X86ISelLowering.cpp revision 3e60a232c130990035e86c11584856b5adc25bfa
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalAlias.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Function.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/LLVMContext.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/MC/MCContext.h"
39#include "llvm/MC/MCExpr.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/Dwarf.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52using namespace llvm;
53using namespace dwarf;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57static cl::opt<bool>
58DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
59
60// Forward declarations.
61static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
62                       SDValue V2);
63
64static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
65
66  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
67
68  if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) {
69    if (is64Bit) return new X8664_MachoTargetObjectFile();
70    return new TargetLoweringObjectFileMachO();
71  } else if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){
72    if (is64Bit) return new X8664_ELFTargetObjectFile(TM);
73    return new X8632_ELFTargetObjectFile(TM);
74  } else if (TM.getSubtarget<X86Subtarget>().isTargetCOFF()) {
75    return new TargetLoweringObjectFileCOFF();
76  }
77  llvm_unreachable("unknown subtarget type");
78}
79
80X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
81  : TargetLowering(TM, createTLOF(TM)) {
82  Subtarget = &TM.getSubtarget<X86Subtarget>();
83  X86ScalarSSEf64 = Subtarget->hasSSE2();
84  X86ScalarSSEf32 = Subtarget->hasSSE1();
85  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
86
87  RegInfo = TM.getRegisterInfo();
88  TD = getTargetData();
89
90  // Set up the TargetLowering object.
91
92  // X86 is weird, it always uses i8 for shift amounts and setcc results.
93  setShiftAmountType(MVT::i8);
94  setBooleanContents(ZeroOrOneBooleanContent);
95  setSchedulingPreference(Sched::RegPressure);
96  setStackPointerRegisterToSaveRestore(X86StackPtr);
97
98  if (Subtarget->isTargetDarwin()) {
99    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
100    setUseUnderscoreSetJmp(false);
101    setUseUnderscoreLongJmp(false);
102  } else if (Subtarget->isTargetMingw()) {
103    // MS runtime is weird: it exports _setjmp, but longjmp!
104    setUseUnderscoreSetJmp(true);
105    setUseUnderscoreLongJmp(false);
106  } else {
107    setUseUnderscoreSetJmp(true);
108    setUseUnderscoreLongJmp(true);
109  }
110
111  // Set up the register classes.
112  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
113  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
114  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
115  if (Subtarget->is64Bit())
116    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
117
118  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
119
120  // We don't accept any truncstore of integer registers.
121  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
122  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
123  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
124  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
125  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
126  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
127
128  // SETOEQ and SETUNE require checking two conditions.
129  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
130  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
131  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
132  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
133  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
134  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
135
136  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
137  // operation.
138  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
139  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
140  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
141
142  if (Subtarget->is64Bit()) {
143    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
144    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
145  } else if (!UseSoftFloat) {
146    // We have an algorithm for SSE2->double, and we turn this into a
147    // 64-bit FILD followed by conditional FADD for other targets.
148    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
149    // We have an algorithm for SSE2, and we turn this into a 64-bit
150    // FILD for other targets.
151    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
152  }
153
154  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
155  // this operation.
156  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
157  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
158
159  if (!UseSoftFloat) {
160    // SSE has no i16 to fp conversion, only i32
161    if (X86ScalarSSEf32) {
162      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
163      // f32 and f64 cases are Legal, f80 case is not
164      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
165    } else {
166      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
167      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
168    }
169  } else {
170    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
171    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
172  }
173
174  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
175  // are Legal, f80 is custom lowered.
176  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
177  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
178
179  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
180  // this operation.
181  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
182  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
183
184  if (X86ScalarSSEf32) {
185    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
186    // f32 and f64 cases are Legal, f80 case is not
187    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
188  } else {
189    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
190    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
191  }
192
193  // Handle FP_TO_UINT by promoting the destination to a larger signed
194  // conversion.
195  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
196  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
197  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
198
199  if (Subtarget->is64Bit()) {
200    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
201    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
202  } else if (!UseSoftFloat) {
203    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
204      // Expand FP_TO_UINT into a select.
205      // FIXME: We would like to use a Custom expander here eventually to do
206      // the optimal thing for SSE vs. the default expansion in the legalizer.
207      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
208    else
209      // With SSE3 we can use fisttpll to convert to a signed i64; without
210      // SSE, we're stuck with a fistpll.
211      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
212  }
213
214  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
215  if (!X86ScalarSSEf64) {
216    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
217    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
218    if (Subtarget->is64Bit()) {
219      setOperationAction(ISD::BIT_CONVERT    , MVT::f64  , Expand);
220      // Without SSE, i64->f64 goes through memory; i64->MMX is Legal.
