400  setOperationAction(ISD::TRAP, MVT::Other, Legal);
401
402  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
403  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
404  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
405  if (Subtarget->is64Bit()) {
406    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
407    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
408  } else {
409    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
410    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
411  }
412
413  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
414  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
415  if (Subtarget->is64Bit())
416    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
417  if (Subtarget->isTargetCygMing())
418    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
419  else
420    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
421
422  if (!UseSoftFloat && X86ScalarSSEf64) {
423    // f32 and f64 use SSE.
424    // Set up the FP register classes.
425    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
426    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
427
428    // Use ANDPD to simulate FABS.
429    setOperationAction(ISD::FABS , MVT::f64, Custom);
430    setOperationAction(ISD::FABS , MVT::f32, Custom);
431
432    // Use XORP to simulate FNEG.
433    setOperationAction(ISD::FNEG , MVT::f64, Custom);
434    setOperationAction(ISD::FNEG , MVT::f32, Custom);
435
436    // Use ANDPD and ORPD to simulate FCOPYSIGN.
437    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
438    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
439
440    // We don't support sin/cos/fmod
441    setOperationAction(ISD::FSIN , MVT::f64, Expand);
442    setOperationAction(ISD::FCOS , MVT::f64, Expand);
443    setOperationAction(ISD::FSIN , MVT::f32, Expand);
444    setOperationAction(ISD::FCOS , MVT::f32, Expand);
445
446    // Expand FP immediates into loads from the stack, except for the special
447    // cases we handle.
448    addLegalFPImmediate(APFloat(+0.0)); // xorpd
449    addLegalFPImmediate(APFloat(+0.0f)); // xorps
450  } else if (!UseSoftFloat && X86ScalarSSEf32) {
451    // Use SSE for f32, x87 for f64.
452    // Set up the FP register classes.
453    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
454    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
455
456    // Use ANDPS to simulate FABS.
457    setOperationAction(ISD::FABS , MVT::f32, Custom);
458
459    // Use XORP to simulate FNEG.
460    setOperationAction(ISD::FNEG , MVT::f32, Custom);
461
462    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
463
464    // Use ANDPS and ORPS to simulate FCOPYSIGN.
465    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
466    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
467
468    // We don't support sin/cos/fmod
469    setOperationAction(ISD::FSIN , MVT::f32, Expand);
470    setOperationAction(ISD::FCOS , MVT::f32, Expand);
471
472    // Special cases we handle for FP constants.
473    addLegalFPImmediate(APFloat(+0.0f)); // xorps
474    addLegalFPImmediate(APFloat(+0.0)); // FLD0
475    addLegalFPImmediate(APFloat(+1.0)); // FLD1
476    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
477    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
478
479    if (!UnsafeFPMath) {
480      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
481      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
482    }
483  } else if (!UseSoftFloat) {
484    // f32 and f64 in x87.
485    // Set up the FP register classes.
486    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
487    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
488
489    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
490    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
491    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
492    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
493
494    if (!UnsafeFPMath) {
495      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
496      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
497    }
498    addLegalFPImmediate(APFloat(+0.0)); // FLD0
499    addLegalFPImmediate(APFloat(+1.0)); // FLD1
500    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
501    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
502    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
503    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
504    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
505    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
506  }
507
508  // Long double always uses X87.
509  if (!UseSoftFloat) {
510    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
511    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
512    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
513    {
514      bool ignored;
515      APFloat TmpFlt(+0.0);
516      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
517                     &ignored);
518      addLegalFPImmediate(TmpFlt);  // FLD0
519      TmpFlt.changeSign();
520      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
521      APFloat TmpFlt2(+1.0);
522      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
523                      &ignored);
524      addLegalFPImmediate(TmpFlt2);  // FLD1
525      TmpFlt2.changeSign();
526      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
527    }
528
529    if (!UnsafeFPMath) {
530      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
531      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
532    }
533  }
534
535  // Always use a library call for pow.
536  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
537  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
538  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
539
540  setOperationAction(ISD::FLOG, MVT::f80, Expand);
541  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
542  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
543  setOperationAction(ISD::FEXP, MVT::f80, Expand);
544  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
545
546  // First set operation action for all vector types to either promote
547  // (for widening) or expand (for scalarization). Then we will selectively
548  // turn on ones that can be effectively codegen'd.
549  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
550       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
551    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
566    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
567    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
600    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
604    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
605         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
606      setTruncStoreAction((MVT::SimpleValueType)VT,
607                          (MVT::SimpleValueType)InnerVT, Expand);
608    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
609    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
610    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
611  }
612
613  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
614  // with -msoft-float, disable use of MMX as well.
615  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
616    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass, false);
617    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass, false);
618    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass, false);
619
620    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass, false);
621
622    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
623    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
624    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
625    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
626
627    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
628    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
629    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
630    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
631
632    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
633    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
634
635    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
636    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
637    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
638    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
639    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
640    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
641    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
642
643    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
644    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
645    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
646    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
647    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
648    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
649    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
650
651    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
652    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
653    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
654    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
655    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
656    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
657    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
658
659    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
660    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
661    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
662    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
663    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
664    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
665    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
666
667    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
668    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
669    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
670    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
671
672    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
673    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
674    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
675    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
676
677    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
678    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
679    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
680
681    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
682
683    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
684    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
685    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
686    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
687    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
688    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
689    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
690
691    if (!X86ScalarSSEf64 && Subtarget->is64Bit()) {
692      setOperationAction(ISD::BIT_CONVERT,        MVT::v8i8,  Custom);
693      setOperationAction(ISD::BIT_CONVERT,        MVT::v4i16, Custom);
694      setOperationAction(ISD::BIT_CONVERT,        MVT::v2i32, Custom);
695      setOperationAction(ISD::BIT_CONVERT,        MVT::v1i64, Custom);
696    }
697  }
698
699  if (!UseSoftFloat && Subtarget->hasSSE1()) {
700    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
701
702    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
703    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
704    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
705    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
706    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
707    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
708    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
709    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
710    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
711    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
712    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
713    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
714  }
715
716  if (!UseSoftFloat && Subtarget->hasSSE2()) {
717    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
718
719    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
720    // registers cannot be used even for integer operations.
721    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
722    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
723    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
724    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
725
726    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
727    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
728    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
729    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
730    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
731    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
732    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
733    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
734    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
735    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
736    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
737    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
738    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
739    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
740    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
741    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
742
743    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
744    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
745    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
746    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
747
748    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
749    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
750    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
751    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
752    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
753
754    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
755    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
756    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
757    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
758    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
759
760    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
761    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
762      EVT VT = (MVT::SimpleValueType)i;
763      // Do not attempt to custom lower non-power-of-2 vectors
764      if (!isPowerOf2_32(VT.getVectorNumElements()))
765        continue;
766      // Do not attempt to custom lower non-128-bit vectors
767      if (!VT.is128BitVector())
768        continue;
769      setOperationAction(ISD::BUILD_VECTOR,
770                         VT.getSimpleVT().SimpleTy, Custom);
771      setOperationAction(ISD::VECTOR_SHUFFLE,
772                         VT.getSimpleVT().SimpleTy, Custom);
773      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
774                         VT.getSimpleVT().SimpleTy, Custom);
775    }
776
777    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
778    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
779    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
780    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
781    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
782    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
783
784    if (Subtarget->is64Bit()) {
785      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
786      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
787    }
788
789    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
790    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
791      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
792      EVT VT = SVT;
793
794      // Do not attempt to promote non-128-bit vectors
795      if (!VT.is128BitVector())
796        continue;
797
798      setOperationAction(ISD::AND,    SVT, Promote);
799      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
800      setOperationAction(ISD::OR,     SVT, Promote);
801      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
802      setOperationAction(ISD::XOR,    SVT, Promote);
803      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
804      setOperationAction(ISD::LOAD,   SVT, Promote);
805      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
806      setOperationAction(ISD::SELECT, SVT, Promote);
807      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
808    }
809
810    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
811
812    // Custom lower v2i64 and v2f64 selects.
813    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
814    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
815    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
816    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
817
818    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
819    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
820    if (!DisableMMX && Subtarget->hasMMX()) {
821      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
822      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
823    }
824  }
825
826  if (Subtarget->hasSSE41()) {
827    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
828    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
829    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
830    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
831    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
832    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
833    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
834    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
835    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
836    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
837
838    // FIXME: Do we need to handle scalar-to-vector here?
839    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
840
841    // Can turn SHL into an integer multiply.
842    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
843    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
844
845    // i8 and i16 vectors are custom , because the source register and source
846    // source memory operand types are not the same width.  f32 vectors are
847    // custom since the immediate controlling the insert encodes additional
848    // information.
849    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
850    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
851    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
852    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
853
854    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
855    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
856    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
857    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
858
859    if (Subtarget->is64Bit()) {
860      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
861      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
862    }
863  }
864
865  if (Subtarget->hasSSE42()) {
866    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
867  }
868
869  if (!UseSoftFloat && Subtarget->hasAVX()) {
870    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
871    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
872    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
873    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
874    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
875
876    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
877    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
878    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
879    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
880    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
881    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
882    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
883    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
884    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
885    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
886    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
887    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
888    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
889    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
890    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
891
892    // Operations to consider commented out -v16i16 v32i8
893    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
894    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
895    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
896    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
897    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
898    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
899    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
900    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
901    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
902    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
903    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
904    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
905    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
906    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
907
908    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
909    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
910    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
911    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
912
913    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
914    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
915    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
916    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
917    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
918
919    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
920    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
921    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
922    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
923    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
924    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
925
926#if 0
927    // Not sure we want to do this since there are no 256-bit integer
928    // operations in AVX
929
930    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
931    // This includes 256-bit vectors
932    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
933      EVT VT = (MVT::SimpleValueType)i;
934
935      // Do not attempt to custom lower non-power-of-2 vectors
936      if (!isPowerOf2_32(VT.getVectorNumElements()))
937        continue;
938
939      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
940      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
941      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
942    }
943
944    if (Subtarget->is64Bit()) {
945      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
946      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
947    }
948#endif
949
950#if 0
951    // Not sure we want to do this since there are no 256-bit integer
952    // operations in AVX
953
954    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
955    // Including 256-bit vectors
956    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
957      EVT VT = (MVT::SimpleValueType)i;
958
959      if (!VT.is256BitVector()) {
960        continue;
961      }
962      setOperationAction(ISD::AND,    VT, Promote);
963      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
964      setOperationAction(ISD::OR,     VT, Promote);
965      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
966      setOperationAction(ISD::XOR,    VT, Promote);
967      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
968      setOperationAction(ISD::LOAD,   VT, Promote);
969      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
970      setOperationAction(ISD::SELECT, VT, Promote);
971      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
972    }
973
974    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
975#endif
976  }
977
978  // We want to custom lower some of our intrinsics.
979  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
980
981  // Add/Sub/Mul with overflow operations are custom lowered.
982  setOperationAction(ISD::SADDO, MVT::i32, Custom);
983  setOperationAction(ISD::UADDO, MVT::i32, Custom);
984  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
985  setOperationAction(ISD::USUBO, MVT::i32, Custom);
986  setOperationAction(ISD::SMULO, MVT::i32, Custom);
987
988  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
989  // handle type legalization for these operations here.
990  //
991  // FIXME: We really should do custom legalization for addition and
992  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
993  // than generic legalization for 64-bit multiplication-with-overflow, though.
994  if (Subtarget->is64Bit()) {
995    setOperationAction(ISD::SADDO, MVT::i64, Custom);
996    setOperationAction(ISD::UADDO, MVT::i64, Custom);
997    setOperationAction(ISD::SSUBO, MVT::i64, Custom);
998    setOperationAction(ISD::USUBO, MVT::i64, Custom);
999    setOperationAction(ISD::SMULO, MVT::i64, Custom);
1000  }
1001
1002  if (!Subtarget->is64Bit()) {
1003    // These libcalls are not available in 32-bit.
1004    setLibcallName(RTLIB::SHL_I128, 0);
1005    setLibcallName(RTLIB::SRL_I128, 0);
1006    setLibcallName(RTLIB::SRA_I128, 0);
1007  }
1008
1009  // We have target-specific dag combine patterns for the following nodes:
1010  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1011  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1012  setTargetDAGCombine(ISD::BUILD_VECTOR);
1013  setTargetDAGCombine(ISD::SELECT);
1014  setTargetDAGCombine(ISD::SHL);
1015  setTargetDAGCombine(ISD::SRA);
1016  setTargetDAGCombine(ISD::SRL);
1017  setTargetDAGCombine(ISD::OR);
1018  setTargetDAGCombine(ISD::STORE);
1019  setTargetDAGCombine(ISD::ZERO_EXTEND);
1020  if (Subtarget->is64Bit())
1021    setTargetDAGCombine(ISD::MUL);
1022
1023  computeRegisterProperties();
1024
1025  // FIXME: These should be based on subtarget info. Plus, the values should
1026  // be smaller when we are in optimizing for size mode.
1027  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1028  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1029  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1030  setPrefLoopAlignment(16);
1031  benefitFromCodePlacementOpt = true;
1032
1033  // FIXME: Jump tables are currently broken for 64 bit COFF.
1034  // See PR7960.
1035  if (Subtarget->is64Bit() && Subtarget->isTargetCOFF()) {
1036    DisableJumpTables = true;
1037  }
1038}
1039
1040
1041MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1042  return MVT::i8;
1043}
1044
1045
1046/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1047/// the desired ByVal argument alignment.
1048static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1049  if (MaxAlign == 16)
1050    return;
1051  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1052    if (VTy->getBitWidth() == 128)
1053      MaxAlign = 16;
1054  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1055    unsigned EltAlign = 0;
1056    getMaxByValAlign(ATy->getElementType(), EltAlign);
1057    if (EltAlign > MaxAlign)
1058      MaxAlign = EltAlign;
1059  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1060    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1061      unsigned EltAlign = 0;
1062      getMaxByValAlign(STy->getElementType(i), EltAlign);
1063      if (EltAlign > MaxAlign)
1064        MaxAlign = EltAlign;
1065      if (MaxAlign == 16)
1066        break;
1067    }
1068  }
1069  return;
1070}
1071
1072/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1073/// function arguments in the caller parameter area. For X86, aggregates
1074/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1075/// are at 4-byte boundaries.
1076unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1077  if (Subtarget->is64Bit()) {
1078    // Max of 8 and alignment of type.
1079    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1080    if (TyAlign > 8)
1081      return TyAlign;
1082    return 8;
1083  }
1084
1085  unsigned Align = 4;
1086  if (Subtarget->hasSSE1())
1087    getMaxByValAlign(Ty, Align);
1088  return Align;
1089}
1090
1091/// getOptimalMemOpType - Returns the target specific optimal type for load
1092/// and store operations as a result of memset, memcpy, and memmove
1093/// lowering. If DstAlign is zero that means it's safe to destination
1094/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1095/// means there isn't a need to check it against alignment requirement,
1096/// probably because the source does not need to be loaded. If
1097/// 'NonScalarIntSafe' is true, that means it's safe to return a
1098/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1099/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1100/// constant so it does not need to be loaded.
1101/// It returns EVT::Other if the type should be determined using generic
1102/// target-independent logic.
1103EVT
1104X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1105                                       unsigned DstAlign, unsigned SrcAlign,
1106                                       bool NonScalarIntSafe,
1107                                       bool MemcpyStrSrc,
1108                                       MachineFunction &MF) const {
1109  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1110  // linux.  This is because the stack realignment code can't handle certain
1111  // cases like PR2962.  This should be removed when PR2962 is fixed.
1112  const Function *F = MF.getFunction();
1113  if (NonScalarIntSafe &&
1114      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1115    if (Size >= 16 &&
1116        (Subtarget->isUnalignedMemAccessFast() ||
1117         ((DstAlign == 0 || DstAlign >= 16) &&
1118          (SrcAlign == 0 || SrcAlign >= 16))) &&
1119        Subtarget->getStackAlignment() >= 16) {
1120      if (Subtarget->hasSSE2())
1121        return MVT::v4i32;
1122      if (Subtarget->hasSSE1())
1123        return MVT::v4f32;
1124    } else if (!MemcpyStrSrc && Size >= 8 &&
1125               !Subtarget->is64Bit() &&
1126               Subtarget->getStackAlignment() >= 8 &&
1127               Subtarget->hasSSE2()) {
1128      // Do not use f64 to lower memcpy if source is string constant. It's
1129      // better to use i32 to avoid the loads.
1130      return MVT::f64;
1131    }
1132  }
1133  if (Subtarget->is64Bit() && Size >= 8)
1134    return MVT::i64;
1135  return MVT::i32;
1136}
1137
1138/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1139/// current function.  The returned value is a member of the
1140/// MachineJumpTableInfo::JTEntryKind enum.
1141unsigned X86TargetLowering::getJumpTableEncoding() const {
1142  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1143  // symbol.
1144  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1145      Subtarget->isPICStyleGOT())
1146    return MachineJumpTableInfo::EK_Custom32;
1147
1148  // Otherwise, use the normal jump table encoding heuristics.
1149  return TargetLowering::getJumpTableEncoding();
1150}
1151
1152/// getPICBaseSymbol - Return the X86-32 PIC base.
1153MCSymbol *
1154X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1155                                    MCContext &Ctx) const {
1156  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1157  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1158                               Twine(MF->getFunctionNumber())+"$pb");
1159}
1160
1161
1162const MCExpr *
1163X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1164                                             const MachineBasicBlock *MBB,
1165                                             unsigned uid,MCContext &Ctx) const{
1166  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1167         Subtarget->isPICStyleGOT());
1168  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1169  // entries.
1170  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1171                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1172}
1173
1174/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1175/// jumptable.
1176SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1177                                                    SelectionDAG &DAG) const {
1178  if (!Subtarget->is64Bit())
1179    // This doesn't have DebugLoc associated with it, but is not really the
1180    // same as a Register.
1181    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1182  return Table;
1183}
1184
1185/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1186/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1187/// MCExpr.
1188const MCExpr *X86TargetLowering::
1189getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1190                             MCContext &Ctx) const {
1191  // X86-64 uses RIP relative addressing based on the jump table label.
1192  if (Subtarget->isPICStyleRIPRel())
1193    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1194
1195  // Otherwise, the reference is relative to the PIC base.
1196  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1197}
1198
1199/// getFunctionAlignment - Return the Log2 alignment of this function.
1200unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1201  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1202}
1203
1204std::pair<const TargetRegisterClass*, uint8_t>
1205X86TargetLowering::findRepresentativeClass(EVT VT) const{
1206  const TargetRegisterClass *RRC = 0;
1207  uint8_t Cost = 1;
1208  switch (VT.getSimpleVT().SimpleTy) {
1209  default:
1210    return TargetLowering::findRepresentativeClass(VT);
1211  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1212    RRC = (Subtarget->is64Bit()
1213           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1214    break;
1215  case MVT::v8i8: case MVT::v4i16:
1216  case MVT::v2i32: case MVT::v1i64:
1217    RRC = X86::VR64RegisterClass;
1218    break;
1219  case MVT::f32: case MVT::f64:
1220  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1221  case MVT::v4f32: case MVT::v2f64:
1222  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1223  case MVT::v4f64:
1224    RRC = X86::VR128RegisterClass;
1225    break;
1226  }
1227  return std::make_pair(RRC, Cost);
1228}
1229
1230unsigned
1231X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
1232                                       MachineFunction &MF) const {
1233  unsigned FPDiff = RegInfo->hasFP(MF) ? 1 : 0;
1234  switch (RC->getID()) {
1235  default:
1236    return 0;
1237  case X86::GR32RegClassID:
1238    return 4 - FPDiff;
1239  case X86::GR64RegClassID:
1240    return 8 - FPDiff;
1241  case X86::VR128RegClassID:
1242    return Subtarget->is64Bit() ? 10 : 4;
1243  case X86::VR64RegClassID:
1244    return 4;
1245  }
1246}
1247
1248bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1249                                               unsigned &Offset) const {
1250  if (!Subtarget->isTargetLinux())
1251    return false;
1252
1253  if (Subtarget->is64Bit()) {
1254    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1255    Offset = 0x28;
1256    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1257      AddressSpace = 256;
1258    else
1259      AddressSpace = 257;
1260  } else {
1261    // %gs:0x14 on i386
1262    Offset = 0x14;
1263    AddressSpace = 256;
1264  }
1265  return true;
1266}
1267
1268
1269//===----------------------------------------------------------------------===//
1270//               Return Value Calling Convention Implementation
1271//===----------------------------------------------------------------------===//
1272
1273#include "X86GenCallingConv.inc"
1274
1275bool
1276X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1277                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1278                        LLVMContext &Context) const {
1279  SmallVector<CCValAssign, 16> RVLocs;
1280  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1281                 RVLocs, Context);
1282  return CCInfo.CheckReturn(Outs, RetCC_X86);
1283}
1284
1285SDValue
1286X86TargetLowering::LowerReturn(SDValue Chain,
1287                               CallingConv::ID CallConv, bool isVarArg,
1288                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1289                               const SmallVectorImpl<SDValue> &OutVals,
1290                               DebugLoc dl, SelectionDAG &DAG) const {
1291  MachineFunction &MF = DAG.getMachineFunction();
1292  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1293
1294  SmallVector<CCValAssign, 16> RVLocs;
1295  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1296                 RVLocs, *DAG.getContext());
1297  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1298
1299  // Add the regs to the liveout set for the function.
1300  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1301  for (unsigned i = 0; i != RVLocs.size(); ++i)
1302    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1303      MRI.addLiveOut(RVLocs[i].getLocReg());
1304
1305  SDValue Flag;
1306
1307  SmallVector<SDValue, 6> RetOps;
1308  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1309  // Operand #1 = Bytes To Pop
1310  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1311                   MVT::i16));
1312
1313  // Copy the result values into the output registers.
1314  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1315    CCValAssign &VA = RVLocs[i];
1316    assert(VA.isRegLoc() && "Can only return in registers!");
1317    SDValue ValToCopy = OutVals[i];
1318    EVT ValVT = ValToCopy.getValueType();
1319
1320    // If this is x86-64, and we disabled SSE, we can't return FP values
1321    if ((ValVT == MVT::f32 || ValVT == MVT::f64) &&
1322        (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1323      report_fatal_error("SSE register return with SSE disabled");
1324    }
1325    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1326    // llvm-gcc has never done it right and no one has noticed, so this
1327    // should be OK for now.
1328    if (ValVT == MVT::f64 &&
1329        (Subtarget->is64Bit() && !Subtarget->hasSSE2())) {
1330      report_fatal_error("SSE2 register return with SSE2 disabled");
1331    }
1332
1333    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1334    // the RET instruction and handled by the FP Stackifier.
1335    if (VA.getLocReg() == X86::ST0 ||
1336        VA.getLocReg() == X86::ST1) {
1337      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1338      // change the value to the FP stack register class.
1339      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1340        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1341      RetOps.push_back(ValToCopy);
1342      // Don't emit a copytoreg.
1343      continue;
1344    }
1345
1346    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1347    // which is returned in RAX / RDX.
1348    if (Subtarget->is64Bit()) {
1349      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1350        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1351        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1352          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1353                                  ValToCopy);
1354      }
1355    }
1356
1357    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1358    Flag = Chain.getValue(1);
1359  }
1360
1361  // The x86-64 ABI for returning structs by value requires that we copy
1362  // the sret argument into %rax for the return. We saved the argument into
1363  // a virtual register in the entry block, so now we copy the value out
1364  // and into %rax.
1365  if (Subtarget->is64Bit() &&
1366      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1367    MachineFunction &MF = DAG.getMachineFunction();
1368    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1369    unsigned Reg = FuncInfo->getSRetReturnReg();
1370    assert(Reg &&
1371           "SRetReturnReg should have been set in LowerFormalArguments().");
1372    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1373
1374    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1375    Flag = Chain.getValue(1);
1376
1377    // RAX now acts like a return value.
1378    MRI.addLiveOut(X86::RAX);
1379  }
1380
1381  RetOps[0] = Chain;  // Update chain.
1382
1383  // Add the flag if we have it.
1384  if (Flag.getNode())
1385    RetOps.push_back(Flag);
1386
1387  return DAG.getNode(X86ISD::RET_FLAG, dl,
1388                     MVT::Other, &RetOps[0], RetOps.size());
1389}
1390
1391/// LowerCallResult - Lower the result values of a call into the
1392/// appropriate copies out of appropriate physical registers.
1393///
1394SDValue
1395X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1396                                   CallingConv::ID CallConv, bool isVarArg,
1397                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1398                                   DebugLoc dl, SelectionDAG &DAG,
1399                                   SmallVectorImpl<SDValue> &InVals) const {
1400
1401  // Assign locations to each value returned by this call.
1402  SmallVector<CCValAssign, 16> RVLocs;
1403  bool Is64Bit = Subtarget->is64Bit();
1404  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1405                 RVLocs, *DAG.getContext());
1406  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1407
1408  // Copy all of the result registers out of their specified physreg.
1409  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1410    CCValAssign &VA = RVLocs[i];
1411    EVT CopyVT = VA.getValVT();
1412
1413    // If this is x86-64, and we disabled SSE, we can't return FP values
1414    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1415        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1416      report_fatal_error("SSE register return with SSE disabled");
1417    }
1418
1419    SDValue Val;
1420
1421    // If this is a call to a function that returns an fp value on the floating
1422    // point stack, we must guarantee the the value is popped from the stack, so
1423    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1424    // if the return value is not used. We use the FpGET_ST0 instructions
1425    // instead.
1426    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1427      // If we prefer to use the value in xmm registers, copy it out as f80 and
1428      // use a truncate to move it from fp stack reg to xmm reg.
1429      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1430      bool isST0 = VA.getLocReg() == X86::ST0;
1431      unsigned Opc = 0;
1432      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1433      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1434      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1435      SDValue Ops[] = { Chain, InFlag };
1436      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Flag,
1437                                         Ops, 2), 1);
1438      Val = Chain.getValue(0);
1439
1440      // Round the f80 to the right size, which also moves it to the appropriate
1441      // xmm register.
1442      if (CopyVT != VA.getValVT())
1443        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1444                          // This truncation won't change the value.
1445                          DAG.getIntPtrConstant(1));
1446    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1447      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1448      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1449        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1450                                   MVT::v2i64, InFlag).getValue(1);
1451        Val = Chain.getValue(0);
1452        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1453                          Val, DAG.getConstant(0, MVT::i64));
1454      } else {
1455        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1456                                   MVT::i64, InFlag).getValue(1);
1457        Val = Chain.getValue(0);
1458      }
1459      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1460    } else {
1461      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1462                                 CopyVT, InFlag).getValue(1);
1463      Val = Chain.getValue(0);
1464    }
1465    InFlag = Chain.getValue(2);
1466    InVals.push_back(Val);
1467  }
1468
1469  return Chain;
1470}
1471
1472
1473//===----------------------------------------------------------------------===//
1474//                C & StdCall & Fast Calling Convention implementation
1475//===----------------------------------------------------------------------===//
1476//  StdCall calling convention seems to be standard for many Windows' API
1477//  routines and around. It differs from C calling convention just a little:
1478//  callee should clean up the stack, not caller. Symbols should be also
1479//  decorated in some fancy way :) It doesn't support any vector arguments.
1480//  For info on fast calling convention see Fast Calling Convention (tail call)
1481//  implementation LowerX86_32FastCCCallTo.
1482
1483/// CallIsStructReturn - Determines whether a call uses struct return
1484/// semantics.
1485static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1486  if (Outs.empty())
1487    return false;
1488
1489  return Outs[0].Flags.isSRet();
1490}
1491
1492/// ArgsAreStructReturn - Determines whether a function uses struct
1493/// return semantics.
1494static bool
1495ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1496  if (Ins.empty())
1497    return false;
1498
1499  return Ins[0].Flags.isSRet();
1500}
1501
1502/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1503/// given CallingConvention value.
1504CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1505  if (Subtarget->is64Bit()) {
1506    if (CC == CallingConv::GHC)
1507      return CC_X86_64_GHC;
1508    else if (Subtarget->isTargetWin64())
1509      return CC_X86_Win64_C;
1510    else
1511      return CC_X86_64_C;
1512  }
1513
1514  if (CC == CallingConv::X86_FastCall)
1515    return CC_X86_32_FastCall;
1516  else if (CC == CallingConv::X86_ThisCall)
1517    return CC_X86_32_ThisCall;
1518  else if (CC == CallingConv::Fast)
1519    return CC_X86_32_FastCC;
1520  else if (CC == CallingConv::GHC)
1521    return CC_X86_32_GHC;
1522  else
1523    return CC_X86_32_C;
1524}
1525
1526/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1527/// by "Src" to address "Dst" with size and alignment information specified by
1528/// the specific parameter attribute. The copy will be passed as a byval
1529/// function parameter.
1530static SDValue
1531CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1532                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1533                          DebugLoc dl) {
1534  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1535  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1536                       /*isVolatile*/false, /*AlwaysInline=*/true,
1537                       NULL, 0, NULL, 0);
1538}
1539
1540/// IsTailCallConvention - Return true if the calling convention is one that
1541/// supports tail call optimization.
1542static bool IsTailCallConvention(CallingConv::ID CC) {
1543  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1544}
1545
1546/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1547/// a tailcall target by changing its ABI.
1548static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1549  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1550}
1551
1552SDValue
1553X86TargetLowering::LowerMemArgument(SDValue Chain,
1554                                    CallingConv::ID CallConv,
1555                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1556                                    DebugLoc dl, SelectionDAG &DAG,
1557                                    const CCValAssign &VA,
1558                                    MachineFrameInfo *MFI,
1559                                    unsigned i) const {
1560  // Create the nodes corresponding to a load from this parameter slot.
1561  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1562  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1563  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1564  EVT ValVT;
1565
1566  // If value is passed by pointer we have address passed instead of the value
1567  // itself.
1568  if (VA.getLocInfo() == CCValAssign::Indirect)
1569    ValVT = VA.getLocVT();
1570  else
1571    ValVT = VA.getValVT();
1572
1573  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1574  // changed with more analysis.
1575  // In case of tail call optimization mark all arguments mutable. Since they
1576  // could be overwritten by lowering of arguments in case of a tail call.
1577  if (Flags.isByVal()) {
1578    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1579                                    VA.getLocMemOffset(), isImmutable);
1580    return DAG.getFrameIndex(FI, getPointerTy());
1581  } else {
1582    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1583                                    VA.getLocMemOffset(), isImmutable);
1584    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1585    return DAG.getLoad(ValVT, dl, Chain, FIN,
1586                       PseudoSourceValue::getFixedStack(FI), 0,
1587                       false, false, 0);
1588  }
1589}
1590
1591SDValue
1592X86TargetLowering::LowerFormalArguments(SDValue Chain,
1593                                        CallingConv::ID CallConv,
1594                                        bool isVarArg,
1595                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1596                                        DebugLoc dl,
1597                                        SelectionDAG &DAG,
1598                                        SmallVectorImpl<SDValue> &InVals)
1599                                          const {
1600  MachineFunction &MF = DAG.getMachineFunction();
1601  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1602
1603  const Function* Fn = MF.getFunction();
1604  if (Fn->hasExternalLinkage() &&
1605      Subtarget->isTargetCygMing() &&
1606      Fn->getName() == "main")
1607    FuncInfo->setForceFramePointer(true);
1608
1609  MachineFrameInfo *MFI = MF.getFrameInfo();
1610  bool Is64Bit = Subtarget->is64Bit();
1611  bool IsWin64 = Subtarget->isTargetWin64();
1612
1613  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1614         "Var args not supported with calling convention fastcc or ghc");
1615
1616  // Assign locations to all of the incoming arguments.
1617  SmallVector<CCValAssign, 16> ArgLocs;
1618  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1619                 ArgLocs, *DAG.getContext());
1620  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1621
1622  unsigned LastVal = ~0U;
1623  SDValue ArgValue;
1624  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1625    CCValAssign &VA = ArgLocs[i];
1626    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1627    // places.
1628    assert(VA.getValNo() != LastVal &&
1629           "Don't support value assigned to multiple locs yet");
1630    LastVal = VA.getValNo();
1631
1632    if (VA.isRegLoc()) {
1633      EVT RegVT = VA.getLocVT();
1634      TargetRegisterClass *RC = NULL;
1635      if (RegVT == MVT::i32)
1636        RC = X86::GR32RegisterClass;
1637      else if (Is64Bit && RegVT == MVT::i64)
1638        RC = X86::GR64RegisterClass;
1639      else if (RegVT == MVT::f32)
1640        RC = X86::FR32RegisterClass;
1641      else if (RegVT == MVT::f64)
1642        RC = X86::FR64RegisterClass;
1643      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1644        RC = X86::VR256RegisterClass;
1645      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1646        RC = X86::VR128RegisterClass;
1647      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1648        RC = X86::VR64RegisterClass;
1649      else
1650        llvm_unreachable("Unknown argument type!");
1651
1652      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1653      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1654
1655      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1656      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1657      // right size.
1658      if (VA.getLocInfo() == CCValAssign::SExt)
1659        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1660                               DAG.getValueType(VA.getValVT()));
1661      else if (VA.getLocInfo() == CCValAssign::ZExt)
1662        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1663                               DAG.getValueType(VA.getValVT()));
1664      else if (VA.getLocInfo() == CCValAssign::BCvt)
1665        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1666
1667      if (VA.isExtInLoc()) {
1668        // Handle MMX values passed in XMM regs.
1669        if (RegVT.isVector()) {
1670          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1671                                 ArgValue, DAG.getConstant(0, MVT::i64));
1672          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1673        } else
1674          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1675      }
1676    } else {
1677      assert(VA.isMemLoc());
1678      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1679    }
1680
1681    // If value is passed via pointer - do a load.
1682    if (VA.getLocInfo() == CCValAssign::Indirect)
1683      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1684                             false, false, 0);
1685
1686    InVals.push_back(ArgValue);
1687  }
1688
1689  // The x86-64 ABI for returning structs by value requires that we copy
1690  // the sret argument into %rax for the return. Save the argument into
1691  // a virtual register so that we can access it from the return points.
1692  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1693    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1694    unsigned Reg = FuncInfo->getSRetReturnReg();
1695    if (!Reg) {
1696      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1697      FuncInfo->setSRetReturnReg(Reg);
1698    }
1699    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1700    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1701  }
1702
1703  unsigned StackSize = CCInfo.getNextStackOffset();
1704  // Align stack specially for tail calls.
1705  if (FuncIsMadeTailCallSafe(CallConv))
1706    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1707
1708  // If the function takes variable number of arguments, make a frame index for
1709  // the start of the first vararg value... for expansion of llvm.va_start.
1710  if (isVarArg) {
1711    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1712                    CallConv != CallingConv::X86_ThisCall)) {
1713      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1714    }
1715    if (Is64Bit) {
1716      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1717
1718      // FIXME: We should really autogenerate these arrays
1719      static const unsigned GPR64ArgRegsWin64[] = {
1720        X86::RCX, X86::RDX, X86::R8,  X86::R9
1721      };
1722      static const unsigned XMMArgRegsWin64[] = {
1723        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1724      };
1725      static const unsigned GPR64ArgRegs64Bit[] = {
1726        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1727      };
1728      static const unsigned XMMArgRegs64Bit[] = {
1729        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1730        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1731      };
1732      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1733
1734      if (IsWin64) {
1735        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1736        GPR64ArgRegs = GPR64ArgRegsWin64;
1737        XMMArgRegs = XMMArgRegsWin64;
1738      } else {
1739        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1740        GPR64ArgRegs = GPR64ArgRegs64Bit;
1741        XMMArgRegs = XMMArgRegs64Bit;
1742      }
1743      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1744                                                       TotalNumIntRegs);
1745      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1746                                                       TotalNumXMMRegs);
1747
1748      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1749      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1750             "SSE register cannot be used when SSE is disabled!");
1751      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1752             "SSE register cannot be used when SSE is disabled!");
1753      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1754        // Kernel mode asks for SSE to be disabled, so don't push them
1755        // on the stack.
1756        TotalNumXMMRegs = 0;
1757
1758      // For X86-64, if there are vararg parameters that are passed via
1759      // registers, then we must store them to their spots on the stack so they
1760      // may be loaded by deferencing the result of va_next.
1761      FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1762      FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1763      FuncInfo->setRegSaveFrameIndex(
1764        MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1765                               false));
1766
1767      // Store the integer parameter registers.
1768      SmallVector<SDValue, 8> MemOps;
1769      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1770                                        getPointerTy());
1771      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1772      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1773        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1774                                  DAG.getIntPtrConstant(Offset));
1775        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1776                                     X86::GR64RegisterClass);
1777        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1778        SDValue Store =
1779          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1780                       PseudoSourceValue::getFixedStack(
1781                         FuncInfo->getRegSaveFrameIndex()),
1782                       Offset, false, false, 0);
1783        MemOps.push_back(Store);
1784        Offset += 8;
1785      }
1786
1787      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1788        // Now store the XMM (fp + vector) parameter registers.
1789        SmallVector<SDValue, 11> SaveXMMOps;
1790        SaveXMMOps.push_back(Chain);
1791
1792        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1793        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1794        SaveXMMOps.push_back(ALVal);
1795
1796        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1797                               FuncInfo->getRegSaveFrameIndex()));
1798        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1799                               FuncInfo->getVarArgsFPOffset()));
1800
1801        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1802          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1803                                       X86::VR128RegisterClass);
1804          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1805          SaveXMMOps.push_back(Val);
1806        }
1807        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1808                                     MVT::Other,
1809                                     &SaveXMMOps[0], SaveXMMOps.size()));
1810      }
1811
1812      if (!MemOps.empty())
1813        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1814                            &MemOps[0], MemOps.size());
1815    }
1816  }
1817
1818  // Some CCs need callee pop.
1819  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1820    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1821  } else {
1822    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1823    // If this is an sret function, the return should pop the hidden pointer.
1824    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1825      FuncInfo->setBytesToPopOnReturn(4);
1826  }
1827
1828  if (!Is64Bit) {
1829    // RegSaveFrameIndex is X86-64 only.
1830    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1831    if (CallConv == CallingConv::X86_FastCall ||
1832        CallConv == CallingConv::X86_ThisCall)
1833      // fastcc functions can't have varargs.
1834      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1835  }
1836
1837  return Chain;
1838}
1839
1840SDValue
1841X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1842                                    SDValue StackPtr, SDValue Arg,
1843                                    DebugLoc dl, SelectionDAG &DAG,
1844                                    const CCValAssign &VA,
1845                                    ISD::ArgFlagsTy Flags) const {
1846  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1847  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1848  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1849  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1850  if (Flags.isByVal()) {
1851    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1852  }
1853  return DAG.getStore(Chain, dl, Arg, PtrOff,
1854                      PseudoSourceValue::getStack(), LocMemOffset,
1855                      false, false, 0);
1856}
1857
1858/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1859/// optimization is performed and it is required.
1860SDValue
1861X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1862                                           SDValue &OutRetAddr, SDValue Chain,
1863                                           bool IsTailCall, bool Is64Bit,
1864                                           int FPDiff, DebugLoc dl) const {
1865  // Adjust the Return address stack slot.
1866  EVT VT = getPointerTy();
1867  OutRetAddr = getReturnAddressFrameIndex(DAG);
1868
1869  // Load the "old" Return address.
1870  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1871  return SDValue(OutRetAddr.getNode(), 1);
1872}
1873
1874/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1875/// optimization is performed and it is required (FPDiff!=0).
1876static SDValue
1877EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1878                         SDValue Chain, SDValue RetAddrFrIdx,
1879                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1880  // Store the return address to the appropriate stack slot.
1881  if (!FPDiff) return Chain;
1882  // Calculate the new stack slot for the return address.
