X86ISelLowering.cpp revision 3d092dbb91af75c7d39798c6d7a52d32446c3381
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52using namespace llvm;
53
54STATISTIC(NumTailCalls, "Number of tail calls");
55
56// Forward declarations.
57static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
58                       SDValue V2);
59
60/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
61/// sets things up to match to an AVX VEXTRACTF128 instruction or a
62/// simple subregister reference.  Idx is an index in the 128 bits we
63/// want.  It need not be aligned to a 128-bit bounday.  That makes
64/// lowering EXTRACT_VECTOR_ELT operations easier.
65static SDValue Extract128BitVector(SDValue Vec,
66                                   SDValue Idx,
67                                   SelectionDAG &DAG,
68                                   DebugLoc dl) {
69  EVT VT = Vec.getValueType();
70  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
71  EVT ElVT = VT.getVectorElementType();
72  int Factor = VT.getSizeInBits()/128;
73  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
74                                  VT.getVectorNumElements()/Factor);
75
76  // Extract from UNDEF is UNDEF.
77  if (Vec.getOpcode() == ISD::UNDEF)
78    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
79
80  if (isa<ConstantSDNode>(Idx)) {
81    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
82
83    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
84    // we can match to VEXTRACTF128.
85    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
86
87    // This is the index of the first element of the 128-bit chunk
88    // we want.
89    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
90                                 * ElemsPerChunk);
91
92    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
93    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
94                                 VecIdx);
95
96    return Result;
97  }
98
99  return SDValue();
100}
101
102/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
103/// sets things up to match to an AVX VINSERTF128 instruction or a
104/// simple superregister reference.  Idx is an index in the 128 bits
105/// we want.  It need not be aligned to a 128-bit bounday.  That makes
106/// lowering INSERT_VECTOR_ELT operations easier.
107static SDValue Insert128BitVector(SDValue Result,
108                                  SDValue Vec,
109                                  SDValue Idx,
110                                  SelectionDAG &DAG,
111                                  DebugLoc dl) {
112  if (isa<ConstantSDNode>(Idx)) {
113    EVT VT = Vec.getValueType();
114    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
115
116    EVT ElVT = VT.getVectorElementType();
117    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
118    EVT ResultVT = Result.getValueType();
119
120    // Insert the relevant 128 bits.
121    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
122
123    // This is the index of the first element of the 128-bit chunk
124    // we want.
125    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
126                                 * ElemsPerChunk);
127
128    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
129    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
130                         VecIdx);
131    return Result;
132  }
133
134  return SDValue();
135}
136
137static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
138  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
139  bool is64Bit = Subtarget->is64Bit();
140
141  if (Subtarget->isTargetEnvMacho()) {
142    if (is64Bit)
143      return new X8664_MachoTargetObjectFile();
144    return new TargetLoweringObjectFileMachO();
145  }
146
147  if (Subtarget->isTargetELF())
148    return new TargetLoweringObjectFileELF();
149  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
150    return new TargetLoweringObjectFileCOFF();
151  llvm_unreachable("unknown subtarget type");
152}
153
154X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
155  : TargetLowering(TM, createTLOF(TM)) {
156  Subtarget = &TM.getSubtarget<X86Subtarget>();
157  X86ScalarSSEf64 = Subtarget->hasSSE2();
158  X86ScalarSSEf32 = Subtarget->hasSSE1();
159  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
160
161  RegInfo = TM.getRegisterInfo();
162  TD = getTargetData();
163
164  // Set up the TargetLowering object.
165  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
166
167  // X86 is weird, it always uses i8 for shift amounts and setcc results.
168  setBooleanContents(ZeroOrOneBooleanContent);
169  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
170  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
171
172  // For 64-bit since we have so many registers use the ILP scheduler, for
173  // 32-bit code use the register pressure specific scheduling.
174  // For 32 bit Atom, use Hybrid (register pressure + latency) scheduling.
175  if (Subtarget->is64Bit())
176    setSchedulingPreference(Sched::ILP);
177  else if (Subtarget->isAtom())
178    setSchedulingPreference(Sched::Hybrid);
179  else
180    setSchedulingPreference(Sched::RegPressure);
181  setStackPointerRegisterToSaveRestore(X86StackPtr);
182
183  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
184    // Setup Windows compiler runtime calls.
185    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
186    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
187    setLibcallName(RTLIB::SREM_I64, "_allrem");
188    setLibcallName(RTLIB::UREM_I64, "_aullrem");
189    setLibcallName(RTLIB::MUL_I64, "_allmul");
190    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
191    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
192    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
193    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
194    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
195
196    // The _ftol2 runtime function has an unusual calling conv, which
197    // is modeled by a special pseudo-instruction.
198    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
199    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
200    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
201    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
202  }
203
204  if (Subtarget->isTargetDarwin()) {
205    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
206    setUseUnderscoreSetJmp(false);
207    setUseUnderscoreLongJmp(false);
208  } else if (Subtarget->isTargetMingw()) {
209    // MS runtime is weird: it exports _setjmp, but longjmp!
210    setUseUnderscoreSetJmp(true);
211    setUseUnderscoreLongJmp(false);
212  } else {
213    setUseUnderscoreSetJmp(true);
214    setUseUnderscoreLongJmp(true);
215  }
216
217  // Set up the register classes.
218  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
219  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
220  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
221  if (Subtarget->is64Bit())
222    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
223
224  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
225
226  // We don't accept any truncstore of integer registers.
227  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
228  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
229  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
230  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
231  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
232  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
233
234  // SETOEQ and SETUNE require checking two conditions.
235  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
236  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
237  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
238  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
239  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
240  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
241
242  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
243  // operation.
244  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
245  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
246  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
247
248  if (Subtarget->is64Bit()) {
249    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
250    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
251  } else if (!TM.Options.UseSoftFloat) {
252    // We have an algorithm for SSE2->double, and we turn this into a
253    // 64-bit FILD followed by conditional FADD for other targets.
254    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
255    // We have an algorithm for SSE2, and we turn this into a 64-bit
256    // FILD for other targets.
257    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
258  }
259
260  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
261  // this operation.
262  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
263  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
264
265  if (!TM.Options.UseSoftFloat) {
266    // SSE has no i16 to fp conversion, only i32
267    if (X86ScalarSSEf32) {
268      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
269      // f32 and f64 cases are Legal, f80 case is not
270      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
271    } else {
272      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
273      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
274    }
275  } else {
276    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
277    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
278  }
279
280  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
281  // are Legal, f80 is custom lowered.
282  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
283  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
284
285  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
286  // this operation.
287  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
288  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
289
290  if (X86ScalarSSEf32) {
291    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
292    // f32 and f64 cases are Legal, f80 case is not
293    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
294  } else {
295    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
296    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
297  }
298
299  // Handle FP_TO_UINT by promoting the destination to a larger signed
300  // conversion.
301  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
302  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
303  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
304
305  if (Subtarget->is64Bit()) {
306    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
307    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
308  } else if (!TM.Options.UseSoftFloat) {
309    // Since AVX is a superset of SSE3, only check for SSE here.
310    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
311      // Expand FP_TO_UINT into a select.
312      // FIXME: We would like to use a Custom expander here eventually to do
313      // the optimal thing for SSE vs. the default expansion in the legalizer.
314      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
315    else
316      // With SSE3 we can use fisttpll to convert to a signed i64; without
317      // SSE, we're stuck with a fistpll.
318      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
319  }
320
321  if (isTargetFTOL()) {
322    // Use the _ftol2 runtime function, which has a pseudo-instruction
323    // to handle its weird calling convention.
324    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
325  }
326
327  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
328  if (!X86ScalarSSEf64) {
329    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
330    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
331    if (Subtarget->is64Bit()) {
332      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
333      // Without SSE, i64->f64 goes through memory.
334      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
335    }
336  }
337
338  // Scalar integer divide and remainder are lowered to use operations that
339  // produce two results, to match the available instructions. This exposes
340  // the two-result form to trivial CSE, which is able to combine x/y and x%y
341  // into a single instruction.
342  //
343  // Scalar integer multiply-high is also lowered to use two-result
344  // operations, to match the available instructions. However, plain multiply
345  // (low) operations are left as Legal, as there are single-result
346  // instructions for this in x86. Using the two-result multiply instructions
347  // when both high and low results are needed must be arranged by dagcombine.
348  for (unsigned i = 0, e = 4; i != e; ++i) {
349    MVT VT = IntVTs[i];
350    setOperationAction(ISD::MULHS, VT, Expand);
351    setOperationAction(ISD::MULHU, VT, Expand);
352    setOperationAction(ISD::SDIV, VT, Expand);
353    setOperationAction(ISD::UDIV, VT, Expand);
354    setOperationAction(ISD::SREM, VT, Expand);
355    setOperationAction(ISD::UREM, VT, Expand);
356
357    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
358    setOperationAction(ISD::ADDC, VT, Custom);
359    setOperationAction(ISD::ADDE, VT, Custom);
360    setOperationAction(ISD::SUBC, VT, Custom);
361    setOperationAction(ISD::SUBE, VT, Custom);
362  }
363
364  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
365  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
366  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
367  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
368  if (Subtarget->is64Bit())
369    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
370  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
371  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
373  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
374  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
375  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
377  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
378
379  // Promote the i8 variants and force them on up to i32 which has a shorter
380  // encoding.
381  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
382  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
383  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
384  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
385  if (Subtarget->hasBMI()) {
386    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
387    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
388    if (Subtarget->is64Bit())
389      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
390  } else {
391    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
392    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
393    if (Subtarget->is64Bit())
394      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
395  }
396
397  if (Subtarget->hasLZCNT()) {
398    // When promoting the i8 variants, force them to i32 for a shorter
399    // encoding.
400    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
401    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
402    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
403    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
404    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
405    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
406    if (Subtarget->is64Bit())
407      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
408  } else {
409    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
410    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
411    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
412    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
413    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
414    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
415    if (Subtarget->is64Bit()) {
416      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
417      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
418    }
419  }
420
421  if (Subtarget->hasPOPCNT()) {
422    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
423  } else {
424    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
425    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
426    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
427    if (Subtarget->is64Bit())
428      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
429  }
430
431  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
432  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
433
434  // These should be promoted to a larger select which is supported.
435  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
436  // X86 wants to expand cmov itself.
437  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
438  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
439  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
440  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
441  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
442  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
443  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
444  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
445  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
446  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
447  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
448  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
449  if (Subtarget->is64Bit()) {
450    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
451    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
452  }
453  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
454
455  // Darwin ABI issue.
456  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
457  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
458  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
459  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
460  if (Subtarget->is64Bit())
461    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
462  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
463  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
464  if (Subtarget->is64Bit()) {
465    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
466    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
467    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
468    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
469    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
470  }
471  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
472  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
473  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
474  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
475  if (Subtarget->is64Bit()) {
476    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
477    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
478    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
479  }
480
481  if (Subtarget->hasSSE1())
482    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
483
484  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
485  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
486
487  // On X86 and X86-64, atomic operations are lowered to locked instructions.
488  // Locked instructions, in turn, have implicit fence semantics (all memory
489  // operations are flushed before issuing the locked instruction, and they
490  // are not buffered), so we can fold away the common pattern of
491  // fence-atomic-fence.
492  setShouldFoldAtomicFences(true);
493
494  // Expand certain atomics
495  for (unsigned i = 0, e = 4; i != e; ++i) {
496    MVT VT = IntVTs[i];
497    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
498    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
499    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
500  }
501
502  if (!Subtarget->is64Bit()) {
503    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
505    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
511  }
512
513  if (Subtarget->hasCmpxchg16b()) {
514    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
515  }
516
517  // FIXME - use subtarget debug flags
518  if (!Subtarget->isTargetDarwin() &&
519      !Subtarget->isTargetELF() &&
520      !Subtarget->isTargetCygMing()) {
521    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
522  }
523
524  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
525  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
526  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
527  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
528  if (Subtarget->is64Bit()) {
529    setExceptionPointerRegister(X86::RAX);
530    setExceptionSelectorRegister(X86::RDX);
531  } else {
532    setExceptionPointerRegister(X86::EAX);
533    setExceptionSelectorRegister(X86::EDX);
534  }
535  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
536  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
537
538  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
539  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
540
541  setOperationAction(ISD::TRAP, MVT::Other, Legal);
542
543  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
544  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
545  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
546  if (Subtarget->is64Bit()) {
547    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
548    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
549  } else {
550    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
551    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
552  }
553
554  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
555  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
556
557  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
558    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
559                       MVT::i64 : MVT::i32, Custom);
560  else if (TM.Options.EnableSegmentedStacks)
561    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
562                       MVT::i64 : MVT::i32, Custom);
563  else
564    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
565                       MVT::i64 : MVT::i32, Expand);
566
567  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
568    // f32 and f64 use SSE.
569    // Set up the FP register classes.
570    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
571    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
572
573    // Use ANDPD to simulate FABS.
574    setOperationAction(ISD::FABS , MVT::f64, Custom);
575    setOperationAction(ISD::FABS , MVT::f32, Custom);
576
577    // Use XORP to simulate FNEG.
578    setOperationAction(ISD::FNEG , MVT::f64, Custom);
579    setOperationAction(ISD::FNEG , MVT::f32, Custom);
580
581    // Use ANDPD and ORPD to simulate FCOPYSIGN.
582    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
583    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
584
585    // Lower this to FGETSIGNx86 plus an AND.
586    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
587    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
588
589    // We don't support sin/cos/fmod
590    setOperationAction(ISD::FSIN , MVT::f64, Expand);
591    setOperationAction(ISD::FCOS , MVT::f64, Expand);
592    setOperationAction(ISD::FSIN , MVT::f32, Expand);
593    setOperationAction(ISD::FCOS , MVT::f32, Expand);
594
595    // Expand FP immediates into loads from the stack, except for the special
596    // cases we handle.
597    addLegalFPImmediate(APFloat(+0.0)); // xorpd
598    addLegalFPImmediate(APFloat(+0.0f)); // xorps
599  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
600    // Use SSE for f32, x87 for f64.
601    // Set up the FP register classes.
602    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
603    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
604
605    // Use ANDPS to simulate FABS.
606    setOperationAction(ISD::FABS , MVT::f32, Custom);
607
608    // Use XORP to simulate FNEG.
609    setOperationAction(ISD::FNEG , MVT::f32, Custom);
610
611    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
612
613    // Use ANDPS and ORPS to simulate FCOPYSIGN.
614    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
615    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
616
617    // We don't support sin/cos/fmod
618    setOperationAction(ISD::FSIN , MVT::f32, Expand);
619    setOperationAction(ISD::FCOS , MVT::f32, Expand);
620
621    // Special cases we handle for FP constants.
622    addLegalFPImmediate(APFloat(+0.0f)); // xorps
623    addLegalFPImmediate(APFloat(+0.0)); // FLD0
624    addLegalFPImmediate(APFloat(+1.0)); // FLD1
625    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
626    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
627
628    if (!TM.Options.UnsafeFPMath) {
629      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
630      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
631    }
632  } else if (!TM.Options.UseSoftFloat) {
633    // f32 and f64 in x87.
634    // Set up the FP register classes.
635    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
636    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
637
638    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
639    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
640    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
641    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
642
643    if (!TM.Options.UnsafeFPMath) {
644      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
645      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
646    }
647    addLegalFPImmediate(APFloat(+0.0)); // FLD0
648    addLegalFPImmediate(APFloat(+1.0)); // FLD1
649    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
650    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
651    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
652    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
653    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
654    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
655  }
656
657  // We don't support FMA.
658  setOperationAction(ISD::FMA, MVT::f64, Expand);
659  setOperationAction(ISD::FMA, MVT::f32, Expand);
660
661  // Long double always uses X87.
662  if (!TM.Options.UseSoftFloat) {
663    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
664    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
665    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
666    {
667      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
668      addLegalFPImmediate(TmpFlt);  // FLD0
669      TmpFlt.changeSign();
670      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
671
672      bool ignored;
673      APFloat TmpFlt2(+1.0);
674      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
675                      &ignored);
676      addLegalFPImmediate(TmpFlt2);  // FLD1
677      TmpFlt2.changeSign();
678      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
679    }
680
681    if (!TM.Options.UnsafeFPMath) {
682      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
683      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
684    }
685
686    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
687    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
688    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
689    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
690    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
691    setOperationAction(ISD::FMA, MVT::f80, Expand);
692  }
693
694  // Always use a library call for pow.
695  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
696  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
697  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
698
699  setOperationAction(ISD::FLOG, MVT::f80, Expand);
700  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
701  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
702  setOperationAction(ISD::FEXP, MVT::f80, Expand);
703  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
704
705  // First set operation action for all vector types to either promote
706  // (for widening) or expand (for scalarization). Then we will selectively
707  // turn on ones that can be effectively codegen'd.
708  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
709       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
710    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
725    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
727    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
728    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
762    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
767    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
768         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
769      setTruncStoreAction((MVT::SimpleValueType)VT,
770                          (MVT::SimpleValueType)InnerVT, Expand);
771    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
772    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
773    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
774  }
775
776  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
777  // with -msoft-float, disable use of MMX as well.
778  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
779    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
780    // No operations on x86mmx supported, everything uses intrinsics.
781  }
782
783  // MMX-sized vectors (other than x86mmx) are expected to be expanded
784  // into smaller operations.
785  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
786  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
787  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
788  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
789  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
790  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
791  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
792  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
793  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
794  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
795  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
796  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
797  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
798  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
799  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
800  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
801  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
802  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
803  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
804  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
805  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
806  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
807  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
808  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
809  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
810  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
811  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
812  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
813  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
814
815  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
816    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
817
818    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
819    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
820    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
821    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
822    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
823    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
824    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
825    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
826    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
827    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
828    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
829    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
830  }
831
832  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
833    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
834
835    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
836    // registers cannot be used even for integer operations.
837    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
838    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
839    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
840    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
841
842    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
843    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
844    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
845    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
846    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
847    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
848    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
849    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
850    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
851    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
852    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
853    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
854    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
855    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
856    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
857    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
858
859    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
860    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
861    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
862    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
863
864    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
865    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
866    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
867    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
868    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
869
870    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
871    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
872    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
873    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
874    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
875
876    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
877    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
878      EVT VT = (MVT::SimpleValueType)i;
879      // Do not attempt to custom lower non-power-of-2 vectors
880      if (!isPowerOf2_32(VT.getVectorNumElements()))
881        continue;
882      // Do not attempt to custom lower non-128-bit vectors
883      if (!VT.is128BitVector())
884        continue;
885      setOperationAction(ISD::BUILD_VECTOR,
886                         VT.getSimpleVT().SimpleTy, Custom);
887      setOperationAction(ISD::VECTOR_SHUFFLE,
888                         VT.getSimpleVT().SimpleTy, Custom);
889      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
890                         VT.getSimpleVT().SimpleTy, Custom);
891    }
892
893    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
894    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
895    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
896    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
897    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
898    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
899
900    if (Subtarget->is64Bit()) {
901      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
902      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
903    }
904
905    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
906    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
907      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
908      EVT VT = SVT;
909
910      // Do not attempt to promote non-128-bit vectors
911      if (!VT.is128BitVector())
912        continue;
913
914      setOperationAction(ISD::AND,    SVT, Promote);
915      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
916      setOperationAction(ISD::OR,     SVT, Promote);
917      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
918      setOperationAction(ISD::XOR,    SVT, Promote);
919      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
920      setOperationAction(ISD::LOAD,   SVT, Promote);
921      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
922      setOperationAction(ISD::SELECT, SVT, Promote);
923      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
924    }
925
926    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
927
928    // Custom lower v2i64 and v2f64 selects.
929    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
930    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
931    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
932    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
933
934    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
935    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
936  }
937
938  if (Subtarget->hasSSE41()) {
939    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
940    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
941    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
942    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
943    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
944    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
945    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
946    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
947    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
948    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
949
950    // FIXME: Do we need to handle scalar-to-vector here?
951    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
952
953    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
954    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
955    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
956    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
957    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
958
959    // i8 and i16 vectors are custom , because the source register and source
960    // source memory operand types are not the same width.  f32 vectors are
961    // custom since the immediate controlling the insert encodes additional
962    // information.
963    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
964    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
965    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
966    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
967
968    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
969    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
970    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
971    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
972
973    // FIXME: these should be Legal but thats only for the case where
974    // the index is constant.  For now custom expand to deal with that.
975    if (Subtarget->is64Bit()) {
976      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
977      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
978    }
979  }
980
981  if (Subtarget->hasSSE2()) {
982    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
983    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
984
985    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
986    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
987
988    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
989    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
990
991    if (Subtarget->hasAVX2()) {
992      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
993      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
994
995      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
996      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
997
998      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
999    } else {
1000      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1001      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1002
1003      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1004      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1005
1006      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1007    }
1008  }
1009
1010  if (Subtarget->hasSSE42())
1011    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1012
1013  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1014    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
1015    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1016    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
1017    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
1018    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
1019    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
1020
1021    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1022    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1023    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1024
1025    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1026    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1027    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1028    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1029    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1030    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1031
1032    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1033    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1034    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1035    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1036    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1037    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1038
1039    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1040    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1041    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1042
1043    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1044    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1045    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1046    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1047    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1048    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1049
1050    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1051    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1052
1053    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1054    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1055
1056    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1057    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1058
1059    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1060    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1061    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1062    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1063
1064    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1065    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1066    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1067
1068    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1069    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1070    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1071    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1072
1073    if (Subtarget->hasAVX2()) {
1074      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1075      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1076      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1077      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1078
1079      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1080      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1081      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1082      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1083
1084      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1085      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1086      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1087      // Don't lower v32i8 because there is no 128-bit byte mul
1088
1089      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1090
1091      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1092      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1093
1094      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1095      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1096
1097      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1098    } else {
1099      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1100      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1101      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1102      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1103
1104      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1105      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1106      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1107      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1108
1109      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1110      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1111      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1112      // Don't lower v32i8 because there is no 128-bit byte mul
1113
1114      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1115      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1116
1117      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1118      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1119
1120      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1121    }
1122
1123    // Custom lower several nodes for 256-bit types.
1124    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1125                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1126      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1127      EVT VT = SVT;
1128
1129      // Extract subvector is special because the value type
1130      // (result) is 128-bit but the source is 256-bit wide.
1131      if (VT.is128BitVector())
1132        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1133
1134      // Do not attempt to custom lower other non-256-bit vectors
1135      if (!VT.is256BitVector())
1136        continue;
1137
1138      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1139      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1140      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1141      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1142      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1143      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1144    }
1145
1146    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1147    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1148      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1149      EVT VT = SVT;
1150
1151      // Do not attempt to promote non-256-bit vectors
1152      if (!VT.is256BitVector())
1153        continue;
1154
1155      setOperationAction(ISD::AND,    SVT, Promote);
1156      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1157      setOperationAction(ISD::OR,     SVT, Promote);
1158      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1159      setOperationAction(ISD::XOR,    SVT, Promote);
1160      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1161      setOperationAction(ISD::LOAD,   SVT, Promote);
1162      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1163      setOperationAction(ISD::SELECT, SVT, Promote);
1164      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1165    }
1166  }
1167
1168  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1169  // of this type with custom code.
1170  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1171         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1172    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1173                       Custom);
1174  }
1175
1176  // We want to custom lower some of our intrinsics.
1177  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1178
1179
1180  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1181  // handle type legalization for these operations here.
1182  //
1183  // FIXME: We really should do custom legalization for addition and
1184  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1185  // than generic legalization for 64-bit multiplication-with-overflow, though.
1186  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1187    // Add/Sub/Mul with overflow operations are custom lowered.
1188    MVT VT = IntVTs[i];
1189    setOperationAction(ISD::SADDO, VT, Custom);
1190    setOperationAction(ISD::UADDO, VT, Custom);
1191    setOperationAction(ISD::SSUBO, VT, Custom);
1192    setOperationAction(ISD::USUBO, VT, Custom);
1193    setOperationAction(ISD::SMULO, VT, Custom);
1194    setOperationAction(ISD::UMULO, VT, Custom);
1195  }
1196
1197  // There are no 8-bit 3-address imul/mul instructions
1198  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1199  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1200
1201  if (!Subtarget->is64Bit()) {
1202    // These libcalls are not available in 32-bit.
1203    setLibcallName(RTLIB::SHL_I128, 0);
1204    setLibcallName(RTLIB::SRL_I128, 0);
1205    setLibcallName(RTLIB::SRA_I128, 0);
1206  }
1207
1208  // We have target-specific dag combine patterns for the following nodes:
1209  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1210  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1211  setTargetDAGCombine(ISD::VSELECT);
1212  setTargetDAGCombine(ISD::SELECT);
1213  setTargetDAGCombine(ISD::SHL);
1214  setTargetDAGCombine(ISD::SRA);
1215  setTargetDAGCombine(ISD::SRL);
1216  setTargetDAGCombine(ISD::OR);
1217  setTargetDAGCombine(ISD::AND);
1218  setTargetDAGCombine(ISD::ADD);
1219  setTargetDAGCombine(ISD::FADD);
1220  setTargetDAGCombine(ISD::FSUB);
1221  setTargetDAGCombine(ISD::SUB);
1222  setTargetDAGCombine(ISD::LOAD);
1223  setTargetDAGCombine(ISD::STORE);
1224  setTargetDAGCombine(ISD::ZERO_EXTEND);
1225  setTargetDAGCombine(ISD::SIGN_EXTEND);
1226  setTargetDAGCombine(ISD::TRUNCATE);
1227  setTargetDAGCombine(ISD::SINT_TO_FP);
1228  if (Subtarget->is64Bit())
1229    setTargetDAGCombine(ISD::MUL);
1230  if (Subtarget->hasBMI())
1231    setTargetDAGCombine(ISD::XOR);
1232
1233  computeRegisterProperties();
1234
1235  // On Darwin, -Os means optimize for size without hurting performance,
1236  // do not reduce the limit.
1237  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1238  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1239  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1240  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1241  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1242  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1243  setPrefLoopAlignment(4); // 2^4 bytes.
1244  benefitFromCodePlacementOpt = true;
1245
1246  setPrefFunctionAlignment(4); // 2^4 bytes.
1247}
1248
1249
1250EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1251  if (!VT.isVector()) return MVT::i8;
1252  return VT.changeVectorElementTypeToInteger();
1253}
1254
1255
1256/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1257/// the desired ByVal argument alignment.
1258static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1259  if (MaxAlign == 16)
1260    return;
1261  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1262    if (VTy->getBitWidth() == 128)
1263      MaxAlign = 16;
1264  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1265    unsigned EltAlign = 0;
1266    getMaxByValAlign(ATy->getElementType(), EltAlign);
1267    if (EltAlign > MaxAlign)
1268      MaxAlign = EltAlign;
1269  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1270    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1271      unsigned EltAlign = 0;
1272      getMaxByValAlign(STy->getElementType(i), EltAlign);
1273      if (EltAlign > MaxAlign)
1274        MaxAlign = EltAlign;
1275      if (MaxAlign == 16)
1276        break;
1277    }
1278  }
1279  return;
1280}
1281
1282/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1283/// function arguments in the caller parameter area. For X86, aggregates
1284/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1285/// are at 4-byte boundaries.
1286unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1287  if (Subtarget->is64Bit()) {
1288    // Max of 8 and alignment of type.
1289    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1290    if (TyAlign > 8)
1291      return TyAlign;
1292    return 8;
1293  }
1294
1295  unsigned Align = 4;
1296  if (Subtarget->hasSSE1())
1297    getMaxByValAlign(Ty, Align);
1298  return Align;
1299}
1300
1301/// getOptimalMemOpType - Returns the target specific optimal type for load
1302/// and store operations as a result of memset, memcpy, and memmove
1303/// lowering. If DstAlign is zero that means it's safe to destination
1304/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1305/// means there isn't a need to check it against alignment requirement,
1306/// probably because the source does not need to be loaded. If
1307/// 'IsZeroVal' is true, that means it's safe to return a
1308/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1309/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1310/// constant so it does not need to be loaded.
1311/// It returns EVT::Other if the type should be determined using generic
1312/// target-independent logic.
1313EVT
1314X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1315                                       unsigned DstAlign, unsigned SrcAlign,
1316                                       bool IsZeroVal,
1317                                       bool MemcpyStrSrc,
1318                                       MachineFunction &MF) const {
1319  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1320  // linux.  This is because the stack realignment code can't handle certain
1321  // cases like PR2962.  This should be removed when PR2962 is fixed.
1322  const Function *F = MF.getFunction();
1323  if (IsZeroVal &&
1324      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1325    if (Size >= 16 &&
1326        (Subtarget->isUnalignedMemAccessFast() ||
1327         ((DstAlign == 0 || DstAlign >= 16) &&
1328          (SrcAlign == 0 || SrcAlign >= 16))) &&
1329        Subtarget->getStackAlignment() >= 16) {
1330      if (Subtarget->getStackAlignment() >= 32) {
1331        if (Subtarget->hasAVX2())
1332          return MVT::v8i32;
1333        if (Subtarget->hasAVX())
1334          return MVT::v8f32;
1335      }
1336      if (Subtarget->hasSSE2())
1337        return MVT::v4i32;
1338      if (Subtarget->hasSSE1())
1339        return MVT::v4f32;
1340    } else if (!MemcpyStrSrc && Size >= 8 &&
1341               !Subtarget->is64Bit() &&
1342               Subtarget->getStackAlignment() >= 8 &&
1343               Subtarget->hasSSE2()) {
1344      // Do not use f64 to lower memcpy if source is string constant. It's
1345      // better to use i32 to avoid the loads.
1346      return MVT::f64;
1347    }
1348  }
1349  if (Subtarget->is64Bit() && Size >= 8)
1350    return MVT::i64;
1351  return MVT::i32;
1352}
1353
1354/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1355/// current function.  The returned value is a member of the
1356/// MachineJumpTableInfo::JTEntryKind enum.
1357unsigned X86TargetLowering::getJumpTableEncoding() const {
1358  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1359  // symbol.
1360  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1361      Subtarget->isPICStyleGOT())
1362    return MachineJumpTableInfo::EK_Custom32;
1363
1364  // Otherwise, use the normal jump table encoding heuristics.
1365  return TargetLowering::getJumpTableEncoding();
1366}
1367
1368const MCExpr *
1369X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1370                                             const MachineBasicBlock *MBB,
1371                                             unsigned uid,MCContext &Ctx) const{
1372  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1373         Subtarget->isPICStyleGOT());
1374  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1375  // entries.
1376  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1377                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1378}
1379
1380/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1381/// jumptable.
1382SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1383                                                    SelectionDAG &DAG) const {
1384  if (!Subtarget->is64Bit())
1385    // This doesn't have DebugLoc associated with it, but is not really the
1386    // same as a Register.
1387    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1388  return Table;
1389}
1390
1391/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1392/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1393/// MCExpr.
1394const MCExpr *X86TargetLowering::
1395getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1396                             MCContext &Ctx) const {
1397  // X86-64 uses RIP relative addressing based on the jump table label.
1398  if (Subtarget->isPICStyleRIPRel())
1399    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1400
1401  // Otherwise, the reference is relative to the PIC base.
1402  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1403}
1404
1405// FIXME: Why this routine is here? Move to RegInfo!
1406std::pair<const TargetRegisterClass*, uint8_t>
1407X86TargetLowering::findRepresentativeClass(EVT VT) const{
1408  const TargetRegisterClass *RRC = 0;
1409  uint8_t Cost = 1;
1410  switch (VT.getSimpleVT().SimpleTy) {
1411  default:
1412    return TargetLowering::findRepresentativeClass(VT);
1413  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1414    RRC = (Subtarget->is64Bit()
1415           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1416    break;
1417  case MVT::x86mmx:
1418    RRC = X86::VR64RegisterClass;
1419    break;
1420  case MVT::f32: case MVT::f64:
1421  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1422  case MVT::v4f32: case MVT::v2f64:
1423  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1424  case MVT::v4f64:
1425    RRC = X86::VR128RegisterClass;
1426    break;
1427  }
1428  return std::make_pair(RRC, Cost);
1429}
1430
1431bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1432                                               unsigned &Offset) const {
1433  if (!Subtarget->isTargetLinux())
1434    return false;
1435
1436  if (Subtarget->is64Bit()) {
1437    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1438    Offset = 0x28;
1439    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1440      AddressSpace = 256;
1441    else
1442      AddressSpace = 257;
1443  } else {
1444    // %gs:0x14 on i386
1445    Offset = 0x14;
1446    AddressSpace = 256;
1447  }
1448  return true;
1449}
1450
1451
1452//===----------------------------------------------------------------------===//
1453//               Return Value Calling Convention Implementation
1454//===----------------------------------------------------------------------===//
1455
1456#include "X86GenCallingConv.inc"
1457
1458bool
1459X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1460				  MachineFunction &MF, bool isVarArg,
1461                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1462                        LLVMContext &Context) const {
1463  SmallVector<CCValAssign, 16> RVLocs;
1464  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1465                 RVLocs, Context);
1466  return CCInfo.CheckReturn(Outs, RetCC_X86);
1467}
1468
1469SDValue
1470X86TargetLowering::LowerReturn(SDValue Chain,
1471                               CallingConv::ID CallConv, bool isVarArg,
1472                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1473                               const SmallVectorImpl<SDValue> &OutVals,
1474                               DebugLoc dl, SelectionDAG &DAG) const {
1475  MachineFunction &MF = DAG.getMachineFunction();
1476  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1477
1478  SmallVector<CCValAssign, 16> RVLocs;
1479  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1480                 RVLocs, *DAG.getContext());
1481  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1482
1483  // Add the regs to the liveout set for the function.
1484  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1485  for (unsigned i = 0; i != RVLocs.size(); ++i)
1486    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1487      MRI.addLiveOut(RVLocs[i].getLocReg());
1488
1489  SDValue Flag;
1490
1491  SmallVector<SDValue, 6> RetOps;
1492  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1493  // Operand #1 = Bytes To Pop
1494  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1495                   MVT::i16));
1496
1497  // Copy the result values into the output registers.
1498  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1499    CCValAssign &VA = RVLocs[i];
1500    assert(VA.isRegLoc() && "Can only return in registers!");
1501    SDValue ValToCopy = OutVals[i];
1502    EVT ValVT = ValToCopy.getValueType();
1503
1504    // If this is x86-64, and we disabled SSE, we can't return FP values,
1505    // or SSE or MMX vectors.
1506    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1507         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1508          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1509      report_fatal_error("SSE register return with SSE disabled");
1510    }
1511    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1512    // llvm-gcc has never done it right and no one has noticed, so this
1513    // should be OK for now.
1514    if (ValVT == MVT::f64 &&
1515        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1516      report_fatal_error("SSE2 register return with SSE2 disabled");
1517
1518    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1519    // the RET instruction and handled by the FP Stackifier.
1520    if (VA.getLocReg() == X86::ST0 ||
1521        VA.getLocReg() == X86::ST1) {
1522      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1523      // change the value to the FP stack register class.
1524      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1525        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1526      RetOps.push_back(ValToCopy);
1527      // Don't emit a copytoreg.
1528      continue;
1529    }
1530
1531    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1532    // which is returned in RAX / RDX.
1533    if (Subtarget->is64Bit()) {
1534      if (ValVT == MVT::x86mmx) {
1535        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1536          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1537          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1538                                  ValToCopy);
1539          // If we don't have SSE2 available, convert to v4f32 so the generated
1540          // register is legal.
1541          if (!Subtarget->hasSSE2())
1542            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1543        }
1544      }
1545    }
1546
1547    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1548    Flag = Chain.getValue(1);
1549  }
1550
1551  // The x86-64 ABI for returning structs by value requires that we copy
1552  // the sret argument into %rax for the return. We saved the argument into
1553  // a virtual register in the entry block, so now we copy the value out
1554  // and into %rax.
1555  if (Subtarget->is64Bit() &&
1556      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1557    MachineFunction &MF = DAG.getMachineFunction();
1558    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1559    unsigned Reg = FuncInfo->getSRetReturnReg();
1560    assert(Reg &&
1561           "SRetReturnReg should have been set in LowerFormalArguments().");
1562    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1563
1564    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1565    Flag = Chain.getValue(1);
1566
1567    // RAX now acts like a return value.
1568    MRI.addLiveOut(X86::RAX);
1569  }
1570
1571  RetOps[0] = Chain;  // Update chain.
1572
1573  // Add the flag if we have it.
1574  if (Flag.getNode())
1575    RetOps.push_back(Flag);
1576
1577  return DAG.getNode(X86ISD::RET_FLAG, dl,
1578                     MVT::Other, &RetOps[0], RetOps.size());
1579}
1580
1581bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1582  if (N->getNumValues() != 1)
1583    return false;
1584  if (!N->hasNUsesOfValue(1, 0))
1585    return false;
1586
1587  SDNode *Copy = *N->use_begin();
1588  if (Copy->getOpcode() == ISD::CopyToReg) {
1589    // If the copy has a glue operand, we conservatively assume it isn't safe to
1590    // perform a tail call.
1591    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1592      return false;
1593  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1594    return false;
1595
1596  bool HasRet = false;
1597  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1598       UI != UE; ++UI) {
1599    if (UI->getOpcode() != X86ISD::RET_FLAG)
1600      return false;
1601    HasRet = true;
1602  }
1603
1604  return HasRet;
1605}
1606
1607EVT
1608X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1609                                            ISD::NodeType ExtendKind) const {
1610  MVT ReturnMVT;
1611  // TODO: Is this also valid on 32-bit?
1612  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1613    ReturnMVT = MVT::i8;
1614  else
1615    ReturnMVT = MVT::i32;
1616
1617  EVT MinVT = getRegisterType(Context, ReturnMVT);
1618  return VT.bitsLT(MinVT) ? MinVT : VT;
1619}
1620
1621/// LowerCallResult - Lower the result values of a call into the
1622/// appropriate copies out of appropriate physical registers.
1623///
1624SDValue
1625X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1626                                   CallingConv::ID CallConv, bool isVarArg,
1627                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1628                                   DebugLoc dl, SelectionDAG &DAG,
1629                                   SmallVectorImpl<SDValue> &InVals) const {
1630
1631  // Assign locations to each value returned by this call.
1632  SmallVector<CCValAssign, 16> RVLocs;
1633  bool Is64Bit = Subtarget->is64Bit();
1634  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1635		 getTargetMachine(), RVLocs, *DAG.getContext());
1636  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1637
1638  // Copy all of the result registers out of their specified physreg.
1639  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1640    CCValAssign &VA = RVLocs[i];
1641    EVT CopyVT = VA.getValVT();
1642
1643    // If this is x86-64, and we disabled SSE, we can't return FP values
1644    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1645        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1646      report_fatal_error("SSE register return with SSE disabled");
1647    }
1648
1649    SDValue Val;
1650
1651    // If this is a call to a function that returns an fp value on the floating
1652    // point stack, we must guarantee the the value is popped from the stack, so
1653    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1654    // if the return value is not used. We use the FpPOP_RETVAL instruction
1655    // instead.
1656    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1657      // If we prefer to use the value in xmm registers, copy it out as f80 and
1658      // use a truncate to move it from fp stack reg to xmm reg.
1659      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1660      SDValue Ops[] = { Chain, InFlag };
1661      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1662                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1663      Val = Chain.getValue(0);
1664
1665      // Round the f80 to the right size, which also moves it to the appropriate
1666      // xmm register.
1667      if (CopyVT != VA.getValVT())
1668        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1669                          // This truncation won't change the value.
1670                          DAG.getIntPtrConstant(1));
1671    } else {
1672      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1673                                 CopyVT, InFlag).getValue(1);
1674      Val = Chain.getValue(0);
1675    }
1676    InFlag = Chain.getValue(2);
1677    InVals.push_back(Val);
1678  }
1679
1680  return Chain;
1681}
1682
1683
1684//===----------------------------------------------------------------------===//
1685//                C & StdCall & Fast Calling Convention implementation
1686//===----------------------------------------------------------------------===//
1687//  StdCall calling convention seems to be standard for many Windows' API
1688//  routines and around. It differs from C calling convention just a little:
1689//  callee should clean up the stack, not caller. Symbols should be also
1690//  decorated in some fancy way :) It doesn't support any vector arguments.
1691//  For info on fast calling convention see Fast Calling Convention (tail call)
1692//  implementation LowerX86_32FastCCCallTo.
1693
1694/// CallIsStructReturn - Determines whether a call uses struct return
1695/// semantics.
1696static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1697  if (Outs.empty())
1698    return false;
1699
1700  return Outs[0].Flags.isSRet();
1701}
1702
1703/// ArgsAreStructReturn - Determines whether a function uses struct
1704/// return semantics.
1705static bool
1706ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1707  if (Ins.empty())
1708    return false;
1709
1710  return Ins[0].Flags.isSRet();
1711}
1712
1713/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1714/// by "Src" to address "Dst" with size and alignment information specified by
1715/// the specific parameter attribute. The copy will be passed as a byval
1716/// function parameter.
1717static SDValue
1718CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1719                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1720                          DebugLoc dl) {
1721  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1722
1723  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1724                       /*isVolatile*/false, /*AlwaysInline=*/true,
1725                       MachinePointerInfo(), MachinePointerInfo());
1726}
1727
1728/// IsTailCallConvention - Return true if the calling convention is one that
1729/// supports tail call optimization.
1730static bool IsTailCallConvention(CallingConv::ID CC) {
1731  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1732}
1733
1734bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1735  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1736    return false;
1737
1738  CallSite CS(CI);
1739  CallingConv::ID CalleeCC = CS.getCallingConv();
1740  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1741    return false;
1742
1743  return true;
1744}
1745
1746/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1747/// a tailcall target by changing its ABI.
1748static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1749                                   bool GuaranteedTailCallOpt) {
1750  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1751}
1752
1753SDValue
1754X86TargetLowering::LowerMemArgument(SDValue Chain,
1755                                    CallingConv::ID CallConv,
1756                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1757                                    DebugLoc dl, SelectionDAG &DAG,
1758                                    const CCValAssign &VA,
1759                                    MachineFrameInfo *MFI,
1760                                    unsigned i) const {
1761  // Create the nodes corresponding to a load from this parameter slot.
1762  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1763  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1764                              getTargetMachine().Options.GuaranteedTailCallOpt);
1765  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1766  EVT ValVT;
1767
1768  // If value is passed by pointer we have address passed instead of the value
1769  // itself.
1770  if (VA.getLocInfo() == CCValAssign::Indirect)
1771    ValVT = VA.getLocVT();
1772  else
1773    ValVT = VA.getValVT();
1774
1775  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1776  // changed with more analysis.
1777  // In case of tail call optimization mark all arguments mutable. Since they
1778  // could be overwritten by lowering of arguments in case of a tail call.
1779  if (Flags.isByVal()) {
1780    unsigned Bytes = Flags.getByValSize();
1781    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1782    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1783    return DAG.getFrameIndex(FI, getPointerTy());
1784  } else {
1785    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1786                                    VA.getLocMemOffset(), isImmutable);
1787    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1788    return DAG.getLoad(ValVT, dl, Chain, FIN,
1789                       MachinePointerInfo::getFixedStack(FI),
1790                       false, false, false, 0);
1791  }
1792}
1793
1794SDValue
1795X86TargetLowering::LowerFormalArguments(SDValue Chain,
1796                                        CallingConv::ID CallConv,
1797                                        bool isVarArg,
1798                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1799                                        DebugLoc dl,
1800                                        SelectionDAG &DAG,
1801                                        SmallVectorImpl<SDValue> &InVals)
1802                                          const {
1803  MachineFunction &MF = DAG.getMachineFunction();
1804  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1805
1806  const Function* Fn = MF.getFunction();
1807  if (Fn->hasExternalLinkage() &&
1808      Subtarget->isTargetCygMing() &&
1809      Fn->getName() == "main")
1810    FuncInfo->setForceFramePointer(true);
1811
1812  MachineFrameInfo *MFI = MF.getFrameInfo();
1813  bool Is64Bit = Subtarget->is64Bit();
1814  bool IsWindows = Subtarget->isTargetWindows();
1815  bool IsWin64 = Subtarget->isTargetWin64();
1816
1817  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1818         "Var args not supported with calling convention fastcc or ghc");
1819
1820  // Assign locations to all of the incoming arguments.
1821  SmallVector<CCValAssign, 16> ArgLocs;
1822  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1823                 ArgLocs, *DAG.getContext());
1824
1825  // Allocate shadow area for Win64
1826  if (IsWin64) {
1827    CCInfo.AllocateStack(32, 8);
1828  }
1829
1830  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1831
1832  unsigned LastVal = ~0U;
1833  SDValue ArgValue;
1834  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1835    CCValAssign &VA = ArgLocs[i];
1836    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1837    // places.
1838    assert(VA.getValNo() != LastVal &&
1839           "Don't support value assigned to multiple locs yet");
1840    (void)LastVal;
1841    LastVal = VA.getValNo();
1842
1843    if (VA.isRegLoc()) {
1844      EVT RegVT = VA.getLocVT();
1845      const TargetRegisterClass *RC;
1846      if (RegVT == MVT::i32)
1847        RC = X86::GR32RegisterClass;
1848      else if (Is64Bit && RegVT == MVT::i64)
1849        RC = X86::GR64RegisterClass;
1850      else if (RegVT == MVT::f32)
1851        RC = X86::FR32RegisterClass;
1852      else if (RegVT == MVT::f64)
1853        RC = X86::FR64RegisterClass;
1854      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1855        RC = X86::VR256RegisterClass;
1856      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1857        RC = X86::VR128RegisterClass;
1858      else if (RegVT == MVT::x86mmx)
1859        RC = X86::VR64RegisterClass;
1860      else
1861        llvm_unreachable("Unknown argument type!");
1862
1863      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1864      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1865
1866      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1867      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1868      // right size.
1869      if (VA.getLocInfo() == CCValAssign::SExt)
1870        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1871                               DAG.getValueType(VA.getValVT()));
1872      else if (VA.getLocInfo() == CCValAssign::ZExt)
1873        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1874                               DAG.getValueType(VA.getValVT()));
1875      else if (VA.getLocInfo() == CCValAssign::BCvt)
1876        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1877
1878      if (VA.isExtInLoc()) {
1879        // Handle MMX values passed in XMM regs.
1880        if (RegVT.isVector()) {
1881          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1882                                 ArgValue);
1883        } else
1884          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1885      }
1886    } else {
1887      assert(VA.isMemLoc());
1888      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1889    }
1890
1891    // If value is passed via pointer - do a load.
1892    if (VA.getLocInfo() == CCValAssign::Indirect)
1893      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1894                             MachinePointerInfo(), false, false, false, 0);
1895
1896    InVals.push_back(ArgValue);
1897  }
1898
1899  // The x86-64 ABI for returning structs by value requires that we copy
1900  // the sret argument into %rax for the return. Save the argument into
1901  // a virtual register so that we can access it from the return points.
1902  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1903    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1904    unsigned Reg = FuncInfo->getSRetReturnReg();
1905    if (!Reg) {
1906      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1907      FuncInfo->setSRetReturnReg(Reg);
1908    }
1909    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1910    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1911  }
1912
1913  unsigned StackSize = CCInfo.getNextStackOffset();
1914  // Align stack specially for tail calls.
1915  if (FuncIsMadeTailCallSafe(CallConv,
1916                             MF.getTarget().Options.GuaranteedTailCallOpt))
1917    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1918
1919  // If the function takes variable number of arguments, make a frame index for
1920  // the start of the first vararg value... for expansion of llvm.va_start.
1921  if (isVarArg) {
1922    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1923                    CallConv != CallingConv::X86_ThisCall)) {
1924      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1925    }
1926    if (Is64Bit) {
1927      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1928
1929      // FIXME: We should really autogenerate these arrays
1930      static const uint16_t GPR64ArgRegsWin64[] = {
1931        X86::RCX, X86::RDX, X86::R8,  X86::R9
1932      };
1933      static const uint16_t GPR64ArgRegs64Bit[] = {
1934        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1935      };
1936      static const uint16_t XMMArgRegs64Bit[] = {
1937        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1938        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1939      };
1940      const uint16_t *GPR64ArgRegs;
1941      unsigned NumXMMRegs = 0;
1942
1943      if (IsWin64) {
1944        // The XMM registers which might contain var arg parameters are shadowed
1945        // in their paired GPR.  So we only need to save the GPR to their home
1946        // slots.
1947        TotalNumIntRegs = 4;
1948        GPR64ArgRegs = GPR64ArgRegsWin64;
1949      } else {
1950        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1951        GPR64ArgRegs = GPR64ArgRegs64Bit;
1952
1953        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1954                                                TotalNumXMMRegs);
1955      }
1956      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1957                                                       TotalNumIntRegs);
1958
1959      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1960      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1961             "SSE register cannot be used when SSE is disabled!");
1962      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1963               NoImplicitFloatOps) &&
1964             "SSE register cannot be used when SSE is disabled!");
1965      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1966          !Subtarget->hasSSE1())
1967        // Kernel mode asks for SSE to be disabled, so don't push them
1968        // on the stack.
1969        TotalNumXMMRegs = 0;
1970
1971      if (IsWin64) {
1972        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1973        // Get to the caller-allocated home save location.  Add 8 to account
1974        // for the return address.
1975        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1976        FuncInfo->setRegSaveFrameIndex(
1977          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1978        // Fixup to set vararg frame on shadow area (4 x i64).
1979        if (NumIntRegs < 4)
1980          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1981      } else {
1982        // For X86-64, if there are vararg parameters that are passed via
1983        // registers, then we must store them to their spots on the stack so
1984        // they may be loaded by deferencing the result of va_next.
1985        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1986        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1987        FuncInfo->setRegSaveFrameIndex(
1988          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1989                               false));
1990      }
1991
1992      // Store the integer parameter registers.
1993      SmallVector<SDValue, 8> MemOps;
1994      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1995                                        getPointerTy());
1996      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1997      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1998        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1999                                  DAG.getIntPtrConstant(Offset));
2000        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2001                                     X86::GR64RegisterClass);
2002        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2003        SDValue Store =
2004          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2005                       MachinePointerInfo::getFixedStack(
2006                         FuncInfo->getRegSaveFrameIndex(), Offset),
2007                       false, false, 0);
2008        MemOps.push_back(Store);
2009        Offset += 8;
2010      }
2011
2012      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2013        // Now store the XMM (fp + vector) parameter registers.
2014        SmallVector<SDValue, 11> SaveXMMOps;
2015        SaveXMMOps.push_back(Chain);
2016
2017        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
2018        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2019        SaveXMMOps.push_back(ALVal);
2020
2021        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2022                               FuncInfo->getRegSaveFrameIndex()));
2023        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2024                               FuncInfo->getVarArgsFPOffset()));
2025
2026        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2027          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2028                                       X86::VR128RegisterClass);
2029          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2030          SaveXMMOps.push_back(Val);
2031        }
2032        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2033                                     MVT::Other,
2034                                     &SaveXMMOps[0], SaveXMMOps.size()));
2035      }
2036
2037      if (!MemOps.empty())
2038        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2039                            &MemOps[0], MemOps.size());
2040    }
2041  }
2042
2043  // Some CCs need callee pop.
2044  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2045                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2046    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2047  } else {
2048    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2049    // If this is an sret function, the return should pop the hidden pointer.
2050    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2051        ArgsAreStructReturn(Ins))
2052      FuncInfo->setBytesToPopOnReturn(4);
2053  }
2054
2055  if (!Is64Bit) {
2056    // RegSaveFrameIndex is X86-64 only.
2057    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2058    if (CallConv == CallingConv::X86_FastCall ||
2059        CallConv == CallingConv::X86_ThisCall)
2060      // fastcc functions can't have varargs.
2061      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2062  }
2063
2064  FuncInfo->setArgumentStackSize(StackSize);
2065
2066  return Chain;
2067}
2068
2069SDValue
2070X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2071                                    SDValue StackPtr, SDValue Arg,
2072                                    DebugLoc dl, SelectionDAG &DAG,
2073                                    const CCValAssign &VA,
2074                                    ISD::ArgFlagsTy Flags) const {
2075  unsigned LocMemOffset = VA.getLocMemOffset();
2076  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2077  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2078  if (Flags.isByVal())
2079    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2080
2081  return DAG.getStore(Chain, dl, Arg, PtrOff,
2082                      MachinePointerInfo::getStack(LocMemOffset),
2083                      false, false, 0);
2084}
2085
2086/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2087/// optimization is performed and it is required.
2088SDValue
2089X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2090                                           SDValue &OutRetAddr, SDValue Chain,
2091                                           bool IsTailCall, bool Is64Bit,
2092                                           int FPDiff, DebugLoc dl) const {
2093  // Adjust the Return address stack slot.
2094  EVT VT = getPointerTy();
2095  OutRetAddr = getReturnAddressFrameIndex(DAG);
2096
2097  // Load the "old" Return address.
2098  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2099                           false, false, false, 0);
2100  return SDValue(OutRetAddr.getNode(), 1);
2101}
2102
2103/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2104/// optimization is performed and it is required (FPDiff!=0).
2105static SDValue
2106EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2107                         SDValue Chain, SDValue RetAddrFrIdx,
2108                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2109  // Store the return address to the appropriate stack slot.
2110  if (!FPDiff) return Chain;
2111  // Calculate the new stack slot for the return address.
2112  int SlotSize = Is64Bit ? 8 : 4;
2113  int NewReturnAddrFI =
2114    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2115  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2116  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2117  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2118                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2119                       false, false, 0);
2120  return Chain;
2121}
2122
2123SDValue
2124X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2125                             CallingConv::ID CallConv, bool isVarArg,
2126                             bool doesNotRet, bool &isTailCall,
2127                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2128                             const SmallVectorImpl<SDValue> &OutVals,
2129                             const SmallVectorImpl<ISD::InputArg> &Ins,
2130                             DebugLoc dl, SelectionDAG &DAG,
2131                             SmallVectorImpl<SDValue> &InVals) const {
2132  MachineFunction &MF = DAG.getMachineFunction();
2133  bool Is64Bit        = Subtarget->is64Bit();
2134  bool IsWin64        = Subtarget->isTargetWin64();
2135  bool IsWindows      = Subtarget->isTargetWindows();
2136  bool IsStructRet    = CallIsStructReturn(Outs);
2137  bool IsSibcall      = false;
2138
2139  if (MF.getTarget().Options.DisableTailCalls)
2140    isTailCall = false;
2141
2142  if (isTailCall) {
2143    // Check if it's really possible to do a tail call.
2144    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2145                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2146                                                   Outs, OutVals, Ins, DAG);
2147
2148    // Sibcalls are automatically detected tailcalls which do not require
2149    // ABI changes.
2150    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2151      IsSibcall = true;
2152
2153    if (isTailCall)
2154      ++NumTailCalls;
2155  }
2156
2157  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2158         "Var args not supported with calling convention fastcc or ghc");
2159
2160  // Analyze operands of the call, assigning locations to each operand.
2161  SmallVector<CCValAssign, 16> ArgLocs;
2162  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2163                 ArgLocs, *DAG.getContext());
2164
2165  // Allocate shadow area for Win64
2166  if (IsWin64) {
2167    CCInfo.AllocateStack(32, 8);
2168  }
2169
2170  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2171
2172  // Get a count of how many bytes are to be pushed on the stack.
2173  unsigned NumBytes = CCInfo.getNextStackOffset();
2174  if (IsSibcall)
2175    // This is a sibcall. The memory operands are available in caller's
2176    // own caller's stack.
2177    NumBytes = 0;
2178  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2179           IsTailCallConvention(CallConv))
2180    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2181
2182  int FPDiff = 0;
2183  if (isTailCall && !IsSibcall) {
2184    // Lower arguments at fp - stackoffset + fpdiff.
2185    unsigned NumBytesCallerPushed =
2186      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2187    FPDiff = NumBytesCallerPushed - NumBytes;
2188
2189    // Set the delta of movement of the returnaddr stackslot.
2190    // But only set if delta is greater than previous delta.
2191    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2192      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2193  }
2194
2195  if (!IsSibcall)
2196    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2197
2198  SDValue RetAddrFrIdx;
2199  // Load return address for tail calls.
2200  if (isTailCall && FPDiff)
2201    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2202                                    Is64Bit, FPDiff, dl);
2203
2204  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2205  SmallVector<SDValue, 8> MemOpChains;
2206  SDValue StackPtr;
2207
2208  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2209  // of tail call optimization arguments are handle later.
2210  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2211    CCValAssign &VA = ArgLocs[i];
2212    EVT RegVT = VA.getLocVT();
2213    SDValue Arg = OutVals[i];
2214    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2215    bool isByVal = Flags.isByVal();
2216
2217    // Promote the value if needed.
2218    switch (VA.getLocInfo()) {
2219    default: llvm_unreachable("Unknown loc info!");
2220    case CCValAssign::Full: break;
2221    case CCValAssign::SExt:
2222      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2223      break;
2224    case CCValAssign::ZExt:
2225      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2226      break;
2227    case CCValAssign::AExt:
2228      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2229        // Special case: passing MMX values in XMM registers.
2230        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2231        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2232        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2233      } else
2234        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2235      break;
2236    case CCValAssign::BCvt:
2237      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2238      break;
2239    case CCValAssign::Indirect: {
2240      // Store the argument.
2241      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2242      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2243      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2244                           MachinePointerInfo::getFixedStack(FI),
2245                           false, false, 0);
2246      Arg = SpillSlot;
2247      break;
2248    }
2249    }
2250
2251    if (VA.isRegLoc()) {
2252      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2253      if (isVarArg && IsWin64) {
2254        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2255        // shadow reg if callee is a varargs function.
2256        unsigned ShadowReg = 0;
2257        switch (VA.getLocReg()) {
2258        case X86::XMM0: ShadowReg = X86::RCX; break;
2259        case X86::XMM1: ShadowReg = X86::RDX; break;
2260        case X86::XMM2: ShadowReg = X86::R8; break;
2261        case X86::XMM3: ShadowReg = X86::R9; break;
2262        }
2263        if (ShadowReg)
2264          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2265      }
2266    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2267      assert(VA.isMemLoc());
2268      if (StackPtr.getNode() == 0)
2269        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2270      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2271                                             dl, DAG, VA, Flags));
2272    }
2273  }
2274
2275  if (!MemOpChains.empty())
2276    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2277                        &MemOpChains[0], MemOpChains.size());
2278
2279  // Build a sequence of copy-to-reg nodes chained together with token chain
2280  // and flag operands which copy the outgoing args into registers.
2281  SDValue InFlag;
2282  // Tail call byval lowering might overwrite argument registers so in case of
2283  // tail call optimization the copies to registers are lowered later.
2284  if (!isTailCall)
2285    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2286      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2287                               RegsToPass[i].second, InFlag);
2288      InFlag = Chain.getValue(1);
2289    }
2290
2291  if (Subtarget->isPICStyleGOT()) {
2292    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2293    // GOT pointer.
2294    if (!isTailCall) {
2295      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2296                               DAG.getNode(X86ISD::GlobalBaseReg,
2297                                           DebugLoc(), getPointerTy()),
2298                               InFlag);
2299      InFlag = Chain.getValue(1);
2300    } else {
2301      // If we are tail calling and generating PIC/GOT style code load the
2302      // address of the callee into ECX. The value in ecx is used as target of
2303      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2304      // for tail calls on PIC/GOT architectures. Normally we would just put the
2305      // address of GOT into ebx and then call target@PLT. But for tail calls
2306      // ebx would be restored (since ebx is callee saved) before jumping to the
2307      // target@PLT.
2308
2309      // Note: The actual moving to ECX is done further down.