221      if (Subtarget->hasMMX() && !DisableMMX)
222        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Custom);
223      else
224        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Expand);
225    }
226  }
227
228  // Scalar integer divide and remainder are lowered to use operations that
229  // produce two results, to match the available instructions. This exposes
230  // the two-result form to trivial CSE, which is able to combine x/y and x%y
231  // into a single instruction.
232  //
233  // Scalar integer multiply-high is also lowered to use two-result
234  // operations, to match the available instructions. However, plain multiply
235  // (low) operations are left as Legal, as there are single-result
236  // instructions for this in x86. Using the two-result multiply instructions
237  // when both high and low results are needed must be arranged by dagcombine.
238  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
239  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
240  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
241  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
242  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
243  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
244  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
245  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
246  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
247  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
248  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
249  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
250  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
251  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
252  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
253  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
254  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
255  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
256  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
257  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
258  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
259  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
260  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
261  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
262
263  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
264  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
265  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
266  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
267  if (Subtarget->is64Bit())
268    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
269  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
270  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
271  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
272  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
273  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
274  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
275  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
276  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
277
278  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
279  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
280  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
281  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
282  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
283  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
284  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
285  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
286  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
287  if (Subtarget->is64Bit()) {
288    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
289    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
290    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
291  }
292
293  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
294  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
295
296  // These should be promoted to a larger select which is supported.
297  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
298  // X86 wants to expand cmov itself.
299  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
300  setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
301  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
302  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
303  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
304  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
305  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
306  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
307  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
308  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
309  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
310  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
313    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
314  }
315  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
316
317  // Darwin ABI issue.
318  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
319  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
320  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
321  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
322  if (Subtarget->is64Bit())
323    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
324  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
325  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
326  if (Subtarget->is64Bit()) {
327    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
328    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
329    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
330    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
331    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
332  }
333  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
334  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
335  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
336  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
337  if (Subtarget->is64Bit()) {
338    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
339    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
340    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
341  }
342
343  if (Subtarget->hasSSE1())
344    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
345
346  // We may not have a libcall for MEMBARRIER so we should lower this.
347  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
348
349  // On X86 and X86-64, atomic operations are lowered to locked instructions.
350  // Locked instructions, in turn, have implicit fence semantics (all memory
351  // operations are flushed before issuing the locked instruction, and they
352  // are not buffered), so we can fold away the common pattern of
353  // fence-atomic-fence.
354  setShouldFoldAtomicFences(true);
355
356  // Expand certain atomics
357  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
358  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
359  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
360  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
361
362  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
363  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
364  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
365  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
366
367  if (!Subtarget->is64Bit()) {
368    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
369    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
370    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
371    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
372    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
373    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
374    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
375  }
376
377  // FIXME - use subtarget debug flags
378  if (!Subtarget->isTargetDarwin() &&
379      !Subtarget->isTargetELF() &&
380      !Subtarget->isTargetCygMing()) {
381    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
382  }
383
384  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
385  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
386  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
387  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
388  if (Subtarget->is64Bit()) {
389    setExceptionPointerRegister(X86::RAX);
390    setExceptionSelectorRegister(X86::RDX);
391  } else {
392    setExceptionPointerRegister(X86::EAX);
393    setExceptionSelectorRegister(X86::EDX);
394  }
395  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
396  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
397
398  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
399
400  setOperationAction(ISD::TRAP, MVT::Other, Legal);
401
402  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
403  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
404  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
405  if (Subtarget->is64Bit()) {
406    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
407    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
408  } else {
409    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
410    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
411  }
412
413  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
414  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
415  if (Subtarget->is64Bit())
416    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
417  if (Subtarget->isTargetCygMing())
418    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
419  else
420    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
421
422  if (!UseSoftFloat && X86ScalarSSEf64) {
423    // f32 and f64 use SSE.
424    // Set up the FP register classes.
425    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
426    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
427
428    // Use ANDPD to simulate FABS.
429    setOperationAction(ISD::FABS , MVT::f64, Custom);
430    setOperationAction(ISD::FABS , MVT::f32, Custom);
431
432    // Use XORP to simulate FNEG.
433    setOperationAction(ISD::FNEG , MVT::f64, Custom);
434    setOperationAction(ISD::FNEG , MVT::f32, Custom);
435
436    // Use ANDPD and ORPD to simulate FCOPYSIGN.