1883  int SlotSize = Is64Bit ? 8 : 4;
1884  int NewReturnAddrFI =
1885    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1886  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1887  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1888  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1889                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1890                       false, false, 0);
1891  return Chain;
1892}
1893
1894SDValue
1895X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1896                             CallingConv::ID CallConv, bool isVarArg,
1897                             bool &isTailCall,
1898                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1899                             const SmallVectorImpl<SDValue> &OutVals,
1900                             const SmallVectorImpl<ISD::InputArg> &Ins,
1901                             DebugLoc dl, SelectionDAG &DAG,
1902                             SmallVectorImpl<SDValue> &InVals) const {
1903  MachineFunction &MF = DAG.getMachineFunction();
1904  bool Is64Bit        = Subtarget->is64Bit();
1905  bool IsStructRet    = CallIsStructReturn(Outs);
1906  bool IsSibcall      = false;
1907
1908  if (isTailCall) {
1909    // Check if it's really possible to do a tail call.
1910    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1911                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1912                                                   Outs, OutVals, Ins, DAG);
1913
1914    // Sibcalls are automatically detected tailcalls which do not require
1915    // ABI changes.
1916    if (!GuaranteedTailCallOpt && isTailCall)
1917      IsSibcall = true;
1918
1919    if (isTailCall)
1920      ++NumTailCalls;
1921  }
1922
1923  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1924         "Var args not supported with calling convention fastcc or ghc");
1925
1926  // Analyze operands of the call, assigning locations to each operand.
1927  SmallVector<CCValAssign, 16> ArgLocs;
1928  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1929                 ArgLocs, *DAG.getContext());
1930  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1931
1932  // Get a count of how many bytes are to be pushed on the stack.
1933  unsigned NumBytes = CCInfo.getNextStackOffset();
1934  if (IsSibcall)
1935    // This is a sibcall. The memory operands are available in caller's
1936    // own caller's stack.
1937    NumBytes = 0;
1938  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1939    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1940
1941  int FPDiff = 0;
1942  if (isTailCall && !IsSibcall) {
1943    // Lower arguments at fp - stackoffset + fpdiff.
1944    unsigned NumBytesCallerPushed =
1945      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1946    FPDiff = NumBytesCallerPushed - NumBytes;
1947
1948    // Set the delta of movement of the returnaddr stackslot.
1949    // But only set if delta is greater than previous delta.
1950    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1951      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1952  }
1953
1954  if (!IsSibcall)
1955    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1956
1957  SDValue RetAddrFrIdx;
1958  // Load return adress for tail calls.
1959  if (isTailCall && FPDiff)
1960    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1961                                    Is64Bit, FPDiff, dl);
1962
1963  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1964  SmallVector<SDValue, 8> MemOpChains;
1965  SDValue StackPtr;
1966
1967  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1968  // of tail call optimization arguments are handle later.
1969  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1970    CCValAssign &VA = ArgLocs[i];
1971    EVT RegVT = VA.getLocVT();
1972    SDValue Arg = OutVals[i];
1973    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1974    bool isByVal = Flags.isByVal();
1975
1976    // Promote the value if needed.
1977    switch (VA.getLocInfo()) {
1978    default: llvm_unreachable("Unknown loc info!");
1979    case CCValAssign::Full: break;
1980    case CCValAssign::SExt:
1981      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1982      break;
1983    case CCValAssign::ZExt:
1984      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1985      break;
1986    case CCValAssign::AExt:
1987      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1988        // Special case: passing MMX values in XMM registers.
1989        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1990        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1991        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1992      } else
1993        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1994      break;
1995    case CCValAssign::BCvt:
1996      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1997      break;
1998    case CCValAssign::Indirect: {
1999      // Store the argument.
2000      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2001      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2002      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2003                           PseudoSourceValue::getFixedStack(FI), 0,
2004                           false, false, 0);
2005      Arg = SpillSlot;
2006      break;
2007    }
2008    }
2009
2010    if (VA.isRegLoc()) {
2011      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2012    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2013      assert(VA.isMemLoc());
2014      if (StackPtr.getNode() == 0)
2015        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2016      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2017                                             dl, DAG, VA, Flags));
2018    }
2019  }
2020
2021  if (!MemOpChains.empty())
2022    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2023                        &MemOpChains[0], MemOpChains.size());
2024
2025  // Build a sequence of copy-to-reg nodes chained together with token chain
2026  // and flag operands which copy the outgoing args into registers.
2027  SDValue InFlag;
2028  // Tail call byval lowering might overwrite argument registers so in case of
2029  // tail call optimization the copies to registers are lowered later.
2030  if (!isTailCall)
2031    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2032      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2033                               RegsToPass[i].second, InFlag);
2034      InFlag = Chain.getValue(1);
2035    }
2036
2037  if (Subtarget->isPICStyleGOT()) {
2038    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2039    // GOT pointer.
2040    if (!isTailCall) {
2041      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2042                               DAG.getNode(X86ISD::GlobalBaseReg,
2043                                           DebugLoc(), getPointerTy()),
2044                               InFlag);
2045      InFlag = Chain.getValue(1);
2046    } else {
2047      // If we are tail calling and generating PIC/GOT style code load the
2048      // address of the callee into ECX. The value in ecx is used as target of
2049      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2050      // for tail calls on PIC/GOT architectures. Normally we would just put the
2051      // address of GOT into ebx and then call target@PLT. But for tail calls
2052      // ebx would be restored (since ebx is callee saved) before jumping to the
2053      // target@PLT.
2054
2055      // Note: The actual moving to ECX is done further down.
2056      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2057      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2058          !G->getGlobal()->hasProtectedVisibility())
2059        Callee = LowerGlobalAddress(Callee, DAG);
2060      else if (isa<ExternalSymbolSDNode>(Callee))
2061        Callee = LowerExternalSymbol(Callee, DAG);
2062    }
2063  }
2064
2065  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) {
2066    // From AMD64 ABI document:
2067    // For calls that may call functions that use varargs or stdargs
2068    // (prototype-less calls or calls to functions containing ellipsis (...) in
2069    // the declaration) %al is used as hidden argument to specify the number
2070    // of SSE registers used. The contents of %al do not need to match exactly
2071    // the number of registers, but must be an ubound on the number of SSE
2072    // registers used and is in the range 0 - 8 inclusive.
2073
2074    // Count the number of XMM registers allocated.
2075    static const unsigned XMMArgRegs[] = {
2076      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2077      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2078    };
2079    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2080    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2081           && "SSE registers cannot be used when SSE is disabled");
2082
2083    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2084                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2085    InFlag = Chain.getValue(1);
2086  }
2087
2088
2089  // For tail calls lower the arguments to the 'real' stack slot.
2090  if (isTailCall) {
2091    // Force all the incoming stack arguments to be loaded from the stack
2092    // before any new outgoing arguments are stored to the stack, because the
2093    // outgoing stack slots may alias the incoming argument stack slots, and
2094    // the alias isn't otherwise explicit. This is slightly more conservative
2095    // than necessary, because it means that each store effectively depends
2096    // on every argument instead of just those arguments it would clobber.
2097    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2098
2099    SmallVector<SDValue, 8> MemOpChains2;
2100    SDValue FIN;
2101    int FI = 0;
2102    // Do not flag preceeding copytoreg stuff together with the following stuff.
2103    InFlag = SDValue();
2104    if (GuaranteedTailCallOpt) {
2105      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2106        CCValAssign &VA = ArgLocs[i];
2107        if (VA.isRegLoc())
2108          continue;
2109        assert(VA.isMemLoc());
2110        SDValue Arg = OutVals[i];
2111        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2112        // Create frame index.
2113        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2114        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2115        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2116        FIN = DAG.getFrameIndex(FI, getPointerTy());
2117
2118        if (Flags.isByVal()) {
2119          // Copy relative to framepointer.
2120          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2121          if (StackPtr.getNode() == 0)
2122            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2123                                          getPointerTy());
2124          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2125
2126          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2127                                                           ArgChain,
2128                                                           Flags, DAG, dl));
2129        } else {
2130          // Store relative to framepointer.
2131          MemOpChains2.push_back(
2132            DAG.getStore(ArgChain, dl, Arg, FIN,
2133                         PseudoSourceValue::getFixedStack(FI), 0,
2134                         false, false, 0));
2135        }
2136      }
2137    }
2138
2139    if (!MemOpChains2.empty())
2140      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2141                          &MemOpChains2[0], MemOpChains2.size());
2142
2143    // Copy arguments to their registers.
2144    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2145      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2146                               RegsToPass[i].second, InFlag);
2147      InFlag = Chain.getValue(1);
2148    }
2149    InFlag =SDValue();
2150
2151    // Store the return address to the appropriate stack slot.
2152    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2153                                     FPDiff, dl);
2154  }
2155
2156  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2157    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2158    // In the 64-bit large code model, we have to make all calls
2159    // through a register, since the call instruction's 32-bit
2160    // pc-relative offset may not be large enough to hold the whole
2161    // address.
2162  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2163    // If the callee is a GlobalAddress node (quite common, every direct call
2164    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2165    // it.
2166
2167    // We should use extra load for direct calls to dllimported functions in
2168    // non-JIT mode.
2169    const GlobalValue *GV = G->getGlobal();
2170    if (!GV->hasDLLImportLinkage()) {
2171      unsigned char OpFlags = 0;
2172
2173      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2174      // external symbols most go through the PLT in PIC mode.  If the symbol
2175      // has hidden or protected visibility, or if it is static or local, then
2176      // we don't need to use the PLT - we can directly call it.
2177      if (Subtarget->isTargetELF() &&
2178          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2179          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2180        OpFlags = X86II::MO_PLT;
2181      } else if (Subtarget->isPICStyleStubAny() &&
2182               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2183               Subtarget->getDarwinVers() < 9) {
2184        // PC-relative references to external symbols should go through $stub,
2185        // unless we're building with the leopard linker or later, which
2186        // automatically synthesizes these stubs.
2187        OpFlags = X86II::MO_DARWIN_STUB;
2188      }
2189
2190      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2191                                          G->getOffset(), OpFlags);
2192    }
2193  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2194    unsigned char OpFlags = 0;
2195
2196    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2197    // symbols should go through the PLT.
2198    if (Subtarget->isTargetELF() &&
2199        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2200      OpFlags = X86II::MO_PLT;
2201    } else if (Subtarget->isPICStyleStubAny() &&
2202             Subtarget->getDarwinVers() < 9) {
2203      // PC-relative references to external symbols should go through $stub,
2204      // unless we're building with the leopard linker or later, which
2205      // automatically synthesizes these stubs.
2206      OpFlags = X86II::MO_DARWIN_STUB;
2207    }
2208
2209    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2210                                         OpFlags);
2211  }
2212
2213  // Returns a chain & a flag for retval copy to use.
2214  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2215  SmallVector<SDValue, 8> Ops;
2216
2217  if (!IsSibcall && isTailCall) {
2218    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2219                           DAG.getIntPtrConstant(0, true), InFlag);
2220    InFlag = Chain.getValue(1);
2221  }
2222
2223  Ops.push_back(Chain);
2224  Ops.push_back(Callee);
2225
2226  if (isTailCall)
2227    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2228
2229  // Add argument registers to the end of the list so that they are known live
2230  // into the call.
2231  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2232    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2233                                  RegsToPass[i].second.getValueType()));
2234
2235  // Add an implicit use GOT pointer in EBX.
2236  if (!isTailCall && Subtarget->isPICStyleGOT())
2237    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2238
2239  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2240  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64())
2241    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2242
2243  if (InFlag.getNode())
2244    Ops.push_back(InFlag);
2245
2246  if (isTailCall) {
2247    // We used to do:
2248    //// If this is the first return lowered for this function, add the regs
2249    //// to the liveout set for the function.
2250    // This isn't right, although it's probably harmless on x86; liveouts
2251    // should be computed from returns not tail calls.  Consider a void
2252    // function making a tail call to a function returning int.
2253    return DAG.getNode(X86ISD::TC_RETURN, dl,
2254                       NodeTys, &Ops[0], Ops.size());
2255  }
2256
2257  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2258  InFlag = Chain.getValue(1);
2259
2260  // Create the CALLSEQ_END node.
2261  unsigned NumBytesForCalleeToPush;
2262  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2263    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2264  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2265    // If this is a call to a struct-return function, the callee
2266    // pops the hidden struct pointer, so we have to push it back.
2267    // This is common for Darwin/X86, Linux & Mingw32 targets.
2268    NumBytesForCalleeToPush = 4;
2269  else
2270    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2271
2272  // Returns a flag for retval copy to use.
2273  if (!IsSibcall) {
2274    Chain = DAG.getCALLSEQ_END(Chain,
2275                               DAG.getIntPtrConstant(NumBytes, true),
2276                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2277                                                     true),
2278                               InFlag);
2279    InFlag = Chain.getValue(1);
2280  }
2281
2282  // Handle result values, copying them out of physregs into vregs that we
2283  // return.
2284  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2285                         Ins, dl, DAG, InVals);
2286}
2287
2288
2289//===----------------------------------------------------------------------===//
2290//                Fast Calling Convention (tail call) implementation
2291//===----------------------------------------------------------------------===//
2292
2293//  Like std call, callee cleans arguments, convention except that ECX is
2294//  reserved for storing the tail called function address. Only 2 registers are
2295//  free for argument passing (inreg). Tail call optimization is performed
2296//  provided:
2297//                * tailcallopt is enabled
2298//                * caller/callee are fastcc
2299//  On X86_64 architecture with GOT-style position independent code only local
2300//  (within module) calls are supported at the moment.
2301//  To keep the stack aligned according to platform abi the function
2302//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2303//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2304//  If a tail called function callee has more arguments than the caller the
2305//  caller needs to make sure that there is room to move the RETADDR to. This is
2306//  achieved by reserving an area the size of the argument delta right after the
2307//  original REtADDR, but before the saved framepointer or the spilled registers
2308//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2309//  stack layout:
2310//    arg1
2311//    arg2
2312//    RETADDR
2313//    [ new RETADDR
2314//      move area ]
2315//    (possible EBP)
2316//    ESI
2317//    EDI
2318//    local1 ..
2319
2320/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2321/// for a 16 byte align requirement.
2322unsigned
2323X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2324                                               SelectionDAG& DAG) const {
2325  MachineFunction &MF = DAG.getMachineFunction();
2326  const TargetMachine &TM = MF.getTarget();
2327  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2328  unsigned StackAlignment = TFI.getStackAlignment();
2329  uint64_t AlignMask = StackAlignment - 1;
2330  int64_t Offset = StackSize;
2331  uint64_t SlotSize = TD->getPointerSize();
2332  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2333    // Number smaller than 12 so just add the difference.
2334    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2335  } else {
2336    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2337    Offset = ((~AlignMask) & Offset) + StackAlignment +
2338      (StackAlignment-SlotSize);
2339  }
2340  return Offset;
2341}
2342
2343/// MatchingStackOffset - Return true if the given stack call argument is
2344/// already available in the same position (relatively) of the caller's
2345/// incoming argument stack.
2346static
2347bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2348                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2349                         const X86InstrInfo *TII) {
2350  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2351  int FI = INT_MAX;
2352  if (Arg.getOpcode() == ISD::CopyFromReg) {
2353    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2354    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2355      return false;
2356    MachineInstr *Def = MRI->getVRegDef(VR);
2357    if (!Def)
2358      return false;
2359    if (!Flags.isByVal()) {
2360      if (!TII->isLoadFromStackSlot(Def, FI))
2361        return false;
2362    } else {
2363      unsigned Opcode = Def->getOpcode();
2364      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2365          Def->getOperand(1).isFI()) {
2366        FI = Def->getOperand(1).getIndex();
2367        Bytes = Flags.getByValSize();
2368      } else
2369        return false;
2370    }
2371  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2372    if (Flags.isByVal())
2373      // ByVal argument is passed in as a pointer but it's now being
2374      // dereferenced. e.g.
2375      // define @foo(%struct.X* %A) {
2376      //   tail call @bar(%struct.X* byval %A)
2377      // }
2378      return false;
2379    SDValue Ptr = Ld->getBasePtr();
2380    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2381    if (!FINode)
2382      return false;
2383    FI = FINode->getIndex();
2384  } else
2385    return false;
2386
2387  assert(FI != INT_MAX);
2388  if (!MFI->isFixedObjectIndex(FI))
2389    return false;
2390  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2391}
2392
2393/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2394/// for tail call optimization. Targets which want to do tail call
2395/// optimization should implement this function.
2396bool
2397X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2398                                                     CallingConv::ID CalleeCC,
2399                                                     bool isVarArg,
2400                                                     bool isCalleeStructRet,
2401                                                     bool isCallerStructRet,
2402                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2403                                    const SmallVectorImpl<SDValue> &OutVals,
2404                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2405                                                     SelectionDAG& DAG) const {
2406  if (!IsTailCallConvention(CalleeCC) &&
2407      CalleeCC != CallingConv::C)
2408    return false;
2409
2410  // If -tailcallopt is specified, make fastcc functions tail-callable.
2411  const MachineFunction &MF = DAG.getMachineFunction();
2412  const Function *CallerF = DAG.getMachineFunction().getFunction();
2413  CallingConv::ID CallerCC = CallerF->getCallingConv();
2414  bool CCMatch = CallerCC == CalleeCC;
2415
2416  if (GuaranteedTailCallOpt) {
2417    if (IsTailCallConvention(CalleeCC) && CCMatch)
2418      return true;
2419    return false;
2420  }
2421
2422  // Look for obvious safe cases to perform tail call optimization that do not
2423  // require ABI changes. This is what gcc calls sibcall.
2424
2425  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2426  // emit a special epilogue.
2427  if (RegInfo->needsStackRealignment(MF))
2428    return false;
2429
2430  // Do not sibcall optimize vararg calls unless the call site is not passing
2431  // any arguments.
2432  if (isVarArg && !Outs.empty())
2433    return false;
2434
2435  // Also avoid sibcall optimization if either caller or callee uses struct
2436  // return semantics.
2437  if (isCalleeStructRet || isCallerStructRet)
2438    return false;
2439
2440  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2441  // Therefore if it's not used by the call it is not safe to optimize this into
2442  // a sibcall.
2443  bool Unused = false;
2444  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2445    if (!Ins[i].Used) {
2446      Unused = true;
2447      break;
2448    }
2449  }
2450  if (Unused) {
2451    SmallVector<CCValAssign, 16> RVLocs;
2452    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2453                   RVLocs, *DAG.getContext());
2454    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2455    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2456      CCValAssign &VA = RVLocs[i];
2457      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2458        return false;
2459    }
2460  }
2461
2462  // If the calling conventions do not match, then we'd better make sure the
2463  // results are returned in the same way as what the caller expects.
2464  if (!CCMatch) {
2465    SmallVector<CCValAssign, 16> RVLocs1;
2466    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2467                    RVLocs1, *DAG.getContext());
2468    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2469
2470    SmallVector<CCValAssign, 16> RVLocs2;
2471    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2472                    RVLocs2, *DAG.getContext());
2473    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2474
2475    if (RVLocs1.size() != RVLocs2.size())
2476      return false;
2477    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2478      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2479        return false;
2480      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2481        return false;
2482      if (RVLocs1[i].isRegLoc()) {
2483        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2484          return false;
2485      } else {
2486        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2487          return false;
2488      }
2489    }
2490  }
2491
2492  // If the callee takes no arguments then go on to check the results of the
2493  // call.
2494  if (!Outs.empty()) {
2495    // Check if stack adjustment is needed. For now, do not do this if any
2496    // argument is passed on the stack.
2497    SmallVector<CCValAssign, 16> ArgLocs;
2498    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2499                   ArgLocs, *DAG.getContext());
2500    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2501    if (CCInfo.getNextStackOffset()) {
2502      MachineFunction &MF = DAG.getMachineFunction();
2503      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2504        return false;
2505      if (Subtarget->isTargetWin64())
2506        // Win64 ABI has additional complications.
2507        return false;
2508
2509      // Check if the arguments are already laid out in the right way as
2510      // the caller's fixed stack objects.
2511      MachineFrameInfo *MFI = MF.getFrameInfo();
2512      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2513      const X86InstrInfo *TII =
2514        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2515      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2516        CCValAssign &VA = ArgLocs[i];
2517        SDValue Arg = OutVals[i];
2518        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2519        if (VA.getLocInfo() == CCValAssign::Indirect)
2520          return false;
2521        if (!VA.isRegLoc()) {
2522          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2523                                   MFI, MRI, TII))
2524            return false;
2525        }
2526      }
2527    }
2528
2529    // If the tailcall address may be in a register, then make sure it's
2530    // possible to register allocate for it. In 32-bit, the call address can
2531    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2532    // callee-saved registers are restored. These happen to be the same
2533    // registers used to pass 'inreg' arguments so watch out for those.
2534    if (!Subtarget->is64Bit() &&
2535        !isa<GlobalAddressSDNode>(Callee) &&
2536        !isa<ExternalSymbolSDNode>(Callee)) {
2537      unsigned NumInRegs = 0;
2538      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2539        CCValAssign &VA = ArgLocs[i];
2540        if (!VA.isRegLoc())
2541          continue;
2542        unsigned Reg = VA.getLocReg();
2543        switch (Reg) {
2544        default: break;
2545        case X86::EAX: case X86::EDX: case X86::ECX:
2546          if (++NumInRegs == 3)
2547            return false;
2548          break;
2549        }
2550      }
2551    }
2552  }
2553
2554  return true;
2555}
2556
2557FastISel *
2558X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2559  return X86::createFastISel(funcInfo);
2560}
2561
2562
2563//===----------------------------------------------------------------------===//
2564//                           Other Lowering Hooks
2565//===----------------------------------------------------------------------===//
2566
2567
2568SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2569  MachineFunction &MF = DAG.getMachineFunction();
2570  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2571  int ReturnAddrIndex = FuncInfo->getRAIndex();
2572
2573  if (ReturnAddrIndex == 0) {
2574    // Set up a frame object for the return address.
2575    uint64_t SlotSize = TD->getPointerSize();
2576    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2577                                                           false);
2578    FuncInfo->setRAIndex(ReturnAddrIndex);
2579  }
2580
2581  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2582}
2583
2584
2585bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2586                                       bool hasSymbolicDisplacement) {
2587  // Offset should fit into 32 bit immediate field.
2588  if (!isInt<32>(Offset))
2589    return false;
2590
2591  // If we don't have a symbolic displacement - we don't have any extra
2592  // restrictions.
2593  if (!hasSymbolicDisplacement)
2594    return true;
2595
2596  // FIXME: Some tweaks might be needed for medium code model.
2597  if (M != CodeModel::Small && M != CodeModel::Kernel)
2598    return false;
2599
2600  // For small code model we assume that latest object is 16MB before end of 31
2601  // bits boundary. We may also accept pretty large negative constants knowing
2602  // that all objects are in the positive half of address space.
2603  if (M == CodeModel::Small && Offset < 16*1024*1024)
2604    return true;
2605
2606  // For kernel code model we know that all object resist in the negative half
2607  // of 32bits address space. We may not accept negative offsets, since they may
2608  // be just off and we may accept pretty large positive ones.
2609  if (M == CodeModel::Kernel && Offset > 0)
2610    return true;
2611
2612  return false;
2613}
2614
2615/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2616/// specific condition code, returning the condition code and the LHS/RHS of the
2617/// comparison to make.
2618static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2619                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2620  if (!isFP) {
2621    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2622      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2623        // X > -1   -> X == 0, jump !sign.
2624        RHS = DAG.getConstant(0, RHS.getValueType());
2625        return X86::COND_NS;
2626      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2627        // X < 0   -> X == 0, jump on sign.
2628        return X86::COND_S;
2629      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2630        // X < 1   -> X <= 0
2631        RHS = DAG.getConstant(0, RHS.getValueType());
2632        return X86::COND_LE;
2633      }
2634    }
2635
2636    switch (SetCCOpcode) {
2637    default: llvm_unreachable("Invalid integer condition!");
2638    case ISD::SETEQ:  return X86::COND_E;
2639    case ISD::SETGT:  return X86::COND_G;
2640    case ISD::SETGE:  return X86::COND_GE;
2641    case ISD::SETLT:  return X86::COND_L;
2642    case ISD::SETLE:  return X86::COND_LE;
2643    case ISD::SETNE:  return X86::COND_NE;
2644    case ISD::SETULT: return X86::COND_B;
2645    case ISD::SETUGT: return X86::COND_A;
2646    case ISD::SETULE: return X86::COND_BE;
2647    case ISD::SETUGE: return X86::COND_AE;
2648    }
2649  }
2650
2651  // First determine if it is required or is profitable to flip the operands.
2652
2653  // If LHS is a foldable load, but RHS is not, flip the condition.
2654  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2655      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2656    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2657    std::swap(LHS, RHS);
2658  }
2659
2660  switch (SetCCOpcode) {
2661  default: break;
2662  case ISD::SETOLT:
2663  case ISD::SETOLE:
2664  case ISD::SETUGT:
2665  case ISD::SETUGE:
2666    std::swap(LHS, RHS);
2667    break;
2668  }
2669
2670  // On a floating point condition, the flags are set as follows:
2671  // ZF  PF  CF   op
2672  //  0 | 0 | 0 | X > Y
2673  //  0 | 0 | 1 | X < Y
2674  //  1 | 0 | 0 | X == Y
2675  //  1 | 1 | 1 | unordered
2676  switch (SetCCOpcode) {
2677  default: llvm_unreachable("Condcode should be pre-legalized away");
2678  case ISD::SETUEQ:
2679  case ISD::SETEQ:   return X86::COND_E;
2680  case ISD::SETOLT:              // flipped
2681  case ISD::SETOGT:
2682  case ISD::SETGT:   return X86::COND_A;
2683  case ISD::SETOLE:              // flipped
2684  case ISD::SETOGE:
2685  case ISD::SETGE:   return X86::COND_AE;
2686  case ISD::SETUGT:              // flipped
2687  case ISD::SETULT:
2688  case ISD::SETLT:   return X86::COND_B;
2689  case ISD::SETUGE:              // flipped
2690  case ISD::SETULE:
2691  case ISD::SETLE:   return X86::COND_BE;
2692  case ISD::SETONE:
2693  case ISD::SETNE:   return X86::COND_NE;
2694  case ISD::SETUO:   return X86::COND_P;
2695  case ISD::SETO:    return X86::COND_NP;
2696  case ISD::SETOEQ:
2697  case ISD::SETUNE:  return X86::COND_INVALID;
2698  }
2699}
2700
2701/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2702/// code. Current x86 isa includes the following FP cmov instructions:
2703/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2704static bool hasFPCMov(unsigned X86CC) {
2705  switch (X86CC) {
2706  default:
2707    return false;
2708  case X86::COND_B:
2709  case X86::COND_BE:
2710  case X86::COND_E:
2711  case X86::COND_P:
2712  case X86::COND_A:
2713  case X86::COND_AE:
2714  case X86::COND_NE:
2715  case X86::COND_NP:
2716    return true;
2717  }
2718}
2719
2720/// isFPImmLegal - Returns true if the target can instruction select the
2721/// specified FP immediate natively. If false, the legalizer will
2722/// materialize the FP immediate as a load from a constant pool.
2723bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2724  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2725    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2726      return true;
2727  }
2728  return false;
2729}
2730
2731/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2732/// the specified range (L, H].
2733static bool isUndefOrInRange(int Val, int Low, int Hi) {
2734  return (Val < 0) || (Val >= Low && Val < Hi);
2735}
2736
2737/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2738/// specified value.
2739static bool isUndefOrEqual(int Val, int CmpVal) {
2740  if (Val < 0 || Val == CmpVal)
2741    return true;
2742  return false;
2743}
2744
2745/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2746/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2747/// the second operand.
2748static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2749  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2750    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2751  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2752    return (Mask[0] < 2 && Mask[1] < 2);
2753  return false;
2754}
2755
2756bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2757  SmallVector<int, 8> M;
2758  N->getMask(M);
2759  return ::isPSHUFDMask(M, N->getValueType(0));
2760}
2761
2762/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2763/// is suitable for input to PSHUFHW.
2764static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2765  if (VT != MVT::v8i16)
2766    return false;
2767
2768  // Lower quadword copied in order or undef.
2769  for (int i = 0; i != 4; ++i)
2770    if (Mask[i] >= 0 && Mask[i] != i)
2771      return false;
2772
2773  // Upper quadword shuffled.
2774  for (int i = 4; i != 8; ++i)
2775    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2776      return false;
2777
2778  return true;
2779}
2780
2781bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2782  SmallVector<int, 8> M;
2783  N->getMask(M);
2784  return ::isPSHUFHWMask(M, N->getValueType(0));
2785}
2786
2787/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2788/// is suitable for input to PSHUFLW.
2789static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2790  if (VT != MVT::v8i16)
2791    return false;
2792
2793  // Upper quadword copied in order.
2794  for (int i = 4; i != 8; ++i)
2795    if (Mask[i] >= 0 && Mask[i] != i)
2796      return false;
2797
2798  // Lower quadword shuffled.
2799  for (int i = 0; i != 4; ++i)
2800    if (Mask[i] >= 4)
2801      return false;
2802
2803  return true;
2804}
2805
2806bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2807  SmallVector<int, 8> M;
2808  N->getMask(M);
2809  return ::isPSHUFLWMask(M, N->getValueType(0));
2810}
2811
2812/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2813/// is suitable for input to PALIGNR.
2814static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2815                          bool hasSSSE3) {
2816  int i, e = VT.getVectorNumElements();
2817
2818  // Do not handle v2i64 / v2f64 shuffles with palignr.
2819  if (e < 4 || !hasSSSE3)
2820    return false;
2821
2822  for (i = 0; i != e; ++i)
2823    if (Mask[i] >= 0)
2824      break;
2825
2826  // All undef, not a palignr.
2827  if (i == e)
2828    return false;
2829
2830  // Determine if it's ok to perform a palignr with only the LHS, since we
2831  // don't have access to the actual shuffle elements to see if RHS is undef.
2832  bool Unary = Mask[i] < (int)e;
2833  bool NeedsUnary = false;
2834
2835  int s = Mask[i] - i;
2836
2837  // Check the rest of the elements to see if they are consecutive.
2838  for (++i; i != e; ++i) {
2839    int m = Mask[i];
2840    if (m < 0)
2841      continue;
2842
2843    Unary = Unary && (m < (int)e);
2844    NeedsUnary = NeedsUnary || (m < s);
2845
2846    if (NeedsUnary && !Unary)
2847      return false;
2848    if (Unary && m != ((s+i) & (e-1)))
2849      return false;
2850    if (!Unary && m != (s+i))
2851      return false;
2852  }
2853  return true;
2854}
2855
2856bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2857  SmallVector<int, 8> M;
2858  N->getMask(M);
2859  return ::isPALIGNRMask(M, N->getValueType(0), true);
2860}
2861
2862/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2863/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2864static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2865  int NumElems = VT.getVectorNumElements();
2866  if (NumElems != 2 && NumElems != 4)
2867    return false;
2868
2869  int Half = NumElems / 2;
2870  for (int i = 0; i < Half; ++i)
2871    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2872      return false;
2873  for (int i = Half; i < NumElems; ++i)
2874    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2875      return false;
2876
2877  return true;
2878}
2879
2880bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2881  SmallVector<int, 8> M;
2882  N->getMask(M);
2883  return ::isSHUFPMask(M, N->getValueType(0));
2884}
2885
2886/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2887/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2888/// half elements to come from vector 1 (which would equal the dest.) and
2889/// the upper half to come from vector 2.
2890static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2891  int NumElems = VT.getVectorNumElements();
2892
2893  if (NumElems != 2 && NumElems != 4)
2894    return false;
2895
2896  int Half = NumElems / 2;
2897  for (int i = 0; i < Half; ++i)
2898    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2899      return false;
2900  for (int i = Half; i < NumElems; ++i)
2901    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2902      return false;
2903  return true;
2904}
2905
2906static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2907  SmallVector<int, 8> M;
2908  N->getMask(M);
2909  return isCommutedSHUFPMask(M, N->getValueType(0));
2910}
2911
2912/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2913/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2914bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2915  if (N->getValueType(0).getVectorNumElements() != 4)
2916    return false;
2917
2918  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2919  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2920         isUndefOrEqual(N->getMaskElt(1), 7) &&
2921         isUndefOrEqual(N->getMaskElt(2), 2) &&
2922         isUndefOrEqual(N->getMaskElt(3), 3);
2923}
2924
2925/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2926/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2927/// <2, 3, 2, 3>
2928bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2929  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2930
2931  if (NumElems != 4)
2932    return false;
2933
2934  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2935  isUndefOrEqual(N->getMaskElt(1), 3) &&
2936  isUndefOrEqual(N->getMaskElt(2), 2) &&
2937  isUndefOrEqual(N->getMaskElt(3), 3);
2938}
2939
2940/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2941/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2942bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2943  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2944
2945  if (NumElems != 2 && NumElems != 4)
2946    return false;
2947
2948  for (unsigned i = 0; i < NumElems/2; ++i)
2949    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2950      return false;
2951
2952  for (unsigned i = NumElems/2; i < NumElems; ++i)
2953    if (!isUndefOrEqual(N->getMaskElt(i), i))
2954      return false;
2955
2956  return true;
2957}
2958
2959/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2960/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2961bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2962  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2963
2964  if (NumElems != 2 && NumElems != 4)
2965    return false;
2966
2967  for (unsigned i = 0; i < NumElems/2; ++i)
2968    if (!isUndefOrEqual(N->getMaskElt(i), i))
2969      return false;
2970
2971  for (unsigned i = 0; i < NumElems/2; ++i)
2972    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2973      return false;
2974
2975  return true;
2976}
2977
2978/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2979/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2980static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2981                         bool V2IsSplat = false) {
2982  int NumElts = VT.getVectorNumElements();
2983  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2984    return false;
2985
2986  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2987    int BitI  = Mask[i];
2988    int BitI1 = Mask[i+1];
2989    if (!isUndefOrEqual(BitI, j))
2990      return false;
2991    if (V2IsSplat) {
2992      if (!isUndefOrEqual(BitI1, NumElts))
2993        return false;
2994    } else {
2995      if (!isUndefOrEqual(BitI1, j + NumElts))
2996        return false;
2997    }
2998  }
2999  return true;
3000}
3001
3002bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3003  SmallVector<int, 8> M;
3004  N->getMask(M);
3005  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3006}
3007
3008/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3009/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3010static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3011                         bool V2IsSplat = false) {
3012  int NumElts = VT.getVectorNumElements();
3013  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3014    return false;
3015
3016  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3017    int BitI  = Mask[i];
3018    int BitI1 = Mask[i+1];
3019    if (!isUndefOrEqual(BitI, j + NumElts/2))
3020      return false;
3021    if (V2IsSplat) {
3022      if (isUndefOrEqual(BitI1, NumElts))
3023        return false;
3024    } else {
3025      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3026        return false;
3027    }
3028  }
3029  return true;
3030}
3031
3032bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3033  SmallVector<int, 8> M;
3034  N->getMask(M);
3035  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3036}
3037
3038/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3039/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3040/// <0, 0, 1, 1>
3041static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3042  int NumElems = VT.getVectorNumElements();
3043  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3044    return false;
3045
3046  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
3047    int BitI  = Mask[i];
3048    int BitI1 = Mask[i+1];
3049    if (!isUndefOrEqual(BitI, j))
3050      return false;
3051    if (!isUndefOrEqual(BitI1, j))
3052      return false;
3053  }
3054  return true;
3055}
3056
3057bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3058  SmallVector<int, 8> M;
3059  N->getMask(M);
3060  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3061}
3062
3063/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3064/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3065/// <2, 2, 3, 3>
3066static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3067  int NumElems = VT.getVectorNumElements();
3068  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3069    return false;
3070
3071  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3072    int BitI  = Mask[i];
3073    int BitI1 = Mask[i+1];
3074    if (!isUndefOrEqual(BitI, j))
3075      return false;
3076    if (!isUndefOrEqual(BitI1, j))
3077      return false;
3078  }
3079  return true;
3080}
3081
3082bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3083  SmallVector<int, 8> M;
3084  N->getMask(M);
3085  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3086}
3087
3088/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3089/// specifies a shuffle of elements that is suitable for input to MOVSS,
3090/// MOVSD, and MOVD, i.e. setting the lowest element.
3091static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3092  if (VT.getVectorElementType().getSizeInBits() < 32)
3093    return false;
3094
3095  int NumElts = VT.getVectorNumElements();
3096
3097  if (!isUndefOrEqual(Mask[0], NumElts))
3098    return false;
3099
3100  for (int i = 1; i < NumElts; ++i)
3101    if (!isUndefOrEqual(Mask[i], i))
3102      return false;
3103
3104  return true;
3105}
3106
3107bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3108  SmallVector<int, 8> M;
3109  N->getMask(M);
3110  return ::isMOVLMask(M, N->getValueType(0));
3111}
3112
3113/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3114/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3115/// element of vector 2 and the other elements to come from vector 1 in order.
3116static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3117                               bool V2IsSplat = false, bool V2IsUndef = false) {
3118  int NumOps = VT.getVectorNumElements();
3119  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3120    return false;
3121
3122  if (!isUndefOrEqual(Mask[0], 0))
3123    return false;
3124
3125  for (int i = 1; i < NumOps; ++i)
3126    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3127          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3128          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3129      return false;
3130
3131  return true;
3132}
3133
3134static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3135                           bool V2IsUndef = false) {
3136  SmallVector<int, 8> M;
3137  N->getMask(M);
3138  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3139}
3140
3141/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3142/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3143bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3144  if (N->getValueType(0).getVectorNumElements() != 4)
3145    return false;
3146
3147  // Expect 1, 1, 3, 3
3148  for (unsigned i = 0; i < 2; ++i) {
3149    int Elt = N->getMaskElt(i);
3150    if (Elt >= 0 && Elt != 1)
3151      return false;
3152  }
3153
3154  bool HasHi = false;
3155  for (unsigned i = 2; i < 4; ++i) {
3156    int Elt = N->getMaskElt(i);
3157    if (Elt >= 0 && Elt != 3)
3158      return false;
3159    if (Elt == 3)
3160      HasHi = true;
3161  }
3162  // Don't use movshdup if it can be done with a shufps.
3163  // FIXME: verify that matching u, u, 3, 3 is what we want.
3164  return HasHi;
3165}
3166
3167/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3168/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3169bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3170  if (N->getValueType(0).getVectorNumElements() != 4)
3171    return false;
3172
3173  // Expect 0, 0, 2, 2
3174  for (unsigned i = 0; i < 2; ++i)
3175    if (N->getMaskElt(i) > 0)
3176      return false;
3177
3178  bool HasHi = false;
3179  for (unsigned i = 2; i < 4; ++i) {
3180    int Elt = N->getMaskElt(i);
3181    if (Elt >= 0 && Elt != 2)
3182      return false;
3183    if (Elt == 2)
3184      HasHi = true;
3185  }
3186  // Don't use movsldup if it can be done with a shufps.
3187  return HasHi;
3188}
3189
3190/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3191/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3192bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3193  int e = N->getValueType(0).getVectorNumElements() / 2;
3194
3195  for (int i = 0; i < e; ++i)
3196    if (!isUndefOrEqual(N->getMaskElt(i), i))
3197      return false;
3198  for (int i = 0; i < e; ++i)
3199    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3200      return false;
3201  return true;
3202}
3203
3204/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3205/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3206unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3207  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3208  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3209
3210  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3211  unsigned Mask = 0;
3212  for (int i = 0; i < NumOperands; ++i) {
3213    int Val = SVOp->getMaskElt(NumOperands-i-1);
3214    if (Val < 0) Val = 0;
3215    if (Val >= NumOperands) Val -= NumOperands;
3216    Mask |= Val;
3217    if (i != NumOperands - 1)
3218      Mask <<= Shift;
3219  }
3220  return Mask;
3221}
3222
3223/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3224/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3225unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3226  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3227  unsigned Mask = 0;
3228  // 8 nodes, but we only care about the last 4.
3229  for (unsigned i = 7; i >= 4; --i) {
3230    int Val = SVOp->getMaskElt(i);
3231    if (Val >= 0)
3232      Mask |= (Val - 4);
3233    if (i != 4)
3234      Mask <<= 2;
3235  }
3236  return Mask;
3237}
3238
3239/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3240/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3241unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3242  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3243  unsigned Mask = 0;
3244  // 8 nodes, but we only care about the first 4.