2310      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2311      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2312          !G->getGlobal()->hasProtectedVisibility())
2313        Callee = LowerGlobalAddress(Callee, DAG);
2314      else if (isa<ExternalSymbolSDNode>(Callee))
2315        Callee = LowerExternalSymbol(Callee, DAG);
2316    }
2317  }
2318
2319  if (Is64Bit && isVarArg && !IsWin64) {
2320    // From AMD64 ABI document:
2321    // For calls that may call functions that use varargs or stdargs
2322    // (prototype-less calls or calls to functions containing ellipsis (...) in
2323    // the declaration) %al is used as hidden argument to specify the number
2324    // of SSE registers used. The contents of %al do not need to match exactly
2325    // the number of registers, but must be an ubound on the number of SSE
2326    // registers used and is in the range 0 - 8 inclusive.
2327
2328    // Count the number of XMM registers allocated.
2329    static const uint16_t XMMArgRegs[] = {
2330      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2331      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2332    };
2333    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2334    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2335           && "SSE registers cannot be used when SSE is disabled");
2336
2337    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2338                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2339    InFlag = Chain.getValue(1);
2340  }
2341
2342
2343  // For tail calls lower the arguments to the 'real' stack slot.
2344  if (isTailCall) {
2345    // Force all the incoming stack arguments to be loaded from the stack
2346    // before any new outgoing arguments are stored to the stack, because the
2347    // outgoing stack slots may alias the incoming argument stack slots, and
2348    // the alias isn't otherwise explicit. This is slightly more conservative
2349    // than necessary, because it means that each store effectively depends
2350    // on every argument instead of just those arguments it would clobber.
2351    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2352
2353    SmallVector<SDValue, 8> MemOpChains2;
2354    SDValue FIN;
2355    int FI = 0;
2356    // Do not flag preceding copytoreg stuff together with the following stuff.
2357    InFlag = SDValue();
2358    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2359      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2360        CCValAssign &VA = ArgLocs[i];
2361        if (VA.isRegLoc())
2362          continue;
2363        assert(VA.isMemLoc());
2364        SDValue Arg = OutVals[i];
2365        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2366        // Create frame index.
2367        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2368        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2369        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2370        FIN = DAG.getFrameIndex(FI, getPointerTy());
2371
2372        if (Flags.isByVal()) {
2373          // Copy relative to framepointer.
2374          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2375          if (StackPtr.getNode() == 0)
2376            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2377                                          getPointerTy());
2378          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2379
2380          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2381                                                           ArgChain,
2382                                                           Flags, DAG, dl));
2383        } else {
2384          // Store relative to framepointer.
2385          MemOpChains2.push_back(
2386            DAG.getStore(ArgChain, dl, Arg, FIN,
2387                         MachinePointerInfo::getFixedStack(FI),
2388                         false, false, 0));
2389        }
2390      }
2391    }
2392
2393    if (!MemOpChains2.empty())
2394      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2395                          &MemOpChains2[0], MemOpChains2.size());
2396
2397    // Copy arguments to their registers.
2398    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2399      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2400                               RegsToPass[i].second, InFlag);
2401      InFlag = Chain.getValue(1);
2402    }
2403    InFlag =SDValue();
2404
2405    // Store the return address to the appropriate stack slot.
2406    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2407                                     FPDiff, dl);
2408  }
2409
2410  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2411    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2412    // In the 64-bit large code model, we have to make all calls
2413    // through a register, since the call instruction's 32-bit
2414    // pc-relative offset may not be large enough to hold the whole
2415    // address.
2416  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2417    // If the callee is a GlobalAddress node (quite common, every direct call
2418    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2419    // it.
2420
2421    // We should use extra load for direct calls to dllimported functions in
2422    // non-JIT mode.
2423    const GlobalValue *GV = G->getGlobal();
2424    if (!GV->hasDLLImportLinkage()) {
2425      unsigned char OpFlags = 0;
2426      bool ExtraLoad = false;
2427      unsigned WrapperKind = ISD::DELETED_NODE;
2428
2429      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2430      // external symbols most go through the PLT in PIC mode.  If the symbol
2431      // has hidden or protected visibility, or if it is static or local, then
2432      // we don't need to use the PLT - we can directly call it.
2433      if (Subtarget->isTargetELF() &&
2434          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2435          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2436        OpFlags = X86II::MO_PLT;
2437      } else if (Subtarget->isPICStyleStubAny() &&
2438                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2439                 (!Subtarget->getTargetTriple().isMacOSX() ||
2440                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2441        // PC-relative references to external symbols should go through $stub,
2442        // unless we're building with the leopard linker or later, which
2443        // automatically synthesizes these stubs.
2444        OpFlags = X86II::MO_DARWIN_STUB;
2445      } else if (Subtarget->isPICStyleRIPRel() &&
2446                 isa<Function>(GV) &&
2447                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2448        // If the function is marked as non-lazy, generate an indirect call
2449        // which loads from the GOT directly. This avoids runtime overhead
2450        // at the cost of eager binding (and one extra byte of encoding).
2451        OpFlags = X86II::MO_GOTPCREL;
2452        WrapperKind = X86ISD::WrapperRIP;
2453        ExtraLoad = true;
2454      }
2455
2456      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2457                                          G->getOffset(), OpFlags);
2458
2459      // Add a wrapper if needed.
2460      if (WrapperKind != ISD::DELETED_NODE)
2461        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2462      // Add extra indirection if needed.
2463      if (ExtraLoad)
2464        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2465                             MachinePointerInfo::getGOT(),
2466                             false, false, false, 0);
2467    }
2468  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2469    unsigned char OpFlags = 0;
2470
2471    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2472    // external symbols should go through the PLT.
2473    if (Subtarget->isTargetELF() &&
2474        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2475      OpFlags = X86II::MO_PLT;
2476    } else if (Subtarget->isPICStyleStubAny() &&
2477               (!Subtarget->getTargetTriple().isMacOSX() ||
2478                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2479      // PC-relative references to external symbols should go through $stub,
2480      // unless we're building with the leopard linker or later, which
2481      // automatically synthesizes these stubs.
2482      OpFlags = X86II::MO_DARWIN_STUB;
2483    }
2484
2485    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2486                                         OpFlags);
2487  }
2488
2489  // Returns a chain & a flag for retval copy to use.
2490  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2491  SmallVector<SDValue, 8> Ops;
2492
2493  if (!IsSibcall && isTailCall) {
2494    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2495                           DAG.getIntPtrConstant(0, true), InFlag);
2496    InFlag = Chain.getValue(1);
2497  }
2498
2499  Ops.push_back(Chain);
2500  Ops.push_back(Callee);
2501
2502  if (isTailCall)
2503    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2504
2505  // Add argument registers to the end of the list so that they are known live
2506  // into the call.
2507  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2508    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2509                                  RegsToPass[i].second.getValueType()));
2510
2511  // Add an implicit use GOT pointer in EBX.
2512  if (!isTailCall && Subtarget->isPICStyleGOT())
2513    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2514
2515  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2516  if (Is64Bit && isVarArg && !IsWin64)
2517    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2518
2519  // Add a register mask operand representing the call-preserved registers.
2520  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2521  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2522  assert(Mask && "Missing call preserved mask for calling convention");
2523  Ops.push_back(DAG.getRegisterMask(Mask));
2524
2525  if (InFlag.getNode())
2526    Ops.push_back(InFlag);
2527
2528  if (isTailCall) {
2529    // We used to do:
2530    //// If this is the first return lowered for this function, add the regs
2531    //// to the liveout set for the function.
2532    // This isn't right, although it's probably harmless on x86; liveouts
2533    // should be computed from returns not tail calls.  Consider a void
2534    // function making a tail call to a function returning int.
2535    return DAG.getNode(X86ISD::TC_RETURN, dl,
2536                       NodeTys, &Ops[0], Ops.size());
2537  }
2538
2539  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2540  InFlag = Chain.getValue(1);
2541
2542  // Create the CALLSEQ_END node.
2543  unsigned NumBytesForCalleeToPush;
2544  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2545                       getTargetMachine().Options.GuaranteedTailCallOpt))
2546    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2547  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2548           IsStructRet)
2549    // If this is a call to a struct-return function, the callee
2550    // pops the hidden struct pointer, so we have to push it back.
2551    // This is common for Darwin/X86, Linux & Mingw32 targets.
2552    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2553    NumBytesForCalleeToPush = 4;
2554  else
2555    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2556
2557  // Returns a flag for retval copy to use.
2558  if (!IsSibcall) {
2559    Chain = DAG.getCALLSEQ_END(Chain,
2560                               DAG.getIntPtrConstant(NumBytes, true),
2561                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2562                                                     true),
2563                               InFlag);
2564    InFlag = Chain.getValue(1);
2565  }
2566
2567  // Handle result values, copying them out of physregs into vregs that we
2568  // return.
2569  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2570                         Ins, dl, DAG, InVals);
2571}
2572
2573
2574//===----------------------------------------------------------------------===//
2575//                Fast Calling Convention (tail call) implementation
2576//===----------------------------------------------------------------------===//
2577
2578//  Like std call, callee cleans arguments, convention except that ECX is
2579//  reserved for storing the tail called function address. Only 2 registers are
2580//  free for argument passing (inreg). Tail call optimization is performed
2581//  provided:
2582//                * tailcallopt is enabled
2583//                * caller/callee are fastcc
2584//  On X86_64 architecture with GOT-style position independent code only local
2585//  (within module) calls are supported at the moment.
2586//  To keep the stack aligned according to platform abi the function
2587//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2588//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2589//  If a tail called function callee has more arguments than the caller the
2590//  caller needs to make sure that there is room to move the RETADDR to. This is
2591//  achieved by reserving an area the size of the argument delta right after the
2592//  original REtADDR, but before the saved framepointer or the spilled registers
2593//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2594//  stack layout:
2595//    arg1
2596//    arg2
2597//    RETADDR
2598//    [ new RETADDR
2599//      move area ]
2600//    (possible EBP)
2601//    ESI
2602//    EDI
2603//    local1 ..
2604
2605/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2606/// for a 16 byte align requirement.
2607unsigned
2608X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2609                                               SelectionDAG& DAG) const {
2610  MachineFunction &MF = DAG.getMachineFunction();
2611  const TargetMachine &TM = MF.getTarget();
2612  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2613  unsigned StackAlignment = TFI.getStackAlignment();
2614  uint64_t AlignMask = StackAlignment - 1;
2615  int64_t Offset = StackSize;
2616  uint64_t SlotSize = TD->getPointerSize();
2617  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2618    // Number smaller than 12 so just add the difference.
2619    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2620  } else {
2621    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2622    Offset = ((~AlignMask) & Offset) + StackAlignment +
2623      (StackAlignment-SlotSize);
2624  }
2625  return Offset;
2626}
2627
2628/// MatchingStackOffset - Return true if the given stack call argument is
2629/// already available in the same position (relatively) of the caller's
2630/// incoming argument stack.
2631static
2632bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2633                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2634                         const X86InstrInfo *TII) {
2635  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2636  int FI = INT_MAX;
2637  if (Arg.getOpcode() == ISD::CopyFromReg) {
2638    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2639    if (!TargetRegisterInfo::isVirtualRegister(VR))
2640      return false;
2641    MachineInstr *Def = MRI->getVRegDef(VR);
2642    if (!Def)
2643      return false;
2644    if (!Flags.isByVal()) {
2645      if (!TII->isLoadFromStackSlot(Def, FI))
2646        return false;
2647    } else {
2648      unsigned Opcode = Def->getOpcode();
2649      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2650          Def->getOperand(1).isFI()) {
2651        FI = Def->getOperand(1).getIndex();
2652        Bytes = Flags.getByValSize();
2653      } else
2654        return false;
2655    }
2656  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2657    if (Flags.isByVal())
2658      // ByVal argument is passed in as a pointer but it's now being
2659      // dereferenced. e.g.
2660      // define @foo(%struct.X* %A) {
2661      //   tail call @bar(%struct.X* byval %A)
2662      // }
2663      return false;
2664    SDValue Ptr = Ld->getBasePtr();
2665    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2666    if (!FINode)
2667      return false;
2668    FI = FINode->getIndex();
2669  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2670    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2671    FI = FINode->getIndex();
2672    Bytes = Flags.getByValSize();
2673  } else
2674    return false;
2675
2676  assert(FI != INT_MAX);
2677  if (!MFI->isFixedObjectIndex(FI))
2678    return false;
2679  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2680}
2681
2682/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2683/// for tail call optimization. Targets which want to do tail call
2684/// optimization should implement this function.
2685bool
2686X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2687                                                     CallingConv::ID CalleeCC,
2688                                                     bool isVarArg,
2689                                                     bool isCalleeStructRet,
2690                                                     bool isCallerStructRet,
2691                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2692                                    const SmallVectorImpl<SDValue> &OutVals,
2693                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2694                                                     SelectionDAG& DAG) const {
2695  if (!IsTailCallConvention(CalleeCC) &&
2696      CalleeCC != CallingConv::C)
2697    return false;
2698
2699  // If -tailcallopt is specified, make fastcc functions tail-callable.
2700  const MachineFunction &MF = DAG.getMachineFunction();
2701  const Function *CallerF = DAG.getMachineFunction().getFunction();
2702  CallingConv::ID CallerCC = CallerF->getCallingConv();
2703  bool CCMatch = CallerCC == CalleeCC;
2704
2705  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2706    if (IsTailCallConvention(CalleeCC) && CCMatch)
2707      return true;
2708    return false;
2709  }
2710
2711  // Look for obvious safe cases to perform tail call optimization that do not
2712  // require ABI changes. This is what gcc calls sibcall.
2713
2714  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2715  // emit a special epilogue.
2716  if (RegInfo->needsStackRealignment(MF))
2717    return false;
2718
2719  // Also avoid sibcall optimization if either caller or callee uses struct
2720  // return semantics.
2721  if (isCalleeStructRet || isCallerStructRet)
2722    return false;
2723
2724  // An stdcall caller is expected to clean up its arguments; the callee
2725  // isn't going to do that.
2726  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2727    return false;
2728
2729  // Do not sibcall optimize vararg calls unless all arguments are passed via
2730  // registers.
2731  if (isVarArg && !Outs.empty()) {
2732
2733    // Optimizing for varargs on Win64 is unlikely to be safe without
2734    // additional testing.
2735    if (Subtarget->isTargetWin64())
2736      return false;
2737
2738    SmallVector<CCValAssign, 16> ArgLocs;
2739    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2740		   getTargetMachine(), ArgLocs, *DAG.getContext());
2741
2742    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2743    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2744      if (!ArgLocs[i].isRegLoc())
2745        return false;
2746  }
2747
2748  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2749  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2750  // this into a sibcall.
2751  bool Unused = false;
2752  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2753    if (!Ins[i].Used) {
2754      Unused = true;
2755      break;
2756    }
2757  }
2758  if (Unused) {
2759    SmallVector<CCValAssign, 16> RVLocs;
2760    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2761		   getTargetMachine(), RVLocs, *DAG.getContext());
2762    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2763    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2764      CCValAssign &VA = RVLocs[i];
2765      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2766        return false;
2767    }
2768  }
2769
2770  // If the calling conventions do not match, then we'd better make sure the
2771  // results are returned in the same way as what the caller expects.
2772  if (!CCMatch) {
2773    SmallVector<CCValAssign, 16> RVLocs1;
2774    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2775		    getTargetMachine(), RVLocs1, *DAG.getContext());
2776    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2777
2778    SmallVector<CCValAssign, 16> RVLocs2;
2779    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2780		    getTargetMachine(), RVLocs2, *DAG.getContext());
2781    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2782
2783    if (RVLocs1.size() != RVLocs2.size())
2784      return false;
2785    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2786      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2787        return false;
2788      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2789        return false;
2790      if (RVLocs1[i].isRegLoc()) {
2791        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2792          return false;
2793      } else {
2794        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2795          return false;
2796      }
2797    }
2798  }
2799
2800  // If the callee takes no arguments then go on to check the results of the
2801  // call.
2802  if (!Outs.empty()) {
2803    // Check if stack adjustment is needed. For now, do not do this if any
2804    // argument is passed on the stack.
2805    SmallVector<CCValAssign, 16> ArgLocs;
2806    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2807		   getTargetMachine(), ArgLocs, *DAG.getContext());
2808
2809    // Allocate shadow area for Win64
2810    if (Subtarget->isTargetWin64()) {
2811      CCInfo.AllocateStack(32, 8);
2812    }
2813
2814    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2815    if (CCInfo.getNextStackOffset()) {
2816      MachineFunction &MF = DAG.getMachineFunction();
2817      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2818        return false;
2819
2820      // Check if the arguments are already laid out in the right way as
2821      // the caller's fixed stack objects.
2822      MachineFrameInfo *MFI = MF.getFrameInfo();
2823      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2824      const X86InstrInfo *TII =
2825        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2826      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2827        CCValAssign &VA = ArgLocs[i];
2828        SDValue Arg = OutVals[i];
2829        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2830        if (VA.getLocInfo() == CCValAssign::Indirect)
2831          return false;
2832        if (!VA.isRegLoc()) {
2833          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2834                                   MFI, MRI, TII))
2835            return false;
2836        }
2837      }
2838    }
2839
2840    // If the tailcall address may be in a register, then make sure it's
2841    // possible to register allocate for it. In 32-bit, the call address can
2842    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2843    // callee-saved registers are restored. These happen to be the same
2844    // registers used to pass 'inreg' arguments so watch out for those.
2845    if (!Subtarget->is64Bit() &&
2846        !isa<GlobalAddressSDNode>(Callee) &&
2847        !isa<ExternalSymbolSDNode>(Callee)) {
2848      unsigned NumInRegs = 0;
2849      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2850        CCValAssign &VA = ArgLocs[i];
2851        if (!VA.isRegLoc())
2852          continue;
2853        unsigned Reg = VA.getLocReg();
2854        switch (Reg) {
2855        default: break;
2856        case X86::EAX: case X86::EDX: case X86::ECX:
2857          if (++NumInRegs == 3)
2858            return false;
2859          break;
2860        }
2861      }
2862    }
2863  }
2864
2865  return true;
2866}
2867
2868FastISel *
2869X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2870  return X86::createFastISel(funcInfo);
2871}
2872
2873
2874//===----------------------------------------------------------------------===//
2875//                           Other Lowering Hooks
2876//===----------------------------------------------------------------------===//
2877
2878static bool MayFoldLoad(SDValue Op) {
2879  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2880}
2881
2882static bool MayFoldIntoStore(SDValue Op) {
2883  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2884}
2885
2886static bool isTargetShuffle(unsigned Opcode) {
2887  switch(Opcode) {
2888  default: return false;
2889  case X86ISD::PSHUFD:
2890  case X86ISD::PSHUFHW:
2891  case X86ISD::PSHUFLW:
2892  case X86ISD::SHUFP:
2893  case X86ISD::PALIGN:
2894  case X86ISD::MOVLHPS:
2895  case X86ISD::MOVLHPD:
2896  case X86ISD::MOVHLPS:
2897  case X86ISD::MOVLPS:
2898  case X86ISD::MOVLPD:
2899  case X86ISD::MOVSHDUP:
2900  case X86ISD::MOVSLDUP:
2901  case X86ISD::MOVDDUP:
2902  case X86ISD::MOVSS:
2903  case X86ISD::MOVSD:
2904  case X86ISD::UNPCKL:
2905  case X86ISD::UNPCKH:
2906  case X86ISD::VPERMILP:
2907  case X86ISD::VPERM2X128:
2908    return true;
2909  }
2910}
2911
2912static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2913                                    SDValue V1, SelectionDAG &DAG) {
2914  switch(Opc) {
2915  default: llvm_unreachable("Unknown x86 shuffle node");
2916  case X86ISD::MOVSHDUP:
2917  case X86ISD::MOVSLDUP:
2918  case X86ISD::MOVDDUP:
2919    return DAG.getNode(Opc, dl, VT, V1);
2920  }
2921}
2922
2923static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2924                                    SDValue V1, unsigned TargetMask,
2925                                    SelectionDAG &DAG) {
2926  switch(Opc) {
2927  default: llvm_unreachable("Unknown x86 shuffle node");
2928  case X86ISD::PSHUFD:
2929  case X86ISD::PSHUFHW:
2930  case X86ISD::PSHUFLW:
2931  case X86ISD::VPERMILP:
2932    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2933  }
2934}
2935
2936static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2937                                    SDValue V1, SDValue V2, unsigned TargetMask,
2938                                    SelectionDAG &DAG) {
2939  switch(Opc) {
2940  default: llvm_unreachable("Unknown x86 shuffle node");
2941  case X86ISD::PALIGN:
2942  case X86ISD::SHUFP:
2943  case X86ISD::VPERM2X128:
2944    return DAG.getNode(Opc, dl, VT, V1, V2,
2945                       DAG.getConstant(TargetMask, MVT::i8));
2946  }
2947}
2948
2949static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2950                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2951  switch(Opc) {
2952  default: llvm_unreachable("Unknown x86 shuffle node");
2953  case X86ISD::MOVLHPS:
2954  case X86ISD::MOVLHPD:
2955  case X86ISD::MOVHLPS:
2956  case X86ISD::MOVLPS:
2957  case X86ISD::MOVLPD:
2958  case X86ISD::MOVSS:
2959  case X86ISD::MOVSD:
2960  case X86ISD::UNPCKL:
2961  case X86ISD::UNPCKH:
2962    return DAG.getNode(Opc, dl, VT, V1, V2);
2963  }
2964}
2965
2966SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2967  MachineFunction &MF = DAG.getMachineFunction();
2968  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2969  int ReturnAddrIndex = FuncInfo->getRAIndex();
2970
2971  if (ReturnAddrIndex == 0) {
2972    // Set up a frame object for the return address.
2973    uint64_t SlotSize = TD->getPointerSize();
2974    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2975                                                           false);
2976    FuncInfo->setRAIndex(ReturnAddrIndex);
2977  }
2978
2979  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2980}
2981
2982
2983bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2984                                       bool hasSymbolicDisplacement) {
2985  // Offset should fit into 32 bit immediate field.
2986  if (!isInt<32>(Offset))
2987    return false;
2988
2989  // If we don't have a symbolic displacement - we don't have any extra
2990  // restrictions.
2991  if (!hasSymbolicDisplacement)
2992    return true;
2993
2994  // FIXME: Some tweaks might be needed for medium code model.
2995  if (M != CodeModel::Small && M != CodeModel::Kernel)
2996    return false;
2997
2998  // For small code model we assume that latest object is 16MB before end of 31
2999  // bits boundary. We may also accept pretty large negative constants knowing
3000  // that all objects are in the positive half of address space.
3001  if (M == CodeModel::Small && Offset < 16*1024*1024)
3002    return true;
3003
3004  // For kernel code model we know that all object resist in the negative half
3005  // of 32bits address space. We may not accept negative offsets, since they may
3006  // be just off and we may accept pretty large positive ones.
3007  if (M == CodeModel::Kernel && Offset > 0)
3008    return true;
3009
3010  return false;
3011}
3012
3013/// isCalleePop - Determines whether the callee is required to pop its
3014/// own arguments. Callee pop is necessary to support tail calls.
3015bool X86::isCalleePop(CallingConv::ID CallingConv,
3016                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3017  if (IsVarArg)
3018    return false;
3019
3020  switch (CallingConv) {
3021  default:
3022    return false;
3023  case CallingConv::X86_StdCall:
3024    return !is64Bit;
3025  case CallingConv::X86_FastCall:
3026    return !is64Bit;
3027  case CallingConv::X86_ThisCall:
3028    return !is64Bit;
3029  case CallingConv::Fast:
3030    return TailCallOpt;
3031  case CallingConv::GHC:
3032    return TailCallOpt;
3033  }
3034}
3035
3036/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3037/// specific condition code, returning the condition code and the LHS/RHS of the
3038/// comparison to make.
3039static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3040                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3041  if (!isFP) {
3042    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3043      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3044        // X > -1   -> X == 0, jump !sign.
3045        RHS = DAG.getConstant(0, RHS.getValueType());
3046        return X86::COND_NS;
3047      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3048        // X < 0   -> X == 0, jump on sign.
3049        return X86::COND_S;
3050      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3051        // X < 1   -> X <= 0
3052        RHS = DAG.getConstant(0, RHS.getValueType());
3053        return X86::COND_LE;
3054      }
3055    }
3056
3057    switch (SetCCOpcode) {
3058    default: llvm_unreachable("Invalid integer condition!");
3059    case ISD::SETEQ:  return X86::COND_E;
3060    case ISD::SETGT:  return X86::COND_G;
3061    case ISD::SETGE:  return X86::COND_GE;
3062    case ISD::SETLT:  return X86::COND_L;
3063    case ISD::SETLE:  return X86::COND_LE;
3064    case ISD::SETNE:  return X86::COND_NE;
3065    case ISD::SETULT: return X86::COND_B;
3066    case ISD::SETUGT: return X86::COND_A;
3067    case ISD::SETULE: return X86::COND_BE;
3068    case ISD::SETUGE: return X86::COND_AE;
3069    }
3070  }
3071
3072  // First determine if it is required or is profitable to flip the operands.
3073
3074  // If LHS is a foldable load, but RHS is not, flip the condition.
3075  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3076      !ISD::isNON_EXTLoad(RHS.getNode())) {
3077    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3078    std::swap(LHS, RHS);
3079  }
3080
3081  switch (SetCCOpcode) {
3082  default: break;
3083  case ISD::SETOLT:
3084  case ISD::SETOLE:
3085  case ISD::SETUGT:
3086  case ISD::SETUGE:
3087    std::swap(LHS, RHS);
3088    break;
3089  }
3090
3091  // On a floating point condition, the flags are set as follows:
3092  // ZF  PF  CF   op
3093  //  0 | 0 | 0 | X > Y
3094  //  0 | 0 | 1 | X < Y
3095  //  1 | 0 | 0 | X == Y
3096  //  1 | 1 | 1 | unordered
3097  switch (SetCCOpcode) {
3098  default: llvm_unreachable("Condcode should be pre-legalized away");
3099  case ISD::SETUEQ:
3100  case ISD::SETEQ:   return X86::COND_E;
3101  case ISD::SETOLT:              // flipped
3102  case ISD::SETOGT:
3103  case ISD::SETGT:   return X86::COND_A;
3104  case ISD::SETOLE:              // flipped
3105  case ISD::SETOGE:
3106  case ISD::SETGE:   return X86::COND_AE;
3107  case ISD::SETUGT:              // flipped
3108  case ISD::SETULT:
3109  case ISD::SETLT:   return X86::COND_B;
3110  case ISD::SETUGE:              // flipped
3111  case ISD::SETULE:
3112  case ISD::SETLE:   return X86::COND_BE;
3113  case ISD::SETONE:
3114  case ISD::SETNE:   return X86::COND_NE;
3115  case ISD::SETUO:   return X86::COND_P;
3116  case ISD::SETO:    return X86::COND_NP;
3117  case ISD::SETOEQ:
3118  case ISD::SETUNE:  return X86::COND_INVALID;
3119  }
3120}
3121
3122/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3123/// code. Current x86 isa includes the following FP cmov instructions:
3124/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3125static bool hasFPCMov(unsigned X86CC) {
3126  switch (X86CC) {
3127  default:
3128    return false;
3129  case X86::COND_B:
3130  case X86::COND_BE:
3131  case X86::COND_E:
3132  case X86::COND_P:
3133  case X86::COND_A:
3134  case X86::COND_AE:
3135  case X86::COND_NE:
3136  case X86::COND_NP:
3137    return true;
3138  }
3139}
3140
3141/// isFPImmLegal - Returns true if the target can instruction select the
3142/// specified FP immediate natively. If false, the legalizer will
3143/// materialize the FP immediate as a load from a constant pool.
3144bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3145  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3146    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3147      return true;
3148  }
3149  return false;
3150}
3151
3152/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3153/// the specified range (L, H].
3154static bool isUndefOrInRange(int Val, int Low, int Hi) {
3155  return (Val < 0) || (Val >= Low && Val < Hi);
3156}
3157
3158/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3159/// specified value.
3160static bool isUndefOrEqual(int Val, int CmpVal) {
3161  if (Val < 0 || Val == CmpVal)
3162    return true;
3163  return false;
3164}
3165
3166/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3167/// from position Pos and ending in Pos+Size, falls within the specified
3168/// sequential range (L, L+Pos]. or is undef.
3169static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3170                                       int Pos, int Size, int Low) {
3171  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3172    if (!isUndefOrEqual(Mask[i], Low))
3173      return false;
3174  return true;
3175}
3176
3177/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3178/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3179/// the second operand.
3180static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3181  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3182    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3183  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3184    return (Mask[0] < 2 && Mask[1] < 2);
3185  return false;
3186}
3187
3188/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3189/// is suitable for input to PSHUFHW.
3190static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT) {
3191  if (VT != MVT::v8i16)
3192    return false;
3193
3194  // Lower quadword copied in order or undef.
3195  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3196    return false;
3197
3198  // Upper quadword shuffled.
3199  for (unsigned i = 4; i != 8; ++i)
3200    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3201      return false;
3202
3203  return true;
3204}
3205
3206/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3207/// is suitable for input to PSHUFLW.
3208static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT) {
3209  if (VT != MVT::v8i16)
3210    return false;
3211
3212  // Upper quadword copied in order.
3213  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3214    return false;
3215
3216  // Lower quadword shuffled.
3217  for (unsigned i = 0; i != 4; ++i)
3218    if (Mask[i] >= 4)
3219      return false;
3220
3221  return true;
3222}
3223
3224/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3225/// is suitable for input to PALIGNR.
3226static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3227                          const X86Subtarget *Subtarget) {
3228  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3229      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3230    return false;
3231
3232  unsigned NumElts = VT.getVectorNumElements();
3233  unsigned NumLanes = VT.getSizeInBits()/128;
3234  unsigned NumLaneElts = NumElts/NumLanes;
3235
3236  // Do not handle 64-bit element shuffles with palignr.
3237  if (NumLaneElts == 2)
3238    return false;
3239
3240  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3241    unsigned i;
3242    for (i = 0; i != NumLaneElts; ++i) {
3243      if (Mask[i+l] >= 0)
3244        break;
3245    }
3246
3247    // Lane is all undef, go to next lane
3248    if (i == NumLaneElts)
3249      continue;
3250
3251    int Start = Mask[i+l];
3252
3253    // Make sure its in this lane in one of the sources
3254    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3255        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3256      return false;
3257
3258    // If not lane 0, then we must match lane 0
3259    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3260      return false;
3261
3262    // Correct second source to be contiguous with first source
3263    if (Start >= (int)NumElts)
3264      Start -= NumElts - NumLaneElts;
3265
3266    // Make sure we're shifting in the right direction.
3267    if (Start <= (int)(i+l))
3268      return false;
3269
3270    Start -= i;
3271
3272    // Check the rest of the elements to see if they are consecutive.
3273    for (++i; i != NumLaneElts; ++i) {
3274      int Idx = Mask[i+l];
3275
3276      // Make sure its in this lane
3277      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3278          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3279        return false;
3280
3281      // If not lane 0, then we must match lane 0
3282      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3283        return false;
3284
3285      if (Idx >= (int)NumElts)
3286        Idx -= NumElts - NumLaneElts;
3287
3288      if (!isUndefOrEqual(Idx, Start+i))
3289        return false;
3290
3291    }
3292  }
3293
3294  return true;
3295}
3296
3297/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3298/// the two vector operands have swapped position.
3299static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3300                                     unsigned NumElems) {
3301  for (unsigned i = 0; i != NumElems; ++i) {
3302    int idx = Mask[i];
3303    if (idx < 0)
3304      continue;
3305    else if (idx < (int)NumElems)
3306      Mask[i] = idx + NumElems;
3307    else
3308      Mask[i] = idx - NumElems;
3309  }
3310}
3311
3312/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3313/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3314/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3315/// reverse of what x86 shuffles want.
3316static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3317                        bool Commuted = false) {
3318  if (!HasAVX && VT.getSizeInBits() == 256)
3319    return false;
3320
3321  unsigned NumElems = VT.getVectorNumElements();
3322  unsigned NumLanes = VT.getSizeInBits()/128;
3323  unsigned NumLaneElems = NumElems/NumLanes;
3324
3325  if (NumLaneElems != 2 && NumLaneElems != 4)
3326    return false;
3327
3328  // VSHUFPSY divides the resulting vector into 4 chunks.
3329  // The sources are also splitted into 4 chunks, and each destination
3330  // chunk must come from a different source chunk.
3331  //
3332  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3333  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3334  //
3335  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3336  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3337  //
3338  // VSHUFPDY divides the resulting vector into 4 chunks.
3339  // The sources are also splitted into 4 chunks, and each destination
3340  // chunk must come from a different source chunk.
3341  //
3342  //  SRC1 =>      X3       X2       X1       X0
3343  //  SRC2 =>      Y3       Y2       Y1       Y0
3344  //
3345  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3346  //
3347  unsigned HalfLaneElems = NumLaneElems/2;
3348  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3349    for (unsigned i = 0; i != NumLaneElems; ++i) {
3350      int Idx = Mask[i+l];
3351      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3352      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3353        return false;
3354      // For VSHUFPSY, the mask of the second half must be the same as the
3355      // first but with the appropriate offsets. This works in the same way as
3356      // VPERMILPS works with masks.
3357      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3358        continue;
3359      if (!isUndefOrEqual(Idx, Mask[i]+l))
3360        return false;
3361    }
3362  }
3363
3364  return true;
3365}
3366
3367/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3368/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3369static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3370  unsigned NumElems = VT.getVectorNumElements();
3371
3372  if (VT.getSizeInBits() != 128)
3373    return false;
3374
3375  if (NumElems != 4)
3376    return false;
3377
3378  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3379  return isUndefOrEqual(Mask[0], 6) &&
3380         isUndefOrEqual(Mask[1], 7) &&
3381         isUndefOrEqual(Mask[2], 2) &&
3382         isUndefOrEqual(Mask[3], 3);
3383}
3384
3385/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3386/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3387/// <2, 3, 2, 3>
3388static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3389  unsigned NumElems = VT.getVectorNumElements();
3390
3391  if (VT.getSizeInBits() != 128)
3392    return false;
3393
3394  if (NumElems != 4)
3395    return false;
3396
3397  return isUndefOrEqual(Mask[0], 2) &&
3398         isUndefOrEqual(Mask[1], 3) &&
3399         isUndefOrEqual(Mask[2], 2) &&
3400         isUndefOrEqual(Mask[3], 3);
3401}
3402
3403/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3404/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3405static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3406  if (VT.getSizeInBits() != 128)
3407    return false;
3408
3409  unsigned NumElems = VT.getVectorNumElements();
3410
3411  if (NumElems != 2 && NumElems != 4)
3412    return false;
3413
3414  for (unsigned i = 0; i != NumElems/2; ++i)
3415    if (!isUndefOrEqual(Mask[i], i + NumElems))
3416      return false;
3417
3418  for (unsigned i = NumElems/2; i != NumElems; ++i)
3419    if (!isUndefOrEqual(Mask[i], i))
3420      return false;
3421
3422  return true;
3423}
3424
3425/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3426/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3427static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3428  unsigned NumElems = VT.getVectorNumElements();
3429
3430  if ((NumElems != 2 && NumElems != 4)
3431      || VT.getSizeInBits() > 128)
3432    return false;
3433
3434  for (unsigned i = 0; i != NumElems/2; ++i)
3435    if (!isUndefOrEqual(Mask[i], i))
3436      return false;
3437
3438  for (unsigned i = 0; i != NumElems/2; ++i)
3439    if (!isUndefOrEqual(Mask[i + NumElems/2], i + NumElems))
3440      return false;
3441
3442  return true;
3443}
3444
3445/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3446/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3447static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3448                         bool HasAVX2, bool V2IsSplat = false) {
3449  unsigned NumElts = VT.getVectorNumElements();
3450
3451  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3452         "Unsupported vector type for unpckh");
3453
3454  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3455      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3456    return false;
3457
3458  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3459  // independently on 128-bit lanes.
3460  unsigned NumLanes = VT.getSizeInBits()/128;
3461  unsigned NumLaneElts = NumElts/NumLanes;
3462
3463  for (unsigned l = 0; l != NumLanes; ++l) {
3464    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3465         i != (l+1)*NumLaneElts;
3466         i += 2, ++j) {
3467      int BitI  = Mask[i];
3468      int BitI1 = Mask[i+1];
3469      if (!isUndefOrEqual(BitI, j))
3470        return false;
3471      if (V2IsSplat) {
3472        if (!isUndefOrEqual(BitI1, NumElts))
3473          return false;
3474      } else {
3475        if (!isUndefOrEqual(BitI1, j + NumElts))
3476          return false;
3477      }
3478    }
3479  }
3480
3481  return true;
3482}
3483
3484/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3485/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3486static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3487                         bool HasAVX2, bool V2IsSplat = false) {
3488  unsigned NumElts = VT.getVectorNumElements();
3489
3490  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3491         "Unsupported vector type for unpckh");
3492
3493  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3494      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3495    return false;
3496
3497  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3498  // independently on 128-bit lanes.
3499  unsigned NumLanes = VT.getSizeInBits()/128;
3500  unsigned NumLaneElts = NumElts/NumLanes;
3501
3502  for (unsigned l = 0; l != NumLanes; ++l) {
3503    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3504         i != (l+1)*NumLaneElts; i += 2, ++j) {
3505      int BitI  = Mask[i];
3506      int BitI1 = Mask[i+1];
3507      if (!isUndefOrEqual(BitI, j))
3508        return false;
3509      if (V2IsSplat) {
3510        if (isUndefOrEqual(BitI1, NumElts))
3511          return false;
3512      } else {
3513        if (!isUndefOrEqual(BitI1, j+NumElts))
3514          return false;
3515      }
3516    }
3517  }
3518  return true;
3519}
3520
3521/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3522/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3523/// <0, 0, 1, 1>
3524static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3525                                  bool HasAVX2) {
3526  unsigned NumElts = VT.getVectorNumElements();
3527
3528  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3529         "Unsupported vector type for unpckh");
3530
3531  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3532      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3533    return false;
3534
3535  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3536  // FIXME: Need a better way to get rid of this, there's no latency difference
3537  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3538  // the former later. We should also remove the "_undef" special mask.
3539  if (NumElts == 4 && VT.getSizeInBits() == 256)
3540    return false;
3541
3542  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3543  // independently on 128-bit lanes.
3544  unsigned NumLanes = VT.getSizeInBits()/128;
3545  unsigned NumLaneElts = NumElts/NumLanes;
3546
3547  for (unsigned l = 0; l != NumLanes; ++l) {
3548    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3549         i != (l+1)*NumLaneElts;
3550         i += 2, ++j) {
3551      int BitI  = Mask[i];
3552      int BitI1 = Mask[i+1];
3553
3554      if (!isUndefOrEqual(BitI, j))
3555        return false;
3556      if (!isUndefOrEqual(BitI1, j))
3557        return false;
3558    }
3559  }
3560
3561  return true;
3562}
3563
3564/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3565/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3566/// <2, 2, 3, 3>
3567static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3568  unsigned NumElts = VT.getVectorNumElements();
3569
3570  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3571         "Unsupported vector type for unpckh");
3572
3573  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3574      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3575    return false;
3576
3577  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3578  // independently on 128-bit lanes.
3579  unsigned NumLanes = VT.getSizeInBits()/128;
3580  unsigned NumLaneElts = NumElts/NumLanes;
3581
3582  for (unsigned l = 0; l != NumLanes; ++l) {
3583    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3584         i != (l+1)*NumLaneElts; i += 2, ++j) {
3585      int BitI  = Mask[i];
3586      int BitI1 = Mask[i+1];
3587      if (!isUndefOrEqual(BitI, j))
3588        return false;
3589      if (!isUndefOrEqual(BitI1, j))
3590        return false;
3591    }
3592  }
3593  return true;
3594}
3595
3596/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3597/// specifies a shuffle of elements that is suitable for input to MOVSS,
3598/// MOVSD, and MOVD, i.e. setting the lowest element.
3599static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3600  if (VT.getVectorElementType().getSizeInBits() < 32)
3601    return false;
3602  if (VT.getSizeInBits() == 256)
3603    return false;
3604
3605  unsigned NumElts = VT.getVectorNumElements();
3606
3607  if (!isUndefOrEqual(Mask[0], NumElts))
3608    return false;
3609
3610  for (unsigned i = 1; i != NumElts; ++i)
3611    if (!isUndefOrEqual(Mask[i], i))
3612      return false;
3613
3614  return true;
3615}
3616
3617/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3618/// as permutations between 128-bit chunks or halves. As an example: this
3619/// shuffle bellow:
3620///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3621/// The first half comes from the second half of V1 and the second half from the
3622/// the second half of V2.
3623static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3624  if (!HasAVX || VT.getSizeInBits() != 256)
3625    return false;
3626
3627  // The shuffle result is divided into half A and half B. In total the two
3628  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3629  // B must come from C, D, E or F.
3630  unsigned HalfSize = VT.getVectorNumElements()/2;
3631  bool MatchA = false, MatchB = false;
3632
3633  // Check if A comes from one of C, D, E, F.
3634  for (unsigned Half = 0; Half != 4; ++Half) {
3635    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3636      MatchA = true;
3637      break;
3638    }
3639  }
3640
3641  // Check if B comes from one of C, D, E, F.
3642  for (unsigned Half = 0; Half != 4; ++Half) {
3643    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3644      MatchB = true;
3645      break;
3646    }
3647  }
3648
3649  return MatchA && MatchB;
3650}
3651
3652/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3653/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3654static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3655  EVT VT = SVOp->getValueType(0);
3656
3657  unsigned HalfSize = VT.getVectorNumElements()/2;
3658
3659  unsigned FstHalf = 0, SndHalf = 0;
3660  for (unsigned i = 0; i < HalfSize; ++i) {
3661    if (SVOp->getMaskElt(i) > 0) {
3662      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3663      break;
3664    }
3665  }
3666  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3667    if (SVOp->getMaskElt(i) > 0) {
3668      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3669      break;
3670    }
3671  }
3672
3673  return (FstHalf | (SndHalf << 4));
3674}
3675
3676/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3677/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3678/// Note that VPERMIL mask matching is different depending whether theunderlying
3679/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3680/// to the same elements of the low, but to the higher half of the source.
3681/// In VPERMILPD the two lanes could be shuffled independently of each other
3682/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3683static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3684  if (!HasAVX)
3685    return false;
3686
3687  unsigned NumElts = VT.getVectorNumElements();
3688  // Only match 256-bit with 32/64-bit types
3689  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3690    return false;
3691
3692  unsigned NumLanes = VT.getSizeInBits()/128;
3693  unsigned LaneSize = NumElts/NumLanes;
3694  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3695    for (unsigned i = 0; i != LaneSize; ++i) {
3696      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3697        return false;
3698      if (NumElts != 8 || l == 0)
3699        continue;
3700      // VPERMILPS handling
3701      if (Mask[i] < 0)
3702        continue;
3703      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3704        return false;
3705    }
3706  }
3707
3708  return true;
3709}
3710
3711/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3712/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3713/// element of vector 2 and the other elements to come from vector 1 in order.
3714static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3715                               bool V2IsSplat = false, bool V2IsUndef = false) {
3716  unsigned NumOps = VT.getVectorNumElements();
3717  if (VT.getSizeInBits() == 256)
3718    return false;
3719  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3720    return false;
3721
3722  if (!isUndefOrEqual(Mask[0], 0))
3723    return false;
3724
3725  for (unsigned i = 1; i != NumOps; ++i)
3726    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3727          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3728          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3729      return false;
3730
3731  return true;
3732}
3733
3734/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3735/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3736/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3737static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3738                           const X86Subtarget *Subtarget) {
3739  if (!Subtarget->hasSSE3())
3740    return false;
3741
3742  unsigned NumElems = VT.getVectorNumElements();
3743
3744  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3745      (VT.getSizeInBits() == 256 && NumElems != 8))
3746    return false;
3747
3748  // "i+1" is the value the indexed mask element must have
3749  for (unsigned i = 0; i != NumElems; i += 2)
3750    if (!isUndefOrEqual(Mask[i], i+1) ||
3751        !isUndefOrEqual(Mask[i+1], i+1))
3752      return false;
3753
3754  return true;
3755}
3756
3757/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3758/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3759/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3760static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3761                           const X86Subtarget *Subtarget) {
3762  if (!Subtarget->hasSSE3())
3763    return false;
3764
3765  unsigned NumElems = VT.getVectorNumElements();
3766
3767  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3768      (VT.getSizeInBits() == 256 && NumElems != 8))
3769    return false;
3770
3771  // "i" is the value the indexed mask element must have
3772  for (unsigned i = 0; i != NumElems; i += 2)
3773    if (!isUndefOrEqual(Mask[i], i) ||
3774        !isUndefOrEqual(Mask[i+1], i))
3775      return false;
3776
3777  return true;
3778}
3779
3780/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3781/// specifies a shuffle of elements that is suitable for input to 256-bit
3782/// version of MOVDDUP.
3783static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3784  unsigned NumElts = VT.getVectorNumElements();
3785
3786  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3787    return false;
3788
3789  for (unsigned i = 0; i != NumElts/2; ++i)
3790    if (!isUndefOrEqual(Mask[i], 0))
3791      return false;
3792  for (unsigned i = NumElts/2; i != NumElts; ++i)
3793    if (!isUndefOrEqual(Mask[i], NumElts/2))
3794      return false;
3795  return true;
3796}
3797
3798/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3799/// specifies a shuffle of elements that is suitable for input to 128-bit
3800/// version of MOVDDUP.
3801static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3802  if (VT.getSizeInBits() != 128)
3803    return false;
3804
3805  unsigned e = VT.getVectorNumElements() / 2;
3806  for (unsigned i = 0; i != e; ++i)
3807    if (!isUndefOrEqual(Mask[i], i))
3808      return false;
3809  for (unsigned i = 0; i != e; ++i)
3810    if (!isUndefOrEqual(Mask[e+i], i))
3811      return false;
3812  return true;
3813}
3814
3815/// isVEXTRACTF128Index - Return true if the specified
3816/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3817/// suitable for input to VEXTRACTF128.
3818bool X86::isVEXTRACTF128Index(SDNode *N) {
3819  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3820    return false;
3821
3822  // The index should be aligned on a 128-bit boundary.
3823  uint64_t Index =
3824    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3825
3826  unsigned VL = N->getValueType(0).getVectorNumElements();
3827  unsigned VBits = N->getValueType(0).getSizeInBits();
3828  unsigned ElSize = VBits / VL;
3829  bool Result = (Index * ElSize) % 128 == 0;
3830
3831  return Result;
3832}
3833
3834/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3835/// operand specifies a subvector insert that is suitable for input to
3836/// VINSERTF128.
3837bool X86::isVINSERTF128Index(SDNode *N) {
3838  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3839    return false;
3840
3841  // The index should be aligned on a 128-bit boundary.
3842  uint64_t Index =
3843    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3844
3845  unsigned VL = N->getValueType(0).getVectorNumElements();
3846  unsigned VBits = N->getValueType(0).getSizeInBits();
3847  unsigned ElSize = VBits / VL;
3848  bool Result = (Index * ElSize) % 128 == 0;
3849
3850  return Result;
3851}
3852
3853/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3854/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3855/// Handles 128-bit and 256-bit.
3856static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3857  EVT VT = N->getValueType(0);
3858
3859  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3860         "Unsupported vector type for PSHUF/SHUFP");
3861
3862  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3863  // independently on 128-bit lanes.
3864  unsigned NumElts = VT.getVectorNumElements();
3865  unsigned NumLanes = VT.getSizeInBits()/128;
3866  unsigned NumLaneElts = NumElts/NumLanes;
3867
3868  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3869         "Only supports 2 or 4 elements per lane");
3870
3871  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3872  unsigned Mask = 0;
3873  for (unsigned i = 0; i != NumElts; ++i) {
3874    int Elt = N->getMaskElt(i);
3875    if (Elt < 0) continue;
3876    Elt %= NumLaneElts;
3877    unsigned ShAmt = i << Shift;
3878    if (ShAmt >= 8) ShAmt -= 8;
3879    Mask |= Elt << ShAmt;
3880  }
3881
3882  return Mask;
3883}
3884
3885/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3886/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3887static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
3888  unsigned Mask = 0;
3889  // 8 nodes, but we only care about the last 4.
3890  for (unsigned i = 7; i >= 4; --i) {
3891    int Val = N->getMaskElt(i);
3892    if (Val >= 0)
3893      Mask |= (Val - 4);
3894    if (i != 4)
3895      Mask <<= 2;
3896  }
3897  return Mask;
3898}
3899
3900/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3901/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3902static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
3903  unsigned Mask = 0;
3904  // 8 nodes, but we only care about the first 4.
3905  for (int i = 3; i >= 0; --i) {
3906    int Val = N->getMaskElt(i);
3907    if (Val >= 0)
3908      Mask |= Val;
3909    if (i != 0)
3910      Mask <<= 2;
3911  }
3912  return Mask;
3913}
3914
3915/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3916/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3917static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
3918  EVT VT = SVOp->getValueType(0);
3919  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
3920
3921  unsigned NumElts = VT.getVectorNumElements();
3922  unsigned NumLanes = VT.getSizeInBits()/128;
3923  unsigned NumLaneElts = NumElts/NumLanes;
3924
3925  int Val = 0;
3926  unsigned i;
3927  for (i = 0; i != NumElts; ++i) {
3928    Val = SVOp->getMaskElt(i);
3929    if (Val >= 0)
3930      break;
3931  }
3932  if (Val >= (int)NumElts)
3933    Val -= NumElts - NumLaneElts;
3934
3935  assert(Val - i > 0 && "PALIGNR imm should be positive");
3936  return (Val - i) * EltSize;
3937}
3938
3939/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3940/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3941/// instructions.
3942unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3943  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3944    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3945
3946  uint64_t Index =
3947    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3948
3949  EVT VecVT = N->getOperand(0).getValueType();
3950  EVT ElVT = VecVT.getVectorElementType();
3951
3952  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3953  return Index / NumElemsPerChunk;
3954}
3955
3956/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3957/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3958/// instructions.
3959unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3960  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3961    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3962
3963  uint64_t Index =
3964    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3965
3966  EVT VecVT = N->getValueType(0);
3967  EVT ElVT = VecVT.getVectorElementType();
3968
3969  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3970  return Index / NumElemsPerChunk;
3971}
3972
3973/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3974/// constant +0.0.
3975bool X86::isZeroNode(SDValue Elt) {
3976  return ((isa<ConstantSDNode>(Elt) &&
3977           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3978          (isa<ConstantFPSDNode>(Elt) &&
3979           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3980}
3981
3982/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3983/// their permute mask.
3984static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3985                                    SelectionDAG &DAG) {
3986  EVT VT = SVOp->getValueType(0);
3987  unsigned NumElems = VT.getVectorNumElements();
3988  SmallVector<int, 8> MaskVec;
3989
3990  for (unsigned i = 0; i != NumElems; ++i) {
3991    int idx = SVOp->getMaskElt(i);
3992    if (idx < 0)
3993      MaskVec.push_back(idx);
3994    else if (idx < (int)NumElems)
3995      MaskVec.push_back(idx + NumElems);
3996    else
3997      MaskVec.push_back(idx - NumElems);
3998  }
3999  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4000                              SVOp->getOperand(0), &MaskVec[0]);
4001}
4002
4003/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4004/// match movhlps. The lower half elements should come from upper half of
4005/// V1 (and in order), and the upper half elements should come from the upper
4006/// half of V2 (and in order).
4007static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4008  if (VT.getSizeInBits() != 128)
4009    return false;
4010  if (VT.getVectorNumElements() != 4)
4011    return false;
4012  for (unsigned i = 0, e = 2; i != e; ++i)
4013    if (!isUndefOrEqual(Mask[i], i+2))
4014      return false;
4015  for (unsigned i = 2; i != 4; ++i)
4016    if (!isUndefOrEqual(Mask[i], i+4))
4017      return false;
4018  return true;
4019}
4020
4021/// isScalarLoadToVector - Returns true if the node is a scalar load that
4022/// is promoted to a vector. It also returns the LoadSDNode by reference if
4023/// required.
4024static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4025  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4026    return false;
4027  N = N->getOperand(0).getNode();
4028  if (!ISD::isNON_EXTLoad(N))
4029    return false;
4030  if (LD)
4031    *LD = cast<LoadSDNode>(N);
4032  return true;
4033}
4034
4035// Test whether the given value is a vector value which will be legalized
4036// into a load.
4037static bool WillBeConstantPoolLoad(SDNode *N) {
4038  if (N->getOpcode() != ISD::BUILD_VECTOR)
4039    return false;
4040
4041  // Check for any non-constant elements.
4042  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4043    switch (N->getOperand(i).getNode()->getOpcode()) {
4044    case ISD::UNDEF:
4045    case ISD::ConstantFP:
4046    case ISD::Constant:
4047      break;
4048    default:
4049      return false;
4050    }
4051
4052  // Vectors of all-zeros and all-ones are materialized with special
4053  // instructions rather than being loaded.
4054  return !ISD::isBuildVectorAllZeros(N) &&
4055         !ISD::isBuildVectorAllOnes(N);
4056}
4057
4058/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4059/// match movlp{s|d}. The lower half elements should come from lower half of
4060/// V1 (and in order), and the upper half elements should come from the upper
4061/// half of V2 (and in order). And since V1 will become the source of the
4062/// MOVLP, it must be either a vector load or a scalar load to vector.
4063static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4064                               ArrayRef<int> Mask, EVT VT) {
4065  if (VT.getSizeInBits() != 128)
4066    return false;
4067
4068  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4069    return false;
4070  // Is V2 is a vector load, don't do this transformation. We will try to use
4071  // load folding shufps op.
4072  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4073    return false;
4074
4075  unsigned NumElems = VT.getVectorNumElements();
4076
4077  if (NumElems != 2 && NumElems != 4)
4078    return false;
4079  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4080    if (!isUndefOrEqual(Mask[i], i))
4081      return false;
4082  for (unsigned i = NumElems/2; i != NumElems; ++i)
4083    if (!isUndefOrEqual(Mask[i], i+NumElems))
4084      return false;
4085  return true;
4086}
4087
4088/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4089/// all the same.
4090static bool isSplatVector(SDNode *N) {
4091  if (N->getOpcode() != ISD::BUILD_VECTOR)
4092    return false;
4093
4094  SDValue SplatValue = N->getOperand(0);
4095  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4096    if (N->getOperand(i) != SplatValue)
4097      return false;
4098  return true;
4099}
4100
4101/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4102/// to an zero vector.
4103/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4104static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4105  SDValue V1 = N->getOperand(0);
4106  SDValue V2 = N->getOperand(1);
4107  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4108  for (unsigned i = 0; i != NumElems; ++i) {
4109    int Idx = N->getMaskElt(i);
4110    if (Idx >= (int)NumElems) {
4111      unsigned Opc = V2.getOpcode();
4112      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4113        continue;
4114      if (Opc != ISD::BUILD_VECTOR ||
4115          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4116        return false;
4117    } else if (Idx >= 0) {
4118      unsigned Opc = V1.getOpcode();
4119      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4120        continue;
4121      if (Opc != ISD::BUILD_VECTOR ||
4122          !X86::isZeroNode(V1.getOperand(Idx)))
4123        return false;
4124    }
4125  }
4126  return true;
4127}
4128
4129/// getZeroVector - Returns a vector of specified type with all zero elements.
4130///
4131static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4132                             SelectionDAG &DAG, DebugLoc dl) {
4133  assert(VT.isVector() && "Expected a vector type");
4134
4135  // Always build SSE zero vectors as <4 x i32> bitcasted
4136  // to their dest type. This ensures they get CSE'd.
4137  SDValue Vec;
4138  if (VT.getSizeInBits() == 128) {  // SSE
4139    if (Subtarget->hasSSE2()) {  // SSE2
4140      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4141      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4142    } else { // SSE1
4143      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4144      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4145    }
4146  } else if (VT.getSizeInBits() == 256) { // AVX
4147    if (Subtarget->hasAVX2()) { // AVX2
4148      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4149      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4150      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4151    } else {
4152      // 256-bit logic and arithmetic instructions in AVX are all
4153      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4154      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4155      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4156      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4157    }
4158  }
4159  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4160}
4161
4162/// getOnesVector - Returns a vector of specified type with all bits set.
4163/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4164/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4165/// Then bitcast to their original type, ensuring they get CSE'd.
4166static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4167                             DebugLoc dl) {
4168  assert(VT.isVector() && "Expected a vector type");
4169  assert((VT.is128BitVector() || VT.is256BitVector())
4170         && "Expected a 128-bit or 256-bit vector type");
4171
4172  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4173  SDValue Vec;
4174  if (VT.getSizeInBits() == 256) {
4175    if (HasAVX2) { // AVX2
4176      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4177      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4178    } else { // AVX
4179      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4180      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4181                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4182      Vec = Insert128BitVector(InsV, Vec,
4183                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4184    }
4185  } else {
4186    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4187  }
4188
4189  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4190}
4191
4192/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4193/// that point to V2 points to its first element.
4194static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4195  for (unsigned i = 0; i != NumElems; ++i) {
4196    if (Mask[i] > (int)NumElems) {
4197      Mask[i] = NumElems;
4198    }
4199  }
4200}
4201
4202/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4203/// operation of specified width.
4204static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4205                       SDValue V2) {
4206  unsigned NumElems = VT.getVectorNumElements();
4207  SmallVector<int, 8> Mask;
4208  Mask.push_back(NumElems);
4209  for (unsigned i = 1; i != NumElems; ++i)
4210    Mask.push_back(i);
4211  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4212}
4213
4214/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4215static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4216                          SDValue V2) {
4217  unsigned NumElems = VT.getVectorNumElements();
4218  SmallVector<int, 8> Mask;
4219  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4220    Mask.push_back(i);
4221    Mask.push_back(i + NumElems);
4222  }
4223  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4224}
4225
4226/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4227static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4228                          SDValue V2) {
4229  unsigned NumElems = VT.getVectorNumElements();
4230  unsigned Half = NumElems/2;
4231  SmallVector<int, 8> Mask;
4232  for (unsigned i = 0; i != Half; ++i) {
4233    Mask.push_back(i + Half);
4234    Mask.push_back(i + NumElems + Half);
4235  }
4236  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4237}
4238
4239// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4240// a generic shuffle instruction because the target has no such instructions.
4241// Generate shuffles which repeat i16 and i8 several times until they can be
4242// represented by v4f32 and then be manipulated by target suported shuffles.
4243static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4244  EVT VT = V.getValueType();
4245  int NumElems = VT.getVectorNumElements();
4246  DebugLoc dl = V.getDebugLoc();
4247
4248  while (NumElems > 4) {
4249    if (EltNo < NumElems/2) {
4250      V = getUnpackl(DAG, dl, VT, V, V);
4251    } else {
4252      V = getUnpackh(DAG, dl, VT, V, V);
4253      EltNo -= NumElems/2;
4254    }
4255    NumElems >>= 1;
4256  }
4257  return V;
4258}
4259
4260/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4261static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4262  EVT VT = V.getValueType();
4263  DebugLoc dl = V.getDebugLoc();
4264  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4265         && "Vector size not supported");
4266
4267  if (VT.getSizeInBits() == 128) {
4268    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4269    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4270    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4271                             &SplatMask[0]);
4272  } else {
4273    // To use VPERMILPS to splat scalars, the second half of indicies must
4274    // refer to the higher part, which is a duplication of the lower one,
4275    // because VPERMILPS can only handle in-lane permutations.