437    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
438    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
439
440    // We don't support sin/cos/fmod
441    setOperationAction(ISD::FSIN , MVT::f64, Expand);
442    setOperationAction(ISD::FCOS , MVT::f64, Expand);
443    setOperationAction(ISD::FSIN , MVT::f32, Expand);
444    setOperationAction(ISD::FCOS , MVT::f32, Expand);
445
446    // Expand FP immediates into loads from the stack, except for the special
447    // cases we handle.
448    addLegalFPImmediate(APFloat(+0.0)); // xorpd
449    addLegalFPImmediate(APFloat(+0.0f)); // xorps
450  } else if (!UseSoftFloat && X86ScalarSSEf32) {
451    // Use SSE for f32, x87 for f64.
452    // Set up the FP register classes.
453    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
454    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
455
456    // Use ANDPS to simulate FABS.
457    setOperationAction(ISD::FABS , MVT::f32, Custom);
458
459    // Use XORP to simulate FNEG.
460    setOperationAction(ISD::FNEG , MVT::f32, Custom);
461
462    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
463
464    // Use ANDPS and ORPS to simulate FCOPYSIGN.
465    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
466    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
467
468    // We don't support sin/cos/fmod
469    setOperationAction(ISD::FSIN , MVT::f32, Expand);
470    setOperationAction(ISD::FCOS , MVT::f32, Expand);
471
472    // Special cases we handle for FP constants.
473    addLegalFPImmediate(APFloat(+0.0f)); // xorps
474    addLegalFPImmediate(APFloat(+0.0)); // FLD0
475    addLegalFPImmediate(APFloat(+1.0)); // FLD1
476    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
477    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
478
479    if (!UnsafeFPMath) {
480      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
481      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
482    }
483  } else if (!UseSoftFloat) {
484    // f32 and f64 in x87.
485    // Set up the FP register classes.
486    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
487    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
488
489    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
490    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
491    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
492    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
493
494    if (!UnsafeFPMath) {
495      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
496      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
497    }
498    addLegalFPImmediate(APFloat(+0.0)); // FLD0
499    addLegalFPImmediate(APFloat(+1.0)); // FLD1
500    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
501    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
502    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
503    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
504    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
505    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
506  }
507
508  // Long double always uses X87.
509  if (!UseSoftFloat) {
510    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
511    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
512    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
513    {
514      bool ignored;
515      APFloat TmpFlt(+0.0);
516      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
517                     &ignored);
518      addLegalFPImmediate(TmpFlt);  // FLD0
519      TmpFlt.changeSign();
520      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
521      APFloat TmpFlt2(+1.0);
522      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
523                      &ignored);
524      addLegalFPImmediate(TmpFlt2);  // FLD1
525      TmpFlt2.changeSign();
526      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
527    }
528
529    if (!UnsafeFPMath) {
530      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
531      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
532    }
533  }
534
535  // Always use a library call for pow.
536  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
537  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
538  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
539
540  setOperationAction(ISD::FLOG, MVT::f80, Expand);
541  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
542  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
543  setOperationAction(ISD::FEXP, MVT::f80, Expand);
544  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
545
546  // First set operation action for all vector types to either promote
547  // (for widening) or expand (for scalarization). Then we will selectively
548  // turn on ones that can be effectively codegen'd.
549  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
550       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
551    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
566    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
567    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
600    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
604    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
605         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
606      setTruncStoreAction((MVT::SimpleValueType)VT,
607                          (MVT::SimpleValueType)InnerVT, Expand);
608    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
609    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
610    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
611  }
612
613  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
614  // with -msoft-float, disable use of MMX as well.
615  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
616    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass, false);
617    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass, false);
618    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass, false);
619
620    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass, false);
621
622    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
623    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
624    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
625    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
626
627    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
628    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
629    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
630    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
631
632    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
633    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
634
635    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
636    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
637    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
638    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
639    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
640    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
641    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
642
643    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
644    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
645    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
646    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
647    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
648    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
649    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
650
651    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
652    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
653    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
654    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
655    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
656    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
657    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
658
659    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
660    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
661    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
662    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
663    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
664    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
665    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
666
667    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
668    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
669    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
670    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
671
672    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
673    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
674    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
675    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
676
677    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
678    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
679    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
680
681    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
682
683    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
684    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
685    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
686    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
687    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
688    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
689    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
690
691    if (!X86ScalarSSEf64 && Subtarget->is64Bit()) {
692      setOperationAction(ISD::BIT_CONVERT,        MVT::v8i8,  Custom);
693      setOperationAction(ISD::BIT_CONVERT,        MVT::v4i16, Custom);
694      setOperationAction(ISD::BIT_CONVERT,        MVT::v2i32, Custom);
695      setOperationAction(ISD::BIT_CONVERT,        MVT::v1i64, Custom);
696    }
697  }
698
699  if (!UseSoftFloat && Subtarget->hasSSE1()) {
700    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
701
702    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
703    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
704    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
705    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
706    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
707    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
708    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
709    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
710    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
711    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
712    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
713    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
714  }
715
716  if (!UseSoftFloat && Subtarget->hasSSE2()) {
717    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
718
719    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
720    // registers cannot be used even for integer operations.