3245  for (int i = 3; i >= 0; --i) {
3246    int Val = SVOp->getMaskElt(i);
3247    if (Val >= 0)
3248      Mask |= Val;
3249    if (i != 0)
3250      Mask <<= 2;
3251  }
3252  return Mask;
3253}
3254
3255/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3256/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3257unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3258  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3259  EVT VVT = N->getValueType(0);
3260  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3261  int Val = 0;
3262
3263  unsigned i, e;
3264  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3265    Val = SVOp->getMaskElt(i);
3266    if (Val >= 0)
3267      break;
3268  }
3269  return (Val - i) * EltSize;
3270}
3271
3272/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3273/// constant +0.0.
3274bool X86::isZeroNode(SDValue Elt) {
3275  return ((isa<ConstantSDNode>(Elt) &&
3276           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3277          (isa<ConstantFPSDNode>(Elt) &&
3278           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3279}
3280
3281/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3282/// their permute mask.
3283static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3284                                    SelectionDAG &DAG) {
3285  EVT VT = SVOp->getValueType(0);
3286  unsigned NumElems = VT.getVectorNumElements();
3287  SmallVector<int, 8> MaskVec;
3288
3289  for (unsigned i = 0; i != NumElems; ++i) {
3290    int idx = SVOp->getMaskElt(i);
3291    if (idx < 0)
3292      MaskVec.push_back(idx);
3293    else if (idx < (int)NumElems)
3294      MaskVec.push_back(idx + NumElems);
3295    else
3296      MaskVec.push_back(idx - NumElems);
3297  }
3298  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3299                              SVOp->getOperand(0), &MaskVec[0]);
3300}
3301
3302/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3303/// the two vector operands have swapped position.
3304static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3305  unsigned NumElems = VT.getVectorNumElements();
3306  for (unsigned i = 0; i != NumElems; ++i) {
3307    int idx = Mask[i];
3308    if (idx < 0)
3309      continue;
3310    else if (idx < (int)NumElems)
3311      Mask[i] = idx + NumElems;
3312    else
3313      Mask[i] = idx - NumElems;
3314  }
3315}
3316
3317/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3318/// match movhlps. The lower half elements should come from upper half of
3319/// V1 (and in order), and the upper half elements should come from the upper
3320/// half of V2 (and in order).
3321static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3322  if (Op->getValueType(0).getVectorNumElements() != 4)
3323    return false;
3324  for (unsigned i = 0, e = 2; i != e; ++i)
3325    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3326      return false;
3327  for (unsigned i = 2; i != 4; ++i)
3328    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3329      return false;
3330  return true;
3331}
3332
3333/// isScalarLoadToVector - Returns true if the node is a scalar load that
3334/// is promoted to a vector. It also returns the LoadSDNode by reference if
3335/// required.
3336static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3337  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3338    return false;
3339  N = N->getOperand(0).getNode();
3340  if (!ISD::isNON_EXTLoad(N))
3341    return false;
3342  if (LD)
3343    *LD = cast<LoadSDNode>(N);
3344  return true;
3345}
3346
3347/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3348/// match movlp{s|d}. The lower half elements should come from lower half of
3349/// V1 (and in order), and the upper half elements should come from the upper
3350/// half of V2 (and in order). And since V1 will become the source of the
3351/// MOVLP, it must be either a vector load or a scalar load to vector.
3352static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3353                               ShuffleVectorSDNode *Op) {
3354  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3355    return false;
3356  // Is V2 is a vector load, don't do this transformation. We will try to use
3357  // load folding shufps op.
3358  if (ISD::isNON_EXTLoad(V2))
3359    return false;
3360
3361  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3362
3363  if (NumElems != 2 && NumElems != 4)
3364    return false;
3365  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3366    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3367      return false;
3368  for (unsigned i = NumElems/2; i != NumElems; ++i)
3369    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3370      return false;
3371  return true;
3372}
3373
3374/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3375/// all the same.
3376static bool isSplatVector(SDNode *N) {
3377  if (N->getOpcode() != ISD::BUILD_VECTOR)
3378    return false;
3379
3380  SDValue SplatValue = N->getOperand(0);
3381  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3382    if (N->getOperand(i) != SplatValue)
3383      return false;
3384  return true;
3385}
3386
3387/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3388/// to an zero vector.
3389/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3390static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3391  SDValue V1 = N->getOperand(0);
3392  SDValue V2 = N->getOperand(1);
3393  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3394  for (unsigned i = 0; i != NumElems; ++i) {
3395    int Idx = N->getMaskElt(i);
3396    if (Idx >= (int)NumElems) {
3397      unsigned Opc = V2.getOpcode();
3398      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3399        continue;
3400      if (Opc != ISD::BUILD_VECTOR ||
3401          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3402        return false;
3403    } else if (Idx >= 0) {
3404      unsigned Opc = V1.getOpcode();
3405      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3406        continue;
3407      if (Opc != ISD::BUILD_VECTOR ||
3408          !X86::isZeroNode(V1.getOperand(Idx)))
3409        return false;
3410    }
3411  }
3412  return true;
3413}
3414
3415/// getZeroVector - Returns a vector of specified type with all zero elements.
3416///
3417static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3418                             DebugLoc dl) {
3419  assert(VT.isVector() && "Expected a vector type");
3420
3421  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted
3422  // to their dest type. This ensures they get CSE'd.
3423  SDValue Vec;
3424  if (VT.getSizeInBits() == 64) { // MMX
3425    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3426    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3427  } else if (VT.getSizeInBits() == 128) {
3428    if (HasSSE2) {  // SSE2
3429      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3430      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3431    } else { // SSE1
3432      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3433      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3434    }
3435  } else if (VT.getSizeInBits() == 256) { // AVX
3436    // 256-bit logic and arithmetic instructions in AVX are
3437    // all floating-point, no support for integer ops. Default
3438    // to emitting fp zeroed vectors then.
3439    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3440    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3441    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3442  }
3443  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3444}
3445
3446/// getOnesVector - Returns a vector of specified type with all bits set.
3447///
3448static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3449  assert(VT.isVector() && "Expected a vector type");
3450
3451  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3452  // type.  This ensures they get CSE'd.
3453  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3454  SDValue Vec;
3455  if (VT.getSizeInBits() == 64) // MMX
3456    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3457  else // SSE
3458    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3459  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3460}
3461
3462
3463/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3464/// that point to V2 points to its first element.
3465static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3466  EVT VT = SVOp->getValueType(0);
3467  unsigned NumElems = VT.getVectorNumElements();
3468
3469  bool Changed = false;
3470  SmallVector<int, 8> MaskVec;
3471  SVOp->getMask(MaskVec);
3472
3473  for (unsigned i = 0; i != NumElems; ++i) {
3474    if (MaskVec[i] > (int)NumElems) {
3475      MaskVec[i] = NumElems;
3476      Changed = true;
3477    }
3478  }
3479  if (Changed)
3480    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3481                                SVOp->getOperand(1), &MaskVec[0]);
3482  return SDValue(SVOp, 0);
3483}
3484
3485/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3486/// operation of specified width.
3487static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3488                       SDValue V2) {
3489  unsigned NumElems = VT.getVectorNumElements();
3490  SmallVector<int, 8> Mask;
3491  Mask.push_back(NumElems);
3492  for (unsigned i = 1; i != NumElems; ++i)
3493    Mask.push_back(i);
3494  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3495}
3496
3497/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3498static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3499                          SDValue V2) {
3500  unsigned NumElems = VT.getVectorNumElements();
3501  SmallVector<int, 8> Mask;
3502  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3503    Mask.push_back(i);
3504    Mask.push_back(i + NumElems);
3505  }
3506  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3507}
3508
3509/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3510static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3511                          SDValue V2) {
3512  unsigned NumElems = VT.getVectorNumElements();
3513  unsigned Half = NumElems/2;
3514  SmallVector<int, 8> Mask;
3515  for (unsigned i = 0; i != Half; ++i) {
3516    Mask.push_back(i + Half);
3517    Mask.push_back(i + NumElems + Half);
3518  }
3519  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3520}
3521
3522/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3523static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3524  if (SV->getValueType(0).getVectorNumElements() <= 4)
3525    return SDValue(SV, 0);
3526
3527  EVT PVT = MVT::v4f32;
3528  EVT VT = SV->getValueType(0);
3529  DebugLoc dl = SV->getDebugLoc();
3530  SDValue V1 = SV->getOperand(0);
3531  int NumElems = VT.getVectorNumElements();
3532  int EltNo = SV->getSplatIndex();
3533
3534  // unpack elements to the correct location
3535  while (NumElems > 4) {
3536    if (EltNo < NumElems/2) {
3537      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3538    } else {
3539      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3540      EltNo -= NumElems/2;
3541    }
3542    NumElems >>= 1;
3543  }
3544
3545  // Perform the splat.
3546  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3547  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3548  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3549  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3550}
3551
3552/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3553/// vector of zero or undef vector.  This produces a shuffle where the low
3554/// element of V2 is swizzled into the zero/undef vector, landing at element
3555/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3556static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3557                                             bool isZero, bool HasSSE2,
3558                                             SelectionDAG &DAG) {
3559  EVT VT = V2.getValueType();
3560  SDValue V1 = isZero
3561    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3562  unsigned NumElems = VT.getVectorNumElements();
3563  SmallVector<int, 16> MaskVec;
3564  for (unsigned i = 0; i != NumElems; ++i)
3565    // If this is the insertion idx, put the low elt of V2 here.
3566    MaskVec.push_back(i == Idx ? NumElems : i);
3567  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3568}
3569
3570/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3571/// a shuffle that is zero.
3572static
3573unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3574                                  bool Low, SelectionDAG &DAG) {
3575  unsigned NumZeros = 0;
3576  for (int i = 0; i < NumElems; ++i) {
3577    unsigned Index = Low ? i : NumElems-i-1;
3578    int Idx = SVOp->getMaskElt(Index);
3579    if (Idx < 0) {
3580      ++NumZeros;
3581      continue;
3582    }
3583    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3584    if (Elt.getNode() && X86::isZeroNode(Elt))
3585      ++NumZeros;
3586    else
3587      break;
3588  }
3589  return NumZeros;
3590}
3591
3592/// isVectorShift - Returns true if the shuffle can be implemented as a
3593/// logical left or right shift of a vector.
3594/// FIXME: split into pslldqi, psrldqi, palignr variants.
3595static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3596                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3597  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3598
3599  isLeft = true;
3600  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3601  if (!NumZeros) {
3602    isLeft = false;
3603    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3604    if (!NumZeros)
3605      return false;
3606  }
3607  bool SeenV1 = false;
3608  bool SeenV2 = false;
3609  for (unsigned i = NumZeros; i < NumElems; ++i) {
3610    unsigned Val = isLeft ? (i - NumZeros) : i;
3611    int Idx_ = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3612    if (Idx_ < 0)
3613      continue;
3614    unsigned Idx = (unsigned) Idx_;
3615    if (Idx < NumElems)
3616      SeenV1 = true;
3617    else {
3618      Idx -= NumElems;
3619      SeenV2 = true;
3620    }
3621    if (Idx != Val)
3622      return false;
3623  }
3624  if (SeenV1 && SeenV2)
3625    return false;
3626
3627  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3628  ShAmt = NumZeros;
3629  return true;
3630}
3631
3632
3633/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3634///
3635static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3636                                       unsigned NumNonZero, unsigned NumZero,
3637                                       SelectionDAG &DAG,
3638                                       const TargetLowering &TLI) {
3639  if (NumNonZero > 8)
3640    return SDValue();
3641
3642  DebugLoc dl = Op.getDebugLoc();
3643  SDValue V(0, 0);
3644  bool First = true;
3645  for (unsigned i = 0; i < 16; ++i) {
3646    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3647    if (ThisIsNonZero && First) {
3648      if (NumZero)
3649        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3650      else
3651        V = DAG.getUNDEF(MVT::v8i16);
3652      First = false;
3653    }
3654
3655    if ((i & 1) != 0) {
3656      SDValue ThisElt(0, 0), LastElt(0, 0);
3657      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3658      if (LastIsNonZero) {
3659        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3660                              MVT::i16, Op.getOperand(i-1));
3661      }
3662      if (ThisIsNonZero) {
3663        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3664        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3665                              ThisElt, DAG.getConstant(8, MVT::i8));
3666        if (LastIsNonZero)
3667          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3668      } else
3669        ThisElt = LastElt;
3670
3671      if (ThisElt.getNode())
3672        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3673                        DAG.getIntPtrConstant(i/2));
3674    }
3675  }
3676
3677  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3678}
3679
3680/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3681///
3682static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3683                                     unsigned NumNonZero, unsigned NumZero,
3684                                     SelectionDAG &DAG,
3685                                     const TargetLowering &TLI) {
3686  if (NumNonZero > 4)
3687    return SDValue();
3688
3689  DebugLoc dl = Op.getDebugLoc();
3690  SDValue V(0, 0);
3691  bool First = true;
3692  for (unsigned i = 0; i < 8; ++i) {
3693    bool isNonZero = (NonZeros & (1 << i)) != 0;
3694    if (isNonZero) {
3695      if (First) {
3696        if (NumZero)
3697          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3698        else
3699          V = DAG.getUNDEF(MVT::v8i16);
3700        First = false;
3701      }
3702      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3703                      MVT::v8i16, V, Op.getOperand(i),
3704                      DAG.getIntPtrConstant(i));
3705    }
3706  }
3707
3708  return V;
3709}
3710
3711/// getVShift - Return a vector logical shift node.
3712///
3713static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3714                         unsigned NumBits, SelectionDAG &DAG,
3715                         const TargetLowering &TLI, DebugLoc dl) {
3716  bool isMMX = VT.getSizeInBits() == 64;
3717  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3718  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3719  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3720  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3721                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3722                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3723}
3724
3725SDValue
3726X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3727                                          SelectionDAG &DAG) const {
3728
3729  // Check if the scalar load can be widened into a vector load. And if
3730  // the address is "base + cst" see if the cst can be "absorbed" into
3731  // the shuffle mask.
3732  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3733    SDValue Ptr = LD->getBasePtr();
3734    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3735      return SDValue();
3736    EVT PVT = LD->getValueType(0);
3737    if (PVT != MVT::i32 && PVT != MVT::f32)
3738      return SDValue();
3739
3740    int FI = -1;
3741    int64_t Offset = 0;
3742    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3743      FI = FINode->getIndex();
3744      Offset = 0;
3745    } else if (Ptr.getOpcode() == ISD::ADD &&
3746               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3747               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3748      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3749      Offset = Ptr.getConstantOperandVal(1);
3750      Ptr = Ptr.getOperand(0);
3751    } else {
3752      return SDValue();
3753    }
3754
3755    SDValue Chain = LD->getChain();
3756    // Make sure the stack object alignment is at least 16.
3757    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3758    if (DAG.InferPtrAlignment(Ptr) < 16) {
3759      if (MFI->isFixedObjectIndex(FI)) {
3760        // Can't change the alignment. FIXME: It's possible to compute
3761        // the exact stack offset and reference FI + adjust offset instead.
3762        // If someone *really* cares about this. That's the way to implement it.
3763        return SDValue();
3764      } else {
3765        MFI->setObjectAlignment(FI, 16);
3766      }
3767    }
3768
3769    // (Offset % 16) must be multiple of 4. Then address is then
3770    // Ptr + (Offset & ~15).
3771    if (Offset < 0)
3772      return SDValue();
3773    if ((Offset % 16) & 3)
3774      return SDValue();
3775    int64_t StartOffset = Offset & ~15;
3776    if (StartOffset)
3777      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
3778                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
3779
3780    int EltNo = (Offset - StartOffset) >> 2;
3781    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
3782    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
3783    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
3784                             false, false, 0);
3785    // Canonicalize it to a v4i32 shuffle.
3786    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
3787    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3788                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
3789                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
3790  }
3791
3792  return SDValue();
3793}
3794
3795/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
3796/// vector of type 'VT', see if the elements can be replaced by a single large
3797/// load which has the same value as a build_vector whose operands are 'elts'.
3798///
3799/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
3800///
3801/// FIXME: we'd also like to handle the case where the last elements are zero
3802/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
3803/// There's even a handy isZeroNode for that purpose.
3804static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
3805                                        DebugLoc &dl, SelectionDAG &DAG) {
3806  EVT EltVT = VT.getVectorElementType();
3807  unsigned NumElems = Elts.size();
3808
3809  LoadSDNode *LDBase = NULL;
3810  unsigned LastLoadedElt = -1U;
3811
3812  // For each element in the initializer, see if we've found a load or an undef.
3813  // If we don't find an initial load element, or later load elements are
3814  // non-consecutive, bail out.
3815  for (unsigned i = 0; i < NumElems; ++i) {
3816    SDValue Elt = Elts[i];
3817
3818    if (!Elt.getNode() ||
3819        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
3820      return SDValue();
3821    if (!LDBase) {
3822      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
3823        return SDValue();
3824      LDBase = cast<LoadSDNode>(Elt.getNode());
3825      LastLoadedElt = i;
3826      continue;
3827    }
3828    if (Elt.getOpcode() == ISD::UNDEF)
3829      continue;
3830
3831    LoadSDNode *LD = cast<LoadSDNode>(Elt);
3832    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
3833      return SDValue();
3834    LastLoadedElt = i;
3835  }
3836
3837  // If we have found an entire vector of loads and undefs, then return a large
3838  // load of the entire vector width starting at the base pointer.  If we found
3839  // consecutive loads for the low half, generate a vzext_load node.
3840  if (LastLoadedElt == NumElems - 1) {
3841    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
3842      return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3843                         LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3844                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
3845    return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3846                       LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3847                       LDBase->isVolatile(), LDBase->isNonTemporal(),
3848                       LDBase->getAlignment());
3849  } else if (NumElems == 4 && LastLoadedElt == 1) {
3850    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
3851    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
3852    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
3853    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
3854  }
3855  return SDValue();
3856}
3857
3858SDValue
3859X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
3860  DebugLoc dl = Op.getDebugLoc();
3861  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1 and
3862  // all one's are handled with pcmpeqd. In AVX, zero's are handled with
3863  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
3864  // is present, so AllOnes is ignored.
3865  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
3866      (Op.getValueType().getSizeInBits() != 256 &&
3867       ISD::isBuildVectorAllOnes(Op.getNode()))) {
3868    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3869    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3870    // eliminated on x86-32 hosts.
3871    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3872      return Op;
3873
3874    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3875      return getOnesVector(Op.getValueType(), DAG, dl);
3876    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3877  }
3878
3879  EVT VT = Op.getValueType();
3880  EVT ExtVT = VT.getVectorElementType();
3881  unsigned EVTBits = ExtVT.getSizeInBits();
3882
3883  unsigned NumElems = Op.getNumOperands();
3884  unsigned NumZero  = 0;
3885  unsigned NumNonZero = 0;
3886  unsigned NonZeros = 0;
3887  bool IsAllConstants = true;
3888  SmallSet<SDValue, 8> Values;
3889  for (unsigned i = 0; i < NumElems; ++i) {
3890    SDValue Elt = Op.getOperand(i);
3891    if (Elt.getOpcode() == ISD::UNDEF)
3892      continue;
3893    Values.insert(Elt);
3894    if (Elt.getOpcode() != ISD::Constant &&
3895        Elt.getOpcode() != ISD::ConstantFP)
3896      IsAllConstants = false;
3897    if (X86::isZeroNode(Elt))
3898      NumZero++;
3899    else {
3900      NonZeros |= (1 << i);
3901      NumNonZero++;
3902    }
3903  }
3904
3905  if (NumNonZero == 0) {
3906    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3907    return DAG.getUNDEF(VT);
3908  }
3909
3910  // Special case for single non-zero, non-undef, element.
3911  if (NumNonZero == 1) {
3912    unsigned Idx = CountTrailingZeros_32(NonZeros);
3913    SDValue Item = Op.getOperand(Idx);
3914
3915    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3916    // the value are obviously zero, truncate the value to i32 and do the
3917    // insertion that way.  Only do this if the value is non-constant or if the
3918    // value is a constant being inserted into element 0.  It is cheaper to do
3919    // a constant pool load than it is to do a movd + shuffle.
3920    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3921        (!IsAllConstants || Idx == 0)) {
3922      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3923        // Handle MMX and SSE both.
3924        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3925        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3926
3927        // Truncate the value (which may itself be a constant) to i32, and
3928        // convert it to a vector with movd (S2V+shuffle to zero extend).
3929        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3930        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3931        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3932                                           Subtarget->hasSSE2(), DAG);
3933
3934        // Now we have our 32-bit value zero extended in the low element of
3935        // a vector.  If Idx != 0, swizzle it into place.
3936        if (Idx != 0) {
3937          SmallVector<int, 4> Mask;
3938          Mask.push_back(Idx);
3939          for (unsigned i = 1; i != VecElts; ++i)
3940            Mask.push_back(i);
3941          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3942                                      DAG.getUNDEF(Item.getValueType()),
3943                                      &Mask[0]);
3944        }
3945        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3946      }
3947    }
3948
3949    // If we have a constant or non-constant insertion into the low element of
3950    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3951    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3952    // depending on what the source datatype is.
3953    if (Idx == 0) {
3954      if (NumZero == 0) {
3955        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3956      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3957          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3958        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3959        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3960        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3961                                           DAG);
3962      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3963        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3964        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3965        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3966        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3967                                           Subtarget->hasSSE2(), DAG);
3968        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3969      }
3970    }
3971
3972    // Is it a vector logical left shift?
3973    if (NumElems == 2 && Idx == 1 &&
3974        X86::isZeroNode(Op.getOperand(0)) &&
3975        !X86::isZeroNode(Op.getOperand(1))) {
3976      unsigned NumBits = VT.getSizeInBits();
3977      return getVShift(true, VT,
3978                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3979                                   VT, Op.getOperand(1)),
3980                       NumBits/2, DAG, *this, dl);
3981    }
3982
3983    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3984      return SDValue();
3985
3986    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3987    // is a non-constant being inserted into an element other than the low one,
3988    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3989    // movd/movss) to move this into the low element, then shuffle it into
3990    // place.
3991    if (EVTBits == 32) {
3992      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3993
3994      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3995      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3996                                         Subtarget->hasSSE2(), DAG);
3997      SmallVector<int, 8> MaskVec;
3998      for (unsigned i = 0; i < NumElems; i++)
3999        MaskVec.push_back(i == Idx ? 0 : 1);
4000      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4001    }
4002  }
4003
4004  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4005  if (Values.size() == 1) {
4006    if (EVTBits == 32) {
4007      // Instead of a shuffle like this:
4008      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4009      // Check if it's possible to issue this instead.
4010      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4011      unsigned Idx = CountTrailingZeros_32(NonZeros);
4012      SDValue Item = Op.getOperand(Idx);
4013      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4014        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4015    }
4016    return SDValue();
4017  }
4018
4019  // A vector full of immediates; various special cases are already
4020  // handled, so this is best done with a single constant-pool load.
4021  if (IsAllConstants)
4022    return SDValue();
4023
4024  // Let legalizer expand 2-wide build_vectors.
4025  if (EVTBits == 64) {
4026    if (NumNonZero == 1) {
4027      // One half is zero or undef.
4028      unsigned Idx = CountTrailingZeros_32(NonZeros);
4029      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4030                                 Op.getOperand(Idx));
4031      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4032                                         Subtarget->hasSSE2(), DAG);
4033    }
4034    return SDValue();
4035  }
4036
4037  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4038  if (EVTBits == 8 && NumElems == 16) {
4039    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4040                                        *this);
4041    if (V.getNode()) return V;
4042  }
4043
4044  if (EVTBits == 16 && NumElems == 8) {
4045    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4046                                        *this);
4047    if (V.getNode()) return V;
4048  }
4049
4050  // If element VT is == 32 bits, turn it into a number of shuffles.
4051  SmallVector<SDValue, 8> V;
4052  V.resize(NumElems);
4053  if (NumElems == 4 && NumZero > 0) {
4054    for (unsigned i = 0; i < 4; ++i) {
4055      bool isZero = !(NonZeros & (1 << i));
4056      if (isZero)
4057        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4058      else
4059        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4060    }
4061
4062    for (unsigned i = 0; i < 2; ++i) {
4063      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4064        default: break;
4065        case 0:
4066          V[i] = V[i*2];  // Must be a zero vector.
4067          break;
4068        case 1:
4069          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4070          break;
4071        case 2:
4072          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4073          break;
4074        case 3:
4075          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4076          break;
4077      }
4078    }
4079
4080    SmallVector<int, 8> MaskVec;
4081    bool Reverse = (NonZeros & 0x3) == 2;
4082    for (unsigned i = 0; i < 2; ++i)
4083      MaskVec.push_back(Reverse ? 1-i : i);
4084    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4085    for (unsigned i = 0; i < 2; ++i)
4086      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4087    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4088  }
4089
4090  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4091    // Check for a build vector of consecutive loads.
4092    for (unsigned i = 0; i < NumElems; ++i)
4093      V[i] = Op.getOperand(i);
4094
4095    // Check for elements which are consecutive loads.
4096    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4097    if (LD.getNode())
4098      return LD;
4099
4100    // For SSE 4.1, use inserts into undef.
4101    if (getSubtarget()->hasSSE41()) {
4102      V[0] = DAG.getUNDEF(VT);
4103      for (unsigned i = 0; i < NumElems; ++i)
4104        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4105          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
4106                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4107      return V[0];
4108    }
4109
4110    // Otherwise, expand into a number of unpckl*
4111    // e.g. for v4f32
4112    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4113    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4114    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4115    for (unsigned i = 0; i < NumElems; ++i)
4116      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4117    NumElems >>= 1;
4118    while (NumElems != 0) {
4119      for (unsigned i = 0; i < NumElems; ++i)
4120        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
4121      NumElems >>= 1;
4122    }
4123    return V[0];
4124  }
4125  return SDValue();
4126}
4127
4128SDValue
4129X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4130  // We support concatenate two MMX registers and place them in a MMX
4131  // register.  This is better than doing a stack convert.
4132  DebugLoc dl = Op.getDebugLoc();
4133  EVT ResVT = Op.getValueType();
4134  assert(Op.getNumOperands() == 2);
4135  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4136         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4137  int Mask[2];
4138  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
4139  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4140  InVec = Op.getOperand(1);
4141  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4142    unsigned NumElts = ResVT.getVectorNumElements();
4143    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4144    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4145                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4146  } else {
4147    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
4148    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4149    Mask[0] = 0; Mask[1] = 2;
4150    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4151  }
4152  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4153}
4154
4155// v8i16 shuffles - Prefer shuffles in the following order:
4156// 1. [all]   pshuflw, pshufhw, optional move
4157// 2. [ssse3] 1 x pshufb
4158// 3. [ssse3] 2 x pshufb + 1 x por
4159// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4160SDValue
4161X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4162                                            SelectionDAG &DAG) const {
4163  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4164  SDValue V1 = SVOp->getOperand(0);
4165  SDValue V2 = SVOp->getOperand(1);
4166  DebugLoc dl = SVOp->getDebugLoc();
4167  SmallVector<int, 8> MaskVals;
4168
4169  // Determine if more than 1 of the words in each of the low and high quadwords
4170  // of the result come from the same quadword of one of the two inputs.  Undef
4171  // mask values count as coming from any quadword, for better codegen.
4172  SmallVector<unsigned, 4> LoQuad(4);
4173  SmallVector<unsigned, 4> HiQuad(4);
4174  BitVector InputQuads(4);
4175  for (unsigned i = 0; i < 8; ++i) {
4176    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4177    int EltIdx = SVOp->getMaskElt(i);
4178    MaskVals.push_back(EltIdx);
4179    if (EltIdx < 0) {
4180      ++Quad[0];
4181      ++Quad[1];
4182      ++Quad[2];
4183      ++Quad[3];
4184      continue;
4185    }
4186    ++Quad[EltIdx / 4];
4187    InputQuads.set(EltIdx / 4);
4188  }
4189
4190  int BestLoQuad = -1;
4191  unsigned MaxQuad = 1;
4192  for (unsigned i = 0; i < 4; ++i) {
4193    if (LoQuad[i] > MaxQuad) {
4194      BestLoQuad = i;
4195      MaxQuad = LoQuad[i];
4196    }
4197  }
4198
4199  int BestHiQuad = -1;
4200  MaxQuad = 1;
4201  for (unsigned i = 0; i < 4; ++i) {
4202    if (HiQuad[i] > MaxQuad) {
4203      BestHiQuad = i;
4204      MaxQuad = HiQuad[i];
4205    }
4206  }
4207
4208  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4209  // of the two input vectors, shuffle them into one input vector so only a
4210  // single pshufb instruction is necessary. If There are more than 2 input
4211  // quads, disable the next transformation since it does not help SSSE3.
4212  bool V1Used = InputQuads[0] || InputQuads[1];
4213  bool V2Used = InputQuads[2] || InputQuads[3];
4214  if (Subtarget->hasSSSE3()) {
4215    if (InputQuads.count() == 2 && V1Used && V2Used) {
4216      BestLoQuad = InputQuads.find_first();
4217      BestHiQuad = InputQuads.find_next(BestLoQuad);
4218    }
4219    if (InputQuads.count() > 2) {
4220      BestLoQuad = -1;
4221      BestHiQuad = -1;
4222    }
4223  }
4224
4225  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4226  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4227  // words from all 4 input quadwords.
4228  SDValue NewV;
4229  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4230    SmallVector<int, 8> MaskV;
4231    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4232    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4233    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4234                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4235                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4236    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE)
4237      NewV = LowerVECTOR_SHUFFLE(NewV, DAG);
4238    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4239
4240    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4241    // source words for the shuffle, to aid later transformations.
4242    bool AllWordsInNewV = true;
4243    bool InOrder[2] = { true, true };
4244    for (unsigned i = 0; i != 8; ++i) {
4245      int idx = MaskVals[i];
4246      if (idx != (int)i)
4247        InOrder[i/4] = false;
4248      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4249        continue;
4250      AllWordsInNewV = false;
4251      break;
4252    }
4253
4254    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4255    if (AllWordsInNewV) {
4256      for (int i = 0; i != 8; ++i) {
4257        int idx = MaskVals[i];
4258        if (idx < 0)
4259          continue;
4260        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4261        if ((idx != i) && idx < 4)
4262          pshufhw = false;
4263        if ((idx != i) && idx > 3)
4264          pshuflw = false;
4265      }
4266      V1 = NewV;
4267      V2Used = false;
4268      BestLoQuad = 0;
4269      BestHiQuad = 1;
4270    }
4271
4272    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4273    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4274    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4275      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4276                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4277    }
4278  }
4279
4280  // If we have SSSE3, and all words of the result are from 1 input vector,
4281  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4282  // is present, fall back to case 4.
4283  if (Subtarget->hasSSSE3()) {
4284    SmallVector<SDValue,16> pshufbMask;
4285
4286    // If we have elements from both input vectors, set the high bit of the
4287    // shuffle mask element to zero out elements that come from V2 in the V1
4288    // mask, and elements that come from V1 in the V2 mask, so that the two
4289    // results can be OR'd together.
4290    bool TwoInputs = V1Used && V2Used;
4291    for (unsigned i = 0; i != 8; ++i) {
4292      int EltIdx = MaskVals[i] * 2;
4293      if (TwoInputs && (EltIdx >= 16)) {
4294        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4295        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4296        continue;
4297      }
4298      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4299      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4300    }
4301    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4302    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4303                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4304                                 MVT::v16i8, &pshufbMask[0], 16));
4305    if (!TwoInputs)
4306      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4307
4308    // Calculate the shuffle mask for the second input, shuffle it, and
4309    // OR it with the first shuffled input.
4310    pshufbMask.clear();
4311    for (unsigned i = 0; i != 8; ++i) {
4312      int EltIdx = MaskVals[i] * 2;
4313      if (EltIdx < 16) {
4314        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4315        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4316        continue;
4317      }
4318      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4319      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4320    }
4321    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4322    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4323                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4324                                 MVT::v16i8, &pshufbMask[0], 16));
4325    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4326    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4327  }
4328
4329  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4330  // and update MaskVals with new element order.
4331  BitVector InOrder(8);
4332  if (BestLoQuad >= 0) {
4333    SmallVector<int, 8> MaskV;
4334    for (int i = 0; i != 4; ++i) {
4335      int idx = MaskVals[i];
4336      if (idx < 0) {
4337        MaskV.push_back(-1);
4338        InOrder.set(i);
4339      } else if ((idx / 4) == BestLoQuad) {
4340        MaskV.push_back(idx & 3);
4341        InOrder.set(i);
4342      } else {
4343        MaskV.push_back(-1);
4344      }
4345    }
4346    for (unsigned i = 4; i != 8; ++i)
4347      MaskV.push_back(i);
4348    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4349                                &MaskV[0]);
4350  }
4351
4352  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4353  // and update MaskVals with the new element order.
4354  if (BestHiQuad >= 0) {
4355    SmallVector<int, 8> MaskV;
4356    for (unsigned i = 0; i != 4; ++i)
4357      MaskV.push_back(i);
4358    for (unsigned i = 4; i != 8; ++i) {
4359      int idx = MaskVals[i];
4360      if (idx < 0) {
4361        MaskV.push_back(-1);
4362        InOrder.set(i);
4363      } else if ((idx / 4) == BestHiQuad) {
4364        MaskV.push_back((idx & 3) + 4);
4365        InOrder.set(i);
4366      } else {
4367        MaskV.push_back(-1);
4368      }
4369    }
4370    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4371                                &MaskV[0]);
4372  }
4373
4374  // In case BestHi & BestLo were both -1, which means each quadword has a word
4375  // from each of the four input quadwords, calculate the InOrder bitvector now
4376  // before falling through to the insert/extract cleanup.
4377  if (BestLoQuad == -1 && BestHiQuad == -1) {
4378    NewV = V1;
4379    for (int i = 0; i != 8; ++i)
4380      if (MaskVals[i] < 0 || MaskVals[i] == i)
4381        InOrder.set(i);
4382  }
4383
4384  // The other elements are put in the right place using pextrw and pinsrw.
4385  for (unsigned i = 0; i != 8; ++i) {
4386    if (InOrder[i])
4387      continue;
4388    int EltIdx = MaskVals[i];
4389    if (EltIdx < 0)
4390      continue;
4391    SDValue ExtOp = (EltIdx < 8)
4392    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4393                  DAG.getIntPtrConstant(EltIdx))
4394    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4395                  DAG.getIntPtrConstant(EltIdx - 8));
4396    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4397                       DAG.getIntPtrConstant(i));
4398  }
4399  return NewV;
4400}
4401
4402// v16i8 shuffles - Prefer shuffles in the following order:
4403// 1. [ssse3] 1 x pshufb
4404// 2. [ssse3] 2 x pshufb + 1 x por
4405// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4406static
4407SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4408                                 SelectionDAG &DAG,
4409                                 const X86TargetLowering &TLI) {
4410  SDValue V1 = SVOp->getOperand(0);
4411  SDValue V2 = SVOp->getOperand(1);
4412  DebugLoc dl = SVOp->getDebugLoc();
4413  SmallVector<int, 16> MaskVals;
4414  SVOp->getMask(MaskVals);
4415
4416  // If we have SSSE3, case 1 is generated when all result bytes come from
4417  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4418  // present, fall back to case 3.
4419  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4420  bool V1Only = true;
4421  bool V2Only = true;
4422  for (unsigned i = 0; i < 16; ++i) {
4423    int EltIdx = MaskVals[i];
4424    if (EltIdx < 0)
4425      continue;
4426    if (EltIdx < 16)
4427      V2Only = false;
4428    else
4429      V1Only = false;
4430  }
4431
4432  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4433  if (TLI.getSubtarget()->hasSSSE3()) {
4434    SmallVector<SDValue,16> pshufbMask;
4435
4436    // If all result elements are from one input vector, then only translate
4437    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4438    //
4439    // Otherwise, we have elements from both input vectors, and must zero out
4440    // elements that come from V2 in the first mask, and V1 in the second mask
4441    // so that we can OR them together.
4442    bool TwoInputs = !(V1Only || V2Only);
4443    for (unsigned i = 0; i != 16; ++i) {
4444      int EltIdx = MaskVals[i];
4445      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4446        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4447        continue;
4448      }
4449      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4450    }
4451    // If all the elements are from V2, assign it to V1 and return after
4452    // building the first pshufb.
4453    if (V2Only)
4454      V1 = V2;
4455    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4456                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4457                                 MVT::v16i8, &pshufbMask[0], 16));
4458    if (!TwoInputs)
4459      return V1;
4460
4461    // Calculate the shuffle mask for the second input, shuffle it, and
4462    // OR it with the first shuffled input.
4463    pshufbMask.clear();
4464    for (unsigned i = 0; i != 16; ++i) {
4465      int EltIdx = MaskVals[i];
4466      if (EltIdx < 16) {
4467        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4468        continue;
4469      }
4470      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4471    }
4472    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4473                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4474                                 MVT::v16i8, &pshufbMask[0], 16));
4475    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4476  }
4477
4478  // No SSSE3 - Calculate in place words and then fix all out of place words
4479  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4480  // the 16 different words that comprise the two doublequadword input vectors.
4481  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4482  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4483  SDValue NewV = V2Only ? V2 : V1;
4484  for (int i = 0; i != 8; ++i) {
4485    int Elt0 = MaskVals[i*2];
4486    int Elt1 = MaskVals[i*2+1];
4487
4488    // This word of the result is all undef, skip it.
4489    if (Elt0 < 0 && Elt1 < 0)
4490      continue;
4491
4492    // This word of the result is already in the correct place, skip it.
4493    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4494      continue;
4495    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4496      continue;
4497
4498    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4499    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4500    SDValue InsElt;
4501
4502    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4503    // using a single extract together, load it and store it.
4504    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4505      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4506                           DAG.getIntPtrConstant(Elt1 / 2));
4507      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4508                        DAG.getIntPtrConstant(i));
4509      continue;
4510    }
4511
4512    // If Elt1 is defined, extract it from the appropriate source.  If the
4513    // source byte is not also odd, shift the extracted word left 8 bits
4514    // otherwise clear the bottom 8 bits if we need to do an or.
4515    if (Elt1 >= 0) {
4516      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4517                           DAG.getIntPtrConstant(Elt1 / 2));
4518      if ((Elt1 & 1) == 0)
4519        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4520                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4521      else if (Elt0 >= 0)
4522        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4523                             DAG.getConstant(0xFF00, MVT::i16));
4524    }
4525    // If Elt0 is defined, extract it from the appropriate source.  If the
4526    // source byte is not also even, shift the extracted word right 8 bits. If
4527    // Elt1 was also defined, OR the extracted values together before
4528    // inserting them in the result.
4529    if (Elt0 >= 0) {
4530      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4531                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4532      if ((Elt0 & 1) != 0)
4533        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4534                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4535      else if (Elt1 >= 0)
4536        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4537                             DAG.getConstant(0x00FF, MVT::i16));
4538      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4539                         : InsElt0;
4540    }
4541    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4542                       DAG.getIntPtrConstant(i));
4543  }
4544  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4545}
4546
4547/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4548/// ones, or rewriting v4i32 / v2i32 as 2 wide ones if possible. This can be
4549/// done when every pair / quad of shuffle mask elements point to elements in
4550/// the right sequence. e.g.