4276    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4277                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4278
4279    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4280    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4281                             &SplatMask[0]);
4282  }
4283
4284  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4285}
4286
4287/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4288static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4289  EVT SrcVT = SV->getValueType(0);
4290  SDValue V1 = SV->getOperand(0);
4291  DebugLoc dl = SV->getDebugLoc();
4292
4293  int EltNo = SV->getSplatIndex();
4294  int NumElems = SrcVT.getVectorNumElements();
4295  unsigned Size = SrcVT.getSizeInBits();
4296
4297  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4298          "Unknown how to promote splat for type");
4299
4300  // Extract the 128-bit part containing the splat element and update
4301  // the splat element index when it refers to the higher register.
4302  if (Size == 256) {
4303    unsigned Idx = (EltNo >= NumElems/2) ? NumElems/2 : 0;
4304    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4305    if (Idx > 0)
4306      EltNo -= NumElems/2;
4307  }
4308
4309  // All i16 and i8 vector types can't be used directly by a generic shuffle
4310  // instruction because the target has no such instruction. Generate shuffles
4311  // which repeat i16 and i8 several times until they fit in i32, and then can
4312  // be manipulated by target suported shuffles.
4313  EVT EltVT = SrcVT.getVectorElementType();
4314  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4315    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4316
4317  // Recreate the 256-bit vector and place the same 128-bit vector
4318  // into the low and high part. This is necessary because we want
4319  // to use VPERM* to shuffle the vectors
4320  if (Size == 256) {
4321    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4322                         DAG.getConstant(0, MVT::i32), DAG, dl);
4323    V1 = Insert128BitVector(InsV, V1,
4324               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4325  }
4326
4327  return getLegalSplat(DAG, V1, EltNo);
4328}
4329
4330/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4331/// vector of zero or undef vector.  This produces a shuffle where the low
4332/// element of V2 is swizzled into the zero/undef vector, landing at element
4333/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4334static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4335                                           bool IsZero,
4336                                           const X86Subtarget *Subtarget,
4337                                           SelectionDAG &DAG) {
4338  EVT VT = V2.getValueType();
4339  SDValue V1 = IsZero
4340    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4341  unsigned NumElems = VT.getVectorNumElements();
4342  SmallVector<int, 16> MaskVec;
4343  for (unsigned i = 0; i != NumElems; ++i)
4344    // If this is the insertion idx, put the low elt of V2 here.
4345    MaskVec.push_back(i == Idx ? NumElems : i);
4346  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4347}
4348
4349/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4350/// target specific opcode. Returns true if the Mask could be calculated.
4351/// Sets IsUnary to true if only uses one source.
4352static bool getTargetShuffleMask(SDNode *N, EVT VT,
4353                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4354  unsigned NumElems = VT.getVectorNumElements();
4355  SDValue ImmN;
4356
4357  IsUnary = false;
4358  switch(N->getOpcode()) {
4359  case X86ISD::SHUFP:
4360    ImmN = N->getOperand(N->getNumOperands()-1);
4361    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4362    break;
4363  case X86ISD::UNPCKH:
4364    DecodeUNPCKHMask(VT, Mask);
4365    break;
4366  case X86ISD::UNPCKL:
4367    DecodeUNPCKLMask(VT, Mask);
4368    break;
4369  case X86ISD::MOVHLPS:
4370    DecodeMOVHLPSMask(NumElems, Mask);
4371    break;
4372  case X86ISD::MOVLHPS:
4373    DecodeMOVLHPSMask(NumElems, Mask);
4374    break;
4375  case X86ISD::PSHUFD:
4376  case X86ISD::VPERMILP:
4377    ImmN = N->getOperand(N->getNumOperands()-1);
4378    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4379    IsUnary = true;
4380    break;
4381  case X86ISD::PSHUFHW:
4382    ImmN = N->getOperand(N->getNumOperands()-1);
4383    DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4384    IsUnary = true;
4385    break;
4386  case X86ISD::PSHUFLW:
4387    ImmN = N->getOperand(N->getNumOperands()-1);
4388    DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4389    IsUnary = true;
4390    break;
4391  case X86ISD::MOVSS:
4392  case X86ISD::MOVSD: {
4393    // The index 0 always comes from the first element of the second source,
4394    // this is why MOVSS and MOVSD are used in the first place. The other
4395    // elements come from the other positions of the first source vector
4396    Mask.push_back(NumElems);
4397    for (unsigned i = 1; i != NumElems; ++i) {
4398      Mask.push_back(i);
4399    }
4400    break;
4401  }
4402  case X86ISD::VPERM2X128:
4403    ImmN = N->getOperand(N->getNumOperands()-1);
4404    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4405    break;
4406  case X86ISD::MOVDDUP:
4407  case X86ISD::MOVLHPD:
4408  case X86ISD::MOVLPD:
4409  case X86ISD::MOVLPS:
4410  case X86ISD::MOVSHDUP:
4411  case X86ISD::MOVSLDUP:
4412  case X86ISD::PALIGN:
4413    // Not yet implemented
4414    return false;
4415  default: llvm_unreachable("unknown target shuffle node");
4416  }
4417
4418  return true;
4419}
4420
4421/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4422/// element of the result of the vector shuffle.
4423static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4424                                   unsigned Depth) {
4425  if (Depth == 6)
4426    return SDValue();  // Limit search depth.
4427
4428  SDValue V = SDValue(N, 0);
4429  EVT VT = V.getValueType();
4430  unsigned Opcode = V.getOpcode();
4431
4432  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4433  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4434    int Elt = SV->getMaskElt(Index);
4435
4436    if (Elt < 0)
4437      return DAG.getUNDEF(VT.getVectorElementType());
4438
4439    unsigned NumElems = VT.getVectorNumElements();
4440    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4441                                         : SV->getOperand(1);
4442    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4443  }
4444
4445  // Recurse into target specific vector shuffles to find scalars.
4446  if (isTargetShuffle(Opcode)) {
4447    unsigned NumElems = VT.getVectorNumElements();
4448    SmallVector<int, 16> ShuffleMask;
4449    SDValue ImmN;
4450    bool IsUnary;
4451
4452    if (!getTargetShuffleMask(N, VT, ShuffleMask, IsUnary))
4453      return SDValue();
4454
4455    int Elt = ShuffleMask[Index];
4456    if (Elt < 0)
4457      return DAG.getUNDEF(VT.getVectorElementType());
4458
4459    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4460                                           : N->getOperand(1);
4461    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4462                               Depth+1);
4463  }
4464
4465  // Actual nodes that may contain scalar elements
4466  if (Opcode == ISD::BITCAST) {
4467    V = V.getOperand(0);
4468    EVT SrcVT = V.getValueType();
4469    unsigned NumElems = VT.getVectorNumElements();
4470
4471    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4472      return SDValue();
4473  }
4474
4475  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4476    return (Index == 0) ? V.getOperand(0)
4477                        : DAG.getUNDEF(VT.getVectorElementType());
4478
4479  if (V.getOpcode() == ISD::BUILD_VECTOR)
4480    return V.getOperand(Index);
4481
4482  return SDValue();
4483}
4484
4485/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4486/// shuffle operation which come from a consecutively from a zero. The
4487/// search can start in two different directions, from left or right.
4488static
4489unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4490                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4491  unsigned i;
4492  for (i = 0; i != NumElems; ++i) {
4493    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4494    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4495    if (!(Elt.getNode() &&
4496         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4497      break;
4498  }
4499
4500  return i;
4501}
4502
4503/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4504/// correspond consecutively to elements from one of the vector operands,
4505/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4506static
4507bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4508                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4509                              unsigned NumElems, unsigned &OpNum) {
4510  bool SeenV1 = false;
4511  bool SeenV2 = false;
4512
4513  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4514    int Idx = SVOp->getMaskElt(i);
4515    // Ignore undef indicies
4516    if (Idx < 0)
4517      continue;
4518
4519    if (Idx < (int)NumElems)
4520      SeenV1 = true;
4521    else
4522      SeenV2 = true;
4523
4524    // Only accept consecutive elements from the same vector
4525    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4526      return false;
4527  }
4528
4529  OpNum = SeenV1 ? 0 : 1;
4530  return true;
4531}
4532
4533/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4534/// logical left shift of a vector.
4535static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4536                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4537  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4538  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4539              false /* check zeros from right */, DAG);
4540  unsigned OpSrc;
4541
4542  if (!NumZeros)
4543    return false;
4544
4545  // Considering the elements in the mask that are not consecutive zeros,
4546  // check if they consecutively come from only one of the source vectors.
4547  //
4548  //               V1 = {X, A, B, C}     0
4549  //                         \  \  \    /
4550  //   vector_shuffle V1, V2 <1, 2, 3, X>
4551  //
4552  if (!isShuffleMaskConsecutive(SVOp,
4553            0,                   // Mask Start Index
4554            NumElems-NumZeros,   // Mask End Index(exclusive)
4555            NumZeros,            // Where to start looking in the src vector
4556            NumElems,            // Number of elements in vector
4557            OpSrc))              // Which source operand ?
4558    return false;
4559
4560  isLeft = false;
4561  ShAmt = NumZeros;
4562  ShVal = SVOp->getOperand(OpSrc);
4563  return true;
4564}
4565
4566/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4567/// logical left shift of a vector.
4568static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4569                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4570  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4571  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4572              true /* check zeros from left */, DAG);
4573  unsigned OpSrc;
4574
4575  if (!NumZeros)
4576    return false;
4577
4578  // Considering the elements in the mask that are not consecutive zeros,
4579  // check if they consecutively come from only one of the source vectors.
4580  //
4581  //                           0    { A, B, X, X } = V2
4582  //                          / \    /  /
4583  //   vector_shuffle V1, V2 <X, X, 4, 5>
4584  //
4585  if (!isShuffleMaskConsecutive(SVOp,
4586            NumZeros,     // Mask Start Index
4587            NumElems,     // Mask End Index(exclusive)
4588            0,            // Where to start looking in the src vector
4589            NumElems,     // Number of elements in vector
4590            OpSrc))       // Which source operand ?
4591    return false;
4592
4593  isLeft = true;
4594  ShAmt = NumZeros;
4595  ShVal = SVOp->getOperand(OpSrc);
4596  return true;
4597}
4598
4599/// isVectorShift - Returns true if the shuffle can be implemented as a
4600/// logical left or right shift of a vector.
4601static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4602                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4603  // Although the logic below support any bitwidth size, there are no
4604  // shift instructions which handle more than 128-bit vectors.
4605  if (SVOp->getValueType(0).getSizeInBits() > 128)
4606    return false;
4607
4608  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4609      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4610    return true;
4611
4612  return false;
4613}
4614
4615/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4616///
4617static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4618                                       unsigned NumNonZero, unsigned NumZero,
4619                                       SelectionDAG &DAG,
4620                                       const X86Subtarget* Subtarget,
4621                                       const TargetLowering &TLI) {
4622  if (NumNonZero > 8)
4623    return SDValue();
4624
4625  DebugLoc dl = Op.getDebugLoc();
4626  SDValue V(0, 0);
4627  bool First = true;
4628  for (unsigned i = 0; i < 16; ++i) {
4629    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4630    if (ThisIsNonZero && First) {
4631      if (NumZero)
4632        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4633      else
4634        V = DAG.getUNDEF(MVT::v8i16);
4635      First = false;
4636    }
4637
4638    if ((i & 1) != 0) {
4639      SDValue ThisElt(0, 0), LastElt(0, 0);
4640      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4641      if (LastIsNonZero) {
4642        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4643                              MVT::i16, Op.getOperand(i-1));
4644      }
4645      if (ThisIsNonZero) {
4646        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4647        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4648                              ThisElt, DAG.getConstant(8, MVT::i8));
4649        if (LastIsNonZero)
4650          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4651      } else
4652        ThisElt = LastElt;
4653
4654      if (ThisElt.getNode())
4655        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4656                        DAG.getIntPtrConstant(i/2));
4657    }
4658  }
4659
4660  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4661}
4662
4663/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4664///
4665static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4666                                     unsigned NumNonZero, unsigned NumZero,
4667                                     SelectionDAG &DAG,
4668                                     const X86Subtarget* Subtarget,
4669                                     const TargetLowering &TLI) {
4670  if (NumNonZero > 4)
4671    return SDValue();
4672
4673  DebugLoc dl = Op.getDebugLoc();
4674  SDValue V(0, 0);
4675  bool First = true;
4676  for (unsigned i = 0; i < 8; ++i) {
4677    bool isNonZero = (NonZeros & (1 << i)) != 0;
4678    if (isNonZero) {
4679      if (First) {
4680        if (NumZero)
4681          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4682        else
4683          V = DAG.getUNDEF(MVT::v8i16);
4684        First = false;
4685      }
4686      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4687                      MVT::v8i16, V, Op.getOperand(i),
4688                      DAG.getIntPtrConstant(i));
4689    }
4690  }
4691
4692  return V;
4693}
4694
4695/// getVShift - Return a vector logical shift node.
4696///
4697static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4698                         unsigned NumBits, SelectionDAG &DAG,
4699                         const TargetLowering &TLI, DebugLoc dl) {
4700  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4701  EVT ShVT = MVT::v2i64;
4702  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4703  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4704  return DAG.getNode(ISD::BITCAST, dl, VT,
4705                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4706                             DAG.getConstant(NumBits,
4707                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4708}
4709
4710SDValue
4711X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4712                                          SelectionDAG &DAG) const {
4713
4714  // Check if the scalar load can be widened into a vector load. And if
4715  // the address is "base + cst" see if the cst can be "absorbed" into
4716  // the shuffle mask.
4717  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4718    SDValue Ptr = LD->getBasePtr();
4719    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4720      return SDValue();
4721    EVT PVT = LD->getValueType(0);
4722    if (PVT != MVT::i32 && PVT != MVT::f32)
4723      return SDValue();
4724
4725    int FI = -1;
4726    int64_t Offset = 0;
4727    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4728      FI = FINode->getIndex();
4729      Offset = 0;
4730    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4731               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4732      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4733      Offset = Ptr.getConstantOperandVal(1);
4734      Ptr = Ptr.getOperand(0);
4735    } else {
4736      return SDValue();
4737    }
4738
4739    // FIXME: 256-bit vector instructions don't require a strict alignment,
4740    // improve this code to support it better.
4741    unsigned RequiredAlign = VT.getSizeInBits()/8;
4742    SDValue Chain = LD->getChain();
4743    // Make sure the stack object alignment is at least 16 or 32.
4744    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4745    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4746      if (MFI->isFixedObjectIndex(FI)) {
4747        // Can't change the alignment. FIXME: It's possible to compute
4748        // the exact stack offset and reference FI + adjust offset instead.
4749        // If someone *really* cares about this. That's the way to implement it.
4750        return SDValue();
4751      } else {
4752        MFI->setObjectAlignment(FI, RequiredAlign);
4753      }
4754    }
4755
4756    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4757    // Ptr + (Offset & ~15).
4758    if (Offset < 0)
4759      return SDValue();
4760    if ((Offset % RequiredAlign) & 3)
4761      return SDValue();
4762    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4763    if (StartOffset)
4764      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4765                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4766
4767    int EltNo = (Offset - StartOffset) >> 2;
4768    int NumElems = VT.getVectorNumElements();
4769
4770    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4771    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4772                             LD->getPointerInfo().getWithOffset(StartOffset),
4773                             false, false, false, 0);
4774
4775    SmallVector<int, 8> Mask;
4776    for (int i = 0; i < NumElems; ++i)
4777      Mask.push_back(EltNo);
4778
4779    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4780  }
4781
4782  return SDValue();
4783}
4784
4785/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4786/// vector of type 'VT', see if the elements can be replaced by a single large
4787/// load which has the same value as a build_vector whose operands are 'elts'.
4788///
4789/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4790///
4791/// FIXME: we'd also like to handle the case where the last elements are zero
4792/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4793/// There's even a handy isZeroNode for that purpose.
4794static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4795                                        DebugLoc &DL, SelectionDAG &DAG) {
4796  EVT EltVT = VT.getVectorElementType();
4797  unsigned NumElems = Elts.size();
4798
4799  LoadSDNode *LDBase = NULL;
4800  unsigned LastLoadedElt = -1U;
4801
4802  // For each element in the initializer, see if we've found a load or an undef.
4803  // If we don't find an initial load element, or later load elements are
4804  // non-consecutive, bail out.
4805  for (unsigned i = 0; i < NumElems; ++i) {
4806    SDValue Elt = Elts[i];
4807
4808    if (!Elt.getNode() ||
4809        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4810      return SDValue();
4811    if (!LDBase) {
4812      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4813        return SDValue();
4814      LDBase = cast<LoadSDNode>(Elt.getNode());
4815      LastLoadedElt = i;
4816      continue;
4817    }
4818    if (Elt.getOpcode() == ISD::UNDEF)
4819      continue;
4820
4821    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4822    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4823      return SDValue();
4824    LastLoadedElt = i;
4825  }
4826
4827  // If we have found an entire vector of loads and undefs, then return a large
4828  // load of the entire vector width starting at the base pointer.  If we found
4829  // consecutive loads for the low half, generate a vzext_load node.
4830  if (LastLoadedElt == NumElems - 1) {
4831    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4832      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4833                         LDBase->getPointerInfo(),
4834                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4835                         LDBase->isInvariant(), 0);
4836    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4837                       LDBase->getPointerInfo(),
4838                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4839                       LDBase->isInvariant(), LDBase->getAlignment());
4840  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4841             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4842    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4843    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4844    SDValue ResNode =
4845        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4846                                LDBase->getPointerInfo(),
4847                                LDBase->getAlignment(),
4848                                false/*isVolatile*/, true/*ReadMem*/,
4849                                false/*WriteMem*/);
4850    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4851  }
4852  return SDValue();
4853}
4854
4855/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
4856/// a vbroadcast node. We support two patterns:
4857/// 1. A splat BUILD_VECTOR which uses a single scalar load.
4858/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4859/// a scalar load.
4860/// The scalar load node is returned when a pattern is found,
4861/// or SDValue() otherwise.
4862static SDValue isVectorBroadcast(SDValue &Op, const X86Subtarget *Subtarget) {
4863  if (!Subtarget->hasAVX())
4864    return SDValue();
4865
4866  EVT VT = Op.getValueType();
4867  SDValue V = Op;
4868
4869  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
4870    V = V.getOperand(0);
4871
4872  //A suspected load to be broadcasted.
4873  SDValue Ld;
4874
4875  switch (V.getOpcode()) {
4876    default:
4877      // Unknown pattern found.
4878      return SDValue();
4879
4880    case ISD::BUILD_VECTOR: {
4881      // The BUILD_VECTOR node must be a splat.
4882      if (!isSplatVector(V.getNode()))
4883        return SDValue();
4884
4885      Ld = V.getOperand(0);
4886
4887      // The suspected load node has several users. Make sure that all
4888      // of its users are from the BUILD_VECTOR node.
4889      if (!Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4890        return SDValue();
4891      break;
4892    }
4893
4894    case ISD::VECTOR_SHUFFLE: {
4895      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4896
4897      // Shuffles must have a splat mask where the first element is
4898      // broadcasted.
4899      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4900        return SDValue();
4901
4902      SDValue Sc = Op.getOperand(0);
4903      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
4904        return SDValue();
4905
4906      Ld = Sc.getOperand(0);
4907
4908      // The scalar_to_vector node and the suspected
4909      // load node must have exactly one user.
4910      if (!Sc.hasOneUse() || !Ld.hasOneUse())
4911        return SDValue();
4912      break;
4913    }
4914  }
4915
4916  // The scalar source must be a normal load.
4917  if (!ISD::isNormalLoad(Ld.getNode()))
4918    return SDValue();
4919
4920  // Reject loads that have uses of the chain result
4921  if (Ld->hasAnyUseOfValue(1))
4922    return SDValue();
4923
4924  bool Is256 = VT.getSizeInBits() == 256;
4925  bool Is128 = VT.getSizeInBits() == 128;
4926  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
4927
4928  // VBroadcast to YMM
4929  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
4930    return Ld;
4931
4932  // VBroadcast to XMM
4933  if (Is128 && (ScalarSize == 32))
4934    return Ld;
4935
4936  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
4937  // double since there is vbroadcastsd xmm
4938  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
4939    // VBroadcast to YMM
4940    if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
4941      return Ld;
4942
4943    // VBroadcast to XMM
4944    if (Is128 && (ScalarSize ==  8 || ScalarSize == 16 || ScalarSize == 64))
4945      return Ld;
4946  }
4947
4948  // Unsupported broadcast.
4949  return SDValue();
4950}
4951
4952SDValue
4953X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4954  DebugLoc dl = Op.getDebugLoc();
4955
4956  EVT VT = Op.getValueType();
4957  EVT ExtVT = VT.getVectorElementType();
4958  unsigned NumElems = Op.getNumOperands();
4959
4960  // Vectors containing all zeros can be matched by pxor and xorps later
4961  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
4962    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
4963    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
4964    if (VT == MVT::v4i32 || VT == MVT::v8i32)
4965      return Op;
4966
4967    return getZeroVector(VT, Subtarget, DAG, dl);
4968  }
4969
4970  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
4971  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
4972  // vpcmpeqd on 256-bit vectors.
4973  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
4974    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
4975      return Op;
4976
4977    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
4978  }
4979
4980  SDValue LD = isVectorBroadcast(Op, Subtarget);
4981  if (LD.getNode())
4982    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
4983
4984  unsigned EVTBits = ExtVT.getSizeInBits();
4985
4986  unsigned NumZero  = 0;
4987  unsigned NumNonZero = 0;
4988  unsigned NonZeros = 0;
4989  bool IsAllConstants = true;
4990  SmallSet<SDValue, 8> Values;
4991  for (unsigned i = 0; i < NumElems; ++i) {
4992    SDValue Elt = Op.getOperand(i);
4993    if (Elt.getOpcode() == ISD::UNDEF)
4994      continue;
4995    Values.insert(Elt);
4996    if (Elt.getOpcode() != ISD::Constant &&
4997        Elt.getOpcode() != ISD::ConstantFP)
4998      IsAllConstants = false;
4999    if (X86::isZeroNode(Elt))
5000      NumZero++;
5001    else {
5002      NonZeros |= (1 << i);
5003      NumNonZero++;
5004    }
5005  }
5006
5007  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5008  if (NumNonZero == 0)
5009    return DAG.getUNDEF(VT);
5010
5011  // Special case for single non-zero, non-undef, element.
5012  if (NumNonZero == 1) {
5013    unsigned Idx = CountTrailingZeros_32(NonZeros);
5014    SDValue Item = Op.getOperand(Idx);
5015
5016    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5017    // the value are obviously zero, truncate the value to i32 and do the
5018    // insertion that way.  Only do this if the value is non-constant or if the
5019    // value is a constant being inserted into element 0.  It is cheaper to do
5020    // a constant pool load than it is to do a movd + shuffle.
5021    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5022        (!IsAllConstants || Idx == 0)) {
5023      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5024        // Handle SSE only.
5025        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5026        EVT VecVT = MVT::v4i32;
5027        unsigned VecElts = 4;
5028
5029        // Truncate the value (which may itself be a constant) to i32, and
5030        // convert it to a vector with movd (S2V+shuffle to zero extend).
5031        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5032        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5033        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5034
5035        // Now we have our 32-bit value zero extended in the low element of
5036        // a vector.  If Idx != 0, swizzle it into place.
5037        if (Idx != 0) {
5038          SmallVector<int, 4> Mask;
5039          Mask.push_back(Idx);
5040          for (unsigned i = 1; i != VecElts; ++i)
5041            Mask.push_back(i);
5042          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5043                                      DAG.getUNDEF(Item.getValueType()),
5044                                      &Mask[0]);
5045        }
5046        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5047      }
5048    }
5049
5050    // If we have a constant or non-constant insertion into the low element of
5051    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5052    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5053    // depending on what the source datatype is.
5054    if (Idx == 0) {
5055      if (NumZero == 0)
5056        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5057
5058      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5059          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5060        if (VT.getSizeInBits() == 256) {
5061          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5062          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5063                             Item, DAG.getIntPtrConstant(0));
5064        }
5065        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5066        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5067        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5068        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5069      }
5070
5071      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5072        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5073        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5074        if (VT.getSizeInBits() == 256) {
5075          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5076          Item = Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5077                                    DAG, dl);
5078        } else {
5079          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5080          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5081        }
5082        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5083      }
5084    }
5085
5086    // Is it a vector logical left shift?
5087    if (NumElems == 2 && Idx == 1 &&
5088        X86::isZeroNode(Op.getOperand(0)) &&
5089        !X86::isZeroNode(Op.getOperand(1))) {
5090      unsigned NumBits = VT.getSizeInBits();
5091      return getVShift(true, VT,
5092                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5093                                   VT, Op.getOperand(1)),
5094                       NumBits/2, DAG, *this, dl);
5095    }
5096
5097    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5098      return SDValue();
5099
5100    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5101    // is a non-constant being inserted into an element other than the low one,
5102    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5103    // movd/movss) to move this into the low element, then shuffle it into
5104    // place.
5105    if (EVTBits == 32) {
5106      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5107
5108      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5109      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5110      SmallVector<int, 8> MaskVec;
5111      for (unsigned i = 0; i < NumElems; i++)
5112        MaskVec.push_back(i == Idx ? 0 : 1);
5113      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5114    }
5115  }
5116
5117  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5118  if (Values.size() == 1) {
5119    if (EVTBits == 32) {
5120      // Instead of a shuffle like this:
5121      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5122      // Check if it's possible to issue this instead.
5123      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5124      unsigned Idx = CountTrailingZeros_32(NonZeros);
5125      SDValue Item = Op.getOperand(Idx);
5126      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5127        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5128    }
5129    return SDValue();
5130  }
5131
5132  // A vector full of immediates; various special cases are already
5133  // handled, so this is best done with a single constant-pool load.
5134  if (IsAllConstants)
5135    return SDValue();
5136
5137  // For AVX-length vectors, build the individual 128-bit pieces and use
5138  // shuffles to put them in place.
5139  if (VT.getSizeInBits() == 256) {
5140    SmallVector<SDValue, 32> V;
5141    for (unsigned i = 0; i != NumElems; ++i)
5142      V.push_back(Op.getOperand(i));
5143
5144    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5145
5146    // Build both the lower and upper subvector.
5147    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5148    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5149                                NumElems/2);
5150
5151    // Recreate the wider vector with the lower and upper part.
5152    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5153                                DAG.getConstant(0, MVT::i32), DAG, dl);
5154    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5155                              DAG, dl);
5156  }
5157
5158  // Let legalizer expand 2-wide build_vectors.
5159  if (EVTBits == 64) {
5160    if (NumNonZero == 1) {
5161      // One half is zero or undef.
5162      unsigned Idx = CountTrailingZeros_32(NonZeros);
5163      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5164                                 Op.getOperand(Idx));
5165      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5166    }
5167    return SDValue();
5168  }
5169
5170  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5171  if (EVTBits == 8 && NumElems == 16) {
5172    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5173                                        Subtarget, *this);
5174    if (V.getNode()) return V;
5175  }
5176
5177  if (EVTBits == 16 && NumElems == 8) {
5178    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5179                                      Subtarget, *this);
5180    if (V.getNode()) return V;
5181  }
5182
5183  // If element VT is == 32 bits, turn it into a number of shuffles.
5184  SmallVector<SDValue, 8> V(NumElems);
5185  if (NumElems == 4 && NumZero > 0) {
5186    for (unsigned i = 0; i < 4; ++i) {
5187      bool isZero = !(NonZeros & (1 << i));
5188      if (isZero)
5189        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5190      else
5191        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5192    }
5193
5194    for (unsigned i = 0; i < 2; ++i) {
5195      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5196        default: break;
5197        case 0:
5198          V[i] = V[i*2];  // Must be a zero vector.
5199          break;
5200        case 1:
5201          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5202          break;
5203        case 2:
5204          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5205          break;
5206        case 3:
5207          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5208          break;
5209      }
5210    }
5211
5212    bool Reverse1 = (NonZeros & 0x3) == 2;
5213    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5214    int MaskVec[] = {
5215      Reverse1 ? 1 : 0,
5216      Reverse1 ? 0 : 1,
5217      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5218      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5219    };
5220    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5221  }
5222
5223  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5224    // Check for a build vector of consecutive loads.
5225    for (unsigned i = 0; i < NumElems; ++i)
5226      V[i] = Op.getOperand(i);
5227
5228    // Check for elements which are consecutive loads.
5229    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5230    if (LD.getNode())
5231      return LD;
5232
5233    // For SSE 4.1, use insertps to put the high elements into the low element.
5234    if (getSubtarget()->hasSSE41()) {
5235      SDValue Result;
5236      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5237        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5238      else
5239        Result = DAG.getUNDEF(VT);
5240
5241      for (unsigned i = 1; i < NumElems; ++i) {
5242        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5243        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5244                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5245      }
5246      return Result;
5247    }
5248
5249    // Otherwise, expand into a number of unpckl*, start by extending each of
5250    // our (non-undef) elements to the full vector width with the element in the
5251    // bottom slot of the vector (which generates no code for SSE).
5252    for (unsigned i = 0; i < NumElems; ++i) {
5253      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5254        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5255      else
5256        V[i] = DAG.getUNDEF(VT);
5257    }
5258
5259    // Next, we iteratively mix elements, e.g. for v4f32:
5260    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5261    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5262    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5263    unsigned EltStride = NumElems >> 1;
5264    while (EltStride != 0) {
5265      for (unsigned i = 0; i < EltStride; ++i) {
5266        // If V[i+EltStride] is undef and this is the first round of mixing,
5267        // then it is safe to just drop this shuffle: V[i] is already in the
5268        // right place, the one element (since it's the first round) being
5269        // inserted as undef can be dropped.  This isn't safe for successive
5270        // rounds because they will permute elements within both vectors.
5271        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5272            EltStride == NumElems/2)
5273          continue;
5274
5275        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5276      }
5277      EltStride >>= 1;
5278    }
5279    return V[0];
5280  }
5281  return SDValue();
5282}
5283
5284// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5285// them in a MMX register.  This is better than doing a stack convert.
5286static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5287  DebugLoc dl = Op.getDebugLoc();
5288  EVT ResVT = Op.getValueType();
5289
5290  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5291         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5292  int Mask[2];
5293  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5294  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5295  InVec = Op.getOperand(1);
5296  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5297    unsigned NumElts = ResVT.getVectorNumElements();
5298    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5299    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5300                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5301  } else {
5302    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5303    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5304    Mask[0] = 0; Mask[1] = 2;
5305    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5306  }
5307  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5308}
5309
5310// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5311// to create 256-bit vectors from two other 128-bit ones.
5312static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5313  DebugLoc dl = Op.getDebugLoc();
5314  EVT ResVT = Op.getValueType();
5315
5316  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5317
5318  SDValue V1 = Op.getOperand(0);
5319  SDValue V2 = Op.getOperand(1);
5320  unsigned NumElems = ResVT.getVectorNumElements();
5321
5322  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5323                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5324  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5325                            DAG, dl);
5326}
5327
5328SDValue
5329X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5330  EVT ResVT = Op.getValueType();
5331
5332  assert(Op.getNumOperands() == 2);
5333  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5334         "Unsupported CONCAT_VECTORS for value type");
5335
5336  // We support concatenate two MMX registers and place them in a MMX register.
5337  // This is better than doing a stack convert.
5338  if (ResVT.is128BitVector())
5339    return LowerMMXCONCAT_VECTORS(Op, DAG);
5340
5341  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5342  // from two other 128-bit ones.
5343  return LowerAVXCONCAT_VECTORS(Op, DAG);
5344}
5345
5346// v8i16 shuffles - Prefer shuffles in the following order:
5347// 1. [all]   pshuflw, pshufhw, optional move
5348// 2. [ssse3] 1 x pshufb
5349// 3. [ssse3] 2 x pshufb + 1 x por
5350// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5351SDValue
5352X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5353                                            SelectionDAG &DAG) const {
5354  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5355  SDValue V1 = SVOp->getOperand(0);
5356  SDValue V2 = SVOp->getOperand(1);
5357  DebugLoc dl = SVOp->getDebugLoc();
5358  SmallVector<int, 8> MaskVals;
5359
5360  // Determine if more than 1 of the words in each of the low and high quadwords
5361  // of the result come from the same quadword of one of the two inputs.  Undef
5362  // mask values count as coming from any quadword, for better codegen.
5363  unsigned LoQuad[] = { 0, 0, 0, 0 };
5364  unsigned HiQuad[] = { 0, 0, 0, 0 };
5365  std::bitset<4> InputQuads;
5366  for (unsigned i = 0; i < 8; ++i) {
5367    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5368    int EltIdx = SVOp->getMaskElt(i);
5369    MaskVals.push_back(EltIdx);
5370    if (EltIdx < 0) {
5371      ++Quad[0];
5372      ++Quad[1];
5373      ++Quad[2];
5374      ++Quad[3];
5375      continue;
5376    }
5377    ++Quad[EltIdx / 4];
5378    InputQuads.set(EltIdx / 4);
5379  }
5380
5381  int BestLoQuad = -1;
5382  unsigned MaxQuad = 1;
5383  for (unsigned i = 0; i < 4; ++i) {
5384    if (LoQuad[i] > MaxQuad) {
5385      BestLoQuad = i;
5386      MaxQuad = LoQuad[i];
5387    }
5388  }
5389
5390  int BestHiQuad = -1;
5391  MaxQuad = 1;
5392  for (unsigned i = 0; i < 4; ++i) {
5393    if (HiQuad[i] > MaxQuad) {
5394      BestHiQuad = i;
5395      MaxQuad = HiQuad[i];
5396    }
5397  }
5398
5399  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5400  // of the two input vectors, shuffle them into one input vector so only a
5401  // single pshufb instruction is necessary. If There are more than 2 input
5402  // quads, disable the next transformation since it does not help SSSE3.
5403  bool V1Used = InputQuads[0] || InputQuads[1];
5404  bool V2Used = InputQuads[2] || InputQuads[3];
5405  if (Subtarget->hasSSSE3()) {
5406    if (InputQuads.count() == 2 && V1Used && V2Used) {
5407      BestLoQuad = InputQuads[0] ? 0 : 1;
5408      BestHiQuad = InputQuads[2] ? 2 : 3;
5409    }
5410    if (InputQuads.count() > 2) {
5411      BestLoQuad = -1;
5412      BestHiQuad = -1;
5413    }
5414  }
5415
5416  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5417  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5418  // words from all 4 input quadwords.
5419  SDValue NewV;
5420  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5421    int MaskV[] = {
5422      BestLoQuad < 0 ? 0 : BestLoQuad,
5423      BestHiQuad < 0 ? 1 : BestHiQuad
5424    };
5425    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5426                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5427                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5428    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5429
5430    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5431    // source words for the shuffle, to aid later transformations.
5432    bool AllWordsInNewV = true;
5433    bool InOrder[2] = { true, true };
5434    for (unsigned i = 0; i != 8; ++i) {
5435      int idx = MaskVals[i];
5436      if (idx != (int)i)
5437        InOrder[i/4] = false;
5438      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5439        continue;
5440      AllWordsInNewV = false;
5441      break;
5442    }
5443
5444    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5445    if (AllWordsInNewV) {
5446      for (int i = 0; i != 8; ++i) {
5447        int idx = MaskVals[i];
5448        if (idx < 0)
5449          continue;
5450        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5451        if ((idx != i) && idx < 4)
5452          pshufhw = false;
5453        if ((idx != i) && idx > 3)
5454          pshuflw = false;
5455      }
5456      V1 = NewV;
5457      V2Used = false;
5458      BestLoQuad = 0;
5459      BestHiQuad = 1;
5460    }
5461
5462    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5463    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5464    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5465      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5466      unsigned TargetMask = 0;
5467      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5468                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5469      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5470      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5471                             getShufflePSHUFLWImmediate(SVOp);
5472      V1 = NewV.getOperand(0);
5473      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5474    }
5475  }
5476
5477  // If we have SSSE3, and all words of the result are from 1 input vector,
5478  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5479  // is present, fall back to case 4.
5480  if (Subtarget->hasSSSE3()) {
5481    SmallVector<SDValue,16> pshufbMask;
5482
5483    // If we have elements from both input vectors, set the high bit of the
5484    // shuffle mask element to zero out elements that come from V2 in the V1
5485    // mask, and elements that come from V1 in the V2 mask, so that the two
5486    // results can be OR'd together.
5487    bool TwoInputs = V1Used && V2Used;
5488    for (unsigned i = 0; i != 8; ++i) {
5489      int EltIdx = MaskVals[i] * 2;
5490      if (TwoInputs && (EltIdx >= 16)) {
5491        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5492        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5493        continue;
5494      }
5495      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5496      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5497    }
5498    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5499    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5500                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5501                                 MVT::v16i8, &pshufbMask[0], 16));
5502    if (!TwoInputs)
5503      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5504
5505    // Calculate the shuffle mask for the second input, shuffle it, and
5506    // OR it with the first shuffled input.
5507    pshufbMask.clear();
5508    for (unsigned i = 0; i != 8; ++i) {
5509      int EltIdx = MaskVals[i] * 2;
5510      if (EltIdx < 16) {
5511        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5512        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5513        continue;
5514      }
5515      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5516      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5517    }
5518    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5519    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5520                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5521                                 MVT::v16i8, &pshufbMask[0], 16));
5522    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5523    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5524  }
5525
5526  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5527  // and update MaskVals with new element order.
5528  std::bitset<8> InOrder;
5529  if (BestLoQuad >= 0) {
5530    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5531    for (int i = 0; i != 4; ++i) {
5532      int idx = MaskVals[i];
5533      if (idx < 0) {
5534        InOrder.set(i);
5535      } else if ((idx / 4) == BestLoQuad) {
5536        MaskV[i] = idx & 3;
5537        InOrder.set(i);
5538      }
5539    }
5540    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5541                                &MaskV[0]);
5542
5543    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5544      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5545      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5546                                  NewV.getOperand(0),
5547                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5548    }
5549  }
5550
5551  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5552  // and update MaskVals with the new element order.
5553  if (BestHiQuad >= 0) {
5554    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5555    for (unsigned i = 4; i != 8; ++i) {
5556      int idx = MaskVals[i];
5557      if (idx < 0) {
5558        InOrder.set(i);
5559      } else if ((idx / 4) == BestHiQuad) {
5560        MaskV[i] = (idx & 3) + 4;
5561        InOrder.set(i);
5562      }
5563    }
5564    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5565                                &MaskV[0]);
5566
5567    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5568      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5569      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5570                                  NewV.getOperand(0),
5571                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5572    }
5573  }
5574
5575  // In case BestHi & BestLo were both -1, which means each quadword has a word
5576  // from each of the four input quadwords, calculate the InOrder bitvector now
5577  // before falling through to the insert/extract cleanup.
5578  if (BestLoQuad == -1 && BestHiQuad == -1) {
5579    NewV = V1;
5580    for (int i = 0; i != 8; ++i)
5581      if (MaskVals[i] < 0 || MaskVals[i] == i)
5582        InOrder.set(i);
5583  }
5584
5585  // The other elements are put in the right place using pextrw and pinsrw.
5586  for (unsigned i = 0; i != 8; ++i) {
5587    if (InOrder[i])
5588      continue;
5589    int EltIdx = MaskVals[i];
5590    if (EltIdx < 0)
5591      continue;
5592    SDValue ExtOp = (EltIdx < 8)
5593    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5594                  DAG.getIntPtrConstant(EltIdx))
5595    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5596                  DAG.getIntPtrConstant(EltIdx - 8));
5597    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5598                       DAG.getIntPtrConstant(i));
5599  }
5600  return NewV;
5601}
5602
5603// v16i8 shuffles - Prefer shuffles in the following order:
5604// 1. [ssse3] 1 x pshufb
5605// 2. [ssse3] 2 x pshufb + 1 x por
5606// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5607static
5608SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5609                                 SelectionDAG &DAG,
5610                                 const X86TargetLowering &TLI) {
5611  SDValue V1 = SVOp->getOperand(0);
5612  SDValue V2 = SVOp->getOperand(1);
5613  DebugLoc dl = SVOp->getDebugLoc();
5614  ArrayRef<int> MaskVals = SVOp->getMask();
5615
5616  // If we have SSSE3, case 1 is generated when all result bytes come from
5617  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5618  // present, fall back to case 3.
5619  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5620  bool V1Only = true;
5621  bool V2Only = true;
5622  for (unsigned i = 0; i < 16; ++i) {
5623    int EltIdx = MaskVals[i];
5624    if (EltIdx < 0)
5625      continue;
5626    if (EltIdx < 16)
5627      V2Only = false;
5628    else
5629      V1Only = false;
5630  }
5631
5632  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5633  if (TLI.getSubtarget()->hasSSSE3()) {
5634    SmallVector<SDValue,16> pshufbMask;
5635
5636    // If all result elements are from one input vector, then only translate
5637    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5638    //
5639    // Otherwise, we have elements from both input vectors, and must zero out
5640    // elements that come from V2 in the first mask, and V1 in the second mask
5641    // so that we can OR them together.
5642    bool TwoInputs = !(V1Only || V2Only);
5643    for (unsigned i = 0; i != 16; ++i) {
5644      int EltIdx = MaskVals[i];
5645      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5646        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5647        continue;
5648      }
5649      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5650    }
5651    // If all the elements are from V2, assign it to V1 and return after
5652    // building the first pshufb.
5653    if (V2Only)
5654      V1 = V2;
5655    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5656                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5657                                 MVT::v16i8, &pshufbMask[0], 16));
5658    if (!TwoInputs)
5659      return V1;
5660
5661    // Calculate the shuffle mask for the second input, shuffle it, and
5662    // OR it with the first shuffled input.
5663    pshufbMask.clear();
5664    for (unsigned i = 0; i != 16; ++i) {
5665      int EltIdx = MaskVals[i];
5666      if (EltIdx < 16) {
5667        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5668        continue;
5669      }
5670      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5671    }
5672    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5673                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5674                                 MVT::v16i8, &pshufbMask[0], 16));
5675    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5676  }
5677
5678  // No SSSE3 - Calculate in place words and then fix all out of place words
5679  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5680  // the 16 different words that comprise the two doublequadword input vectors.
5681  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5682  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5683  SDValue NewV = V2Only ? V2 : V1;
5684  for (int i = 0; i != 8; ++i) {
5685    int Elt0 = MaskVals[i*2];
5686    int Elt1 = MaskVals[i*2+1];
5687
5688    // This word of the result is all undef, skip it.
5689    if (Elt0 < 0 && Elt1 < 0)
5690      continue;
5691
5692    // This word of the result is already in the correct place, skip it.
5693    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5694      continue;
5695    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5696      continue;
5697
5698    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5699    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5700    SDValue InsElt;
5701
5702    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5703    // using a single extract together, load it and store it.
5704    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5705      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5706                           DAG.getIntPtrConstant(Elt1 / 2));
5707      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5708                        DAG.getIntPtrConstant(i));
5709      continue;
5710    }
5711
5712    // If Elt1 is defined, extract it from the appropriate source.  If the
5713    // source byte is not also odd, shift the extracted word left 8 bits
5714    // otherwise clear the bottom 8 bits if we need to do an or.
5715    if (Elt1 >= 0) {
5716      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5717                           DAG.getIntPtrConstant(Elt1 / 2));
5718      if ((Elt1 & 1) == 0)
5719        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5720                             DAG.getConstant(8,
5721                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5722      else if (Elt0 >= 0)
5723        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5724                             DAG.getConstant(0xFF00, MVT::i16));
5725    }
5726    // If Elt0 is defined, extract it from the appropriate source.  If the
5727    // source byte is not also even, shift the extracted word right 8 bits. If
5728    // Elt1 was also defined, OR the extracted values together before
5729    // inserting them in the result.
5730    if (Elt0 >= 0) {
5731      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5732                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5733      if ((Elt0 & 1) != 0)
5734        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5735                              DAG.getConstant(8,
5736                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5737      else if (Elt1 >= 0)
5738        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5739                             DAG.getConstant(0x00FF, MVT::i16));
5740      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5741                         : InsElt0;
5742    }
5743    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5744                       DAG.getIntPtrConstant(i));
5745  }
5746  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5747}
5748
5749/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5750/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5751/// done when every pair / quad of shuffle mask elements point to elements in
5752/// the right sequence. e.g.
5753/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5754static
5755SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5756                                 SelectionDAG &DAG, DebugLoc dl) {
5757  EVT VT = SVOp->getValueType(0);
5758  SDValue V1 = SVOp->getOperand(0);
5759  SDValue V2 = SVOp->getOperand(1);
5760  unsigned NumElems = VT.getVectorNumElements();
5761  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5762  EVT NewVT;
5763  switch (VT.getSimpleVT().SimpleTy) {
5764  default: llvm_unreachable("Unexpected!");
5765  case MVT::v4f32: NewVT = MVT::v2f64; break;
5766  case MVT::v4i32: NewVT = MVT::v2i64; break;
5767  case MVT::v8i16: NewVT = MVT::v4i32; break;
5768  case MVT::v16i8: NewVT = MVT::v4i32; break;
5769  }
5770
5771  int Scale = NumElems / NewWidth;
5772  SmallVector<int, 8> MaskVec;
5773  for (unsigned i = 0; i < NumElems; i += Scale) {
5774    int StartIdx = -1;
5775    for (int j = 0; j < Scale; ++j) {
5776      int EltIdx = SVOp->getMaskElt(i+j);
5777      if (EltIdx < 0)
5778        continue;
5779      if (StartIdx == -1)
5780        StartIdx = EltIdx - (EltIdx % Scale);
5781      if (EltIdx != StartIdx + j)
5782        return SDValue();
5783    }
5784    if (StartIdx == -1)
5785      MaskVec.push_back(-1);
5786    else
5787      MaskVec.push_back(StartIdx / Scale);
5788  }
5789
5790  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5791  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5792  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5793}
5794
5795/// getVZextMovL - Return a zero-extending vector move low node.
5796///
5797static SDValue getVZextMovL(EVT VT, EVT OpVT,
5798                            SDValue SrcOp, SelectionDAG &DAG,
5799                            const X86Subtarget *Subtarget, DebugLoc dl) {
5800  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5801    LoadSDNode *LD = NULL;
5802    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5803      LD = dyn_cast<LoadSDNode>(SrcOp);
5804    if (!LD) {
5805      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5806      // instead.
5807      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5808      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5809          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5810          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5811          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5812        // PR2108
5813        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5814        return DAG.getNode(ISD::BITCAST, dl, VT,
5815                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5816                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5817                                                   OpVT,
5818                                                   SrcOp.getOperand(0)
5819                                                          .getOperand(0))));
5820      }
5821    }
5822  }
5823
5824  return DAG.getNode(ISD::BITCAST, dl, VT,
5825                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5826                                 DAG.getNode(ISD::BITCAST, dl,
5827                                             OpVT, SrcOp)));
5828}
5829
5830/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5831/// which could not be matched by any known target speficic shuffle
5832static SDValue
5833LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5834  EVT VT = SVOp->getValueType(0);
5835
5836  unsigned NumElems = VT.getVectorNumElements();
5837  unsigned NumLaneElems = NumElems / 2;
5838
5839  int MinRange[2][2] = { { static_cast<int>(NumElems),
5840                           static_cast<int>(NumElems) },
5841                         { static_cast<int>(NumElems),
5842                           static_cast<int>(NumElems) } };
5843  int MaxRange[2][2] = { { -1, -1 }, { -1, -1 } };
5844
5845  // Collect used ranges for each source in each lane
5846  for (unsigned l = 0; l < 2; ++l) {
5847    unsigned LaneStart = l*NumLaneElems;
5848    for (unsigned i = 0; i != NumLaneElems; ++i) {
5849      int Idx = SVOp->getMaskElt(i+LaneStart);
5850      if (Idx < 0)
5851        continue;
5852
5853      int Input = 0;
5854      if (Idx >= (int)NumElems) {
5855        Idx -= NumElems;
5856        Input = 1;
5857      }
5858
5859      if (Idx > MaxRange[l][Input])
5860        MaxRange[l][Input] = Idx;
5861      if (Idx < MinRange[l][Input])
5862        MinRange[l][Input] = Idx;
5863    }
5864  }
5865
5866  // Make sure each range is 128-bits
5867  int ExtractIdx[2][2] = { { -1, -1 }, { -1, -1 } };
5868  for (unsigned l = 0; l < 2; ++l) {
5869    for (unsigned Input = 0; Input < 2; ++Input) {
5870      if (MinRange[l][Input] == (int)NumElems && MaxRange[l][Input] < 0)
5871        continue;
5872
5873      if (MinRange[l][Input] >= 0 && MaxRange[l][Input] < (int)NumLaneElems)
5874        ExtractIdx[l][Input] = 0;
5875      else if (MinRange[l][Input] >= (int)NumLaneElems &&
5876               MaxRange[l][Input] < (int)NumElems)
5877        ExtractIdx[l][Input] = NumLaneElems;
5878      else
5879        return SDValue();
5880    }
5881  }
5882
5883  DebugLoc dl = SVOp->getDebugLoc();
5884  MVT EltVT = VT.getVectorElementType().getSimpleVT();
5885  EVT NVT = MVT::getVectorVT(EltVT, NumElems/2);
5886
5887  SDValue Ops[2][2];
5888  for (unsigned l = 0; l < 2; ++l) {
5889    for (unsigned Input = 0; Input < 2; ++Input) {
5890      if (ExtractIdx[l][Input] >= 0)
5891        Ops[l][Input] = Extract128BitVector(SVOp->getOperand(Input),
5892                                DAG.getConstant(ExtractIdx[l][Input], MVT::i32),
5893                                                DAG, dl);
5894      else
5895        Ops[l][Input] = DAG.getUNDEF(NVT);
5896    }
5897  }
5898
5899  // Generate 128-bit shuffles
5900  SmallVector<int, 16> Mask1, Mask2;
5901  for (unsigned i = 0; i != NumLaneElems; ++i) {
5902    int Elt = SVOp->getMaskElt(i);
5903    if (Elt >= (int)NumElems) {
5904      Elt %= NumLaneElems;
5905      Elt += NumLaneElems;
5906    } else if (Elt >= 0) {
5907      Elt %= NumLaneElems;
5908    }
5909    Mask1.push_back(Elt);
5910  }
5911  for (unsigned i = NumLaneElems; i != NumElems; ++i) {
5912    int Elt = SVOp->getMaskElt(i);
5913    if (Elt >= (int)NumElems) {
5914      Elt %= NumLaneElems;
5915      Elt += NumLaneElems;
5916    } else if (Elt >= 0) {
5917      Elt %= NumLaneElems;
5918    }
5919    Mask2.push_back(Elt);
5920  }
5921
5922  SDValue Shuf1 = DAG.getVectorShuffle(NVT, dl, Ops[0][0], Ops[0][1], &Mask1[0]);
5923  SDValue Shuf2 = DAG.getVectorShuffle(NVT, dl, Ops[1][0], Ops[1][1], &Mask2[0]);
5924
5925  // Concatenate the result back
5926  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Shuf1,
5927                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5928  return Insert128BitVector(V, Shuf2, DAG.getConstant(NumElems/2, MVT::i32),
5929                            DAG, dl);
5930}
5931
5932/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
5933/// 4 elements, and match them with several different shuffle types.
5934static SDValue
5935LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5936  SDValue V1 = SVOp->getOperand(0);
5937  SDValue V2 = SVOp->getOperand(1);
5938  DebugLoc dl = SVOp->getDebugLoc();
5939  EVT VT = SVOp->getValueType(0);
5940
5941  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
5942
5943  std::pair<int, int> Locs[4];
5944  int Mask1[] = { -1, -1, -1, -1 };
5945  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
5946
5947  unsigned NumHi = 0;
5948  unsigned NumLo = 0;
5949  for (unsigned i = 0; i != 4; ++i) {
5950    int Idx = PermMask[i];
5951    if (Idx < 0) {
5952      Locs[i] = std::make_pair(-1, -1);
5953    } else {
5954      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5955      if (Idx < 4) {
5956        Locs[i] = std::make_pair(0, NumLo);
5957        Mask1[NumLo] = Idx;
5958        NumLo++;
5959      } else {
5960        Locs[i] = std::make_pair(1, NumHi);
5961        if (2+NumHi < 4)
5962          Mask1[2+NumHi] = Idx;
5963        NumHi++;
5964      }
5965    }
5966  }
5967
5968  if (NumLo <= 2 && NumHi <= 2) {
5969    // If no more than two elements come from either vector. This can be
5970    // implemented with two shuffles. First shuffle gather the elements.
5971    // The second shuffle, which takes the first shuffle as both of its
5972    // vector operands, put the elements into the right order.
5973    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5974
5975    int Mask2[] = { -1, -1, -1, -1 };
5976
5977    for (unsigned i = 0; i != 4; ++i)
5978      if (Locs[i].first != -1) {
5979        unsigned Idx = (i < 2) ? 0 : 4;
5980        Idx += Locs[i].first * 2 + Locs[i].second;
5981        Mask2[i] = Idx;
5982      }
5983
5984    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
5985  } else if (NumLo == 3 || NumHi == 3) {
5986    // Otherwise, we must have three elements from one vector, call it X, and
5987    // one element from the other, call it Y.  First, use a shufps to build an
5988    // intermediate vector with the one element from Y and the element from X
5989    // that will be in the same half in the final destination (the indexes don't
5990    // matter). Then, use a shufps to build the final vector, taking the half
5991    // containing the element from Y from the intermediate, and the other half
5992    // from X.
5993    if (NumHi == 3) {
5994      // Normalize it so the 3 elements come from V1.
5995      CommuteVectorShuffleMask(PermMask, 4);
5996      std::swap(V1, V2);
5997    }
5998
5999    // Find the element from V2.
6000    unsigned HiIndex;
6001    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6002      int Val = PermMask[HiIndex];
6003      if (Val < 0)
6004        continue;
6005      if (Val >= 4)
6006        break;
6007    }
6008
6009    Mask1[0] = PermMask[HiIndex];
6010    Mask1[1] = -1;
6011    Mask1[2] = PermMask[HiIndex^1];
6012    Mask1[3] = -1;
6013    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6014
6015    if (HiIndex >= 2) {
6016      Mask1[0] = PermMask[0];
6017      Mask1[1] = PermMask[1];
6018      Mask1[2] = HiIndex & 1 ? 6 : 4;
6019      Mask1[3] = HiIndex & 1 ? 4 : 6;
6020      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6021    } else {
6022      Mask1[0] = HiIndex & 1 ? 2 : 0;
6023      Mask1[1] = HiIndex & 1 ? 0 : 2;
6024      Mask1[2] = PermMask[2];
6025      Mask1[3] = PermMask[3];
6026      if (Mask1[2] >= 0)
6027        Mask1[2] += 4;
6028      if (Mask1[3] >= 0)
6029        Mask1[3] += 4;
6030      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6031    }
6032  }
6033
6034  // Break it into (shuffle shuffle_hi, shuffle_lo).
6035  int LoMask[] = { -1, -1, -1, -1 };
6036  int HiMask[] = { -1, -1, -1, -1 };
6037
6038  int *MaskPtr = LoMask;
6039  unsigned MaskIdx = 0;
6040  unsigned LoIdx = 0;
6041  unsigned HiIdx = 2;
6042  for (unsigned i = 0; i != 4; ++i) {
6043    if (i == 2) {
6044      MaskPtr = HiMask;
6045      MaskIdx = 1;
6046      LoIdx = 0;
6047      HiIdx = 2;
6048    }
6049    int Idx = PermMask[i];
6050    if (Idx < 0) {
6051      Locs[i] = std::make_pair(-1, -1);
6052    } else if (Idx < 4) {
6053      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6054      MaskPtr[LoIdx] = Idx;
6055      LoIdx++;
6056    } else {
6057      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6058      MaskPtr[HiIdx] = Idx;
6059      HiIdx++;
6060    }
6061  }
6062
6063  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6064  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6065  int MaskOps[] = { -1, -1, -1, -1 };
6066  for (unsigned i = 0; i != 4; ++i)
6067    if (Locs[i].first != -1)
6068      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6069  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6070}
6071
6072static bool MayFoldVectorLoad(SDValue V) {
6073  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6074    V = V.getOperand(0);
6075  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6076    V = V.getOperand(0);
6077  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6078      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6079    // BUILD_VECTOR (load), undef
6080    V = V.getOperand(0);
6081  if (MayFoldLoad(V))
6082    return true;
6083  return false;
6084}
6085
6086// FIXME: the version above should always be used. Since there's
6087// a bug where several vector shuffles can't be folded because the
6088// DAG is not updated during lowering and a node claims to have two
6089// uses while it only has one, use this version, and let isel match
6090// another instruction if the load really happens to have more than
6091// one use. Remove this version after this bug get fixed.
6092// rdar://8434668, PR8156
6093static bool RelaxedMayFoldVectorLoad(SDValue V) {
6094  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6095    V = V.getOperand(0);
6096  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6097    V = V.getOperand(0);
6098  if (ISD::isNormalLoad(V.getNode()))
6099    return true;
6100  return false;
6101}
6102
6103static
6104SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6105  EVT VT = Op.getValueType();
6106
6107  // Canonizalize to v2f64.
6108  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6109  return DAG.getNode(ISD::BITCAST, dl, VT,
6110                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6111                                          V1, DAG));
6112}
6113
6114static
6115SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6116                        bool HasSSE2) {
6117  SDValue V1 = Op.getOperand(0);
6118  SDValue V2 = Op.getOperand(1);
6119  EVT VT = Op.getValueType();
6120
6121  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6122
6123  if (HasSSE2 && VT == MVT::v2f64)
6124    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6125
6126  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6127  return DAG.getNode(ISD::BITCAST, dl, VT,
6128                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6129                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6130                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6131}
6132
6133static
6134SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6135  SDValue V1 = Op.getOperand(0);
6136  SDValue V2 = Op.getOperand(1);
6137  EVT VT = Op.getValueType();
6138
6139  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6140         "unsupported shuffle type");
6141
6142  if (V2.getOpcode() == ISD::UNDEF)
6143    V2 = V1;
6144
6145  // v4i32 or v4f32
6146  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6147}
6148
6149static
6150SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6151  SDValue V1 = Op.getOperand(0);
6152  SDValue V2 = Op.getOperand(1);
6153  EVT VT = Op.getValueType();
6154  unsigned NumElems = VT.getVectorNumElements();
6155
6156  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6157  // operand of these instructions is only memory, so check if there's a
6158  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6159  // same masks.
6160  bool CanFoldLoad = false;
6161
6162  // Trivial case, when V2 comes from a load.
6163  if (MayFoldVectorLoad(V2))
6164    CanFoldLoad = true;
6165
6166  // When V1 is a load, it can be folded later into a store in isel, example:
6167  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6168  //    turns into:
6169  //  (MOVLPSmr addr:$src1, VR128:$src2)
6170  // So, recognize this potential and also use MOVLPS or MOVLPD
6171  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6172    CanFoldLoad = true;
6173
6174  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6175  if (CanFoldLoad) {
6176    if (HasSSE2 && NumElems == 2)
6177      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6178
6179    if (NumElems == 4)
6180      // If we don't care about the second element, procede to use movss.
6181      if (SVOp->getMaskElt(1) != -1)
6182        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6183  }
6184
6185  // movl and movlp will both match v2i64, but v2i64 is never matched by
6186  // movl earlier because we make it strict to avoid messing with the movlp load
6187  // folding logic (see the code above getMOVLP call). Match it here then,
6188  // this is horrible, but will stay like this until we move all shuffle
6189  // matching to x86 specific nodes. Note that for the 1st condition all
6190  // types are matched with movsd.