721    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
722    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
723    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
724    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
725
726    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
727    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
728    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
729    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
730    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
731    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
732    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
733    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
734    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
735    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
736    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
737    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
738    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
739    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
740    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
741    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
742
743    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
744    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
745    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
746    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
747
748    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
749    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
750    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
751    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
752    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
753
754    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
755    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
756    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
757    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
758    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
759
760    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
761    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
762      EVT VT = (MVT::SimpleValueType)i;
763      // Do not attempt to custom lower non-power-of-2 vectors
764      if (!isPowerOf2_32(VT.getVectorNumElements()))
765        continue;
766      // Do not attempt to custom lower non-128-bit vectors
767      if (!VT.is128BitVector())
768        continue;
769      setOperationAction(ISD::BUILD_VECTOR,
770                         VT.getSimpleVT().SimpleTy, Custom);
771      setOperationAction(ISD::VECTOR_SHUFFLE,
772                         VT.getSimpleVT().SimpleTy, Custom);
773      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
774                         VT.getSimpleVT().SimpleTy, Custom);
775    }
776
777    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
778    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
779    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
780    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
781    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
782    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
783
784    if (Subtarget->is64Bit()) {
785      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
786      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
787    }
788
789    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
790    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
791      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
792      EVT VT = SVT;
793
794      // Do not attempt to promote non-128-bit vectors
795      if (!VT.is128BitVector())
796        continue;
797
798      setOperationAction(ISD::AND,    SVT, Promote);
799      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
800      setOperationAction(ISD::OR,     SVT, Promote);
801      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
802      setOperationAction(ISD::XOR,    SVT, Promote);
803      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
804      setOperationAction(ISD::LOAD,   SVT, Promote);
805      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
806      setOperationAction(ISD::SELECT, SVT, Promote);
807      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
808    }
809
810    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
811
812    // Custom lower v2i64 and v2f64 selects.
813    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
814    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
815    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
816    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
817
818    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
819    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
820    if (!DisableMMX && Subtarget->hasMMX()) {
821      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
822      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
823    }
824  }
825
826  if (Subtarget->hasSSE41()) {
827    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
828    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
829    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
830    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
831    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
832    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
833    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
834    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
835    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
836    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
837
838    // FIXME: Do we need to handle scalar-to-vector here?
839    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
840
841    // Can turn SHL into an integer multiply.
842    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
843    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
844
845    // i8 and i16 vectors are custom , because the source register and source
846    // source memory operand types are not the same width.  f32 vectors are
847    // custom since the immediate controlling the insert encodes additional
848    // information.
849    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
850    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
851    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
852    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
853
854    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
855    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
856    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
857    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
858
859    if (Subtarget->is64Bit()) {
860      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
861      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
862    }
863  }
864
865  if (Subtarget->hasSSE42()) {
866    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
867  }
868
869  if (!UseSoftFloat && Subtarget->hasAVX()) {
870    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
871    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
872    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
873    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
874    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
875
876    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
877    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
878    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
879    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
880    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
881    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
882    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
883    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
884    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
885    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
886    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
887    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
888    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
889    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
890    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
891
892    // Operations to consider commented out -v16i16 v32i8
893    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
894    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
895    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
896    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
897    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
898    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
899    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
900    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
901    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
902    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
903    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
904    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
905    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
906    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
907
908    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
909    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
910    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
911    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
912
913    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
914    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
915    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
916    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
917    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
918
919    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
920    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
921    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
922    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
923    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
924    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
925
926#if 0
927    // Not sure we want to do this since there are no 256-bit integer
928    // operations in AVX
929
930    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
931    // This includes 256-bit vectors
932    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
933      EVT VT = (MVT::SimpleValueType)i;
934
935      // Do not attempt to custom lower non-power-of-2 vectors
936      if (!isPowerOf2_32(VT.getVectorNumElements()))
937        continue;
938
939      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
940      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
941      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
942    }
943
944    if (Subtarget->is64Bit()) {
945      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
946      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
947    }
948#endif
949
950#if 0
951    // Not sure we want to do this since there are no 256-bit integer
952    // operations in AVX
953
954    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
955    // Including 256-bit vectors
956    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
957      EVT VT = (MVT::SimpleValueType)i;
958
959      if (!VT.is256BitVector()) {
960        continue;
961      }
962      setOperationAction(ISD::AND,    VT, Promote);
963      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
964      setOperationAction(ISD::OR,     VT, Promote);
965      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
966      setOperationAction(ISD::XOR,    VT, Promote);
967      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
968      setOperationAction(ISD::LOAD,   VT, Promote);
969      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
970      setOperationAction(ISD::SELECT, VT, Promote);
971      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
972    }
973
974    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
975#endif
976  }
977
978  // We want to custom lower some of our intrinsics.