4551/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4552static
4553SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4554                                 SelectionDAG &DAG,
4555                                 const TargetLowering &TLI, DebugLoc dl) {
4556  EVT VT = SVOp->getValueType(0);
4557  SDValue V1 = SVOp->getOperand(0);
4558  SDValue V2 = SVOp->getOperand(1);
4559  unsigned NumElems = VT.getVectorNumElements();
4560  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4561  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
4562  EVT NewVT = MaskVT;
4563  switch (VT.getSimpleVT().SimpleTy) {
4564  default: assert(false && "Unexpected!");
4565  case MVT::v4f32: NewVT = MVT::v2f64; break;
4566  case MVT::v4i32: NewVT = MVT::v2i64; break;
4567  case MVT::v8i16: NewVT = MVT::v4i32; break;
4568  case MVT::v16i8: NewVT = MVT::v4i32; break;
4569  }
4570
4571  if (NewWidth == 2) {
4572    if (VT.isInteger())
4573      NewVT = MVT::v2i64;
4574    else
4575      NewVT = MVT::v2f64;
4576  }
4577  int Scale = NumElems / NewWidth;
4578  SmallVector<int, 8> MaskVec;
4579  for (unsigned i = 0; i < NumElems; i += Scale) {
4580    int StartIdx = -1;
4581    for (int j = 0; j < Scale; ++j) {
4582      int EltIdx = SVOp->getMaskElt(i+j);
4583      if (EltIdx < 0)
4584        continue;
4585      if (StartIdx == -1)
4586        StartIdx = EltIdx - (EltIdx % Scale);
4587      if (EltIdx != StartIdx + j)
4588        return SDValue();
4589    }
4590    if (StartIdx == -1)
4591      MaskVec.push_back(-1);
4592    else
4593      MaskVec.push_back(StartIdx / Scale);
4594  }
4595
4596  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4597  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4598  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4599}
4600
4601/// getVZextMovL - Return a zero-extending vector move low node.
4602///
4603static SDValue getVZextMovL(EVT VT, EVT OpVT,
4604                            SDValue SrcOp, SelectionDAG &DAG,
4605                            const X86Subtarget *Subtarget, DebugLoc dl) {
4606  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4607    LoadSDNode *LD = NULL;
4608    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4609      LD = dyn_cast<LoadSDNode>(SrcOp);
4610    if (!LD) {
4611      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4612      // instead.
4613      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4614      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4615          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4616          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4617          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4618        // PR2108
4619        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4620        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4621                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4622                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4623                                                   OpVT,
4624                                                   SrcOp.getOperand(0)
4625                                                          .getOperand(0))));
4626      }
4627    }
4628  }
4629
4630  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4631                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4632                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4633                                             OpVT, SrcOp)));
4634}
4635
4636/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4637/// shuffles.
4638static SDValue
4639LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4640  SDValue V1 = SVOp->getOperand(0);
4641  SDValue V2 = SVOp->getOperand(1);
4642  DebugLoc dl = SVOp->getDebugLoc();
4643  EVT VT = SVOp->getValueType(0);
4644
4645  SmallVector<std::pair<int, int>, 8> Locs;
4646  Locs.resize(4);
4647  SmallVector<int, 8> Mask1(4U, -1);
4648  SmallVector<int, 8> PermMask;
4649  SVOp->getMask(PermMask);
4650
4651  unsigned NumHi = 0;
4652  unsigned NumLo = 0;
4653  for (unsigned i = 0; i != 4; ++i) {
4654    int Idx = PermMask[i];
4655    if (Idx < 0) {
4656      Locs[i] = std::make_pair(-1, -1);
4657    } else {
4658      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4659      if (Idx < 4) {
4660        Locs[i] = std::make_pair(0, NumLo);
4661        Mask1[NumLo] = Idx;
4662        NumLo++;
4663      } else {
4664        Locs[i] = std::make_pair(1, NumHi);
4665        if (2+NumHi < 4)
4666          Mask1[2+NumHi] = Idx;
4667        NumHi++;
4668      }
4669    }
4670  }
4671
4672  if (NumLo <= 2 && NumHi <= 2) {
4673    // If no more than two elements come from either vector. This can be
4674    // implemented with two shuffles. First shuffle gather the elements.
4675    // The second shuffle, which takes the first shuffle as both of its
4676    // vector operands, put the elements into the right order.
4677    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4678
4679    SmallVector<int, 8> Mask2(4U, -1);
4680
4681    for (unsigned i = 0; i != 4; ++i) {
4682      if (Locs[i].first == -1)
4683        continue;
4684      else {
4685        unsigned Idx = (i < 2) ? 0 : 4;
4686        Idx += Locs[i].first * 2 + Locs[i].second;
4687        Mask2[i] = Idx;
4688      }
4689    }
4690
4691    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4692  } else if (NumLo == 3 || NumHi == 3) {
4693    // Otherwise, we must have three elements from one vector, call it X, and
4694    // one element from the other, call it Y.  First, use a shufps to build an
4695    // intermediate vector with the one element from Y and the element from X
4696    // that will be in the same half in the final destination (the indexes don't
4697    // matter). Then, use a shufps to build the final vector, taking the half
4698    // containing the element from Y from the intermediate, and the other half
4699    // from X.
4700    if (NumHi == 3) {
4701      // Normalize it so the 3 elements come from V1.
4702      CommuteVectorShuffleMask(PermMask, VT);
4703      std::swap(V1, V2);
4704    }
4705
4706    // Find the element from V2.
4707    unsigned HiIndex;
4708    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4709      int Val = PermMask[HiIndex];
4710      if (Val < 0)
4711        continue;
4712      if (Val >= 4)
4713        break;
4714    }
4715
4716    Mask1[0] = PermMask[HiIndex];
4717    Mask1[1] = -1;
4718    Mask1[2] = PermMask[HiIndex^1];
4719    Mask1[3] = -1;
4720    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4721
4722    if (HiIndex >= 2) {
4723      Mask1[0] = PermMask[0];
4724      Mask1[1] = PermMask[1];
4725      Mask1[2] = HiIndex & 1 ? 6 : 4;
4726      Mask1[3] = HiIndex & 1 ? 4 : 6;
4727      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4728    } else {
4729      Mask1[0] = HiIndex & 1 ? 2 : 0;
4730      Mask1[1] = HiIndex & 1 ? 0 : 2;
4731      Mask1[2] = PermMask[2];
4732      Mask1[3] = PermMask[3];
4733      if (Mask1[2] >= 0)
4734        Mask1[2] += 4;
4735      if (Mask1[3] >= 0)
4736        Mask1[3] += 4;
4737      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4738    }
4739  }
4740
4741  // Break it into (shuffle shuffle_hi, shuffle_lo).
4742  Locs.clear();
4743  SmallVector<int,8> LoMask(4U, -1);
4744  SmallVector<int,8> HiMask(4U, -1);
4745
4746  SmallVector<int,8> *MaskPtr = &LoMask;
4747  unsigned MaskIdx = 0;
4748  unsigned LoIdx = 0;
4749  unsigned HiIdx = 2;
4750  for (unsigned i = 0; i != 4; ++i) {
4751    if (i == 2) {
4752      MaskPtr = &HiMask;
4753      MaskIdx = 1;
4754      LoIdx = 0;
4755      HiIdx = 2;
4756    }
4757    int Idx = PermMask[i];
4758    if (Idx < 0) {
4759      Locs[i] = std::make_pair(-1, -1);
4760    } else if (Idx < 4) {
4761      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4762      (*MaskPtr)[LoIdx] = Idx;
4763      LoIdx++;
4764    } else {
4765      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4766      (*MaskPtr)[HiIdx] = Idx;
4767      HiIdx++;
4768    }
4769  }
4770
4771  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4772  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4773  SmallVector<int, 8> MaskOps;
4774  for (unsigned i = 0; i != 4; ++i) {
4775    if (Locs[i].first == -1) {
4776      MaskOps.push_back(-1);
4777    } else {
4778      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4779      MaskOps.push_back(Idx);
4780    }
4781  }
4782  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4783}
4784
4785SDValue
4786X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
4787  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4788  SDValue V1 = Op.getOperand(0);
4789  SDValue V2 = Op.getOperand(1);
4790  EVT VT = Op.getValueType();
4791  DebugLoc dl = Op.getDebugLoc();
4792  unsigned NumElems = VT.getVectorNumElements();
4793  bool isMMX = VT.getSizeInBits() == 64;
4794  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4795  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4796  bool V1IsSplat = false;
4797  bool V2IsSplat = false;
4798
4799  if (isZeroShuffle(SVOp))
4800    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4801
4802  // Promote splats to v4f32.
4803  if (SVOp->isSplat()) {
4804    if (isMMX || NumElems < 4)
4805      return Op;
4806    return PromoteSplat(SVOp, DAG);
4807  }
4808
4809  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4810  // do it!
4811  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4812    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4813    if (NewOp.getNode())
4814      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4815                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4816  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4817    // FIXME: Figure out a cleaner way to do this.
4818    // Try to make use of movq to zero out the top part.
4819    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4820      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4821      if (NewOp.getNode()) {
4822        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4823          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4824                              DAG, Subtarget, dl);
4825      }
4826    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4827      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4828      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4829        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4830                            DAG, Subtarget, dl);
4831    }
4832  }
4833
4834  if (X86::isPSHUFDMask(SVOp))
4835    return Op;
4836
4837  // Check if this can be converted into a logical shift.
4838  bool isLeft = false;
4839  unsigned ShAmt = 0;
4840  SDValue ShVal;
4841  bool isShift = getSubtarget()->hasSSE2() &&
4842    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4843  if (isShift && ShVal.hasOneUse()) {
4844    // If the shifted value has multiple uses, it may be cheaper to use
4845    // v_set0 + movlhps or movhlps, etc.
4846    EVT EltVT = VT.getVectorElementType();
4847    ShAmt *= EltVT.getSizeInBits();
4848    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4849  }
4850
4851  if (X86::isMOVLMask(SVOp)) {
4852    if (V1IsUndef)
4853      return V2;
4854    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4855      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4856    if (!isMMX)
4857      return Op;
4858  }
4859
4860  // FIXME: fold these into legal mask.
4861  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4862                 X86::isMOVSLDUPMask(SVOp) ||
4863                 X86::isMOVHLPSMask(SVOp) ||
4864                 X86::isMOVLHPSMask(SVOp) ||
4865                 X86::isMOVLPMask(SVOp)))
4866    return Op;
4867
4868  if (ShouldXformToMOVHLPS(SVOp) ||
4869      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4870    return CommuteVectorShuffle(SVOp, DAG);
4871
4872  if (isShift) {
4873    // No better options. Use a vshl / vsrl.
4874    EVT EltVT = VT.getVectorElementType();
4875    ShAmt *= EltVT.getSizeInBits();
4876    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4877  }
4878
4879  bool Commuted = false;
4880  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4881  // 1,1,1,1 -> v8i16 though.
4882  V1IsSplat = isSplatVector(V1.getNode());
4883  V2IsSplat = isSplatVector(V2.getNode());
4884
4885  // Canonicalize the splat or undef, if present, to be on the RHS.
4886  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4887    Op = CommuteVectorShuffle(SVOp, DAG);
4888    SVOp = cast<ShuffleVectorSDNode>(Op);
4889    V1 = SVOp->getOperand(0);
4890    V2 = SVOp->getOperand(1);
4891    std::swap(V1IsSplat, V2IsSplat);
4892    std::swap(V1IsUndef, V2IsUndef);
4893    Commuted = true;
4894  }
4895
4896  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4897    // Shuffling low element of v1 into undef, just return v1.
4898    if (V2IsUndef)
4899      return V1;
4900    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4901    // the instruction selector will not match, so get a canonical MOVL with
4902    // swapped operands to undo the commute.
4903    return getMOVL(DAG, dl, VT, V2, V1);
4904  }
4905
4906  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4907      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4908      X86::isUNPCKLMask(SVOp) ||
4909      X86::isUNPCKHMask(SVOp))
4910    return Op;
4911
4912  if (V2IsSplat) {
4913    // Normalize mask so all entries that point to V2 points to its first
4914    // element then try to match unpck{h|l} again. If match, return a
4915    // new vector_shuffle with the corrected mask.
4916    SDValue NewMask = NormalizeMask(SVOp, DAG);
4917    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4918    if (NSVOp != SVOp) {
4919      if (X86::isUNPCKLMask(NSVOp, true)) {
4920        return NewMask;
4921      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4922        return NewMask;
4923      }
4924    }
4925  }
4926
4927  if (Commuted) {
4928    // Commute is back and try unpck* again.
4929    // FIXME: this seems wrong.
4930    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4931    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4932    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4933        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4934        X86::isUNPCKLMask(NewSVOp) ||
4935        X86::isUNPCKHMask(NewSVOp))
4936      return NewOp;
4937  }
4938
4939  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4940
4941  // Normalize the node to match x86 shuffle ops if needed
4942  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4943    return CommuteVectorShuffle(SVOp, DAG);
4944
4945  // Check for legal shuffle and return?
4946  SmallVector<int, 16> PermMask;
4947  SVOp->getMask(PermMask);
4948  if (isShuffleMaskLegal(PermMask, VT))
4949    return Op;
4950
4951  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4952  if (VT == MVT::v8i16) {
4953    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
4954    if (NewOp.getNode())
4955      return NewOp;
4956  }
4957
4958  if (VT == MVT::v16i8) {
4959    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4960    if (NewOp.getNode())
4961      return NewOp;
4962  }
4963
4964  // Handle all 4 wide cases with a number of shuffles except for MMX.
4965  if (NumElems == 4 && !isMMX)
4966    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4967
4968  return SDValue();
4969}
4970
4971SDValue
4972X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4973                                                SelectionDAG &DAG) const {
4974  EVT VT = Op.getValueType();
4975  DebugLoc dl = Op.getDebugLoc();
4976  if (VT.getSizeInBits() == 8) {
4977    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4978                                    Op.getOperand(0), Op.getOperand(1));
4979    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4980                                    DAG.getValueType(VT));
4981    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4982  } else if (VT.getSizeInBits() == 16) {
4983    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4984    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4985    if (Idx == 0)
4986      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4987                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4988                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4989                                                 MVT::v4i32,
4990                                                 Op.getOperand(0)),
4991                                     Op.getOperand(1)));
4992    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4993                                    Op.getOperand(0), Op.getOperand(1));
4994    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4995                                    DAG.getValueType(VT));
4996    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4997  } else if (VT == MVT::f32) {
4998    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4999    // the result back to FR32 register. It's only worth matching if the
5000    // result has a single use which is a store or a bitcast to i32.  And in
5001    // the case of a store, it's not worth it if the index is a constant 0,
5002    // because a MOVSSmr can be used instead, which is smaller and faster.
5003    if (!Op.hasOneUse())
5004      return SDValue();
5005    SDNode *User = *Op.getNode()->use_begin();
5006    if ((User->getOpcode() != ISD::STORE ||
5007         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5008          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5009        (User->getOpcode() != ISD::BIT_CONVERT ||
5010         User->getValueType(0) != MVT::i32))
5011      return SDValue();
5012    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5013                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
5014                                              Op.getOperand(0)),
5015                                              Op.getOperand(1));
5016    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
5017  } else if (VT == MVT::i32) {
5018    // ExtractPS works with constant index.
5019    if (isa<ConstantSDNode>(Op.getOperand(1)))
5020      return Op;
5021  }
5022  return SDValue();
5023}
5024
5025
5026SDValue
5027X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5028                                           SelectionDAG &DAG) const {
5029  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5030    return SDValue();
5031
5032  if (Subtarget->hasSSE41()) {
5033    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
5034    if (Res.getNode())
5035      return Res;
5036  }
5037
5038  EVT VT = Op.getValueType();
5039  DebugLoc dl = Op.getDebugLoc();
5040  // TODO: handle v16i8.
5041  if (VT.getSizeInBits() == 16) {
5042    SDValue Vec = Op.getOperand(0);
5043    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5044    if (Idx == 0)
5045      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5046                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5047                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5048                                                 MVT::v4i32, Vec),
5049                                     Op.getOperand(1)));
5050    // Transform it so it match pextrw which produces a 32-bit result.
5051    EVT EltVT = MVT::i32;
5052    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
5053                                    Op.getOperand(0), Op.getOperand(1));
5054    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
5055                                    DAG.getValueType(VT));
5056    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5057  } else if (VT.getSizeInBits() == 32) {
5058    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5059    if (Idx == 0)
5060      return Op;
5061
5062    // SHUFPS the element to the lowest double word, then movss.
5063    int Mask[4] = { Idx, -1, -1, -1 };
5064    EVT VVT = Op.getOperand(0).getValueType();
5065    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5066                                       DAG.getUNDEF(VVT), Mask);
5067    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5068                       DAG.getIntPtrConstant(0));
5069  } else if (VT.getSizeInBits() == 64) {
5070    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
5071    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
5072    //        to match extract_elt for f64.
5073    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5074    if (Idx == 0)
5075      return Op;
5076
5077    // UNPCKHPD the element to the lowest double word, then movsd.
5078    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
5079    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
5080    int Mask[2] = { 1, -1 };
5081    EVT VVT = Op.getOperand(0).getValueType();
5082    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5083                                       DAG.getUNDEF(VVT), Mask);
5084    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5085                       DAG.getIntPtrConstant(0));
5086  }
5087
5088  return SDValue();
5089}
5090
5091SDValue
5092X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
5093                                               SelectionDAG &DAG) const {
5094  EVT VT = Op.getValueType();
5095  EVT EltVT = VT.getVectorElementType();
5096  DebugLoc dl = Op.getDebugLoc();
5097
5098  SDValue N0 = Op.getOperand(0);
5099  SDValue N1 = Op.getOperand(1);
5100  SDValue N2 = Op.getOperand(2);
5101
5102  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
5103      isa<ConstantSDNode>(N2)) {
5104    unsigned Opc;
5105    if (VT == MVT::v8i16)
5106      Opc = X86ISD::PINSRW;
5107    else if (VT == MVT::v4i16)
5108      Opc = X86ISD::MMX_PINSRW;
5109    else if (VT == MVT::v16i8)
5110      Opc = X86ISD::PINSRB;
5111    else
5112      Opc = X86ISD::PINSRB;
5113
5114    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5115    // argument.
5116    if (N1.getValueType() != MVT::i32)
5117      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5118    if (N2.getValueType() != MVT::i32)
5119      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5120    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
5121  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
5122    // Bits [7:6] of the constant are the source select.  This will always be
5123    //  zero here.  The DAG Combiner may combine an extract_elt index into these
5124    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
5125    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
5126    // Bits [5:4] of the constant are the destination select.  This is the
5127    //  value of the incoming immediate.
5128    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
5129    //   combine either bitwise AND or insert of float 0.0 to set these bits.
5130    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
5131    // Create this as a scalar to vector..
5132    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
5133    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
5134  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
5135    // PINSR* works with constant index.
5136    return Op;
5137  }
5138  return SDValue();
5139}
5140
5141SDValue
5142X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5143  EVT VT = Op.getValueType();
5144  EVT EltVT = VT.getVectorElementType();
5145
5146  if (Subtarget->hasSSE41())
5147    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5148
5149  if (EltVT == MVT::i8)
5150    return SDValue();
5151
5152  DebugLoc dl = Op.getDebugLoc();
5153  SDValue N0 = Op.getOperand(0);
5154  SDValue N1 = Op.getOperand(1);
5155  SDValue N2 = Op.getOperand(2);
5156
5157  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5158    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5159    // as its second argument.
5160    if (N1.getValueType() != MVT::i32)
5161      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5162    if (N2.getValueType() != MVT::i32)
5163      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5164    return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW,
5165                       dl, VT, N0, N1, N2);
5166  }
5167  return SDValue();
5168}
5169
5170SDValue
5171X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5172  DebugLoc dl = Op.getDebugLoc();
5173
5174  if (Op.getValueType() == MVT::v1i64 &&
5175      Op.getOperand(0).getValueType() == MVT::i64)
5176    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5177
5178  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5179  EVT VT = MVT::v2i32;
5180  switch (Op.getValueType().getSimpleVT().SimpleTy) {
5181  default: break;
5182  case MVT::v16i8:
5183  case MVT::v8i16:
5184    VT = MVT::v4i32;
5185    break;
5186  }
5187  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5188                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
5189}
5190
5191// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5192// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5193// one of the above mentioned nodes. It has to be wrapped because otherwise
5194// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5195// be used to form addressing mode. These wrapped nodes will be selected
5196// into MOV32ri.
5197SDValue
5198X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5199  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5200
5201  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5202  // global base reg.
5203  unsigned char OpFlag = 0;
5204  unsigned WrapperKind = X86ISD::Wrapper;
5205  CodeModel::Model M = getTargetMachine().getCodeModel();
5206
5207  if (Subtarget->isPICStyleRIPRel() &&
5208      (M == CodeModel::Small || M == CodeModel::Kernel))
5209    WrapperKind = X86ISD::WrapperRIP;
5210  else if (Subtarget->isPICStyleGOT())
5211    OpFlag = X86II::MO_GOTOFF;
5212  else if (Subtarget->isPICStyleStubPIC())
5213    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5214
5215  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5216                                             CP->getAlignment(),
5217                                             CP->getOffset(), OpFlag);
5218  DebugLoc DL = CP->getDebugLoc();
5219  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5220  // With PIC, the address is actually $g + Offset.
5221  if (OpFlag) {
5222    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5223                         DAG.getNode(X86ISD::GlobalBaseReg,
5224                                     DebugLoc(), getPointerTy()),
5225                         Result);
5226  }
5227
5228  return Result;
5229}
5230
5231SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5232  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5233
5234  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5235  // global base reg.
5236  unsigned char OpFlag = 0;
5237  unsigned WrapperKind = X86ISD::Wrapper;
5238  CodeModel::Model M = getTargetMachine().getCodeModel();
5239
5240  if (Subtarget->isPICStyleRIPRel() &&
5241      (M == CodeModel::Small || M == CodeModel::Kernel))
5242    WrapperKind = X86ISD::WrapperRIP;
5243  else if (Subtarget->isPICStyleGOT())
5244    OpFlag = X86II::MO_GOTOFF;
5245  else if (Subtarget->isPICStyleStubPIC())
5246    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5247
5248  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5249                                          OpFlag);
5250  DebugLoc DL = JT->getDebugLoc();
5251  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5252
5253  // With PIC, the address is actually $g + Offset.
5254  if (OpFlag) {
5255    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5256                         DAG.getNode(X86ISD::GlobalBaseReg,
5257                                     DebugLoc(), getPointerTy()),
5258                         Result);
5259  }
5260
5261  return Result;
5262}
5263
5264SDValue
5265X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
5266  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5267
5268  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5269  // global base reg.
5270  unsigned char OpFlag = 0;
5271  unsigned WrapperKind = X86ISD::Wrapper;
5272  CodeModel::Model M = getTargetMachine().getCodeModel();
5273
5274  if (Subtarget->isPICStyleRIPRel() &&
5275      (M == CodeModel::Small || M == CodeModel::Kernel))
5276    WrapperKind = X86ISD::WrapperRIP;
5277  else if (Subtarget->isPICStyleGOT())
5278    OpFlag = X86II::MO_GOTOFF;
5279  else if (Subtarget->isPICStyleStubPIC())
5280    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5281
5282  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5283
5284  DebugLoc DL = Op.getDebugLoc();
5285  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5286
5287
5288  // With PIC, the address is actually $g + Offset.
5289  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5290      !Subtarget->is64Bit()) {
5291    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5292                         DAG.getNode(X86ISD::GlobalBaseReg,
5293                                     DebugLoc(), getPointerTy()),
5294                         Result);
5295  }
5296
5297  return Result;
5298}
5299
5300SDValue
5301X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
5302  // Create the TargetBlockAddressAddress node.
5303  unsigned char OpFlags =
5304    Subtarget->ClassifyBlockAddressReference();
5305  CodeModel::Model M = getTargetMachine().getCodeModel();
5306  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5307  DebugLoc dl = Op.getDebugLoc();
5308  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5309                                       /*isTarget=*/true, OpFlags);
5310
5311  if (Subtarget->isPICStyleRIPRel() &&
5312      (M == CodeModel::Small || M == CodeModel::Kernel))
5313    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5314  else
5315    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5316
5317  // With PIC, the address is actually $g + Offset.
5318  if (isGlobalRelativeToPICBase(OpFlags)) {
5319    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5320                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5321                         Result);
5322  }
5323
5324  return Result;
5325}
5326
5327SDValue
5328X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5329                                      int64_t Offset,
5330                                      SelectionDAG &DAG) const {
5331  // Create the TargetGlobalAddress node, folding in the constant
5332  // offset if it is legal.
5333  unsigned char OpFlags =
5334    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5335  CodeModel::Model M = getTargetMachine().getCodeModel();
5336  SDValue Result;
5337  if (OpFlags == X86II::MO_NO_FLAG &&
5338      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5339    // A direct static reference to a global.
5340    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
5341    Offset = 0;
5342  } else {
5343    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
5344  }
5345
5346  if (Subtarget->isPICStyleRIPRel() &&
5347      (M == CodeModel::Small || M == CodeModel::Kernel))
5348    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5349  else
5350    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5351
5352  // With PIC, the address is actually $g + Offset.
5353  if (isGlobalRelativeToPICBase(OpFlags)) {
5354    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5355                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5356                         Result);
5357  }
5358
5359  // For globals that require a load from a stub to get the address, emit the
5360  // load.
5361  if (isGlobalStubReference(OpFlags))
5362    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5363                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5364
5365  // If there was a non-zero offset that we didn't fold, create an explicit
5366  // addition for it.
5367  if (Offset != 0)
5368    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5369                         DAG.getConstant(Offset, getPointerTy()));
5370
5371  return Result;
5372}
5373
5374SDValue
5375X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
5376  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5377  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5378  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5379}
5380
5381static SDValue
5382GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5383           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5384           unsigned char OperandFlags) {
5385  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5386  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5387  DebugLoc dl = GA->getDebugLoc();
5388  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
5389                                           GA->getValueType(0),
5390                                           GA->getOffset(),
5391                                           OperandFlags);
5392  if (InFlag) {
5393    SDValue Ops[] = { Chain,  TGA, *InFlag };
5394    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5395  } else {
5396    SDValue Ops[]  = { Chain, TGA };
5397    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5398  }
5399
5400  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5401  MFI->setAdjustsStack(true);
5402
5403  SDValue Flag = Chain.getValue(1);
5404  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5405}
5406
5407// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5408static SDValue
5409LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5410                                const EVT PtrVT) {
5411  SDValue InFlag;
5412  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5413  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5414                                     DAG.getNode(X86ISD::GlobalBaseReg,
5415                                                 DebugLoc(), PtrVT), InFlag);
5416  InFlag = Chain.getValue(1);
5417
5418  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5419}
5420
5421// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5422static SDValue
5423LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5424                                const EVT PtrVT) {
5425  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5426                    X86::RAX, X86II::MO_TLSGD);
5427}
5428
5429// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5430// "local exec" model.
5431static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5432                                   const EVT PtrVT, TLSModel::Model model,
5433                                   bool is64Bit) {
5434  DebugLoc dl = GA->getDebugLoc();
5435  // Get the Thread Pointer
5436  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5437                             DebugLoc(), PtrVT,
5438                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5439                                             MVT::i32));
5440
5441  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5442                                      NULL, 0, false, false, 0);
5443
5444  unsigned char OperandFlags = 0;
5445  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5446  // initialexec.
5447  unsigned WrapperKind = X86ISD::Wrapper;
5448  if (model == TLSModel::LocalExec) {
5449    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5450  } else if (is64Bit) {
5451    assert(model == TLSModel::InitialExec);
5452    OperandFlags = X86II::MO_GOTTPOFF;
5453    WrapperKind = X86ISD::WrapperRIP;
5454  } else {
5455    assert(model == TLSModel::InitialExec);
5456    OperandFlags = X86II::MO_INDNTPOFF;
5457  }
5458
5459  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5460  // exec)
5461  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
5462                                           GA->getValueType(0),
5463                                           GA->getOffset(), OperandFlags);
5464  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5465
5466  if (model == TLSModel::InitialExec)
5467    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5468                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5469
5470  // The address of the thread local variable is the add of the thread
5471  // pointer with the offset of the variable.
5472  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5473}
5474
5475SDValue
5476X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
5477
5478  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5479  const GlobalValue *GV = GA->getGlobal();
5480
5481  if (Subtarget->isTargetELF()) {
5482    // TODO: implement the "local dynamic" model
5483    // TODO: implement the "initial exec"model for pic executables
5484
5485    // If GV is an alias then use the aliasee for determining
5486    // thread-localness.
5487    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5488      GV = GA->resolveAliasedGlobal(false);
5489
5490    TLSModel::Model model
5491      = getTLSModel(GV, getTargetMachine().getRelocationModel());
5492
5493    switch (model) {
5494      case TLSModel::GeneralDynamic:
5495      case TLSModel::LocalDynamic: // not implemented
5496        if (Subtarget->is64Bit())
5497          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5498        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5499
5500      case TLSModel::InitialExec:
5501      case TLSModel::LocalExec:
5502        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5503                                   Subtarget->is64Bit());
5504    }
5505  } else if (Subtarget->isTargetDarwin()) {
5506    // Darwin only has one model of TLS.  Lower to that.
5507    unsigned char OpFlag = 0;
5508    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
5509                           X86ISD::WrapperRIP : X86ISD::Wrapper;
5510
5511    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5512    // global base reg.
5513    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
5514                  !Subtarget->is64Bit();
5515    if (PIC32)
5516      OpFlag = X86II::MO_TLVP_PIC_BASE;
5517    else
5518      OpFlag = X86II::MO_TLVP;
5519    DebugLoc DL = Op.getDebugLoc();
5520    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
5521                                                getPointerTy(),
5522                                                GA->getOffset(), OpFlag);
5523    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5524
5525    // With PIC32, the address is actually $g + Offset.
5526    if (PIC32)
5527      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5528                           DAG.getNode(X86ISD::GlobalBaseReg,
5529                                       DebugLoc(), getPointerTy()),
5530                           Offset);
5531
5532    // Lowering the machine isd will make sure everything is in the right
5533    // location.
5534    SDValue Args[] = { Offset };
5535    SDValue Chain = DAG.getNode(X86ISD::TLSCALL, DL, MVT::Other, Args, 1);
5536
5537    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
5538    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5539    MFI->setAdjustsStack(true);
5540
5541    // And our return value (tls address) is in the standard call return value
5542    // location.
5543    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
5544    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
5545  }
5546
5547  assert(false &&
5548         "TLS not implemented for this target.");
5549
5550  llvm_unreachable("Unreachable");
5551  return SDValue();
5552}
5553
5554
5555/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5556/// take a 2 x i32 value to shift plus a shift amount.
5557SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
5558  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5559  EVT VT = Op.getValueType();
5560  unsigned VTBits = VT.getSizeInBits();
5561  DebugLoc dl = Op.getDebugLoc();
5562  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5563  SDValue ShOpLo = Op.getOperand(0);
5564  SDValue ShOpHi = Op.getOperand(1);
5565  SDValue ShAmt  = Op.getOperand(2);
5566  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5567                                     DAG.getConstant(VTBits - 1, MVT::i8))
5568                       : DAG.getConstant(0, VT);
5569
5570  SDValue Tmp2, Tmp3;
5571  if (Op.getOpcode() == ISD::SHL_PARTS) {
5572    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
5573    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5574  } else {
5575    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
5576    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
5577  }
5578
5579  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
5580                                DAG.getConstant(VTBits, MVT::i8));
5581  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
5582                             AndNode, DAG.getConstant(0, MVT::i8));
5583
5584  SDValue Hi, Lo;
5585  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5586  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
5587  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
5588
5589  if (Op.getOpcode() == ISD::SHL_PARTS) {
5590    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5591    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5592  } else {
5593    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5594    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5595  }
5596
5597  SDValue Ops[2] = { Lo, Hi };
5598  return DAG.getMergeValues(Ops, 2, dl);
5599}
5600
5601SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
5602                                           SelectionDAG &DAG) const {
5603  EVT SrcVT = Op.getOperand(0).getValueType();
5604
5605  if (SrcVT.isVector()) {
5606    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
5607      return Op;
5608    }
5609    return SDValue();
5610  }
5611
5612  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
5613         "Unknown SINT_TO_FP to lower!");
5614
5615  // These are really Legal; return the operand so the caller accepts it as
5616  // Legal.
5617  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
5618    return Op;
5619  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
5620      Subtarget->is64Bit()) {
5621    return Op;
5622  }
5623
5624  DebugLoc dl = Op.getDebugLoc();
5625  unsigned Size = SrcVT.getSizeInBits()/8;
5626  MachineFunction &MF = DAG.getMachineFunction();
5627  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
5628  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5629  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5630                               StackSlot,
5631                               PseudoSourceValue::getFixedStack(SSFI), 0,
5632                               false, false, 0);
5633  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
5634}
5635
5636SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
5637                                     SDValue StackSlot,
5638                                     SelectionDAG &DAG) const {
5639  // Build the FILD
5640  DebugLoc dl = Op.getDebugLoc();
5641  SDVTList Tys;
5642  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5643  if (useSSE)
5644    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5645  else
5646    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5647  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
5648  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5649                               Tys, Ops, array_lengthof(Ops));
5650
5651  if (useSSE) {
5652    Chain = Result.getValue(1);
5653    SDValue InFlag = Result.getValue(2);
5654
5655    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5656    // shouldn't be necessary except that RFP cannot be live across
5657    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5658    MachineFunction &MF = DAG.getMachineFunction();
5659    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5660    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5661    Tys = DAG.getVTList(MVT::Other);
5662    SDValue Ops[] = {
5663      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
5664    };
5665    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
5666    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5667                         PseudoSourceValue::getFixedStack(SSFI), 0,
5668                         false, false, 0);
5669  }
5670
5671  return Result;
5672}
5673
5674// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5675SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
5676                                               SelectionDAG &DAG) const {
5677  // This algorithm is not obvious. Here it is in C code, more or less:
5678  /*
5679    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5680      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5681      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5682
5683      // Copy ints to xmm registers.
5684      __m128i xh = _mm_cvtsi32_si128( hi );
5685      __m128i xl = _mm_cvtsi32_si128( lo );
5686
5687      // Combine into low half of a single xmm register.
5688      __m128i x = _mm_unpacklo_epi32( xh, xl );
5689      __m128d d;
5690      double sd;
5691
5692      // Merge in appropriate exponents to give the integer bits the right
5693      // magnitude.
5694      x = _mm_unpacklo_epi32( x, exp );
5695
5696      // Subtract away the biases to deal with the IEEE-754 double precision
5697      // implicit 1.
5698      d = _mm_sub_pd( (__m128d) x, bias );
5699
5700      // All conversions up to here are exact. The correctly rounded result is
5701      // calculated using the current rounding mode using the following
5702      // horizontal add.
5703      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5704      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5705                                // store doesn't really need to be here (except
5706                                // maybe to zero the other double)
5707      return sd;
5708    }
5709  */
5710
5711  DebugLoc dl = Op.getDebugLoc();
5712  LLVMContext *Context = DAG.getContext();
5713
5714  // Build some magic constants.
5715  std::vector<Constant*> CV0;
5716  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5717  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5718  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5719  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5720  Constant *C0 = ConstantVector::get(CV0);
5721  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5722
5723  std::vector<Constant*> CV1;
5724  CV1.push_back(
5725    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5726  CV1.push_back(
5727    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5728  Constant *C1 = ConstantVector::get(CV1);
5729  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5730
5731  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5732                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5733                                        Op.getOperand(0),
5734                                        DAG.getIntPtrConstant(1)));
5735  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5736                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5737                                        Op.getOperand(0),
5738                                        DAG.getIntPtrConstant(0)));
5739  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5740  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5741                              PseudoSourceValue::getConstantPool(), 0,
5742                              false, false, 16);
5743  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5744  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5745  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5746                              PseudoSourceValue::getConstantPool(), 0,
5747                              false, false, 16);
5748  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5749
5750  // Add the halves; easiest way is to swap them into another reg first.
5751  int ShufMask[2] = { 1, -1 };
5752  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5753                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5754  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5755  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5756                     DAG.getIntPtrConstant(0));
5757}
5758
5759// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5760SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
5761                                               SelectionDAG &DAG) const {
5762  DebugLoc dl = Op.getDebugLoc();
5763  // FP constant to bias correct the final result.
5764  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5765                                   MVT::f64);
5766
5767  // Load the 32-bit value into an XMM register.
5768  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5769                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5770                                         Op.getOperand(0),
5771                                         DAG.getIntPtrConstant(0)));
5772
5773  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5774                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5775                     DAG.getIntPtrConstant(0));
5776
5777  // Or the load with the bias.
5778  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5779                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5780                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5781                                                   MVT::v2f64, Load)),
5782                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5783                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5784                                                   MVT::v2f64, Bias)));
5785  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5786                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5787                   DAG.getIntPtrConstant(0));
5788
5789  // Subtract the bias.
5790  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5791
5792  // Handle final rounding.
5793  EVT DestVT = Op.getValueType();
5794
5795  if (DestVT.bitsLT(MVT::f64)) {
5796    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5797                       DAG.getIntPtrConstant(0));
5798  } else if (DestVT.bitsGT(MVT::f64)) {
5799    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5800  }
5801
5802  // Handle final rounding.
5803  return Sub;
5804}
5805
5806SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
5807                                           SelectionDAG &DAG) const {
5808  SDValue N0 = Op.getOperand(0);
5809  DebugLoc dl = Op.getDebugLoc();
5810
5811  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
5812  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5813  // the optimization here.
5814  if (DAG.SignBitIsZero(N0))
5815    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5816
5817  EVT SrcVT = N0.getValueType();
5818  EVT DstVT = Op.getValueType();
5819  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
5820    return LowerUINT_TO_FP_i64(Op, DAG);
5821  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
5822    return LowerUINT_TO_FP_i32(Op, DAG);
5823
5824  // Make a 64-bit buffer, and use it to build an FILD.
5825  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5826  if (SrcVT == MVT::i32) {
5827    SDValue WordOff = DAG.getConstant(4, getPointerTy());
5828    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5829                                     getPointerTy(), StackSlot, WordOff);
5830    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5831                                  StackSlot, NULL, 0, false, false, 0);
5832    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5833                                  OffsetSlot, NULL, 0, false, false, 0);
5834    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5835    return Fild;
5836  }
5837
5838  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
5839  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5840                                StackSlot, NULL, 0, false, false, 0);
5841  // For i64 source, we need to add the appropriate power of 2 if the input
5842  // was negative.  This is the same as the optimization in
5843  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
5844  // we must be careful to do the computation in x87 extended precision, not
5845  // in SSE. (The generic code can't know it's OK to do this, or how to.)
5846  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
5847  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
5848  SDValue Fild = DAG.getNode(X86ISD::FILD, dl, Tys, Ops, 3);
5849
5850  APInt FF(32, 0x5F800000ULL);
5851
5852  // Check whether the sign bit is set.
5853  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
5854                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
5855                                 ISD::SETLT);
5856
5857  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
5858  SDValue FudgePtr = DAG.getConstantPool(
5859                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
5860                                         getPointerTy());
5861
5862  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
5863  SDValue Zero = DAG.getIntPtrConstant(0);
5864  SDValue Four = DAG.getIntPtrConstant(4);
5865  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
5866                               Zero, Four);
5867  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
5868
5869  // Load the value out, extending it from f32 to f80.
5870  // FIXME: Avoid the extend by constructing the right constant pool?
5871  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(),
5872                                 FudgePtr, PseudoSourceValue::getConstantPool(),
5873                                 0, MVT::f32, false, false, 4);
5874  // Extend everything to 80 bits to force it to be done on x87.
5875  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
5876  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
5877}
5878
5879std::pair<SDValue,SDValue> X86TargetLowering::
5880FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
5881  DebugLoc dl = Op.getDebugLoc();
5882
5883  EVT DstTy = Op.getValueType();
5884
5885  if (!IsSigned) {
5886    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5887    DstTy = MVT::i64;
5888  }
5889
5890  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5891         DstTy.getSimpleVT() >= MVT::i16 &&
5892         "Unknown FP_TO_SINT to lower!");
5893
5894  // These are really Legal.
5895  if (DstTy == MVT::i32 &&
5896      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5897    return std::make_pair(SDValue(), SDValue());
5898  if (Subtarget->is64Bit() &&
5899      DstTy == MVT::i64 &&
5900      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5901    return std::make_pair(SDValue(), SDValue());
5902
5903  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5904  // stack slot.