6191  if (HasSSE2) {
6192    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6193    // as to remove this logic from here, as much as possible
6194    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6195      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6196    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6197  }
6198
6199  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6200
6201  // Invert the operand order and use SHUFPS to match it.
6202  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6203                              getShuffleSHUFImmediate(SVOp), DAG);
6204}
6205
6206static
6207SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6208                               const TargetLowering &TLI,
6209                               const X86Subtarget *Subtarget) {
6210  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6211  EVT VT = Op.getValueType();
6212  DebugLoc dl = Op.getDebugLoc();
6213  SDValue V1 = Op.getOperand(0);
6214  SDValue V2 = Op.getOperand(1);
6215
6216  if (isZeroShuffle(SVOp))
6217    return getZeroVector(VT, Subtarget, DAG, dl);
6218
6219  // Handle splat operations
6220  if (SVOp->isSplat()) {
6221    unsigned NumElem = VT.getVectorNumElements();
6222    int Size = VT.getSizeInBits();
6223
6224    // Use vbroadcast whenever the splat comes from a foldable load
6225    SDValue LD = isVectorBroadcast(Op, Subtarget);
6226    if (LD.getNode())
6227      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
6228
6229    // Handle splats by matching through known shuffle masks
6230    if ((Size == 128 && NumElem <= 4) ||
6231        (Size == 256 && NumElem < 8))
6232      return SDValue();
6233
6234    // All remaning splats are promoted to target supported vector shuffles.
6235    return PromoteSplat(SVOp, DAG);
6236  }
6237
6238  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6239  // do it!
6240  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6241    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6242    if (NewOp.getNode())
6243      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6244  } else if ((VT == MVT::v4i32 ||
6245             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6246    // FIXME: Figure out a cleaner way to do this.
6247    // Try to make use of movq to zero out the top part.
6248    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6249      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6250      if (NewOp.getNode()) {
6251        EVT NewVT = NewOp.getValueType();
6252        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6253                               NewVT, true, false))
6254          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6255                              DAG, Subtarget, dl);
6256      }
6257    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6258      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6259      if (NewOp.getNode()) {
6260        EVT NewVT = NewOp.getValueType();
6261        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6262          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6263                              DAG, Subtarget, dl);
6264      }
6265    }
6266  }
6267  return SDValue();
6268}
6269
6270SDValue
6271X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6272  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6273  SDValue V1 = Op.getOperand(0);
6274  SDValue V2 = Op.getOperand(1);
6275  EVT VT = Op.getValueType();
6276  DebugLoc dl = Op.getDebugLoc();
6277  unsigned NumElems = VT.getVectorNumElements();
6278  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6279  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6280  bool V1IsSplat = false;
6281  bool V2IsSplat = false;
6282  bool HasSSE2 = Subtarget->hasSSE2();
6283  bool HasAVX    = Subtarget->hasAVX();
6284  bool HasAVX2   = Subtarget->hasAVX2();
6285  MachineFunction &MF = DAG.getMachineFunction();
6286  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6287
6288  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6289
6290  if (V1IsUndef && V2IsUndef)
6291    return DAG.getUNDEF(VT);
6292
6293  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6294
6295  // Vector shuffle lowering takes 3 steps:
6296  //
6297  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6298  //    narrowing and commutation of operands should be handled.
6299  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6300  //    shuffle nodes.
6301  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6302  //    so the shuffle can be broken into other shuffles and the legalizer can
6303  //    try the lowering again.
6304  //
6305  // The general idea is that no vector_shuffle operation should be left to
6306  // be matched during isel, all of them must be converted to a target specific
6307  // node here.
6308
6309  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6310  // narrowing and commutation of operands should be handled. The actual code
6311  // doesn't include all of those, work in progress...
6312  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6313  if (NewOp.getNode())
6314    return NewOp;
6315
6316  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6317
6318  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6319  // unpckh_undef). Only use pshufd if speed is more important than size.
6320  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6321    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6322  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6323    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6324
6325  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6326      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6327    return getMOVDDup(Op, dl, V1, DAG);
6328
6329  if (isMOVHLPS_v_undef_Mask(M, VT))
6330    return getMOVHighToLow(Op, dl, DAG);
6331
6332  // Use to match splats
6333  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6334      (VT == MVT::v2f64 || VT == MVT::v2i64))
6335    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6336
6337  if (isPSHUFDMask(M, VT)) {
6338    // The actual implementation will match the mask in the if above and then
6339    // during isel it can match several different instructions, not only pshufd
6340    // as its name says, sad but true, emulate the behavior for now...
6341    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6342      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6343
6344    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6345
6346    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6347      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6348
6349    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6350      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6351
6352    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6353                                TargetMask, DAG);
6354  }
6355
6356  // Check if this can be converted into a logical shift.
6357  bool isLeft = false;
6358  unsigned ShAmt = 0;
6359  SDValue ShVal;
6360  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6361  if (isShift && ShVal.hasOneUse()) {
6362    // If the shifted value has multiple uses, it may be cheaper to use
6363    // v_set0 + movlhps or movhlps, etc.
6364    EVT EltVT = VT.getVectorElementType();
6365    ShAmt *= EltVT.getSizeInBits();
6366    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6367  }
6368
6369  if (isMOVLMask(M, VT)) {
6370    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6371      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6372    if (!isMOVLPMask(M, VT)) {
6373      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6374        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6375
6376      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6377        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6378    }
6379  }
6380
6381  // FIXME: fold these into legal mask.
6382  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6383    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6384
6385  if (isMOVHLPSMask(M, VT))
6386    return getMOVHighToLow(Op, dl, DAG);
6387
6388  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6389    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6390
6391  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6392    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6393
6394  if (isMOVLPMask(M, VT))
6395    return getMOVLP(Op, dl, DAG, HasSSE2);
6396
6397  if (ShouldXformToMOVHLPS(M, VT) ||
6398      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6399    return CommuteVectorShuffle(SVOp, DAG);
6400
6401  if (isShift) {
6402    // No better options. Use a vshldq / vsrldq.
6403    EVT EltVT = VT.getVectorElementType();
6404    ShAmt *= EltVT.getSizeInBits();
6405    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6406  }
6407
6408  bool Commuted = false;
6409  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6410  // 1,1,1,1 -> v8i16 though.
6411  V1IsSplat = isSplatVector(V1.getNode());
6412  V2IsSplat = isSplatVector(V2.getNode());
6413
6414  // Canonicalize the splat or undef, if present, to be on the RHS.
6415  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6416    CommuteVectorShuffleMask(M, NumElems);
6417    std::swap(V1, V2);
6418    std::swap(V1IsSplat, V2IsSplat);
6419    Commuted = true;
6420  }
6421
6422  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6423    // Shuffling low element of v1 into undef, just return v1.
6424    if (V2IsUndef)
6425      return V1;
6426    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6427    // the instruction selector will not match, so get a canonical MOVL with
6428    // swapped operands to undo the commute.
6429    return getMOVL(DAG, dl, VT, V2, V1);
6430  }
6431
6432  if (isUNPCKLMask(M, VT, HasAVX2))
6433    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6434
6435  if (isUNPCKHMask(M, VT, HasAVX2))
6436    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6437
6438  if (V2IsSplat) {
6439    // Normalize mask so all entries that point to V2 points to its first
6440    // element then try to match unpck{h|l} again. If match, return a
6441    // new vector_shuffle with the corrected mask.p
6442    SmallVector<int, 8> NewMask(M.begin(), M.end());
6443    NormalizeMask(NewMask, NumElems);
6444    if (isUNPCKLMask(NewMask, VT, HasAVX2, true)) {
6445      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6446    } else if (isUNPCKHMask(NewMask, VT, HasAVX2, true)) {
6447      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6448    }
6449  }
6450
6451  if (Commuted) {
6452    // Commute is back and try unpck* again.
6453    // FIXME: this seems wrong.
6454    CommuteVectorShuffleMask(M, NumElems);
6455    std::swap(V1, V2);
6456    std::swap(V1IsSplat, V2IsSplat);
6457    Commuted = false;
6458
6459    if (isUNPCKLMask(M, VT, HasAVX2))
6460      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6461
6462    if (isUNPCKHMask(M, VT, HasAVX2))
6463      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6464  }
6465
6466  // Normalize the node to match x86 shuffle ops if needed
6467  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6468    return CommuteVectorShuffle(SVOp, DAG);
6469
6470  // The checks below are all present in isShuffleMaskLegal, but they are
6471  // inlined here right now to enable us to directly emit target specific
6472  // nodes, and remove one by one until they don't return Op anymore.
6473
6474  if (isPALIGNRMask(M, VT, Subtarget))
6475    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6476                                getShufflePALIGNRImmediate(SVOp),
6477                                DAG);
6478
6479  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6480      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6481    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6482      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6483  }
6484
6485  if (isPSHUFHWMask(M, VT))
6486    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6487                                getShufflePSHUFHWImmediate(SVOp),
6488                                DAG);
6489
6490  if (isPSHUFLWMask(M, VT))
6491    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6492                                getShufflePSHUFLWImmediate(SVOp),
6493                                DAG);
6494
6495  if (isSHUFPMask(M, VT, HasAVX))
6496    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6497                                getShuffleSHUFImmediate(SVOp), DAG);
6498
6499  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6500    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6501  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6502    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6503
6504  //===--------------------------------------------------------------------===//
6505  // Generate target specific nodes for 128 or 256-bit shuffles only
6506  // supported in the AVX instruction set.
6507  //
6508
6509  // Handle VMOVDDUPY permutations
6510  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6511    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6512
6513  // Handle VPERMILPS/D* permutations
6514  if (isVPERMILPMask(M, VT, HasAVX)) {
6515    if (HasAVX2 && VT == MVT::v8i32)
6516      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6517                                  getShuffleSHUFImmediate(SVOp), DAG);
6518    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6519                                getShuffleSHUFImmediate(SVOp), DAG);
6520  }
6521
6522  // Handle VPERM2F128/VPERM2I128 permutations
6523  if (isVPERM2X128Mask(M, VT, HasAVX))
6524    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6525                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6526
6527  //===--------------------------------------------------------------------===//
6528  // Since no target specific shuffle was selected for this generic one,
6529  // lower it into other known shuffles. FIXME: this isn't true yet, but
6530  // this is the plan.
6531  //
6532
6533  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6534  if (VT == MVT::v8i16) {
6535    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6536    if (NewOp.getNode())
6537      return NewOp;
6538  }
6539
6540  if (VT == MVT::v16i8) {
6541    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6542    if (NewOp.getNode())
6543      return NewOp;
6544  }
6545
6546  // Handle all 128-bit wide vectors with 4 elements, and match them with
6547  // several different shuffle types.
6548  if (NumElems == 4 && VT.getSizeInBits() == 128)
6549    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6550
6551  // Handle general 256-bit shuffles
6552  if (VT.is256BitVector())
6553    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6554
6555  return SDValue();
6556}
6557
6558SDValue
6559X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6560                                                SelectionDAG &DAG) const {
6561  EVT VT = Op.getValueType();
6562  DebugLoc dl = Op.getDebugLoc();
6563
6564  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6565    return SDValue();
6566
6567  if (VT.getSizeInBits() == 8) {
6568    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6569                                    Op.getOperand(0), Op.getOperand(1));
6570    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6571                                    DAG.getValueType(VT));
6572    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6573  } else if (VT.getSizeInBits() == 16) {
6574    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6575    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6576    if (Idx == 0)
6577      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6578                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6579                                     DAG.getNode(ISD::BITCAST, dl,
6580                                                 MVT::v4i32,
6581                                                 Op.getOperand(0)),
6582                                     Op.getOperand(1)));
6583    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6584                                    Op.getOperand(0), Op.getOperand(1));
6585    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6586                                    DAG.getValueType(VT));
6587    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6588  } else if (VT == MVT::f32) {
6589    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6590    // the result back to FR32 register. It's only worth matching if the
6591    // result has a single use which is a store or a bitcast to i32.  And in
6592    // the case of a store, it's not worth it if the index is a constant 0,
6593    // because a MOVSSmr can be used instead, which is smaller and faster.
6594    if (!Op.hasOneUse())
6595      return SDValue();
6596    SDNode *User = *Op.getNode()->use_begin();
6597    if ((User->getOpcode() != ISD::STORE ||
6598         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6599          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6600        (User->getOpcode() != ISD::BITCAST ||
6601         User->getValueType(0) != MVT::i32))
6602      return SDValue();
6603    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6604                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6605                                              Op.getOperand(0)),
6606                                              Op.getOperand(1));
6607    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6608  } else if (VT == MVT::i32 || VT == MVT::i64) {
6609    // ExtractPS/pextrq works with constant index.
6610    if (isa<ConstantSDNode>(Op.getOperand(1)))
6611      return Op;
6612  }
6613  return SDValue();
6614}
6615
6616
6617SDValue
6618X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6619                                           SelectionDAG &DAG) const {
6620  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6621    return SDValue();
6622
6623  SDValue Vec = Op.getOperand(0);
6624  EVT VecVT = Vec.getValueType();
6625
6626  // If this is a 256-bit vector result, first extract the 128-bit vector and
6627  // then extract the element from the 128-bit vector.
6628  if (VecVT.getSizeInBits() == 256) {
6629    DebugLoc dl = Op.getNode()->getDebugLoc();
6630    unsigned NumElems = VecVT.getVectorNumElements();
6631    SDValue Idx = Op.getOperand(1);
6632    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6633
6634    // Get the 128-bit vector.
6635    bool Upper = IdxVal >= NumElems/2;
6636    Vec = Extract128BitVector(Vec,
6637                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6638
6639    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6640                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6641  }
6642
6643  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6644
6645  if (Subtarget->hasSSE41()) {
6646    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6647    if (Res.getNode())
6648      return Res;
6649  }
6650
6651  EVT VT = Op.getValueType();
6652  DebugLoc dl = Op.getDebugLoc();
6653  // TODO: handle v16i8.
6654  if (VT.getSizeInBits() == 16) {
6655    SDValue Vec = Op.getOperand(0);
6656    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6657    if (Idx == 0)
6658      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6659                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6660                                     DAG.getNode(ISD::BITCAST, dl,
6661                                                 MVT::v4i32, Vec),
6662                                     Op.getOperand(1)));
6663    // Transform it so it match pextrw which produces a 32-bit result.
6664    EVT EltVT = MVT::i32;
6665    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6666                                    Op.getOperand(0), Op.getOperand(1));
6667    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6668                                    DAG.getValueType(VT));
6669    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6670  } else if (VT.getSizeInBits() == 32) {
6671    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6672    if (Idx == 0)
6673      return Op;
6674
6675    // SHUFPS the element to the lowest double word, then movss.
6676    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6677    EVT VVT = Op.getOperand(0).getValueType();
6678    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6679                                       DAG.getUNDEF(VVT), Mask);
6680    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6681                       DAG.getIntPtrConstant(0));
6682  } else if (VT.getSizeInBits() == 64) {
6683    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6684    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6685    //        to match extract_elt for f64.
6686    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6687    if (Idx == 0)
6688      return Op;
6689
6690    // UNPCKHPD the element to the lowest double word, then movsd.
6691    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6692    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6693    int Mask[2] = { 1, -1 };
6694    EVT VVT = Op.getOperand(0).getValueType();
6695    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6696                                       DAG.getUNDEF(VVT), Mask);
6697    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6698                       DAG.getIntPtrConstant(0));
6699  }
6700
6701  return SDValue();
6702}
6703
6704SDValue
6705X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6706                                               SelectionDAG &DAG) const {
6707  EVT VT = Op.getValueType();
6708  EVT EltVT = VT.getVectorElementType();
6709  DebugLoc dl = Op.getDebugLoc();
6710
6711  SDValue N0 = Op.getOperand(0);
6712  SDValue N1 = Op.getOperand(1);
6713  SDValue N2 = Op.getOperand(2);
6714
6715  if (VT.getSizeInBits() == 256)
6716    return SDValue();
6717
6718  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6719      isa<ConstantSDNode>(N2)) {
6720    unsigned Opc;
6721    if (VT == MVT::v8i16)
6722      Opc = X86ISD::PINSRW;
6723    else if (VT == MVT::v16i8)
6724      Opc = X86ISD::PINSRB;
6725    else
6726      Opc = X86ISD::PINSRB;
6727
6728    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6729    // argument.
6730    if (N1.getValueType() != MVT::i32)
6731      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6732    if (N2.getValueType() != MVT::i32)
6733      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6734    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6735  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6736    // Bits [7:6] of the constant are the source select.  This will always be
6737    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6738    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6739    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6740    // Bits [5:4] of the constant are the destination select.  This is the
6741    //  value of the incoming immediate.
6742    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6743    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6744    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6745    // Create this as a scalar to vector..
6746    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6747    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6748  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6749             isa<ConstantSDNode>(N2)) {
6750    // PINSR* works with constant index.
6751    return Op;
6752  }
6753  return SDValue();
6754}
6755
6756SDValue
6757X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6758  EVT VT = Op.getValueType();
6759  EVT EltVT = VT.getVectorElementType();
6760
6761  DebugLoc dl = Op.getDebugLoc();
6762  SDValue N0 = Op.getOperand(0);
6763  SDValue N1 = Op.getOperand(1);
6764  SDValue N2 = Op.getOperand(2);
6765
6766  // If this is a 256-bit vector result, first extract the 128-bit vector,
6767  // insert the element into the extracted half and then place it back.
6768  if (VT.getSizeInBits() == 256) {
6769    if (!isa<ConstantSDNode>(N2))
6770      return SDValue();
6771
6772    // Get the desired 128-bit vector half.
6773    unsigned NumElems = VT.getVectorNumElements();
6774    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6775    bool Upper = IdxVal >= NumElems/2;
6776    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6777    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6778
6779    // Insert the element into the desired half.
6780    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6781                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6782
6783    // Insert the changed part back to the 256-bit vector
6784    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6785  }
6786
6787  if (Subtarget->hasSSE41())
6788    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6789
6790  if (EltVT == MVT::i8)
6791    return SDValue();
6792
6793  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6794    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6795    // as its second argument.
6796    if (N1.getValueType() != MVT::i32)
6797      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6798    if (N2.getValueType() != MVT::i32)
6799      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6800    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6801  }
6802  return SDValue();
6803}
6804
6805SDValue
6806X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6807  LLVMContext *Context = DAG.getContext();
6808  DebugLoc dl = Op.getDebugLoc();
6809  EVT OpVT = Op.getValueType();
6810
6811  // If this is a 256-bit vector result, first insert into a 128-bit
6812  // vector and then insert into the 256-bit vector.
6813  if (OpVT.getSizeInBits() > 128) {
6814    // Insert into a 128-bit vector.
6815    EVT VT128 = EVT::getVectorVT(*Context,
6816                                 OpVT.getVectorElementType(),
6817                                 OpVT.getVectorNumElements() / 2);
6818
6819    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6820
6821    // Insert the 128-bit vector.
6822    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6823                              DAG.getConstant(0, MVT::i32),
6824                              DAG, dl);
6825  }
6826
6827  if (Op.getValueType() == MVT::v1i64 &&
6828      Op.getOperand(0).getValueType() == MVT::i64)
6829    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6830
6831  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6832  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6833         "Expected an SSE type!");
6834  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6835                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6836}
6837
6838// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6839// a simple subregister reference or explicit instructions to grab
6840// upper bits of a vector.
6841SDValue
6842X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6843  if (Subtarget->hasAVX()) {
6844    DebugLoc dl = Op.getNode()->getDebugLoc();
6845    SDValue Vec = Op.getNode()->getOperand(0);
6846    SDValue Idx = Op.getNode()->getOperand(1);
6847
6848    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6849        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6850        return Extract128BitVector(Vec, Idx, DAG, dl);
6851    }
6852  }
6853  return SDValue();
6854}
6855
6856// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6857// simple superregister reference or explicit instructions to insert
6858// the upper bits of a vector.
6859SDValue
6860X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6861  if (Subtarget->hasAVX()) {
6862    DebugLoc dl = Op.getNode()->getDebugLoc();
6863    SDValue Vec = Op.getNode()->getOperand(0);
6864    SDValue SubVec = Op.getNode()->getOperand(1);
6865    SDValue Idx = Op.getNode()->getOperand(2);
6866
6867    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6868        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6869      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6870    }
6871  }
6872  return SDValue();
6873}
6874
6875// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
6876// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
6877// one of the above mentioned nodes. It has to be wrapped because otherwise
6878// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
6879// be used to form addressing mode. These wrapped nodes will be selected
6880// into MOV32ri.
6881SDValue
6882X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
6883  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
6884
6885  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6886  // global base reg.
6887  unsigned char OpFlag = 0;
6888  unsigned WrapperKind = X86ISD::Wrapper;
6889  CodeModel::Model M = getTargetMachine().getCodeModel();
6890
6891  if (Subtarget->isPICStyleRIPRel() &&
6892      (M == CodeModel::Small || M == CodeModel::Kernel))
6893    WrapperKind = X86ISD::WrapperRIP;
6894  else if (Subtarget->isPICStyleGOT())
6895    OpFlag = X86II::MO_GOTOFF;
6896  else if (Subtarget->isPICStyleStubPIC())
6897    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6898
6899  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
6900                                             CP->getAlignment(),
6901                                             CP->getOffset(), OpFlag);
6902  DebugLoc DL = CP->getDebugLoc();
6903  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6904  // With PIC, the address is actually $g + Offset.
6905  if (OpFlag) {
6906    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6907                         DAG.getNode(X86ISD::GlobalBaseReg,
6908                                     DebugLoc(), getPointerTy()),
6909                         Result);
6910  }
6911
6912  return Result;
6913}
6914
6915SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
6916  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
6917
6918  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6919  // global base reg.
6920  unsigned char OpFlag = 0;
6921  unsigned WrapperKind = X86ISD::Wrapper;
6922  CodeModel::Model M = getTargetMachine().getCodeModel();
6923
6924  if (Subtarget->isPICStyleRIPRel() &&
6925      (M == CodeModel::Small || M == CodeModel::Kernel))
6926    WrapperKind = X86ISD::WrapperRIP;
6927  else if (Subtarget->isPICStyleGOT())
6928    OpFlag = X86II::MO_GOTOFF;
6929  else if (Subtarget->isPICStyleStubPIC())
6930    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6931
6932  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
6933                                          OpFlag);
6934  DebugLoc DL = JT->getDebugLoc();
6935  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6936
6937  // With PIC, the address is actually $g + Offset.
6938  if (OpFlag)
6939    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6940                         DAG.getNode(X86ISD::GlobalBaseReg,
6941                                     DebugLoc(), getPointerTy()),
6942                         Result);
6943
6944  return Result;
6945}
6946
6947SDValue
6948X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
6949  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
6950
6951  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6952  // global base reg.
6953  unsigned char OpFlag = 0;
6954  unsigned WrapperKind = X86ISD::Wrapper;
6955  CodeModel::Model M = getTargetMachine().getCodeModel();
6956
6957  if (Subtarget->isPICStyleRIPRel() &&
6958      (M == CodeModel::Small || M == CodeModel::Kernel)) {
6959    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
6960      OpFlag = X86II::MO_GOTPCREL;
6961    WrapperKind = X86ISD::WrapperRIP;
6962  } else if (Subtarget->isPICStyleGOT()) {
6963    OpFlag = X86II::MO_GOT;
6964  } else if (Subtarget->isPICStyleStubPIC()) {
6965    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
6966  } else if (Subtarget->isPICStyleStubNoDynamic()) {
6967    OpFlag = X86II::MO_DARWIN_NONLAZY;
6968  }
6969
6970  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
6971
6972  DebugLoc DL = Op.getDebugLoc();
6973  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6974
6975
6976  // With PIC, the address is actually $g + Offset.
6977  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
6978      !Subtarget->is64Bit()) {
6979    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6980                         DAG.getNode(X86ISD::GlobalBaseReg,
6981                                     DebugLoc(), getPointerTy()),
6982                         Result);
6983  }
6984
6985  // For symbols that require a load from a stub to get the address, emit the
6986  // load.
6987  if (isGlobalStubReference(OpFlag))
6988    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
6989                         MachinePointerInfo::getGOT(), false, false, false, 0);
6990
6991  return Result;
6992}
6993
6994SDValue
6995X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
6996  // Create the TargetBlockAddressAddress node.
6997  unsigned char OpFlags =
6998    Subtarget->ClassifyBlockAddressReference();
6999  CodeModel::Model M = getTargetMachine().getCodeModel();
7000  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7001  DebugLoc dl = Op.getDebugLoc();
7002  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7003                                       /*isTarget=*/true, OpFlags);
7004
7005  if (Subtarget->isPICStyleRIPRel() &&
7006      (M == CodeModel::Small || M == CodeModel::Kernel))
7007    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7008  else
7009    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7010
7011  // With PIC, the address is actually $g + Offset.
7012  if (isGlobalRelativeToPICBase(OpFlags)) {
7013    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7014                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7015                         Result);
7016  }
7017
7018  return Result;
7019}
7020
7021SDValue
7022X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7023                                      int64_t Offset,
7024                                      SelectionDAG &DAG) const {
7025  // Create the TargetGlobalAddress node, folding in the constant
7026  // offset if it is legal.
7027  unsigned char OpFlags =
7028    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7029  CodeModel::Model M = getTargetMachine().getCodeModel();
7030  SDValue Result;
7031  if (OpFlags == X86II::MO_NO_FLAG &&
7032      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7033    // A direct static reference to a global.
7034    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7035    Offset = 0;
7036  } else {
7037    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7038  }
7039
7040  if (Subtarget->isPICStyleRIPRel() &&
7041      (M == CodeModel::Small || M == CodeModel::Kernel))
7042    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7043  else
7044    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7045
7046  // With PIC, the address is actually $g + Offset.
7047  if (isGlobalRelativeToPICBase(OpFlags)) {
7048    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7049                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7050                         Result);
7051  }
7052
7053  // For globals that require a load from a stub to get the address, emit the
7054  // load.
7055  if (isGlobalStubReference(OpFlags))
7056    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7057                         MachinePointerInfo::getGOT(), false, false, false, 0);
7058
7059  // If there was a non-zero offset that we didn't fold, create an explicit
7060  // addition for it.
7061  if (Offset != 0)
7062    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7063                         DAG.getConstant(Offset, getPointerTy()));
7064
7065  return Result;
7066}
7067
7068SDValue
7069X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7070  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7071  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7072  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7073}
7074
7075static SDValue
7076GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7077           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7078           unsigned char OperandFlags) {
7079  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7080  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7081  DebugLoc dl = GA->getDebugLoc();
7082  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7083                                           GA->getValueType(0),
7084                                           GA->getOffset(),
7085                                           OperandFlags);
7086  if (InFlag) {
7087    SDValue Ops[] = { Chain,  TGA, *InFlag };
7088    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7089  } else {
7090    SDValue Ops[]  = { Chain, TGA };
7091    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7092  }
7093
7094  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7095  MFI->setAdjustsStack(true);
7096
7097  SDValue Flag = Chain.getValue(1);
7098  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7099}
7100
7101// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7102static SDValue
7103LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7104                                const EVT PtrVT) {
7105  SDValue InFlag;
7106  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7107  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7108                                     DAG.getNode(X86ISD::GlobalBaseReg,
7109                                                 DebugLoc(), PtrVT), InFlag);
7110  InFlag = Chain.getValue(1);
7111
7112  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7113}
7114
7115// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7116static SDValue
7117LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7118                                const EVT PtrVT) {
7119  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7120                    X86::RAX, X86II::MO_TLSGD);
7121}
7122
7123// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7124// "local exec" model.
7125static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7126                                   const EVT PtrVT, TLSModel::Model model,
7127                                   bool is64Bit) {
7128  DebugLoc dl = GA->getDebugLoc();
7129
7130  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7131  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7132                                                         is64Bit ? 257 : 256));
7133
7134  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7135                                      DAG.getIntPtrConstant(0),
7136                                      MachinePointerInfo(Ptr),
7137                                      false, false, false, 0);
7138
7139  unsigned char OperandFlags = 0;
7140  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7141  // initialexec.
7142  unsigned WrapperKind = X86ISD::Wrapper;
7143  if (model == TLSModel::LocalExec) {
7144    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7145  } else if (is64Bit) {
7146    assert(model == TLSModel::InitialExec);
7147    OperandFlags = X86II::MO_GOTTPOFF;
7148    WrapperKind = X86ISD::WrapperRIP;
7149  } else {
7150    assert(model == TLSModel::InitialExec);
7151    OperandFlags = X86II::MO_INDNTPOFF;
7152  }
7153
7154  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7155  // exec)
7156  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7157                                           GA->getValueType(0),
7158                                           GA->getOffset(), OperandFlags);
7159  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7160
7161  if (model == TLSModel::InitialExec)
7162    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7163                         MachinePointerInfo::getGOT(), false, false, false, 0);
7164
7165  // The address of the thread local variable is the add of the thread
7166  // pointer with the offset of the variable.
7167  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7168}
7169
7170SDValue
7171X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7172
7173  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7174  const GlobalValue *GV = GA->getGlobal();
7175
7176  if (Subtarget->isTargetELF()) {
7177    // TODO: implement the "local dynamic" model
7178    // TODO: implement the "initial exec"model for pic executables
7179
7180    // If GV is an alias then use the aliasee for determining
7181    // thread-localness.
7182    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7183      GV = GA->resolveAliasedGlobal(false);
7184
7185    TLSModel::Model model
7186      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7187
7188    switch (model) {
7189      case TLSModel::GeneralDynamic:
7190      case TLSModel::LocalDynamic: // not implemented
7191        if (Subtarget->is64Bit())
7192          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7193        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7194
7195      case TLSModel::InitialExec:
7196      case TLSModel::LocalExec:
7197        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7198                                   Subtarget->is64Bit());
7199    }
7200  } else if (Subtarget->isTargetDarwin()) {
7201    // Darwin only has one model of TLS.  Lower to that.
7202    unsigned char OpFlag = 0;
7203    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7204                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7205
7206    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7207    // global base reg.
7208    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7209                  !Subtarget->is64Bit();
7210    if (PIC32)
7211      OpFlag = X86II::MO_TLVP_PIC_BASE;
7212    else
7213      OpFlag = X86II::MO_TLVP;
7214    DebugLoc DL = Op.getDebugLoc();
7215    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7216                                                GA->getValueType(0),
7217                                                GA->getOffset(), OpFlag);
7218    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7219
7220    // With PIC32, the address is actually $g + Offset.
7221    if (PIC32)
7222      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7223                           DAG.getNode(X86ISD::GlobalBaseReg,
7224                                       DebugLoc(), getPointerTy()),
7225                           Offset);
7226
7227    // Lowering the machine isd will make sure everything is in the right
7228    // location.
7229    SDValue Chain = DAG.getEntryNode();
7230    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7231    SDValue Args[] = { Chain, Offset };
7232    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7233
7234    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7235    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7236    MFI->setAdjustsStack(true);
7237
7238    // And our return value (tls address) is in the standard call return value
7239    // location.
7240    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7241    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7242                              Chain.getValue(1));
7243  } else if (Subtarget->isTargetWindows()) {
7244    // Just use the implicit TLS architecture
7245    // Need to generate someting similar to:
7246    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7247    //                                  ; from TEB
7248    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7249    //   mov     rcx, qword [rdx+rcx*8]
7250    //   mov     eax, .tls$:tlsvar
7251    //   [rax+rcx] contains the address
7252    // Windows 64bit: gs:0x58
7253    // Windows 32bit: fs:__tls_array
7254
7255    // If GV is an alias then use the aliasee for determining
7256    // thread-localness.
7257    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7258      GV = GA->resolveAliasedGlobal(false);
7259    DebugLoc dl = GA->getDebugLoc();
7260    SDValue Chain = DAG.getEntryNode();
7261
7262    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7263    // %gs:0x58 (64-bit).
7264    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7265                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7266                                                             256)
7267                                        : Type::getInt32PtrTy(*DAG.getContext(),
7268                                                              257));
7269
7270    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7271                                        Subtarget->is64Bit()
7272                                        ? DAG.getIntPtrConstant(0x58)
7273                                        : DAG.getExternalSymbol("_tls_array",
7274                                                                getPointerTy()),
7275                                        MachinePointerInfo(Ptr),
7276                                        false, false, false, 0);
7277
7278    // Load the _tls_index variable
7279    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7280    if (Subtarget->is64Bit())
7281      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7282                           IDX, MachinePointerInfo(), MVT::i32,
7283                           false, false, 0);
7284    else
7285      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7286                        false, false, false, 0);
7287
7288    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7289		                            getPointerTy());
7290    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7291
7292    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7293    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7294                      false, false, false, 0);
7295
7296    // Get the offset of start of .tls section
7297    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7298                                             GA->getValueType(0),
7299                                             GA->getOffset(), X86II::MO_SECREL);
7300    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7301
7302    // The address of the thread local variable is the add of the thread
7303    // pointer with the offset of the variable.
7304    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7305  }
7306
7307  llvm_unreachable("TLS not implemented for this target.");
7308}
7309
7310
7311/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7312/// and take a 2 x i32 value to shift plus a shift amount.
7313SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7314  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7315  EVT VT = Op.getValueType();
7316  unsigned VTBits = VT.getSizeInBits();
7317  DebugLoc dl = Op.getDebugLoc();
7318  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7319  SDValue ShOpLo = Op.getOperand(0);
7320  SDValue ShOpHi = Op.getOperand(1);
7321  SDValue ShAmt  = Op.getOperand(2);
7322  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7323                                     DAG.getConstant(VTBits - 1, MVT::i8))
7324                       : DAG.getConstant(0, VT);
7325
7326  SDValue Tmp2, Tmp3;
7327  if (Op.getOpcode() == ISD::SHL_PARTS) {
7328    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7329    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7330  } else {
7331    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7332    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7333  }
7334
7335  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7336                                DAG.getConstant(VTBits, MVT::i8));
7337  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7338                             AndNode, DAG.getConstant(0, MVT::i8));
7339
7340  SDValue Hi, Lo;
7341  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7342  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7343  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7344
7345  if (Op.getOpcode() == ISD::SHL_PARTS) {
7346    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7347    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7348  } else {
7349    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7350    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7351  }
7352
7353  SDValue Ops[2] = { Lo, Hi };
7354  return DAG.getMergeValues(Ops, 2, dl);
7355}
7356
7357SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7358                                           SelectionDAG &DAG) const {
7359  EVT SrcVT = Op.getOperand(0).getValueType();
7360
7361  if (SrcVT.isVector())
7362    return SDValue();
7363
7364  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7365         "Unknown SINT_TO_FP to lower!");
7366
7367  // These are really Legal; return the operand so the caller accepts it as
7368  // Legal.
7369  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7370    return Op;
7371  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7372      Subtarget->is64Bit()) {
7373    return Op;
7374  }
7375
7376  DebugLoc dl = Op.getDebugLoc();
7377  unsigned Size = SrcVT.getSizeInBits()/8;
7378  MachineFunction &MF = DAG.getMachineFunction();
7379  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7380  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7381  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7382                               StackSlot,
7383                               MachinePointerInfo::getFixedStack(SSFI),
7384                               false, false, 0);
7385  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7386}
7387
7388SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7389                                     SDValue StackSlot,
7390                                     SelectionDAG &DAG) const {
7391  // Build the FILD
7392  DebugLoc DL = Op.getDebugLoc();
7393  SDVTList Tys;
7394  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7395  if (useSSE)
7396    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7397  else
7398    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7399
7400  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7401
7402  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7403  MachineMemOperand *MMO;
7404  if (FI) {
7405    int SSFI = FI->getIndex();
7406    MMO =
7407      DAG.getMachineFunction()
7408      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7409                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7410  } else {
7411    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7412    StackSlot = StackSlot.getOperand(1);
7413  }
7414  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7415  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7416                                           X86ISD::FILD, DL,
7417                                           Tys, Ops, array_lengthof(Ops),
7418                                           SrcVT, MMO);
7419
7420  if (useSSE) {
7421    Chain = Result.getValue(1);
7422    SDValue InFlag = Result.getValue(2);
7423
7424    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7425    // shouldn't be necessary except that RFP cannot be live across
7426    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7427    MachineFunction &MF = DAG.getMachineFunction();
7428    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7429    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7430    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7431    Tys = DAG.getVTList(MVT::Other);
7432    SDValue Ops[] = {
7433      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7434    };
7435    MachineMemOperand *MMO =
7436      DAG.getMachineFunction()
7437      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7438                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7439
7440    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7441                                    Ops, array_lengthof(Ops),
7442                                    Op.getValueType(), MMO);
7443    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7444                         MachinePointerInfo::getFixedStack(SSFI),
7445                         false, false, false, 0);
7446  }
7447
7448  return Result;
7449}
7450
7451// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7452SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7453                                               SelectionDAG &DAG) const {
7454  // This algorithm is not obvious. Here it is what we're trying to output:
7455  /*
7456     movq       %rax,  %xmm0
7457     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7458     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7459     #ifdef __SSE3__
7460       haddpd   %xmm0, %xmm0
7461     #else
7462       pshufd   $0x4e, %xmm0, %xmm1
7463       addpd    %xmm1, %xmm0
7464     #endif
7465  */
7466
7467  DebugLoc dl = Op.getDebugLoc();
7468  LLVMContext *Context = DAG.getContext();
7469
7470  // Build some magic constants.
7471  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7472  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7473  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7474
7475  SmallVector<Constant*,2> CV1;
7476  CV1.push_back(
7477        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7478  CV1.push_back(
7479        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7480  Constant *C1 = ConstantVector::get(CV1);
7481  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7482
7483  // Load the 64-bit value into an XMM register.
7484  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7485                            Op.getOperand(0));
7486  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7487                              MachinePointerInfo::getConstantPool(),
7488                              false, false, false, 16);
7489  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7490                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7491                              CLod0);
7492
7493  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7494                              MachinePointerInfo::getConstantPool(),
7495                              false, false, false, 16);
7496  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7497  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7498  SDValue Result;
7499
7500  if (Subtarget->hasSSE3()) {
7501    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7502    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7503  } else {
7504    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7505    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7506                                           S2F, 0x4E, DAG);
7507    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7508                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7509                         Sub);
7510  }
7511
7512  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7513                     DAG.getIntPtrConstant(0));
7514}
7515
7516// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7517SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7518                                               SelectionDAG &DAG) const {
7519  DebugLoc dl = Op.getDebugLoc();
7520  // FP constant to bias correct the final result.
7521  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7522                                   MVT::f64);
7523
7524  // Load the 32-bit value into an XMM register.
7525  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7526                             Op.getOperand(0));
7527
7528  // Zero out the upper parts of the register.
7529  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7530
7531  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7532                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7533                     DAG.getIntPtrConstant(0));
7534
7535  // Or the load with the bias.
7536  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7537                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7538                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7539                                                   MVT::v2f64, Load)),
7540                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7541                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7542                                                   MVT::v2f64, Bias)));
7543  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7544                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7545                   DAG.getIntPtrConstant(0));
7546
7547  // Subtract the bias.
7548  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7549
7550  // Handle final rounding.
7551  EVT DestVT = Op.getValueType();
7552
7553  if (DestVT.bitsLT(MVT::f64)) {
7554    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7555                       DAG.getIntPtrConstant(0));
7556  } else if (DestVT.bitsGT(MVT::f64)) {
7557    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7558  }
7559
7560  // Handle final rounding.
7561  return Sub;
7562}
7563
7564SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7565                                           SelectionDAG &DAG) const {
7566  SDValue N0 = Op.getOperand(0);
7567  DebugLoc dl = Op.getDebugLoc();
7568
7569  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7570  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7571  // the optimization here.
7572  if (DAG.SignBitIsZero(N0))
7573    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7574
7575  EVT SrcVT = N0.getValueType();
7576  EVT DstVT = Op.getValueType();
7577  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7578    return LowerUINT_TO_FP_i64(Op, DAG);
7579  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7580    return LowerUINT_TO_FP_i32(Op, DAG);
7581  else if (Subtarget->is64Bit() &&
7582           SrcVT == MVT::i64 && DstVT == MVT::f32)
7583    return SDValue();
7584
7585  // Make a 64-bit buffer, and use it to build an FILD.
7586  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7587  if (SrcVT == MVT::i32) {
7588    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7589    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7590                                     getPointerTy(), StackSlot, WordOff);
7591    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7592                                  StackSlot, MachinePointerInfo(),
7593                                  false, false, 0);
7594    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7595                                  OffsetSlot, MachinePointerInfo(),
7596                                  false, false, 0);
7597    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7598    return Fild;
7599  }
7600
7601  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7602  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7603                               StackSlot, MachinePointerInfo(),
7604                               false, false, 0);
7605  // For i64 source, we need to add the appropriate power of 2 if the input
7606  // was negative.  This is the same as the optimization in
7607  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7608  // we must be careful to do the computation in x87 extended precision, not
7609  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7610  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7611  MachineMemOperand *MMO =
7612    DAG.getMachineFunction()
7613    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7614                          MachineMemOperand::MOLoad, 8, 8);
7615
7616  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7617  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7618  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7619                                         MVT::i64, MMO);
7620
7621  APInt FF(32, 0x5F800000ULL);
7622
7623  // Check whether the sign bit is set.
7624  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7625                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7626                                 ISD::SETLT);
7627
7628  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7629  SDValue FudgePtr = DAG.getConstantPool(
7630                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7631                                         getPointerTy());
7632
7633  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7634  SDValue Zero = DAG.getIntPtrConstant(0);
7635  SDValue Four = DAG.getIntPtrConstant(4);
7636  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7637                               Zero, Four);
7638  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7639
7640  // Load the value out, extending it from f32 to f80.
7641  // FIXME: Avoid the extend by constructing the right constant pool?
7642  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7643                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7644                                 MVT::f32, false, false, 4);
7645  // Extend everything to 80 bits to force it to be done on x87.
7646  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7647  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7648}
7649
7650std::pair<SDValue,SDValue> X86TargetLowering::
7651FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
7652  DebugLoc DL = Op.getDebugLoc();
7653
7654  EVT DstTy = Op.getValueType();
7655
7656  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
7657    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7658    DstTy = MVT::i64;
7659  }
7660
7661  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7662         DstTy.getSimpleVT() >= MVT::i16 &&
7663         "Unknown FP_TO_INT to lower!");
7664
7665  // These are really Legal.
7666  if (DstTy == MVT::i32 &&
7667      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7668    return std::make_pair(SDValue(), SDValue());
7669  if (Subtarget->is64Bit() &&
7670      DstTy == MVT::i64 &&
7671      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7672    return std::make_pair(SDValue(), SDValue());
7673
7674  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
7675  // stack slot, or into the FTOL runtime function.
7676  MachineFunction &MF = DAG.getMachineFunction();
7677  unsigned MemSize = DstTy.getSizeInBits()/8;
7678  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7679  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7680
7681  unsigned Opc;
7682  if (!IsSigned && isIntegerTypeFTOL(DstTy))
7683    Opc = X86ISD::WIN_FTOL;
7684  else
7685    switch (DstTy.getSimpleVT().SimpleTy) {
7686    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7687    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7688    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7689    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7690    }
7691
7692  SDValue Chain = DAG.getEntryNode();
7693  SDValue Value = Op.getOperand(0);
7694  EVT TheVT = Op.getOperand(0).getValueType();
7695  // FIXME This causes a redundant load/store if the SSE-class value is already
7696  // in memory, such as if it is on the callstack.
7697  if (isScalarFPTypeInSSEReg(TheVT)) {
7698    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7699    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7700                         MachinePointerInfo::getFixedStack(SSFI),
7701                         false, false, 0);
7702    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7703    SDValue Ops[] = {
7704      Chain, StackSlot, DAG.getValueType(TheVT)
7705    };
7706
7707    MachineMemOperand *MMO =
7708      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7709                              MachineMemOperand::MOLoad, MemSize, MemSize);
7710    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7711                                    DstTy, MMO);
7712    Chain = Value.getValue(1);
7713    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7714    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7715  }
7716
7717  MachineMemOperand *MMO =
7718    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7719                            MachineMemOperand::MOStore, MemSize, MemSize);
7720
7721  if (Opc != X86ISD::WIN_FTOL) {
7722    // Build the FP_TO_INT*_IN_MEM
7723    SDValue Ops[] = { Chain, Value, StackSlot };
7724    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7725                                           Ops, 3, DstTy, MMO);
7726    return std::make_pair(FIST, StackSlot);
7727  } else {
7728    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
7729      DAG.getVTList(MVT::Other, MVT::Glue),
7730      Chain, Value);
7731    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
7732      MVT::i32, ftol.getValue(1));
7733    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
7734      MVT::i32, eax.getValue(2));
7735    SDValue Ops[] = { eax, edx };
7736    SDValue pair = IsReplace
7737      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
7738      : DAG.getMergeValues(Ops, 2, DL);
7739    return std::make_pair(pair, SDValue());
7740  }
7741}
7742
7743SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7744                                           SelectionDAG &DAG) const {
7745  if (Op.getValueType().isVector())
7746    return SDValue();
7747
7748  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7749    /*IsSigned=*/ true, /*IsReplace=*/ false);
7750  SDValue FIST = Vals.first, StackSlot = Vals.second;
7751  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7752  if (FIST.getNode() == 0) return Op;
7753
7754  if (StackSlot.getNode())
7755    // Load the result.
7756    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7757                       FIST, StackSlot, MachinePointerInfo(),
7758                       false, false, false, 0);
7759  else
7760    // The node is the result.
7761    return FIST;
7762}
7763
7764SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7765                                           SelectionDAG &DAG) const {
7766  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7767    /*IsSigned=*/ false, /*IsReplace=*/ false);
7768  SDValue FIST = Vals.first, StackSlot = Vals.second;
7769  assert(FIST.getNode() && "Unexpected failure");
7770
7771  if (StackSlot.getNode())
7772    // Load the result.
7773    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7774                       FIST, StackSlot, MachinePointerInfo(),
7775                       false, false, false, 0);
7776  else
7777    // The node is the result.
7778    return FIST;
7779}
7780
7781SDValue X86TargetLowering::LowerFABS(SDValue Op,
7782                                     SelectionDAG &DAG) const {
7783  LLVMContext *Context = DAG.getContext();
7784  DebugLoc dl = Op.getDebugLoc();
7785  EVT VT = Op.getValueType();
7786  EVT EltVT = VT;
7787  if (VT.isVector())
7788    EltVT = VT.getVectorElementType();
7789  Constant *C;
7790  if (EltVT == MVT::f64) {
7791    C = ConstantVector::getSplat(2,
7792                ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7793  } else {
7794    C = ConstantVector::getSplat(4,
7795               ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7796  }
7797  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7798  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7799                             MachinePointerInfo::getConstantPool(),
7800                             false, false, false, 16);
7801  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7802}
7803
7804SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7805  LLVMContext *Context = DAG.getContext();
7806  DebugLoc dl = Op.getDebugLoc();
7807  EVT VT = Op.getValueType();
7808  EVT EltVT = VT;
7809  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7810  if (VT.isVector()) {
7811    EltVT = VT.getVectorElementType();
7812    NumElts = VT.getVectorNumElements();
7813  }
7814  Constant *C;
7815  if (EltVT == MVT::f64)
7816    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7817  else
7818    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7819  C = ConstantVector::getSplat(NumElts, C);
7820  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7821  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7822                             MachinePointerInfo::getConstantPool(),
7823                             false, false, false, 16);
7824  if (VT.isVector()) {
7825    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7826    return DAG.getNode(ISD::BITCAST, dl, VT,
7827                       DAG.getNode(ISD::XOR, dl, XORVT,
7828                    DAG.getNode(ISD::BITCAST, dl, XORVT,
7829                                Op.getOperand(0)),
7830                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7831  } else {
7832    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7833  }
7834}
7835
7836SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7837  LLVMContext *Context = DAG.getContext();
7838  SDValue Op0 = Op.getOperand(0);
7839  SDValue Op1 = Op.getOperand(1);
7840  DebugLoc dl = Op.getDebugLoc();
7841  EVT VT = Op.getValueType();
7842  EVT SrcVT = Op1.getValueType();
7843
7844  // If second operand is smaller, extend it first.
7845  if (SrcVT.bitsLT(VT)) {
7846    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7847    SrcVT = VT;
7848  }
7849  // And if it is bigger, shrink it first.
7850  if (SrcVT.bitsGT(VT)) {
7851    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7852    SrcVT = VT;
7853  }
7854
7855  // At this point the operands and the result should have the same
7856  // type, and that won't be f80 since that is not custom lowered.
7857
7858  // First get the sign bit of second operand.
7859  SmallVector<Constant*,4> CV;
7860  if (SrcVT == MVT::f64) {
7861    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7862    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7863  } else {
7864    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7865    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7866    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7867    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7868  }
7869  Constant *C = ConstantVector::get(CV);
7870  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7871  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7872                              MachinePointerInfo::getConstantPool(),
7873                              false, false, false, 16);
7874  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7875
7876  // Shift sign bit right or left if the two operands have different types.
7877  if (SrcVT.bitsGT(VT)) {
7878    // Op0 is MVT::f32, Op1 is MVT::f64.
7879    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7880    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7881                          DAG.getConstant(32, MVT::i32));
7882    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7883    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7884                          DAG.getIntPtrConstant(0));
7885  }
7886
7887  // Clear first operand sign bit.
7888  CV.clear();
7889  if (VT == MVT::f64) {
7890    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7891    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7892  } else {
7893    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7894    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7895    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7896    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7897  }
7898  C = ConstantVector::get(CV);
7899  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7900  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7901                              MachinePointerInfo::getConstantPool(),
7902                              false, false, false, 16);
7903  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7904
7905  // Or the value with the sign bit.
7906  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7907}
7908
7909SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
7910  SDValue N0 = Op.getOperand(0);
7911  DebugLoc dl = Op.getDebugLoc();
7912  EVT VT = Op.getValueType();
7913
7914  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
7915  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
7916                                  DAG.getConstant(1, VT));
7917  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
7918}
7919
7920/// Emit nodes that will be selected as "test Op0,Op0", or something
7921/// equivalent.
7922SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
7923                                    SelectionDAG &DAG) const {
7924  DebugLoc dl = Op.getDebugLoc();
7925
7926  // CF and OF aren't always set the way we want. Determine which
7927  // of these we need.
7928  bool NeedCF = false;
7929  bool NeedOF = false;
7930  switch (X86CC) {
7931  default: break;
7932  case X86::COND_A: case X86::COND_AE:
7933  case X86::COND_B: case X86::COND_BE:
7934    NeedCF = true;
7935    break;
7936  case X86::COND_G: case X86::COND_GE:
7937  case X86::COND_L: case X86::COND_LE:
7938  case X86::COND_O: case X86::COND_NO:
7939    NeedOF = true;
7940    break;
7941  }
7942
7943  // See if we can use the EFLAGS value from the operand instead of
7944  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
7945  // we prove that the arithmetic won't overflow, we can't use OF or CF.
7946  if (Op.getResNo() != 0 || NeedOF || NeedCF)
7947    // Emit a CMP with 0, which is the TEST pattern.
7948    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7949                       DAG.getConstant(0, Op.getValueType()));
7950
7951  unsigned Opcode = 0;
7952  unsigned NumOperands = 0;
7953  switch (Op.getNode()->getOpcode()) {
7954  case ISD::ADD:
7955    // Due to an isel shortcoming, be conservative if this add is likely to be
7956    // selected as part of a load-modify-store instruction. When the root node
7957    // in a match is a store, isel doesn't know how to remap non-chain non-flag
7958    // uses of other nodes in the match, such as the ADD in this case. This
7959    // leads to the ADD being left around and reselected, with the result being
7960    // two adds in the output.  Alas, even if none our users are stores, that
7961    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
7962    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
7963    // climbing the DAG back to the root, and it doesn't seem to be worth the
7964    // effort.
7965    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7966         UE = Op.getNode()->use_end(); UI != UE; ++UI)
7967      if (UI->getOpcode() != ISD::CopyToReg &&
7968          UI->getOpcode() != ISD::SETCC &&
7969          UI->getOpcode() != ISD::STORE)
7970        goto default_case;
7971
7972    if (ConstantSDNode *C =
7973        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
7974      // An add of one will be selected as an INC.
7975      if (C->getAPIntValue() == 1) {
7976        Opcode = X86ISD::INC;
7977        NumOperands = 1;
7978        break;
7979      }
7980
7981      // An add of negative one (subtract of one) will be selected as a DEC.
7982      if (C->getAPIntValue().isAllOnesValue()) {
7983        Opcode = X86ISD::DEC;
7984        NumOperands = 1;
7985        break;
7986      }
7987    }
7988
7989    // Otherwise use a regular EFLAGS-setting add.
7990    Opcode = X86ISD::ADD;
7991    NumOperands = 2;
7992    break;
7993  case ISD::AND: {
7994    // If the primary and result isn't used, don't bother using X86ISD::AND,
7995    // because a TEST instruction will be better.
7996    bool NonFlagUse = false;
7997    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7998           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
7999      SDNode *User = *UI;
8000      unsigned UOpNo = UI.getOperandNo();
8001      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8002        // Look pass truncate.
8003        UOpNo = User->use_begin().getOperandNo();
8004        User = *User->use_begin();
8005      }
8006
8007      if (User->getOpcode() != ISD::BRCOND &&
8008          User->getOpcode() != ISD::SETCC &&
8009          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8010        NonFlagUse = true;
8011        break;
8012      }
8013    }
8014
8015    if (!NonFlagUse)
8016      break;
8017  }
8018    // FALL THROUGH
8019  case ISD::SUB:
8020  case ISD::OR:
8021  case ISD::XOR:
8022    // Due to the ISEL shortcoming noted above, be conservative if this op is
8023    // likely to be selected as part of a load-modify-store instruction.
8024    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8025           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8026      if (UI->getOpcode() == ISD::STORE)
8027        goto default_case;
8028
8029    // Otherwise use a regular EFLAGS-setting instruction.
8030    switch (Op.getNode()->getOpcode()) {
8031    default: llvm_unreachable("unexpected operator!");
8032    case ISD::SUB: Opcode = X86ISD::SUB; break;
8033    case ISD::OR:  Opcode = X86ISD::OR;  break;
8034    case ISD::XOR: Opcode = X86ISD::XOR; break;
8035    case ISD::AND: Opcode = X86ISD::AND; break;
8036    }
8037
8038    NumOperands = 2;
8039    break;
8040  case X86ISD::ADD:
8041  case X86ISD::SUB:
8042  case X86ISD::INC:
8043  case X86ISD::DEC:
8044  case X86ISD::OR:
8045  case X86ISD::XOR:
8046  case X86ISD::AND:
8047    return SDValue(Op.getNode(), 1);
8048  default:
8049  default_case:
8050    break;
8051  }
8052
8053  if (Opcode == 0)
8054    // Emit a CMP with 0, which is the TEST pattern.
8055    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8056                       DAG.getConstant(0, Op.getValueType()));
8057
8058  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8059  SmallVector<SDValue, 4> Ops;
8060  for (unsigned i = 0; i != NumOperands; ++i)
8061    Ops.push_back(Op.getOperand(i));
8062
8063  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8064  DAG.ReplaceAllUsesWith(Op, New);
8065  return SDValue(New.getNode(), 1);
8066}
8067
8068/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8069/// equivalent.
8070SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8071                                   SelectionDAG &DAG) const {
8072  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8073    if (C->getAPIntValue() == 0)
8074      return EmitTest(Op0, X86CC, DAG);
8075
8076  DebugLoc dl = Op0.getDebugLoc();
8077  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8078}
8079
8080/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8081/// if it's possible.
8082SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8083                                     DebugLoc dl, SelectionDAG &DAG) const {
8084  SDValue Op0 = And.getOperand(0);
8085  SDValue Op1 = And.getOperand(1);
8086  if (Op0.getOpcode() == ISD::TRUNCATE)
8087    Op0 = Op0.getOperand(0);
8088  if (Op1.getOpcode() == ISD::TRUNCATE)
8089    Op1 = Op1.getOperand(0);
8090
8091  SDValue LHS, RHS;
8092  if (Op1.getOpcode() == ISD::SHL)
8093    std::swap(Op0, Op1);
8094  if (Op0.getOpcode() == ISD::SHL) {
8095    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8096      if (And00C->getZExtValue() == 1) {
8097        // If we looked past a truncate, check that it's only truncating away
8098        // known zeros.
8099        unsigned BitWidth = Op0.getValueSizeInBits();
8100        unsigned AndBitWidth = And.getValueSizeInBits();
8101        if (BitWidth > AndBitWidth) {
8102          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8103          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8104          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8105            return SDValue();
8106        }
8107        LHS = Op1;
8108        RHS = Op0.getOperand(1);
8109      }
8110  } else if (Op1.getOpcode() == ISD::Constant) {
8111    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8112    uint64_t AndRHSVal = AndRHS->getZExtValue();
8113    SDValue AndLHS = Op0;
8114
8115    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8116      LHS = AndLHS.getOperand(0);
8117      RHS = AndLHS.getOperand(1);
8118    }
8119
8120    // Use BT if the immediate can't be encoded in a TEST instruction.
8121    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8122      LHS = AndLHS;
8123      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8124    }
8125  }
8126
8127  if (LHS.getNode()) {
8128    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8129    // instruction.  Since the shift amount is in-range-or-undefined, we know
8130    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8131    // the encoding for the i16 version is larger than the i32 version.
8132    // Also promote i16 to i32 for performance / code size reason.
8133    if (LHS.getValueType() == MVT::i8 ||
8134        LHS.getValueType() == MVT::i16)
8135      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8136
8137    // If the operand types disagree, extend the shift amount to match.  Since
8138    // BT ignores high bits (like shifts) we can use anyextend.
8139    if (LHS.getValueType() != RHS.getValueType())
8140      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8141
8142    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8143    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8144    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8145                       DAG.getConstant(Cond, MVT::i8), BT);
8146  }
8147
8148  return SDValue();
8149}
8150
8151SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8152
8153  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8154
8155  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8156  SDValue Op0 = Op.getOperand(0);
8157  SDValue Op1 = Op.getOperand(1);
8158  DebugLoc dl = Op.getDebugLoc();
8159  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8160
8161  // Optimize to BT if possible.
8162  // Lower (X & (1 << N)) == 0 to BT(X, N).
8163  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8164  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8165  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8166      Op1.getOpcode() == ISD::Constant &&
8167      cast<ConstantSDNode>(Op1)->isNullValue() &&
8168      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8169    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8170    if (NewSetCC.getNode())
8171      return NewSetCC;
8172  }
8173
8174  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8175  // these.
8176  if (Op1.getOpcode() == ISD::Constant &&
8177      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8178       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8179      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8180
8181    // If the input is a setcc, then reuse the input setcc or use a new one with
8182    // the inverted condition.
8183    if (Op0.getOpcode() == X86ISD::SETCC) {
8184      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8185      bool Invert = (CC == ISD::SETNE) ^
8186        cast<ConstantSDNode>(Op1)->isNullValue();
8187      if (!Invert) return Op0;
8188
8189      CCode = X86::GetOppositeBranchCondition(CCode);
8190      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8191                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8192    }
8193  }
8194
8195  bool isFP = Op1.getValueType().isFloatingPoint();
8196  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8197  if (X86CC == X86::COND_INVALID)
8198    return SDValue();
8199
8200  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8201  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8202                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8203}
8204
8205// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8206// ones, and then concatenate the result back.