979  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
980
981  // Add/Sub/Mul with overflow operations are custom lowered.
982  setOperationAction(ISD::SADDO, MVT::i32, Custom);
983  setOperationAction(ISD::UADDO, MVT::i32, Custom);
984  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
985  setOperationAction(ISD::USUBO, MVT::i32, Custom);
986  setOperationAction(ISD::SMULO, MVT::i32, Custom);
987
988  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
989  // handle type legalization for these operations here.
990  //
991  // FIXME: We really should do custom legalization for addition and
992  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
993  // than generic legalization for 64-bit multiplication-with-overflow, though.
994  if (Subtarget->is64Bit()) {
995    setOperationAction(ISD::SADDO, MVT::i64, Custom);
996    setOperationAction(ISD::UADDO, MVT::i64, Custom);
997    setOperationAction(ISD::SSUBO, MVT::i64, Custom);
998    setOperationAction(ISD::USUBO, MVT::i64, Custom);
999    setOperationAction(ISD::SMULO, MVT::i64, Custom);
1000  }
1001
1002  if (!Subtarget->is64Bit()) {
1003    // These libcalls are not available in 32-bit.
1004    setLibcallName(RTLIB::SHL_I128, 0);
1005    setLibcallName(RTLIB::SRL_I128, 0);
1006    setLibcallName(RTLIB::SRA_I128, 0);
1007  }
1008
1009  // We have target-specific dag combine patterns for the following nodes:
1010  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1011  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1012  setTargetDAGCombine(ISD::BUILD_VECTOR);
1013  setTargetDAGCombine(ISD::SELECT);
1014  setTargetDAGCombine(ISD::SHL);
1015  setTargetDAGCombine(ISD::SRA);
1016  setTargetDAGCombine(ISD::SRL);
1017  setTargetDAGCombine(ISD::OR);
1018  setTargetDAGCombine(ISD::STORE);
1019  setTargetDAGCombine(ISD::ZERO_EXTEND);
1020  if (Subtarget->is64Bit())
1021    setTargetDAGCombine(ISD::MUL);
1022
1023  computeRegisterProperties();
1024
1025  // FIXME: These should be based on subtarget info. Plus, the values should
1026  // be smaller when we are in optimizing for size mode.
1027  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1028  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1029  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1030  setPrefLoopAlignment(16);
1031  benefitFromCodePlacementOpt = true;
1032}
1033
1034
1035MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1036  return MVT::i8;
1037}
1038
1039
1040/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1041/// the desired ByVal argument alignment.
1042static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1043  if (MaxAlign == 16)
1044    return;
1045  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1046    if (VTy->getBitWidth() == 128)
1047      MaxAlign = 16;
1048  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1049    unsigned EltAlign = 0;
1050    getMaxByValAlign(ATy->getElementType(), EltAlign);
1051    if (EltAlign > MaxAlign)
1052      MaxAlign = EltAlign;
1053  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1054    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1055      unsigned EltAlign = 0;
1056      getMaxByValAlign(STy->getElementType(i), EltAlign);
1057      if (EltAlign > MaxAlign)
1058        MaxAlign = EltAlign;
1059      if (MaxAlign == 16)
1060        break;
1061    }
1062  }
1063  return;
1064}
1065
1066/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1067/// function arguments in the caller parameter area. For X86, aggregates
1068/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1069/// are at 4-byte boundaries.
1070unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1071  if (Subtarget->is64Bit()) {
1072    // Max of 8 and alignment of type.