5905  MachineFunction &MF = DAG.getMachineFunction();
5906  unsigned MemSize = DstTy.getSizeInBits()/8;
5907  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5908  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5909
5910  unsigned Opc;
5911  switch (DstTy.getSimpleVT().SimpleTy) {
5912  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5913  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5914  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5915  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5916  }
5917
5918  SDValue Chain = DAG.getEntryNode();
5919  SDValue Value = Op.getOperand(0);
5920  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5921    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5922    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5923                         PseudoSourceValue::getFixedStack(SSFI), 0,
5924                         false, false, 0);
5925    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5926    SDValue Ops[] = {
5927      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5928    };
5929    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5930    Chain = Value.getValue(1);
5931    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5932    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5933  }
5934
5935  // Build the FP_TO_INT*_IN_MEM
5936  SDValue Ops[] = { Chain, Value, StackSlot };
5937  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5938
5939  return std::make_pair(FIST, StackSlot);
5940}
5941
5942SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
5943                                           SelectionDAG &DAG) const {
5944  if (Op.getValueType().isVector()) {
5945    if (Op.getValueType() == MVT::v2i32 &&
5946        Op.getOperand(0).getValueType() == MVT::v2f64) {
5947      return Op;
5948    }
5949    return SDValue();
5950  }
5951
5952  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5953  SDValue FIST = Vals.first, StackSlot = Vals.second;
5954  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5955  if (FIST.getNode() == 0) return Op;
5956
5957  // Load the result.
5958  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5959                     FIST, StackSlot, NULL, 0, false, false, 0);
5960}
5961
5962SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
5963                                           SelectionDAG &DAG) const {
5964  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5965  SDValue FIST = Vals.first, StackSlot = Vals.second;
5966  assert(FIST.getNode() && "Unexpected failure");
5967
5968  // Load the result.
5969  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5970                     FIST, StackSlot, NULL, 0, false, false, 0);
5971}
5972
5973SDValue X86TargetLowering::LowerFABS(SDValue Op,
5974                                     SelectionDAG &DAG) const {
5975  LLVMContext *Context = DAG.getContext();
5976  DebugLoc dl = Op.getDebugLoc();
5977  EVT VT = Op.getValueType();
5978  EVT EltVT = VT;
5979  if (VT.isVector())
5980    EltVT = VT.getVectorElementType();
5981  std::vector<Constant*> CV;
5982  if (EltVT == MVT::f64) {
5983    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5984    CV.push_back(C);
5985    CV.push_back(C);
5986  } else {
5987    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5988    CV.push_back(C);
5989    CV.push_back(C);
5990    CV.push_back(C);
5991    CV.push_back(C);
5992  }
5993  Constant *C = ConstantVector::get(CV);
5994  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5995  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5996                             PseudoSourceValue::getConstantPool(), 0,
5997                             false, false, 16);
5998  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5999}
6000
6001SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
6002  LLVMContext *Context = DAG.getContext();
6003  DebugLoc dl = Op.getDebugLoc();
6004  EVT VT = Op.getValueType();
6005  EVT EltVT = VT;
6006  if (VT.isVector())
6007    EltVT = VT.getVectorElementType();
6008  std::vector<Constant*> CV;
6009  if (EltVT == MVT::f64) {
6010    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
6011    CV.push_back(C);
6012    CV.push_back(C);
6013  } else {
6014    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
6015    CV.push_back(C);
6016    CV.push_back(C);
6017    CV.push_back(C);
6018    CV.push_back(C);
6019  }
6020  Constant *C = ConstantVector::get(CV);
6021  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6022  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6023                             PseudoSourceValue::getConstantPool(), 0,
6024                             false, false, 16);
6025  if (VT.isVector()) {
6026    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6027                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
6028                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6029                                Op.getOperand(0)),
6030                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
6031  } else {
6032    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
6033  }
6034}
6035
6036SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6037  LLVMContext *Context = DAG.getContext();
6038  SDValue Op0 = Op.getOperand(0);
6039  SDValue Op1 = Op.getOperand(1);
6040  DebugLoc dl = Op.getDebugLoc();
6041  EVT VT = Op.getValueType();
6042  EVT SrcVT = Op1.getValueType();
6043
6044  // If second operand is smaller, extend it first.
6045  if (SrcVT.bitsLT(VT)) {
6046    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
6047    SrcVT = VT;
6048  }
6049  // And if it is bigger, shrink it first.
6050  if (SrcVT.bitsGT(VT)) {
6051    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
6052    SrcVT = VT;
6053  }
6054
6055  // At this point the operands and the result should have the same
6056  // type, and that won't be f80 since that is not custom lowered.
6057
6058  // First get the sign bit of second operand.
6059  std::vector<Constant*> CV;
6060  if (SrcVT == MVT::f64) {
6061    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
6062    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6063  } else {
6064    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
6065    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6066    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6067    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6068  }
6069  Constant *C = ConstantVector::get(CV);
6070  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6071  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
6072                              PseudoSourceValue::getConstantPool(), 0,
6073                              false, false, 16);
6074  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
6075
6076  // Shift sign bit right or left if the two operands have different types.
6077  if (SrcVT.bitsGT(VT)) {
6078    // Op0 is MVT::f32, Op1 is MVT::f64.
6079    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
6080    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
6081                          DAG.getConstant(32, MVT::i32));
6082    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
6083    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
6084                          DAG.getIntPtrConstant(0));
6085  }
6086
6087  // Clear first operand sign bit.
6088  CV.clear();
6089  if (VT == MVT::f64) {
6090    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
6091    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6092  } else {
6093    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
6094    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6095    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6096    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6097  }
6098  C = ConstantVector::get(CV);
6099  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6100  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6101                              PseudoSourceValue::getConstantPool(), 0,
6102                              false, false, 16);
6103  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
6104
6105  // Or the value with the sign bit.
6106  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
6107}
6108
6109/// Emit nodes that will be selected as "test Op0,Op0", or something
6110/// equivalent.
6111SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
6112                                    SelectionDAG &DAG) const {
6113  DebugLoc dl = Op.getDebugLoc();
6114
6115  // CF and OF aren't always set the way we want. Determine which
6116  // of these we need.
6117  bool NeedCF = false;
6118  bool NeedOF = false;
6119  switch (X86CC) {
6120  default: break;
6121  case X86::COND_A: case X86::COND_AE:
6122  case X86::COND_B: case X86::COND_BE:
6123    NeedCF = true;
6124    break;
6125  case X86::COND_G: case X86::COND_GE:
6126  case X86::COND_L: case X86::COND_LE:
6127  case X86::COND_O: case X86::COND_NO:
6128    NeedOF = true;
6129    break;
6130  }
6131
6132  // See if we can use the EFLAGS value from the operand instead of
6133  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6134  // we prove that the arithmetic won't overflow, we can't use OF or CF.
6135  if (Op.getResNo() != 0 || NeedOF || NeedCF)
6136    // Emit a CMP with 0, which is the TEST pattern.
6137    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6138                       DAG.getConstant(0, Op.getValueType()));
6139
6140  unsigned Opcode = 0;
6141  unsigned NumOperands = 0;
6142  switch (Op.getNode()->getOpcode()) {
6143  case ISD::ADD:
6144    // Due to an isel shortcoming, be conservative if this add is likely to be
6145    // selected as part of a load-modify-store instruction. When the root node
6146    // in a match is a store, isel doesn't know how to remap non-chain non-flag
6147    // uses of other nodes in the match, such as the ADD in this case. This
6148    // leads to the ADD being left around and reselected, with the result being
6149    // two adds in the output.  Alas, even if none our users are stores, that
6150    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
6151    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
6152    // climbing the DAG back to the root, and it doesn't seem to be worth the
6153    // effort.
6154    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6155           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6156      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
6157        goto default_case;
6158
6159    if (ConstantSDNode *C =
6160        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
6161      // An add of one will be selected as an INC.
6162      if (C->getAPIntValue() == 1) {
6163        Opcode = X86ISD::INC;
6164        NumOperands = 1;
6165        break;
6166      }
6167
6168      // An add of negative one (subtract of one) will be selected as a DEC.
6169      if (C->getAPIntValue().isAllOnesValue()) {
6170        Opcode = X86ISD::DEC;
6171        NumOperands = 1;
6172        break;
6173      }
6174    }
6175
6176    // Otherwise use a regular EFLAGS-setting add.
6177    Opcode = X86ISD::ADD;
6178    NumOperands = 2;
6179    break;
6180  case ISD::AND: {
6181    // If the primary and result isn't used, don't bother using X86ISD::AND,
6182    // because a TEST instruction will be better.
6183    bool NonFlagUse = false;
6184    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6185           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
6186      SDNode *User = *UI;
6187      unsigned UOpNo = UI.getOperandNo();
6188      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
6189        // Look pass truncate.
6190        UOpNo = User->use_begin().getOperandNo();
6191        User = *User->use_begin();
6192      }
6193
6194      if (User->getOpcode() != ISD::BRCOND &&
6195          User->getOpcode() != ISD::SETCC &&
6196          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
6197        NonFlagUse = true;
6198        break;
6199      }
6200    }
6201
6202    if (!NonFlagUse)
6203      break;
6204  }
6205    // FALL THROUGH
6206  case ISD::SUB:
6207  case ISD::OR:
6208  case ISD::XOR:
6209    // Due to the ISEL shortcoming noted above, be conservative if this op is
6210    // likely to be selected as part of a load-modify-store instruction.
6211    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6212           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6213      if (UI->getOpcode() == ISD::STORE)
6214        goto default_case;
6215
6216    // Otherwise use a regular EFLAGS-setting instruction.
6217    switch (Op.getNode()->getOpcode()) {
6218    default: llvm_unreachable("unexpected operator!");
6219    case ISD::SUB: Opcode = X86ISD::SUB; break;
6220    case ISD::OR:  Opcode = X86ISD::OR;  break;
6221    case ISD::XOR: Opcode = X86ISD::XOR; break;
6222    case ISD::AND: Opcode = X86ISD::AND; break;
6223    }
6224
6225    NumOperands = 2;
6226    break;
6227  case X86ISD::ADD:
6228  case X86ISD::SUB:
6229  case X86ISD::INC:
6230  case X86ISD::DEC:
6231  case X86ISD::OR:
6232  case X86ISD::XOR:
6233  case X86ISD::AND:
6234    return SDValue(Op.getNode(), 1);
6235  default:
6236  default_case:
6237    break;
6238  }
6239
6240  if (Opcode == 0)
6241    // Emit a CMP with 0, which is the TEST pattern.
6242    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6243                       DAG.getConstant(0, Op.getValueType()));
6244
6245  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
6246  SmallVector<SDValue, 4> Ops;
6247  for (unsigned i = 0; i != NumOperands; ++i)
6248    Ops.push_back(Op.getOperand(i));
6249
6250  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
6251  DAG.ReplaceAllUsesWith(Op, New);
6252  return SDValue(New.getNode(), 1);
6253}
6254
6255/// Emit nodes that will be selected as "cmp Op0,Op1", or something
6256/// equivalent.
6257SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6258                                   SelectionDAG &DAG) const {
6259  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6260    if (C->getAPIntValue() == 0)
6261      return EmitTest(Op0, X86CC, DAG);
6262
6263  DebugLoc dl = Op0.getDebugLoc();
6264  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6265}
6266
6267/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6268/// if it's possible.
6269SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
6270                                     DebugLoc dl, SelectionDAG &DAG) const {
6271  SDValue Op0 = And.getOperand(0);
6272  SDValue Op1 = And.getOperand(1);
6273  if (Op0.getOpcode() == ISD::TRUNCATE)
6274    Op0 = Op0.getOperand(0);
6275  if (Op1.getOpcode() == ISD::TRUNCATE)
6276    Op1 = Op1.getOperand(0);
6277
6278  SDValue LHS, RHS;
6279  if (Op1.getOpcode() == ISD::SHL)
6280    std::swap(Op0, Op1);
6281  if (Op0.getOpcode() == ISD::SHL) {
6282    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6283      if (And00C->getZExtValue() == 1) {
6284        // If we looked past a truncate, check that it's only truncating away
6285        // known zeros.
6286        unsigned BitWidth = Op0.getValueSizeInBits();
6287        unsigned AndBitWidth = And.getValueSizeInBits();
6288        if (BitWidth > AndBitWidth) {
6289          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
6290          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
6291          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
6292            return SDValue();
6293        }
6294        LHS = Op1;
6295        RHS = Op0.getOperand(1);
6296      }
6297  } else if (Op1.getOpcode() == ISD::Constant) {
6298    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6299    SDValue AndLHS = Op0;
6300    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6301      LHS = AndLHS.getOperand(0);
6302      RHS = AndLHS.getOperand(1);
6303    }
6304  }
6305
6306  if (LHS.getNode()) {
6307    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
6308    // instruction.  Since the shift amount is in-range-or-undefined, we know
6309    // that doing a bittest on the i32 value is ok.  We extend to i32 because
6310    // the encoding for the i16 version is larger than the i32 version.
6311    // Also promote i16 to i32 for performance / code size reason.
6312    if (LHS.getValueType() == MVT::i8 ||
6313        LHS.getValueType() == MVT::i16)
6314      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6315
6316    // If the operand types disagree, extend the shift amount to match.  Since
6317    // BT ignores high bits (like shifts) we can use anyextend.
6318    if (LHS.getValueType() != RHS.getValueType())
6319      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6320
6321    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6322    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6323    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6324                       DAG.getConstant(Cond, MVT::i8), BT);
6325  }
6326
6327  return SDValue();
6328}
6329
6330SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
6331  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
6332  SDValue Op0 = Op.getOperand(0);
6333  SDValue Op1 = Op.getOperand(1);
6334  DebugLoc dl = Op.getDebugLoc();
6335  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6336
6337  // Optimize to BT if possible.
6338  // Lower (X & (1 << N)) == 0 to BT(X, N).
6339  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
6340  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
6341  if (Op0.getOpcode() == ISD::AND &&
6342      Op0.hasOneUse() &&
6343      Op1.getOpcode() == ISD::Constant &&
6344      cast<ConstantSDNode>(Op1)->isNullValue() &&
6345      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6346    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
6347    if (NewSetCC.getNode())
6348      return NewSetCC;
6349  }
6350
6351  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
6352  if (Op0.getOpcode() == X86ISD::SETCC &&
6353      Op1.getOpcode() == ISD::Constant &&
6354      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
6355       cast<ConstantSDNode>(Op1)->isNullValue()) &&
6356      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6357    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
6358    bool Invert = (CC == ISD::SETNE) ^
6359      cast<ConstantSDNode>(Op1)->isNullValue();
6360    if (Invert)
6361      CCode = X86::GetOppositeBranchCondition(CCode);
6362    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6363                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
6364  }
6365
6366  bool isFP = Op1.getValueType().isFloatingPoint();
6367  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
6368  if (X86CC == X86::COND_INVALID)
6369    return SDValue();
6370
6371  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
6372
6373  // Use sbb x, x to materialize carry bit into a GPR.
6374  if (X86CC == X86::COND_B)
6375    return DAG.getNode(ISD::AND, dl, MVT::i8,
6376                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
6377                                   DAG.getConstant(X86CC, MVT::i8), Cond),
6378                       DAG.getConstant(1, MVT::i8));
6379
6380  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6381                     DAG.getConstant(X86CC, MVT::i8), Cond);
6382}
6383
6384SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
6385  SDValue Cond;
6386  SDValue Op0 = Op.getOperand(0);
6387  SDValue Op1 = Op.getOperand(1);
6388  SDValue CC = Op.getOperand(2);
6389  EVT VT = Op.getValueType();
6390  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6391  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6392  DebugLoc dl = Op.getDebugLoc();
6393
6394  if (isFP) {
6395    unsigned SSECC = 8;
6396    EVT VT0 = Op0.getValueType();
6397    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
6398    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
6399    bool Swap = false;
6400
6401    switch (SetCCOpcode) {
6402    default: break;
6403    case ISD::SETOEQ:
6404    case ISD::SETEQ:  SSECC = 0; break;
6405    case ISD::SETOGT:
6406    case ISD::SETGT: Swap = true; // Fallthrough
6407    case ISD::SETLT:
6408    case ISD::SETOLT: SSECC = 1; break;
6409    case ISD::SETOGE:
6410    case ISD::SETGE: Swap = true; // Fallthrough
6411    case ISD::SETLE:
6412    case ISD::SETOLE: SSECC = 2; break;
6413    case ISD::SETUO:  SSECC = 3; break;
6414    case ISD::SETUNE:
6415    case ISD::SETNE:  SSECC = 4; break;
6416    case ISD::SETULE: Swap = true;
6417    case ISD::SETUGE: SSECC = 5; break;
6418    case ISD::SETULT: Swap = true;
6419    case ISD::SETUGT: SSECC = 6; break;
6420    case ISD::SETO:   SSECC = 7; break;
6421    }
6422    if (Swap)
6423      std::swap(Op0, Op1);
6424
6425    // In the two special cases we can't handle, emit two comparisons.
6426    if (SSECC == 8) {
6427      if (SetCCOpcode == ISD::SETUEQ) {
6428        SDValue UNORD, EQ;
6429        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6430        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6431        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6432      }
6433      else if (SetCCOpcode == ISD::SETONE) {
6434        SDValue ORD, NEQ;
6435        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6436        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6437        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6438      }
6439      llvm_unreachable("Illegal FP comparison");
6440    }
6441    // Handle all other FP comparisons here.
6442    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6443  }
6444
6445  // We are handling one of the integer comparisons here.  Since SSE only has
6446  // GT and EQ comparisons for integer, swapping operands and multiple
6447  // operations may be required for some comparisons.
6448  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6449  bool Swap = false, Invert = false, FlipSigns = false;
6450
6451  switch (VT.getSimpleVT().SimpleTy) {
6452  default: break;
6453  case MVT::v8i8:
6454  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6455  case MVT::v4i16:
6456  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6457  case MVT::v2i32:
6458  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6459  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6460  }
6461
6462  switch (SetCCOpcode) {
6463  default: break;
6464  case ISD::SETNE:  Invert = true;
6465  case ISD::SETEQ:  Opc = EQOpc; break;
6466  case ISD::SETLT:  Swap = true;
6467  case ISD::SETGT:  Opc = GTOpc; break;
6468  case ISD::SETGE:  Swap = true;
6469  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6470  case ISD::SETULT: Swap = true;
6471  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6472  case ISD::SETUGE: Swap = true;
6473  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6474  }
6475  if (Swap)
6476    std::swap(Op0, Op1);
6477
6478  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6479  // bits of the inputs before performing those operations.
6480  if (FlipSigns) {
6481    EVT EltVT = VT.getVectorElementType();
6482    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6483                                      EltVT);
6484    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6485    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6486                                    SignBits.size());
6487    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6488    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6489  }
6490
6491  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6492
6493  // If the logical-not of the result is required, perform that now.
6494  if (Invert)
6495    Result = DAG.getNOT(dl, Result, VT);
6496
6497  return Result;
6498}
6499
6500// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6501static bool isX86LogicalCmp(SDValue Op) {
6502  unsigned Opc = Op.getNode()->getOpcode();
6503  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6504    return true;
6505  if (Op.getResNo() == 1 &&
6506      (Opc == X86ISD::ADD ||
6507       Opc == X86ISD::SUB ||
6508       Opc == X86ISD::SMUL ||
6509       Opc == X86ISD::UMUL ||
6510       Opc == X86ISD::INC ||
6511       Opc == X86ISD::DEC ||
6512       Opc == X86ISD::OR ||
6513       Opc == X86ISD::XOR ||
6514       Opc == X86ISD::AND))
6515    return true;
6516
6517  return false;
6518}
6519
6520SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
6521  bool addTest = true;
6522  SDValue Cond  = Op.getOperand(0);
6523  DebugLoc dl = Op.getDebugLoc();
6524  SDValue CC;
6525
6526  if (Cond.getOpcode() == ISD::SETCC) {
6527    SDValue NewCond = LowerSETCC(Cond, DAG);
6528    if (NewCond.getNode())
6529      Cond = NewCond;
6530  }
6531
6532  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6533  SDValue Op1 = Op.getOperand(1);
6534  SDValue Op2 = Op.getOperand(2);
6535  if (Cond.getOpcode() == X86ISD::SETCC &&
6536      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6537    SDValue Cmp = Cond.getOperand(1);
6538    if (Cmp.getOpcode() == X86ISD::CMP) {
6539      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6540      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6541      ConstantSDNode *RHSC =
6542        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6543      if (N1C && N1C->isAllOnesValue() &&
6544          N2C && N2C->isNullValue() &&
6545          RHSC && RHSC->isNullValue()) {
6546        SDValue CmpOp0 = Cmp.getOperand(0);
6547        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6548                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6549        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6550                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6551      }
6552    }
6553  }
6554
6555  // Look pass (and (setcc_carry (cmp ...)), 1).
6556  if (Cond.getOpcode() == ISD::AND &&
6557      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6558    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6559    if (C && C->getAPIntValue() == 1)
6560      Cond = Cond.getOperand(0);
6561  }
6562
6563  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6564  // setting operand in place of the X86ISD::SETCC.
6565  if (Cond.getOpcode() == X86ISD::SETCC ||
6566      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6567    CC = Cond.getOperand(0);
6568
6569    SDValue Cmp = Cond.getOperand(1);
6570    unsigned Opc = Cmp.getOpcode();
6571    EVT VT = Op.getValueType();
6572
6573    bool IllegalFPCMov = false;
6574    if (VT.isFloatingPoint() && !VT.isVector() &&
6575        !isScalarFPTypeInSSEReg(VT))  // FPStack?
6576      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
6577
6578    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
6579        Opc == X86ISD::BT) { // FIXME
6580      Cond = Cmp;
6581      addTest = false;
6582    }
6583  }
6584
6585  if (addTest) {
6586    // Look pass the truncate.
6587    if (Cond.getOpcode() == ISD::TRUNCATE)
6588      Cond = Cond.getOperand(0);
6589
6590    // We know the result of AND is compared against zero. Try to match
6591    // it to BT.
6592    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6593      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6594      if (NewSetCC.getNode()) {
6595        CC = NewSetCC.getOperand(0);
6596        Cond = NewSetCC.getOperand(1);
6597        addTest = false;
6598      }
6599    }
6600  }
6601
6602  if (addTest) {
6603    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6604    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6605  }
6606
6607  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
6608  // condition is true.
6609  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
6610  SDValue Ops[] = { Op2, Op1, CC, Cond };
6611  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
6612}
6613
6614// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
6615// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
6616// from the AND / OR.
6617static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
6618  Opc = Op.getOpcode();
6619  if (Opc != ISD::OR && Opc != ISD::AND)
6620    return false;
6621  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6622          Op.getOperand(0).hasOneUse() &&
6623          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
6624          Op.getOperand(1).hasOneUse());
6625}
6626
6627// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
6628// 1 and that the SETCC node has a single use.
6629static bool isXor1OfSetCC(SDValue Op) {
6630  if (Op.getOpcode() != ISD::XOR)
6631    return false;
6632  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6633  if (N1C && N1C->getAPIntValue() == 1) {
6634    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6635      Op.getOperand(0).hasOneUse();
6636  }
6637  return false;
6638}
6639
6640SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
6641  bool addTest = true;
6642  SDValue Chain = Op.getOperand(0);
6643  SDValue Cond  = Op.getOperand(1);
6644  SDValue Dest  = Op.getOperand(2);
6645  DebugLoc dl = Op.getDebugLoc();
6646  SDValue CC;
6647
6648  if (Cond.getOpcode() == ISD::SETCC) {
6649    SDValue NewCond = LowerSETCC(Cond, DAG);
6650    if (NewCond.getNode())
6651      Cond = NewCond;
6652  }
6653#if 0
6654  // FIXME: LowerXALUO doesn't handle these!!
6655  else if (Cond.getOpcode() == X86ISD::ADD  ||
6656           Cond.getOpcode() == X86ISD::SUB  ||
6657           Cond.getOpcode() == X86ISD::SMUL ||
6658           Cond.getOpcode() == X86ISD::UMUL)
6659    Cond = LowerXALUO(Cond, DAG);
6660#endif
6661
6662  // Look pass (and (setcc_carry (cmp ...)), 1).
6663  if (Cond.getOpcode() == ISD::AND &&
6664      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6665    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6666    if (C && C->getAPIntValue() == 1)
6667      Cond = Cond.getOperand(0);
6668  }
6669
6670  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6671  // setting operand in place of the X86ISD::SETCC.
6672  if (Cond.getOpcode() == X86ISD::SETCC ||
6673      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6674    CC = Cond.getOperand(0);
6675
6676    SDValue Cmp = Cond.getOperand(1);
6677    unsigned Opc = Cmp.getOpcode();
6678    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
6679    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
6680      Cond = Cmp;
6681      addTest = false;
6682    } else {
6683      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
6684      default: break;
6685      case X86::COND_O:
6686      case X86::COND_B:
6687        // These can only come from an arithmetic instruction with overflow,
6688        // e.g. SADDO, UADDO.
6689        Cond = Cond.getNode()->getOperand(1);
6690        addTest = false;
6691        break;
6692      }
6693    }
6694  } else {
6695    unsigned CondOpc;
6696    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
6697      SDValue Cmp = Cond.getOperand(0).getOperand(1);
6698      if (CondOpc == ISD::OR) {
6699        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
6700        // two branches instead of an explicit OR instruction with a
6701        // separate test.
6702        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6703            isX86LogicalCmp(Cmp)) {
6704          CC = Cond.getOperand(0).getOperand(0);
6705          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6706                              Chain, Dest, CC, Cmp);
6707          CC = Cond.getOperand(1).getOperand(0);
6708          Cond = Cmp;
6709          addTest = false;
6710        }
6711      } else { // ISD::AND
6712        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
6713        // two branches instead of an explicit AND instruction with a
6714        // separate test. However, we only do this if this block doesn't
6715        // have a fall-through edge, because this requires an explicit
6716        // jmp when the condition is false.
6717        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6718            isX86LogicalCmp(Cmp) &&
6719            Op.getNode()->hasOneUse()) {
6720          X86::CondCode CCode =
6721            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6722          CCode = X86::GetOppositeBranchCondition(CCode);
6723          CC = DAG.getConstant(CCode, MVT::i8);
6724          SDNode *User = *Op.getNode()->use_begin();
6725          // Look for an unconditional branch following this conditional branch.
6726          // We need this because we need to reverse the successors in order
6727          // to implement FCMP_OEQ.
6728          if (User->getOpcode() == ISD::BR) {
6729            SDValue FalseBB = User->getOperand(1);
6730            SDNode *NewBR =
6731              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
6732            assert(NewBR == User);
6733            (void)NewBR;
6734            Dest = FalseBB;
6735
6736            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6737                                Chain, Dest, CC, Cmp);
6738            X86::CondCode CCode =
6739              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
6740            CCode = X86::GetOppositeBranchCondition(CCode);
6741            CC = DAG.getConstant(CCode, MVT::i8);
6742            Cond = Cmp;
6743            addTest = false;
6744          }
6745        }
6746      }
6747    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
6748      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
6749      // It should be transformed during dag combiner except when the condition
6750      // is set by a arithmetics with overflow node.
6751      X86::CondCode CCode =
6752        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6753      CCode = X86::GetOppositeBranchCondition(CCode);
6754      CC = DAG.getConstant(CCode, MVT::i8);
6755      Cond = Cond.getOperand(0).getOperand(1);
6756      addTest = false;
6757    }
6758  }
6759
6760  if (addTest) {
6761    // Look pass the truncate.
6762    if (Cond.getOpcode() == ISD::TRUNCATE)
6763      Cond = Cond.getOperand(0);
6764
6765    // We know the result of AND is compared against zero. Try to match
6766    // it to BT.
6767    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6768      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6769      if (NewSetCC.getNode()) {
6770        CC = NewSetCC.getOperand(0);
6771        Cond = NewSetCC.getOperand(1);
6772        addTest = false;
6773      }
6774    }
6775  }
6776
6777  if (addTest) {
6778    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6779    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6780  }
6781  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6782                     Chain, Dest, CC, Cond);
6783}
6784
6785
6786// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
6787// Calls to _alloca is needed to probe the stack when allocating more than 4k
6788// bytes in one go. Touching the stack at 4K increments is necessary to ensure
6789// that the guard pages used by the OS virtual memory manager are allocated in
6790// correct sequence.
6791SDValue
6792X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6793                                           SelectionDAG &DAG) const {
6794  assert(Subtarget->isTargetCygMing() &&
6795         "This should be used only on Cygwin/Mingw targets");
6796  DebugLoc dl = Op.getDebugLoc();
6797
6798  // Get the inputs.
6799  SDValue Chain = Op.getOperand(0);
6800  SDValue Size  = Op.getOperand(1);
6801  // FIXME: Ensure alignment here
6802
6803  SDValue Flag;
6804
6805  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
6806
6807  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
6808  Flag = Chain.getValue(1);
6809
6810  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6811
6812  Chain = DAG.getNode(X86ISD::MINGW_ALLOCA, dl, NodeTys, Chain, Flag);
6813  Flag = Chain.getValue(1);
6814
6815  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
6816
6817  SDValue Ops1[2] = { Chain.getValue(0), Chain };
6818  return DAG.getMergeValues(Ops1, 2, dl);
6819}
6820
6821SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
6822  MachineFunction &MF = DAG.getMachineFunction();
6823  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
6824
6825  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6826  DebugLoc dl = Op.getDebugLoc();
6827
6828  if (!Subtarget->is64Bit()) {
6829    // vastart just stores the address of the VarArgsFrameIndex slot into the
6830    // memory location argument.
6831    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
6832                                   getPointerTy());
6833    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
6834                        false, false, 0);
6835  }
6836
6837  // __va_list_tag:
6838  //   gp_offset         (0 - 6 * 8)
6839  //   fp_offset         (48 - 48 + 8 * 16)
6840  //   overflow_arg_area (point to parameters coming in memory).
6841  //   reg_save_area
6842  SmallVector<SDValue, 8> MemOps;
6843  SDValue FIN = Op.getOperand(1);
6844  // Store gp_offset
6845  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6846                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
6847                                               MVT::i32),
6848                               FIN, SV, 0, false, false, 0);
6849  MemOps.push_back(Store);
6850
6851  // Store fp_offset
6852  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6853                    FIN, DAG.getIntPtrConstant(4));
6854  Store = DAG.getStore(Op.getOperand(0), dl,
6855                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
6856                                       MVT::i32),
6857                       FIN, SV, 4, false, false, 0);
6858  MemOps.push_back(Store);
6859
6860  // Store ptr to overflow_arg_area
6861  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6862                    FIN, DAG.getIntPtrConstant(4));
6863  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
6864                                    getPointerTy());
6865  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 8,
6866                       false, false, 0);
6867  MemOps.push_back(Store);
6868
6869  // Store ptr to reg_save_area.
6870  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6871                    FIN, DAG.getIntPtrConstant(8));
6872  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
6873                                    getPointerTy());
6874  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 16,
6875                       false, false, 0);
6876  MemOps.push_back(Store);
6877  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6878                     &MemOps[0], MemOps.size());
6879}
6880
6881SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
6882  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6883  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6884
6885  report_fatal_error("VAArgInst is not yet implemented for x86-64!");
6886  return SDValue();
6887}
6888
6889SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
6890  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6891  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6892  SDValue Chain = Op.getOperand(0);
6893  SDValue DstPtr = Op.getOperand(1);
6894  SDValue SrcPtr = Op.getOperand(2);
6895  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6896  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6897  DebugLoc dl = Op.getDebugLoc();
6898
6899  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6900                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
6901                       false, DstSV, 0, SrcSV, 0);
6902}
6903
6904SDValue
6905X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
6906  DebugLoc dl = Op.getDebugLoc();
6907  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6908  switch (IntNo) {
6909  default: return SDValue();    // Don't custom lower most intrinsics.
6910  // Comparison intrinsics.
6911  case Intrinsic::x86_sse_comieq_ss:
6912  case Intrinsic::x86_sse_comilt_ss:
6913  case Intrinsic::x86_sse_comile_ss:
6914  case Intrinsic::x86_sse_comigt_ss:
6915  case Intrinsic::x86_sse_comige_ss:
6916  case Intrinsic::x86_sse_comineq_ss:
6917  case Intrinsic::x86_sse_ucomieq_ss:
6918  case Intrinsic::x86_sse_ucomilt_ss:
6919  case Intrinsic::x86_sse_ucomile_ss:
6920  case Intrinsic::x86_sse_ucomigt_ss:
6921  case Intrinsic::x86_sse_ucomige_ss:
6922  case Intrinsic::x86_sse_ucomineq_ss:
6923  case Intrinsic::x86_sse2_comieq_sd:
6924  case Intrinsic::x86_sse2_comilt_sd:
6925  case Intrinsic::x86_sse2_comile_sd:
6926  case Intrinsic::x86_sse2_comigt_sd:
6927  case Intrinsic::x86_sse2_comige_sd:
6928  case Intrinsic::x86_sse2_comineq_sd:
6929  case Intrinsic::x86_sse2_ucomieq_sd:
6930  case Intrinsic::x86_sse2_ucomilt_sd:
6931  case Intrinsic::x86_sse2_ucomile_sd:
6932  case Intrinsic::x86_sse2_ucomigt_sd:
6933  case Intrinsic::x86_sse2_ucomige_sd:
6934  case Intrinsic::x86_sse2_ucomineq_sd: {
6935    unsigned Opc = 0;
6936    ISD::CondCode CC = ISD::SETCC_INVALID;
6937    switch (IntNo) {
6938    default: break;
6939    case Intrinsic::x86_sse_comieq_ss:
6940    case Intrinsic::x86_sse2_comieq_sd:
6941      Opc = X86ISD::COMI;
6942      CC = ISD::SETEQ;
6943      break;
6944    case Intrinsic::x86_sse_comilt_ss:
6945    case Intrinsic::x86_sse2_comilt_sd:
6946      Opc = X86ISD::COMI;
6947      CC = ISD::SETLT;
6948      break;
6949    case Intrinsic::x86_sse_comile_ss:
6950    case Intrinsic::x86_sse2_comile_sd:
6951      Opc = X86ISD::COMI;
6952      CC = ISD::SETLE;
6953      break;
6954    case Intrinsic::x86_sse_comigt_ss:
6955    case Intrinsic::x86_sse2_comigt_sd:
6956      Opc = X86ISD::COMI;
6957      CC = ISD::SETGT;
6958      break;
6959    case Intrinsic::x86_sse_comige_ss:
6960    case Intrinsic::x86_sse2_comige_sd:
6961      Opc = X86ISD::COMI;
6962      CC = ISD::SETGE;
6963      break;
6964    case Intrinsic::x86_sse_comineq_ss:
6965    case Intrinsic::x86_sse2_comineq_sd:
6966      Opc = X86ISD::COMI;
6967      CC = ISD::SETNE;
6968      break;
6969    case Intrinsic::x86_sse_ucomieq_ss:
6970    case Intrinsic::x86_sse2_ucomieq_sd:
6971      Opc = X86ISD::UCOMI;
6972      CC = ISD::SETEQ;
6973      break;
6974    case Intrinsic::x86_sse_ucomilt_ss:
6975    case Intrinsic::x86_sse2_ucomilt_sd:
6976      Opc = X86ISD::UCOMI;
6977      CC = ISD::SETLT;
6978      break;
6979    case Intrinsic::x86_sse_ucomile_ss:
6980    case Intrinsic::x86_sse2_ucomile_sd:
6981      Opc = X86ISD::UCOMI;
6982      CC = ISD::SETLE;
6983      break;
6984    case Intrinsic::x86_sse_ucomigt_ss:
6985    case Intrinsic::x86_sse2_ucomigt_sd:
6986      Opc = X86ISD::UCOMI;
6987      CC = ISD::SETGT;
6988      break;
6989    case Intrinsic::x86_sse_ucomige_ss:
6990    case Intrinsic::x86_sse2_ucomige_sd:
6991      Opc = X86ISD::UCOMI;
6992      CC = ISD::SETGE;
6993      break;
6994    case Intrinsic::x86_sse_ucomineq_ss:
6995    case Intrinsic::x86_sse2_ucomineq_sd:
6996      Opc = X86ISD::UCOMI;
6997      CC = ISD::SETNE;
6998      break;
6999    }
7000
7001    SDValue LHS = Op.getOperand(1);
7002    SDValue RHS = Op.getOperand(2);
7003    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
7004    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
7005    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
7006    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7007                                DAG.getConstant(X86CC, MVT::i8), Cond);
7008    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7009  }
7010  // ptest and testp intrinsics. The intrinsic these come from are designed to
7011  // return an integer value, not just an instruction so lower it to the ptest
7012  // or testp pattern and a setcc for the result.
7013  case Intrinsic::x86_sse41_ptestz:
7014  case Intrinsic::x86_sse41_ptestc:
7015  case Intrinsic::x86_sse41_ptestnzc:
7016  case Intrinsic::x86_avx_ptestz_256:
7017  case Intrinsic::x86_avx_ptestc_256:
7018  case Intrinsic::x86_avx_ptestnzc_256:
7019  case Intrinsic::x86_avx_vtestz_ps:
7020  case Intrinsic::x86_avx_vtestc_ps:
7021  case Intrinsic::x86_avx_vtestnzc_ps:
7022  case Intrinsic::x86_avx_vtestz_pd:
7023  case Intrinsic::x86_avx_vtestc_pd:
7024  case Intrinsic::x86_avx_vtestnzc_pd:
7025  case Intrinsic::x86_avx_vtestz_ps_256:
7026  case Intrinsic::x86_avx_vtestc_ps_256:
7027  case Intrinsic::x86_avx_vtestnzc_ps_256:
7028  case Intrinsic::x86_avx_vtestz_pd_256:
7029  case Intrinsic::x86_avx_vtestc_pd_256:
7030  case Intrinsic::x86_avx_vtestnzc_pd_256: {
7031    bool IsTestPacked = false;
7032    unsigned X86CC = 0;
7033    switch (IntNo) {
7034    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
7035    case Intrinsic::x86_avx_vtestz_ps:
7036    case Intrinsic::x86_avx_vtestz_pd:
7037    case Intrinsic::x86_avx_vtestz_ps_256:
7038    case Intrinsic::x86_avx_vtestz_pd_256:
7039      IsTestPacked = true; // Fallthrough
7040    case Intrinsic::x86_sse41_ptestz:
7041    case Intrinsic::x86_avx_ptestz_256:
7042      // ZF = 1
7043      X86CC = X86::COND_E;
7044      break;
7045    case Intrinsic::x86_avx_vtestc_ps:
7046    case Intrinsic::x86_avx_vtestc_pd:
7047    case Intrinsic::x86_avx_vtestc_ps_256:
7048    case Intrinsic::x86_avx_vtestc_pd_256:
7049      IsTestPacked = true; // Fallthrough
7050    case Intrinsic::x86_sse41_ptestc:
7051    case Intrinsic::x86_avx_ptestc_256:
7052      // CF = 1
7053      X86CC = X86::COND_B;
7054      break;
7055    case Intrinsic::x86_avx_vtestnzc_ps:
7056    case Intrinsic::x86_avx_vtestnzc_pd:
7057    case Intrinsic::x86_avx_vtestnzc_ps_256:
7058    case Intrinsic::x86_avx_vtestnzc_pd_256:
7059      IsTestPacked = true; // Fallthrough
7060    case Intrinsic::x86_sse41_ptestnzc:
7061    case Intrinsic::x86_avx_ptestnzc_256:
7062      // ZF and CF = 0
7063      X86CC = X86::COND_A;
7064      break;
7065    }
7066
7067    SDValue LHS = Op.getOperand(1);
7068    SDValue RHS = Op.getOperand(2);
7069    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
7070    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
7071    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
7072    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
7073    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7074  }
7075
7076  // Fix vector shift instructions where the last operand is a non-immediate
7077  // i32 value.