8207static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8208  EVT VT = Op.getValueType();
8209
8210  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8211         "Unsupported value type for operation");
8212
8213  int NumElems = VT.getVectorNumElements();
8214  DebugLoc dl = Op.getDebugLoc();
8215  SDValue CC = Op.getOperand(2);
8216  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8217  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8218
8219  // Extract the LHS vectors
8220  SDValue LHS = Op.getOperand(0);
8221  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8222  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8223
8224  // Extract the RHS vectors
8225  SDValue RHS = Op.getOperand(1);
8226  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8227  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8228
8229  // Issue the operation on the smaller types and concatenate the result back
8230  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8231  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8232  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8233                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8234                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8235}
8236
8237
8238SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8239  SDValue Cond;
8240  SDValue Op0 = Op.getOperand(0);
8241  SDValue Op1 = Op.getOperand(1);
8242  SDValue CC = Op.getOperand(2);
8243  EVT VT = Op.getValueType();
8244  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8245  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8246  DebugLoc dl = Op.getDebugLoc();
8247
8248  if (isFP) {
8249    unsigned SSECC = 8;
8250    EVT EltVT = Op0.getValueType().getVectorElementType();
8251    assert(EltVT == MVT::f32 || EltVT == MVT::f64); (void)EltVT;
8252
8253    bool Swap = false;
8254
8255    // SSE Condition code mapping:
8256    //  0 - EQ
8257    //  1 - LT
8258    //  2 - LE
8259    //  3 - UNORD
8260    //  4 - NEQ
8261    //  5 - NLT
8262    //  6 - NLE
8263    //  7 - ORD
8264    switch (SetCCOpcode) {
8265    default: break;
8266    case ISD::SETOEQ:
8267    case ISD::SETEQ:  SSECC = 0; break;
8268    case ISD::SETOGT:
8269    case ISD::SETGT: Swap = true; // Fallthrough
8270    case ISD::SETLT:
8271    case ISD::SETOLT: SSECC = 1; break;
8272    case ISD::SETOGE:
8273    case ISD::SETGE: Swap = true; // Fallthrough
8274    case ISD::SETLE:
8275    case ISD::SETOLE: SSECC = 2; break;
8276    case ISD::SETUO:  SSECC = 3; break;
8277    case ISD::SETUNE:
8278    case ISD::SETNE:  SSECC = 4; break;
8279    case ISD::SETULE: Swap = true;
8280    case ISD::SETUGE: SSECC = 5; break;
8281    case ISD::SETULT: Swap = true;
8282    case ISD::SETUGT: SSECC = 6; break;
8283    case ISD::SETO:   SSECC = 7; break;
8284    }
8285    if (Swap)
8286      std::swap(Op0, Op1);
8287
8288    // In the two special cases we can't handle, emit two comparisons.
8289    if (SSECC == 8) {
8290      if (SetCCOpcode == ISD::SETUEQ) {
8291        SDValue UNORD, EQ;
8292        UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8293                            DAG.getConstant(3, MVT::i8));
8294        EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8295                         DAG.getConstant(0, MVT::i8));
8296        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8297      } else if (SetCCOpcode == ISD::SETONE) {
8298        SDValue ORD, NEQ;
8299        ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8300                          DAG.getConstant(7, MVT::i8));
8301        NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8302                          DAG.getConstant(4, MVT::i8));
8303        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8304      }
8305      llvm_unreachable("Illegal FP comparison");
8306    }
8307    // Handle all other FP comparisons here.
8308    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8309                       DAG.getConstant(SSECC, MVT::i8));
8310  }
8311
8312  // Break 256-bit integer vector compare into smaller ones.
8313  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8314    return Lower256IntVSETCC(Op, DAG);
8315
8316  // We are handling one of the integer comparisons here.  Since SSE only has
8317  // GT and EQ comparisons for integer, swapping operands and multiple
8318  // operations may be required for some comparisons.
8319  unsigned Opc = 0;
8320  bool Swap = false, Invert = false, FlipSigns = false;
8321
8322  switch (SetCCOpcode) {
8323  default: break;
8324  case ISD::SETNE:  Invert = true;
8325  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8326  case ISD::SETLT:  Swap = true;
8327  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8328  case ISD::SETGE:  Swap = true;
8329  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8330  case ISD::SETULT: Swap = true;
8331  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8332  case ISD::SETUGE: Swap = true;
8333  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8334  }
8335  if (Swap)
8336    std::swap(Op0, Op1);
8337
8338  // Check that the operation in question is available (most are plain SSE2,
8339  // but PCMPGTQ and PCMPEQQ have different requirements).
8340  if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8341    return SDValue();
8342  if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8343    return SDValue();
8344
8345  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8346  // bits of the inputs before performing those operations.
8347  if (FlipSigns) {
8348    EVT EltVT = VT.getVectorElementType();
8349    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8350                                      EltVT);
8351    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8352    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8353                                    SignBits.size());
8354    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8355    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8356  }
8357
8358  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8359
8360  // If the logical-not of the result is required, perform that now.
8361  if (Invert)
8362    Result = DAG.getNOT(dl, Result, VT);
8363
8364  return Result;
8365}
8366
8367// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8368static bool isX86LogicalCmp(SDValue Op) {
8369  unsigned Opc = Op.getNode()->getOpcode();
8370  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8371    return true;
8372  if (Op.getResNo() == 1 &&
8373      (Opc == X86ISD::ADD ||
8374       Opc == X86ISD::SUB ||
8375       Opc == X86ISD::ADC ||
8376       Opc == X86ISD::SBB ||
8377       Opc == X86ISD::SMUL ||
8378       Opc == X86ISD::UMUL ||
8379       Opc == X86ISD::INC ||
8380       Opc == X86ISD::DEC ||
8381       Opc == X86ISD::OR ||
8382       Opc == X86ISD::XOR ||
8383       Opc == X86ISD::AND))
8384    return true;
8385
8386  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8387    return true;
8388
8389  return false;
8390}
8391
8392static bool isZero(SDValue V) {
8393  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8394  return C && C->isNullValue();
8395}
8396
8397static bool isAllOnes(SDValue V) {
8398  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8399  return C && C->isAllOnesValue();
8400}
8401
8402SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8403  bool addTest = true;
8404  SDValue Cond  = Op.getOperand(0);
8405  SDValue Op1 = Op.getOperand(1);
8406  SDValue Op2 = Op.getOperand(2);
8407  DebugLoc DL = Op.getDebugLoc();
8408  SDValue CC;
8409
8410  if (Cond.getOpcode() == ISD::SETCC) {
8411    SDValue NewCond = LowerSETCC(Cond, DAG);
8412    if (NewCond.getNode())
8413      Cond = NewCond;
8414  }
8415
8416  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8417  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8418  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8419  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8420  if (Cond.getOpcode() == X86ISD::SETCC &&
8421      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8422      isZero(Cond.getOperand(1).getOperand(1))) {
8423    SDValue Cmp = Cond.getOperand(1);
8424
8425    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8426
8427    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8428        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8429      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8430
8431      SDValue CmpOp0 = Cmp.getOperand(0);
8432      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8433                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8434
8435      SDValue Res =   // Res = 0 or -1.
8436        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8437                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8438
8439      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8440        Res = DAG.getNOT(DL, Res, Res.getValueType());
8441
8442      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8443      if (N2C == 0 || !N2C->isNullValue())
8444        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8445      return Res;
8446    }
8447  }
8448
8449  // Look past (and (setcc_carry (cmp ...)), 1).
8450  if (Cond.getOpcode() == ISD::AND &&
8451      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8452    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8453    if (C && C->getAPIntValue() == 1)
8454      Cond = Cond.getOperand(0);
8455  }
8456
8457  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8458  // setting operand in place of the X86ISD::SETCC.
8459  unsigned CondOpcode = Cond.getOpcode();
8460  if (CondOpcode == X86ISD::SETCC ||
8461      CondOpcode == X86ISD::SETCC_CARRY) {
8462    CC = Cond.getOperand(0);
8463
8464    SDValue Cmp = Cond.getOperand(1);
8465    unsigned Opc = Cmp.getOpcode();
8466    EVT VT = Op.getValueType();
8467
8468    bool IllegalFPCMov = false;
8469    if (VT.isFloatingPoint() && !VT.isVector() &&
8470        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8471      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8472
8473    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8474        Opc == X86ISD::BT) { // FIXME
8475      Cond = Cmp;
8476      addTest = false;
8477    }
8478  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8479             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8480             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8481              Cond.getOperand(0).getValueType() != MVT::i8)) {
8482    SDValue LHS = Cond.getOperand(0);
8483    SDValue RHS = Cond.getOperand(1);
8484    unsigned X86Opcode;
8485    unsigned X86Cond;
8486    SDVTList VTs;
8487    switch (CondOpcode) {
8488    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8489    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8490    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8491    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8492    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8493    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8494    default: llvm_unreachable("unexpected overflowing operator");
8495    }
8496    if (CondOpcode == ISD::UMULO)
8497      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8498                          MVT::i32);
8499    else
8500      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8501
8502    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8503
8504    if (CondOpcode == ISD::UMULO)
8505      Cond = X86Op.getValue(2);
8506    else
8507      Cond = X86Op.getValue(1);
8508
8509    CC = DAG.getConstant(X86Cond, MVT::i8);
8510    addTest = false;
8511  }
8512
8513  if (addTest) {
8514    // Look pass the truncate.
8515    if (Cond.getOpcode() == ISD::TRUNCATE)
8516      Cond = Cond.getOperand(0);
8517
8518    // We know the result of AND is compared against zero. Try to match
8519    // it to BT.
8520    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8521      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8522      if (NewSetCC.getNode()) {
8523        CC = NewSetCC.getOperand(0);
8524        Cond = NewSetCC.getOperand(1);
8525        addTest = false;
8526      }
8527    }
8528  }
8529
8530  if (addTest) {
8531    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8532    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8533  }
8534
8535  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8536  // a <  b ?  0 : -1 -> RES = setcc_carry
8537  // a >= b ? -1 :  0 -> RES = setcc_carry
8538  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8539  if (Cond.getOpcode() == X86ISD::CMP) {
8540    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8541
8542    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8543        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8544      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8545                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8546      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8547        return DAG.getNOT(DL, Res, Res.getValueType());
8548      return Res;
8549    }
8550  }
8551
8552  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8553  // condition is true.
8554  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8555  SDValue Ops[] = { Op2, Op1, CC, Cond };
8556  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8557}
8558
8559// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8560// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8561// from the AND / OR.
8562static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8563  Opc = Op.getOpcode();
8564  if (Opc != ISD::OR && Opc != ISD::AND)
8565    return false;
8566  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8567          Op.getOperand(0).hasOneUse() &&
8568          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8569          Op.getOperand(1).hasOneUse());
8570}
8571
8572// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8573// 1 and that the SETCC node has a single use.
8574static bool isXor1OfSetCC(SDValue Op) {
8575  if (Op.getOpcode() != ISD::XOR)
8576    return false;
8577  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8578  if (N1C && N1C->getAPIntValue() == 1) {
8579    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8580      Op.getOperand(0).hasOneUse();
8581  }
8582  return false;
8583}
8584
8585SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8586  bool addTest = true;
8587  SDValue Chain = Op.getOperand(0);
8588  SDValue Cond  = Op.getOperand(1);
8589  SDValue Dest  = Op.getOperand(2);
8590  DebugLoc dl = Op.getDebugLoc();
8591  SDValue CC;
8592  bool Inverted = false;
8593
8594  if (Cond.getOpcode() == ISD::SETCC) {
8595    // Check for setcc([su]{add,sub,mul}o == 0).
8596    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8597        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8598        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8599        Cond.getOperand(0).getResNo() == 1 &&
8600        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8601         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8602         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8603         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8604         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8605         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8606      Inverted = true;
8607      Cond = Cond.getOperand(0);
8608    } else {
8609      SDValue NewCond = LowerSETCC(Cond, DAG);
8610      if (NewCond.getNode())
8611        Cond = NewCond;
8612    }
8613  }
8614#if 0
8615  // FIXME: LowerXALUO doesn't handle these!!
8616  else if (Cond.getOpcode() == X86ISD::ADD  ||
8617           Cond.getOpcode() == X86ISD::SUB  ||
8618           Cond.getOpcode() == X86ISD::SMUL ||
8619           Cond.getOpcode() == X86ISD::UMUL)
8620    Cond = LowerXALUO(Cond, DAG);
8621#endif
8622
8623  // Look pass (and (setcc_carry (cmp ...)), 1).
8624  if (Cond.getOpcode() == ISD::AND &&
8625      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8626    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8627    if (C && C->getAPIntValue() == 1)
8628      Cond = Cond.getOperand(0);
8629  }
8630
8631  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8632  // setting operand in place of the X86ISD::SETCC.
8633  unsigned CondOpcode = Cond.getOpcode();
8634  if (CondOpcode == X86ISD::SETCC ||
8635      CondOpcode == X86ISD::SETCC_CARRY) {
8636    CC = Cond.getOperand(0);
8637
8638    SDValue Cmp = Cond.getOperand(1);
8639    unsigned Opc = Cmp.getOpcode();
8640    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8641    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8642      Cond = Cmp;
8643      addTest = false;
8644    } else {
8645      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8646      default: break;
8647      case X86::COND_O:
8648      case X86::COND_B:
8649        // These can only come from an arithmetic instruction with overflow,
8650        // e.g. SADDO, UADDO.
8651        Cond = Cond.getNode()->getOperand(1);
8652        addTest = false;
8653        break;
8654      }
8655    }
8656  }
8657  CondOpcode = Cond.getOpcode();
8658  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8659      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8660      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8661       Cond.getOperand(0).getValueType() != MVT::i8)) {
8662    SDValue LHS = Cond.getOperand(0);
8663    SDValue RHS = Cond.getOperand(1);
8664    unsigned X86Opcode;
8665    unsigned X86Cond;
8666    SDVTList VTs;
8667    switch (CondOpcode) {
8668    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8669    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8670    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8671    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8672    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8673    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8674    default: llvm_unreachable("unexpected overflowing operator");
8675    }
8676    if (Inverted)
8677      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8678    if (CondOpcode == ISD::UMULO)
8679      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8680                          MVT::i32);
8681    else
8682      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8683
8684    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8685
8686    if (CondOpcode == ISD::UMULO)
8687      Cond = X86Op.getValue(2);
8688    else
8689      Cond = X86Op.getValue(1);
8690
8691    CC = DAG.getConstant(X86Cond, MVT::i8);
8692    addTest = false;
8693  } else {
8694    unsigned CondOpc;
8695    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8696      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8697      if (CondOpc == ISD::OR) {
8698        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8699        // two branches instead of an explicit OR instruction with a
8700        // separate test.
8701        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8702            isX86LogicalCmp(Cmp)) {
8703          CC = Cond.getOperand(0).getOperand(0);
8704          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8705                              Chain, Dest, CC, Cmp);
8706          CC = Cond.getOperand(1).getOperand(0);
8707          Cond = Cmp;
8708          addTest = false;
8709        }
8710      } else { // ISD::AND
8711        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8712        // two branches instead of an explicit AND instruction with a
8713        // separate test. However, we only do this if this block doesn't
8714        // have a fall-through edge, because this requires an explicit
8715        // jmp when the condition is false.
8716        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8717            isX86LogicalCmp(Cmp) &&
8718            Op.getNode()->hasOneUse()) {
8719          X86::CondCode CCode =
8720            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8721          CCode = X86::GetOppositeBranchCondition(CCode);
8722          CC = DAG.getConstant(CCode, MVT::i8);
8723          SDNode *User = *Op.getNode()->use_begin();
8724          // Look for an unconditional branch following this conditional branch.
8725          // We need this because we need to reverse the successors in order
8726          // to implement FCMP_OEQ.
8727          if (User->getOpcode() == ISD::BR) {
8728            SDValue FalseBB = User->getOperand(1);
8729            SDNode *NewBR =
8730              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8731            assert(NewBR == User);
8732            (void)NewBR;
8733            Dest = FalseBB;
8734
8735            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8736                                Chain, Dest, CC, Cmp);
8737            X86::CondCode CCode =
8738              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8739            CCode = X86::GetOppositeBranchCondition(CCode);
8740            CC = DAG.getConstant(CCode, MVT::i8);
8741            Cond = Cmp;
8742            addTest = false;
8743          }
8744        }
8745      }
8746    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8747      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8748      // It should be transformed during dag combiner except when the condition
8749      // is set by a arithmetics with overflow node.
8750      X86::CondCode CCode =
8751        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8752      CCode = X86::GetOppositeBranchCondition(CCode);
8753      CC = DAG.getConstant(CCode, MVT::i8);
8754      Cond = Cond.getOperand(0).getOperand(1);
8755      addTest = false;
8756    } else if (Cond.getOpcode() == ISD::SETCC &&
8757               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8758      // For FCMP_OEQ, we can emit
8759      // two branches instead of an explicit AND instruction with a
8760      // separate test. However, we only do this if this block doesn't
8761      // have a fall-through edge, because this requires an explicit
8762      // jmp when the condition is false.
8763      if (Op.getNode()->hasOneUse()) {
8764        SDNode *User = *Op.getNode()->use_begin();
8765        // Look for an unconditional branch following this conditional branch.
8766        // We need this because we need to reverse the successors in order
8767        // to implement FCMP_OEQ.
8768        if (User->getOpcode() == ISD::BR) {
8769          SDValue FalseBB = User->getOperand(1);
8770          SDNode *NewBR =
8771            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8772          assert(NewBR == User);
8773          (void)NewBR;
8774          Dest = FalseBB;
8775
8776          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8777                                    Cond.getOperand(0), Cond.getOperand(1));
8778          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8779          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8780                              Chain, Dest, CC, Cmp);
8781          CC = DAG.getConstant(X86::COND_P, MVT::i8);
8782          Cond = Cmp;
8783          addTest = false;
8784        }
8785      }
8786    } else if (Cond.getOpcode() == ISD::SETCC &&
8787               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8788      // For FCMP_UNE, we can emit
8789      // two branches instead of an explicit AND instruction with a
8790      // separate test. However, we only do this if this block doesn't
8791      // have a fall-through edge, because this requires an explicit
8792      // jmp when the condition is false.
8793      if (Op.getNode()->hasOneUse()) {
8794        SDNode *User = *Op.getNode()->use_begin();
8795        // Look for an unconditional branch following this conditional branch.
8796        // We need this because we need to reverse the successors in order
8797        // to implement FCMP_UNE.
8798        if (User->getOpcode() == ISD::BR) {
8799          SDValue FalseBB = User->getOperand(1);
8800          SDNode *NewBR =
8801            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8802          assert(NewBR == User);
8803          (void)NewBR;
8804
8805          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8806                                    Cond.getOperand(0), Cond.getOperand(1));
8807          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8808          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8809                              Chain, Dest, CC, Cmp);
8810          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8811          Cond = Cmp;
8812          addTest = false;
8813          Dest = FalseBB;
8814        }
8815      }
8816    }
8817  }
8818
8819  if (addTest) {
8820    // Look pass the truncate.
8821    if (Cond.getOpcode() == ISD::TRUNCATE)
8822      Cond = Cond.getOperand(0);
8823
8824    // We know the result of AND is compared against zero. Try to match
8825    // it to BT.
8826    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8827      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8828      if (NewSetCC.getNode()) {
8829        CC = NewSetCC.getOperand(0);
8830        Cond = NewSetCC.getOperand(1);
8831        addTest = false;
8832      }
8833    }
8834  }
8835
8836  if (addTest) {
8837    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8838    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8839  }
8840  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8841                     Chain, Dest, CC, Cond);
8842}
8843
8844
8845// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8846// Calls to _alloca is needed to probe the stack when allocating more than 4k
8847// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8848// that the guard pages used by the OS virtual memory manager are allocated in
8849// correct sequence.
8850SDValue
8851X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8852                                           SelectionDAG &DAG) const {
8853  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8854          getTargetMachine().Options.EnableSegmentedStacks) &&
8855         "This should be used only on Windows targets or when segmented stacks "
8856         "are being used");
8857  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8858  DebugLoc dl = Op.getDebugLoc();
8859
8860  // Get the inputs.
8861  SDValue Chain = Op.getOperand(0);
8862  SDValue Size  = Op.getOperand(1);
8863  // FIXME: Ensure alignment here
8864
8865  bool Is64Bit = Subtarget->is64Bit();
8866  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8867
8868  if (getTargetMachine().Options.EnableSegmentedStacks) {
8869    MachineFunction &MF = DAG.getMachineFunction();
8870    MachineRegisterInfo &MRI = MF.getRegInfo();
8871
8872    if (Is64Bit) {
8873      // The 64 bit implementation of segmented stacks needs to clobber both r10
8874      // r11. This makes it impossible to use it along with nested parameters.
8875      const Function *F = MF.getFunction();
8876
8877      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8878           I != E; I++)
8879        if (I->hasNestAttr())
8880          report_fatal_error("Cannot use segmented stacks with functions that "
8881                             "have nested arguments.");
8882    }
8883
8884    const TargetRegisterClass *AddrRegClass =
8885      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8886    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8887    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8888    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8889                                DAG.getRegister(Vreg, SPTy));
8890    SDValue Ops1[2] = { Value, Chain };
8891    return DAG.getMergeValues(Ops1, 2, dl);
8892  } else {
8893    SDValue Flag;
8894    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8895
8896    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8897    Flag = Chain.getValue(1);
8898    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8899
8900    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8901    Flag = Chain.getValue(1);
8902
8903    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8904
8905    SDValue Ops1[2] = { Chain.getValue(0), Chain };
8906    return DAG.getMergeValues(Ops1, 2, dl);
8907  }
8908}
8909
8910SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8911  MachineFunction &MF = DAG.getMachineFunction();
8912  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8913
8914  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8915  DebugLoc DL = Op.getDebugLoc();
8916
8917  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8918    // vastart just stores the address of the VarArgsFrameIndex slot into the
8919    // memory location argument.
8920    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8921                                   getPointerTy());
8922    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8923                        MachinePointerInfo(SV), false, false, 0);
8924  }
8925
8926  // __va_list_tag:
8927  //   gp_offset         (0 - 6 * 8)
8928  //   fp_offset         (48 - 48 + 8 * 16)
8929  //   overflow_arg_area (point to parameters coming in memory).
8930  //   reg_save_area
8931  SmallVector<SDValue, 8> MemOps;
8932  SDValue FIN = Op.getOperand(1);
8933  // Store gp_offset
8934  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
8935                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
8936                                               MVT::i32),
8937                               FIN, MachinePointerInfo(SV), false, false, 0);
8938  MemOps.push_back(Store);
8939
8940  // Store fp_offset
8941  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8942                    FIN, DAG.getIntPtrConstant(4));
8943  Store = DAG.getStore(Op.getOperand(0), DL,
8944                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
8945                                       MVT::i32),
8946                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
8947  MemOps.push_back(Store);
8948
8949  // Store ptr to overflow_arg_area
8950  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8951                    FIN, DAG.getIntPtrConstant(4));
8952  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8953                                    getPointerTy());
8954  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
8955                       MachinePointerInfo(SV, 8),
8956                       false, false, 0);
8957  MemOps.push_back(Store);
8958
8959  // Store ptr to reg_save_area.
8960  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8961                    FIN, DAG.getIntPtrConstant(8));
8962  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
8963                                    getPointerTy());
8964  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
8965                       MachinePointerInfo(SV, 16), false, false, 0);
8966  MemOps.push_back(Store);
8967  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
8968                     &MemOps[0], MemOps.size());
8969}
8970
8971SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
8972  assert(Subtarget->is64Bit() &&
8973         "LowerVAARG only handles 64-bit va_arg!");
8974  assert((Subtarget->isTargetLinux() ||
8975          Subtarget->isTargetDarwin()) &&
8976          "Unhandled target in LowerVAARG");
8977  assert(Op.getNode()->getNumOperands() == 4);
8978  SDValue Chain = Op.getOperand(0);
8979  SDValue SrcPtr = Op.getOperand(1);
8980  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8981  unsigned Align = Op.getConstantOperandVal(3);
8982  DebugLoc dl = Op.getDebugLoc();
8983
8984  EVT ArgVT = Op.getNode()->getValueType(0);
8985  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
8986  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
8987  uint8_t ArgMode;
8988
8989  // Decide which area this value should be read from.
8990  // TODO: Implement the AMD64 ABI in its entirety. This simple
8991  // selection mechanism works only for the basic types.
8992  if (ArgVT == MVT::f80) {
8993    llvm_unreachable("va_arg for f80 not yet implemented");
8994  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
8995    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
8996  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
8997    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
8998  } else {
8999    llvm_unreachable("Unhandled argument type in LowerVAARG");
9000  }
9001
9002  if (ArgMode == 2) {
9003    // Sanity Check: Make sure using fp_offset makes sense.
9004    assert(!getTargetMachine().Options.UseSoftFloat &&
9005           !(DAG.getMachineFunction()
9006                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9007           Subtarget->hasSSE1());
9008  }
9009
9010  // Insert VAARG_64 node into the DAG
9011  // VAARG_64 returns two values: Variable Argument Address, Chain
9012  SmallVector<SDValue, 11> InstOps;
9013  InstOps.push_back(Chain);
9014  InstOps.push_back(SrcPtr);
9015  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9016  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9017  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9018  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9019  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9020                                          VTs, &InstOps[0], InstOps.size(),
9021                                          MVT::i64,
9022                                          MachinePointerInfo(SV),
9023                                          /*Align=*/0,
9024                                          /*Volatile=*/false,
9025                                          /*ReadMem=*/true,
9026                                          /*WriteMem=*/true);
9027  Chain = VAARG.getValue(1);
9028
9029  // Load the next argument and return it
9030  return DAG.getLoad(ArgVT, dl,
9031                     Chain,
9032                     VAARG,
9033                     MachinePointerInfo(),
9034                     false, false, false, 0);
9035}
9036
9037SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9038  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9039  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9040  SDValue Chain = Op.getOperand(0);
9041  SDValue DstPtr = Op.getOperand(1);
9042  SDValue SrcPtr = Op.getOperand(2);
9043  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9044  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9045  DebugLoc DL = Op.getDebugLoc();
9046
9047  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9048                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9049                       false,
9050                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9051}
9052
9053// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9054// may or may not be a constant. Takes immediate version of shift as input.
9055static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9056                                   SDValue SrcOp, SDValue ShAmt,
9057                                   SelectionDAG &DAG) {
9058  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9059
9060  if (isa<ConstantSDNode>(ShAmt)) {
9061    switch (Opc) {
9062      default: llvm_unreachable("Unknown target vector shift node");
9063      case X86ISD::VSHLI:
9064      case X86ISD::VSRLI:
9065      case X86ISD::VSRAI:
9066        return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9067    }
9068  }
9069
9070  // Change opcode to non-immediate version
9071  switch (Opc) {
9072    default: llvm_unreachable("Unknown target vector shift node");
9073    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9074    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9075    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9076  }
9077
9078  // Need to build a vector containing shift amount
9079  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9080  SDValue ShOps[4];
9081  ShOps[0] = ShAmt;
9082  ShOps[1] = DAG.getConstant(0, MVT::i32);
9083  ShOps[2] = DAG.getUNDEF(MVT::i32);
9084  ShOps[3] = DAG.getUNDEF(MVT::i32);
9085  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9086  ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9087  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9088}
9089
9090SDValue
9091X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9092  DebugLoc dl = Op.getDebugLoc();
9093  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9094  switch (IntNo) {
9095  default: return SDValue();    // Don't custom lower most intrinsics.
9096  // Comparison intrinsics.
9097  case Intrinsic::x86_sse_comieq_ss:
9098  case Intrinsic::x86_sse_comilt_ss:
9099  case Intrinsic::x86_sse_comile_ss:
9100  case Intrinsic::x86_sse_comigt_ss:
9101  case Intrinsic::x86_sse_comige_ss:
9102  case Intrinsic::x86_sse_comineq_ss:
9103  case Intrinsic::x86_sse_ucomieq_ss:
9104  case Intrinsic::x86_sse_ucomilt_ss:
9105  case Intrinsic::x86_sse_ucomile_ss:
9106  case Intrinsic::x86_sse_ucomigt_ss:
9107  case Intrinsic::x86_sse_ucomige_ss:
9108  case Intrinsic::x86_sse_ucomineq_ss:
9109  case Intrinsic::x86_sse2_comieq_sd:
9110  case Intrinsic::x86_sse2_comilt_sd:
9111  case Intrinsic::x86_sse2_comile_sd:
9112  case Intrinsic::x86_sse2_comigt_sd:
9113  case Intrinsic::x86_sse2_comige_sd:
9114  case Intrinsic::x86_sse2_comineq_sd:
9115  case Intrinsic::x86_sse2_ucomieq_sd:
9116  case Intrinsic::x86_sse2_ucomilt_sd:
9117  case Intrinsic::x86_sse2_ucomile_sd:
9118  case Intrinsic::x86_sse2_ucomigt_sd:
9119  case Intrinsic::x86_sse2_ucomige_sd:
9120  case Intrinsic::x86_sse2_ucomineq_sd: {
9121    unsigned Opc = 0;
9122    ISD::CondCode CC = ISD::SETCC_INVALID;
9123    switch (IntNo) {
9124    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9125    case Intrinsic::x86_sse_comieq_ss:
9126    case Intrinsic::x86_sse2_comieq_sd:
9127      Opc = X86ISD::COMI;
9128      CC = ISD::SETEQ;
9129      break;
9130    case Intrinsic::x86_sse_comilt_ss:
9131    case Intrinsic::x86_sse2_comilt_sd:
9132      Opc = X86ISD::COMI;
9133      CC = ISD::SETLT;
9134      break;
9135    case Intrinsic::x86_sse_comile_ss:
9136    case Intrinsic::x86_sse2_comile_sd:
9137      Opc = X86ISD::COMI;
9138      CC = ISD::SETLE;
9139      break;
9140    case Intrinsic::x86_sse_comigt_ss:
9141    case Intrinsic::x86_sse2_comigt_sd:
9142      Opc = X86ISD::COMI;
9143      CC = ISD::SETGT;
9144      break;
9145    case Intrinsic::x86_sse_comige_ss:
9146    case Intrinsic::x86_sse2_comige_sd:
9147      Opc = X86ISD::COMI;
9148      CC = ISD::SETGE;
9149      break;
9150    case Intrinsic::x86_sse_comineq_ss:
9151    case Intrinsic::x86_sse2_comineq_sd:
9152      Opc = X86ISD::COMI;
9153      CC = ISD::SETNE;
9154      break;
9155    case Intrinsic::x86_sse_ucomieq_ss:
9156    case Intrinsic::x86_sse2_ucomieq_sd:
9157      Opc = X86ISD::UCOMI;
9158      CC = ISD::SETEQ;
9159      break;
9160    case Intrinsic::x86_sse_ucomilt_ss:
9161    case Intrinsic::x86_sse2_ucomilt_sd:
9162      Opc = X86ISD::UCOMI;
9163      CC = ISD::SETLT;
9164      break;
9165    case Intrinsic::x86_sse_ucomile_ss:
9166    case Intrinsic::x86_sse2_ucomile_sd:
9167      Opc = X86ISD::UCOMI;
9168      CC = ISD::SETLE;
9169      break;
9170    case Intrinsic::x86_sse_ucomigt_ss:
9171    case Intrinsic::x86_sse2_ucomigt_sd:
9172      Opc = X86ISD::UCOMI;
9173      CC = ISD::SETGT;
9174      break;
9175    case Intrinsic::x86_sse_ucomige_ss:
9176    case Intrinsic::x86_sse2_ucomige_sd:
9177      Opc = X86ISD::UCOMI;
9178      CC = ISD::SETGE;
9179      break;
9180    case Intrinsic::x86_sse_ucomineq_ss:
9181    case Intrinsic::x86_sse2_ucomineq_sd:
9182      Opc = X86ISD::UCOMI;
9183      CC = ISD::SETNE;
9184      break;
9185    }
9186
9187    SDValue LHS = Op.getOperand(1);
9188    SDValue RHS = Op.getOperand(2);
9189    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9190    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9191    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9192    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9193                                DAG.getConstant(X86CC, MVT::i8), Cond);
9194    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9195  }
9196  // XOP comparison intrinsics
9197  case Intrinsic::x86_xop_vpcomltb:
9198  case Intrinsic::x86_xop_vpcomltw:
9199  case Intrinsic::x86_xop_vpcomltd:
9200  case Intrinsic::x86_xop_vpcomltq:
9201  case Intrinsic::x86_xop_vpcomltub:
9202  case Intrinsic::x86_xop_vpcomltuw:
9203  case Intrinsic::x86_xop_vpcomltud:
9204  case Intrinsic::x86_xop_vpcomltuq:
9205  case Intrinsic::x86_xop_vpcomleb:
9206  case Intrinsic::x86_xop_vpcomlew:
9207  case Intrinsic::x86_xop_vpcomled:
9208  case Intrinsic::x86_xop_vpcomleq:
9209  case Intrinsic::x86_xop_vpcomleub:
9210  case Intrinsic::x86_xop_vpcomleuw:
9211  case Intrinsic::x86_xop_vpcomleud:
9212  case Intrinsic::x86_xop_vpcomleuq:
9213  case Intrinsic::x86_xop_vpcomgtb:
9214  case Intrinsic::x86_xop_vpcomgtw:
9215  case Intrinsic::x86_xop_vpcomgtd:
9216  case Intrinsic::x86_xop_vpcomgtq:
9217  case Intrinsic::x86_xop_vpcomgtub:
9218  case Intrinsic::x86_xop_vpcomgtuw:
9219  case Intrinsic::x86_xop_vpcomgtud:
9220  case Intrinsic::x86_xop_vpcomgtuq:
9221  case Intrinsic::x86_xop_vpcomgeb:
9222  case Intrinsic::x86_xop_vpcomgew:
9223  case Intrinsic::x86_xop_vpcomged:
9224  case Intrinsic::x86_xop_vpcomgeq:
9225  case Intrinsic::x86_xop_vpcomgeub:
9226  case Intrinsic::x86_xop_vpcomgeuw:
9227  case Intrinsic::x86_xop_vpcomgeud:
9228  case Intrinsic::x86_xop_vpcomgeuq:
9229  case Intrinsic::x86_xop_vpcomeqb:
9230  case Intrinsic::x86_xop_vpcomeqw:
9231  case Intrinsic::x86_xop_vpcomeqd:
9232  case Intrinsic::x86_xop_vpcomeqq:
9233  case Intrinsic::x86_xop_vpcomequb:
9234  case Intrinsic::x86_xop_vpcomequw:
9235  case Intrinsic::x86_xop_vpcomequd:
9236  case Intrinsic::x86_xop_vpcomequq:
9237  case Intrinsic::x86_xop_vpcomneb:
9238  case Intrinsic::x86_xop_vpcomnew:
9239  case Intrinsic::x86_xop_vpcomned:
9240  case Intrinsic::x86_xop_vpcomneq:
9241  case Intrinsic::x86_xop_vpcomneub:
9242  case Intrinsic::x86_xop_vpcomneuw:
9243  case Intrinsic::x86_xop_vpcomneud:
9244  case Intrinsic::x86_xop_vpcomneuq:
9245  case Intrinsic::x86_xop_vpcomfalseb:
9246  case Intrinsic::x86_xop_vpcomfalsew:
9247  case Intrinsic::x86_xop_vpcomfalsed:
9248  case Intrinsic::x86_xop_vpcomfalseq:
9249  case Intrinsic::x86_xop_vpcomfalseub:
9250  case Intrinsic::x86_xop_vpcomfalseuw:
9251  case Intrinsic::x86_xop_vpcomfalseud:
9252  case Intrinsic::x86_xop_vpcomfalseuq:
9253  case Intrinsic::x86_xop_vpcomtrueb:
9254  case Intrinsic::x86_xop_vpcomtruew:
9255  case Intrinsic::x86_xop_vpcomtrued:
9256  case Intrinsic::x86_xop_vpcomtrueq:
9257  case Intrinsic::x86_xop_vpcomtrueub:
9258  case Intrinsic::x86_xop_vpcomtrueuw:
9259  case Intrinsic::x86_xop_vpcomtrueud:
9260  case Intrinsic::x86_xop_vpcomtrueuq: {
9261    unsigned CC = 0;
9262    unsigned Opc = 0;
9263
9264    switch (IntNo) {
9265    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9266    case Intrinsic::x86_xop_vpcomltb:
9267    case Intrinsic::x86_xop_vpcomltw:
9268    case Intrinsic::x86_xop_vpcomltd:
9269    case Intrinsic::x86_xop_vpcomltq:
9270      CC = 0;
9271      Opc = X86ISD::VPCOM;
9272      break;
9273    case Intrinsic::x86_xop_vpcomltub:
9274    case Intrinsic::x86_xop_vpcomltuw:
9275    case Intrinsic::x86_xop_vpcomltud:
9276    case Intrinsic::x86_xop_vpcomltuq:
9277      CC = 0;
9278      Opc = X86ISD::VPCOMU;
9279      break;
9280    case Intrinsic::x86_xop_vpcomleb:
9281    case Intrinsic::x86_xop_vpcomlew:
9282    case Intrinsic::x86_xop_vpcomled:
9283    case Intrinsic::x86_xop_vpcomleq:
9284      CC = 1;
9285      Opc = X86ISD::VPCOM;
9286      break;
9287    case Intrinsic::x86_xop_vpcomleub:
9288    case Intrinsic::x86_xop_vpcomleuw:
9289    case Intrinsic::x86_xop_vpcomleud:
9290    case Intrinsic::x86_xop_vpcomleuq:
9291      CC = 1;
9292      Opc = X86ISD::VPCOMU;
9293      break;
9294    case Intrinsic::x86_xop_vpcomgtb:
9295    case Intrinsic::x86_xop_vpcomgtw:
9296    case Intrinsic::x86_xop_vpcomgtd:
9297    case Intrinsic::x86_xop_vpcomgtq:
9298      CC = 2;
9299      Opc = X86ISD::VPCOM;
9300      break;
9301    case Intrinsic::x86_xop_vpcomgtub:
9302    case Intrinsic::x86_xop_vpcomgtuw:
9303    case Intrinsic::x86_xop_vpcomgtud:
9304    case Intrinsic::x86_xop_vpcomgtuq:
9305      CC = 2;
9306      Opc = X86ISD::VPCOMU;
9307      break;
9308    case Intrinsic::x86_xop_vpcomgeb:
9309    case Intrinsic::x86_xop_vpcomgew:
9310    case Intrinsic::x86_xop_vpcomged:
9311    case Intrinsic::x86_xop_vpcomgeq:
9312      CC = 3;
9313      Opc = X86ISD::VPCOM;
9314      break;
9315    case Intrinsic::x86_xop_vpcomgeub:
9316    case Intrinsic::x86_xop_vpcomgeuw:
9317    case Intrinsic::x86_xop_vpcomgeud:
9318    case Intrinsic::x86_xop_vpcomgeuq:
9319      CC = 3;
9320      Opc = X86ISD::VPCOMU;
9321      break;
9322    case Intrinsic::x86_xop_vpcomeqb:
9323    case Intrinsic::x86_xop_vpcomeqw:
9324    case Intrinsic::x86_xop_vpcomeqd:
9325    case Intrinsic::x86_xop_vpcomeqq:
9326      CC = 4;
9327      Opc = X86ISD::VPCOM;
9328      break;
9329    case Intrinsic::x86_xop_vpcomequb:
9330    case Intrinsic::x86_xop_vpcomequw:
9331    case Intrinsic::x86_xop_vpcomequd:
9332    case Intrinsic::x86_xop_vpcomequq:
9333      CC = 4;
9334      Opc = X86ISD::VPCOMU;
9335      break;
9336    case Intrinsic::x86_xop_vpcomneb:
9337    case Intrinsic::x86_xop_vpcomnew:
9338    case Intrinsic::x86_xop_vpcomned:
9339    case Intrinsic::x86_xop_vpcomneq:
9340      CC = 5;
9341      Opc = X86ISD::VPCOM;
9342      break;
9343    case Intrinsic::x86_xop_vpcomneub:
9344    case Intrinsic::x86_xop_vpcomneuw:
9345    case Intrinsic::x86_xop_vpcomneud:
9346    case Intrinsic::x86_xop_vpcomneuq:
9347      CC = 5;
9348      Opc = X86ISD::VPCOMU;
9349      break;
9350    case Intrinsic::x86_xop_vpcomfalseb:
9351    case Intrinsic::x86_xop_vpcomfalsew:
9352    case Intrinsic::x86_xop_vpcomfalsed:
9353    case Intrinsic::x86_xop_vpcomfalseq:
9354      CC = 6;
9355      Opc = X86ISD::VPCOM;
9356      break;
9357    case Intrinsic::x86_xop_vpcomfalseub:
9358    case Intrinsic::x86_xop_vpcomfalseuw:
9359    case Intrinsic::x86_xop_vpcomfalseud:
9360    case Intrinsic::x86_xop_vpcomfalseuq:
9361      CC = 6;
9362      Opc = X86ISD::VPCOMU;
9363      break;
9364    case Intrinsic::x86_xop_vpcomtrueb:
9365    case Intrinsic::x86_xop_vpcomtruew:
9366    case Intrinsic::x86_xop_vpcomtrued:
9367    case Intrinsic::x86_xop_vpcomtrueq:
9368      CC = 7;
9369      Opc = X86ISD::VPCOM;
9370      break;
9371    case Intrinsic::x86_xop_vpcomtrueub:
9372    case Intrinsic::x86_xop_vpcomtrueuw:
9373    case Intrinsic::x86_xop_vpcomtrueud:
9374    case Intrinsic::x86_xop_vpcomtrueuq:
9375      CC = 7;
9376      Opc = X86ISD::VPCOMU;
9377      break;
9378    }
9379
9380    SDValue LHS = Op.getOperand(1);
9381    SDValue RHS = Op.getOperand(2);
9382    return DAG.getNode(Opc, dl, Op.getValueType(), LHS, RHS,
9383                       DAG.getConstant(CC, MVT::i8));
9384  }
9385
9386  // Arithmetic intrinsics.
9387  case Intrinsic::x86_sse2_pmulu_dq:
9388  case Intrinsic::x86_avx2_pmulu_dq:
9389    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9390                       Op.getOperand(1), Op.getOperand(2));
9391  case Intrinsic::x86_sse3_hadd_ps:
9392  case Intrinsic::x86_sse3_hadd_pd:
9393  case Intrinsic::x86_avx_hadd_ps_256:
9394  case Intrinsic::x86_avx_hadd_pd_256:
9395    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9396                       Op.getOperand(1), Op.getOperand(2));
9397  case Intrinsic::x86_sse3_hsub_ps:
9398  case Intrinsic::x86_sse3_hsub_pd:
9399  case Intrinsic::x86_avx_hsub_ps_256:
9400  case Intrinsic::x86_avx_hsub_pd_256:
9401    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9402                       Op.getOperand(1), Op.getOperand(2));
9403  case Intrinsic::x86_ssse3_phadd_w_128:
9404  case Intrinsic::x86_ssse3_phadd_d_128:
9405  case Intrinsic::x86_avx2_phadd_w:
9406  case Intrinsic::x86_avx2_phadd_d:
9407    return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
9408                       Op.getOperand(1), Op.getOperand(2));
9409  case Intrinsic::x86_ssse3_phsub_w_128:
9410  case Intrinsic::x86_ssse3_phsub_d_128:
9411  case Intrinsic::x86_avx2_phsub_w:
9412  case Intrinsic::x86_avx2_phsub_d:
9413    return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
9414                       Op.getOperand(1), Op.getOperand(2));
9415  case Intrinsic::x86_avx2_psllv_d:
9416  case Intrinsic::x86_avx2_psllv_q:
9417  case Intrinsic::x86_avx2_psllv_d_256:
9418  case Intrinsic::x86_avx2_psllv_q_256:
9419    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9420                      Op.getOperand(1), Op.getOperand(2));
9421  case Intrinsic::x86_avx2_psrlv_d:
9422  case Intrinsic::x86_avx2_psrlv_q:
9423  case Intrinsic::x86_avx2_psrlv_d_256:
9424  case Intrinsic::x86_avx2_psrlv_q_256:
9425    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9426                      Op.getOperand(1), Op.getOperand(2));
9427  case Intrinsic::x86_avx2_psrav_d:
9428  case Intrinsic::x86_avx2_psrav_d_256:
9429    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9430                      Op.getOperand(1), Op.getOperand(2));
9431  case Intrinsic::x86_ssse3_pshuf_b_128:
9432  case Intrinsic::x86_avx2_pshuf_b:
9433    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9434                       Op.getOperand(1), Op.getOperand(2));
9435  case Intrinsic::x86_ssse3_psign_b_128:
9436  case Intrinsic::x86_ssse3_psign_w_128:
9437  case Intrinsic::x86_ssse3_psign_d_128:
9438  case Intrinsic::x86_avx2_psign_b:
9439  case Intrinsic::x86_avx2_psign_w:
9440  case Intrinsic::x86_avx2_psign_d:
9441    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9442                       Op.getOperand(1), Op.getOperand(2));
9443  case Intrinsic::x86_sse41_insertps:
9444    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9445                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9446  case Intrinsic::x86_avx_vperm2f128_ps_256:
9447  case Intrinsic::x86_avx_vperm2f128_pd_256:
9448  case Intrinsic::x86_avx_vperm2f128_si_256:
9449  case Intrinsic::x86_avx2_vperm2i128:
9450    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9451                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9452  case Intrinsic::x86_avx_vpermil_ps:
9453  case Intrinsic::x86_avx_vpermil_pd:
9454  case Intrinsic::x86_avx_vpermil_ps_256:
9455  case Intrinsic::x86_avx_vpermil_pd_256:
9456    return DAG.getNode(X86ISD::VPERMILP, dl, Op.getValueType(),
9457                       Op.getOperand(1), Op.getOperand(2));
9458
9459  // ptest and testp intrinsics. The intrinsic these come from are designed to
9460  // return an integer value, not just an instruction so lower it to the ptest
9461  // or testp pattern and a setcc for the result.
9462  case Intrinsic::x86_sse41_ptestz:
9463  case Intrinsic::x86_sse41_ptestc:
9464  case Intrinsic::x86_sse41_ptestnzc:
9465  case Intrinsic::x86_avx_ptestz_256:
9466  case Intrinsic::x86_avx_ptestc_256:
9467  case Intrinsic::x86_avx_ptestnzc_256:
9468  case Intrinsic::x86_avx_vtestz_ps:
9469  case Intrinsic::x86_avx_vtestc_ps:
9470  case Intrinsic::x86_avx_vtestnzc_ps:
9471  case Intrinsic::x86_avx_vtestz_pd:
9472  case Intrinsic::x86_avx_vtestc_pd:
9473  case Intrinsic::x86_avx_vtestnzc_pd:
9474  case Intrinsic::x86_avx_vtestz_ps_256:
9475  case Intrinsic::x86_avx_vtestc_ps_256:
9476  case Intrinsic::x86_avx_vtestnzc_ps_256:
9477  case Intrinsic::x86_avx_vtestz_pd_256:
9478  case Intrinsic::x86_avx_vtestc_pd_256:
9479  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9480    bool IsTestPacked = false;
9481    unsigned X86CC = 0;
9482    switch (IntNo) {
9483    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9484    case Intrinsic::x86_avx_vtestz_ps:
9485    case Intrinsic::x86_avx_vtestz_pd:
9486    case Intrinsic::x86_avx_vtestz_ps_256:
9487    case Intrinsic::x86_avx_vtestz_pd_256:
9488      IsTestPacked = true; // Fallthrough
9489    case Intrinsic::x86_sse41_ptestz:
9490    case Intrinsic::x86_avx_ptestz_256:
9491      // ZF = 1
9492      X86CC = X86::COND_E;
9493      break;
9494    case Intrinsic::x86_avx_vtestc_ps:
9495    case Intrinsic::x86_avx_vtestc_pd:
9496    case Intrinsic::x86_avx_vtestc_ps_256:
9497    case Intrinsic::x86_avx_vtestc_pd_256:
9498      IsTestPacked = true; // Fallthrough
9499    case Intrinsic::x86_sse41_ptestc:
9500    case Intrinsic::x86_avx_ptestc_256:
9501      // CF = 1
9502      X86CC = X86::COND_B;
9503      break;
9504    case Intrinsic::x86_avx_vtestnzc_ps:
9505    case Intrinsic::x86_avx_vtestnzc_pd:
9506    case Intrinsic::x86_avx_vtestnzc_ps_256:
9507    case Intrinsic::x86_avx_vtestnzc_pd_256:
9508      IsTestPacked = true; // Fallthrough
9509    case Intrinsic::x86_sse41_ptestnzc:
9510    case Intrinsic::x86_avx_ptestnzc_256:
9511      // ZF and CF = 0
9512      X86CC = X86::COND_A;
9513      break;
9514    }
9515
9516    SDValue LHS = Op.getOperand(1);
9517    SDValue RHS = Op.getOperand(2);
9518    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9519    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9520    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9521    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9522    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9523  }
9524
9525  // SSE/AVX shift intrinsics
9526  case Intrinsic::x86_sse2_psll_w:
9527  case Intrinsic::x86_sse2_psll_d:
9528  case Intrinsic::x86_sse2_psll_q:
9529  case Intrinsic::x86_avx2_psll_w:
9530  case Intrinsic::x86_avx2_psll_d:
9531  case Intrinsic::x86_avx2_psll_q:
9532    return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
9533                       Op.getOperand(1), Op.getOperand(2));
9534  case Intrinsic::x86_sse2_psrl_w:
9535  case Intrinsic::x86_sse2_psrl_d:
9536  case Intrinsic::x86_sse2_psrl_q:
9537  case Intrinsic::x86_avx2_psrl_w:
9538  case Intrinsic::x86_avx2_psrl_d:
9539  case Intrinsic::x86_avx2_psrl_q:
9540    return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
9541                       Op.getOperand(1), Op.getOperand(2));
9542  case Intrinsic::x86_sse2_psra_w:
9543  case Intrinsic::x86_sse2_psra_d:
9544  case Intrinsic::x86_avx2_psra_w:
9545  case Intrinsic::x86_avx2_psra_d:
9546    return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
9547                       Op.getOperand(1), Op.getOperand(2));
9548  case Intrinsic::x86_sse2_pslli_w:
9549  case Intrinsic::x86_sse2_pslli_d:
9550  case Intrinsic::x86_sse2_pslli_q:
9551  case Intrinsic::x86_avx2_pslli_w:
9552  case Intrinsic::x86_avx2_pslli_d:
9553  case Intrinsic::x86_avx2_pslli_q:
9554    return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
9555                               Op.getOperand(1), Op.getOperand(2), DAG);
9556  case Intrinsic::x86_sse2_psrli_w:
9557  case Intrinsic::x86_sse2_psrli_d:
9558  case Intrinsic::x86_sse2_psrli_q:
9559  case Intrinsic::x86_avx2_psrli_w:
9560  case Intrinsic::x86_avx2_psrli_d:
9561  case Intrinsic::x86_avx2_psrli_q:
9562    return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
9563                               Op.getOperand(1), Op.getOperand(2), DAG);
9564  case Intrinsic::x86_sse2_psrai_w:
9565  case Intrinsic::x86_sse2_psrai_d:
9566  case Intrinsic::x86_avx2_psrai_w:
9567  case Intrinsic::x86_avx2_psrai_d:
9568    return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
9569                               Op.getOperand(1), Op.getOperand(2), DAG);
9570  // Fix vector shift instructions where the last operand is a non-immediate
9571  // i32 value.
9572  case Intrinsic::x86_mmx_pslli_w:
9573  case Intrinsic::x86_mmx_pslli_d:
9574  case Intrinsic::x86_mmx_pslli_q:
9575  case Intrinsic::x86_mmx_psrli_w:
9576  case Intrinsic::x86_mmx_psrli_d:
9577  case Intrinsic::x86_mmx_psrli_q:
9578  case Intrinsic::x86_mmx_psrai_w:
9579  case Intrinsic::x86_mmx_psrai_d: {
9580    SDValue ShAmt = Op.getOperand(2);
9581    if (isa<ConstantSDNode>(ShAmt))
9582      return SDValue();
9583
9584    unsigned NewIntNo = 0;
9585    switch (IntNo) {
9586    case Intrinsic::x86_mmx_pslli_w:
9587      NewIntNo = Intrinsic::x86_mmx_psll_w;
9588      break;
9589    case Intrinsic::x86_mmx_pslli_d:
9590      NewIntNo = Intrinsic::x86_mmx_psll_d;
9591      break;
9592    case Intrinsic::x86_mmx_pslli_q:
9593      NewIntNo = Intrinsic::x86_mmx_psll_q;
9594      break;
9595    case Intrinsic::x86_mmx_psrli_w:
9596      NewIntNo = Intrinsic::x86_mmx_psrl_w;
9597      break;
9598    case Intrinsic::x86_mmx_psrli_d:
9599      NewIntNo = Intrinsic::x86_mmx_psrl_d;
9600      break;
9601    case Intrinsic::x86_mmx_psrli_q:
9602      NewIntNo = Intrinsic::x86_mmx_psrl_q;
9603      break;
9604    case Intrinsic::x86_mmx_psrai_w:
9605      NewIntNo = Intrinsic::x86_mmx_psra_w;
9606      break;
9607    case Intrinsic::x86_mmx_psrai_d:
9608      NewIntNo = Intrinsic::x86_mmx_psra_d;
9609      break;
9610    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9611    }
9612
9613    // The vector shift intrinsics with scalars uses 32b shift amounts but
9614    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9615    // to be zero.
9616    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
9617                         DAG.getConstant(0, MVT::i32));
9618// FIXME this must be lowered to get rid of the invalid type.
9619
9620    EVT VT = Op.getValueType();
9621    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9622    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9623                       DAG.getConstant(NewIntNo, MVT::i32),
9624                       Op.getOperand(1), ShAmt);
9625  }
9626  }
9627}
9628
9629SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9630                                           SelectionDAG &DAG) const {
9631  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9632  MFI->setReturnAddressIsTaken(true);
9633
9634  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9635  DebugLoc dl = Op.getDebugLoc();
9636
9637  if (Depth > 0) {
9638    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9639    SDValue Offset =
9640      DAG.getConstant(TD->getPointerSize(),
9641                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9642    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9643                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9644                                   FrameAddr, Offset),
9645                       MachinePointerInfo(), false, false, false, 0);
9646  }
9647
9648  // Just load the return address.
9649  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9650  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9651                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9652}
9653
9654SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9655  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9656  MFI->setFrameAddressIsTaken(true);
9657
9658  EVT VT = Op.getValueType();
9659  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9660  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9661  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9662  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9663  while (Depth--)
9664    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9665                            MachinePointerInfo(),
9666                            false, false, false, 0);
9667  return FrameAddr;
9668}
9669
9670SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9671                                                     SelectionDAG &DAG) const {
9672  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9673}
9674
9675SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9676  MachineFunction &MF = DAG.getMachineFunction();
9677  SDValue Chain     = Op.getOperand(0);
9678  SDValue Offset    = Op.getOperand(1);
9679  SDValue Handler   = Op.getOperand(2);
9680  DebugLoc dl       = Op.getDebugLoc();
9681
9682  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9683                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9684                                     getPointerTy());
9685  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9686
9687  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9688                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9689  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9690  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9691                       false, false, 0);
9692  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9693  MF.getRegInfo().addLiveOut(StoreAddrReg);
9694
9695  return DAG.getNode(X86ISD::EH_RETURN, dl,
9696                     MVT::Other,
9697                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9698}
9699
9700SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9701                                                  SelectionDAG &DAG) const {
9702  return Op.getOperand(0);
9703}
9704
9705SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9706                                                SelectionDAG &DAG) const {
9707  SDValue Root = Op.getOperand(0);
9708  SDValue Trmp = Op.getOperand(1); // trampoline
9709  SDValue FPtr = Op.getOperand(2); // nested function
9710  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9711  DebugLoc dl  = Op.getDebugLoc();
9712
9713  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9714
9715  if (Subtarget->is64Bit()) {
9716    SDValue OutChains[6];
9717
9718    // Large code-model.
9719    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9720    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9721
9722    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9723    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9724
9725    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9726
9727    // Load the pointer to the nested function into R11.
9728    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9729    SDValue Addr = Trmp;
9730    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9731                                Addr, MachinePointerInfo(TrmpAddr),
9732                                false, false, 0);
9733
9734    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9735                       DAG.getConstant(2, MVT::i64));
9736    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9737                                MachinePointerInfo(TrmpAddr, 2),
9738                                false, false, 2);
9739
9740    // Load the 'nest' parameter value into R10.
9741    // R10 is specified in X86CallingConv.td
9742    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9743    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9744                       DAG.getConstant(10, MVT::i64));
9745    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9746                                Addr, MachinePointerInfo(TrmpAddr, 10),
9747                                false, false, 0);
9748
9749    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9750                       DAG.getConstant(12, MVT::i64));
9751    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9752                                MachinePointerInfo(TrmpAddr, 12),
9753                                false, false, 2);
9754
9755    // Jump to the nested function.
9756    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9757    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9758                       DAG.getConstant(20, MVT::i64));
9759    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9760                                Addr, MachinePointerInfo(TrmpAddr, 20),
9761                                false, false, 0);
9762
9763    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9764    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9765                       DAG.getConstant(22, MVT::i64));
9766    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9767                                MachinePointerInfo(TrmpAddr, 22),
9768                                false, false, 0);
9769
9770    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9771  } else {
9772    const Function *Func =
9773      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9774    CallingConv::ID CC = Func->getCallingConv();
9775    unsigned NestReg;
9776
9777    switch (CC) {
9778    default:
9779      llvm_unreachable("Unsupported calling convention");
9780    case CallingConv::C:
9781    case CallingConv::X86_StdCall: {
9782      // Pass 'nest' parameter in ECX.
9783      // Must be kept in sync with X86CallingConv.td
9784      NestReg = X86::ECX;
9785
9786      // Check that ECX wasn't needed by an 'inreg' parameter.
9787      FunctionType *FTy = Func->getFunctionType();
9788      const AttrListPtr &Attrs = Func->getAttributes();
9789
9790      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9791        unsigned InRegCount = 0;
9792        unsigned Idx = 1;
9793
9794        for (FunctionType::param_iterator I = FTy->param_begin(),
9795             E = FTy->param_end(); I != E; ++I, ++Idx)
9796          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9797            // FIXME: should only count parameters that are lowered to integers.
9798            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9799
9800        if (InRegCount > 2) {
9801          report_fatal_error("Nest register in use - reduce number of inreg"
9802                             " parameters!");
9803        }
9804      }
9805      break;
9806    }
9807    case CallingConv::X86_FastCall:
9808    case CallingConv::X86_ThisCall:
9809    case CallingConv::Fast:
9810      // Pass 'nest' parameter in EAX.
9811      // Must be kept in sync with X86CallingConv.td
9812      NestReg = X86::EAX;
9813      break;
9814    }
9815
9816    SDValue OutChains[4];
9817    SDValue Addr, Disp;
9818
9819    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9820                       DAG.getConstant(10, MVT::i32));
9821    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9822
9823    // This is storing the opcode for MOV32ri.