1073    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1074    if (TyAlign > 8)
1075      return TyAlign;
1076    return 8;
1077  }
1078
1079  unsigned Align = 4;
1080  if (Subtarget->hasSSE1())
1081    getMaxByValAlign(Ty, Align);
1082  return Align;
1083}
1084
1085/// getOptimalMemOpType - Returns the target specific optimal type for load
1086/// and store operations as a result of memset, memcpy, and memmove
1087/// lowering. If DstAlign is zero that means it's safe to destination
1088/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1089/// means there isn't a need to check it against alignment requirement,
1090/// probably because the source does not need to be loaded. If
1091/// 'NonScalarIntSafe' is true, that means it's safe to return a
1092/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1093/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1094/// constant so it does not need to be loaded.
1095/// It returns EVT::Other if the type should be determined using generic
1096/// target-independent logic.
1097EVT
1098X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1099                                       unsigned DstAlign, unsigned SrcAlign,
1100                                       bool NonScalarIntSafe,
1101                                       bool MemcpyStrSrc,
1102                                       MachineFunction &MF) const {
1103  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1104  // linux.  This is because the stack realignment code can't handle certain
1105  // cases like PR2962.  This should be removed when PR2962 is fixed.
1106  const Function *F = MF.getFunction();
1107  if (NonScalarIntSafe &&
1108      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1109    if (Size >= 16 &&
1110        (Subtarget->isUnalignedMemAccessFast() ||
1111         ((DstAlign == 0 || DstAlign >= 16) &&
1112          (SrcAlign == 0 || SrcAlign >= 16))) &&
1113        Subtarget->getStackAlignment() >= 16) {
1114      if (Subtarget->hasSSE2())
1115        return MVT::v4i32;
1116      if (Subtarget->hasSSE1())
1117        return MVT::v4f32;
1118    } else if (!MemcpyStrSrc && Size >= 8 &&
1119               !Subtarget->is64Bit() &&
1120               Subtarget->getStackAlignment() >= 8 &&
1121               Subtarget->hasSSE2()) {
1122      // Do not use f64 to lower memcpy if source is string constant. It's
1123      // better to use i32 to avoid the loads.
1124      return MVT::f64;
1125    }
1126  }
1127  if (Subtarget->is64Bit() && Size >= 8)
1128    return MVT::i64;
1129  return MVT::i32;
1130}
1131
1132/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1133/// current function.  The returned value is a member of the
1134/// MachineJumpTableInfo::JTEntryKind enum.
1135unsigned X86TargetLowering::getJumpTableEncoding() const {
1136  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1137  // symbol.
1138  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1139      Subtarget->isPICStyleGOT())
1140    return MachineJumpTableInfo::EK_Custom32;
1141
1142  // Otherwise, use the normal jump table encoding heuristics.
1143  return TargetLowering::getJumpTableEncoding();
1144}
1145
1146/// getPICBaseSymbol - Return the X86-32 PIC base.
1147MCSymbol *
1148X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1149                                    MCContext &Ctx) const {
1150  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1151  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1152                               Twine(MF->getFunctionNumber())+"$pb");
1153}
1154
1155
1156const MCExpr *
1157X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1158                                             const MachineBasicBlock *MBB,
1159                                             unsigned uid,MCContext &Ctx) const{
1160  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1161         Subtarget->isPICStyleGOT());
1162  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1163  // entries.
1164  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1165                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1166}
1167
1168/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1169/// jumptable.
1170SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1171                                                    SelectionDAG &DAG) const {
1172  if (!Subtarget->is64Bit())
1173    // This doesn't have DebugLoc associated with it, but is not really the
1174    // same as a Register.
1175    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1176  return Table;
1177}
1178
1179/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1180/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1181/// MCExpr.
1182const MCExpr *X86TargetLowering::
1183getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1184                             MCContext &Ctx) const {
1185  // X86-64 uses RIP relative addressing based on the jump table label.
1186  if (Subtarget->isPICStyleRIPRel())
1187    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1188
1189  // Otherwise, the reference is relative to the PIC base.
1190  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1191}
1192
1193/// getFunctionAlignment - Return the Log2 alignment of this function.