7078  case Intrinsic::x86_sse2_pslli_w:
7079  case Intrinsic::x86_sse2_pslli_d:
7080  case Intrinsic::x86_sse2_pslli_q:
7081  case Intrinsic::x86_sse2_psrli_w:
7082  case Intrinsic::x86_sse2_psrli_d:
7083  case Intrinsic::x86_sse2_psrli_q:
7084  case Intrinsic::x86_sse2_psrai_w:
7085  case Intrinsic::x86_sse2_psrai_d:
7086  case Intrinsic::x86_mmx_pslli_w:
7087  case Intrinsic::x86_mmx_pslli_d:
7088  case Intrinsic::x86_mmx_pslli_q:
7089  case Intrinsic::x86_mmx_psrli_w:
7090  case Intrinsic::x86_mmx_psrli_d:
7091  case Intrinsic::x86_mmx_psrli_q:
7092  case Intrinsic::x86_mmx_psrai_w:
7093  case Intrinsic::x86_mmx_psrai_d: {
7094    SDValue ShAmt = Op.getOperand(2);
7095    if (isa<ConstantSDNode>(ShAmt))
7096      return SDValue();
7097
7098    unsigned NewIntNo = 0;
7099    EVT ShAmtVT = MVT::v4i32;
7100    switch (IntNo) {
7101    case Intrinsic::x86_sse2_pslli_w:
7102      NewIntNo = Intrinsic::x86_sse2_psll_w;
7103      break;
7104    case Intrinsic::x86_sse2_pslli_d:
7105      NewIntNo = Intrinsic::x86_sse2_psll_d;
7106      break;
7107    case Intrinsic::x86_sse2_pslli_q:
7108      NewIntNo = Intrinsic::x86_sse2_psll_q;
7109      break;
7110    case Intrinsic::x86_sse2_psrli_w:
7111      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7112      break;
7113    case Intrinsic::x86_sse2_psrli_d:
7114      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7115      break;
7116    case Intrinsic::x86_sse2_psrli_q:
7117      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7118      break;
7119    case Intrinsic::x86_sse2_psrai_w:
7120      NewIntNo = Intrinsic::x86_sse2_psra_w;
7121      break;
7122    case Intrinsic::x86_sse2_psrai_d:
7123      NewIntNo = Intrinsic::x86_sse2_psra_d;
7124      break;
7125    default: {
7126      ShAmtVT = MVT::v2i32;
7127      switch (IntNo) {
7128      case Intrinsic::x86_mmx_pslli_w:
7129        NewIntNo = Intrinsic::x86_mmx_psll_w;
7130        break;
7131      case Intrinsic::x86_mmx_pslli_d:
7132        NewIntNo = Intrinsic::x86_mmx_psll_d;
7133        break;
7134      case Intrinsic::x86_mmx_pslli_q:
7135        NewIntNo = Intrinsic::x86_mmx_psll_q;
7136        break;
7137      case Intrinsic::x86_mmx_psrli_w:
7138        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7139        break;
7140      case Intrinsic::x86_mmx_psrli_d:
7141        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7142        break;
7143      case Intrinsic::x86_mmx_psrli_q:
7144        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7145        break;
7146      case Intrinsic::x86_mmx_psrai_w:
7147        NewIntNo = Intrinsic::x86_mmx_psra_w;
7148        break;
7149      case Intrinsic::x86_mmx_psrai_d:
7150        NewIntNo = Intrinsic::x86_mmx_psra_d;
7151        break;
7152      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7153      }
7154      break;
7155    }
7156    }
7157
7158    // The vector shift intrinsics with scalars uses 32b shift amounts but
7159    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7160    // to be zero.
7161    SDValue ShOps[4];
7162    ShOps[0] = ShAmt;
7163    ShOps[1] = DAG.getConstant(0, MVT::i32);
7164    if (ShAmtVT == MVT::v4i32) {
7165      ShOps[2] = DAG.getUNDEF(MVT::i32);
7166      ShOps[3] = DAG.getUNDEF(MVT::i32);
7167      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7168    } else {
7169      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7170    }
7171
7172    EVT VT = Op.getValueType();
7173    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7174    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7175                       DAG.getConstant(NewIntNo, MVT::i32),
7176                       Op.getOperand(1), ShAmt);
7177  }
7178  }
7179}
7180
7181SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
7182                                           SelectionDAG &DAG) const {
7183  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7184  MFI->setReturnAddressIsTaken(true);
7185
7186  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7187  DebugLoc dl = Op.getDebugLoc();
7188
7189  if (Depth > 0) {
7190    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7191    SDValue Offset =
7192      DAG.getConstant(TD->getPointerSize(),
7193                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7194    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7195                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7196                                   FrameAddr, Offset),
7197                       NULL, 0, false, false, 0);
7198  }
7199
7200  // Just load the return address.
7201  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7202  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7203                     RetAddrFI, NULL, 0, false, false, 0);
7204}
7205
7206SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
7207  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7208  MFI->setFrameAddressIsTaken(true);
7209
7210  EVT VT = Op.getValueType();
7211  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7212  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7213  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7214  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7215  while (Depth--)
7216    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
7217                            false, false, 0);
7218  return FrameAddr;
7219}
7220
7221SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7222                                                     SelectionDAG &DAG) const {
7223  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7224}
7225
7226SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
7227  MachineFunction &MF = DAG.getMachineFunction();
7228  SDValue Chain     = Op.getOperand(0);
7229  SDValue Offset    = Op.getOperand(1);
7230  SDValue Handler   = Op.getOperand(2);
7231  DebugLoc dl       = Op.getDebugLoc();
7232
7233  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
7234                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7235                                     getPointerTy());
7236  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7237
7238  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
7239                                  DAG.getIntPtrConstant(TD->getPointerSize()));
7240  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7241  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
7242  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7243  MF.getRegInfo().addLiveOut(StoreAddrReg);
7244
7245  return DAG.getNode(X86ISD::EH_RETURN, dl,
7246                     MVT::Other,
7247                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7248}
7249
7250SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7251                                             SelectionDAG &DAG) const {
7252  SDValue Root = Op.getOperand(0);
7253  SDValue Trmp = Op.getOperand(1); // trampoline
7254  SDValue FPtr = Op.getOperand(2); // nested function
7255  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7256  DebugLoc dl  = Op.getDebugLoc();
7257
7258  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7259
7260  if (Subtarget->is64Bit()) {
7261    SDValue OutChains[6];
7262
7263    // Large code-model.
7264    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7265    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7266
7267    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7268    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7269
7270    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7271
7272    // Load the pointer to the nested function into R11.
7273    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7274    SDValue Addr = Trmp;
7275    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7276                                Addr, TrmpAddr, 0, false, false, 0);
7277
7278    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7279                       DAG.getConstant(2, MVT::i64));
7280    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7281                                false, false, 2);
7282
7283    // Load the 'nest' parameter value into R10.
7284    // R10 is specified in X86CallingConv.td
7285    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7286    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7287                       DAG.getConstant(10, MVT::i64));
7288    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7289                                Addr, TrmpAddr, 10, false, false, 0);
7290
7291    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7292                       DAG.getConstant(12, MVT::i64));
7293    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7294                                false, false, 2);
7295
7296    // Jump to the nested function.
7297    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7298    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7299                       DAG.getConstant(20, MVT::i64));
7300    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7301                                Addr, TrmpAddr, 20, false, false, 0);
7302
7303    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7304    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7305                       DAG.getConstant(22, MVT::i64));
7306    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7307                                TrmpAddr, 22, false, false, 0);
7308
7309    SDValue Ops[] =
7310      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7311    return DAG.getMergeValues(Ops, 2, dl);
7312  } else {
7313    const Function *Func =
7314      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7315    CallingConv::ID CC = Func->getCallingConv();
7316    unsigned NestReg;
7317
7318    switch (CC) {
7319    default:
7320      llvm_unreachable("Unsupported calling convention");
7321    case CallingConv::C:
7322    case CallingConv::X86_StdCall: {
7323      // Pass 'nest' parameter in ECX.
7324      // Must be kept in sync with X86CallingConv.td
7325      NestReg = X86::ECX;
7326
7327      // Check that ECX wasn't needed by an 'inreg' parameter.
7328      const FunctionType *FTy = Func->getFunctionType();
7329      const AttrListPtr &Attrs = Func->getAttributes();
7330
7331      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7332        unsigned InRegCount = 0;
7333        unsigned Idx = 1;
7334
7335        for (FunctionType::param_iterator I = FTy->param_begin(),
7336             E = FTy->param_end(); I != E; ++I, ++Idx)
7337          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7338            // FIXME: should only count parameters that are lowered to integers.
7339            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7340
7341        if (InRegCount > 2) {
7342          report_fatal_error("Nest register in use - reduce number of inreg"
7343                             " parameters!");
7344        }
7345      }
7346      break;
7347    }
7348    case CallingConv::X86_FastCall:
7349    case CallingConv::X86_ThisCall:
7350    case CallingConv::Fast:
7351      // Pass 'nest' parameter in EAX.
7352      // Must be kept in sync with X86CallingConv.td
7353      NestReg = X86::EAX;
7354      break;
7355    }
7356
7357    SDValue OutChains[4];
7358    SDValue Addr, Disp;
7359
7360    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7361                       DAG.getConstant(10, MVT::i32));
7362    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7363
7364    // This is storing the opcode for MOV32ri.
7365    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7366    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7367    OutChains[0] = DAG.getStore(Root, dl,
7368                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7369                                Trmp, TrmpAddr, 0, false, false, 0);
7370
7371    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7372                       DAG.getConstant(1, MVT::i32));
7373    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7374                                false, false, 1);
7375
7376    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7377    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7378                       DAG.getConstant(5, MVT::i32));
7379    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7380                                TrmpAddr, 5, false, false, 1);
7381
7382    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7383                       DAG.getConstant(6, MVT::i32));
7384    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7385                                false, false, 1);
7386
7387    SDValue Ops[] =
7388      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7389    return DAG.getMergeValues(Ops, 2, dl);
7390  }
7391}
7392
7393SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7394                                            SelectionDAG &DAG) const {
7395  /*
7396   The rounding mode is in bits 11:10 of FPSR, and has the following
7397   settings:
7398     00 Round to nearest
7399     01 Round to -inf
7400     10 Round to +inf
7401     11 Round to 0
7402
7403  FLT_ROUNDS, on the other hand, expects the following:
7404    -1 Undefined
7405     0 Round to 0
7406     1 Round to nearest
7407     2 Round to +inf
7408     3 Round to -inf
7409
7410  To perform the conversion, we do:
7411    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7412  */
7413
7414  MachineFunction &MF = DAG.getMachineFunction();
7415  const TargetMachine &TM = MF.getTarget();
7416  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7417  unsigned StackAlignment = TFI.getStackAlignment();
7418  EVT VT = Op.getValueType();
7419  DebugLoc dl = Op.getDebugLoc();
7420
7421  // Save FP Control Word to stack slot
7422  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7423  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7424
7425  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7426                              DAG.getEntryNode(), StackSlot);
7427
7428  // Load FP Control Word from stack slot
7429  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
7430                            false, false, 0);
7431
7432  // Transform as necessary
7433  SDValue CWD1 =
7434    DAG.getNode(ISD::SRL, dl, MVT::i16,
7435                DAG.getNode(ISD::AND, dl, MVT::i16,
7436                            CWD, DAG.getConstant(0x800, MVT::i16)),
7437                DAG.getConstant(11, MVT::i8));
7438  SDValue CWD2 =
7439    DAG.getNode(ISD::SRL, dl, MVT::i16,
7440                DAG.getNode(ISD::AND, dl, MVT::i16,
7441                            CWD, DAG.getConstant(0x400, MVT::i16)),
7442                DAG.getConstant(9, MVT::i8));
7443
7444  SDValue RetVal =
7445    DAG.getNode(ISD::AND, dl, MVT::i16,
7446                DAG.getNode(ISD::ADD, dl, MVT::i16,
7447                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7448                            DAG.getConstant(1, MVT::i16)),
7449                DAG.getConstant(3, MVT::i16));
7450
7451
7452  return DAG.getNode((VT.getSizeInBits() < 16 ?
7453                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7454}
7455
7456SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
7457  EVT VT = Op.getValueType();
7458  EVT OpVT = VT;
7459  unsigned NumBits = VT.getSizeInBits();
7460  DebugLoc dl = Op.getDebugLoc();
7461
7462  Op = Op.getOperand(0);
7463  if (VT == MVT::i8) {
7464    // Zero extend to i32 since there is not an i8 bsr.
7465    OpVT = MVT::i32;
7466    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7467  }
7468
7469  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7470  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7471  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7472
7473  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7474  SDValue Ops[] = {
7475    Op,
7476    DAG.getConstant(NumBits+NumBits-1, OpVT),
7477    DAG.getConstant(X86::COND_E, MVT::i8),
7478    Op.getValue(1)
7479  };
7480  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7481
7482  // Finally xor with NumBits-1.
7483  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7484
7485  if (VT == MVT::i8)
7486    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7487  return Op;
7488}
7489
7490SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
7491  EVT VT = Op.getValueType();
7492  EVT OpVT = VT;
7493  unsigned NumBits = VT.getSizeInBits();
7494  DebugLoc dl = Op.getDebugLoc();
7495
7496  Op = Op.getOperand(0);
7497  if (VT == MVT::i8) {
7498    OpVT = MVT::i32;
7499    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7500  }
7501
7502  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7503  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7504  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7505
7506  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7507  SDValue Ops[] = {
7508    Op,
7509    DAG.getConstant(NumBits, OpVT),
7510    DAG.getConstant(X86::COND_E, MVT::i8),
7511    Op.getValue(1)
7512  };
7513  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7514
7515  if (VT == MVT::i8)
7516    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7517  return Op;
7518}
7519
7520SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
7521  EVT VT = Op.getValueType();
7522  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7523  DebugLoc dl = Op.getDebugLoc();
7524
7525  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7526  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7527  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7528  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7529  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7530  //
7531  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7532  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7533  //  return AloBlo + AloBhi + AhiBlo;
7534
7535  SDValue A = Op.getOperand(0);
7536  SDValue B = Op.getOperand(1);
7537
7538  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7539                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7540                       A, DAG.getConstant(32, MVT::i32));
7541  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7542                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7543                       B, DAG.getConstant(32, MVT::i32));
7544  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7545                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7546                       A, B);
7547  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7548                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7549                       A, Bhi);
7550  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7551                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7552                       Ahi, B);
7553  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7554                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7555                       AloBhi, DAG.getConstant(32, MVT::i32));
7556  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7557                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7558                       AhiBlo, DAG.getConstant(32, MVT::i32));
7559  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7560  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7561  return Res;
7562}
7563
7564SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
7565  EVT VT = Op.getValueType();
7566  DebugLoc dl = Op.getDebugLoc();
7567  SDValue R = Op.getOperand(0);
7568
7569  LLVMContext *Context = DAG.getContext();
7570
7571  assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
7572
7573  if (VT == MVT::v4i32) {
7574    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7575                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
7576                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
7577
7578    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
7579
7580    std::vector<Constant*> CV(4, CI);
7581    Constant *C = ConstantVector::get(CV);
7582    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7583    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7584                                 PseudoSourceValue::getConstantPool(), 0,
7585                                 false, false, 16);
7586
7587    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
7588    Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, Op);
7589    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
7590    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
7591  }
7592  if (VT == MVT::v16i8) {
7593    // a = a << 5;
7594    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7595                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
7596                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
7597
7598    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
7599    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
7600
7601    std::vector<Constant*> CVM1(16, CM1);
7602    std::vector<Constant*> CVM2(16, CM2);
7603    Constant *C = ConstantVector::get(CVM1);
7604    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7605    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7606                            PseudoSourceValue::getConstantPool(), 0,
7607                            false, false, 16);
7608
7609    // r = pblendv(r, psllw(r & (char16)15, 4), a);
7610    M = DAG.getNode(ISD::AND, dl, VT, R, M);
7611    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7612                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
7613                    DAG.getConstant(4, MVT::i32));
7614    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7615                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
7616                    R, M, Op);
7617    // a += a
7618    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
7619
7620    C = ConstantVector::get(CVM2);
7621    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7622    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7623                    PseudoSourceValue::getConstantPool(), 0, false, false, 16);
7624
7625    // r = pblendv(r, psllw(r & (char16)63, 2), a);
7626    M = DAG.getNode(ISD::AND, dl, VT, R, M);
7627    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7628                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
7629                    DAG.getConstant(2, MVT::i32));
7630    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7631                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
7632                    R, M, Op);
7633    // a += a
7634    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
7635
7636    // return pblendv(r, r+r, a);
7637    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7638                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
7639                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
7640    return R;
7641  }
7642  return SDValue();
7643}
7644
7645SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
7646  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
7647  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
7648  // looks for this combo and may remove the "setcc" instruction if the "setcc"
7649  // has only one use.
7650  SDNode *N = Op.getNode();
7651  SDValue LHS = N->getOperand(0);
7652  SDValue RHS = N->getOperand(1);
7653  unsigned BaseOp = 0;
7654  unsigned Cond = 0;
7655  DebugLoc dl = Op.getDebugLoc();
7656
7657  switch (Op.getOpcode()) {
7658  default: llvm_unreachable("Unknown ovf instruction!");
7659  case ISD::SADDO:
7660    // A subtract of one will be selected as a INC. Note that INC doesn't
7661    // set CF, so we can't do this for UADDO.
7662    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7663      if (C->getAPIntValue() == 1) {
7664        BaseOp = X86ISD::INC;
7665        Cond = X86::COND_O;
7666        break;
7667      }
7668    BaseOp = X86ISD::ADD;
7669    Cond = X86::COND_O;
7670    break;
7671  case ISD::UADDO:
7672    BaseOp = X86ISD::ADD;
7673    Cond = X86::COND_B;
7674    break;
7675  case ISD::SSUBO:
7676    // A subtract of one will be selected as a DEC. Note that DEC doesn't
7677    // set CF, so we can't do this for USUBO.
7678    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7679      if (C->getAPIntValue() == 1) {
7680        BaseOp = X86ISD::DEC;
7681        Cond = X86::COND_O;
7682        break;
7683      }
7684    BaseOp = X86ISD::SUB;
7685    Cond = X86::COND_O;
7686    break;
7687  case ISD::USUBO:
7688    BaseOp = X86ISD::SUB;
7689    Cond = X86::COND_B;
7690    break;
7691  case ISD::SMULO:
7692    BaseOp = X86ISD::SMUL;
7693    Cond = X86::COND_O;
7694    break;
7695  case ISD::UMULO:
7696    BaseOp = X86ISD::UMUL;
7697    Cond = X86::COND_B;
7698    break;
7699  }
7700
7701  // Also sets EFLAGS.
7702  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
7703  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
7704
7705  SDValue SetCC =
7706    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
7707                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
7708
7709  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
7710  return Sum;
7711}
7712
7713SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
7714  DebugLoc dl = Op.getDebugLoc();
7715
7716  if (!Subtarget->hasSSE2()) {
7717    SDValue Chain = Op.getOperand(0);
7718    SDValue Zero = DAG.getConstant(0,
7719                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7720    SDValue Ops[] = {
7721      DAG.getRegister(X86::ESP, MVT::i32), // Base
7722      DAG.getTargetConstant(1, MVT::i8),   // Scale
7723      DAG.getRegister(0, MVT::i32),        // Index
7724      DAG.getTargetConstant(0, MVT::i32),  // Disp
7725      DAG.getRegister(0, MVT::i32),        // Segment.
7726      Zero,
7727      Chain
7728    };
7729    SDNode *Res =
7730      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
7731                          array_lengthof(Ops));
7732    return SDValue(Res, 0);
7733  }
7734
7735  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
7736  if (!isDev)
7737    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
7738
7739  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7740  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
7741  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
7742  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
7743
7744  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
7745  if (!Op1 && !Op2 && !Op3 && Op4)
7746    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
7747
7748  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
7749  if (Op1 && !Op2 && !Op3 && !Op4)
7750    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
7751
7752  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
7753  //           (MFENCE)>;
7754  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
7755}
7756
7757SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
7758  EVT T = Op.getValueType();
7759  DebugLoc dl = Op.getDebugLoc();
7760  unsigned Reg = 0;
7761  unsigned size = 0;
7762  switch(T.getSimpleVT().SimpleTy) {
7763  default:
7764    assert(false && "Invalid value type!");
7765  case MVT::i8:  Reg = X86::AL;  size = 1; break;
7766  case MVT::i16: Reg = X86::AX;  size = 2; break;
7767  case MVT::i32: Reg = X86::EAX; size = 4; break;
7768  case MVT::i64:
7769    assert(Subtarget->is64Bit() && "Node not type legal!");
7770    Reg = X86::RAX; size = 8;
7771    break;
7772  }
7773  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
7774                                    Op.getOperand(2), SDValue());
7775  SDValue Ops[] = { cpIn.getValue(0),
7776                    Op.getOperand(1),
7777                    Op.getOperand(3),
7778                    DAG.getTargetConstant(size, MVT::i8),
7779                    cpIn.getValue(1) };
7780  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7781  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7782  SDValue cpOut =
7783    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7784  return cpOut;
7785}
7786
7787SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7788                                                 SelectionDAG &DAG) const {
7789  assert(Subtarget->is64Bit() && "Result not type legalized?");
7790  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7791  SDValue TheChain = Op.getOperand(0);
7792  DebugLoc dl = Op.getDebugLoc();
7793  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7794  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7795  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7796                                   rax.getValue(2));
7797  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7798                            DAG.getConstant(32, MVT::i8));
7799  SDValue Ops[] = {
7800    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7801    rdx.getValue(1)
7802  };
7803  return DAG.getMergeValues(Ops, 2, dl);
7804}
7805
7806SDValue X86TargetLowering::LowerBIT_CONVERT(SDValue Op,
7807                                            SelectionDAG &DAG) const {
7808  EVT SrcVT = Op.getOperand(0).getValueType();
7809  EVT DstVT = Op.getValueType();
7810  assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
7811          Subtarget->hasMMX() && !DisableMMX) &&
7812         "Unexpected custom BIT_CONVERT");
7813  assert((DstVT == MVT::i64 ||
7814          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
7815         "Unexpected custom BIT_CONVERT");
7816  // i64 <=> MMX conversions are Legal.
7817  if (SrcVT==MVT::i64 && DstVT.isVector())
7818    return Op;
7819  if (DstVT==MVT::i64 && SrcVT.isVector())
7820    return Op;
7821  // MMX <=> MMX conversions are Legal.
7822  if (SrcVT.isVector() && DstVT.isVector())
7823    return Op;
7824  // All other conversions need to be expanded.
7825  return SDValue();
7826}
7827SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
7828  SDNode *Node = Op.getNode();
7829  DebugLoc dl = Node->getDebugLoc();
7830  EVT T = Node->getValueType(0);
7831  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7832                              DAG.getConstant(0, T), Node->getOperand(2));
7833  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7834                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7835                       Node->getOperand(0),
7836                       Node->getOperand(1), negOp,
7837                       cast<AtomicSDNode>(Node)->getSrcValue(),
7838                       cast<AtomicSDNode>(Node)->getAlignment());
7839}
7840
7841/// LowerOperation - Provide custom lowering hooks for some operations.
7842///
7843SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7844  switch (Op.getOpcode()) {
7845  default: llvm_unreachable("Should not custom lower this!");
7846  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
7847  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7848  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7849  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7850  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
7851  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7852  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7853  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7854  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7855  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7856  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7857  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7858  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7859  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7860  case ISD::SHL_PARTS:
7861  case ISD::SRA_PARTS:
7862  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7863  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7864  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7865  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7866  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7867  case ISD::FABS:               return LowerFABS(Op, DAG);
7868  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7869  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7870  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7871  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7872  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7873  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7874  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7875  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7876  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7877  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7878  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7879  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7880  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7881  case ISD::FRAME_TO_ARGS_OFFSET:
7882                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7883  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7884  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7885  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7886  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7887  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7888  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7889  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7890  case ISD::SHL:                return LowerSHL(Op, DAG);
7891  case ISD::SADDO:
7892  case ISD::UADDO:
7893  case ISD::SSUBO:
7894  case ISD::USUBO:
7895  case ISD::SMULO:
7896  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7897  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7898  case ISD::BIT_CONVERT:        return LowerBIT_CONVERT(Op, DAG);
7899  }
7900}
7901
7902void X86TargetLowering::
7903ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7904                        SelectionDAG &DAG, unsigned NewOp) const {
7905  EVT T = Node->getValueType(0);
7906  DebugLoc dl = Node->getDebugLoc();
7907  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7908
7909  SDValue Chain = Node->getOperand(0);
7910  SDValue In1 = Node->getOperand(1);
7911  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7912                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7913  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7914                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7915  SDValue Ops[] = { Chain, In1, In2L, In2H };
7916  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7917  SDValue Result =
7918    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7919                            cast<MemSDNode>(Node)->getMemOperand());
7920  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7921  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7922  Results.push_back(Result.getValue(2));
7923}
7924
7925/// ReplaceNodeResults - Replace a node with an illegal result type
7926/// with a new node built out of custom code.
7927void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7928                                           SmallVectorImpl<SDValue>&Results,
7929                                           SelectionDAG &DAG) const {
7930  DebugLoc dl = N->getDebugLoc();
7931  switch (N->getOpcode()) {
7932  default:
7933    assert(false && "Do not know how to custom type legalize this operation!");
7934    return;
7935  case ISD::FP_TO_SINT: {
7936    std::pair<SDValue,SDValue> Vals =
7937        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7938    SDValue FIST = Vals.first, StackSlot = Vals.second;
7939    if (FIST.getNode() != 0) {
7940      EVT VT = N->getValueType(0);
7941      // Return a load from the stack slot.
7942      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
7943                                    false, false, 0));
7944    }
7945    return;
7946  }
7947  case ISD::READCYCLECOUNTER: {
7948    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7949    SDValue TheChain = N->getOperand(0);
7950    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7951    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7952                                     rd.getValue(1));
7953    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7954                                     eax.getValue(2));
7955    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7956    SDValue Ops[] = { eax, edx };
7957    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7958    Results.push_back(edx.getValue(1));
7959    return;
7960  }
7961  case ISD::ATOMIC_CMP_SWAP: {
7962    EVT T = N->getValueType(0);
7963    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7964    SDValue cpInL, cpInH;
7965    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7966                        DAG.getConstant(0, MVT::i32));
7967    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7968                        DAG.getConstant(1, MVT::i32));
7969    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7970    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7971                             cpInL.getValue(1));
7972    SDValue swapInL, swapInH;
7973    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7974                          DAG.getConstant(0, MVT::i32));
7975    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7976                          DAG.getConstant(1, MVT::i32));
7977    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7978                               cpInH.getValue(1));
7979    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7980                               swapInL.getValue(1));
7981    SDValue Ops[] = { swapInH.getValue(0),
7982                      N->getOperand(1),
7983                      swapInH.getValue(1) };
7984    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7985    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7986    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7987                                        MVT::i32, Result.getValue(1));
7988    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7989                                        MVT::i32, cpOutL.getValue(2));
7990    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7991    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7992    Results.push_back(cpOutH.getValue(1));
7993    return;
7994  }
7995  case ISD::ATOMIC_LOAD_ADD:
7996    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7997    return;
7998  case ISD::ATOMIC_LOAD_AND:
7999    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
8000    return;
8001  case ISD::ATOMIC_LOAD_NAND:
8002    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
8003    return;
8004  case ISD::ATOMIC_LOAD_OR:
8005    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
8006    return;
8007  case ISD::ATOMIC_LOAD_SUB:
8008    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
8009    return;
8010  case ISD::ATOMIC_LOAD_XOR:
8011    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
8012    return;
8013  case ISD::ATOMIC_SWAP:
8014    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
8015    return;
8016  }
8017}
8018
8019const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
8020  switch (Opcode) {
8021  default: return NULL;
8022  case X86ISD::BSF:                return "X86ISD::BSF";
8023  case X86ISD::BSR:                return "X86ISD::BSR";
8024  case X86ISD::SHLD:               return "X86ISD::SHLD";
8025  case X86ISD::SHRD:               return "X86ISD::SHRD";
8026  case X86ISD::FAND:               return "X86ISD::FAND";
8027  case X86ISD::FOR:                return "X86ISD::FOR";
8028  case X86ISD::FXOR:               return "X86ISD::FXOR";
8029  case X86ISD::FSRL:               return "X86ISD::FSRL";
8030  case X86ISD::FILD:               return "X86ISD::FILD";
8031  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
8032  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
8033  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
8034  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
8035  case X86ISD::FLD:                return "X86ISD::FLD";
8036  case X86ISD::FST:                return "X86ISD::FST";
8037  case X86ISD::CALL:               return "X86ISD::CALL";
8038  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
8039  case X86ISD::BT:                 return "X86ISD::BT";
8040  case X86ISD::CMP:                return "X86ISD::CMP";
8041  case X86ISD::COMI:               return "X86ISD::COMI";
8042  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
8043  case X86ISD::SETCC:              return "X86ISD::SETCC";
8044  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
8045  case X86ISD::CMOV:               return "X86ISD::CMOV";
8046  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
8047  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
8048  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
8049  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
8050  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
8051  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
8052  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
8053  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
8054  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
8055  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
8056  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
8057  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
8058  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
8059  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
8060  case X86ISD::FMAX:               return "X86ISD::FMAX";
8061  case X86ISD::FMIN:               return "X86ISD::FMIN";
8062  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
8063  case X86ISD::FRCP:               return "X86ISD::FRCP";
8064  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
8065  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
8066  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
8067  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
8068  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
8069  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
8070  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
8071  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
8072  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
8073  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
8074  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
8075  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
8076  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
8077  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
8078  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
8079  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
8080  case X86ISD::VSHL:               return "X86ISD::VSHL";
8081  case X86ISD::VSRL:               return "X86ISD::VSRL";
8082  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
8083  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
8084  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
8085  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
8086  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
8087  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
8088  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
8089  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
8090  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
8091  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
8092  case X86ISD::ADD:                return "X86ISD::ADD";
8093  case X86ISD::SUB:                return "X86ISD::SUB";
8094  case X86ISD::SMUL:               return "X86ISD::SMUL";
8095  case X86ISD::UMUL:               return "X86ISD::UMUL";
8096  case X86ISD::INC:                return "X86ISD::INC";
8097  case X86ISD::DEC:                return "X86ISD::DEC";
8098  case X86ISD::OR:                 return "X86ISD::OR";
8099  case X86ISD::XOR:                return "X86ISD::XOR";
8100  case X86ISD::AND:                return "X86ISD::AND";
8101  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
8102  case X86ISD::PTEST:              return "X86ISD::PTEST";
8103  case X86ISD::TESTP:              return "X86ISD::TESTP";
8104  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
8105  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
8106  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
8107  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
8108  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
8109  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
8110  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
8111  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
8112  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
8113  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
8114  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
8115  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
8116  case X86ISD::MOVHPS:             return "X86ISD::MOVHPS";
8117  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
8118  case X86ISD::MOVHPD:             return "X86ISD::MOVHPD";
8119  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
8120  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
8121  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
8122  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
8123  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
8124  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
8125  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
8126  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
8127  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
8128  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
8129  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
8130  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
8131  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
8132  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
8133  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
8134  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
8135  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
8136  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
8137  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
8138  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
8139  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
8140  case X86ISD::MINGW_ALLOCA:       return "X86ISD::MINGW_ALLOCA";
8141  }
8142}
8143
8144// isLegalAddressingMode - Return true if the addressing mode represented
8145// by AM is legal for this target, for a load/store of the specified type.
8146bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
8147                                              const Type *Ty) const {
8148  // X86 supports extremely general addressing modes.
8149  CodeModel::Model M = getTargetMachine().getCodeModel();
8150
8151  // X86 allows a sign-extended 32-bit immediate field as a displacement.
8152  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
8153    return false;
8154
8155  if (AM.BaseGV) {
8156    unsigned GVFlags =
8157      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
8158
8159    // If a reference to this global requires an extra load, we can't fold it.
8160    if (isGlobalStubReference(GVFlags))
8161      return false;
8162
8163    // If BaseGV requires a register for the PIC base, we cannot also have a
8164    // BaseReg specified.
8165    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
8166      return false;
8167
8168    // If lower 4G is not available, then we must use rip-relative addressing.
8169    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
8170      return false;
8171  }
8172
8173  switch (AM.Scale) {
8174  case 0:
8175  case 1:
8176  case 2:
8177  case 4:
8178  case 8:
8179    // These scales always work.
8180    break;
8181  case 3:
8182  case 5:
8183  case 9:
8184    // These scales are formed with basereg+scalereg.  Only accept if there is
8185    // no basereg yet.
8186    if (AM.HasBaseReg)
8187      return false;
8188    break;
8189  default:  // Other stuff never works.
8190    return false;
8191  }
8192
8193  return true;
8194}
8195
8196
8197bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
8198  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8199    return false;
8200  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8201  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8202  if (NumBits1 <= NumBits2)
8203    return false;
8204  return true;
8205}
8206
8207bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8208  if (!VT1.isInteger() || !VT2.isInteger())
8209    return false;
8210  unsigned NumBits1 = VT1.getSizeInBits();
8211  unsigned NumBits2 = VT2.getSizeInBits();
8212  if (NumBits1 <= NumBits2)
8213    return false;
8214  return true;
8215}
8216
8217bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
8218  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8219  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
8220}
8221
8222bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
8223  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8224  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
8225}
8226
8227bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
8228  // i16 instructions are longer (0x66 prefix) and potentially slower.
8229  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
8230}
8231
8232/// isShuffleMaskLegal - Targets can use this to indicate that they only
8233/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8234/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8235/// are assumed to be legal.
8236bool
8237X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
8238                                      EVT VT) const {
8239  // Very little shuffling can be done for 64-bit vectors right now.
8240  if (VT.getSizeInBits() == 64)
8241    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
8242
8243  // FIXME: pshufb, blends, shifts.
8244  return (VT.getVectorNumElements() == 2 ||
8245          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
8246          isMOVLMask(M, VT) ||
8247          isSHUFPMask(M, VT) ||
8248          isPSHUFDMask(M, VT) ||
8249          isPSHUFHWMask(M, VT) ||
8250          isPSHUFLWMask(M, VT) ||
8251          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
8252          isUNPCKLMask(M, VT) ||
8253          isUNPCKHMask(M, VT) ||
8254          isUNPCKL_v_undef_Mask(M, VT) ||
8255          isUNPCKH_v_undef_Mask(M, VT));
8256}
8257
8258bool
8259X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
8260                                          EVT VT) const {
8261  unsigned NumElts = VT.getVectorNumElements();
8262  // FIXME: This collection of masks seems suspect.
8263  if (NumElts == 2)
8264    return true;
8265  if (NumElts == 4 && VT.getSizeInBits() == 128) {
8266    return (isMOVLMask(Mask, VT)  ||
8267            isCommutedMOVLMask(Mask, VT, true) ||
8268            isSHUFPMask(Mask, VT) ||
8269            isCommutedSHUFPMask(Mask, VT));
8270  }
8271  return false;
8272}
8273
8274//===----------------------------------------------------------------------===//
8275//                           X86 Scheduler Hooks
8276//===----------------------------------------------------------------------===//
8277
8278// private utility function
8279MachineBasicBlock *
8280X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
8281                                                       MachineBasicBlock *MBB,
8282                                                       unsigned regOpc,
8283                                                       unsigned immOpc,
8284                                                       unsigned LoadOpc,
8285                                                       unsigned CXchgOpc,
8286                                                       unsigned notOpc,
8287                                                       unsigned EAXreg,
8288                                                       TargetRegisterClass *RC,
8289                                                       bool invSrc) const {
8290  // For the atomic bitwise operator, we generate
8291  //   thisMBB:
8292  //   newMBB:
8293  //     ld  t1 = [bitinstr.addr]
8294  //     op  t2 = t1, [bitinstr.val]
8295  //     mov EAX = t1
8296  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8297  //     bz  newMBB
8298  //     fallthrough -->nextMBB
8299  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8300  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8301  MachineFunction::iterator MBBIter = MBB;
8302  ++MBBIter;
8303
8304  /// First build the CFG
8305  MachineFunction *F = MBB->getParent();
8306  MachineBasicBlock *thisMBB = MBB;
8307  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8308  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8309  F->insert(MBBIter, newMBB);
8310  F->insert(MBBIter, nextMBB);
8311
8312  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8313  nextMBB->splice(nextMBB->begin(), thisMBB,
8314                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8315                  thisMBB->end());
8316  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8317
8318  // Update thisMBB to fall through to newMBB
8319  thisMBB->addSuccessor(newMBB);
8320
8321  // newMBB jumps to itself and fall through to nextMBB
8322  newMBB->addSuccessor(nextMBB);
8323  newMBB->addSuccessor(newMBB);
8324
8325  // Insert instructions into newMBB based on incoming instruction
8326  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
8327         "unexpected number of operands");
8328  DebugLoc dl = bInstr->getDebugLoc();
8329  MachineOperand& destOper = bInstr->getOperand(0);
8330  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8331  int numArgs = bInstr->getNumOperands() - 1;
8332  for (int i=0; i < numArgs; ++i)
8333    argOpers[i] = &bInstr->getOperand(i+1);
8334
8335  // x86 address has 4 operands: base, index, scale, and displacement
8336  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8337  int valArgIndx = lastAddrIndx + 1;
8338
8339  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8340  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
8341  for (int i=0; i <= lastAddrIndx; ++i)
8342    (*MIB).addOperand(*argOpers[i]);
8343
8344  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
8345  if (invSrc) {
8346    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
8347  }
8348  else
8349    tt = t1;
8350
8351  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8352  assert((argOpers[valArgIndx]->isReg() ||
8353          argOpers[valArgIndx]->isImm()) &&
8354         "invalid operand");
8355  if (argOpers[valArgIndx]->isReg())
8356    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
8357  else
8358    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
8359  MIB.addReg(tt);
8360  (*MIB).addOperand(*argOpers[valArgIndx]);
8361
8362  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
8363  MIB.addReg(t1);
8364
8365  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
8366  for (int i=0; i <= lastAddrIndx; ++i)
8367    (*MIB).addOperand(*argOpers[i]);
8368  MIB.addReg(t2);
8369  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8370  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8371                    bInstr->memoperands_end());
8372
8373  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
8374  MIB.addReg(EAXreg);
8375
8376  // insert branch
8377  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8378
8379  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
8380  return nextMBB;
8381}
8382
8383// private utility function:  64 bit atomics on 32 bit host.
8384MachineBasicBlock *
8385X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
8386                                                       MachineBasicBlock *MBB,
8387                                                       unsigned regOpcL,
8388                                                       unsigned regOpcH,
8389                                                       unsigned immOpcL,
8390                                                       unsigned immOpcH,
8391                                                       bool invSrc) const {
8392  // For the atomic bitwise operator, we generate
8393  //   thisMBB (instructions are in pairs, except cmpxchg8b)
8394  //     ld t1,t2 = [bitinstr.addr]
8395  //   newMBB:
8396  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
8397  //     op  t5, t6 <- out1, out2, [bitinstr.val]
8398  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
8399  //     mov ECX, EBX <- t5, t6
8400  //     mov EAX, EDX <- t1, t2
8401  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
8402  //     mov t3, t4 <- EAX, EDX
8403  //     bz  newMBB
8404  //     result in out1, out2
8405  //     fallthrough -->nextMBB
8406
8407  const TargetRegisterClass *RC = X86::GR32RegisterClass;
8408  const unsigned LoadOpc = X86::MOV32rm;
8409  const unsigned NotOpc = X86::NOT32r;
8410  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8411  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8412  MachineFunction::iterator MBBIter = MBB;
8413  ++MBBIter;
8414
8415  /// First build the CFG
8416  MachineFunction *F = MBB->getParent();
8417  MachineBasicBlock *thisMBB = MBB;
8418  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8419  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8420  F->insert(MBBIter, newMBB);
8421  F->insert(MBBIter, nextMBB);
8422
8423  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8424  nextMBB->splice(nextMBB->begin(), thisMBB,
8425                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8426                  thisMBB->end());
8427  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8428
8429  // Update thisMBB to fall through to newMBB
8430  thisMBB->addSuccessor(newMBB);
8431
8432  // newMBB jumps to itself and fall through to nextMBB
8433  newMBB->addSuccessor(nextMBB);
8434  newMBB->addSuccessor(newMBB);
8435
8436  DebugLoc dl = bInstr->getDebugLoc();
8437  // Insert instructions into newMBB based on incoming instruction
8438  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
8439  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
8440         "unexpected number of operands");
8441  MachineOperand& dest1Oper = bInstr->getOperand(0);
8442  MachineOperand& dest2Oper = bInstr->getOperand(1);
8443  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8444  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
8445    argOpers[i] = &bInstr->getOperand(i+2);
8446
8447    // We use some of the operands multiple times, so conservatively just
8448    // clear any kill flags that might be present.