9824    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9825    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9826    OutChains[0] = DAG.getStore(Root, dl,
9827                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9828                                Trmp, MachinePointerInfo(TrmpAddr),
9829                                false, false, 0);
9830
9831    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9832                       DAG.getConstant(1, MVT::i32));
9833    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9834                                MachinePointerInfo(TrmpAddr, 1),
9835                                false, false, 1);
9836
9837    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9838    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9839                       DAG.getConstant(5, MVT::i32));
9840    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9841                                MachinePointerInfo(TrmpAddr, 5),
9842                                false, false, 1);
9843
9844    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9845                       DAG.getConstant(6, MVT::i32));
9846    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9847                                MachinePointerInfo(TrmpAddr, 6),
9848                                false, false, 1);
9849
9850    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9851  }
9852}
9853
9854SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9855                                            SelectionDAG &DAG) const {
9856  /*
9857   The rounding mode is in bits 11:10 of FPSR, and has the following
9858   settings:
9859     00 Round to nearest
9860     01 Round to -inf
9861     10 Round to +inf
9862     11 Round to 0
9863
9864  FLT_ROUNDS, on the other hand, expects the following:
9865    -1 Undefined
9866     0 Round to 0
9867     1 Round to nearest
9868     2 Round to +inf
9869     3 Round to -inf
9870
9871  To perform the conversion, we do:
9872    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9873  */
9874
9875  MachineFunction &MF = DAG.getMachineFunction();
9876  const TargetMachine &TM = MF.getTarget();
9877  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9878  unsigned StackAlignment = TFI.getStackAlignment();
9879  EVT VT = Op.getValueType();
9880  DebugLoc DL = Op.getDebugLoc();
9881
9882  // Save FP Control Word to stack slot
9883  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9884  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9885
9886
9887  MachineMemOperand *MMO =
9888   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9889                           MachineMemOperand::MOStore, 2, 2);
9890
9891  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9892  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9893                                          DAG.getVTList(MVT::Other),
9894                                          Ops, 2, MVT::i16, MMO);
9895
9896  // Load FP Control Word from stack slot
9897  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9898                            MachinePointerInfo(), false, false, false, 0);
9899
9900  // Transform as necessary
9901  SDValue CWD1 =
9902    DAG.getNode(ISD::SRL, DL, MVT::i16,
9903                DAG.getNode(ISD::AND, DL, MVT::i16,
9904                            CWD, DAG.getConstant(0x800, MVT::i16)),
9905                DAG.getConstant(11, MVT::i8));
9906  SDValue CWD2 =
9907    DAG.getNode(ISD::SRL, DL, MVT::i16,
9908                DAG.getNode(ISD::AND, DL, MVT::i16,
9909                            CWD, DAG.getConstant(0x400, MVT::i16)),
9910                DAG.getConstant(9, MVT::i8));
9911
9912  SDValue RetVal =
9913    DAG.getNode(ISD::AND, DL, MVT::i16,
9914                DAG.getNode(ISD::ADD, DL, MVT::i16,
9915                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9916                            DAG.getConstant(1, MVT::i16)),
9917                DAG.getConstant(3, MVT::i16));
9918
9919
9920  return DAG.getNode((VT.getSizeInBits() < 16 ?
9921                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9922}
9923
9924SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9925  EVT VT = Op.getValueType();
9926  EVT OpVT = VT;
9927  unsigned NumBits = VT.getSizeInBits();
9928  DebugLoc dl = Op.getDebugLoc();
9929
9930  Op = Op.getOperand(0);
9931  if (VT == MVT::i8) {
9932    // Zero extend to i32 since there is not an i8 bsr.
9933    OpVT = MVT::i32;
9934    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9935  }
9936
9937  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9938  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9939  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9940
9941  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9942  SDValue Ops[] = {
9943    Op,
9944    DAG.getConstant(NumBits+NumBits-1, OpVT),
9945    DAG.getConstant(X86::COND_E, MVT::i8),
9946    Op.getValue(1)
9947  };
9948  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9949
9950  // Finally xor with NumBits-1.
9951  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9952
9953  if (VT == MVT::i8)
9954    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9955  return Op;
9956}
9957
9958SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
9959                                                SelectionDAG &DAG) const {
9960  EVT VT = Op.getValueType();
9961  EVT OpVT = VT;
9962  unsigned NumBits = VT.getSizeInBits();
9963  DebugLoc dl = Op.getDebugLoc();
9964
9965  Op = Op.getOperand(0);
9966  if (VT == MVT::i8) {
9967    // Zero extend to i32 since there is not an i8 bsr.
9968    OpVT = MVT::i32;
9969    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9970  }
9971
9972  // Issue a bsr (scan bits in reverse).
9973  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9974  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9975
9976  // And xor with NumBits-1.
9977  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9978
9979  if (VT == MVT::i8)
9980    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9981  return Op;
9982}
9983
9984SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9985  EVT VT = Op.getValueType();
9986  unsigned NumBits = VT.getSizeInBits();
9987  DebugLoc dl = Op.getDebugLoc();
9988  Op = Op.getOperand(0);
9989
9990  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9991  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9992  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9993
9994  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9995  SDValue Ops[] = {
9996    Op,
9997    DAG.getConstant(NumBits, VT),
9998    DAG.getConstant(X86::COND_E, MVT::i8),
9999    Op.getValue(1)
10000  };
10001  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10002}
10003
10004// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10005// ones, and then concatenate the result back.
10006static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10007  EVT VT = Op.getValueType();
10008
10009  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10010         "Unsupported value type for operation");
10011
10012  int NumElems = VT.getVectorNumElements();
10013  DebugLoc dl = Op.getDebugLoc();
10014  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10015  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10016
10017  // Extract the LHS vectors
10018  SDValue LHS = Op.getOperand(0);
10019  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10020  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10021
10022  // Extract the RHS vectors
10023  SDValue RHS = Op.getOperand(1);
10024  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
10025  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
10026
10027  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10028  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10029
10030  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10031                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10032                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10033}
10034
10035SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10036  assert(Op.getValueType().getSizeInBits() == 256 &&
10037         Op.getValueType().isInteger() &&
10038         "Only handle AVX 256-bit vector integer operation");
10039  return Lower256IntArith(Op, DAG);
10040}
10041
10042SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10043  assert(Op.getValueType().getSizeInBits() == 256 &&
10044         Op.getValueType().isInteger() &&
10045         "Only handle AVX 256-bit vector integer operation");
10046  return Lower256IntArith(Op, DAG);
10047}
10048
10049SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10050  EVT VT = Op.getValueType();
10051
10052  // Decompose 256-bit ops into smaller 128-bit ops.
10053  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10054    return Lower256IntArith(Op, DAG);
10055
10056  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10057         "Only know how to lower V2I64/V4I64 multiply");
10058
10059  DebugLoc dl = Op.getDebugLoc();
10060
10061  //  Ahi = psrlqi(a, 32);
10062  //  Bhi = psrlqi(b, 32);
10063  //
10064  //  AloBlo = pmuludq(a, b);
10065  //  AloBhi = pmuludq(a, Bhi);
10066  //  AhiBlo = pmuludq(Ahi, b);
10067
10068  //  AloBhi = psllqi(AloBhi, 32);
10069  //  AhiBlo = psllqi(AhiBlo, 32);
10070  //  return AloBlo + AloBhi + AhiBlo;
10071
10072  SDValue A = Op.getOperand(0);
10073  SDValue B = Op.getOperand(1);
10074
10075  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10076
10077  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10078  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10079
10080  // Bit cast to 32-bit vectors for MULUDQ
10081  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10082  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10083  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10084  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10085  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10086
10087  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10088  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10089  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10090
10091  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10092  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10093
10094  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10095  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10096}
10097
10098SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10099
10100  EVT VT = Op.getValueType();
10101  DebugLoc dl = Op.getDebugLoc();
10102  SDValue R = Op.getOperand(0);
10103  SDValue Amt = Op.getOperand(1);
10104  LLVMContext *Context = DAG.getContext();
10105
10106  if (!Subtarget->hasSSE2())
10107    return SDValue();
10108
10109  // Optimize shl/srl/sra with constant shift amount.
10110  if (isSplatVector(Amt.getNode())) {
10111    SDValue SclrAmt = Amt->getOperand(0);
10112    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10113      uint64_t ShiftAmt = C->getZExtValue();
10114
10115      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10116          (Subtarget->hasAVX2() &&
10117           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10118        if (Op.getOpcode() == ISD::SHL)
10119          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10120                             DAG.getConstant(ShiftAmt, MVT::i32));
10121        if (Op.getOpcode() == ISD::SRL)
10122          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10123                             DAG.getConstant(ShiftAmt, MVT::i32));
10124        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10125          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10126                             DAG.getConstant(ShiftAmt, MVT::i32));
10127      }
10128
10129      if (VT == MVT::v16i8) {
10130        if (Op.getOpcode() == ISD::SHL) {
10131          // Make a large shift.
10132          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10133                                    DAG.getConstant(ShiftAmt, MVT::i32));
10134          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10135          // Zero out the rightmost bits.
10136          SmallVector<SDValue, 16> V(16,
10137                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10138                                                     MVT::i8));
10139          return DAG.getNode(ISD::AND, dl, VT, SHL,
10140                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10141        }
10142        if (Op.getOpcode() == ISD::SRL) {
10143          // Make a large shift.
10144          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10145                                    DAG.getConstant(ShiftAmt, MVT::i32));
10146          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10147          // Zero out the leftmost bits.
10148          SmallVector<SDValue, 16> V(16,
10149                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10150                                                     MVT::i8));
10151          return DAG.getNode(ISD::AND, dl, VT, SRL,
10152                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10153        }
10154        if (Op.getOpcode() == ISD::SRA) {
10155          if (ShiftAmt == 7) {
10156            // R s>> 7  ===  R s< 0
10157            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10158            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10159          }
10160
10161          // R s>> a === ((R u>> a) ^ m) - m
10162          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10163          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10164                                                         MVT::i8));
10165          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10166          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10167          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10168          return Res;
10169        }
10170      }
10171
10172      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10173        if (Op.getOpcode() == ISD::SHL) {
10174          // Make a large shift.
10175          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10176                                    DAG.getConstant(ShiftAmt, MVT::i32));
10177          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10178          // Zero out the rightmost bits.
10179          SmallVector<SDValue, 32> V(32,
10180                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10181                                                     MVT::i8));
10182          return DAG.getNode(ISD::AND, dl, VT, SHL,
10183                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10184        }
10185        if (Op.getOpcode() == ISD::SRL) {
10186          // Make a large shift.
10187          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10188                                    DAG.getConstant(ShiftAmt, MVT::i32));
10189          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10190          // Zero out the leftmost bits.
10191          SmallVector<SDValue, 32> V(32,
10192                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10193                                                     MVT::i8));
10194          return DAG.getNode(ISD::AND, dl, VT, SRL,
10195                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10196        }
10197        if (Op.getOpcode() == ISD::SRA) {
10198          if (ShiftAmt == 7) {
10199            // R s>> 7  ===  R s< 0
10200            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10201            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10202          }
10203
10204          // R s>> a === ((R u>> a) ^ m) - m
10205          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10206          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10207                                                         MVT::i8));
10208          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10209          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10210          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10211          return Res;
10212        }
10213      }
10214    }
10215  }
10216
10217  // Lower SHL with variable shift amount.
10218  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10219    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10220                     DAG.getConstant(23, MVT::i32));
10221
10222    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10223    Constant *C = ConstantDataVector::get(*Context, CV);
10224    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10225    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10226                                 MachinePointerInfo::getConstantPool(),
10227                                 false, false, false, 16);
10228
10229    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10230    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10231    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10232    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10233  }
10234  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10235    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10236
10237    // a = a << 5;
10238    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10239                     DAG.getConstant(5, MVT::i32));
10240    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10241
10242    // Turn 'a' into a mask suitable for VSELECT
10243    SDValue VSelM = DAG.getConstant(0x80, VT);
10244    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10245    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10246
10247    SDValue CM1 = DAG.getConstant(0x0f, VT);
10248    SDValue CM2 = DAG.getConstant(0x3f, VT);
10249
10250    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10251    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10252    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10253                            DAG.getConstant(4, MVT::i32), DAG);
10254    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10255    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10256
10257    // a += a
10258    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10259    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10260    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10261
10262    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10263    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10264    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10265                            DAG.getConstant(2, MVT::i32), DAG);
10266    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10267    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10268
10269    // a += a
10270    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10271    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10272    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10273
10274    // return VSELECT(r, r+r, a);
10275    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10276                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10277    return R;
10278  }
10279
10280  // Decompose 256-bit shifts into smaller 128-bit shifts.
10281  if (VT.getSizeInBits() == 256) {
10282    unsigned NumElems = VT.getVectorNumElements();
10283    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10284    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10285
10286    // Extract the two vectors
10287    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10288    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10289                                     DAG, dl);
10290
10291    // Recreate the shift amount vectors
10292    SDValue Amt1, Amt2;
10293    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10294      // Constant shift amount
10295      SmallVector<SDValue, 4> Amt1Csts;
10296      SmallVector<SDValue, 4> Amt2Csts;
10297      for (unsigned i = 0; i != NumElems/2; ++i)
10298        Amt1Csts.push_back(Amt->getOperand(i));
10299      for (unsigned i = NumElems/2; i != NumElems; ++i)
10300        Amt2Csts.push_back(Amt->getOperand(i));
10301
10302      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10303                                 &Amt1Csts[0], NumElems/2);
10304      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10305                                 &Amt2Csts[0], NumElems/2);
10306    } else {
10307      // Variable shift amount
10308      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10309      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10310                                 DAG, dl);
10311    }
10312
10313    // Issue new vector shifts for the smaller types
10314    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10315    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10316
10317    // Concatenate the result back
10318    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10319  }
10320
10321  return SDValue();
10322}
10323
10324SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10325  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10326  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10327  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10328  // has only one use.
10329  SDNode *N = Op.getNode();
10330  SDValue LHS = N->getOperand(0);
10331  SDValue RHS = N->getOperand(1);
10332  unsigned BaseOp = 0;
10333  unsigned Cond = 0;
10334  DebugLoc DL = Op.getDebugLoc();
10335  switch (Op.getOpcode()) {
10336  default: llvm_unreachable("Unknown ovf instruction!");
10337  case ISD::SADDO:
10338    // A subtract of one will be selected as a INC. Note that INC doesn't
10339    // set CF, so we can't do this for UADDO.
10340    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10341      if (C->isOne()) {
10342        BaseOp = X86ISD::INC;
10343        Cond = X86::COND_O;
10344        break;
10345      }
10346    BaseOp = X86ISD::ADD;
10347    Cond = X86::COND_O;
10348    break;
10349  case ISD::UADDO:
10350    BaseOp = X86ISD::ADD;
10351    Cond = X86::COND_B;
10352    break;
10353  case ISD::SSUBO:
10354    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10355    // set CF, so we can't do this for USUBO.
10356    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10357      if (C->isOne()) {
10358        BaseOp = X86ISD::DEC;
10359        Cond = X86::COND_O;
10360        break;
10361      }
10362    BaseOp = X86ISD::SUB;
10363    Cond = X86::COND_O;
10364    break;
10365  case ISD::USUBO:
10366    BaseOp = X86ISD::SUB;
10367    Cond = X86::COND_B;
10368    break;
10369  case ISD::SMULO:
10370    BaseOp = X86ISD::SMUL;
10371    Cond = X86::COND_O;
10372    break;
10373  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10374    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10375                                 MVT::i32);
10376    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10377
10378    SDValue SetCC =
10379      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10380                  DAG.getConstant(X86::COND_O, MVT::i32),
10381                  SDValue(Sum.getNode(), 2));
10382
10383    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10384  }
10385  }
10386
10387  // Also sets EFLAGS.
10388  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10389  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10390
10391  SDValue SetCC =
10392    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10393                DAG.getConstant(Cond, MVT::i32),
10394                SDValue(Sum.getNode(), 1));
10395
10396  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10397}
10398
10399SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10400                                                  SelectionDAG &DAG) const {
10401  DebugLoc dl = Op.getDebugLoc();
10402  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10403  EVT VT = Op.getValueType();
10404
10405  if (!Subtarget->hasSSE2() || !VT.isVector())
10406    return SDValue();
10407
10408  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10409                      ExtraVT.getScalarType().getSizeInBits();
10410  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10411
10412  switch (VT.getSimpleVT().SimpleTy) {
10413    default: return SDValue();
10414    case MVT::v8i32:
10415    case MVT::v16i16:
10416      if (!Subtarget->hasAVX())
10417        return SDValue();
10418      if (!Subtarget->hasAVX2()) {
10419        // needs to be split
10420        int NumElems = VT.getVectorNumElements();
10421        SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10422        SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10423
10424        // Extract the LHS vectors
10425        SDValue LHS = Op.getOperand(0);
10426        SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10427        SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10428
10429        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10430        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10431
10432        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10433        int ExtraNumElems = ExtraVT.getVectorNumElements();
10434        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10435                                   ExtraNumElems/2);
10436        SDValue Extra = DAG.getValueType(ExtraVT);
10437
10438        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10439        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10440
10441        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10442      }
10443      // fall through
10444    case MVT::v4i32:
10445    case MVT::v8i16: {
10446      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10447                                         Op.getOperand(0), ShAmt, DAG);
10448      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10449    }
10450  }
10451}
10452
10453
10454SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10455  DebugLoc dl = Op.getDebugLoc();
10456
10457  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10458  // There isn't any reason to disable it if the target processor supports it.
10459  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10460    SDValue Chain = Op.getOperand(0);
10461    SDValue Zero = DAG.getConstant(0, MVT::i32);
10462    SDValue Ops[] = {
10463      DAG.getRegister(X86::ESP, MVT::i32), // Base
10464      DAG.getTargetConstant(1, MVT::i8),   // Scale
10465      DAG.getRegister(0, MVT::i32),        // Index
10466      DAG.getTargetConstant(0, MVT::i32),  // Disp
10467      DAG.getRegister(0, MVT::i32),        // Segment.
10468      Zero,
10469      Chain
10470    };
10471    SDNode *Res =
10472      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10473                          array_lengthof(Ops));
10474    return SDValue(Res, 0);
10475  }
10476
10477  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10478  if (!isDev)
10479    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10480
10481  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10482  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10483  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10484  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10485
10486  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10487  if (!Op1 && !Op2 && !Op3 && Op4)
10488    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10489
10490  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10491  if (Op1 && !Op2 && !Op3 && !Op4)
10492    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10493
10494  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10495  //           (MFENCE)>;
10496  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10497}
10498
10499SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10500                                             SelectionDAG &DAG) const {
10501  DebugLoc dl = Op.getDebugLoc();
10502  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10503    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10504  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10505    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10506
10507  // The only fence that needs an instruction is a sequentially-consistent
10508  // cross-thread fence.
10509  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10510    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10511    // no-sse2). There isn't any reason to disable it if the target processor
10512    // supports it.
10513    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10514      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10515
10516    SDValue Chain = Op.getOperand(0);
10517    SDValue Zero = DAG.getConstant(0, MVT::i32);
10518    SDValue Ops[] = {
10519      DAG.getRegister(X86::ESP, MVT::i32), // Base
10520      DAG.getTargetConstant(1, MVT::i8),   // Scale
10521      DAG.getRegister(0, MVT::i32),        // Index
10522      DAG.getTargetConstant(0, MVT::i32),  // Disp
10523      DAG.getRegister(0, MVT::i32),        // Segment.
10524      Zero,
10525      Chain
10526    };
10527    SDNode *Res =
10528      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10529                         array_lengthof(Ops));
10530    return SDValue(Res, 0);
10531  }
10532
10533  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10534  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10535}
10536
10537
10538SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10539  EVT T = Op.getValueType();
10540  DebugLoc DL = Op.getDebugLoc();
10541  unsigned Reg = 0;
10542  unsigned size = 0;
10543  switch(T.getSimpleVT().SimpleTy) {
10544  default: llvm_unreachable("Invalid value type!");
10545  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10546  case MVT::i16: Reg = X86::AX;  size = 2; break;
10547  case MVT::i32: Reg = X86::EAX; size = 4; break;
10548  case MVT::i64:
10549    assert(Subtarget->is64Bit() && "Node not type legal!");
10550    Reg = X86::RAX; size = 8;
10551    break;
10552  }
10553  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10554                                    Op.getOperand(2), SDValue());
10555  SDValue Ops[] = { cpIn.getValue(0),
10556                    Op.getOperand(1),
10557                    Op.getOperand(3),
10558                    DAG.getTargetConstant(size, MVT::i8),
10559                    cpIn.getValue(1) };
10560  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10561  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10562  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10563                                           Ops, 5, T, MMO);
10564  SDValue cpOut =
10565    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10566  return cpOut;
10567}
10568
10569SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10570                                                 SelectionDAG &DAG) const {
10571  assert(Subtarget->is64Bit() && "Result not type legalized?");
10572  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10573  SDValue TheChain = Op.getOperand(0);
10574  DebugLoc dl = Op.getDebugLoc();
10575  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10576  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10577  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10578                                   rax.getValue(2));
10579  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10580                            DAG.getConstant(32, MVT::i8));
10581  SDValue Ops[] = {
10582    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10583    rdx.getValue(1)
10584  };
10585  return DAG.getMergeValues(Ops, 2, dl);
10586}
10587
10588SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10589                                            SelectionDAG &DAG) const {
10590  EVT SrcVT = Op.getOperand(0).getValueType();
10591  EVT DstVT = Op.getValueType();
10592  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10593         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10594  assert((DstVT == MVT::i64 ||
10595          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10596         "Unexpected custom BITCAST");
10597  // i64 <=> MMX conversions are Legal.
10598  if (SrcVT==MVT::i64 && DstVT.isVector())
10599    return Op;
10600  if (DstVT==MVT::i64 && SrcVT.isVector())
10601    return Op;
10602  // MMX <=> MMX conversions are Legal.
10603  if (SrcVT.isVector() && DstVT.isVector())
10604    return Op;
10605  // All other conversions need to be expanded.
10606  return SDValue();
10607}
10608
10609SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10610  SDNode *Node = Op.getNode();
10611  DebugLoc dl = Node->getDebugLoc();
10612  EVT T = Node->getValueType(0);
10613  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10614                              DAG.getConstant(0, T), Node->getOperand(2));
10615  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10616                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10617                       Node->getOperand(0),
10618                       Node->getOperand(1), negOp,
10619                       cast<AtomicSDNode>(Node)->getSrcValue(),
10620                       cast<AtomicSDNode>(Node)->getAlignment(),
10621                       cast<AtomicSDNode>(Node)->getOrdering(),
10622                       cast<AtomicSDNode>(Node)->getSynchScope());
10623}
10624
10625static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10626  SDNode *Node = Op.getNode();
10627  DebugLoc dl = Node->getDebugLoc();
10628  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10629
10630  // Convert seq_cst store -> xchg
10631  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10632  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10633  //        (The only way to get a 16-byte store is cmpxchg16b)
10634  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10635  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10636      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10637    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10638                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10639                                 Node->getOperand(0),
10640                                 Node->getOperand(1), Node->getOperand(2),
10641                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10642                                 cast<AtomicSDNode>(Node)->getOrdering(),
10643                                 cast<AtomicSDNode>(Node)->getSynchScope());
10644    return Swap.getValue(1);
10645  }
10646  // Other atomic stores have a simple pattern.
10647  return Op;
10648}
10649
10650static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10651  EVT VT = Op.getNode()->getValueType(0);
10652
10653  // Let legalize expand this if it isn't a legal type yet.
10654  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10655    return SDValue();
10656
10657  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10658
10659  unsigned Opc;
10660  bool ExtraOp = false;
10661  switch (Op.getOpcode()) {
10662  default: llvm_unreachable("Invalid code");
10663  case ISD::ADDC: Opc = X86ISD::ADD; break;
10664  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10665  case ISD::SUBC: Opc = X86ISD::SUB; break;
10666  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10667  }
10668
10669  if (!ExtraOp)
10670    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10671                       Op.getOperand(1));
10672  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10673                     Op.getOperand(1), Op.getOperand(2));
10674}
10675
10676/// LowerOperation - Provide custom lowering hooks for some operations.
10677///
10678SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10679  switch (Op.getOpcode()) {
10680  default: llvm_unreachable("Should not custom lower this!");
10681  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10682  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10683  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10684  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10685  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10686  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10687  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10688  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10689  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10690  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10691  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10692  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10693  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10694  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10695  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10696  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10697  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10698  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10699  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10700  case ISD::SHL_PARTS:
10701  case ISD::SRA_PARTS:
10702  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10703  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10704  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10705  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10706  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10707  case ISD::FABS:               return LowerFABS(Op, DAG);
10708  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10709  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10710  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10711  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10712  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10713  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10714  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10715  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10716  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10717  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10718  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10719  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10720  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10721  case ISD::FRAME_TO_ARGS_OFFSET:
10722                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10723  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10724  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10725  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10726  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10727  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10728  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10729  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10730  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10731  case ISD::MUL:                return LowerMUL(Op, DAG);
10732  case ISD::SRA:
10733  case ISD::SRL:
10734  case ISD::SHL:                return LowerShift(Op, DAG);
10735  case ISD::SADDO:
10736  case ISD::UADDO:
10737  case ISD::SSUBO:
10738  case ISD::USUBO:
10739  case ISD::SMULO:
10740  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10741  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10742  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10743  case ISD::ADDC:
10744  case ISD::ADDE:
10745  case ISD::SUBC:
10746  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10747  case ISD::ADD:                return LowerADD(Op, DAG);
10748  case ISD::SUB:                return LowerSUB(Op, DAG);
10749  }
10750}
10751
10752static void ReplaceATOMIC_LOAD(SDNode *Node,
10753                                  SmallVectorImpl<SDValue> &Results,
10754                                  SelectionDAG &DAG) {
10755  DebugLoc dl = Node->getDebugLoc();
10756  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10757
10758  // Convert wide load -> cmpxchg8b/cmpxchg16b
10759  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10760  //        (The only way to get a 16-byte load is cmpxchg16b)
10761  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10762  SDValue Zero = DAG.getConstant(0, VT);
10763  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10764                               Node->getOperand(0),
10765                               Node->getOperand(1), Zero, Zero,
10766                               cast<AtomicSDNode>(Node)->getMemOperand(),
10767                               cast<AtomicSDNode>(Node)->getOrdering(),
10768                               cast<AtomicSDNode>(Node)->getSynchScope());
10769  Results.push_back(Swap.getValue(0));
10770  Results.push_back(Swap.getValue(1));
10771}
10772
10773void X86TargetLowering::
10774ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10775                        SelectionDAG &DAG, unsigned NewOp) const {
10776  DebugLoc dl = Node->getDebugLoc();
10777  assert (Node->getValueType(0) == MVT::i64 &&
10778          "Only know how to expand i64 atomics");
10779
10780  SDValue Chain = Node->getOperand(0);
10781  SDValue In1 = Node->getOperand(1);
10782  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10783                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10784  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10785                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10786  SDValue Ops[] = { Chain, In1, In2L, In2H };
10787  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10788  SDValue Result =
10789    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10790                            cast<MemSDNode>(Node)->getMemOperand());
10791  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10792  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10793  Results.push_back(Result.getValue(2));
10794}
10795
10796/// ReplaceNodeResults - Replace a node with an illegal result type
10797/// with a new node built out of custom code.
10798void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10799                                           SmallVectorImpl<SDValue>&Results,
10800                                           SelectionDAG &DAG) const {
10801  DebugLoc dl = N->getDebugLoc();
10802  switch (N->getOpcode()) {
10803  default:
10804    llvm_unreachable("Do not know how to custom type legalize this operation!");
10805  case ISD::SIGN_EXTEND_INREG:
10806  case ISD::ADDC:
10807  case ISD::ADDE:
10808  case ISD::SUBC:
10809  case ISD::SUBE:
10810    // We don't want to expand or promote these.
10811    return;
10812  case ISD::FP_TO_SINT:
10813  case ISD::FP_TO_UINT: {
10814    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
10815
10816    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
10817      return;
10818
10819    std::pair<SDValue,SDValue> Vals =
10820        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
10821    SDValue FIST = Vals.first, StackSlot = Vals.second;
10822    if (FIST.getNode() != 0) {
10823      EVT VT = N->getValueType(0);
10824      // Return a load from the stack slot.
10825      if (StackSlot.getNode() != 0)
10826        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10827                                      MachinePointerInfo(),
10828                                      false, false, false, 0));
10829      else
10830        Results.push_back(FIST);
10831    }
10832    return;
10833  }
10834  case ISD::READCYCLECOUNTER: {
10835    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10836    SDValue TheChain = N->getOperand(0);
10837    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10838    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10839                                     rd.getValue(1));
10840    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10841                                     eax.getValue(2));
10842    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10843    SDValue Ops[] = { eax, edx };
10844    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10845    Results.push_back(edx.getValue(1));
10846    return;
10847  }
10848  case ISD::ATOMIC_CMP_SWAP: {
10849    EVT T = N->getValueType(0);
10850    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10851    bool Regs64bit = T == MVT::i128;
10852    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10853    SDValue cpInL, cpInH;
10854    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10855                        DAG.getConstant(0, HalfT));
10856    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10857                        DAG.getConstant(1, HalfT));
10858    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10859                             Regs64bit ? X86::RAX : X86::EAX,
10860                             cpInL, SDValue());
10861    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10862                             Regs64bit ? X86::RDX : X86::EDX,
10863                             cpInH, cpInL.getValue(1));
10864    SDValue swapInL, swapInH;
10865    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10866                          DAG.getConstant(0, HalfT));
10867    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10868                          DAG.getConstant(1, HalfT));
10869    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10870                               Regs64bit ? X86::RBX : X86::EBX,
10871                               swapInL, cpInH.getValue(1));
10872    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10873                               Regs64bit ? X86::RCX : X86::ECX,
10874                               swapInH, swapInL.getValue(1));
10875    SDValue Ops[] = { swapInH.getValue(0),
10876                      N->getOperand(1),
10877                      swapInH.getValue(1) };
10878    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10879    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10880    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10881                                  X86ISD::LCMPXCHG8_DAG;
10882    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10883                                             Ops, 3, T, MMO);
10884    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10885                                        Regs64bit ? X86::RAX : X86::EAX,
10886                                        HalfT, Result.getValue(1));
10887    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10888                                        Regs64bit ? X86::RDX : X86::EDX,
10889                                        HalfT, cpOutL.getValue(2));
10890    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10891    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10892    Results.push_back(cpOutH.getValue(1));
10893    return;
10894  }
10895  case ISD::ATOMIC_LOAD_ADD:
10896    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10897    return;
10898  case ISD::ATOMIC_LOAD_AND:
10899    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10900    return;
10901  case ISD::ATOMIC_LOAD_NAND:
10902    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10903    return;
10904  case ISD::ATOMIC_LOAD_OR:
10905    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10906    return;
10907  case ISD::ATOMIC_LOAD_SUB:
10908    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10909    return;
10910  case ISD::ATOMIC_LOAD_XOR:
10911    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10912    return;
10913  case ISD::ATOMIC_SWAP:
10914    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10915    return;
10916  case ISD::ATOMIC_LOAD:
10917    ReplaceATOMIC_LOAD(N, Results, DAG);
10918  }
10919}
10920
10921const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10922  switch (Opcode) {
10923  default: return NULL;
10924  case X86ISD::BSF:                return "X86ISD::BSF";
10925  case X86ISD::BSR:                return "X86ISD::BSR";
10926  case X86ISD::SHLD:               return "X86ISD::SHLD";
10927  case X86ISD::SHRD:               return "X86ISD::SHRD";
10928  case X86ISD::FAND:               return "X86ISD::FAND";
10929  case X86ISD::FOR:                return "X86ISD::FOR";
10930  case X86ISD::FXOR:               return "X86ISD::FXOR";
10931  case X86ISD::FSRL:               return "X86ISD::FSRL";
10932  case X86ISD::FILD:               return "X86ISD::FILD";
10933  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
10934  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10935  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10936  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10937  case X86ISD::FLD:                return "X86ISD::FLD";
10938  case X86ISD::FST:                return "X86ISD::FST";
10939  case X86ISD::CALL:               return "X86ISD::CALL";
10940  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
10941  case X86ISD::BT:                 return "X86ISD::BT";
10942  case X86ISD::CMP:                return "X86ISD::CMP";
10943  case X86ISD::COMI:               return "X86ISD::COMI";
10944  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
10945  case X86ISD::SETCC:              return "X86ISD::SETCC";
10946  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
10947  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
10948  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
10949  case X86ISD::CMOV:               return "X86ISD::CMOV";
10950  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
10951  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
10952  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
10953  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
10954  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
10955  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
10956  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
10957  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
10958  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
10959  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
10960  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
10961  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
10962  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
10963  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
10964  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
10965  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
10966  case X86ISD::HADD:               return "X86ISD::HADD";
10967  case X86ISD::HSUB:               return "X86ISD::HSUB";
10968  case X86ISD::FHADD:              return "X86ISD::FHADD";
10969  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
10970  case X86ISD::FMAX:               return "X86ISD::FMAX";
10971  case X86ISD::FMIN:               return "X86ISD::FMIN";
10972  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
10973  case X86ISD::FRCP:               return "X86ISD::FRCP";
10974  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
10975  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
10976  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
10977  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
10978  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
10979  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
10980  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
10981  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
10982  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
10983  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
10984  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
10985  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
10986  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
10987  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
10988  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
10989  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
10990  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
10991  case X86ISD::VSHL:               return "X86ISD::VSHL";
10992  case X86ISD::VSRL:               return "X86ISD::VSRL";
10993  case X86ISD::VSRA:               return "X86ISD::VSRA";
10994  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
10995  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
10996  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
10997  case X86ISD::CMPP:               return "X86ISD::CMPP";
10998  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
10999  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11000  case X86ISD::ADD:                return "X86ISD::ADD";
11001  case X86ISD::SUB:                return "X86ISD::SUB";
11002  case X86ISD::ADC:                return "X86ISD::ADC";
11003  case X86ISD::SBB:                return "X86ISD::SBB";
11004  case X86ISD::SMUL:               return "X86ISD::SMUL";
11005  case X86ISD::UMUL:               return "X86ISD::UMUL";
11006  case X86ISD::INC:                return "X86ISD::INC";
11007  case X86ISD::DEC:                return "X86ISD::DEC";
11008  case X86ISD::OR:                 return "X86ISD::OR";
11009  case X86ISD::XOR:                return "X86ISD::XOR";
11010  case X86ISD::AND:                return "X86ISD::AND";
11011  case X86ISD::ANDN:               return "X86ISD::ANDN";
11012  case X86ISD::BLSI:               return "X86ISD::BLSI";
11013  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11014  case X86ISD::BLSR:               return "X86ISD::BLSR";
11015  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11016  case X86ISD::PTEST:              return "X86ISD::PTEST";
11017  case X86ISD::TESTP:              return "X86ISD::TESTP";
11018  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11019  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11020  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11021  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11022  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11023  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11024  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11025  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11026  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11027  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11028  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11029  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11030  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11031  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11032  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11033  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11034  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11035  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11036  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11037  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11038  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11039  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11040  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11041  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11042  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11043  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11044  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
11045  }
11046}
11047
11048// isLegalAddressingMode - Return true if the addressing mode represented
11049// by AM is legal for this target, for a load/store of the specified type.
11050bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11051                                              Type *Ty) const {
11052  // X86 supports extremely general addressing modes.
11053  CodeModel::Model M = getTargetMachine().getCodeModel();
11054  Reloc::Model R = getTargetMachine().getRelocationModel();
11055
11056  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11057  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11058    return false;
11059
11060  if (AM.BaseGV) {
11061    unsigned GVFlags =
11062      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11063
11064    // If a reference to this global requires an extra load, we can't fold it.
11065    if (isGlobalStubReference(GVFlags))
11066      return false;
11067
11068    // If BaseGV requires a register for the PIC base, we cannot also have a
11069    // BaseReg specified.
11070    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11071      return false;
11072
11073    // If lower 4G is not available, then we must use rip-relative addressing.
11074    if ((M != CodeModel::Small || R != Reloc::Static) &&
11075        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11076      return false;
11077  }
11078
11079  switch (AM.Scale) {
11080  case 0:
11081  case 1:
11082  case 2:
11083  case 4:
11084  case 8:
11085    // These scales always work.
11086    break;
11087  case 3:
11088  case 5:
11089  case 9:
11090    // These scales are formed with basereg+scalereg.  Only accept if there is
11091    // no basereg yet.
11092    if (AM.HasBaseReg)
11093      return false;
11094    break;
11095  default:  // Other stuff never works.
11096    return false;
11097  }
11098
11099  return true;
11100}
11101
11102
11103bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11104  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11105    return false;
11106  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11107  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11108  if (NumBits1 <= NumBits2)
11109    return false;
11110  return true;
11111}
11112
11113bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11114  if (!VT1.isInteger() || !VT2.isInteger())
11115    return false;
11116  unsigned NumBits1 = VT1.getSizeInBits();
11117  unsigned NumBits2 = VT2.getSizeInBits();
11118  if (NumBits1 <= NumBits2)
11119    return false;
11120  return true;
11121}
11122
11123bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11124  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11125  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11126}
11127
11128bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11129  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11130  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11131}
11132
11133bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11134  // i16 instructions are longer (0x66 prefix) and potentially slower.
11135  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11136}
11137
11138/// isShuffleMaskLegal - Targets can use this to indicate that they only
11139/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11140/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11141/// are assumed to be legal.
11142bool
11143X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11144                                      EVT VT) const {
11145  // Very little shuffling can be done for 64-bit vectors right now.
11146  if (VT.getSizeInBits() == 64)
11147    return false;
11148
11149  // FIXME: pshufb, blends, shifts.
11150  return (VT.getVectorNumElements() == 2 ||
11151          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11152          isMOVLMask(M, VT) ||
11153          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11154          isPSHUFDMask(M, VT) ||
11155          isPSHUFHWMask(M, VT) ||
11156          isPSHUFLWMask(M, VT) ||
11157          isPALIGNRMask(M, VT, Subtarget) ||
11158          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11159          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11160          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11161          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11162}
11163
11164bool
11165X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11166                                          EVT VT) const {
11167  unsigned NumElts = VT.getVectorNumElements();
11168  // FIXME: This collection of masks seems suspect.
11169  if (NumElts == 2)
11170    return true;
11171  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11172    return (isMOVLMask(Mask, VT)  ||
11173            isCommutedMOVLMask(Mask, VT, true) ||
11174            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11175            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11176  }
11177  return false;
11178}
11179
11180//===----------------------------------------------------------------------===//
11181//                           X86 Scheduler Hooks
11182//===----------------------------------------------------------------------===//
11183
11184// private utility function
11185MachineBasicBlock *
11186X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11187                                                       MachineBasicBlock *MBB,
11188                                                       unsigned regOpc,
11189                                                       unsigned immOpc,
11190                                                       unsigned LoadOpc,
11191                                                       unsigned CXchgOpc,
11192                                                       unsigned notOpc,
11193                                                       unsigned EAXreg,
11194                                                 const TargetRegisterClass *RC,
11195                                                       bool invSrc) const {
11196  // For the atomic bitwise operator, we generate
11197  //   thisMBB:
11198  //   newMBB:
11199  //     ld  t1 = [bitinstr.addr]
11200  //     op  t2 = t1, [bitinstr.val]
11201  //     mov EAX = t1
11202  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11203  //     bz  newMBB
11204  //     fallthrough -->nextMBB
11205  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11206  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11207  MachineFunction::iterator MBBIter = MBB;
11208  ++MBBIter;
11209
11210  /// First build the CFG
11211  MachineFunction *F = MBB->getParent();
11212  MachineBasicBlock *thisMBB = MBB;
11213  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11214  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11215  F->insert(MBBIter, newMBB);
11216  F->insert(MBBIter, nextMBB);
11217
11218  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11219  nextMBB->splice(nextMBB->begin(), thisMBB,
11220                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11221                  thisMBB->end());
11222  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11223
11224  // Update thisMBB to fall through to newMBB
11225  thisMBB->addSuccessor(newMBB);
11226
11227  // newMBB jumps to itself and fall through to nextMBB
11228  newMBB->addSuccessor(nextMBB);
11229  newMBB->addSuccessor(newMBB);
11230
11231  // Insert instructions into newMBB based on incoming instruction
11232  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11233         "unexpected number of operands");
11234  DebugLoc dl = bInstr->getDebugLoc();
11235  MachineOperand& destOper = bInstr->getOperand(0);
11236  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11237  int numArgs = bInstr->getNumOperands() - 1;
11238  for (int i=0; i < numArgs; ++i)
11239    argOpers[i] = &bInstr->getOperand(i+1);
11240
11241  // x86 address has 4 operands: base, index, scale, and displacement
11242  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11243  int valArgIndx = lastAddrIndx + 1;
11244
11245  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11246  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11247  for (int i=0; i <= lastAddrIndx; ++i)
11248    (*MIB).addOperand(*argOpers[i]);
11249
11250  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11251  if (invSrc) {
11252    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11253  }
11254  else
11255    tt = t1;
11256
11257  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11258  assert((argOpers[valArgIndx]->isReg() ||
11259          argOpers[valArgIndx]->isImm()) &&
11260         "invalid operand");
11261  if (argOpers[valArgIndx]->isReg())
11262    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11263  else
11264    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11265  MIB.addReg(tt);
11266  (*MIB).addOperand(*argOpers[valArgIndx]);
11267
11268  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11269  MIB.addReg(t1);
11270
11271  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11272  for (int i=0; i <= lastAddrIndx; ++i)
11273    (*MIB).addOperand(*argOpers[i]);
11274  MIB.addReg(t2);
11275  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11276  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11277                    bInstr->memoperands_end());
11278
11279  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11280  MIB.addReg(EAXreg);
11281
11282  // insert branch
11283  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11284
11285  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11286  return nextMBB;
11287}
11288
11289// private utility function:  64 bit atomics on 32 bit host.
11290MachineBasicBlock *
11291X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11292                                                       MachineBasicBlock *MBB,
11293                                                       unsigned regOpcL,
11294                                                       unsigned regOpcH,
11295                                                       unsigned immOpcL,
11296                                                       unsigned immOpcH,
11297                                                       bool invSrc) const {
11298  // For the atomic bitwise operator, we generate
11299  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11300  //     ld t1,t2 = [bitinstr.addr]
11301  //   newMBB:
11302  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11303  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11304  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11305  //     mov ECX, EBX <- t5, t6
11306  //     mov EAX, EDX <- t1, t2
11307  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11308  //     mov t3, t4 <- EAX, EDX
11309  //     bz  newMBB
11310  //     result in out1, out2
11311  //     fallthrough -->nextMBB
11312
11313  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11314  const unsigned LoadOpc = X86::MOV32rm;
11315  const unsigned NotOpc = X86::NOT32r;
11316  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11317  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11318  MachineFunction::iterator MBBIter = MBB;
11319  ++MBBIter;
11320
11321  /// First build the CFG
11322  MachineFunction *F = MBB->getParent();
11323  MachineBasicBlock *thisMBB = MBB;
11324  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11325  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11326  F->insert(MBBIter, newMBB);
11327  F->insert(MBBIter, nextMBB);
11328
11329  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11330  nextMBB->splice(nextMBB->begin(), thisMBB,
11331                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11332                  thisMBB->end());
11333  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11334
11335  // Update thisMBB to fall through to newMBB
11336  thisMBB->addSuccessor(newMBB);
11337
11338  // newMBB jumps to itself and fall through to nextMBB
11339  newMBB->addSuccessor(nextMBB);
11340  newMBB->addSuccessor(newMBB);
11341
11342  DebugLoc dl = bInstr->getDebugLoc();
11343  // Insert instructions into newMBB based on incoming instruction
11344  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11345  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11346         "unexpected number of operands");
11347  MachineOperand& dest1Oper = bInstr->getOperand(0);
11348  MachineOperand& dest2Oper = bInstr->getOperand(1);
11349  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11350  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11351    argOpers[i] = &bInstr->getOperand(i+2);
11352
11353    // We use some of the operands multiple times, so conservatively just
11354    // clear any kill flags that might be present.
11355    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11356      argOpers[i]->setIsKill(false);
11357  }
11358
11359  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11360  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11361
11362  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11363  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11364  for (int i=0; i <= lastAddrIndx; ++i)
11365    (*MIB).addOperand(*argOpers[i]);
11366  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11367  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11368  // add 4 to displacement.
11369  for (int i=0; i <= lastAddrIndx-2; ++i)
11370    (*MIB).addOperand(*argOpers[i]);
11371  MachineOperand newOp3 = *(argOpers[3]);
11372  if (newOp3.isImm())
11373    newOp3.setImm(newOp3.getImm()+4);
11374  else
11375    newOp3.setOffset(newOp3.getOffset()+4);
11376  (*MIB).addOperand(newOp3);
11377  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11378
11379  // t3/4 are defined later, at the bottom of the loop
11380  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11381  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11382  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11383    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11384  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11385    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11386
11387  // The subsequent operations should be using the destination registers of
11388  //the PHI instructions.
11389  if (invSrc) {
11390    t1 = F->getRegInfo().createVirtualRegister(RC);
11391    t2 = F->getRegInfo().createVirtualRegister(RC);
11392    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11393    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11394  } else {
11395    t1 = dest1Oper.getReg();
11396    t2 = dest2Oper.getReg();
11397  }
11398
11399  int valArgIndx = lastAddrIndx + 1;
11400  assert((argOpers[valArgIndx]->isReg() ||
11401          argOpers[valArgIndx]->isImm()) &&
11402         "invalid operand");
11403  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11404  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11405  if (argOpers[valArgIndx]->isReg())
11406    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11407  else
11408    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11409  if (regOpcL != X86::MOV32rr)
11410    MIB.addReg(t1);
11411  (*MIB).addOperand(*argOpers[valArgIndx]);
11412  assert(argOpers[valArgIndx + 1]->isReg() ==
11413         argOpers[valArgIndx]->isReg());
11414  assert(argOpers[valArgIndx + 1]->isImm() ==
11415         argOpers[valArgIndx]->isImm());
11416  if (argOpers[valArgIndx + 1]->isReg())
11417    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11418  else
11419    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11420  if (regOpcH != X86::MOV32rr)
11421    MIB.addReg(t2);
11422  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11423
11424  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11425  MIB.addReg(t1);
11426  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11427  MIB.addReg(t2);
11428
11429  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11430  MIB.addReg(t5);
11431  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11432  MIB.addReg(t6);
11433
11434  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11435  for (int i=0; i <= lastAddrIndx; ++i)
11436    (*MIB).addOperand(*argOpers[i]);
11437
11438  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11439  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11440                    bInstr->memoperands_end());
11441
11442  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11443  MIB.addReg(X86::EAX);
11444  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11445  MIB.addReg(X86::EDX);
11446
11447  // insert branch
11448  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11449
11450  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11451  return nextMBB;
11452}
11453
11454// private utility function
11455MachineBasicBlock *
11456X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11457                                                      MachineBasicBlock *MBB,
11458                                                      unsigned cmovOpc) const {
11459  // For the atomic min/max operator, we generate
11460  //   thisMBB:
11461  //   newMBB:
11462  //     ld t1 = [min/max.addr]
11463  //     mov t2 = [min/max.val]
11464  //     cmp  t1, t2
11465  //     cmov[cond] t2 = t1
11466  //     mov EAX = t1
11467  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11468  //     bz   newMBB
11469  //     fallthrough -->nextMBB
11470  //
11471  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11472  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11473  MachineFunction::iterator MBBIter = MBB;
11474  ++MBBIter;
11475
11476  /// First build the CFG
11477  MachineFunction *F = MBB->getParent();
11478  MachineBasicBlock *thisMBB = MBB;
11479  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11480  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11481  F->insert(MBBIter, newMBB);
11482  F->insert(MBBIter, nextMBB);
11483
11484  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11485  nextMBB->splice(nextMBB->begin(), thisMBB,
11486                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11487                  thisMBB->end());
11488  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11489
11490  // Update thisMBB to fall through to newMBB
11491  thisMBB->addSuccessor(newMBB);
11492
11493  // newMBB jumps to newMBB and fall through to nextMBB
11494  newMBB->addSuccessor(nextMBB);
11495  newMBB->addSuccessor(newMBB);
11496
11497  DebugLoc dl = mInstr->getDebugLoc();
11498  // Insert instructions into newMBB based on incoming instruction
11499  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11500         "unexpected number of operands");
11501  MachineOperand& destOper = mInstr->getOperand(0);
11502  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11503  int numArgs = mInstr->getNumOperands() - 1;
11504  for (int i=0; i < numArgs; ++i)
11505    argOpers[i] = &mInstr->getOperand(i+1);
11506
11507  // x86 address has 4 operands: base, index, scale, and displacement
11508  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11509  int valArgIndx = lastAddrIndx + 1;
11510
11511  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11512  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11513  for (int i=0; i <= lastAddrIndx; ++i)
11514    (*MIB).addOperand(*argOpers[i]);
11515
11516  // We only support register and immediate values
11517  assert((argOpers[valArgIndx]->isReg() ||
11518          argOpers[valArgIndx]->isImm()) &&
11519         "invalid operand");
11520
11521  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11522  if (argOpers[valArgIndx]->isReg())
11523    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11524  else
11525    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11526  (*MIB).addOperand(*argOpers[valArgIndx]);
11527
11528  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11529  MIB.addReg(t1);
11530
11531  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11532  MIB.addReg(t1);
11533  MIB.addReg(t2);
11534
11535  // Generate movc
11536  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11537  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11538  MIB.addReg(t2);
11539  MIB.addReg(t1);
11540
11541  // Cmp and exchange if none has modified the memory location
11542  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11543  for (int i=0; i <= lastAddrIndx; ++i)
11544    (*MIB).addOperand(*argOpers[i]);
11545  MIB.addReg(t3);
11546  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11547  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11548                    mInstr->memoperands_end());
11549
11550  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11551  MIB.addReg(X86::EAX);
11552
11553  // insert branch
11554  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11555
11556  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11557  return nextMBB;
11558}
11559
11560// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11561// or XMM0_V32I8 in AVX all of this code can be replaced with that
11562// in the .td file.
11563MachineBasicBlock *
11564X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11565                            unsigned numArgs, bool memArg) const {
11566  assert(Subtarget->hasSSE42() &&
11567         "Target must have SSE4.2 or AVX features enabled");
11568
11569  DebugLoc dl = MI->getDebugLoc();
11570  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11571  unsigned Opc;
11572  if (!Subtarget->hasAVX()) {
11573    if (memArg)
11574      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11575    else
11576      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11577  } else {
11578    if (memArg)
11579      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11580    else
11581      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11582  }
11583
11584  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11585  for (unsigned i = 0; i < numArgs; ++i) {
11586    MachineOperand &Op = MI->getOperand(i+1);
11587    if (!(Op.isReg() && Op.isImplicit()))
11588      MIB.addOperand(Op);
11589  }
11590  BuildMI(*BB, MI, dl,
11591    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11592             MI->getOperand(0).getReg())
11593    .addReg(X86::XMM0);
11594
11595  MI->eraseFromParent();
11596  return BB;
11597}
11598
11599MachineBasicBlock *
11600X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11601  DebugLoc dl = MI->getDebugLoc();
11602  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11603
11604  // Address into RAX/EAX, other two args into ECX, EDX.
11605  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11606  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11607  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11608  for (int i = 0; i < X86::AddrNumOperands; ++i)
11609    MIB.addOperand(MI->getOperand(i));
11610
11611  unsigned ValOps = X86::AddrNumOperands;
11612  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11613    .addReg(MI->getOperand(ValOps).getReg());
11614  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11615    .addReg(MI->getOperand(ValOps+1).getReg());
11616
11617  // The instruction doesn't actually take any operands though.
11618  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11619
11620  MI->eraseFromParent(); // The pseudo is gone now.
11621  return BB;
11622}
11623
11624MachineBasicBlock *
11625X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11626  DebugLoc dl = MI->getDebugLoc();
11627  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11628
11629  // First arg in ECX, the second in EAX.
11630  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11631    .addReg(MI->getOperand(0).getReg());
11632  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11633    .addReg(MI->getOperand(1).getReg());
11634
11635  // The instruction doesn't actually take any operands though.
11636  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11637
11638  MI->eraseFromParent(); // The pseudo is gone now.
11639  return BB;
11640}
11641
11642MachineBasicBlock *
11643X86TargetLowering::EmitVAARG64WithCustomInserter(
11644                   MachineInstr *MI,
11645                   MachineBasicBlock *MBB) const {
11646  // Emit va_arg instruction on X86-64.
11647
11648  // Operands to this pseudo-instruction:
11649  // 0  ) Output        : destination address (reg)
11650  // 1-5) Input         : va_list address (addr, i64mem)
11651  // 6  ) ArgSize       : Size (in bytes) of vararg type
11652  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11653  // 8  ) Align         : Alignment of type
11654  // 9  ) EFLAGS (implicit-def)
11655
11656  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11657  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11658
11659  unsigned DestReg = MI->getOperand(0).getReg();
11660  MachineOperand &Base = MI->getOperand(1);
11661  MachineOperand &Scale = MI->getOperand(2);
11662  MachineOperand &Index = MI->getOperand(3);
11663  MachineOperand &Disp = MI->getOperand(4);
11664  MachineOperand &Segment = MI->getOperand(5);
11665  unsigned ArgSize = MI->getOperand(6).getImm();
11666  unsigned ArgMode = MI->getOperand(7).getImm();
11667  unsigned Align = MI->getOperand(8).getImm();
11668
11669  // Memory Reference
11670  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11671  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11672  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11673
11674  // Machine Information
11675  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11676  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11677  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11678  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11679  DebugLoc DL = MI->getDebugLoc();
11680
11681  // struct va_list {
11682  //   i32   gp_offset
11683  //   i32   fp_offset
11684  //   i64   overflow_area (address)
11685  //   i64   reg_save_area (address)
11686  // }
11687  // sizeof(va_list) = 24
11688  // alignment(va_list) = 8
11689
11690  unsigned TotalNumIntRegs = 6;
11691  unsigned TotalNumXMMRegs = 8;
11692  bool UseGPOffset = (ArgMode == 1);
11693  bool UseFPOffset = (ArgMode == 2);
11694  unsigned MaxOffset = TotalNumIntRegs * 8 +
11695                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11696
11697  /* Align ArgSize to a multiple of 8 */
11698  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11699  bool NeedsAlign = (Align > 8);
11700
11701  MachineBasicBlock *thisMBB = MBB;
11702  MachineBasicBlock *overflowMBB;
11703  MachineBasicBlock *offsetMBB;
11704  MachineBasicBlock *endMBB;
11705
11706  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11707  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11708  unsigned OffsetReg = 0;
11709
11710  if (!UseGPOffset && !UseFPOffset) {
11711    // If we only pull from the overflow region, we don't create a branch.
11712    // We don't need to alter control flow.
11713    OffsetDestReg = 0; // unused
11714    OverflowDestReg = DestReg;
11715
11716    offsetMBB = NULL;
11717    overflowMBB = thisMBB;
11718    endMBB = thisMBB;
11719  } else {
11720    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11721    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11722    // If not, pull from overflow_area. (branch to overflowMBB)
11723    //
11724    //       thisMBB
11725    //         |     .
11726    //         |        .
11727    //     offsetMBB   overflowMBB
11728    //         |        .
11729    //         |     .
11730    //        endMBB
11731
11732    // Registers for the PHI in endMBB
11733    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11734    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11735
11736    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11737    MachineFunction *MF = MBB->getParent();
11738    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11739    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11740    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11741
11742    MachineFunction::iterator MBBIter = MBB;
11743    ++MBBIter;
11744
11745    // Insert the new basic blocks
11746    MF->insert(MBBIter, offsetMBB);
11747    MF->insert(MBBIter, overflowMBB);
11748    MF->insert(MBBIter, endMBB);
11749
11750    // Transfer the remainder of MBB and its successor edges to endMBB.
11751    endMBB->splice(endMBB->begin(), thisMBB,
11752                    llvm::next(MachineBasicBlock::iterator(MI)),
11753                    thisMBB->end());
11754    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11755
11756    // Make offsetMBB and overflowMBB successors of thisMBB
11757    thisMBB->addSuccessor(offsetMBB);
11758    thisMBB->addSuccessor(overflowMBB);
11759
11760    // endMBB is a successor of both offsetMBB and overflowMBB
11761    offsetMBB->addSuccessor(endMBB);
11762    overflowMBB->addSuccessor(endMBB);
11763
11764    // Load the offset value into a register
11765    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11766    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11767      .addOperand(Base)
11768      .addOperand(Scale)
11769      .addOperand(Index)
11770      .addDisp(Disp, UseFPOffset ? 4 : 0)
11771      .addOperand(Segment)
11772      .setMemRefs(MMOBegin, MMOEnd);
11773
11774    // Check if there is enough room left to pull this argument.
11775    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11776      .addReg(OffsetReg)
11777      .addImm(MaxOffset + 8 - ArgSizeA8);
11778
11779    // Branch to "overflowMBB" if offset >= max
11780    // Fall through to "offsetMBB" otherwise
11781    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11782      .addMBB(overflowMBB);
11783  }
11784
11785  // In offsetMBB, emit code to use the reg_save_area.
11786  if (offsetMBB) {
11787    assert(OffsetReg != 0);
11788
11789    // Read the reg_save_area address.
11790    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11791    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11792      .addOperand(Base)
11793      .addOperand(Scale)
11794      .addOperand(Index)
11795      .addDisp(Disp, 16)
11796      .addOperand(Segment)
11797      .setMemRefs(MMOBegin, MMOEnd);
11798
11799    // Zero-extend the offset
11800    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11801      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11802        .addImm(0)
11803        .addReg(OffsetReg)
11804        .addImm(X86::sub_32bit);
11805
11806    // Add the offset to the reg_save_area to get the final address.
11807    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11808      .addReg(OffsetReg64)
11809      .addReg(RegSaveReg);
11810
11811    // Compute the offset for the next argument
11812    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11813    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11814      .addReg(OffsetReg)
11815      .addImm(UseFPOffset ? 16 : 8);
11816
11817    // Store it back into the va_list.
11818    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11819      .addOperand(Base)
11820      .addOperand(Scale)
11821      .addOperand(Index)
11822      .addDisp(Disp, UseFPOffset ? 4 : 0)
11823      .addOperand(Segment)
11824      .addReg(NextOffsetReg)
11825      .setMemRefs(MMOBegin, MMOEnd);
11826
11827    // Jump to endMBB
11828    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11829      .addMBB(endMBB);
11830  }
11831
11832  //
11833  // Emit code to use overflow area
11834  //
11835
11836  // Load the overflow_area address into a register.
11837  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11838  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11839    .addOperand(Base)
11840    .addOperand(Scale)
11841    .addOperand(Index)
11842    .addDisp(Disp, 8)
11843    .addOperand(Segment)
11844    .setMemRefs(MMOBegin, MMOEnd);
11845
11846  // If we need to align it, do so. Otherwise, just copy the address
11847  // to OverflowDestReg.
11848  if (NeedsAlign) {
11849    // Align the overflow address
11850    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11851    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11852
11853    // aligned_addr = (addr + (align-1)) & ~(align-1)
11854    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11855      .addReg(OverflowAddrReg)
11856      .addImm(Align-1);
11857
11858    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11859      .addReg(TmpReg)
11860      .addImm(~(uint64_t)(Align-1));
11861  } else {
11862    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11863      .addReg(OverflowAddrReg);
11864  }
11865
11866  // Compute the next overflow address after this argument.
11867  // (the overflow address should be kept 8-byte aligned)
11868  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11869  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11870    .addReg(OverflowDestReg)
11871    .addImm(ArgSizeA8);
11872
11873  // Store the new overflow address.
11874  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11875    .addOperand(Base)
11876    .addOperand(Scale)
11877    .addOperand(Index)
11878    .addDisp(Disp, 8)
11879    .addOperand(Segment)
11880    .addReg(NextAddrReg)
11881    .setMemRefs(MMOBegin, MMOEnd);
11882
11883  // If we branched, emit the PHI to the front of endMBB.