1194unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1195  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1196}
1197
1198std::pair<const TargetRegisterClass*, uint8_t>
1199X86TargetLowering::findRepresentativeClass(EVT VT) const{
1200  const TargetRegisterClass *RRC = 0;
1201  uint8_t Cost = 1;
1202  switch (VT.getSimpleVT().SimpleTy) {
1203  default:
1204    return TargetLowering::findRepresentativeClass(VT);
1205  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1206    RRC = (Subtarget->is64Bit()
1207           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1208    break;
1209  case MVT::v8i8: case MVT::v4i16:
1210  case MVT::v2i32: case MVT::v1i64:
1211    RRC = X86::VR64RegisterClass;
1212    break;
1213  case MVT::f32: case MVT::f64:
1214  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1215  case MVT::v4f32: case MVT::v2f64:
1216  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1217  case MVT::v4f64:
1218    RRC = X86::VR128RegisterClass;
1219    break;
1220  }
1221  return std::make_pair(RRC, Cost);
1222}
1223
1224unsigned
1225X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
1226                                       MachineFunction &MF) const {
1227  unsigned FPDiff = RegInfo->hasFP(MF) ? 1 : 0;
1228  switch (RC->getID()) {
1229  default:
1230    return 0;
1231  case X86::GR32RegClassID:
1232    return 4 - FPDiff;
1233  case X86::GR64RegClassID:
1234    return 8 - FPDiff;
1235  case X86::VR128RegClassID:
1236    return Subtarget->is64Bit() ? 10 : 4;
1237  case X86::VR64RegClassID:
1238    return 4;
1239  }
1240}
1241
1242bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1243                                               unsigned &Offset) const {
1244  if (!Subtarget->isTargetLinux())
1245    return false;
1246
1247  if (Subtarget->is64Bit()) {
1248    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1249    Offset = 0x28;
1250    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1251      AddressSpace = 256;
1252    else
1253      AddressSpace = 257;
1254  } else {
1255    // %gs:0x14 on i386
1256    Offset = 0x14;
1257    AddressSpace = 256;
1258  }
1259  return true;
1260}
1261
1262
1263//===----------------------------------------------------------------------===//
1264//               Return Value Calling Convention Implementation
1265//===----------------------------------------------------------------------===//
1266
1267#include "X86GenCallingConv.inc"
1268
1269bool
1270X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1271                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1272                        LLVMContext &Context) const {
1273  SmallVector<CCValAssign, 16> RVLocs;
1274  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1275                 RVLocs, Context);
1276  return CCInfo.CheckReturn(Outs, RetCC_X86);
1277}
1278
1279SDValue
1280X86TargetLowering::LowerReturn(SDValue Chain,
1281                               CallingConv::ID CallConv, bool isVarArg,
1282                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1283                               const SmallVectorImpl<SDValue> &OutVals,
1284                               DebugLoc dl, SelectionDAG &DAG) const {
1285  MachineFunction &MF = DAG.getMachineFunction();
1286  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1287
1288  SmallVector<CCValAssign, 16> RVLocs;
1289  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1290                 RVLocs, *DAG.getContext());
1291  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1292
1293  // Add the regs to the liveout set for the function.
1294  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1295  for (unsigned i = 0; i != RVLocs.size(); ++i)
1296    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1297      MRI.addLiveOut(RVLocs[i].getLocReg());
1298
1299  SDValue Flag;
1300
1301  SmallVector<SDValue, 6> RetOps;
1302  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1303  // Operand #1 = Bytes To Pop
1304  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1305                   MVT::i16));
1306
1307  // Copy the result values into the output registers.
1308  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1309    CCValAssign &VA = RVLocs[i];
1310    assert(VA.isRegLoc() && "Can only return in registers!");
1311    SDValue ValToCopy = OutVals[i];
1312    EVT ValVT = ValToCopy.getValueType();
1313
1314    // If this is x86-64, and we disabled SSE, we can't return FP values
1315    if ((ValVT == MVT::f32 || ValVT == MVT::f64) &&
1316        (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1317      report_fatal_error("SSE register return with SSE disabled");
1318    }
1319    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1320    // llvm-gcc has never done it right and no one has noticed, so this
1321    // should be OK for now.
1322    if (ValVT == MVT::f64 &&
1323        (Subtarget->is64Bit() && !Subtarget->hasSSE2())) {
1324      report_fatal_error("SSE2 register return with SSE2 disabled");
1325    }
1326
1327    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1328    // the RET instruction and handled by the FP Stackifier.
1329    if (VA.getLocReg() == X86::ST0 ||
1330        VA.getLocReg() == X86::ST1) {
1331      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1332      // change the value to the FP stack register class.
1333      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1334        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1335      RetOps.push_back(ValToCopy);
1336      // Don't emit a copytoreg.
1337      continue;
1338    }
1339
1340    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1341    // which is returned in RAX / RDX.
1342    if (Subtarget->is64Bit()) {
1343      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1344        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1345        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1346          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1347                                  ValToCopy);
1348      }
1349    }
1350
1351    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1352    Flag = Chain.getValue(1);
1353  }
1354
1355  // The x86-64 ABI for returning structs by value requires that we copy
1356  // the sret argument into %rax for the return. We saved the argument into
1357  // a virtual register in the entry block, so now we copy the value out
1358  // and into %rax.