8449    if (argOpers[i]->isReg() && argOpers[i]->isUse())
8450      argOpers[i]->setIsKill(false);
8451  }
8452
8453  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8454  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8455
8456  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8457  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8458  for (int i=0; i <= lastAddrIndx; ++i)
8459    (*MIB).addOperand(*argOpers[i]);
8460  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8461  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8462  // add 4 to displacement.
8463  for (int i=0; i <= lastAddrIndx-2; ++i)
8464    (*MIB).addOperand(*argOpers[i]);
8465  MachineOperand newOp3 = *(argOpers[3]);
8466  if (newOp3.isImm())
8467    newOp3.setImm(newOp3.getImm()+4);
8468  else
8469    newOp3.setOffset(newOp3.getOffset()+4);
8470  (*MIB).addOperand(newOp3);
8471  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8472
8473  // t3/4 are defined later, at the bottom of the loop
8474  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8475  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8476  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8477    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8478  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8479    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8480
8481  // The subsequent operations should be using the destination registers of
8482  //the PHI instructions.
8483  if (invSrc) {
8484    t1 = F->getRegInfo().createVirtualRegister(RC);
8485    t2 = F->getRegInfo().createVirtualRegister(RC);
8486    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8487    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8488  } else {
8489    t1 = dest1Oper.getReg();
8490    t2 = dest2Oper.getReg();
8491  }
8492
8493  int valArgIndx = lastAddrIndx + 1;
8494  assert((argOpers[valArgIndx]->isReg() ||
8495          argOpers[valArgIndx]->isImm()) &&
8496         "invalid operand");
8497  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8498  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8499  if (argOpers[valArgIndx]->isReg())
8500    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8501  else
8502    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8503  if (regOpcL != X86::MOV32rr)
8504    MIB.addReg(t1);
8505  (*MIB).addOperand(*argOpers[valArgIndx]);
8506  assert(argOpers[valArgIndx + 1]->isReg() ==
8507         argOpers[valArgIndx]->isReg());
8508  assert(argOpers[valArgIndx + 1]->isImm() ==
8509         argOpers[valArgIndx]->isImm());
8510  if (argOpers[valArgIndx + 1]->isReg())
8511    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8512  else
8513    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8514  if (regOpcH != X86::MOV32rr)
8515    MIB.addReg(t2);
8516  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8517
8518  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
8519  MIB.addReg(t1);
8520  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
8521  MIB.addReg(t2);
8522
8523  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
8524  MIB.addReg(t5);
8525  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
8526  MIB.addReg(t6);
8527
8528  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8529  for (int i=0; i <= lastAddrIndx; ++i)
8530    (*MIB).addOperand(*argOpers[i]);
8531
8532  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8533  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8534                    bInstr->memoperands_end());
8535
8536  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
8537  MIB.addReg(X86::EAX);
8538  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
8539  MIB.addReg(X86::EDX);
8540
8541  // insert branch
8542  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8543
8544  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
8545  return nextMBB;
8546}
8547
8548// private utility function
8549MachineBasicBlock *
8550X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8551                                                      MachineBasicBlock *MBB,
8552                                                      unsigned cmovOpc) const {
8553  // For the atomic min/max operator, we generate
8554  //   thisMBB:
8555  //   newMBB:
8556  //     ld t1 = [min/max.addr]
8557  //     mov t2 = [min/max.val]
8558  //     cmp  t1, t2
8559  //     cmov[cond] t2 = t1
8560  //     mov EAX = t1
8561  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8562  //     bz   newMBB
8563  //     fallthrough -->nextMBB
8564  //
8565  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8566  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8567  MachineFunction::iterator MBBIter = MBB;
8568  ++MBBIter;
8569
8570  /// First build the CFG
8571  MachineFunction *F = MBB->getParent();
8572  MachineBasicBlock *thisMBB = MBB;
8573  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8574  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8575  F->insert(MBBIter, newMBB);
8576  F->insert(MBBIter, nextMBB);
8577
8578  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8579  nextMBB->splice(nextMBB->begin(), thisMBB,
8580                  llvm::next(MachineBasicBlock::iterator(mInstr)),
8581                  thisMBB->end());
8582  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8583
8584  // Update thisMBB to fall through to newMBB
8585  thisMBB->addSuccessor(newMBB);
8586
8587  // newMBB jumps to newMBB and fall through to nextMBB
8588  newMBB->addSuccessor(nextMBB);
8589  newMBB->addSuccessor(newMBB);
8590
8591  DebugLoc dl = mInstr->getDebugLoc();
8592  // Insert instructions into newMBB based on incoming instruction
8593  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
8594         "unexpected number of operands");
8595  MachineOperand& destOper = mInstr->getOperand(0);
8596  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8597  int numArgs = mInstr->getNumOperands() - 1;
8598  for (int i=0; i < numArgs; ++i)
8599    argOpers[i] = &mInstr->getOperand(i+1);
8600
8601  // x86 address has 4 operands: base, index, scale, and displacement
8602  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8603  int valArgIndx = lastAddrIndx + 1;
8604
8605  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8606  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
8607  for (int i=0; i <= lastAddrIndx; ++i)
8608    (*MIB).addOperand(*argOpers[i]);
8609
8610  // We only support register and immediate values
8611  assert((argOpers[valArgIndx]->isReg() ||
8612          argOpers[valArgIndx]->isImm()) &&
8613         "invalid operand");
8614
8615  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8616  if (argOpers[valArgIndx]->isReg())
8617    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
8618  else
8619    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8620  (*MIB).addOperand(*argOpers[valArgIndx]);
8621
8622  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
8623  MIB.addReg(t1);
8624
8625  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
8626  MIB.addReg(t1);
8627  MIB.addReg(t2);
8628
8629  // Generate movc
8630  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8631  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
8632  MIB.addReg(t2);
8633  MIB.addReg(t1);
8634
8635  // Cmp and exchange if none has modified the memory location
8636  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
8637  for (int i=0; i <= lastAddrIndx; ++i)
8638    (*MIB).addOperand(*argOpers[i]);
8639  MIB.addReg(t3);
8640  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8641  (*MIB).setMemRefs(mInstr->memoperands_begin(),
8642                    mInstr->memoperands_end());
8643
8644  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
8645  MIB.addReg(X86::EAX);
8646
8647  // insert branch
8648  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8649
8650  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
8651  return nextMBB;
8652}
8653
8654// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
8655// or XMM0_V32I8 in AVX all of this code can be replaced with that
8656// in the .td file.
8657MachineBasicBlock *
8658X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
8659                            unsigned numArgs, bool memArg) const {
8660
8661  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
8662         "Target must have SSE4.2 or AVX features enabled");
8663
8664  DebugLoc dl = MI->getDebugLoc();
8665  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8666
8667  unsigned Opc;
8668
8669  if (!Subtarget->hasAVX()) {
8670    if (memArg)
8671      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
8672    else
8673      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
8674  } else {
8675    if (memArg)
8676      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
8677    else
8678      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
8679  }
8680
8681  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
8682
8683  for (unsigned i = 0; i < numArgs; ++i) {
8684    MachineOperand &Op = MI->getOperand(i+1);
8685
8686    if (!(Op.isReg() && Op.isImplicit()))
8687      MIB.addOperand(Op);
8688  }
8689
8690  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
8691    .addReg(X86::XMM0);
8692
8693  MI->eraseFromParent();
8694
8695  return BB;
8696}
8697
8698MachineBasicBlock *
8699X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
8700                                                 MachineInstr *MI,
8701                                                 MachineBasicBlock *MBB) const {
8702  // Emit code to save XMM registers to the stack. The ABI says that the
8703  // number of registers to save is given in %al, so it's theoretically
8704  // possible to do an indirect jump trick to avoid saving all of them,
8705  // however this code takes a simpler approach and just executes all
8706  // of the stores if %al is non-zero. It's less code, and it's probably
8707  // easier on the hardware branch predictor, and stores aren't all that
8708  // expensive anyway.
8709
8710  // Create the new basic blocks. One block contains all the XMM stores,
8711  // and one block is the final destination regardless of whether any
8712  // stores were performed.
8713  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8714  MachineFunction *F = MBB->getParent();
8715  MachineFunction::iterator MBBIter = MBB;
8716  ++MBBIter;
8717  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
8718  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
8719  F->insert(MBBIter, XMMSaveMBB);
8720  F->insert(MBBIter, EndMBB);
8721
8722  // Transfer the remainder of MBB and its successor edges to EndMBB.
8723  EndMBB->splice(EndMBB->begin(), MBB,
8724                 llvm::next(MachineBasicBlock::iterator(MI)),
8725                 MBB->end());
8726  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
8727
8728  // The original block will now fall through to the XMM save block.
8729  MBB->addSuccessor(XMMSaveMBB);
8730  // The XMMSaveMBB will fall through to the end block.
8731  XMMSaveMBB->addSuccessor(EndMBB);
8732
8733  // Now add the instructions.
8734  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8735  DebugLoc DL = MI->getDebugLoc();
8736
8737  unsigned CountReg = MI->getOperand(0).getReg();
8738  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
8739  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
8740
8741  if (!Subtarget->isTargetWin64()) {
8742    // If %al is 0, branch around the XMM save block.
8743    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
8744    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
8745    MBB->addSuccessor(EndMBB);
8746  }
8747
8748  // In the XMM save block, save all the XMM argument registers.
8749  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
8750    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
8751    MachineMemOperand *MMO =
8752      F->getMachineMemOperand(
8753        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
8754        MachineMemOperand::MOStore, Offset,
8755        /*Size=*/16, /*Align=*/16);
8756    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
8757      .addFrameIndex(RegSaveFrameIndex)
8758      .addImm(/*Scale=*/1)
8759      .addReg(/*IndexReg=*/0)
8760      .addImm(/*Disp=*/Offset)
8761      .addReg(/*Segment=*/0)
8762      .addReg(MI->getOperand(i).getReg())
8763      .addMemOperand(MMO);
8764  }
8765
8766  MI->eraseFromParent();   // The pseudo instruction is gone now.
8767
8768  return EndMBB;
8769}
8770
8771MachineBasicBlock *
8772X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
8773                                     MachineBasicBlock *BB) const {
8774  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8775  DebugLoc DL = MI->getDebugLoc();
8776
8777  // To "insert" a SELECT_CC instruction, we actually have to insert the
8778  // diamond control-flow pattern.  The incoming instruction knows the
8779  // destination vreg to set, the condition code register to branch on, the
8780  // true/false values to select between, and a branch opcode to use.
8781  const BasicBlock *LLVM_BB = BB->getBasicBlock();
8782  MachineFunction::iterator It = BB;
8783  ++It;
8784
8785  //  thisMBB:
8786  //  ...
8787  //   TrueVal = ...
8788  //   cmpTY ccX, r1, r2
8789  //   bCC copy1MBB
8790  //   fallthrough --> copy0MBB
8791  MachineBasicBlock *thisMBB = BB;
8792  MachineFunction *F = BB->getParent();
8793  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8794  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8795  F->insert(It, copy0MBB);
8796  F->insert(It, sinkMBB);
8797
8798  // If the EFLAGS register isn't dead in the terminator, then claim that it's
8799  // live into the sink and copy blocks.
8800  const MachineFunction *MF = BB->getParent();
8801  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
8802  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
8803
8804  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
8805    const MachineOperand &MO = MI->getOperand(I);
8806    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
8807    unsigned Reg = MO.getReg();
8808    if (Reg != X86::EFLAGS) continue;
8809    copy0MBB->addLiveIn(Reg);
8810    sinkMBB->addLiveIn(Reg);
8811  }
8812
8813  // Transfer the remainder of BB and its successor edges to sinkMBB.
8814  sinkMBB->splice(sinkMBB->begin(), BB,
8815                  llvm::next(MachineBasicBlock::iterator(MI)),
8816                  BB->end());
8817  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8818
8819  // Add the true and fallthrough blocks as its successors.
8820  BB->addSuccessor(copy0MBB);
8821  BB->addSuccessor(sinkMBB);
8822
8823  // Create the conditional branch instruction.
8824  unsigned Opc =
8825    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
8826  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
8827
8828  //  copy0MBB:
8829  //   %FalseValue = ...
8830  //   # fallthrough to sinkMBB
8831  copy0MBB->addSuccessor(sinkMBB);
8832
8833  //  sinkMBB:
8834  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8835  //  ...
8836  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
8837          TII->get(X86::PHI), MI->getOperand(0).getReg())
8838    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
8839    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8840
8841  MI->eraseFromParent();   // The pseudo instruction is gone now.
8842  return sinkMBB;
8843}
8844
8845MachineBasicBlock *
8846X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI,
8847                                          MachineBasicBlock *BB) const {
8848  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8849  DebugLoc DL = MI->getDebugLoc();
8850
8851  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
8852  // non-trivial part is impdef of ESP.
8853  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
8854  // mingw-w64.
8855
8856  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
8857    .addExternalSymbol("_alloca")
8858    .addReg(X86::EAX, RegState::Implicit)
8859    .addReg(X86::ESP, RegState::Implicit)
8860    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
8861    .addReg(X86::ESP, RegState::Define | RegState::Implicit);
8862
8863  MI->eraseFromParent();   // The pseudo instruction is gone now.
8864  return BB;
8865}
8866
8867MachineBasicBlock *
8868X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
8869                                      MachineBasicBlock *BB) const {
8870  // This is pretty easy.  We're taking the value that we received from
8871  // our load from the relocation, sticking it in either RDI (x86-64)
8872  // or EAX and doing an indirect call.  The return value will then
8873  // be in the normal return register.
8874  const X86InstrInfo *TII
8875    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
8876  DebugLoc DL = MI->getDebugLoc();
8877  MachineFunction *F = BB->getParent();
8878  bool IsWin64 = Subtarget->isTargetWin64();
8879
8880  assert(MI->getOperand(3).isGlobal() && "This should be a global");
8881
8882  if (Subtarget->is64Bit()) {
8883    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
8884                                      TII->get(X86::MOV64rm), X86::RDI)
8885    .addReg(X86::RIP)
8886    .addImm(0).addReg(0)
8887    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8888                      MI->getOperand(3).getTargetFlags())
8889    .addReg(0);
8890    MIB = BuildMI(*BB, MI, DL, TII->get(IsWin64 ? X86::WINCALL64m : X86::CALL64m));
8891    addDirectMem(MIB, X86::RDI);
8892  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
8893    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
8894                                      TII->get(X86::MOV32rm), X86::EAX)
8895    .addReg(0)
8896    .addImm(0).addReg(0)
8897    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8898                      MI->getOperand(3).getTargetFlags())
8899    .addReg(0);
8900    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
8901    addDirectMem(MIB, X86::EAX);
8902  } else {
8903    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
8904                                      TII->get(X86::MOV32rm), X86::EAX)
8905    .addReg(TII->getGlobalBaseReg(F))
8906    .addImm(0).addReg(0)
8907    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8908                      MI->getOperand(3).getTargetFlags())
8909    .addReg(0);
8910    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
8911    addDirectMem(MIB, X86::EAX);
8912  }
8913
8914  MI->eraseFromParent(); // The pseudo instruction is gone now.
8915  return BB;
8916}
8917
8918MachineBasicBlock *
8919X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8920                                               MachineBasicBlock *BB) const {
8921  switch (MI->getOpcode()) {
8922  default: assert(false && "Unexpected instr type to insert");
8923  case X86::MINGW_ALLOCA:
8924    return EmitLoweredMingwAlloca(MI, BB);
8925  case X86::TLSCall_32:
8926  case X86::TLSCall_64:
8927    return EmitLoweredTLSCall(MI, BB);
8928  case X86::CMOV_GR8:
8929  case X86::CMOV_V1I64:
8930  case X86::CMOV_FR32:
8931  case X86::CMOV_FR64:
8932  case X86::CMOV_V4F32:
8933  case X86::CMOV_V2F64:
8934  case X86::CMOV_V2I64:
8935  case X86::CMOV_GR16:
8936  case X86::CMOV_GR32:
8937  case X86::CMOV_RFP32:
8938  case X86::CMOV_RFP64:
8939  case X86::CMOV_RFP80:
8940    return EmitLoweredSelect(MI, BB);
8941
8942  case X86::FP32_TO_INT16_IN_MEM:
8943  case X86::FP32_TO_INT32_IN_MEM:
8944  case X86::FP32_TO_INT64_IN_MEM:
8945  case X86::FP64_TO_INT16_IN_MEM:
8946  case X86::FP64_TO_INT32_IN_MEM:
8947  case X86::FP64_TO_INT64_IN_MEM:
8948  case X86::FP80_TO_INT16_IN_MEM:
8949  case X86::FP80_TO_INT32_IN_MEM:
8950  case X86::FP80_TO_INT64_IN_MEM: {
8951    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8952    DebugLoc DL = MI->getDebugLoc();
8953
8954    // Change the floating point control register to use "round towards zero"
8955    // mode when truncating to an integer value.
8956    MachineFunction *F = BB->getParent();
8957    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
8958    addFrameReference(BuildMI(*BB, MI, DL,
8959                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
8960
8961    // Load the old value of the high byte of the control word...
8962    unsigned OldCW =
8963      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
8964    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
8965                      CWFrameIdx);
8966
8967    // Set the high part to be round to zero...
8968    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
8969      .addImm(0xC7F);
8970
8971    // Reload the modified control word now...
8972    addFrameReference(BuildMI(*BB, MI, DL,
8973                              TII->get(X86::FLDCW16m)), CWFrameIdx);
8974
8975    // Restore the memory image of control word to original value
8976    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
8977      .addReg(OldCW);
8978
8979    // Get the X86 opcode to use.
8980    unsigned Opc;
8981    switch (MI->getOpcode()) {
8982    default: llvm_unreachable("illegal opcode!");
8983    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
8984    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
8985    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
8986    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
8987    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
8988    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
8989    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
8990    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
8991    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
8992    }
8993
8994    X86AddressMode AM;
8995    MachineOperand &Op = MI->getOperand(0);
8996    if (Op.isReg()) {
8997      AM.BaseType = X86AddressMode::RegBase;
8998      AM.Base.Reg = Op.getReg();
8999    } else {
9000      AM.BaseType = X86AddressMode::FrameIndexBase;
9001      AM.Base.FrameIndex = Op.getIndex();
9002    }
9003    Op = MI->getOperand(1);
9004    if (Op.isImm())
9005      AM.Scale = Op.getImm();
9006    Op = MI->getOperand(2);
9007    if (Op.isImm())
9008      AM.IndexReg = Op.getImm();
9009    Op = MI->getOperand(3);
9010    if (Op.isGlobal()) {
9011      AM.GV = Op.getGlobal();
9012    } else {
9013      AM.Disp = Op.getImm();
9014    }
9015    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
9016                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
9017
9018    // Reload the original control word now.
9019    addFrameReference(BuildMI(*BB, MI, DL,
9020                              TII->get(X86::FLDCW16m)), CWFrameIdx);
9021
9022    MI->eraseFromParent();   // The pseudo instruction is gone now.
9023    return BB;
9024  }
9025    // String/text processing lowering.
9026  case X86::PCMPISTRM128REG:
9027  case X86::VPCMPISTRM128REG:
9028    return EmitPCMP(MI, BB, 3, false /* in-mem */);
9029  case X86::PCMPISTRM128MEM:
9030  case X86::VPCMPISTRM128MEM:
9031    return EmitPCMP(MI, BB, 3, true /* in-mem */);
9032  case X86::PCMPESTRM128REG:
9033  case X86::VPCMPESTRM128REG:
9034    return EmitPCMP(MI, BB, 5, false /* in mem */);
9035  case X86::PCMPESTRM128MEM:
9036  case X86::VPCMPESTRM128MEM:
9037    return EmitPCMP(MI, BB, 5, true /* in mem */);
9038
9039    // Atomic Lowering.
9040  case X86::ATOMAND32:
9041    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
9042                                               X86::AND32ri, X86::MOV32rm,
9043                                               X86::LCMPXCHG32,
9044                                               X86::NOT32r, X86::EAX,
9045                                               X86::GR32RegisterClass);
9046  case X86::ATOMOR32:
9047    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
9048                                               X86::OR32ri, X86::MOV32rm,
9049                                               X86::LCMPXCHG32,
9050                                               X86::NOT32r, X86::EAX,
9051                                               X86::GR32RegisterClass);
9052  case X86::ATOMXOR32:
9053    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
9054                                               X86::XOR32ri, X86::MOV32rm,
9055                                               X86::LCMPXCHG32,
9056                                               X86::NOT32r, X86::EAX,
9057                                               X86::GR32RegisterClass);
9058  case X86::ATOMNAND32:
9059    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
9060                                               X86::AND32ri, X86::MOV32rm,
9061                                               X86::LCMPXCHG32,
9062                                               X86::NOT32r, X86::EAX,
9063                                               X86::GR32RegisterClass, true);
9064  case X86::ATOMMIN32:
9065    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
9066  case X86::ATOMMAX32:
9067    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
9068  case X86::ATOMUMIN32:
9069    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
9070  case X86::ATOMUMAX32:
9071    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
9072
9073  case X86::ATOMAND16:
9074    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
9075                                               X86::AND16ri, X86::MOV16rm,
9076                                               X86::LCMPXCHG16,
9077                                               X86::NOT16r, X86::AX,
9078                                               X86::GR16RegisterClass);
9079  case X86::ATOMOR16:
9080    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
9081                                               X86::OR16ri, X86::MOV16rm,
9082                                               X86::LCMPXCHG16,
9083                                               X86::NOT16r, X86::AX,
9084                                               X86::GR16RegisterClass);
9085  case X86::ATOMXOR16:
9086    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
9087                                               X86::XOR16ri, X86::MOV16rm,
9088                                               X86::LCMPXCHG16,
9089                                               X86::NOT16r, X86::AX,
9090                                               X86::GR16RegisterClass);
9091  case X86::ATOMNAND16:
9092    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
9093                                               X86::AND16ri, X86::MOV16rm,
9094                                               X86::LCMPXCHG16,
9095                                               X86::NOT16r, X86::AX,
9096                                               X86::GR16RegisterClass, true);
9097  case X86::ATOMMIN16:
9098    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
9099  case X86::ATOMMAX16:
9100    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
9101  case X86::ATOMUMIN16:
9102    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
9103  case X86::ATOMUMAX16:
9104    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
9105
9106  case X86::ATOMAND8:
9107    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
9108                                               X86::AND8ri, X86::MOV8rm,
9109                                               X86::LCMPXCHG8,
9110                                               X86::NOT8r, X86::AL,
9111                                               X86::GR8RegisterClass);
9112  case X86::ATOMOR8:
9113    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
9114                                               X86::OR8ri, X86::MOV8rm,
9115                                               X86::LCMPXCHG8,
9116                                               X86::NOT8r, X86::AL,
9117                                               X86::GR8RegisterClass);
9118  case X86::ATOMXOR8:
9119    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
9120                                               X86::XOR8ri, X86::MOV8rm,
9121                                               X86::LCMPXCHG8,
9122                                               X86::NOT8r, X86::AL,
9123                                               X86::GR8RegisterClass);
9124  case X86::ATOMNAND8:
9125    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
9126                                               X86::AND8ri, X86::MOV8rm,
9127                                               X86::LCMPXCHG8,
9128                                               X86::NOT8r, X86::AL,
9129                                               X86::GR8RegisterClass, true);
9130  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
9131  // This group is for 64-bit host.
9132  case X86::ATOMAND64:
9133    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
9134                                               X86::AND64ri32, X86::MOV64rm,
9135                                               X86::LCMPXCHG64,
9136                                               X86::NOT64r, X86::RAX,
9137                                               X86::GR64RegisterClass);
9138  case X86::ATOMOR64:
9139    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
9140                                               X86::OR64ri32, X86::MOV64rm,
9141                                               X86::LCMPXCHG64,
9142                                               X86::NOT64r, X86::RAX,
9143                                               X86::GR64RegisterClass);
9144  case X86::ATOMXOR64:
9145    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
9146                                               X86::XOR64ri32, X86::MOV64rm,
9147                                               X86::LCMPXCHG64,
9148                                               X86::NOT64r, X86::RAX,
9149                                               X86::GR64RegisterClass);
9150  case X86::ATOMNAND64:
9151    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
9152                                               X86::AND64ri32, X86::MOV64rm,
9153                                               X86::LCMPXCHG64,
9154                                               X86::NOT64r, X86::RAX,
9155                                               X86::GR64RegisterClass, true);
9156  case X86::ATOMMIN64:
9157    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
9158  case X86::ATOMMAX64:
9159    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
9160  case X86::ATOMUMIN64:
9161    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
9162  case X86::ATOMUMAX64:
9163    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
9164
9165  // This group does 64-bit operations on a 32-bit host.
9166  case X86::ATOMAND6432:
9167    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9168                                               X86::AND32rr, X86::AND32rr,
9169                                               X86::AND32ri, X86::AND32ri,
9170                                               false);
9171  case X86::ATOMOR6432:
9172    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9173                                               X86::OR32rr, X86::OR32rr,
9174                                               X86::OR32ri, X86::OR32ri,
9175                                               false);
9176  case X86::ATOMXOR6432:
9177    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9178                                               X86::XOR32rr, X86::XOR32rr,
9179                                               X86::XOR32ri, X86::XOR32ri,
9180                                               false);
9181  case X86::ATOMNAND6432:
9182    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9183                                               X86::AND32rr, X86::AND32rr,
9184                                               X86::AND32ri, X86::AND32ri,
9185                                               true);
9186  case X86::ATOMADD6432:
9187    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9188                                               X86::ADD32rr, X86::ADC32rr,
9189                                               X86::ADD32ri, X86::ADC32ri,
9190                                               false);
9191  case X86::ATOMSUB6432:
9192    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9193                                               X86::SUB32rr, X86::SBB32rr,
9194                                               X86::SUB32ri, X86::SBB32ri,
9195                                               false);
9196  case X86::ATOMSWAP6432:
9197    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9198                                               X86::MOV32rr, X86::MOV32rr,
9199                                               X86::MOV32ri, X86::MOV32ri,
9200                                               false);
9201  case X86::VASTART_SAVE_XMM_REGS:
9202    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
9203  }
9204}
9205
9206//===----------------------------------------------------------------------===//
9207//                           X86 Optimization Hooks
9208//===----------------------------------------------------------------------===//
9209
9210void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
9211                                                       const APInt &Mask,
9212                                                       APInt &KnownZero,
9213                                                       APInt &KnownOne,
9214                                                       const SelectionDAG &DAG,
9215                                                       unsigned Depth) const {
9216  unsigned Opc = Op.getOpcode();
9217  assert((Opc >= ISD::BUILTIN_OP_END ||
9218          Opc == ISD::INTRINSIC_WO_CHAIN ||
9219          Opc == ISD::INTRINSIC_W_CHAIN ||
9220          Opc == ISD::INTRINSIC_VOID) &&
9221         "Should use MaskedValueIsZero if you don't know whether Op"
9222         " is a target node!");
9223
9224  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
9225  switch (Opc) {
9226  default: break;
9227  case X86ISD::ADD:
9228  case X86ISD::SUB:
9229  case X86ISD::SMUL:
9230  case X86ISD::UMUL:
9231  case X86ISD::INC:
9232  case X86ISD::DEC:
9233  case X86ISD::OR:
9234  case X86ISD::XOR:
9235  case X86ISD::AND:
9236    // These nodes' second result is a boolean.
9237    if (Op.getResNo() == 0)
9238      break;
9239    // Fallthrough
9240  case X86ISD::SETCC:
9241    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
9242                                       Mask.getBitWidth() - 1);
9243    break;
9244  }
9245}
9246
9247/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
9248/// node is a GlobalAddress + offset.
9249bool X86TargetLowering::isGAPlusOffset(SDNode *N,
9250                                       const GlobalValue* &GA,
9251                                       int64_t &Offset) const {
9252  if (N->getOpcode() == X86ISD::Wrapper) {
9253    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
9254      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
9255      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
9256      return true;
9257    }
9258  }
9259  return TargetLowering::isGAPlusOffset(N, GA, Offset);
9260}
9261
9262/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
9263/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
9264/// if the load addresses are consecutive, non-overlapping, and in the right
9265/// order.
9266static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
9267                                     const TargetLowering &TLI) {
9268  DebugLoc dl = N->getDebugLoc();
9269  EVT VT = N->getValueType(0);
9270  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9271
9272  if (VT.getSizeInBits() != 128)
9273    return SDValue();
9274
9275  SmallVector<SDValue, 16> Elts;
9276  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
9277    Elts.push_back(DAG.getShuffleScalarElt(SVN, i));
9278
9279  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
9280}
9281
9282/// PerformShuffleCombine - Detect vector gather/scatter index generation
9283/// and convert it from being a bunch of shuffles and extracts to a simple
9284/// store and scalar loads to extract the elements.
9285static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
9286                                                const TargetLowering &TLI) {
9287  SDValue InputVector = N->getOperand(0);
9288
9289  // Only operate on vectors of 4 elements, where the alternative shuffling
9290  // gets to be more expensive.
9291  if (InputVector.getValueType() != MVT::v4i32)
9292    return SDValue();
9293
9294  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
9295  // single use which is a sign-extend or zero-extend, and all elements are
9296  // used.
9297  SmallVector<SDNode *, 4> Uses;
9298  unsigned ExtractedElements = 0;
9299  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
9300       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
9301    if (UI.getUse().getResNo() != InputVector.getResNo())
9302      return SDValue();
9303
9304    SDNode *Extract = *UI;
9305    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9306      return SDValue();
9307
9308    if (Extract->getValueType(0) != MVT::i32)
9309      return SDValue();
9310    if (!Extract->hasOneUse())
9311      return SDValue();
9312    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
9313        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
9314      return SDValue();
9315    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
9316      return SDValue();
9317
9318    // Record which element was extracted.
9319    ExtractedElements |=
9320      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
9321
9322    Uses.push_back(Extract);
9323  }
9324
9325  // If not all the elements were used, this may not be worthwhile.
9326  if (ExtractedElements != 15)
9327    return SDValue();
9328
9329  // Ok, we've now decided to do the transformation.
9330  DebugLoc dl = InputVector.getDebugLoc();
9331
9332  // Store the value to a temporary stack slot.
9333  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
9334  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, NULL,
9335                            0, false, false, 0);
9336
9337  // Replace each use (extract) with a load of the appropriate element.
9338  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
9339       UE = Uses.end(); UI != UE; ++UI) {
9340    SDNode *Extract = *UI;
9341
9342    // Compute the element's address.
9343    SDValue Idx = Extract->getOperand(1);
9344    unsigned EltSize =
9345        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
9346    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
9347    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
9348
9349    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
9350                                     OffsetVal, StackPtr);
9351
9352    // Load the scalar.
9353    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
9354                                     ScalarAddr, NULL, 0, false, false, 0);
9355
9356    // Replace the exact with the load.
9357    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
9358  }
9359
9360  // The replacement was made in place; don't return anything.
9361  return SDValue();
9362}
9363
9364/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
9365static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
9366                                    const X86Subtarget *Subtarget) {
9367  DebugLoc DL = N->getDebugLoc();
9368  SDValue Cond = N->getOperand(0);
9369  // Get the LHS/RHS of the select.
9370  SDValue LHS = N->getOperand(1);
9371  SDValue RHS = N->getOperand(2);
9372
9373  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
9374  // instructions match the semantics of the common C idiom x<y?x:y but not
9375  // x<=y?x:y, because of how they handle negative zero (which can be
9376  // ignored in unsafe-math mode).
9377  if (Subtarget->hasSSE2() &&
9378      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
9379      Cond.getOpcode() == ISD::SETCC) {
9380    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
9381
9382    unsigned Opcode = 0;
9383    // Check for x CC y ? x : y.
9384    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
9385        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
9386      switch (CC) {
9387      default: break;
9388      case ISD::SETULT:
9389        // Converting this to a min would handle NaNs incorrectly, and swapping
9390        // the operands would cause it to handle comparisons between positive
9391        // and negative zero incorrectly.
9392        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
9393          if (!UnsafeFPMath &&
9394              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9395            break;
9396          std::swap(LHS, RHS);
9397        }
9398        Opcode = X86ISD::FMIN;
9399        break;
9400      case ISD::SETOLE:
9401        // Converting this to a min would handle comparisons between positive
9402        // and negative zero incorrectly.
9403        if (!UnsafeFPMath &&
9404            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
9405          break;
9406        Opcode = X86ISD::FMIN;
9407        break;
9408      case ISD::SETULE:
9409        // Converting this to a min would handle both negative zeros and NaNs
9410        // incorrectly, but we can swap the operands to fix both.
9411        std::swap(LHS, RHS);
9412      case ISD::SETOLT:
9413      case ISD::SETLT:
9414      case ISD::SETLE:
9415        Opcode = X86ISD::FMIN;
9416        break;
9417
9418      case ISD::SETOGE:
9419        // Converting this to a max would handle comparisons between positive
9420        // and negative zero incorrectly.
9421        if (!UnsafeFPMath &&
9422            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
9423          break;
9424        Opcode = X86ISD::FMAX;
9425        break;
9426      case ISD::SETUGT:
9427        // Converting this to a max would handle NaNs incorrectly, and swapping
9428        // the operands would cause it to handle comparisons between positive
9429        // and negative zero incorrectly.
9430        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
9431          if (!UnsafeFPMath &&
9432              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9433            break;
9434          std::swap(LHS, RHS);
9435        }
9436        Opcode = X86ISD::FMAX;
9437        break;
9438      case ISD::SETUGE:
9439        // Converting this to a max would handle both negative zeros and NaNs
9440        // incorrectly, but we can swap the operands to fix both.
9441        std::swap(LHS, RHS);
9442      case ISD::SETOGT:
9443      case ISD::SETGT:
9444      case ISD::SETGE:
9445        Opcode = X86ISD::FMAX;
9446        break;
9447      }
9448    // Check for x CC y ? y : x -- a min/max with reversed arms.
9449    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
9450               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
9451      switch (CC) {
9452      default: break;
9453      case ISD::SETOGE:
9454        // Converting this to a min would handle comparisons between positive
9455        // and negative zero incorrectly, and swapping the operands would
9456        // cause it to handle NaNs incorrectly.
9457        if (!UnsafeFPMath &&
9458            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
9459          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9460            break;
9461          std::swap(LHS, RHS);
9462        }
9463        Opcode = X86ISD::FMIN;
9464        break;
9465      case ISD::SETUGT:
9466        // Converting this to a min would handle NaNs incorrectly.
9467        if (!UnsafeFPMath &&
9468            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9469          break;
9470        Opcode = X86ISD::FMIN;
9471        break;
9472      case ISD::SETUGE:
9473        // Converting this to a min would handle both negative zeros and NaNs
9474        // incorrectly, but we can swap the operands to fix both.
9475        std::swap(LHS, RHS);
9476      case ISD::SETOGT:
9477      case ISD::SETGT:
9478      case ISD::SETGE:
9479        Opcode = X86ISD::FMIN;
9480        break;
9481
9482      case ISD::SETULT:
9483        // Converting this to a max would handle NaNs incorrectly.
9484        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9485          break;
9486        Opcode = X86ISD::FMAX;
9487        break;
9488      case ISD::SETOLE:
9489        // Converting this to a max would handle comparisons between positive
9490        // and negative zero incorrectly, and swapping the operands would
9491        // cause it to handle NaNs incorrectly.
9492        if (!UnsafeFPMath &&
9493            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
9494          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9495            break;
9496          std::swap(LHS, RHS);
9497        }
9498        Opcode = X86ISD::FMAX;
9499        break;
9500      case ISD::SETULE:
9501        // Converting this to a max would handle both negative zeros and NaNs
9502        // incorrectly, but we can swap the operands to fix both.
9503        std::swap(LHS, RHS);
9504      case ISD::SETOLT:
9505      case ISD::SETLT:
9506      case ISD::SETLE:
9507        Opcode = X86ISD::FMAX;
9508        break;
9509      }
9510    }
9511
9512    if (Opcode)
9513      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
9514  }
9515
9516  // If this is a select between two integer constants, try to do some
9517  // optimizations.
9518  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
9519    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
9520      // Don't do this for crazy integer types.
9521      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
9522        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
9523        // so that TrueC (the true value) is larger than FalseC.
9524        bool NeedsCondInvert = false;
9525
9526        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
9527            // Efficiently invertible.
9528            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
9529             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
9530              isa<ConstantSDNode>(Cond.getOperand(1))))) {
9531          NeedsCondInvert = true;
9532          std::swap(TrueC, FalseC);
9533        }
9534
9535        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
9536        if (FalseC->getAPIntValue() == 0 &&
9537            TrueC->getAPIntValue().isPowerOf2()) {
9538          if (NeedsCondInvert) // Invert the condition if needed.
9539            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9540                               DAG.getConstant(1, Cond.getValueType()));
9541
9542          // Zero extend the condition if needed.
9543          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
9544
9545          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9546          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
9547                             DAG.getConstant(ShAmt, MVT::i8));
9548        }
9549
9550        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
9551        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9552          if (NeedsCondInvert) // Invert the condition if needed.
9553            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9554                               DAG.getConstant(1, Cond.getValueType()));
9555
9556          // Zero extend the condition if needed.
9557          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9558                             FalseC->getValueType(0), Cond);
9559          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9560                             SDValue(FalseC, 0));
9561        }
9562
9563        // Optimize cases that will turn into an LEA instruction.  This requires
9564        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9565        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9566          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9567          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9568
9569          bool isFastMultiplier = false;
9570          if (Diff < 10) {
9571            switch ((unsigned char)Diff) {
9572              default: break;
9573              case 1:  // result = add base, cond
9574              case 2:  // result = lea base(    , cond*2)
9575              case 3:  // result = lea base(cond, cond*2)
9576              case 4:  // result = lea base(    , cond*4)
9577              case 5:  // result = lea base(cond, cond*4)
9578              case 8:  // result = lea base(    , cond*8)
9579              case 9:  // result = lea base(cond, cond*8)
9580                isFastMultiplier = true;
9581                break;
9582            }
9583          }
9584
9585          if (isFastMultiplier) {
9586            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9587            if (NeedsCondInvert) // Invert the condition if needed.
9588              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9589                                 DAG.getConstant(1, Cond.getValueType()));
9590
9591            // Zero extend the condition if needed.
9592            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9593                               Cond);
9594            // Scale the condition by the difference.
9595            if (Diff != 1)
9596              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9597                                 DAG.getConstant(Diff, Cond.getValueType()));
9598
9599            // Add the base if non-zero.
9600            if (FalseC->getAPIntValue() != 0)
9601              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9602                                 SDValue(FalseC, 0));
9603            return Cond;
9604          }
9605        }
9606      }
9607  }
9608
9609  return SDValue();
9610}
9611
9612/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
9613static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
9614                                  TargetLowering::DAGCombinerInfo &DCI) {
9615  DebugLoc DL = N->getDebugLoc();
9616
9617  // If the flag operand isn't dead, don't touch this CMOV.
9618  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
9619    return SDValue();
9620
9621  // If this is a select between two integer constants, try to do some
9622  // optimizations.  Note that the operands are ordered the opposite of SELECT
9623  // operands.