11884  if (offsetMBB) {
11885    BuildMI(*endMBB, endMBB->begin(), DL,
11886            TII->get(X86::PHI), DestReg)
11887      .addReg(OffsetDestReg).addMBB(offsetMBB)
11888      .addReg(OverflowDestReg).addMBB(overflowMBB);
11889  }
11890
11891  // Erase the pseudo instruction
11892  MI->eraseFromParent();
11893
11894  return endMBB;
11895}
11896
11897MachineBasicBlock *
11898X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11899                                                 MachineInstr *MI,
11900                                                 MachineBasicBlock *MBB) const {
11901  // Emit code to save XMM registers to the stack. The ABI says that the
11902  // number of registers to save is given in %al, so it's theoretically
11903  // possible to do an indirect jump trick to avoid saving all of them,
11904  // however this code takes a simpler approach and just executes all
11905  // of the stores if %al is non-zero. It's less code, and it's probably
11906  // easier on the hardware branch predictor, and stores aren't all that
11907  // expensive anyway.
11908
11909  // Create the new basic blocks. One block contains all the XMM stores,
11910  // and one block is the final destination regardless of whether any
11911  // stores were performed.
11912  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11913  MachineFunction *F = MBB->getParent();
11914  MachineFunction::iterator MBBIter = MBB;
11915  ++MBBIter;
11916  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11917  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11918  F->insert(MBBIter, XMMSaveMBB);
11919  F->insert(MBBIter, EndMBB);
11920
11921  // Transfer the remainder of MBB and its successor edges to EndMBB.
11922  EndMBB->splice(EndMBB->begin(), MBB,
11923                 llvm::next(MachineBasicBlock::iterator(MI)),
11924                 MBB->end());
11925  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11926
11927  // The original block will now fall through to the XMM save block.
11928  MBB->addSuccessor(XMMSaveMBB);
11929  // The XMMSaveMBB will fall through to the end block.
11930  XMMSaveMBB->addSuccessor(EndMBB);
11931
11932  // Now add the instructions.
11933  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11934  DebugLoc DL = MI->getDebugLoc();
11935
11936  unsigned CountReg = MI->getOperand(0).getReg();
11937  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11938  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11939
11940  if (!Subtarget->isTargetWin64()) {
11941    // If %al is 0, branch around the XMM save block.
11942    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11943    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11944    MBB->addSuccessor(EndMBB);
11945  }
11946
11947  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11948  // In the XMM save block, save all the XMM argument registers.
11949  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11950    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11951    MachineMemOperand *MMO =
11952      F->getMachineMemOperand(
11953          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11954        MachineMemOperand::MOStore,
11955        /*Size=*/16, /*Align=*/16);
11956    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11957      .addFrameIndex(RegSaveFrameIndex)
11958      .addImm(/*Scale=*/1)
11959      .addReg(/*IndexReg=*/0)
11960      .addImm(/*Disp=*/Offset)
11961      .addReg(/*Segment=*/0)
11962      .addReg(MI->getOperand(i).getReg())
11963      .addMemOperand(MMO);
11964  }
11965
11966  MI->eraseFromParent();   // The pseudo instruction is gone now.
11967
11968  return EndMBB;
11969}
11970
11971// The EFLAGS operand of SelectItr might be missing a kill marker
11972// because there were multiple uses of EFLAGS, and ISel didn't know
11973// which to mark. Figure out whether SelectItr should have had a
11974// kill marker, and set it if it should. Returns the correct kill
11975// marker value.
11976static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
11977                                     MachineBasicBlock* BB,
11978                                     const TargetRegisterInfo* TRI) {
11979  // Scan forward through BB for a use/def of EFLAGS.
11980  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
11981  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
11982    const MachineInstr& mi = *miI;
11983    if (mi.readsRegister(X86::EFLAGS))
11984      return false;
11985    if (mi.definesRegister(X86::EFLAGS))
11986      break; // Should have kill-flag - update below.
11987  }
11988
11989  // If we hit the end of the block, check whether EFLAGS is live into a
11990  // successor.
11991  if (miI == BB->end()) {
11992    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
11993                                          sEnd = BB->succ_end();
11994         sItr != sEnd; ++sItr) {
11995      MachineBasicBlock* succ = *sItr;
11996      if (succ->isLiveIn(X86::EFLAGS))
11997        return false;
11998    }
11999  }
12000
12001  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12002  // out. SelectMI should have a kill flag on EFLAGS.
12003  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12004  return true;
12005}
12006
12007MachineBasicBlock *
12008X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12009                                     MachineBasicBlock *BB) const {
12010  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12011  DebugLoc DL = MI->getDebugLoc();
12012
12013  // To "insert" a SELECT_CC instruction, we actually have to insert the
12014  // diamond control-flow pattern.  The incoming instruction knows the
12015  // destination vreg to set, the condition code register to branch on, the
12016  // true/false values to select between, and a branch opcode to use.
12017  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12018  MachineFunction::iterator It = BB;
12019  ++It;
12020
12021  //  thisMBB:
12022  //  ...
12023  //   TrueVal = ...
12024  //   cmpTY ccX, r1, r2
12025  //   bCC copy1MBB
12026  //   fallthrough --> copy0MBB
12027  MachineBasicBlock *thisMBB = BB;
12028  MachineFunction *F = BB->getParent();
12029  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12030  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12031  F->insert(It, copy0MBB);
12032  F->insert(It, sinkMBB);
12033
12034  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12035  // live into the sink and copy blocks.
12036  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12037  if (!MI->killsRegister(X86::EFLAGS) &&
12038      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12039    copy0MBB->addLiveIn(X86::EFLAGS);
12040    sinkMBB->addLiveIn(X86::EFLAGS);
12041  }
12042
12043  // Transfer the remainder of BB and its successor edges to sinkMBB.
12044  sinkMBB->splice(sinkMBB->begin(), BB,
12045                  llvm::next(MachineBasicBlock::iterator(MI)),
12046                  BB->end());
12047  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12048
12049  // Add the true and fallthrough blocks as its successors.
12050  BB->addSuccessor(copy0MBB);
12051  BB->addSuccessor(sinkMBB);
12052
12053  // Create the conditional branch instruction.
12054  unsigned Opc =
12055    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12056  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12057
12058  //  copy0MBB:
12059  //   %FalseValue = ...
12060  //   # fallthrough to sinkMBB
12061  copy0MBB->addSuccessor(sinkMBB);
12062
12063  //  sinkMBB:
12064  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12065  //  ...
12066  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12067          TII->get(X86::PHI), MI->getOperand(0).getReg())
12068    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12069    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12070
12071  MI->eraseFromParent();   // The pseudo instruction is gone now.
12072  return sinkMBB;
12073}
12074
12075MachineBasicBlock *
12076X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12077                                        bool Is64Bit) const {
12078  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12079  DebugLoc DL = MI->getDebugLoc();
12080  MachineFunction *MF = BB->getParent();
12081  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12082
12083  assert(getTargetMachine().Options.EnableSegmentedStacks);
12084
12085  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12086  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12087
12088  // BB:
12089  //  ... [Till the alloca]
12090  // If stacklet is not large enough, jump to mallocMBB
12091  //
12092  // bumpMBB:
12093  //  Allocate by subtracting from RSP
12094  //  Jump to continueMBB
12095  //
12096  // mallocMBB:
12097  //  Allocate by call to runtime
12098  //
12099  // continueMBB:
12100  //  ...
12101  //  [rest of original BB]
12102  //
12103
12104  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12105  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12106  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12107
12108  MachineRegisterInfo &MRI = MF->getRegInfo();
12109  const TargetRegisterClass *AddrRegClass =
12110    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12111
12112  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12113    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12114    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12115    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12116    sizeVReg = MI->getOperand(1).getReg(),
12117    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12118
12119  MachineFunction::iterator MBBIter = BB;
12120  ++MBBIter;
12121
12122  MF->insert(MBBIter, bumpMBB);
12123  MF->insert(MBBIter, mallocMBB);
12124  MF->insert(MBBIter, continueMBB);
12125
12126  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12127                      (MachineBasicBlock::iterator(MI)), BB->end());
12128  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12129
12130  // Add code to the main basic block to check if the stack limit has been hit,
12131  // and if so, jump to mallocMBB otherwise to bumpMBB.
12132  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12133  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12134    .addReg(tmpSPVReg).addReg(sizeVReg);
12135  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12136    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12137    .addReg(SPLimitVReg);
12138  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12139
12140  // bumpMBB simply decreases the stack pointer, since we know the current
12141  // stacklet has enough space.
12142  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12143    .addReg(SPLimitVReg);
12144  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12145    .addReg(SPLimitVReg);
12146  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12147
12148  // Calls into a routine in libgcc to allocate more space from the heap.
12149  const uint32_t *RegMask =
12150    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12151  if (Is64Bit) {
12152    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12153      .addReg(sizeVReg);
12154    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12155      .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI)
12156      .addRegMask(RegMask)
12157      .addReg(X86::RAX, RegState::ImplicitDefine);
12158  } else {
12159    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12160      .addImm(12);
12161    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12162    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12163      .addExternalSymbol("__morestack_allocate_stack_space")
12164      .addRegMask(RegMask)
12165      .addReg(X86::EAX, RegState::ImplicitDefine);
12166  }
12167
12168  if (!Is64Bit)
12169    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12170      .addImm(16);
12171
12172  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12173    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12174  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12175
12176  // Set up the CFG correctly.
12177  BB->addSuccessor(bumpMBB);
12178  BB->addSuccessor(mallocMBB);
12179  mallocMBB->addSuccessor(continueMBB);
12180  bumpMBB->addSuccessor(continueMBB);
12181
12182  // Take care of the PHI nodes.
12183  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12184          MI->getOperand(0).getReg())
12185    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12186    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12187
12188  // Delete the original pseudo instruction.
12189  MI->eraseFromParent();
12190
12191  // And we're done.
12192  return continueMBB;
12193}
12194
12195MachineBasicBlock *
12196X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12197                                          MachineBasicBlock *BB) const {
12198  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12199  DebugLoc DL = MI->getDebugLoc();
12200
12201  assert(!Subtarget->isTargetEnvMacho());
12202
12203  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12204  // non-trivial part is impdef of ESP.
12205
12206  if (Subtarget->isTargetWin64()) {
12207    if (Subtarget->isTargetCygMing()) {
12208      // ___chkstk(Mingw64):
12209      // Clobbers R10, R11, RAX and EFLAGS.
12210      // Updates RSP.
12211      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12212        .addExternalSymbol("___chkstk")
12213        .addReg(X86::RAX, RegState::Implicit)
12214        .addReg(X86::RSP, RegState::Implicit)
12215        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12216        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12217        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12218    } else {
12219      // __chkstk(MSVCRT): does not update stack pointer.
12220      // Clobbers R10, R11 and EFLAGS.
12221      // FIXME: RAX(allocated size) might be reused and not killed.
12222      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12223        .addExternalSymbol("__chkstk")
12224        .addReg(X86::RAX, RegState::Implicit)
12225        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12226      // RAX has the offset to subtracted from RSP.
12227      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12228        .addReg(X86::RSP)
12229        .addReg(X86::RAX);
12230    }
12231  } else {
12232    const char *StackProbeSymbol =
12233      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12234
12235    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12236      .addExternalSymbol(StackProbeSymbol)
12237      .addReg(X86::EAX, RegState::Implicit)
12238      .addReg(X86::ESP, RegState::Implicit)
12239      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12240      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12241      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12242  }
12243
12244  MI->eraseFromParent();   // The pseudo instruction is gone now.
12245  return BB;
12246}
12247
12248MachineBasicBlock *
12249X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12250                                      MachineBasicBlock *BB) const {
12251  // This is pretty easy.  We're taking the value that we received from
12252  // our load from the relocation, sticking it in either RDI (x86-64)
12253  // or EAX and doing an indirect call.  The return value will then
12254  // be in the normal return register.
12255  const X86InstrInfo *TII
12256    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12257  DebugLoc DL = MI->getDebugLoc();
12258  MachineFunction *F = BB->getParent();
12259
12260  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12261  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12262
12263  // Get a register mask for the lowered call.
12264  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
12265  // proper register mask.
12266  const uint32_t *RegMask =
12267    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12268  if (Subtarget->is64Bit()) {
12269    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12270                                      TII->get(X86::MOV64rm), X86::RDI)
12271    .addReg(X86::RIP)
12272    .addImm(0).addReg(0)
12273    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12274                      MI->getOperand(3).getTargetFlags())
12275    .addReg(0);
12276    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12277    addDirectMem(MIB, X86::RDI);
12278    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
12279  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12280    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12281                                      TII->get(X86::MOV32rm), X86::EAX)
12282    .addReg(0)
12283    .addImm(0).addReg(0)
12284    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12285                      MI->getOperand(3).getTargetFlags())
12286    .addReg(0);
12287    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12288    addDirectMem(MIB, X86::EAX);
12289    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12290  } else {
12291    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12292                                      TII->get(X86::MOV32rm), X86::EAX)
12293    .addReg(TII->getGlobalBaseReg(F))
12294    .addImm(0).addReg(0)
12295    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12296                      MI->getOperand(3).getTargetFlags())
12297    .addReg(0);
12298    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12299    addDirectMem(MIB, X86::EAX);
12300    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12301  }
12302
12303  MI->eraseFromParent(); // The pseudo instruction is gone now.
12304  return BB;
12305}
12306
12307MachineBasicBlock *
12308X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12309                                               MachineBasicBlock *BB) const {
12310  switch (MI->getOpcode()) {
12311  default: llvm_unreachable("Unexpected instr type to insert");
12312  case X86::TAILJMPd64:
12313  case X86::TAILJMPr64:
12314  case X86::TAILJMPm64:
12315    llvm_unreachable("TAILJMP64 would not be touched here.");
12316  case X86::TCRETURNdi64:
12317  case X86::TCRETURNri64:
12318  case X86::TCRETURNmi64:
12319    return BB;
12320  case X86::WIN_ALLOCA:
12321    return EmitLoweredWinAlloca(MI, BB);
12322  case X86::SEG_ALLOCA_32:
12323    return EmitLoweredSegAlloca(MI, BB, false);
12324  case X86::SEG_ALLOCA_64:
12325    return EmitLoweredSegAlloca(MI, BB, true);
12326  case X86::TLSCall_32:
12327  case X86::TLSCall_64:
12328    return EmitLoweredTLSCall(MI, BB);
12329  case X86::CMOV_GR8:
12330  case X86::CMOV_FR32:
12331  case X86::CMOV_FR64:
12332  case X86::CMOV_V4F32:
12333  case X86::CMOV_V2F64:
12334  case X86::CMOV_V2I64:
12335  case X86::CMOV_V8F32:
12336  case X86::CMOV_V4F64:
12337  case X86::CMOV_V4I64:
12338  case X86::CMOV_GR16:
12339  case X86::CMOV_GR32:
12340  case X86::CMOV_RFP32:
12341  case X86::CMOV_RFP64:
12342  case X86::CMOV_RFP80:
12343    return EmitLoweredSelect(MI, BB);
12344
12345  case X86::FP32_TO_INT16_IN_MEM:
12346  case X86::FP32_TO_INT32_IN_MEM:
12347  case X86::FP32_TO_INT64_IN_MEM:
12348  case X86::FP64_TO_INT16_IN_MEM:
12349  case X86::FP64_TO_INT32_IN_MEM:
12350  case X86::FP64_TO_INT64_IN_MEM:
12351  case X86::FP80_TO_INT16_IN_MEM:
12352  case X86::FP80_TO_INT32_IN_MEM:
12353  case X86::FP80_TO_INT64_IN_MEM: {
12354    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12355    DebugLoc DL = MI->getDebugLoc();
12356
12357    // Change the floating point control register to use "round towards zero"
12358    // mode when truncating to an integer value.
12359    MachineFunction *F = BB->getParent();
12360    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12361    addFrameReference(BuildMI(*BB, MI, DL,
12362                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12363
12364    // Load the old value of the high byte of the control word...
12365    unsigned OldCW =
12366      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12367    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12368                      CWFrameIdx);
12369
12370    // Set the high part to be round to zero...
12371    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12372      .addImm(0xC7F);
12373
12374    // Reload the modified control word now...
12375    addFrameReference(BuildMI(*BB, MI, DL,
12376                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12377
12378    // Restore the memory image of control word to original value
12379    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12380      .addReg(OldCW);
12381
12382    // Get the X86 opcode to use.
12383    unsigned Opc;
12384    switch (MI->getOpcode()) {
12385    default: llvm_unreachable("illegal opcode!");
12386    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12387    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12388    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12389    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12390    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12391    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12392    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12393    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12394    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12395    }
12396
12397    X86AddressMode AM;
12398    MachineOperand &Op = MI->getOperand(0);
12399    if (Op.isReg()) {
12400      AM.BaseType = X86AddressMode::RegBase;
12401      AM.Base.Reg = Op.getReg();
12402    } else {
12403      AM.BaseType = X86AddressMode::FrameIndexBase;
12404      AM.Base.FrameIndex = Op.getIndex();
12405    }
12406    Op = MI->getOperand(1);
12407    if (Op.isImm())
12408      AM.Scale = Op.getImm();
12409    Op = MI->getOperand(2);
12410    if (Op.isImm())
12411      AM.IndexReg = Op.getImm();
12412    Op = MI->getOperand(3);
12413    if (Op.isGlobal()) {
12414      AM.GV = Op.getGlobal();
12415    } else {
12416      AM.Disp = Op.getImm();
12417    }
12418    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12419                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12420
12421    // Reload the original control word now.
12422    addFrameReference(BuildMI(*BB, MI, DL,
12423                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12424
12425    MI->eraseFromParent();   // The pseudo instruction is gone now.
12426    return BB;
12427  }
12428    // String/text processing lowering.
12429  case X86::PCMPISTRM128REG:
12430  case X86::VPCMPISTRM128REG:
12431    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12432  case X86::PCMPISTRM128MEM:
12433  case X86::VPCMPISTRM128MEM:
12434    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12435  case X86::PCMPESTRM128REG:
12436  case X86::VPCMPESTRM128REG:
12437    return EmitPCMP(MI, BB, 5, false /* in mem */);
12438  case X86::PCMPESTRM128MEM:
12439  case X86::VPCMPESTRM128MEM:
12440    return EmitPCMP(MI, BB, 5, true /* in mem */);
12441
12442    // Thread synchronization.
12443  case X86::MONITOR:
12444    return EmitMonitor(MI, BB);
12445  case X86::MWAIT:
12446    return EmitMwait(MI, BB);
12447
12448    // Atomic Lowering.
12449  case X86::ATOMAND32:
12450    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12451                                               X86::AND32ri, X86::MOV32rm,
12452                                               X86::LCMPXCHG32,
12453                                               X86::NOT32r, X86::EAX,
12454                                               X86::GR32RegisterClass);
12455  case X86::ATOMOR32:
12456    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12457                                               X86::OR32ri, X86::MOV32rm,
12458                                               X86::LCMPXCHG32,
12459                                               X86::NOT32r, X86::EAX,
12460                                               X86::GR32RegisterClass);
12461  case X86::ATOMXOR32:
12462    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12463                                               X86::XOR32ri, X86::MOV32rm,
12464                                               X86::LCMPXCHG32,
12465                                               X86::NOT32r, X86::EAX,
12466                                               X86::GR32RegisterClass);
12467  case X86::ATOMNAND32:
12468    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12469                                               X86::AND32ri, X86::MOV32rm,
12470                                               X86::LCMPXCHG32,
12471                                               X86::NOT32r, X86::EAX,
12472                                               X86::GR32RegisterClass, true);
12473  case X86::ATOMMIN32:
12474    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12475  case X86::ATOMMAX32:
12476    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12477  case X86::ATOMUMIN32:
12478    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12479  case X86::ATOMUMAX32:
12480    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12481
12482  case X86::ATOMAND16:
12483    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12484                                               X86::AND16ri, X86::MOV16rm,
12485                                               X86::LCMPXCHG16,
12486                                               X86::NOT16r, X86::AX,
12487                                               X86::GR16RegisterClass);
12488  case X86::ATOMOR16:
12489    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12490                                               X86::OR16ri, X86::MOV16rm,
12491                                               X86::LCMPXCHG16,
12492                                               X86::NOT16r, X86::AX,
12493                                               X86::GR16RegisterClass);
12494  case X86::ATOMXOR16:
12495    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12496                                               X86::XOR16ri, X86::MOV16rm,
12497                                               X86::LCMPXCHG16,
12498                                               X86::NOT16r, X86::AX,
12499                                               X86::GR16RegisterClass);
12500  case X86::ATOMNAND16:
12501    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12502                                               X86::AND16ri, X86::MOV16rm,
12503                                               X86::LCMPXCHG16,
12504                                               X86::NOT16r, X86::AX,
12505                                               X86::GR16RegisterClass, true);
12506  case X86::ATOMMIN16:
12507    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12508  case X86::ATOMMAX16:
12509    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12510  case X86::ATOMUMIN16:
12511    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12512  case X86::ATOMUMAX16:
12513    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12514
12515  case X86::ATOMAND8:
12516    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12517                                               X86::AND8ri, X86::MOV8rm,
12518                                               X86::LCMPXCHG8,
12519                                               X86::NOT8r, X86::AL,
12520                                               X86::GR8RegisterClass);
12521  case X86::ATOMOR8:
12522    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12523                                               X86::OR8ri, X86::MOV8rm,
12524                                               X86::LCMPXCHG8,
12525                                               X86::NOT8r, X86::AL,
12526                                               X86::GR8RegisterClass);
12527  case X86::ATOMXOR8:
12528    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12529                                               X86::XOR8ri, X86::MOV8rm,
12530                                               X86::LCMPXCHG8,
12531                                               X86::NOT8r, X86::AL,
12532                                               X86::GR8RegisterClass);
12533  case X86::ATOMNAND8:
12534    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12535                                               X86::AND8ri, X86::MOV8rm,
12536                                               X86::LCMPXCHG8,
12537                                               X86::NOT8r, X86::AL,
12538                                               X86::GR8RegisterClass, true);
12539  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12540  // This group is for 64-bit host.
12541  case X86::ATOMAND64:
12542    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12543                                               X86::AND64ri32, X86::MOV64rm,
12544                                               X86::LCMPXCHG64,
12545                                               X86::NOT64r, X86::RAX,
12546                                               X86::GR64RegisterClass);
12547  case X86::ATOMOR64:
12548    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12549                                               X86::OR64ri32, X86::MOV64rm,
12550                                               X86::LCMPXCHG64,
12551                                               X86::NOT64r, X86::RAX,
12552                                               X86::GR64RegisterClass);
12553  case X86::ATOMXOR64:
12554    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12555                                               X86::XOR64ri32, X86::MOV64rm,
12556                                               X86::LCMPXCHG64,
12557                                               X86::NOT64r, X86::RAX,
12558                                               X86::GR64RegisterClass);
12559  case X86::ATOMNAND64:
12560    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12561                                               X86::AND64ri32, X86::MOV64rm,
12562                                               X86::LCMPXCHG64,
12563                                               X86::NOT64r, X86::RAX,
12564                                               X86::GR64RegisterClass, true);
12565  case X86::ATOMMIN64:
12566    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12567  case X86::ATOMMAX64:
12568    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12569  case X86::ATOMUMIN64:
12570    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12571  case X86::ATOMUMAX64:
12572    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12573
12574  // This group does 64-bit operations on a 32-bit host.
12575  case X86::ATOMAND6432:
12576    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12577                                               X86::AND32rr, X86::AND32rr,
12578                                               X86::AND32ri, X86::AND32ri,
12579                                               false);
12580  case X86::ATOMOR6432:
12581    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12582                                               X86::OR32rr, X86::OR32rr,
12583                                               X86::OR32ri, X86::OR32ri,
12584                                               false);
12585  case X86::ATOMXOR6432:
12586    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12587                                               X86::XOR32rr, X86::XOR32rr,
12588                                               X86::XOR32ri, X86::XOR32ri,
12589                                               false);
12590  case X86::ATOMNAND6432:
12591    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12592                                               X86::AND32rr, X86::AND32rr,
12593                                               X86::AND32ri, X86::AND32ri,
12594                                               true);
12595  case X86::ATOMADD6432:
12596    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12597                                               X86::ADD32rr, X86::ADC32rr,
12598                                               X86::ADD32ri, X86::ADC32ri,
12599                                               false);
12600  case X86::ATOMSUB6432:
12601    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12602                                               X86::SUB32rr, X86::SBB32rr,
12603                                               X86::SUB32ri, X86::SBB32ri,
12604                                               false);
12605  case X86::ATOMSWAP6432:
12606    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12607                                               X86::MOV32rr, X86::MOV32rr,
12608                                               X86::MOV32ri, X86::MOV32ri,
12609                                               false);
12610  case X86::VASTART_SAVE_XMM_REGS:
12611    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12612
12613  case X86::VAARG_64:
12614    return EmitVAARG64WithCustomInserter(MI, BB);
12615  }
12616}
12617
12618//===----------------------------------------------------------------------===//
12619//                           X86 Optimization Hooks
12620//===----------------------------------------------------------------------===//
12621
12622void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12623                                                       const APInt &Mask,
12624                                                       APInt &KnownZero,
12625                                                       APInt &KnownOne,
12626                                                       const SelectionDAG &DAG,
12627                                                       unsigned Depth) const {
12628  unsigned Opc = Op.getOpcode();
12629  assert((Opc >= ISD::BUILTIN_OP_END ||
12630          Opc == ISD::INTRINSIC_WO_CHAIN ||
12631          Opc == ISD::INTRINSIC_W_CHAIN ||
12632          Opc == ISD::INTRINSIC_VOID) &&
12633         "Should use MaskedValueIsZero if you don't know whether Op"
12634         " is a target node!");
12635
12636  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12637  switch (Opc) {
12638  default: break;
12639  case X86ISD::ADD:
12640  case X86ISD::SUB:
12641  case X86ISD::ADC:
12642  case X86ISD::SBB:
12643  case X86ISD::SMUL:
12644  case X86ISD::UMUL:
12645  case X86ISD::INC:
12646  case X86ISD::DEC:
12647  case X86ISD::OR:
12648  case X86ISD::XOR:
12649  case X86ISD::AND:
12650    // These nodes' second result is a boolean.
12651    if (Op.getResNo() == 0)
12652      break;
12653    // Fallthrough
12654  case X86ISD::SETCC:
12655    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12656                                       Mask.getBitWidth() - 1);
12657    break;
12658  case ISD::INTRINSIC_WO_CHAIN: {
12659    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12660    unsigned NumLoBits = 0;
12661    switch (IntId) {
12662    default: break;
12663    case Intrinsic::x86_sse_movmsk_ps:
12664    case Intrinsic::x86_avx_movmsk_ps_256:
12665    case Intrinsic::x86_sse2_movmsk_pd:
12666    case Intrinsic::x86_avx_movmsk_pd_256:
12667    case Intrinsic::x86_mmx_pmovmskb:
12668    case Intrinsic::x86_sse2_pmovmskb_128:
12669    case Intrinsic::x86_avx2_pmovmskb: {
12670      // High bits of movmskp{s|d}, pmovmskb are known zero.
12671      switch (IntId) {
12672        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12673        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12674        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12675        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12676        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12677        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12678        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12679        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12680      }
12681      KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12682                                        Mask.getBitWidth() - NumLoBits);
12683      break;
12684    }
12685    }
12686    break;
12687  }
12688  }
12689}
12690
12691unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12692                                                         unsigned Depth) const {
12693  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12694  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12695    return Op.getValueType().getScalarType().getSizeInBits();
12696
12697  // Fallback case.
12698  return 1;
12699}
12700
12701/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12702/// node is a GlobalAddress + offset.
12703bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12704                                       const GlobalValue* &GA,
12705                                       int64_t &Offset) const {
12706  if (N->getOpcode() == X86ISD::Wrapper) {
12707    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12708      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12709      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12710      return true;
12711    }
12712  }
12713  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12714}
12715
12716/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12717/// same as extracting the high 128-bit part of 256-bit vector and then
12718/// inserting the result into the low part of a new 256-bit vector
12719static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12720  EVT VT = SVOp->getValueType(0);
12721  int NumElems = VT.getVectorNumElements();
12722
12723  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12724  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12725    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12726        SVOp->getMaskElt(j) >= 0)
12727      return false;
12728
12729  return true;
12730}
12731
12732/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12733/// same as extracting the low 128-bit part of 256-bit vector and then
12734/// inserting the result into the high part of a new 256-bit vector
12735static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12736  EVT VT = SVOp->getValueType(0);
12737  int NumElems = VT.getVectorNumElements();
12738
12739  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12740  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12741    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12742        SVOp->getMaskElt(j) >= 0)
12743      return false;
12744
12745  return true;
12746}
12747
12748/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12749static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12750                                        TargetLowering::DAGCombinerInfo &DCI,
12751                                        const X86Subtarget* Subtarget) {
12752  DebugLoc dl = N->getDebugLoc();
12753  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12754  SDValue V1 = SVOp->getOperand(0);
12755  SDValue V2 = SVOp->getOperand(1);
12756  EVT VT = SVOp->getValueType(0);
12757  int NumElems = VT.getVectorNumElements();
12758
12759  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12760      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12761    //
12762    //                   0,0,0,...
12763    //                      |
12764    //    V      UNDEF    BUILD_VECTOR    UNDEF
12765    //     \      /           \           /
12766    //  CONCAT_VECTOR         CONCAT_VECTOR
12767    //         \                  /
12768    //          \                /
12769    //          RESULT: V + zero extended
12770    //
12771    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12772        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12773        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12774      return SDValue();
12775
12776    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12777      return SDValue();
12778
12779    // To match the shuffle mask, the first half of the mask should
12780    // be exactly the first vector, and all the rest a splat with the
12781    // first element of the second one.
12782    for (int i = 0; i < NumElems/2; ++i)
12783      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12784          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12785        return SDValue();
12786
12787    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12788    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12789      SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
12790      SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
12791      SDValue ResNode =
12792        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
12793                                Ld->getMemoryVT(),
12794                                Ld->getPointerInfo(),
12795                                Ld->getAlignment(),
12796                                false/*isVolatile*/, true/*ReadMem*/,
12797                                false/*WriteMem*/);
12798      return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
12799    }
12800
12801    // Emit a zeroed vector and insert the desired subvector on its
12802    // first half.
12803    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
12804    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12805                         DAG.getConstant(0, MVT::i32), DAG, dl);
12806    return DCI.CombineTo(N, InsV);
12807  }
12808
12809  //===--------------------------------------------------------------------===//
12810  // Combine some shuffles into subvector extracts and inserts:
12811  //
12812
12813  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12814  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12815    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12816                                    DAG, dl);
12817    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12818                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12819    return DCI.CombineTo(N, InsV);
12820  }
12821
12822  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12823  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12824    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12825    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12826                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12827    return DCI.CombineTo(N, InsV);
12828  }
12829
12830  return SDValue();
12831}
12832
12833/// PerformShuffleCombine - Performs several different shuffle combines.
12834static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12835                                     TargetLowering::DAGCombinerInfo &DCI,
12836                                     const X86Subtarget *Subtarget) {
12837  DebugLoc dl = N->getDebugLoc();
12838  EVT VT = N->getValueType(0);
12839
12840  // Don't create instructions with illegal types after legalize types has run.
12841  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12842  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12843    return SDValue();
12844
12845  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12846  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12847      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12848    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
12849
12850  // Only handle 128 wide vector from here on.
12851  if (VT.getSizeInBits() != 128)
12852    return SDValue();
12853
12854  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12855  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12856  // consecutive, non-overlapping, and in the right order.
12857  SmallVector<SDValue, 16> Elts;
12858  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12859    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12860
12861  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12862}
12863
12864
12865/// PerformTruncateCombine - Converts truncate operation to
12866/// a sequence of vector shuffle operations.
12867/// It is possible when we truncate 256-bit vector to 128-bit vector
12868
12869SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
12870                                                  DAGCombinerInfo &DCI) const {
12871  if (!DCI.isBeforeLegalizeOps())
12872    return SDValue();
12873
12874  if (!Subtarget->hasAVX()) return SDValue();
12875
12876  EVT VT = N->getValueType(0);
12877  SDValue Op = N->getOperand(0);
12878  EVT OpVT = Op.getValueType();
12879  DebugLoc dl = N->getDebugLoc();
12880
12881  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
12882
12883    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
12884                          DAG.getIntPtrConstant(0));
12885
12886    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
12887                          DAG.getIntPtrConstant(2));
12888
12889    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
12890    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
12891
12892    // PSHUFD
12893    int ShufMask1[] = {0, 2, 0, 0};
12894
12895    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, DAG.getUNDEF(VT),
12896                                ShufMask1);
12897    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, DAG.getUNDEF(VT),
12898                                ShufMask1);
12899
12900    // MOVLHPS
12901    int ShufMask2[] = {0, 1, 4, 5};
12902
12903    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
12904  }
12905  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
12906
12907    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
12908                          DAG.getIntPtrConstant(0));
12909
12910    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
12911                          DAG.getIntPtrConstant(4));
12912
12913    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
12914    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
12915
12916    // PSHUFB
12917    int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
12918                      -1, -1, -1, -1, -1, -1, -1, -1};
12919
12920    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo,
12921                                DAG.getUNDEF(MVT::v16i8),
12922                                ShufMask1);
12923    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi,
12924                                DAG.getUNDEF(MVT::v16i8),
12925                                ShufMask1);
12926
12927    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
12928    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
12929
12930    // MOVLHPS
12931    int ShufMask2[] = {0, 1, 4, 5};
12932
12933    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
12934    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
12935  }
12936
12937  return SDValue();
12938}
12939
12940/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
12941/// specific shuffle of a load can be folded into a single element load.
12942/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
12943/// shuffles have been customed lowered so we need to handle those here.
12944static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
12945                                         TargetLowering::DAGCombinerInfo &DCI) {
12946  if (DCI.isBeforeLegalizeOps())
12947    return SDValue();
12948
12949  SDValue InVec = N->getOperand(0);
12950  SDValue EltNo = N->getOperand(1);
12951
12952  if (!isa<ConstantSDNode>(EltNo))
12953    return SDValue();
12954
12955  EVT VT = InVec.getValueType();
12956
12957  bool HasShuffleIntoBitcast = false;
12958  if (InVec.getOpcode() == ISD::BITCAST) {
12959    // Don't duplicate a load with other uses.
12960    if (!InVec.hasOneUse())
12961      return SDValue();
12962    EVT BCVT = InVec.getOperand(0).getValueType();
12963    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
12964      return SDValue();
12965    InVec = InVec.getOperand(0);
12966    HasShuffleIntoBitcast = true;
12967  }
12968
12969  if (!isTargetShuffle(InVec.getOpcode()))
12970    return SDValue();
12971
12972  // Don't duplicate a load with other uses.
12973  if (!InVec.hasOneUse())
12974    return SDValue();
12975
12976  SmallVector<int, 16> ShuffleMask;
12977  bool UnaryShuffle;
12978  if (!getTargetShuffleMask(InVec.getNode(), VT, ShuffleMask, UnaryShuffle))
12979    return SDValue();
12980
12981  // Select the input vector, guarding against out of range extract vector.
12982  unsigned NumElems = VT.getVectorNumElements();
12983  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
12984  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
12985  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
12986                                         : InVec.getOperand(1);
12987
12988  // If inputs to shuffle are the same for both ops, then allow 2 uses
12989  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
12990
12991  if (LdNode.getOpcode() == ISD::BITCAST) {
12992    // Don't duplicate a load with other uses.
12993    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
12994      return SDValue();
12995
12996    AllowedUses = 1; // only allow 1 load use if we have a bitcast
12997    LdNode = LdNode.getOperand(0);
12998  }
12999
13000  if (!ISD::isNormalLoad(LdNode.getNode()))
13001    return SDValue();
13002
13003  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
13004
13005  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
13006    return SDValue();
13007
13008  if (HasShuffleIntoBitcast) {
13009    // If there's a bitcast before the shuffle, check if the load type and
13010    // alignment is valid.
13011    unsigned Align = LN0->getAlignment();
13012    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13013    unsigned NewAlign = TLI.getTargetData()->
13014      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
13015
13016    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
13017      return SDValue();
13018  }
13019
13020  // All checks match so transform back to vector_shuffle so that DAG combiner
13021  // can finish the job
13022  DebugLoc dl = N->getDebugLoc();
13023
13024  // Create shuffle node taking into account the case that its a unary shuffle
13025  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
13026  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
13027                                 InVec.getOperand(0), Shuffle,
13028                                 &ShuffleMask[0]);
13029  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
13030  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
13031                     EltNo);
13032}
13033
13034/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13035/// generation and convert it from being a bunch of shuffles and extracts
13036/// to a simple store and scalar loads to extract the elements.
13037static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13038                                         TargetLowering::DAGCombinerInfo &DCI) {
13039  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
13040  if (NewOp.getNode())
13041    return NewOp;
13042
13043  SDValue InputVector = N->getOperand(0);
13044
13045  // Only operate on vectors of 4 elements, where the alternative shuffling
13046  // gets to be more expensive.
13047  if (InputVector.getValueType() != MVT::v4i32)
13048    return SDValue();
13049
13050  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13051  // single use which is a sign-extend or zero-extend, and all elements are
13052  // used.
13053  SmallVector<SDNode *, 4> Uses;
13054  unsigned ExtractedElements = 0;
13055  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13056       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13057    if (UI.getUse().getResNo() != InputVector.getResNo())
13058      return SDValue();
13059
13060    SDNode *Extract = *UI;
13061    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13062      return SDValue();
13063
13064    if (Extract->getValueType(0) != MVT::i32)
13065      return SDValue();
13066    if (!Extract->hasOneUse())
13067      return SDValue();
13068    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13069        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13070      return SDValue();
13071    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13072      return SDValue();
13073
13074    // Record which element was extracted.
13075    ExtractedElements |=
13076      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13077
13078    Uses.push_back(Extract);
13079  }
13080
13081  // If not all the elements were used, this may not be worthwhile.
13082  if (ExtractedElements != 15)
13083    return SDValue();
13084
13085  // Ok, we've now decided to do the transformation.
13086  DebugLoc dl = InputVector.getDebugLoc();
13087
13088  // Store the value to a temporary stack slot.
13089  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13090  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13091                            MachinePointerInfo(), false, false, 0);
13092
13093  // Replace each use (extract) with a load of the appropriate element.
13094  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13095       UE = Uses.end(); UI != UE; ++UI) {
13096    SDNode *Extract = *UI;
13097
13098    // cOMpute the element's address.
13099    SDValue Idx = Extract->getOperand(1);
13100    unsigned EltSize =
13101        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13102    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13103    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13104    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13105
13106    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13107                                     StackPtr, OffsetVal);
13108
13109    // Load the scalar.
13110    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13111                                     ScalarAddr, MachinePointerInfo(),
13112                                     false, false, false, 0);
13113
13114    // Replace the exact with the load.
13115    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13116  }
13117
13118  // The replacement was made in place; don't return anything.
13119  return SDValue();
13120}
13121
13122/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13123/// nodes.
13124static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13125                                    TargetLowering::DAGCombinerInfo &DCI,
13126                                    const X86Subtarget *Subtarget) {
13127
13128
13129  DebugLoc DL = N->getDebugLoc();
13130  SDValue Cond = N->getOperand(0);
13131  // Get the LHS/RHS of the select.
13132  SDValue LHS = N->getOperand(1);
13133  SDValue RHS = N->getOperand(2);
13134  EVT VT = LHS.getValueType();
13135
13136  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13137  // instructions match the semantics of the common C idiom x<y?x:y but not
13138  // x<=y?x:y, because of how they handle negative zero (which can be
13139  // ignored in unsafe-math mode).
13140  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13141      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13142      (Subtarget->hasSSE2() ||
13143       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13144    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13145
13146    unsigned Opcode = 0;
13147    // Check for x CC y ? x : y.
13148    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13149        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13150      switch (CC) {
13151      default: break;
13152      case ISD::SETULT:
13153        // Converting this to a min would handle NaNs incorrectly, and swapping
13154        // the operands would cause it to handle comparisons between positive
13155        // and negative zero incorrectly.
13156        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13157          if (!DAG.getTarget().Options.UnsafeFPMath &&
13158              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13159            break;
13160          std::swap(LHS, RHS);
13161        }
13162        Opcode = X86ISD::FMIN;
13163        break;
13164      case ISD::SETOLE:
13165        // Converting this to a min would handle comparisons between positive
13166        // and negative zero incorrectly.
13167        if (!DAG.getTarget().Options.UnsafeFPMath &&
13168            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13169          break;
13170        Opcode = X86ISD::FMIN;
13171        break;
13172      case ISD::SETULE:
13173        // Converting this to a min would handle both negative zeros and NaNs
13174        // incorrectly, but we can swap the operands to fix both.
13175        std::swap(LHS, RHS);
13176      case ISD::SETOLT:
13177      case ISD::SETLT:
13178      case ISD::SETLE:
13179        Opcode = X86ISD::FMIN;
13180        break;
13181
13182      case ISD::SETOGE:
13183        // Converting this to a max would handle comparisons between positive
13184        // and negative zero incorrectly.
13185        if (!DAG.getTarget().Options.UnsafeFPMath &&
13186            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13187          break;
13188        Opcode = X86ISD::FMAX;
13189        break;
13190      case ISD::SETUGT:
13191        // Converting this to a max would handle NaNs incorrectly, and swapping
13192        // the operands would cause it to handle comparisons between positive
13193        // and negative zero incorrectly.
13194        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13195          if (!DAG.getTarget().Options.UnsafeFPMath &&
13196              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13197            break;
13198          std::swap(LHS, RHS);
13199        }
13200        Opcode = X86ISD::FMAX;
13201        break;
13202      case ISD::SETUGE:
13203        // Converting this to a max would handle both negative zeros and NaNs
13204        // incorrectly, but we can swap the operands to fix both.
13205        std::swap(LHS, RHS);
13206      case ISD::SETOGT:
13207      case ISD::SETGT:
13208      case ISD::SETGE:
13209        Opcode = X86ISD::FMAX;
13210        break;
13211      }
13212    // Check for x CC y ? y : x -- a min/max with reversed arms.
13213    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13214               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13215      switch (CC) {
13216      default: break;
13217      case ISD::SETOGE:
13218        // Converting this to a min would handle comparisons between positive
13219        // and negative zero incorrectly, and swapping the operands would
13220        // cause it to handle NaNs incorrectly.
13221        if (!DAG.getTarget().Options.UnsafeFPMath &&
13222            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13223          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13224            break;
13225          std::swap(LHS, RHS);
13226        }
13227        Opcode = X86ISD::FMIN;
13228        break;
13229      case ISD::SETUGT:
13230        // Converting this to a min would handle NaNs incorrectly.
13231        if (!DAG.getTarget().Options.UnsafeFPMath &&
13232            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13233          break;
13234        Opcode = X86ISD::FMIN;
13235        break;
13236      case ISD::SETUGE:
13237        // Converting this to a min would handle both negative zeros and NaNs
13238        // incorrectly, but we can swap the operands to fix both.
13239        std::swap(LHS, RHS);
13240      case ISD::SETOGT:
13241      case ISD::SETGT:
13242      case ISD::SETGE:
13243        Opcode = X86ISD::FMIN;
13244        break;
13245
13246      case ISD::SETULT:
13247        // Converting this to a max would handle NaNs incorrectly.
13248        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13249          break;
13250        Opcode = X86ISD::FMAX;
13251        break;
13252      case ISD::SETOLE:
13253        // Converting this to a max would handle comparisons between positive
13254        // and negative zero incorrectly, and swapping the operands would
13255        // cause it to handle NaNs incorrectly.
13256        if (!DAG.getTarget().Options.UnsafeFPMath &&
13257            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13258          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13259            break;
13260          std::swap(LHS, RHS);
13261        }
13262        Opcode = X86ISD::FMAX;
13263        break;
13264      case ISD::SETULE:
13265        // Converting this to a max would handle both negative zeros and NaNs
13266        // incorrectly, but we can swap the operands to fix both.
13267        std::swap(LHS, RHS);
13268      case ISD::SETOLT:
13269      case ISD::SETLT:
13270      case ISD::SETLE:
13271        Opcode = X86ISD::FMAX;
13272        break;
13273      }
13274    }
13275
13276    if (Opcode)
13277      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13278  }
13279
13280  // If this is a select between two integer constants, try to do some
13281  // optimizations.
13282  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13283    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13284      // Don't do this for crazy integer types.
13285      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13286        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13287        // so that TrueC (the true value) is larger than FalseC.
13288        bool NeedsCondInvert = false;
13289
13290        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13291            // Efficiently invertible.
13292            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13293             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13294              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13295          NeedsCondInvert = true;
13296          std::swap(TrueC, FalseC);
13297        }
13298
13299        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13300        if (FalseC->getAPIntValue() == 0 &&
13301            TrueC->getAPIntValue().isPowerOf2()) {
13302          if (NeedsCondInvert) // Invert the condition if needed.
13303            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13304                               DAG.getConstant(1, Cond.getValueType()));
13305
13306          // Zero extend the condition if needed.
13307          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13308
13309          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13310          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13311                             DAG.getConstant(ShAmt, MVT::i8));
13312        }
13313
13314        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13315        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13316          if (NeedsCondInvert) // Invert the condition if needed.
13317            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13318                               DAG.getConstant(1, Cond.getValueType()));
13319
13320          // Zero extend the condition if needed.
13321          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13322                             FalseC->getValueType(0), Cond);
13323          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13324                             SDValue(FalseC, 0));
13325        }
13326
13327        // Optimize cases that will turn into an LEA instruction.  This requires
13328        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13329        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13330          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13331          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13332
13333          bool isFastMultiplier = false;
13334          if (Diff < 10) {
13335            switch ((unsigned char)Diff) {
13336              default: break;
13337              case 1:  // result = add base, cond
13338              case 2:  // result = lea base(    , cond*2)
13339              case 3:  // result = lea base(cond, cond*2)
13340              case 4:  // result = lea base(    , cond*4)
13341              case 5:  // result = lea base(cond, cond*4)
13342              case 8:  // result = lea base(    , cond*8)
13343              case 9:  // result = lea base(cond, cond*8)
13344                isFastMultiplier = true;
13345                break;
13346            }
13347          }
13348
13349          if (isFastMultiplier) {
13350            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13351            if (NeedsCondInvert) // Invert the condition if needed.
13352              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13353                                 DAG.getConstant(1, Cond.getValueType()));
13354
13355            // Zero extend the condition if needed.
13356            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13357                               Cond);
13358            // Scale the condition by the difference.
13359            if (Diff != 1)
13360              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13361                                 DAG.getConstant(Diff, Cond.getValueType()));
13362
13363            // Add the base if non-zero.
13364            if (FalseC->getAPIntValue() != 0)
13365              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13366                                 SDValue(FalseC, 0));
13367            return Cond;
13368          }
13369        }
13370      }
13371  }
13372
13373  // Canonicalize max and min:
13374  // (x > y) ? x : y -> (x >= y) ? x : y
13375  // (x < y) ? x : y -> (x <= y) ? x : y
13376  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13377  // the need for an extra compare
13378  // against zero. e.g.
13379  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13380  // subl   %esi, %edi
13381  // testl  %edi, %edi
13382  // movl   $0, %eax
13383  // cmovgl %edi, %eax
13384  // =>
13385  // xorl   %eax, %eax
13386  // subl   %esi, $edi
13387  // cmovsl %eax, %edi
13388  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13389      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13390      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13391    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13392    switch (CC) {
13393    default: break;
13394    case ISD::SETLT:
13395    case ISD::SETGT: {
13396      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13397      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13398                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13399      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13400    }
13401    }
13402  }
13403
13404  // If we know that this node is legal then we know that it is going to be
13405  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13406  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13407  // to simplify previous instructions.
13408  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13409  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13410      !DCI.isBeforeLegalize() &&
13411      TLI.isOperationLegal(ISD::VSELECT, VT)) {
13412    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13413    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13414    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13415
13416    APInt KnownZero, KnownOne;
13417    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13418                                          DCI.isBeforeLegalizeOps());
13419    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13420        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13421      DCI.CommitTargetLoweringOpt(TLO);
13422  }
13423
13424  return SDValue();
13425}
13426
13427/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13428static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13429                                  TargetLowering::DAGCombinerInfo &DCI) {
13430  DebugLoc DL = N->getDebugLoc();
13431
13432  // If the flag operand isn't dead, don't touch this CMOV.
13433  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13434    return SDValue();
13435
13436  SDValue FalseOp = N->getOperand(0);
13437  SDValue TrueOp = N->getOperand(1);
13438  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13439  SDValue Cond = N->getOperand(3);
13440  if (CC == X86::COND_E || CC == X86::COND_NE) {
13441    switch (Cond.getOpcode()) {
13442    default: break;
13443    case X86ISD::BSR:
13444    case X86ISD::BSF:
13445      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13446      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13447        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13448    }
13449  }
13450
13451  // If this is a select between two integer constants, try to do some
13452  // optimizations.  Note that the operands are ordered the opposite of SELECT
13453  // operands.
13454  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13455    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13456      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13457      // larger than FalseC (the false value).
13458      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13459        CC = X86::GetOppositeBranchCondition(CC);
13460        std::swap(TrueC, FalseC);
13461      }
13462
13463      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13464      // This is efficient for any integer data type (including i8/i16) and
13465      // shift amount.
13466      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13467        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13468                           DAG.getConstant(CC, MVT::i8), Cond);
13469
13470        // Zero extend the condition if needed.
13471        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13472
13473        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13474        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13475                           DAG.getConstant(ShAmt, MVT::i8));
13476        if (N->getNumValues() == 2)  // Dead flag value?
13477          return DCI.CombineTo(N, Cond, SDValue());
13478        return Cond;
13479      }
13480
13481      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13482      // for any integer data type, including i8/i16.
13483      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13484        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13485                           DAG.getConstant(CC, MVT::i8), Cond);
13486
13487        // Zero extend the condition if needed.
13488        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13489                           FalseC->getValueType(0), Cond);
13490        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13491                           SDValue(FalseC, 0));
13492
13493        if (N->getNumValues() == 2)  // Dead flag value?
13494          return DCI.CombineTo(N, Cond, SDValue());
13495        return Cond;
13496      }
13497
13498      // Optimize cases that will turn into an LEA instruction.  This requires
13499      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13500      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13501        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13502        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13503
13504        bool isFastMultiplier = false;
13505        if (Diff < 10) {
13506          switch ((unsigned char)Diff) {
13507          default: break;
13508          case 1:  // result = add base, cond
13509          case 2:  // result = lea base(    , cond*2)
13510          case 3:  // result = lea base(cond, cond*2)
13511          case 4:  // result = lea base(    , cond*4)
13512          case 5:  // result = lea base(cond, cond*4)
13513          case 8:  // result = lea base(    , cond*8)
13514          case 9:  // result = lea base(cond, cond*8)
13515            isFastMultiplier = true;
13516            break;
13517          }
13518        }
13519
13520        if (isFastMultiplier) {
13521          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13522          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13523                             DAG.getConstant(CC, MVT::i8), Cond);
13524          // Zero extend the condition if needed.
13525          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13526                             Cond);
13527          // Scale the condition by the difference.
13528          if (Diff != 1)
13529            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13530                               DAG.getConstant(Diff, Cond.getValueType()));
13531
13532          // Add the base if non-zero.
13533          if (FalseC->getAPIntValue() != 0)
13534            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13535                               SDValue(FalseC, 0));
13536          if (N->getNumValues() == 2)  // Dead flag value?
13537            return DCI.CombineTo(N, Cond, SDValue());
13538          return Cond;
13539        }
13540      }
13541    }
13542  }
13543  return SDValue();
13544}
13545
13546
13547/// PerformMulCombine - Optimize a single multiply with constant into two
13548/// in order to implement it with two cheaper instructions, e.g.
13549/// LEA + SHL, LEA + LEA.
13550static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13551                                 TargetLowering::DAGCombinerInfo &DCI) {
13552  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13553    return SDValue();
13554
13555  EVT VT = N->getValueType(0);
13556  if (VT != MVT::i64)
13557    return SDValue();
13558
13559  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13560  if (!C)
13561    return SDValue();
13562  uint64_t MulAmt = C->getZExtValue();
13563  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13564    return SDValue();
13565
13566  uint64_t MulAmt1 = 0;
13567  uint64_t MulAmt2 = 0;
13568  if ((MulAmt % 9) == 0) {
13569    MulAmt1 = 9;
13570    MulAmt2 = MulAmt / 9;
13571  } else if ((MulAmt % 5) == 0) {
13572    MulAmt1 = 5;
13573    MulAmt2 = MulAmt / 5;
13574  } else if ((MulAmt % 3) == 0) {
13575    MulAmt1 = 3;
13576    MulAmt2 = MulAmt / 3;
13577  }
13578  if (MulAmt2 &&
13579      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13580    DebugLoc DL = N->getDebugLoc();
13581
13582    if (isPowerOf2_64(MulAmt2) &&
13583        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13584      // If second multiplifer is pow2, issue it first. We want the multiply by
13585      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13586      // is an add.
13587      std::swap(MulAmt1, MulAmt2);
13588
13589    SDValue NewMul;
13590    if (isPowerOf2_64(MulAmt1))
13591      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13592                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13593    else
13594      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13595                           DAG.getConstant(MulAmt1, VT));
13596
13597    if (isPowerOf2_64(MulAmt2))
13598      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13599                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13600    else
13601      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13602                           DAG.getConstant(MulAmt2, VT));
13603
13604    // Do not add new nodes to DAG combiner worklist.
13605    DCI.CombineTo(N, NewMul, false);
13606  }
13607  return SDValue();
13608}
13609
13610static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13611  SDValue N0 = N->getOperand(0);
13612  SDValue N1 = N->getOperand(1);
13613  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13614  EVT VT = N0.getValueType();
13615
13616  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13617  // since the result of setcc_c is all zero's or all ones.
13618  if (VT.isInteger() && !VT.isVector() &&
13619      N1C && N0.getOpcode() == ISD::AND &&
13620      N0.getOperand(1).getOpcode() == ISD::Constant) {
13621    SDValue N00 = N0.getOperand(0);
13622    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13623        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13624          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13625         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13626      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13627      APInt ShAmt = N1C->getAPIntValue();
13628      Mask = Mask.shl(ShAmt);
13629      if (Mask != 0)
13630        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13631                           N00, DAG.getConstant(Mask, VT));
13632    }
13633  }
13634
13635
13636  // Hardware support for vector shifts is sparse which makes us scalarize the
13637  // vector operations in many cases. Also, on sandybridge ADD is faster than
13638  // shl.
13639  // (shl V, 1) -> add V,V
13640  if (isSplatVector(N1.getNode())) {
13641    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13642    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13643    // We shift all of the values by one. In many cases we do not have
13644    // hardware support for this operation. This is better expressed as an ADD
13645    // of two values.
13646    if (N1C && (1 == N1C->getZExtValue())) {
13647      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13648    }
13649  }
13650
13651  return SDValue();
13652}
13653
13654/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13655///                       when possible.
13656static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13657                                   TargetLowering::DAGCombinerInfo &DCI,
13658                                   const X86Subtarget *Subtarget) {
13659  EVT VT = N->getValueType(0);
13660  if (N->getOpcode() == ISD::SHL) {
13661    SDValue V = PerformSHLCombine(N, DAG);
13662    if (V.getNode()) return V;
13663  }
13664
13665  // On X86 with SSE2 support, we can transform this to a vector shift if
13666  // all elements are shifted by the same amount.  We can't do this in legalize
13667  // because the a constant vector is typically transformed to a constant pool
13668  // so we have no knowledge of the shift amount.
13669  if (!Subtarget->hasSSE2())
13670    return SDValue();
13671
13672  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13673      (!Subtarget->hasAVX2() ||
13674       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13675    return SDValue();
13676
13677  SDValue ShAmtOp = N->getOperand(1);
13678  EVT EltVT = VT.getVectorElementType();
13679  DebugLoc DL = N->getDebugLoc();
13680  SDValue BaseShAmt = SDValue();
13681  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13682    unsigned NumElts = VT.getVectorNumElements();
13683    unsigned i = 0;
13684    for (; i != NumElts; ++i) {
13685      SDValue Arg = ShAmtOp.getOperand(i);
13686      if (Arg.getOpcode() == ISD::UNDEF) continue;
13687      BaseShAmt = Arg;
13688      break;
13689    }
13690    // Handle the case where the build_vector is all undef
13691    // FIXME: Should DAG allow this?
13692    if (i == NumElts)
13693      return SDValue();
13694
13695    for (; i != NumElts; ++i) {
13696      SDValue Arg = ShAmtOp.getOperand(i);
13697      if (Arg.getOpcode() == ISD::UNDEF) continue;
13698      if (Arg != BaseShAmt) {
13699        return SDValue();
13700      }
13701    }
13702  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13703             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13704    SDValue InVec = ShAmtOp.getOperand(0);
13705    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13706      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13707      unsigned i = 0;
13708      for (; i != NumElts; ++i) {
13709        SDValue Arg = InVec.getOperand(i);
13710        if (Arg.getOpcode() == ISD::UNDEF) continue;
13711        BaseShAmt = Arg;
13712        break;
13713      }
13714    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13715       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13716         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13717         if (C->getZExtValue() == SplatIdx)
13718           BaseShAmt = InVec.getOperand(1);
13719       }
13720    }
13721    if (BaseShAmt.getNode() == 0) {
13722      // Don't create instructions with illegal types after legalize
13723      // types has run.
13724      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
13725          !DCI.isBeforeLegalize())
13726        return SDValue();
13727
13728      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13729                              DAG.getIntPtrConstant(0));
13730    }
13731  } else
13732    return SDValue();
13733
13734  // The shift amount is an i32.
13735  if (EltVT.bitsGT(MVT::i32))
13736    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13737  else if (EltVT.bitsLT(MVT::i32))
13738    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13739
13740  // The shift amount is identical so we can do a vector shift.
13741  SDValue  ValOp = N->getOperand(0);
13742  switch (N->getOpcode()) {
13743  default:
13744    llvm_unreachable("Unknown shift opcode!");
13745  case ISD::SHL:
13746    switch (VT.getSimpleVT().SimpleTy) {
13747    default: return SDValue();
13748    case MVT::v2i64:
13749    case MVT::v4i32:
13750    case MVT::v8i16:
13751    case MVT::v4i64:
13752    case MVT::v8i32:
13753    case MVT::v16i16:
13754      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
13755    }
13756  case ISD::SRA:
13757    switch (VT.getSimpleVT().SimpleTy) {
13758    default: return SDValue();
13759    case MVT::v4i32:
13760    case MVT::v8i16:
13761    case MVT::v8i32:
13762    case MVT::v16i16:
13763      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
13764    }
13765  case ISD::SRL:
13766    switch (VT.getSimpleVT().SimpleTy) {
13767    default: return SDValue();
13768    case MVT::v2i64:
13769    case MVT::v4i32:
13770    case MVT::v8i16:
13771    case MVT::v4i64:
13772    case MVT::v8i32:
13773    case MVT::v16i16:
13774      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
13775    }
13776  }
13777}
13778
13779
13780// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13781// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13782// and friends.  Likewise for OR -> CMPNEQSS.
13783static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13784                            TargetLowering::DAGCombinerInfo &DCI,
13785                            const X86Subtarget *Subtarget) {
13786  unsigned opcode;
13787
13788  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13789  // we're requiring SSE2 for both.