9624  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
9625    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9626      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
9627      // larger than FalseC (the false value).
9628      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
9629
9630      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
9631        CC = X86::GetOppositeBranchCondition(CC);
9632        std::swap(TrueC, FalseC);
9633      }
9634
9635      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
9636      // This is efficient for any integer data type (including i8/i16) and
9637      // shift amount.
9638      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
9639        SDValue Cond = N->getOperand(3);
9640        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9641                           DAG.getConstant(CC, MVT::i8), Cond);
9642
9643        // Zero extend the condition if needed.
9644        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
9645
9646        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9647        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
9648                           DAG.getConstant(ShAmt, MVT::i8));
9649        if (N->getNumValues() == 2)  // Dead flag value?
9650          return DCI.CombineTo(N, Cond, SDValue());
9651        return Cond;
9652      }
9653
9654      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
9655      // for any integer data type, including i8/i16.
9656      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9657        SDValue Cond = N->getOperand(3);
9658        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9659                           DAG.getConstant(CC, MVT::i8), Cond);
9660
9661        // Zero extend the condition if needed.
9662        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9663                           FalseC->getValueType(0), Cond);
9664        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9665                           SDValue(FalseC, 0));
9666
9667        if (N->getNumValues() == 2)  // Dead flag value?
9668          return DCI.CombineTo(N, Cond, SDValue());
9669        return Cond;
9670      }
9671
9672      // Optimize cases that will turn into an LEA instruction.  This requires
9673      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9674      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9675        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9676        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9677
9678        bool isFastMultiplier = false;
9679        if (Diff < 10) {
9680          switch ((unsigned char)Diff) {
9681          default: break;
9682          case 1:  // result = add base, cond
9683          case 2:  // result = lea base(    , cond*2)
9684          case 3:  // result = lea base(cond, cond*2)
9685          case 4:  // result = lea base(    , cond*4)
9686          case 5:  // result = lea base(cond, cond*4)
9687          case 8:  // result = lea base(    , cond*8)
9688          case 9:  // result = lea base(cond, cond*8)
9689            isFastMultiplier = true;
9690            break;
9691          }
9692        }
9693
9694        if (isFastMultiplier) {
9695          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9696          SDValue Cond = N->getOperand(3);
9697          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9698                             DAG.getConstant(CC, MVT::i8), Cond);
9699          // Zero extend the condition if needed.
9700          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9701                             Cond);
9702          // Scale the condition by the difference.
9703          if (Diff != 1)
9704            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9705                               DAG.getConstant(Diff, Cond.getValueType()));
9706
9707          // Add the base if non-zero.
9708          if (FalseC->getAPIntValue() != 0)
9709            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9710                               SDValue(FalseC, 0));
9711          if (N->getNumValues() == 2)  // Dead flag value?
9712            return DCI.CombineTo(N, Cond, SDValue());
9713          return Cond;
9714        }
9715      }
9716    }
9717  }
9718  return SDValue();
9719}
9720
9721
9722/// PerformMulCombine - Optimize a single multiply with constant into two
9723/// in order to implement it with two cheaper instructions, e.g.
9724/// LEA + SHL, LEA + LEA.
9725static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
9726                                 TargetLowering::DAGCombinerInfo &DCI) {
9727  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9728    return SDValue();
9729
9730  EVT VT = N->getValueType(0);
9731  if (VT != MVT::i64)
9732    return SDValue();
9733
9734  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9735  if (!C)
9736    return SDValue();
9737  uint64_t MulAmt = C->getZExtValue();
9738  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
9739    return SDValue();
9740
9741  uint64_t MulAmt1 = 0;
9742  uint64_t MulAmt2 = 0;
9743  if ((MulAmt % 9) == 0) {
9744    MulAmt1 = 9;
9745    MulAmt2 = MulAmt / 9;
9746  } else if ((MulAmt % 5) == 0) {
9747    MulAmt1 = 5;
9748    MulAmt2 = MulAmt / 5;
9749  } else if ((MulAmt % 3) == 0) {
9750    MulAmt1 = 3;
9751    MulAmt2 = MulAmt / 3;
9752  }
9753  if (MulAmt2 &&
9754      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
9755    DebugLoc DL = N->getDebugLoc();
9756
9757    if (isPowerOf2_64(MulAmt2) &&
9758        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
9759      // If second multiplifer is pow2, issue it first. We want the multiply by
9760      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
9761      // is an add.
9762      std::swap(MulAmt1, MulAmt2);
9763
9764    SDValue NewMul;
9765    if (isPowerOf2_64(MulAmt1))
9766      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
9767                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
9768    else
9769      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
9770                           DAG.getConstant(MulAmt1, VT));
9771
9772    if (isPowerOf2_64(MulAmt2))
9773      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
9774                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
9775    else
9776      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
9777                           DAG.getConstant(MulAmt2, VT));
9778
9779    // Do not add new nodes to DAG combiner worklist.
9780    DCI.CombineTo(N, NewMul, false);
9781  }
9782  return SDValue();
9783}
9784
9785static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
9786  SDValue N0 = N->getOperand(0);
9787  SDValue N1 = N->getOperand(1);
9788  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9789  EVT VT = N0.getValueType();
9790
9791  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
9792  // since the result of setcc_c is all zero's or all ones.
9793  if (N1C && N0.getOpcode() == ISD::AND &&
9794      N0.getOperand(1).getOpcode() == ISD::Constant) {
9795    SDValue N00 = N0.getOperand(0);
9796    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
9797        ((N00.getOpcode() == ISD::ANY_EXTEND ||
9798          N00.getOpcode() == ISD::ZERO_EXTEND) &&
9799         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
9800      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9801      APInt ShAmt = N1C->getAPIntValue();
9802      Mask = Mask.shl(ShAmt);
9803      if (Mask != 0)
9804        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
9805                           N00, DAG.getConstant(Mask, VT));
9806    }
9807  }
9808
9809  return SDValue();
9810}
9811
9812/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
9813///                       when possible.
9814static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
9815                                   const X86Subtarget *Subtarget) {
9816  EVT VT = N->getValueType(0);
9817  if (!VT.isVector() && VT.isInteger() &&
9818      N->getOpcode() == ISD::SHL)
9819    return PerformSHLCombine(N, DAG);
9820
9821  // On X86 with SSE2 support, we can transform this to a vector shift if
9822  // all elements are shifted by the same amount.  We can't do this in legalize
9823  // because the a constant vector is typically transformed to a constant pool
9824  // so we have no knowledge of the shift amount.
9825  if (!Subtarget->hasSSE2())
9826    return SDValue();
9827
9828  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
9829    return SDValue();
9830
9831  SDValue ShAmtOp = N->getOperand(1);
9832  EVT EltVT = VT.getVectorElementType();
9833  DebugLoc DL = N->getDebugLoc();
9834  SDValue BaseShAmt = SDValue();
9835  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
9836    unsigned NumElts = VT.getVectorNumElements();
9837    unsigned i = 0;
9838    for (; i != NumElts; ++i) {
9839      SDValue Arg = ShAmtOp.getOperand(i);
9840      if (Arg.getOpcode() == ISD::UNDEF) continue;
9841      BaseShAmt = Arg;
9842      break;
9843    }
9844    for (; i != NumElts; ++i) {
9845      SDValue Arg = ShAmtOp.getOperand(i);
9846      if (Arg.getOpcode() == ISD::UNDEF) continue;
9847      if (Arg != BaseShAmt) {
9848        return SDValue();
9849      }
9850    }
9851  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
9852             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
9853    SDValue InVec = ShAmtOp.getOperand(0);
9854    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
9855      unsigned NumElts = InVec.getValueType().getVectorNumElements();
9856      unsigned i = 0;
9857      for (; i != NumElts; ++i) {
9858        SDValue Arg = InVec.getOperand(i);
9859        if (Arg.getOpcode() == ISD::UNDEF) continue;
9860        BaseShAmt = Arg;
9861        break;
9862      }
9863    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
9864       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
9865         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
9866         if (C->getZExtValue() == SplatIdx)
9867           BaseShAmt = InVec.getOperand(1);
9868       }
9869    }
9870    if (BaseShAmt.getNode() == 0)
9871      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
9872                              DAG.getIntPtrConstant(0));
9873  } else
9874    return SDValue();
9875
9876  // The shift amount is an i32.
9877  if (EltVT.bitsGT(MVT::i32))
9878    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
9879  else if (EltVT.bitsLT(MVT::i32))
9880    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
9881
9882  // The shift amount is identical so we can do a vector shift.
9883  SDValue  ValOp = N->getOperand(0);
9884  switch (N->getOpcode()) {
9885  default:
9886    llvm_unreachable("Unknown shift opcode!");
9887    break;
9888  case ISD::SHL:
9889    if (VT == MVT::v2i64)
9890      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9891                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9892                         ValOp, BaseShAmt);
9893    if (VT == MVT::v4i32)
9894      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9895                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9896                         ValOp, BaseShAmt);
9897    if (VT == MVT::v8i16)
9898      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9899                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9900                         ValOp, BaseShAmt);
9901    break;
9902  case ISD::SRA:
9903    if (VT == MVT::v4i32)
9904      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9905                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9906                         ValOp, BaseShAmt);
9907    if (VT == MVT::v8i16)
9908      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9909                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9910                         ValOp, BaseShAmt);
9911    break;
9912  case ISD::SRL:
9913    if (VT == MVT::v2i64)
9914      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9915                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9916                         ValOp, BaseShAmt);
9917    if (VT == MVT::v4i32)
9918      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9919                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9920                         ValOp, BaseShAmt);
9921    if (VT ==  MVT::v8i16)
9922      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9923                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9924                         ValOp, BaseShAmt);
9925    break;
9926  }
9927  return SDValue();
9928}
9929
9930static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
9931                                TargetLowering::DAGCombinerInfo &DCI,
9932                                const X86Subtarget *Subtarget) {
9933  if (DCI.isBeforeLegalizeOps())
9934    return SDValue();
9935
9936  EVT VT = N->getValueType(0);
9937  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
9938    return SDValue();
9939
9940  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
9941  SDValue N0 = N->getOperand(0);
9942  SDValue N1 = N->getOperand(1);
9943  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
9944    std::swap(N0, N1);
9945  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
9946    return SDValue();
9947  if (!N0.hasOneUse() || !N1.hasOneUse())
9948    return SDValue();
9949
9950  SDValue ShAmt0 = N0.getOperand(1);
9951  if (ShAmt0.getValueType() != MVT::i8)
9952    return SDValue();
9953  SDValue ShAmt1 = N1.getOperand(1);
9954  if (ShAmt1.getValueType() != MVT::i8)
9955    return SDValue();
9956  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
9957    ShAmt0 = ShAmt0.getOperand(0);
9958  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
9959    ShAmt1 = ShAmt1.getOperand(0);
9960
9961  DebugLoc DL = N->getDebugLoc();
9962  unsigned Opc = X86ISD::SHLD;
9963  SDValue Op0 = N0.getOperand(0);
9964  SDValue Op1 = N1.getOperand(0);
9965  if (ShAmt0.getOpcode() == ISD::SUB) {
9966    Opc = X86ISD::SHRD;
9967    std::swap(Op0, Op1);
9968    std::swap(ShAmt0, ShAmt1);
9969  }
9970
9971  unsigned Bits = VT.getSizeInBits();
9972  if (ShAmt1.getOpcode() == ISD::SUB) {
9973    SDValue Sum = ShAmt1.getOperand(0);
9974    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
9975      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
9976      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
9977        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
9978      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
9979        return DAG.getNode(Opc, DL, VT,
9980                           Op0, Op1,
9981                           DAG.getNode(ISD::TRUNCATE, DL,
9982                                       MVT::i8, ShAmt0));
9983    }
9984  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
9985    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
9986    if (ShAmt0C &&
9987        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
9988      return DAG.getNode(Opc, DL, VT,
9989                         N0.getOperand(0), N1.getOperand(0),
9990                         DAG.getNode(ISD::TRUNCATE, DL,
9991                                       MVT::i8, ShAmt0));
9992  }
9993
9994  return SDValue();
9995}
9996
9997/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
9998static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
9999                                   const X86Subtarget *Subtarget) {
10000  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
10001  // the FP state in cases where an emms may be missing.
10002  // A preferable solution to the general problem is to figure out the right
10003  // places to insert EMMS.  This qualifies as a quick hack.
10004
10005  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
10006  StoreSDNode *St = cast<StoreSDNode>(N);
10007  EVT VT = St->getValue().getValueType();
10008  if (VT.getSizeInBits() != 64)
10009    return SDValue();
10010
10011  const Function *F = DAG.getMachineFunction().getFunction();
10012  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
10013  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
10014    && Subtarget->hasSSE2();
10015  if ((VT.isVector() ||
10016       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
10017      isa<LoadSDNode>(St->getValue()) &&
10018      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
10019      St->getChain().hasOneUse() && !St->isVolatile()) {
10020    SDNode* LdVal = St->getValue().getNode();
10021    LoadSDNode *Ld = 0;
10022    int TokenFactorIndex = -1;
10023    SmallVector<SDValue, 8> Ops;
10024    SDNode* ChainVal = St->getChain().getNode();
10025    // Must be a store of a load.  We currently handle two cases:  the load
10026    // is a direct child, and it's under an intervening TokenFactor.  It is
10027    // possible to dig deeper under nested TokenFactors.
10028    if (ChainVal == LdVal)
10029      Ld = cast<LoadSDNode>(St->getChain());
10030    else if (St->getValue().hasOneUse() &&
10031             ChainVal->getOpcode() == ISD::TokenFactor) {
10032      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
10033        if (ChainVal->getOperand(i).getNode() == LdVal) {
10034          TokenFactorIndex = i;
10035          Ld = cast<LoadSDNode>(St->getValue());
10036        } else
10037          Ops.push_back(ChainVal->getOperand(i));
10038      }
10039    }
10040
10041    if (!Ld || !ISD::isNormalLoad(Ld))
10042      return SDValue();
10043
10044    // If this is not the MMX case, i.e. we are just turning i64 load/store
10045    // into f64 load/store, avoid the transformation if there are multiple
10046    // uses of the loaded value.
10047    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
10048      return SDValue();
10049
10050    DebugLoc LdDL = Ld->getDebugLoc();
10051    DebugLoc StDL = N->getDebugLoc();
10052    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
10053    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
10054    // pair instead.
10055    if (Subtarget->is64Bit() || F64IsLegal) {
10056      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
10057      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
10058                                  Ld->getBasePtr(), Ld->getSrcValue(),
10059                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
10060                                  Ld->isNonTemporal(), Ld->getAlignment());
10061      SDValue NewChain = NewLd.getValue(1);
10062      if (TokenFactorIndex != -1) {
10063        Ops.push_back(NewChain);
10064        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
10065                               Ops.size());
10066      }
10067      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
10068                          St->getSrcValue(), St->getSrcValueOffset(),
10069                          St->isVolatile(), St->isNonTemporal(),
10070                          St->getAlignment());
10071    }
10072
10073    // Otherwise, lower to two pairs of 32-bit loads / stores.
10074    SDValue LoAddr = Ld->getBasePtr();
10075    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
10076                                 DAG.getConstant(4, MVT::i32));
10077
10078    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
10079                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
10080                               Ld->isVolatile(), Ld->isNonTemporal(),
10081                               Ld->getAlignment());
10082    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
10083                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
10084                               Ld->isVolatile(), Ld->isNonTemporal(),
10085                               MinAlign(Ld->getAlignment(), 4));
10086
10087    SDValue NewChain = LoLd.getValue(1);
10088    if (TokenFactorIndex != -1) {
10089      Ops.push_back(LoLd);
10090      Ops.push_back(HiLd);
10091      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
10092                             Ops.size());
10093    }
10094
10095    LoAddr = St->getBasePtr();
10096    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
10097                         DAG.getConstant(4, MVT::i32));
10098
10099    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
10100                                St->getSrcValue(), St->getSrcValueOffset(),
10101                                St->isVolatile(), St->isNonTemporal(),
10102                                St->getAlignment());
10103    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
10104                                St->getSrcValue(),
10105                                St->getSrcValueOffset() + 4,
10106                                St->isVolatile(),
10107                                St->isNonTemporal(),
10108                                MinAlign(St->getAlignment(), 4));
10109    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
10110  }
10111  return SDValue();
10112}
10113
10114/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
10115/// X86ISD::FXOR nodes.
10116static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
10117  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
10118  // F[X]OR(0.0, x) -> x
10119  // F[X]OR(x, 0.0) -> x
10120  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
10121    if (C->getValueAPF().isPosZero())
10122      return N->getOperand(1);
10123  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
10124    if (C->getValueAPF().isPosZero())
10125      return N->getOperand(0);
10126  return SDValue();
10127}
10128
10129/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
10130static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
10131  // FAND(0.0, x) -> 0.0
10132  // FAND(x, 0.0) -> 0.0
10133  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
10134    if (C->getValueAPF().isPosZero())
10135      return N->getOperand(0);
10136  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
10137    if (C->getValueAPF().isPosZero())
10138      return N->getOperand(1);
10139  return SDValue();
10140}
10141
10142static SDValue PerformBTCombine(SDNode *N,
10143                                SelectionDAG &DAG,
10144                                TargetLowering::DAGCombinerInfo &DCI) {
10145  // BT ignores high bits in the bit index operand.
10146  SDValue Op1 = N->getOperand(1);
10147  if (Op1.hasOneUse()) {
10148    unsigned BitWidth = Op1.getValueSizeInBits();
10149    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
10150    APInt KnownZero, KnownOne;
10151    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
10152                                          !DCI.isBeforeLegalizeOps());
10153    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10154    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
10155        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
10156      DCI.CommitTargetLoweringOpt(TLO);
10157  }
10158  return SDValue();
10159}
10160
10161static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
10162  SDValue Op = N->getOperand(0);
10163  if (Op.getOpcode() == ISD::BIT_CONVERT)
10164    Op = Op.getOperand(0);
10165  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
10166  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
10167      VT.getVectorElementType().getSizeInBits() ==
10168      OpVT.getVectorElementType().getSizeInBits()) {
10169    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
10170  }
10171  return SDValue();
10172}
10173
10174static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
10175  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
10176  //           (and (i32 x86isd::setcc_carry), 1)
10177  // This eliminates the zext. This transformation is necessary because
10178  // ISD::SETCC is always legalized to i8.
10179  DebugLoc dl = N->getDebugLoc();
10180  SDValue N0 = N->getOperand(0);
10181  EVT VT = N->getValueType(0);
10182  if (N0.getOpcode() == ISD::AND &&
10183      N0.hasOneUse() &&
10184      N0.getOperand(0).hasOneUse()) {
10185    SDValue N00 = N0.getOperand(0);
10186    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
10187      return SDValue();
10188    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
10189    if (!C || C->getZExtValue() != 1)
10190      return SDValue();
10191    return DAG.getNode(ISD::AND, dl, VT,
10192                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
10193                                   N00.getOperand(0), N00.getOperand(1)),
10194                       DAG.getConstant(1, VT));
10195  }
10196
10197  return SDValue();
10198}
10199
10200SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
10201                                             DAGCombinerInfo &DCI) const {
10202  SelectionDAG &DAG = DCI.DAG;
10203  switch (N->getOpcode()) {
10204  default: break;
10205  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
10206  case ISD::EXTRACT_VECTOR_ELT:
10207                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
10208  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
10209  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
10210  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
10211  case ISD::SHL:
10212  case ISD::SRA:
10213  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
10214  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
10215  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
10216  case X86ISD::FXOR:
10217  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
10218  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
10219  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
10220  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
10221  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
10222  }
10223
10224  return SDValue();
10225}
10226
10227/// isTypeDesirableForOp - Return true if the target has native support for
10228/// the specified value type and it is 'desirable' to use the type for the
10229/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
10230/// instruction encodings are longer and some i16 instructions are slow.
10231bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
10232  if (!isTypeLegal(VT))
10233    return false;
10234  if (VT != MVT::i16)
10235    return true;
10236
10237  switch (Opc) {
10238  default:
10239    return true;
10240  case ISD::LOAD:
10241  case ISD::SIGN_EXTEND:
10242  case ISD::ZERO_EXTEND:
10243  case ISD::ANY_EXTEND:
10244  case ISD::SHL:
10245  case ISD::SRL:
10246  case ISD::SUB:
10247  case ISD::ADD:
10248  case ISD::MUL:
10249  case ISD::AND:
10250  case ISD::OR:
10251  case ISD::XOR:
10252    return false;
10253  }
10254}
10255
10256static bool MayFoldLoad(SDValue Op) {
10257  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
10258}
10259
10260static bool MayFoldIntoStore(SDValue Op) {
10261  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
10262}
10263
10264/// IsDesirableToPromoteOp - This method query the target whether it is
10265/// beneficial for dag combiner to promote the specified node. If true, it
10266/// should return the desired promotion type by reference.
10267bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
10268  EVT VT = Op.getValueType();
10269  if (VT != MVT::i16)
10270    return false;
10271
10272  bool Promote = false;
10273  bool Commute = false;
10274  switch (Op.getOpcode()) {
10275  default: break;
10276  case ISD::LOAD: {
10277    LoadSDNode *LD = cast<LoadSDNode>(Op);
10278    // If the non-extending load has a single use and it's not live out, then it
10279    // might be folded.
10280    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
10281                                                     Op.hasOneUse()*/) {
10282      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
10283             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
10284        // The only case where we'd want to promote LOAD (rather then it being
10285        // promoted as an operand is when it's only use is liveout.
10286        if (UI->getOpcode() != ISD::CopyToReg)
10287          return false;
10288      }
10289    }
10290    Promote = true;
10291    break;
10292  }
10293  case ISD::SIGN_EXTEND:
10294  case ISD::ZERO_EXTEND:
10295  case ISD::ANY_EXTEND:
10296    Promote = true;
10297    break;
10298  case ISD::SHL:
10299  case ISD::SRL: {
10300    SDValue N0 = Op.getOperand(0);
10301    // Look out for (store (shl (load), x)).
10302    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
10303      return false;
10304    Promote = true;
10305    break;
10306  }
10307  case ISD::ADD:
10308  case ISD::MUL:
10309  case ISD::AND:
10310  case ISD::OR:
10311  case ISD::XOR:
10312    Commute = true;
10313    // fallthrough
10314  case ISD::SUB: {
10315    SDValue N0 = Op.getOperand(0);
10316    SDValue N1 = Op.getOperand(1);
10317    if (!Commute && MayFoldLoad(N1))
10318      return false;
10319    // Avoid disabling potential load folding opportunities.
10320    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
10321      return false;
10322    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
10323      return false;
10324    Promote = true;
10325  }
10326  }
10327
10328  PVT = MVT::i32;
10329  return Promote;
10330}
10331
10332//===----------------------------------------------------------------------===//
10333//                           X86 Inline Assembly Support
10334//===----------------------------------------------------------------------===//
10335
10336static bool LowerToBSwap(CallInst *CI) {
10337  // FIXME: this should verify that we are targetting a 486 or better.  If not,
10338  // we will turn this bswap into something that will be lowered to logical ops
10339  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
10340  // so don't worry about this.
10341
10342  // Verify this is a simple bswap.
10343  if (CI->getNumArgOperands() != 1 ||
10344      CI->getType() != CI->getArgOperand(0)->getType() ||
10345      !CI->getType()->isIntegerTy())
10346    return false;
10347
10348  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
10349  if (!Ty || Ty->getBitWidth() % 16 != 0)
10350    return false;
10351
10352  // Okay, we can do this xform, do so now.
10353  const Type *Tys[] = { Ty };
10354  Module *M = CI->getParent()->getParent()->getParent();
10355  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
10356
10357  Value *Op = CI->getArgOperand(0);
10358  Op = CallInst::Create(Int, Op, CI->getName(), CI);
10359
10360  CI->replaceAllUsesWith(Op);
10361  CI->eraseFromParent();
10362  return true;
10363}
10364
10365bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
10366  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
10367  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
10368
10369  std::string AsmStr = IA->getAsmString();
10370
10371  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
10372  SmallVector<StringRef, 4> AsmPieces;
10373  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
10374
10375  switch (AsmPieces.size()) {
10376  default: return false;
10377  case 1:
10378    AsmStr = AsmPieces[0];
10379    AsmPieces.clear();
10380    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
10381
10382    // bswap $0
10383    if (AsmPieces.size() == 2 &&
10384        (AsmPieces[0] == "bswap" ||
10385         AsmPieces[0] == "bswapq" ||
10386         AsmPieces[0] == "bswapl") &&
10387        (AsmPieces[1] == "$0" ||
10388         AsmPieces[1] == "${0:q}")) {
10389      // No need to check constraints, nothing other than the equivalent of
10390      // "=r,0" would be valid here.
10391      return LowerToBSwap(CI);
10392    }
10393    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
10394    if (CI->getType()->isIntegerTy(16) &&
10395        AsmPieces.size() == 3 &&
10396        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
10397        AsmPieces[1] == "$$8," &&
10398        AsmPieces[2] == "${0:w}" &&
10399        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
10400      AsmPieces.clear();
10401      const std::string &Constraints = IA->getConstraintString();
10402      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
10403      std::sort(AsmPieces.begin(), AsmPieces.end());
10404      if (AsmPieces.size() == 4 &&
10405          AsmPieces[0] == "~{cc}" &&
10406          AsmPieces[1] == "~{dirflag}" &&
10407          AsmPieces[2] == "~{flags}" &&
10408          AsmPieces[3] == "~{fpsr}") {
10409        return LowerToBSwap(CI);
10410      }
10411    }
10412    break;
10413  case 3:
10414    if (CI->getType()->isIntegerTy(64) &&
10415        Constraints.size() >= 2 &&
10416        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
10417        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
10418      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
10419      SmallVector<StringRef, 4> Words;
10420      SplitString(AsmPieces[0], Words, " \t");
10421      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
10422        Words.clear();
10423        SplitString(AsmPieces[1], Words, " \t");
10424        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
10425          Words.clear();
10426          SplitString(AsmPieces[2], Words, " \t,");
10427          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
10428              Words[2] == "%edx") {
10429            return LowerToBSwap(CI);
10430          }
10431        }
10432      }
10433    }
10434    break;
10435  }
10436  return false;
10437}
10438
10439
10440
10441/// getConstraintType - Given a constraint letter, return the type of
10442/// constraint it is for this target.
10443X86TargetLowering::ConstraintType
10444X86TargetLowering::getConstraintType(const std::string &Constraint) const {
10445  if (Constraint.size() == 1) {
10446    switch (Constraint[0]) {
10447    case 'A':
10448      return C_Register;
10449    case 'f':
10450    case 'r':
10451    case 'R':
10452    case 'l':
10453    case 'q':
10454    case 'Q':
10455    case 'x':
10456    case 'y':
10457    case 'Y':
10458      return C_RegisterClass;
10459    case 'e':
10460    case 'Z':
10461      return C_Other;
10462    default:
10463      break;
10464    }
10465  }
10466  return TargetLowering::getConstraintType(Constraint);
10467}
10468
10469/// LowerXConstraint - try to replace an X constraint, which matches anything,
10470/// with another that has more specific requirements based on the type of the
10471/// corresponding operand.
10472const char *X86TargetLowering::
10473LowerXConstraint(EVT ConstraintVT) const {
10474  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
10475  // 'f' like normal targets.
10476  if (ConstraintVT.isFloatingPoint()) {
10477    if (Subtarget->hasSSE2())
10478      return "Y";
10479    if (Subtarget->hasSSE1())
10480      return "x";
10481  }
10482
10483  return TargetLowering::LowerXConstraint(ConstraintVT);
10484}
10485
10486/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10487/// vector.  If it is invalid, don't add anything to Ops.
10488void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10489                                                     char Constraint,
10490                                                     std::vector<SDValue>&Ops,
10491                                                     SelectionDAG &DAG) const {
10492  SDValue Result(0, 0);
10493
10494  switch (Constraint) {
10495  default: break;
10496  case 'I':
10497    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10498      if (C->getZExtValue() <= 31) {
10499        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10500        break;
10501      }
10502    }
10503    return;
10504  case 'J':
10505    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10506      if (C->getZExtValue() <= 63) {
10507        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10508        break;
10509      }
10510    }
10511    return;
10512  case 'K':
10513    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10514      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
10515        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10516        break;
10517      }
10518    }
10519    return;
10520  case 'N':
10521    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10522      if (C->getZExtValue() <= 255) {
10523        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10524        break;
10525      }
10526    }
10527    return;
10528  case 'e': {
10529    // 32-bit signed value
10530    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10531      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10532                                           C->getSExtValue())) {
10533        // Widen to 64 bits here to get it sign extended.
10534        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
10535        break;
10536      }
10537    // FIXME gcc accepts some relocatable values here too, but only in certain
10538    // memory models; it's complicated.
10539    }
10540    return;
10541  }
10542  case 'Z': {
10543    // 32-bit unsigned value
10544    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10545      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10546                                           C->getZExtValue())) {
10547        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10548        break;
10549      }
10550    }
10551    // FIXME gcc accepts some relocatable values here too, but only in certain
10552    // memory models; it's complicated.
10553    return;
10554  }
10555  case 'i': {
10556    // Literal immediates are always ok.
10557    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
10558      // Widen to 64 bits here to get it sign extended.
10559      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
10560      break;
10561    }
10562
10563    // In any sort of PIC mode addresses need to be computed at runtime by
10564    // adding in a register or some sort of table lookup.  These can't
10565    // be used as immediates.
10566    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
10567      return;
10568
10569    // If we are in non-pic codegen mode, we allow the address of a global (with
10570    // an optional displacement) to be used with 'i'.
10571    GlobalAddressSDNode *GA = 0;
10572    int64_t Offset = 0;
10573
10574    // Match either (GA), (GA+C), (GA+C1+C2), etc.
10575    while (1) {
10576      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
10577        Offset += GA->getOffset();
10578        break;
10579      } else if (Op.getOpcode() == ISD::ADD) {
10580        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10581          Offset += C->getZExtValue();
10582          Op = Op.getOperand(0);
10583          continue;
10584        }
10585      } else if (Op.getOpcode() == ISD::SUB) {
10586        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10587          Offset += -C->getZExtValue();
10588          Op = Op.getOperand(0);
10589          continue;
10590        }
10591      }
10592
10593      // Otherwise, this isn't something we can handle, reject it.
10594      return;
10595    }
10596
10597    const GlobalValue *GV = GA->getGlobal();
10598    // If we require an extra load to get this address, as in PIC mode, we
10599    // can't accept it.
10600    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
10601                                                        getTargetMachine())))
10602      return;
10603
10604    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
10605                                        GA->getValueType(0), Offset);
10606    break;
10607  }
10608  }
10609
10610  if (Result.getNode()) {
10611    Ops.push_back(Result);
10612    return;
10613  }
10614  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10615}
10616
10617std::vector<unsigned> X86TargetLowering::
10618getRegClassForInlineAsmConstraint(const std::string &Constraint,
10619                                  EVT VT) const {
10620  if (Constraint.size() == 1) {
10621    // FIXME: not handling fp-stack yet!
10622    switch (Constraint[0]) {      // GCC X86 Constraint Letters
10623    default: break;  // Unknown constraint letter
10624    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
10625      if (Subtarget->is64Bit()) {
10626        if (VT == MVT::i32)
10627          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
10628                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
10629                                       X86::R10D,X86::R11D,X86::R12D,
10630                                       X86::R13D,X86::R14D,X86::R15D,
10631                                       X86::EBP, X86::ESP, 0);
10632        else if (VT == MVT::i16)
10633          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
10634                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
10635                                       X86::R10W,X86::R11W,X86::R12W,
10636                                       X86::R13W,X86::R14W,X86::R15W,
10637                                       X86::BP,  X86::SP, 0);
10638        else if (VT == MVT::i8)
10639          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
10640                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
10641                                       X86::R10B,X86::R11B,X86::R12B,
10642                                       X86::R13B,X86::R14B,X86::R15B,
10643                                       X86::BPL, X86::SPL, 0);
10644
10645        else if (VT == MVT::i64)
10646          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
10647                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
10648                                       X86::R10, X86::R11, X86::R12,
10649                                       X86::R13, X86::R14, X86::R15,
10650                                       X86::RBP, X86::RSP, 0);
10651
10652        break;
10653      }
10654      // 32-bit fallthrough
10655    case 'Q':   // Q_REGS
10656      if (VT == MVT::i32)
10657        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
10658      else if (VT == MVT::i16)
10659        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
10660      else if (VT == MVT::i8)
10661        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
10662      else if (VT == MVT::i64)
10663        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
10664      break;
10665    }
10666  }
10667
10668  return std::vector<unsigned>();
10669}
10670
10671std::pair<unsigned, const TargetRegisterClass*>
10672X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10673                                                EVT VT) const {
10674  // First, see if this is a constraint that directly corresponds to an LLVM
10675  // register class.
10676  if (Constraint.size() == 1) {
10677    // GCC Constraint Letters
10678    switch (Constraint[0]) {
10679    default: break;
10680    case 'r':   // GENERAL_REGS
10681    case 'l':   // INDEX_REGS
10682      if (VT == MVT::i8)
10683        return std::make_pair(0U, X86::GR8RegisterClass);
10684      if (VT == MVT::i16)
10685        return std::make_pair(0U, X86::GR16RegisterClass);
10686      if (VT == MVT::i32 || !Subtarget->is64Bit())
10687        return std::make_pair(0U, X86::GR32RegisterClass);
10688      return std::make_pair(0U, X86::GR64RegisterClass);
10689    case 'R':   // LEGACY_REGS
10690      if (VT == MVT::i8)
10691        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
10692      if (VT == MVT::i16)
10693        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
10694      if (VT == MVT::i32 || !Subtarget->is64Bit())
10695        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
10696      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
10697    case 'f':  // FP Stack registers.
10698      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
10699      // value to the correct fpstack register class.
10700      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
10701        return std::make_pair(0U, X86::RFP32RegisterClass);
10702      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
10703        return std::make_pair(0U, X86::RFP64RegisterClass);
10704      return std::make_pair(0U, X86::RFP80RegisterClass);
10705    case 'y':   // MMX_REGS if MMX allowed.
10706      if (!Subtarget->hasMMX()) break;
10707      return std::make_pair(0U, X86::VR64RegisterClass);
10708    case 'Y':   // SSE_REGS if SSE2 allowed
10709      if (!Subtarget->hasSSE2()) break;
10710      // FALL THROUGH.
10711    case 'x':   // SSE_REGS if SSE1 allowed
10712      if (!Subtarget->hasSSE1()) break;
10713
10714      switch (VT.getSimpleVT().SimpleTy) {
10715      default: break;
10716      // Scalar SSE types.
10717      case MVT::f32:
10718      case MVT::i32:
10719        return std::make_pair(0U, X86::FR32RegisterClass);
10720      case MVT::f64:
10721      case MVT::i64:
10722        return std::make_pair(0U, X86::FR64RegisterClass);
10723      // Vector types.
10724      case MVT::v16i8:
10725      case MVT::v8i16:
10726      case MVT::v4i32:
10727      case MVT::v2i64:
10728      case MVT::v4f32:
10729      case MVT::v2f64:
10730        return std::make_pair(0U, X86::VR128RegisterClass);
10731      }
10732      break;
10733    }
10734  }
10735
10736  // Use the default implementation in TargetLowering to convert the register
10737  // constraint into a member of a register class.
10738  std::pair<unsigned, const TargetRegisterClass*> Res;
10739  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10740
10741  // Not found as a standard register?
10742  if (Res.second == 0) {
10743    // Map st(0) -> st(7) -> ST0
10744    if (Constraint.size() == 7 && Constraint[0] == '{' &&
10745        tolower(Constraint[1]) == 's' &&
10746        tolower(Constraint[2]) == 't' &&
10747        Constraint[3] == '(' &&
10748        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
10749        Constraint[5] == ')' &&
10750        Constraint[6] == '}') {
10751
10752      Res.first = X86::ST0+Constraint[4]-'0';
10753      Res.second = X86::RFP80RegisterClass;
10754      return Res;
10755    }
10756
10757    // GCC allows "st(0)" to be called just plain "st".
10758    if (StringRef("{st}").equals_lower(Constraint)) {
10759      Res.first = X86::ST0;
10760      Res.second = X86::RFP80RegisterClass;
10761      return Res;
10762    }
10763
10764    // flags -> EFLAGS
10765    if (StringRef("{flags}").equals_lower(Constraint)) {
10766      Res.first = X86::EFLAGS;
10767      Res.second = X86::CCRRegisterClass;
10768      return Res;
10769    }
10770
10771    // 'A' means EAX + EDX.
10772    if (Constraint == "A") {
10773      Res.first = X86::EAX;
10774      Res.second = X86::GR32_ADRegisterClass;
10775      return Res;
10776    }
10777    return Res;
10778  }
10779
10780  // Otherwise, check to see if this is a register class of the wrong value
10781  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
10782  // turn into {ax},{dx}.
10783  if (Res.second->hasType(VT))
10784    return Res;   // Correct type already, nothing to do.
10785
10786  // All of the single-register GCC register classes map their values onto
10787  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
10788  // really want an 8-bit or 32-bit register, map to the appropriate register
10789  // class and return the appropriate register.
10790  if (Res.second == X86::GR16RegisterClass) {
10791    if (VT == MVT::i8) {
10792      unsigned DestReg = 0;
10793      switch (Res.first) {
10794      default: break;
10795      case X86::AX: DestReg = X86::AL; break;
10796      case X86::DX: DestReg = X86::DL; break;
10797      case X86::CX: DestReg = X86::CL; break;
10798      case X86::BX: DestReg = X86::BL; break;
10799      }
10800      if (DestReg) {
10801        Res.first = DestReg;
10802        Res.second = X86::GR8RegisterClass;
10803      }
10804    } else if (VT == MVT::i32) {
10805      unsigned DestReg = 0;
10806      switch (Res.first) {
10807      default: break;
10808      case X86::AX: DestReg = X86::EAX; break;
10809      case X86::DX: DestReg = X86::EDX; break;
10810      case X86::CX: DestReg = X86::ECX; break;
10811      case X86::BX: DestReg = X86::EBX; break;
10812      case X86::SI: DestReg = X86::ESI; break;
10813      case X86::DI: DestReg = X86::EDI; break;
10814      case X86::BP: DestReg = X86::EBP; break;
10815      case X86::SP: DestReg = X86::ESP; break;
10816      }
10817      if (DestReg) {
10818        Res.first = DestReg;
10819        Res.second = X86::GR32RegisterClass;
10820      }
10821    } else if (VT == MVT::i64) {
10822      unsigned DestReg = 0;
10823      switch (Res.first) {
10824      default: break;
10825      case X86::AX: DestReg = X86::RAX; break;
10826      case X86::DX: DestReg = X86::RDX; break;
10827      case X86::CX: DestReg = X86::RCX; break;
10828      case X86::BX: DestReg = X86::RBX; break;
10829      case X86::SI: DestReg = X86::RSI; break;
10830      case X86::DI: DestReg = X86::RDI; break;
10831      case X86::BP: DestReg = X86::RBP; break;
10832      case X86::SP: DestReg = X86::RSP; break;
10833      }
10834      if (DestReg) {
10835        Res.first = DestReg;
10836        Res.second = X86::GR64RegisterClass;
10837      }
10838    }
10839  } else if (Res.second == X86::FR32RegisterClass ||
10840             Res.second == X86::FR64RegisterClass ||
10841             Res.second == X86::VR128RegisterClass) {
10842    // Handle references to XMM physical registers that got mapped into the
10843    // wrong class.  This can happen with constraints like {xmm0} where the
10844    // target independent register mapper will just pick the first match it can
10845    // find, ignoring the required type.
10846    if (VT == MVT::f32)
10847      Res.second = X86::FR32RegisterClass;
10848    else if (VT == MVT::f64)
10849      Res.second = X86::FR64RegisterClass;
10850    else if (X86::VR128RegisterClass->hasType(VT))
10851      Res.second = X86::VR128RegisterClass;
10852  }
10853
10854  return Res;
10855}
10856