13790  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13791    SDValue N0 = N->getOperand(0);
13792    SDValue N1 = N->getOperand(1);
13793    SDValue CMP0 = N0->getOperand(1);
13794    SDValue CMP1 = N1->getOperand(1);
13795    DebugLoc DL = N->getDebugLoc();
13796
13797    // The SETCCs should both refer to the same CMP.
13798    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13799      return SDValue();
13800
13801    SDValue CMP00 = CMP0->getOperand(0);
13802    SDValue CMP01 = CMP0->getOperand(1);
13803    EVT     VT    = CMP00.getValueType();
13804
13805    if (VT == MVT::f32 || VT == MVT::f64) {
13806      bool ExpectingFlags = false;
13807      // Check for any users that want flags:
13808      for (SDNode::use_iterator UI = N->use_begin(),
13809             UE = N->use_end();
13810           !ExpectingFlags && UI != UE; ++UI)
13811        switch (UI->getOpcode()) {
13812        default:
13813        case ISD::BR_CC:
13814        case ISD::BRCOND:
13815        case ISD::SELECT:
13816          ExpectingFlags = true;
13817          break;
13818        case ISD::CopyToReg:
13819        case ISD::SIGN_EXTEND:
13820        case ISD::ZERO_EXTEND:
13821        case ISD::ANY_EXTEND:
13822          break;
13823        }
13824
13825      if (!ExpectingFlags) {
13826        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13827        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13828
13829        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13830          X86::CondCode tmp = cc0;
13831          cc0 = cc1;
13832          cc1 = tmp;
13833        }
13834
13835        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13836            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13837          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13838          X86ISD::NodeType NTOperator = is64BitFP ?
13839            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13840          // FIXME: need symbolic constants for these magic numbers.
13841          // See X86ATTInstPrinter.cpp:printSSECC().
13842          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13843          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13844                                              DAG.getConstant(x86cc, MVT::i8));
13845          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13846                                              OnesOrZeroesF);
13847          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13848                                      DAG.getConstant(1, MVT::i32));
13849          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13850          return OneBitOfTruth;
13851        }
13852      }
13853    }
13854  }
13855  return SDValue();
13856}
13857
13858/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13859/// so it can be folded inside ANDNP.
13860static bool CanFoldXORWithAllOnes(const SDNode *N) {
13861  EVT VT = N->getValueType(0);
13862
13863  // Match direct AllOnes for 128 and 256-bit vectors
13864  if (ISD::isBuildVectorAllOnes(N))
13865    return true;
13866
13867  // Look through a bit convert.
13868  if (N->getOpcode() == ISD::BITCAST)
13869    N = N->getOperand(0).getNode();
13870
13871  // Sometimes the operand may come from a insert_subvector building a 256-bit
13872  // allones vector
13873  if (VT.getSizeInBits() == 256 &&
13874      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13875    SDValue V1 = N->getOperand(0);
13876    SDValue V2 = N->getOperand(1);
13877
13878    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13879        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13880        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13881        ISD::isBuildVectorAllOnes(V2.getNode()))
13882      return true;
13883  }
13884
13885  return false;
13886}
13887
13888static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13889                                 TargetLowering::DAGCombinerInfo &DCI,
13890                                 const X86Subtarget *Subtarget) {
13891  if (DCI.isBeforeLegalizeOps())
13892    return SDValue();
13893
13894  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13895  if (R.getNode())
13896    return R;
13897
13898  EVT VT = N->getValueType(0);
13899
13900  // Create ANDN, BLSI, and BLSR instructions
13901  // BLSI is X & (-X)
13902  // BLSR is X & (X-1)
13903  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13904    SDValue N0 = N->getOperand(0);
13905    SDValue N1 = N->getOperand(1);
13906    DebugLoc DL = N->getDebugLoc();
13907
13908    // Check LHS for not
13909    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13910      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13911    // Check RHS for not
13912    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13913      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13914
13915    // Check LHS for neg
13916    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13917        isZero(N0.getOperand(0)))
13918      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13919
13920    // Check RHS for neg
13921    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13922        isZero(N1.getOperand(0)))
13923      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13924
13925    // Check LHS for X-1
13926    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13927        isAllOnes(N0.getOperand(1)))
13928      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13929
13930    // Check RHS for X-1
13931    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13932        isAllOnes(N1.getOperand(1)))
13933      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13934
13935    return SDValue();
13936  }
13937
13938  // Want to form ANDNP nodes:
13939  // 1) In the hopes of then easily combining them with OR and AND nodes
13940  //    to form PBLEND/PSIGN.
13941  // 2) To match ANDN packed intrinsics
13942  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13943    return SDValue();
13944
13945  SDValue N0 = N->getOperand(0);
13946  SDValue N1 = N->getOperand(1);
13947  DebugLoc DL = N->getDebugLoc();
13948
13949  // Check LHS for vnot
13950  if (N0.getOpcode() == ISD::XOR &&
13951      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13952      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13953    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13954
13955  // Check RHS for vnot
13956  if (N1.getOpcode() == ISD::XOR &&
13957      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13958      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13959    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13960
13961  return SDValue();
13962}
13963
13964static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13965                                TargetLowering::DAGCombinerInfo &DCI,
13966                                const X86Subtarget *Subtarget) {
13967  if (DCI.isBeforeLegalizeOps())
13968    return SDValue();
13969
13970  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13971  if (R.getNode())
13972    return R;
13973
13974  EVT VT = N->getValueType(0);
13975
13976  SDValue N0 = N->getOperand(0);
13977  SDValue N1 = N->getOperand(1);
13978
13979  // look for psign/blend
13980  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
13981    if (!Subtarget->hasSSSE3() ||
13982        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
13983      return SDValue();
13984
13985    // Canonicalize pandn to RHS
13986    if (N0.getOpcode() == X86ISD::ANDNP)
13987      std::swap(N0, N1);
13988    // or (and (m, y), (pandn m, x))
13989    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13990      SDValue Mask = N1.getOperand(0);
13991      SDValue X    = N1.getOperand(1);
13992      SDValue Y;
13993      if (N0.getOperand(0) == Mask)
13994        Y = N0.getOperand(1);
13995      if (N0.getOperand(1) == Mask)
13996        Y = N0.getOperand(0);
13997
13998      // Check to see if the mask appeared in both the AND and ANDNP and
13999      if (!Y.getNode())
14000        return SDValue();
14001
14002      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
14003      if (Mask.getOpcode() != ISD::BITCAST ||
14004          X.getOpcode() != ISD::BITCAST ||
14005          Y.getOpcode() != ISD::BITCAST)
14006        return SDValue();
14007
14008      // Look through mask bitcast.
14009      Mask = Mask.getOperand(0);
14010      EVT MaskVT = Mask.getValueType();
14011
14012      // Validate that the Mask operand is a vector sra node.
14013      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
14014      // there is no psrai.b
14015      if (Mask.getOpcode() != X86ISD::VSRAI)
14016        return SDValue();
14017
14018      // Check that the SRA is all signbits.
14019      SDValue SraC = Mask.getOperand(1);
14020      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
14021      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
14022      if ((SraAmt + 1) != EltBits)
14023        return SDValue();
14024
14025      DebugLoc DL = N->getDebugLoc();
14026
14027      // Now we know we at least have a plendvb with the mask val.  See if
14028      // we can form a psignb/w/d.
14029      // psign = x.type == y.type == mask.type && y = sub(0, x);
14030      X = X.getOperand(0);
14031      Y = Y.getOperand(0);
14032      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
14033          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
14034          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
14035        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
14036               "Unsupported VT for PSIGN");
14037        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
14038        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14039      }
14040      // PBLENDVB only available on SSE 4.1
14041      if (!Subtarget->hasSSE41())
14042        return SDValue();
14043
14044      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
14045
14046      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
14047      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
14048      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
14049      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
14050      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14051    }
14052  }
14053
14054  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
14055    return SDValue();
14056
14057  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
14058  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
14059    std::swap(N0, N1);
14060  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
14061    return SDValue();
14062  if (!N0.hasOneUse() || !N1.hasOneUse())
14063    return SDValue();
14064
14065  SDValue ShAmt0 = N0.getOperand(1);
14066  if (ShAmt0.getValueType() != MVT::i8)
14067    return SDValue();
14068  SDValue ShAmt1 = N1.getOperand(1);
14069  if (ShAmt1.getValueType() != MVT::i8)
14070    return SDValue();
14071  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
14072    ShAmt0 = ShAmt0.getOperand(0);
14073  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
14074    ShAmt1 = ShAmt1.getOperand(0);
14075
14076  DebugLoc DL = N->getDebugLoc();
14077  unsigned Opc = X86ISD::SHLD;
14078  SDValue Op0 = N0.getOperand(0);
14079  SDValue Op1 = N1.getOperand(0);
14080  if (ShAmt0.getOpcode() == ISD::SUB) {
14081    Opc = X86ISD::SHRD;
14082    std::swap(Op0, Op1);
14083    std::swap(ShAmt0, ShAmt1);
14084  }
14085
14086  unsigned Bits = VT.getSizeInBits();
14087  if (ShAmt1.getOpcode() == ISD::SUB) {
14088    SDValue Sum = ShAmt1.getOperand(0);
14089    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14090      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14091      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14092        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14093      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14094        return DAG.getNode(Opc, DL, VT,
14095                           Op0, Op1,
14096                           DAG.getNode(ISD::TRUNCATE, DL,
14097                                       MVT::i8, ShAmt0));
14098    }
14099  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14100    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14101    if (ShAmt0C &&
14102        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14103      return DAG.getNode(Opc, DL, VT,
14104                         N0.getOperand(0), N1.getOperand(0),
14105                         DAG.getNode(ISD::TRUNCATE, DL,
14106                                       MVT::i8, ShAmt0));
14107  }
14108
14109  return SDValue();
14110}
14111
14112// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
14113static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
14114                                 TargetLowering::DAGCombinerInfo &DCI,
14115                                 const X86Subtarget *Subtarget) {
14116  if (DCI.isBeforeLegalizeOps())
14117    return SDValue();
14118
14119  EVT VT = N->getValueType(0);
14120
14121  if (VT != MVT::i32 && VT != MVT::i64)
14122    return SDValue();
14123
14124  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
14125
14126  // Create BLSMSK instructions by finding X ^ (X-1)
14127  SDValue N0 = N->getOperand(0);
14128  SDValue N1 = N->getOperand(1);
14129  DebugLoc DL = N->getDebugLoc();
14130
14131  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14132      isAllOnes(N0.getOperand(1)))
14133    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14134
14135  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14136      isAllOnes(N1.getOperand(1)))
14137    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14138
14139  return SDValue();
14140}
14141
14142/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14143static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14144                                   const X86Subtarget *Subtarget) {
14145  LoadSDNode *Ld = cast<LoadSDNode>(N);
14146  EVT RegVT = Ld->getValueType(0);
14147  EVT MemVT = Ld->getMemoryVT();
14148  DebugLoc dl = Ld->getDebugLoc();
14149  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14150
14151  ISD::LoadExtType Ext = Ld->getExtensionType();
14152
14153  // If this is a vector EXT Load then attempt to optimize it using a
14154  // shuffle. We need SSE4 for the shuffles.
14155  // TODO: It is possible to support ZExt by zeroing the undef values
14156  // during the shuffle phase or after the shuffle.
14157  if (RegVT.isVector() && RegVT.isInteger() &&
14158      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14159    assert(MemVT != RegVT && "Cannot extend to the same type");
14160    assert(MemVT.isVector() && "Must load a vector from memory");
14161
14162    unsigned NumElems = RegVT.getVectorNumElements();
14163    unsigned RegSz = RegVT.getSizeInBits();
14164    unsigned MemSz = MemVT.getSizeInBits();
14165    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14166    // All sizes must be a power of two
14167    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
14168
14169    // Attempt to load the original value using a single load op.
14170    // Find a scalar type which is equal to the loaded word size.
14171    MVT SclrLoadTy = MVT::i8;
14172    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14173         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14174      MVT Tp = (MVT::SimpleValueType)tp;
14175      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
14176        SclrLoadTy = Tp;
14177        break;
14178      }
14179    }
14180
14181    // Proceed if a load word is found.
14182    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
14183
14184    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14185      RegSz/SclrLoadTy.getSizeInBits());
14186
14187    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14188                                  RegSz/MemVT.getScalarType().getSizeInBits());
14189    // Can't shuffle using an illegal type.
14190    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14191
14192    // Perform a single load.
14193    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14194                                  Ld->getBasePtr(),
14195                                  Ld->getPointerInfo(), Ld->isVolatile(),
14196                                  Ld->isNonTemporal(), Ld->isInvariant(),
14197                                  Ld->getAlignment());
14198
14199    // Insert the word loaded into a vector.
14200    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14201      LoadUnitVecVT, ScalarLoad);
14202
14203    // Bitcast the loaded value to a vector of the original element type, in
14204    // the size of the target vector type.
14205    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
14206                                    ScalarInVector);
14207    unsigned SizeRatio = RegSz/MemSz;
14208
14209    // Redistribute the loaded elements into the different locations.
14210    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14211    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
14212
14213    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14214                                DAG.getUNDEF(SlicedVec.getValueType()),
14215                                ShuffleVec.data());
14216
14217    // Bitcast to the requested type.
14218    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14219    // Replace the original load with the new sequence
14220    // and return the new chain.
14221    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14222    return SDValue(ScalarLoad.getNode(), 1);
14223  }
14224
14225  return SDValue();
14226}
14227
14228/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14229static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14230                                   const X86Subtarget *Subtarget) {
14231  StoreSDNode *St = cast<StoreSDNode>(N);
14232  EVT VT = St->getValue().getValueType();
14233  EVT StVT = St->getMemoryVT();
14234  DebugLoc dl = St->getDebugLoc();
14235  SDValue StoredVal = St->getOperand(1);
14236  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14237
14238  // If we are saving a concatenation of two XMM registers, perform two stores.
14239  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14240  // 128-bit ones. If in the future the cost becomes only one memory access the
14241  // first version would be better.
14242  if (VT.getSizeInBits() == 256 &&
14243    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14244    StoredVal.getNumOperands() == 2) {
14245
14246    SDValue Value0 = StoredVal.getOperand(0);
14247    SDValue Value1 = StoredVal.getOperand(1);
14248
14249    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14250    SDValue Ptr0 = St->getBasePtr();
14251    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14252
14253    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14254                                St->getPointerInfo(), St->isVolatile(),
14255                                St->isNonTemporal(), St->getAlignment());
14256    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14257                                St->getPointerInfo(), St->isVolatile(),
14258                                St->isNonTemporal(), St->getAlignment());
14259    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14260  }
14261
14262  // Optimize trunc store (of multiple scalars) to shuffle and store.
14263  // First, pack all of the elements in one place. Next, store to memory
14264  // in fewer chunks.
14265  if (St->isTruncatingStore() && VT.isVector()) {
14266    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14267    unsigned NumElems = VT.getVectorNumElements();
14268    assert(StVT != VT && "Cannot truncate to the same type");
14269    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14270    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14271
14272    // From, To sizes and ElemCount must be pow of two
14273    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14274    // We are going to use the original vector elt for storing.
14275    // Accumulated smaller vector elements must be a multiple of the store size.
14276    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14277
14278    unsigned SizeRatio  = FromSz / ToSz;
14279
14280    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14281
14282    // Create a type on which we perform the shuffle
14283    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14284            StVT.getScalarType(), NumElems*SizeRatio);
14285
14286    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14287
14288    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14289    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14290    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14291
14292    // Can't shuffle using an illegal type
14293    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14294
14295    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14296                                DAG.getUNDEF(WideVec.getValueType()),
14297                                ShuffleVec.data());
14298    // At this point all of the data is stored at the bottom of the
14299    // register. We now need to save it to mem.
14300
14301    // Find the largest store unit
14302    MVT StoreType = MVT::i8;
14303    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14304         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14305      MVT Tp = (MVT::SimpleValueType)tp;
14306      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14307        StoreType = Tp;
14308    }
14309
14310    // Bitcast the original vector into a vector of store-size units
14311    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14312            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14313    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14314    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14315    SmallVector<SDValue, 8> Chains;
14316    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14317                                        TLI.getPointerTy());
14318    SDValue Ptr = St->getBasePtr();
14319
14320    // Perform one or more big stores into memory.
14321    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14322      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14323                                   StoreType, ShuffWide,
14324                                   DAG.getIntPtrConstant(i));
14325      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14326                                St->getPointerInfo(), St->isVolatile(),
14327                                St->isNonTemporal(), St->getAlignment());
14328      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14329      Chains.push_back(Ch);
14330    }
14331
14332    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14333                               Chains.size());
14334  }
14335
14336
14337  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14338  // the FP state in cases where an emms may be missing.
14339  // A preferable solution to the general problem is to figure out the right
14340  // places to insert EMMS.  This qualifies as a quick hack.
14341
14342  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14343  if (VT.getSizeInBits() != 64)
14344    return SDValue();
14345
14346  const Function *F = DAG.getMachineFunction().getFunction();
14347  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14348  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14349                     && Subtarget->hasSSE2();
14350  if ((VT.isVector() ||
14351       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14352      isa<LoadSDNode>(St->getValue()) &&
14353      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14354      St->getChain().hasOneUse() && !St->isVolatile()) {
14355    SDNode* LdVal = St->getValue().getNode();
14356    LoadSDNode *Ld = 0;
14357    int TokenFactorIndex = -1;
14358    SmallVector<SDValue, 8> Ops;
14359    SDNode* ChainVal = St->getChain().getNode();
14360    // Must be a store of a load.  We currently handle two cases:  the load
14361    // is a direct child, and it's under an intervening TokenFactor.  It is
14362    // possible to dig deeper under nested TokenFactors.
14363    if (ChainVal == LdVal)
14364      Ld = cast<LoadSDNode>(St->getChain());
14365    else if (St->getValue().hasOneUse() &&
14366             ChainVal->getOpcode() == ISD::TokenFactor) {
14367      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
14368        if (ChainVal->getOperand(i).getNode() == LdVal) {
14369          TokenFactorIndex = i;
14370          Ld = cast<LoadSDNode>(St->getValue());
14371        } else
14372          Ops.push_back(ChainVal->getOperand(i));
14373      }
14374    }
14375
14376    if (!Ld || !ISD::isNormalLoad(Ld))
14377      return SDValue();
14378
14379    // If this is not the MMX case, i.e. we are just turning i64 load/store
14380    // into f64 load/store, avoid the transformation if there are multiple
14381    // uses of the loaded value.
14382    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14383      return SDValue();
14384
14385    DebugLoc LdDL = Ld->getDebugLoc();
14386    DebugLoc StDL = N->getDebugLoc();
14387    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14388    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14389    // pair instead.
14390    if (Subtarget->is64Bit() || F64IsLegal) {
14391      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14392      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14393                                  Ld->getPointerInfo(), Ld->isVolatile(),
14394                                  Ld->isNonTemporal(), Ld->isInvariant(),
14395                                  Ld->getAlignment());
14396      SDValue NewChain = NewLd.getValue(1);
14397      if (TokenFactorIndex != -1) {
14398        Ops.push_back(NewChain);
14399        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14400                               Ops.size());
14401      }
14402      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14403                          St->getPointerInfo(),
14404                          St->isVolatile(), St->isNonTemporal(),
14405                          St->getAlignment());
14406    }
14407
14408    // Otherwise, lower to two pairs of 32-bit loads / stores.
14409    SDValue LoAddr = Ld->getBasePtr();
14410    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14411                                 DAG.getConstant(4, MVT::i32));
14412
14413    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14414                               Ld->getPointerInfo(),
14415                               Ld->isVolatile(), Ld->isNonTemporal(),
14416                               Ld->isInvariant(), Ld->getAlignment());
14417    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14418                               Ld->getPointerInfo().getWithOffset(4),
14419                               Ld->isVolatile(), Ld->isNonTemporal(),
14420                               Ld->isInvariant(),
14421                               MinAlign(Ld->getAlignment(), 4));
14422
14423    SDValue NewChain = LoLd.getValue(1);
14424    if (TokenFactorIndex != -1) {
14425      Ops.push_back(LoLd);
14426      Ops.push_back(HiLd);
14427      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14428                             Ops.size());
14429    }
14430
14431    LoAddr = St->getBasePtr();
14432    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14433                         DAG.getConstant(4, MVT::i32));
14434
14435    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14436                                St->getPointerInfo(),
14437                                St->isVolatile(), St->isNonTemporal(),
14438                                St->getAlignment());
14439    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14440                                St->getPointerInfo().getWithOffset(4),
14441                                St->isVolatile(),
14442                                St->isNonTemporal(),
14443                                MinAlign(St->getAlignment(), 4));
14444    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14445  }
14446  return SDValue();
14447}
14448
14449/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14450/// and return the operands for the horizontal operation in LHS and RHS.  A
14451/// horizontal operation performs the binary operation on successive elements
14452/// of its first operand, then on successive elements of its second operand,
14453/// returning the resulting values in a vector.  For example, if
14454///   A = < float a0, float a1, float a2, float a3 >
14455/// and
14456///   B = < float b0, float b1, float b2, float b3 >
14457/// then the result of doing a horizontal operation on A and B is
14458///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14459/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14460/// A horizontal-op B, for some already available A and B, and if so then LHS is
14461/// set to A, RHS to B, and the routine returns 'true'.
14462/// Note that the binary operation should have the property that if one of the
14463/// operands is UNDEF then the result is UNDEF.
14464static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14465  // Look for the following pattern: if
14466  //   A = < float a0, float a1, float a2, float a3 >
14467  //   B = < float b0, float b1, float b2, float b3 >
14468  // and
14469  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14470  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14471  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14472  // which is A horizontal-op B.
14473
14474  // At least one of the operands should be a vector shuffle.
14475  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14476      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14477    return false;
14478
14479  EVT VT = LHS.getValueType();
14480
14481  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14482         "Unsupported vector type for horizontal add/sub");
14483
14484  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14485  // operate independently on 128-bit lanes.
14486  unsigned NumElts = VT.getVectorNumElements();
14487  unsigned NumLanes = VT.getSizeInBits()/128;
14488  unsigned NumLaneElts = NumElts / NumLanes;
14489  assert((NumLaneElts % 2 == 0) &&
14490         "Vector type should have an even number of elements in each lane");
14491  unsigned HalfLaneElts = NumLaneElts/2;
14492
14493  // View LHS in the form
14494  //   LHS = VECTOR_SHUFFLE A, B, LMask
14495  // If LHS is not a shuffle then pretend it is the shuffle
14496  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14497  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14498  // type VT.
14499  SDValue A, B;
14500  SmallVector<int, 16> LMask(NumElts);
14501  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14502    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14503      A = LHS.getOperand(0);
14504    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14505      B = LHS.getOperand(1);
14506    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14507    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14508  } else {
14509    if (LHS.getOpcode() != ISD::UNDEF)
14510      A = LHS;
14511    for (unsigned i = 0; i != NumElts; ++i)
14512      LMask[i] = i;
14513  }
14514
14515  // Likewise, view RHS in the form
14516  //   RHS = VECTOR_SHUFFLE C, D, RMask
14517  SDValue C, D;
14518  SmallVector<int, 16> RMask(NumElts);
14519  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14520    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14521      C = RHS.getOperand(0);
14522    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14523      D = RHS.getOperand(1);
14524    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14525    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14526  } else {
14527    if (RHS.getOpcode() != ISD::UNDEF)
14528      C = RHS;
14529    for (unsigned i = 0; i != NumElts; ++i)
14530      RMask[i] = i;
14531  }
14532
14533  // Check that the shuffles are both shuffling the same vectors.
14534  if (!(A == C && B == D) && !(A == D && B == C))
14535    return false;
14536
14537  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14538  if (!A.getNode() && !B.getNode())
14539    return false;
14540
14541  // If A and B occur in reverse order in RHS, then "swap" them (which means
14542  // rewriting the mask).
14543  if (A != C)
14544    CommuteVectorShuffleMask(RMask, NumElts);
14545
14546  // At this point LHS and RHS are equivalent to
14547  //   LHS = VECTOR_SHUFFLE A, B, LMask
14548  //   RHS = VECTOR_SHUFFLE A, B, RMask
14549  // Check that the masks correspond to performing a horizontal operation.
14550  for (unsigned i = 0; i != NumElts; ++i) {
14551    int LIdx = LMask[i], RIdx = RMask[i];
14552
14553    // Ignore any UNDEF components.
14554    if (LIdx < 0 || RIdx < 0 ||
14555        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14556        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14557      continue;
14558
14559    // Check that successive elements are being operated on.  If not, this is
14560    // not a horizontal operation.
14561    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14562    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14563    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14564    if (!(LIdx == Index && RIdx == Index + 1) &&
14565        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14566      return false;
14567  }
14568
14569  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14570  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14571  return true;
14572}
14573
14574/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14575static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14576                                  const X86Subtarget *Subtarget) {
14577  EVT VT = N->getValueType(0);
14578  SDValue LHS = N->getOperand(0);
14579  SDValue RHS = N->getOperand(1);
14580
14581  // Try to synthesize horizontal adds from adds of shuffles.
14582  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14583       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14584      isHorizontalBinOp(LHS, RHS, true))
14585    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14586  return SDValue();
14587}
14588
14589/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14590static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14591                                  const X86Subtarget *Subtarget) {
14592  EVT VT = N->getValueType(0);
14593  SDValue LHS = N->getOperand(0);
14594  SDValue RHS = N->getOperand(1);
14595
14596  // Try to synthesize horizontal subs from subs of shuffles.
14597  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14598       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14599      isHorizontalBinOp(LHS, RHS, false))
14600    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14601  return SDValue();
14602}
14603
14604/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14605/// X86ISD::FXOR nodes.
14606static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14607  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14608  // F[X]OR(0.0, x) -> x
14609  // F[X]OR(x, 0.0) -> x
14610  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14611    if (C->getValueAPF().isPosZero())
14612      return N->getOperand(1);
14613  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14614    if (C->getValueAPF().isPosZero())
14615      return N->getOperand(0);
14616  return SDValue();
14617}
14618
14619/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14620static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14621  // FAND(0.0, x) -> 0.0
14622  // FAND(x, 0.0) -> 0.0
14623  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14624    if (C->getValueAPF().isPosZero())
14625      return N->getOperand(0);
14626  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14627    if (C->getValueAPF().isPosZero())
14628      return N->getOperand(1);
14629  return SDValue();
14630}
14631
14632static SDValue PerformBTCombine(SDNode *N,
14633                                SelectionDAG &DAG,
14634                                TargetLowering::DAGCombinerInfo &DCI) {
14635  // BT ignores high bits in the bit index operand.
14636  SDValue Op1 = N->getOperand(1);
14637  if (Op1.hasOneUse()) {
14638    unsigned BitWidth = Op1.getValueSizeInBits();
14639    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14640    APInt KnownZero, KnownOne;
14641    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14642                                          !DCI.isBeforeLegalizeOps());
14643    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14644    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14645        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14646      DCI.CommitTargetLoweringOpt(TLO);
14647  }
14648  return SDValue();
14649}
14650
14651static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14652  SDValue Op = N->getOperand(0);
14653  if (Op.getOpcode() == ISD::BITCAST)
14654    Op = Op.getOperand(0);
14655  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14656  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14657      VT.getVectorElementType().getSizeInBits() ==
14658      OpVT.getVectorElementType().getSizeInBits()) {
14659    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14660  }
14661  return SDValue();
14662}
14663
14664static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
14665                                  TargetLowering::DAGCombinerInfo &DCI,
14666                                  const X86Subtarget *Subtarget) {
14667  if (!DCI.isBeforeLegalizeOps())
14668    return SDValue();
14669
14670  if (!Subtarget->hasAVX())
14671    return SDValue();
14672
14673  // Optimize vectors in AVX mode
14674  // Sign extend  v8i16 to v8i32 and
14675  //              v4i32 to v4i64
14676  //
14677  // Divide input vector into two parts
14678  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
14679  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
14680  // concat the vectors to original VT
14681
14682  EVT VT = N->getValueType(0);
14683  SDValue Op = N->getOperand(0);
14684  EVT OpVT = Op.getValueType();
14685  DebugLoc dl = N->getDebugLoc();
14686
14687  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
14688      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
14689
14690    unsigned NumElems = OpVT.getVectorNumElements();
14691    SmallVector<int,8> ShufMask1(NumElems, -1);
14692    for (unsigned i = 0; i < NumElems/2; i++) ShufMask1[i] = i;
14693
14694    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14695                                        ShufMask1.data());
14696
14697    SmallVector<int,8> ShufMask2(NumElems, -1);
14698    for (unsigned i = 0; i < NumElems/2; i++) ShufMask2[i] = i + NumElems/2;
14699
14700    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14701                                        ShufMask2.data());
14702
14703    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
14704                                  VT.getVectorNumElements()/2);
14705
14706    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
14707    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
14708
14709    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14710  }
14711  return SDValue();
14712}
14713
14714static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
14715                                  const X86Subtarget *Subtarget) {
14716  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14717  //           (and (i32 x86isd::setcc_carry), 1)
14718  // This eliminates the zext. This transformation is necessary because
14719  // ISD::SETCC is always legalized to i8.
14720  DebugLoc dl = N->getDebugLoc();
14721  SDValue N0 = N->getOperand(0);
14722  EVT VT = N->getValueType(0);
14723  EVT OpVT = N0.getValueType();
14724
14725  if (N0.getOpcode() == ISD::AND &&
14726      N0.hasOneUse() &&
14727      N0.getOperand(0).hasOneUse()) {
14728    SDValue N00 = N0.getOperand(0);
14729    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14730      return SDValue();
14731    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14732    if (!C || C->getZExtValue() != 1)
14733      return SDValue();
14734    return DAG.getNode(ISD::AND, dl, VT,
14735                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14736                                   N00.getOperand(0), N00.getOperand(1)),
14737                       DAG.getConstant(1, VT));
14738  }
14739  // Optimize vectors in AVX mode:
14740  //
14741  //   v8i16 -> v8i32
14742  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
14743  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
14744  //   Concat upper and lower parts.
14745  //
14746  //   v4i32 -> v4i64
14747  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
14748  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
14749  //   Concat upper and lower parts.
14750  //
14751  if (Subtarget->hasAVX()) {
14752
14753    if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16))  ||
14754      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
14755
14756      SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
14757      SDValue OpLo = getTargetShuffleNode(X86ISD::UNPCKL, dl, OpVT, N0, ZeroVec, DAG);
14758      SDValue OpHi = getTargetShuffleNode(X86ISD::UNPCKH, dl, OpVT, N0, ZeroVec, DAG);
14759
14760      EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
14761        VT.getVectorNumElements()/2);
14762
14763      OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
14764      OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
14765
14766      return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14767    }
14768  }
14769
14770
14771  return SDValue();
14772}
14773
14774// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14775static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14776  unsigned X86CC = N->getConstantOperandVal(0);
14777  SDValue EFLAG = N->getOperand(1);
14778  DebugLoc DL = N->getDebugLoc();
14779
14780  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14781  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14782  // cases.
14783  if (X86CC == X86::COND_B)
14784    return DAG.getNode(ISD::AND, DL, MVT::i8,
14785                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14786                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14787                       DAG.getConstant(1, MVT::i8));
14788
14789  return SDValue();
14790}
14791
14792static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14793                                        const X86TargetLowering *XTLI) {
14794  SDValue Op0 = N->getOperand(0);
14795  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14796  // a 32-bit target where SSE doesn't support i64->FP operations.
14797  if (Op0.getOpcode() == ISD::LOAD) {
14798    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14799    EVT VT = Ld->getValueType(0);
14800    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14801        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14802        !XTLI->getSubtarget()->is64Bit() &&
14803        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14804      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14805                                          Ld->getChain(), Op0, DAG);
14806      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14807      return FILDChain;
14808    }
14809  }
14810  return SDValue();
14811}
14812
14813// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14814static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14815                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14816  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14817  // the result is either zero or one (depending on the input carry bit).
14818  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14819  if (X86::isZeroNode(N->getOperand(0)) &&
14820      X86::isZeroNode(N->getOperand(1)) &&
14821      // We don't have a good way to replace an EFLAGS use, so only do this when
14822      // dead right now.
14823      SDValue(N, 1).use_empty()) {
14824    DebugLoc DL = N->getDebugLoc();
14825    EVT VT = N->getValueType(0);
14826    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14827    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14828                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14829                                           DAG.getConstant(X86::COND_B,MVT::i8),
14830                                           N->getOperand(2)),
14831                               DAG.getConstant(1, VT));
14832    return DCI.CombineTo(N, Res1, CarryOut);
14833  }
14834
14835  return SDValue();
14836}
14837
14838// fold (add Y, (sete  X, 0)) -> adc  0, Y
14839//      (add Y, (setne X, 0)) -> sbb -1, Y
14840//      (sub (sete  X, 0), Y) -> sbb  0, Y
14841//      (sub (setne X, 0), Y) -> adc -1, Y
14842static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14843  DebugLoc DL = N->getDebugLoc();
14844
14845  // Look through ZExts.
14846  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14847  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14848    return SDValue();
14849
14850  SDValue SetCC = Ext.getOperand(0);
14851  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14852    return SDValue();
14853
14854  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14855  if (CC != X86::COND_E && CC != X86::COND_NE)
14856    return SDValue();
14857
14858  SDValue Cmp = SetCC.getOperand(1);
14859  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14860      !X86::isZeroNode(Cmp.getOperand(1)) ||
14861      !Cmp.getOperand(0).getValueType().isInteger())
14862    return SDValue();
14863
14864  SDValue CmpOp0 = Cmp.getOperand(0);
14865  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14866                               DAG.getConstant(1, CmpOp0.getValueType()));
14867
14868  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14869  if (CC == X86::COND_NE)
14870    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14871                       DL, OtherVal.getValueType(), OtherVal,
14872                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14873  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14874                     DL, OtherVal.getValueType(), OtherVal,
14875                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14876}
14877
14878/// PerformADDCombine - Do target-specific dag combines on integer adds.
14879static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14880                                 const X86Subtarget *Subtarget) {
14881  EVT VT = N->getValueType(0);
14882  SDValue Op0 = N->getOperand(0);
14883  SDValue Op1 = N->getOperand(1);
14884
14885  // Try to synthesize horizontal adds from adds of shuffles.
14886  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14887       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14888      isHorizontalBinOp(Op0, Op1, true))
14889    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14890
14891  return OptimizeConditionalInDecrement(N, DAG);
14892}
14893
14894static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14895                                 const X86Subtarget *Subtarget) {
14896  SDValue Op0 = N->getOperand(0);
14897  SDValue Op1 = N->getOperand(1);
14898
14899  // X86 can't encode an immediate LHS of a sub. See if we can push the
14900  // negation into a preceding instruction.
14901  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14902    // If the RHS of the sub is a XOR with one use and a constant, invert the
14903    // immediate. Then add one to the LHS of the sub so we can turn
14904    // X-Y -> X+~Y+1, saving one register.
14905    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14906        isa<ConstantSDNode>(Op1.getOperand(1))) {
14907      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14908      EVT VT = Op0.getValueType();
14909      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14910                                   Op1.getOperand(0),
14911                                   DAG.getConstant(~XorC, VT));
14912      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14913                         DAG.getConstant(C->getAPIntValue()+1, VT));
14914    }
14915  }
14916
14917  // Try to synthesize horizontal adds from adds of shuffles.
14918  EVT VT = N->getValueType(0);
14919  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14920       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14921      isHorizontalBinOp(Op0, Op1, true))
14922    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
14923
14924  return OptimizeConditionalInDecrement(N, DAG);
14925}
14926
14927SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14928                                             DAGCombinerInfo &DCI) const {
14929  SelectionDAG &DAG = DCI.DAG;
14930  switch (N->getOpcode()) {
14931  default: break;
14932  case ISD::EXTRACT_VECTOR_ELT:
14933    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
14934  case ISD::VSELECT:
14935  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
14936  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
14937  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
14938  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
14939  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
14940  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
14941  case ISD::SHL:
14942  case ISD::SRA:
14943  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
14944  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
14945  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
14946  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
14947  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
14948  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
14949  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
14950  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
14951  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
14952  case X86ISD::FXOR:
14953  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
14954  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
14955  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
14956  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
14957  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, Subtarget);
14958  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
14959  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG, DCI);
14960  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
14961  case X86ISD::SHUFP:       // Handle all target specific shuffles
14962  case X86ISD::PALIGN:
14963  case X86ISD::UNPCKH:
14964  case X86ISD::UNPCKL:
14965  case X86ISD::MOVHLPS:
14966  case X86ISD::MOVLHPS:
14967  case X86ISD::PSHUFD:
14968  case X86ISD::PSHUFHW:
14969  case X86ISD::PSHUFLW:
14970  case X86ISD::MOVSS:
14971  case X86ISD::MOVSD:
14972  case X86ISD::VPERMILP:
14973  case X86ISD::VPERM2X128:
14974  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14975  }
14976
14977  return SDValue();
14978}
14979
14980/// isTypeDesirableForOp - Return true if the target has native support for
14981/// the specified value type and it is 'desirable' to use the type for the
14982/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14983/// instruction encodings are longer and some i16 instructions are slow.
14984bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14985  if (!isTypeLegal(VT))
14986    return false;
14987  if (VT != MVT::i16)
14988    return true;
14989
14990  switch (Opc) {
14991  default:
14992    return true;
14993  case ISD::LOAD:
14994  case ISD::SIGN_EXTEND:
14995  case ISD::ZERO_EXTEND:
14996  case ISD::ANY_EXTEND:
14997  case ISD::SHL:
14998  case ISD::SRL:
14999  case ISD::SUB:
15000  case ISD::ADD:
15001  case ISD::MUL:
15002  case ISD::AND:
15003  case ISD::OR:
15004  case ISD::XOR:
15005    return false;
15006  }
15007}
15008
15009/// IsDesirableToPromoteOp - This method query the target whether it is
15010/// beneficial for dag combiner to promote the specified node. If true, it
15011/// should return the desired promotion type by reference.
15012bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
15013  EVT VT = Op.getValueType();
15014  if (VT != MVT::i16)
15015    return false;
15016
15017  bool Promote = false;
15018  bool Commute = false;
15019  switch (Op.getOpcode()) {
15020  default: break;
15021  case ISD::LOAD: {
15022    LoadSDNode *LD = cast<LoadSDNode>(Op);
15023    // If the non-extending load has a single use and it's not live out, then it
15024    // might be folded.
15025    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
15026                                                     Op.hasOneUse()*/) {
15027      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
15028             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
15029        // The only case where we'd want to promote LOAD (rather then it being
15030        // promoted as an operand is when it's only use is liveout.
15031        if (UI->getOpcode() != ISD::CopyToReg)
15032          return false;
15033      }
15034    }
15035    Promote = true;
15036    break;
15037  }
15038  case ISD::SIGN_EXTEND:
15039  case ISD::ZERO_EXTEND:
15040  case ISD::ANY_EXTEND:
15041    Promote = true;
15042    break;
15043  case ISD::SHL:
15044  case ISD::SRL: {
15045    SDValue N0 = Op.getOperand(0);
15046    // Look out for (store (shl (load), x)).
15047    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
15048      return false;
15049    Promote = true;
15050    break;
15051  }
15052  case ISD::ADD:
15053  case ISD::MUL:
15054  case ISD::AND:
15055  case ISD::OR:
15056  case ISD::XOR:
15057    Commute = true;
15058    // fallthrough
15059  case ISD::SUB: {
15060    SDValue N0 = Op.getOperand(0);
15061    SDValue N1 = Op.getOperand(1);
15062    if (!Commute && MayFoldLoad(N1))
15063      return false;
15064    // Avoid disabling potential load folding opportunities.
15065    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
15066      return false;
15067    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
15068      return false;
15069    Promote = true;
15070  }
15071  }
15072
15073  PVT = MVT::i32;
15074  return Promote;
15075}
15076
15077//===----------------------------------------------------------------------===//
15078//                           X86 Inline Assembly Support
15079//===----------------------------------------------------------------------===//
15080
15081namespace {
15082  // Helper to match a string separated by whitespace.
15083  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
15084    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
15085
15086    for (unsigned i = 0, e = args.size(); i != e; ++i) {
15087      StringRef piece(*args[i]);
15088      if (!s.startswith(piece)) // Check if the piece matches.
15089        return false;
15090
15091      s = s.substr(piece.size());
15092      StringRef::size_type pos = s.find_first_not_of(" \t");
15093      if (pos == 0) // We matched a prefix.
15094        return false;
15095
15096      s = s.substr(pos);
15097    }
15098
15099    return s.empty();
15100  }
15101  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
15102}
15103
15104bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
15105  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15106
15107  std::string AsmStr = IA->getAsmString();
15108
15109  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15110  if (!Ty || Ty->getBitWidth() % 16 != 0)
15111    return false;
15112
15113  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
15114  SmallVector<StringRef, 4> AsmPieces;
15115  SplitString(AsmStr, AsmPieces, ";\n");
15116
15117  switch (AsmPieces.size()) {
15118  default: return false;
15119  case 1:
15120    // FIXME: this should verify that we are targeting a 486 or better.  If not,
15121    // we will turn this bswap into something that will be lowered to logical
15122    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
15123    // lower so don't worry about this.
15124    // bswap $0
15125    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
15126        matchAsm(AsmPieces[0], "bswapl", "$0") ||
15127        matchAsm(AsmPieces[0], "bswapq", "$0") ||
15128        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
15129        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
15130        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
15131      // No need to check constraints, nothing other than the equivalent of
15132      // "=r,0" would be valid here.
15133      return IntrinsicLowering::LowerToByteSwap(CI);
15134    }
15135
15136    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
15137    if (CI->getType()->isIntegerTy(16) &&
15138        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15139        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
15140         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
15141      AsmPieces.clear();
15142      const std::string &ConstraintsStr = IA->getConstraintString();
15143      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15144      std::sort(AsmPieces.begin(), AsmPieces.end());
15145      if (AsmPieces.size() == 4 &&
15146          AsmPieces[0] == "~{cc}" &&
15147          AsmPieces[1] == "~{dirflag}" &&
15148          AsmPieces[2] == "~{flags}" &&
15149          AsmPieces[3] == "~{fpsr}")
15150      return IntrinsicLowering::LowerToByteSwap(CI);
15151    }
15152    break;
15153  case 3:
15154    if (CI->getType()->isIntegerTy(32) &&
15155        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15156        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
15157        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
15158        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
15159      AsmPieces.clear();
15160      const std::string &ConstraintsStr = IA->getConstraintString();
15161      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15162      std::sort(AsmPieces.begin(), AsmPieces.end());
15163      if (AsmPieces.size() == 4 &&
15164          AsmPieces[0] == "~{cc}" &&
15165          AsmPieces[1] == "~{dirflag}" &&
15166          AsmPieces[2] == "~{flags}" &&
15167          AsmPieces[3] == "~{fpsr}")
15168        return IntrinsicLowering::LowerToByteSwap(CI);
15169    }
15170
15171    if (CI->getType()->isIntegerTy(64)) {
15172      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
15173      if (Constraints.size() >= 2 &&
15174          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
15175          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
15176        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
15177        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
15178            matchAsm(AsmPieces[1], "bswap", "%edx") &&
15179            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
15180          return IntrinsicLowering::LowerToByteSwap(CI);
15181      }
15182    }
15183    break;
15184  }
15185  return false;
15186}
15187
15188
15189
15190/// getConstraintType - Given a constraint letter, return the type of
15191/// constraint it is for this target.
15192X86TargetLowering::ConstraintType
15193X86TargetLowering::getConstraintType(const std::string &Constraint) const {
15194  if (Constraint.size() == 1) {
15195    switch (Constraint[0]) {
15196    case 'R':
15197    case 'q':
15198    case 'Q':
15199    case 'f':
15200    case 't':
15201    case 'u':
15202    case 'y':
15203    case 'x':
15204    case 'Y':
15205    case 'l':
15206      return C_RegisterClass;
15207    case 'a':
15208    case 'b':
15209    case 'c':
15210    case 'd':
15211    case 'S':
15212    case 'D':
15213    case 'A':
15214      return C_Register;
15215    case 'I':
15216    case 'J':
15217    case 'K':
15218    case 'L':
15219    case 'M':
15220    case 'N':
15221    case 'G':
15222    case 'C':
15223    case 'e':
15224    case 'Z':
15225      return C_Other;
15226    default:
15227      break;
15228    }
15229  }
15230  return TargetLowering::getConstraintType(Constraint);
15231}
15232
15233/// Examine constraint type and operand type and determine a weight value.
15234/// This object must already have been set up with the operand type
15235/// and the current alternative constraint selected.
15236TargetLowering::ConstraintWeight
15237  X86TargetLowering::getSingleConstraintMatchWeight(
15238    AsmOperandInfo &info, const char *constraint) const {
15239  ConstraintWeight weight = CW_Invalid;
15240  Value *CallOperandVal = info.CallOperandVal;
15241    // If we don't have a value, we can't do a match,
15242    // but allow it at the lowest weight.
15243  if (CallOperandVal == NULL)
15244    return CW_Default;
15245  Type *type = CallOperandVal->getType();
15246  // Look at the constraint type.
15247  switch (*constraint) {
15248  default:
15249    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15250  case 'R':
15251  case 'q':
15252  case 'Q':
15253  case 'a':
15254  case 'b':
15255  case 'c':
15256  case 'd':
15257  case 'S':
15258  case 'D':
15259  case 'A':
15260    if (CallOperandVal->getType()->isIntegerTy())
15261      weight = CW_SpecificReg;
15262    break;
15263  case 'f':
15264  case 't':
15265  case 'u':
15266      if (type->isFloatingPointTy())
15267        weight = CW_SpecificReg;
15268      break;
15269  case 'y':
15270      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15271        weight = CW_SpecificReg;
15272      break;
15273  case 'x':
15274  case 'Y':
15275    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
15276        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
15277      weight = CW_Register;
15278    break;
15279  case 'I':
15280    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15281      if (C->getZExtValue() <= 31)
15282        weight = CW_Constant;
15283    }
15284    break;
15285  case 'J':
15286    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15287      if (C->getZExtValue() <= 63)
15288        weight = CW_Constant;
15289    }
15290    break;
15291  case 'K':
15292    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15293      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15294        weight = CW_Constant;
15295    }
15296    break;
15297  case 'L':
15298    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15299      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15300        weight = CW_Constant;
15301    }
15302    break;
15303  case 'M':
15304    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15305      if (C->getZExtValue() <= 3)
15306        weight = CW_Constant;
15307    }
15308    break;
15309  case 'N':
15310    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15311      if (C->getZExtValue() <= 0xff)
15312        weight = CW_Constant;
15313    }
15314    break;
15315  case 'G':
15316  case 'C':
15317    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15318      weight = CW_Constant;
15319    }
15320    break;
15321  case 'e':
15322    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15323      if ((C->getSExtValue() >= -0x80000000LL) &&
15324          (C->getSExtValue() <= 0x7fffffffLL))
15325        weight = CW_Constant;
15326    }
15327    break;
15328  case 'Z':
15329    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15330      if (C->getZExtValue() <= 0xffffffff)
15331        weight = CW_Constant;
15332    }
15333    break;
15334  }
15335  return weight;
15336}
15337
15338/// LowerXConstraint - try to replace an X constraint, which matches anything,
15339/// with another that has more specific requirements based on the type of the
15340/// corresponding operand.
15341const char *X86TargetLowering::
15342LowerXConstraint(EVT ConstraintVT) const {
15343  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15344  // 'f' like normal targets.
15345  if (ConstraintVT.isFloatingPoint()) {
15346    if (Subtarget->hasSSE2())
15347      return "Y";
15348    if (Subtarget->hasSSE1())
15349      return "x";
15350  }
15351
15352  return TargetLowering::LowerXConstraint(ConstraintVT);
15353}
15354
15355/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15356/// vector.  If it is invalid, don't add anything to Ops.
15357void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15358                                                     std::string &Constraint,
15359                                                     std::vector<SDValue>&Ops,
15360                                                     SelectionDAG &DAG) const {
15361  SDValue Result(0, 0);
15362
15363  // Only support length 1 constraints for now.
15364  if (Constraint.length() > 1) return;
15365
15366  char ConstraintLetter = Constraint[0];
15367  switch (ConstraintLetter) {
15368  default: break;
15369  case 'I':
15370    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15371      if (C->getZExtValue() <= 31) {
15372        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15373        break;
15374      }
15375    }
15376    return;
15377  case 'J':
15378    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15379      if (C->getZExtValue() <= 63) {
15380        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15381        break;
15382      }
15383    }
15384    return;
15385  case 'K':
15386    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15387      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15388        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15389        break;
15390      }
15391    }
15392    return;
15393  case 'N':
15394    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15395      if (C->getZExtValue() <= 255) {
15396        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15397        break;
15398      }
15399    }
15400    return;
15401  case 'e': {
15402    // 32-bit signed value
15403    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15404      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15405                                           C->getSExtValue())) {
15406        // Widen to 64 bits here to get it sign extended.
15407        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15408        break;
15409      }
15410    // FIXME gcc accepts some relocatable values here too, but only in certain
15411    // memory models; it's complicated.
15412    }
15413    return;
15414  }
15415  case 'Z': {
15416    // 32-bit unsigned value
15417    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15418      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15419                                           C->getZExtValue())) {
15420        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15421        break;
15422      }
15423    }
15424    // FIXME gcc accepts some relocatable values here too, but only in certain
15425    // memory models; it's complicated.
15426    return;
15427  }
15428  case 'i': {
15429    // Literal immediates are always ok.
15430    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15431      // Widen to 64 bits here to get it sign extended.
15432      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15433      break;
15434    }
15435
15436    // In any sort of PIC mode addresses need to be computed at runtime by
15437    // adding in a register or some sort of table lookup.  These can't
15438    // be used as immediates.
15439    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15440      return;
15441
15442    // If we are in non-pic codegen mode, we allow the address of a global (with
15443    // an optional displacement) to be used with 'i'.
15444    GlobalAddressSDNode *GA = 0;
15445    int64_t Offset = 0;
15446
15447    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15448    while (1) {
15449      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15450        Offset += GA->getOffset();
15451        break;
15452      } else if (Op.getOpcode() == ISD::ADD) {
15453        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15454          Offset += C->getZExtValue();
15455          Op = Op.getOperand(0);
15456          continue;
15457        }
15458      } else if (Op.getOpcode() == ISD::SUB) {
15459        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15460          Offset += -C->getZExtValue();
15461          Op = Op.getOperand(0);
15462          continue;
15463        }
15464      }
15465
15466      // Otherwise, this isn't something we can handle, reject it.
15467      return;
15468    }
15469
15470    const GlobalValue *GV = GA->getGlobal();
15471    // If we require an extra load to get this address, as in PIC mode, we
15472    // can't accept it.
15473    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15474                                                        getTargetMachine())))
15475      return;
15476
15477    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15478                                        GA->getValueType(0), Offset);
15479    break;
15480  }
15481  }
15482
15483  if (Result.getNode()) {
15484    Ops.push_back(Result);
15485    return;
15486  }
15487  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15488}
15489
15490std::pair<unsigned, const TargetRegisterClass*>
15491X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15492                                                EVT VT) const {
15493  // First, see if this is a constraint that directly corresponds to an LLVM
15494  // register class.
15495  if (Constraint.size() == 1) {
15496    // GCC Constraint Letters
15497    switch (Constraint[0]) {
15498    default: break;
15499      // TODO: Slight differences here in allocation order and leaving
15500      // RIP in the class. Do they matter any more here than they do
15501      // in the normal allocation?
15502    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15503      if (Subtarget->is64Bit()) {
15504	if (VT == MVT::i32 || VT == MVT::f32)
15505	  return std::make_pair(0U, X86::GR32RegisterClass);
15506	else if (VT == MVT::i16)
15507	  return std::make_pair(0U, X86::GR16RegisterClass);
15508	else if (VT == MVT::i8 || VT == MVT::i1)
15509	  return std::make_pair(0U, X86::GR8RegisterClass);
15510	else if (VT == MVT::i64 || VT == MVT::f64)
15511	  return std::make_pair(0U, X86::GR64RegisterClass);
15512	break;
15513      }
15514      // 32-bit fallthrough
15515    case 'Q':   // Q_REGS
15516      if (VT == MVT::i32 || VT == MVT::f32)
15517	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15518      else if (VT == MVT::i16)
15519	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15520      else if (VT == MVT::i8 || VT == MVT::i1)
15521	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15522      else if (VT == MVT::i64)
15523	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15524      break;
15525    case 'r':   // GENERAL_REGS
15526    case 'l':   // INDEX_REGS
15527      if (VT == MVT::i8 || VT == MVT::i1)
15528        return std::make_pair(0U, X86::GR8RegisterClass);
15529      if (VT == MVT::i16)
15530        return std::make_pair(0U, X86::GR16RegisterClass);
15531      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15532        return std::make_pair(0U, X86::GR32RegisterClass);
15533      return std::make_pair(0U, X86::GR64RegisterClass);
15534    case 'R':   // LEGACY_REGS
15535      if (VT == MVT::i8 || VT == MVT::i1)
15536        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15537      if (VT == MVT::i16)
15538        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15539      if (VT == MVT::i32 || !Subtarget->is64Bit())
15540        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15541      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15542    case 'f':  // FP Stack registers.
15543      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15544      // value to the correct fpstack register class.
15545      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15546        return std::make_pair(0U, X86::RFP32RegisterClass);
15547      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15548        return std::make_pair(0U, X86::RFP64RegisterClass);
15549      return std::make_pair(0U, X86::RFP80RegisterClass);
15550    case 'y':   // MMX_REGS if MMX allowed.
15551      if (!Subtarget->hasMMX()) break;
15552      return std::make_pair(0U, X86::VR64RegisterClass);
15553    case 'Y':   // SSE_REGS if SSE2 allowed
15554      if (!Subtarget->hasSSE2()) break;
15555      // FALL THROUGH.
15556    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15557      if (!Subtarget->hasSSE1()) break;
15558
15559      switch (VT.getSimpleVT().SimpleTy) {
15560      default: break;
15561      // Scalar SSE types.
15562      case MVT::f32:
15563      case MVT::i32:
15564        return std::make_pair(0U, X86::FR32RegisterClass);
15565      case MVT::f64:
15566      case MVT::i64:
15567        return std::make_pair(0U, X86::FR64RegisterClass);
15568      // Vector types.
15569      case MVT::v16i8:
15570      case MVT::v8i16:
15571      case MVT::v4i32:
15572      case MVT::v2i64:
15573      case MVT::v4f32:
15574      case MVT::v2f64:
15575        return std::make_pair(0U, X86::VR128RegisterClass);
15576      // AVX types.
15577      case MVT::v32i8:
15578      case MVT::v16i16:
15579      case MVT::v8i32:
15580      case MVT::v4i64:
15581      case MVT::v8f32:
15582      case MVT::v4f64:
15583        return std::make_pair(0U, X86::VR256RegisterClass);
15584
15585      }
15586      break;
15587    }
15588  }
15589
15590  // Use the default implementation in TargetLowering to convert the register
15591  // constraint into a member of a register class.
15592  std::pair<unsigned, const TargetRegisterClass*> Res;
15593  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15594
15595  // Not found as a standard register?
15596  if (Res.second == 0) {
15597    // Map st(0) -> st(7) -> ST0
15598    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15599        tolower(Constraint[1]) == 's' &&
15600        tolower(Constraint[2]) == 't' &&
15601        Constraint[3] == '(' &&
15602        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15603        Constraint[5] == ')' &&
15604        Constraint[6] == '}') {
15605
15606      Res.first = X86::ST0+Constraint[4]-'0';
15607      Res.second = X86::RFP80RegisterClass;
15608      return Res;
15609    }
15610
15611    // GCC allows "st(0)" to be called just plain "st".
15612    if (StringRef("{st}").equals_lower(Constraint)) {
15613      Res.first = X86::ST0;
15614      Res.second = X86::RFP80RegisterClass;
15615      return Res;
15616    }
15617
15618    // flags -> EFLAGS
15619    if (StringRef("{flags}").equals_lower(Constraint)) {
15620      Res.first = X86::EFLAGS;
15621      Res.second = X86::CCRRegisterClass;
15622      return Res;
15623    }
15624
15625    // 'A' means EAX + EDX.
15626    if (Constraint == "A") {
15627      Res.first = X86::EAX;
15628      Res.second = X86::GR32_ADRegisterClass;
15629      return Res;
15630    }
15631    return Res;
15632  }
15633
15634  // Otherwise, check to see if this is a register class of the wrong value
15635  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15636  // turn into {ax},{dx}.
15637  if (Res.second->hasType(VT))
15638    return Res;   // Correct type already, nothing to do.
15639
15640  // All of the single-register GCC register classes map their values onto
15641  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15642  // really want an 8-bit or 32-bit register, map to the appropriate register
15643  // class and return the appropriate register.
15644  if (Res.second == X86::GR16RegisterClass) {
15645    if (VT == MVT::i8) {
15646      unsigned DestReg = 0;
15647      switch (Res.first) {
15648      default: break;
15649      case X86::AX: DestReg = X86::AL; break;
15650      case X86::DX: DestReg = X86::DL; break;
15651      case X86::CX: DestReg = X86::CL; break;
15652      case X86::BX: DestReg = X86::BL; break;
15653      }
15654      if (DestReg) {
15655        Res.first = DestReg;
15656        Res.second = X86::GR8RegisterClass;
15657      }
15658    } else if (VT == MVT::i32) {
15659      unsigned DestReg = 0;
15660      switch (Res.first) {
15661      default: break;
15662      case X86::AX: DestReg = X86::EAX; break;
15663      case X86::DX: DestReg = X86::EDX; break;
15664      case X86::CX: DestReg = X86::ECX; break;
15665      case X86::BX: DestReg = X86::EBX; break;
15666      case X86::SI: DestReg = X86::ESI; break;
15667      case X86::DI: DestReg = X86::EDI; break;
15668      case X86::BP: DestReg = X86::EBP; break;
15669      case X86::SP: DestReg = X86::ESP; break;
15670      }
15671      if (DestReg) {
15672        Res.first = DestReg;
15673        Res.second = X86::GR32RegisterClass;
15674      }
15675    } else if (VT == MVT::i64) {
15676      unsigned DestReg = 0;
15677      switch (Res.first) {
15678      default: break;
15679      case X86::AX: DestReg = X86::RAX; break;
15680      case X86::DX: DestReg = X86::RDX; break;
15681      case X86::CX: DestReg = X86::RCX; break;
15682      case X86::BX: DestReg = X86::RBX; break;
15683      case X86::SI: DestReg = X86::RSI; break;
15684      case X86::DI: DestReg = X86::RDI; break;
15685      case X86::BP: DestReg = X86::RBP; break;
15686      case X86::SP: DestReg = X86::RSP; break;
15687      }
15688      if (DestReg) {
15689        Res.first = DestReg;
15690        Res.second = X86::GR64RegisterClass;
15691      }
15692    }
15693  } else if (Res.second == X86::FR32RegisterClass ||
15694             Res.second == X86::FR64RegisterClass ||
15695             Res.second == X86::VR128RegisterClass) {
15696    // Handle references to XMM physical registers that got mapped into the
15697    // wrong class.  This can happen with constraints like {xmm0} where the
15698    // target independent register mapper will just pick the first match it can
15699    // find, ignoring the required type.
15700    if (VT == MVT::f32)
15701      Res.second = X86::FR32RegisterClass;
15702    else if (VT == MVT::f64)
15703      Res.second = X86::FR64RegisterClass;
15704    else if (X86::VR128RegisterClass->hasType(VT))
15705      Res.second = X86::VR128RegisterClass;
15706  }
15707
15708  return Res;
15709}
15710