1359  if (Subtarget->is64Bit() &&
1360      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1361    MachineFunction &MF = DAG.getMachineFunction();
1362    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1363    unsigned Reg = FuncInfo->getSRetReturnReg();
1364    assert(Reg &&
1365           "SRetReturnReg should have been set in LowerFormalArguments().");
1366    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1367
1368    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1369    Flag = Chain.getValue(1);
1370
1371    // RAX now acts like a return value.
1372    MRI.addLiveOut(X86::RAX);
1373  }
1374
1375  RetOps[0] = Chain;  // Update chain.
1376
1377  // Add the flag if we have it.
1378  if (Flag.getNode())
1379    RetOps.push_back(Flag);
1380
1381  return DAG.getNode(X86ISD::RET_FLAG, dl,
1382                     MVT::Other, &RetOps[0], RetOps.size());
1383}
1384
1385/// LowerCallResult - Lower the result values of a call into the
1386/// appropriate copies out of appropriate physical registers.
1387///
1388SDValue
1389X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1390                                   CallingConv::ID CallConv, bool isVarArg,
1391                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1392                                   DebugLoc dl, SelectionDAG &DAG,
1393                                   SmallVectorImpl<SDValue> &InVals) const {
1394
1395  // Assign locations to each value returned by this call.
1396  SmallVector<CCValAssign, 16> RVLocs;
1397  bool Is64Bit = Subtarget->is64Bit();
1398  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1399                 RVLocs, *DAG.getContext());
1400  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1401
1402  // Copy all of the result registers out of their specified physreg.
1403  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1404    CCValAssign &VA = RVLocs[i];
1405    EVT CopyVT = VA.getValVT();
1406
1407    // If this is x86-64, and we disabled SSE, we can't return FP values
1408    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1409        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1410      report_fatal_error("SSE register return with SSE disabled");
1411    }
1412
1413    SDValue Val;
1414
1415    // If this is a call to a function that returns an fp value on the floating
1416    // point stack, we must guarantee the the value is popped from the stack, so
1417    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1418    // if the return value is not used. We use the FpGET_ST0 instructions
1419    // instead.
1420    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1421      // If we prefer to use the value in xmm registers, copy it out as f80 and
1422      // use a truncate to move it from fp stack reg to xmm reg.
1423      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1424      bool isST0 = VA.getLocReg() == X86::ST0;
1425      unsigned Opc = 0;
1426      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1427      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1428      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1429      SDValue Ops[] = { Chain, InFlag };
1430      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Flag,
1431                                         Ops, 2), 1);
1432      Val = Chain.getValue(0);
1433
1434      // Round the f80 to the right size, which also moves it to the appropriate
1435      // xmm register.
1436      if (CopyVT != VA.getValVT())
1437        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1438                          // This truncation won't change the value.
1439                          DAG.getIntPtrConstant(1));
1440    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1441      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1442      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1443        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1444                                   MVT::v2i64, InFlag).getValue(1);
1445        Val = Chain.getValue(0);
1446        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1447                          Val, DAG.getConstant(0, MVT::i64));
1448      } else {
1449        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1450                                   MVT::i64, InFlag).getValue(1);
1451        Val = Chain.getValue(0);
1452      }
1453      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1454    } else {
1455      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1456                                 CopyVT, InFlag).getValue(1);
1457      Val = Chain.getValue(0);
1458    }
1459    InFlag = Chain.getValue(2);
1460    InVals.push_back(Val);
1461  }
1462
1463  return Chain;
1464}
1465
1466
1467//===----------------------------------------------------------------------===//
1468//                C & StdCall & Fast Calling Convention implementation
1469//===----------------------------------------------------------------------===//
1470//  StdCall calling convention seems to be standard for many Windows' API
1471//  routines and around. It differs from C calling convention just a little:
1472//  callee should clean up the stack, not caller. Symbols should be also
1473//  decorated in some fancy way :) It doesn't support any vector arguments.
1474//  For info on fast calling convention see Fast Calling Convention (tail call)
1475//  implementation LowerX86_32FastCCCallTo.
1476
1477/// CallIsStructReturn - Determines whether a call uses struct return
1478/// semantics.
1479static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1480  if (Outs.empty())
1481    return false;
1482
1483  return Outs[0].Flags.isSRet();
1484}
1485
1486/// ArgsAreStructReturn - Determines whether a function uses struct
1487/// return semantics.
1488static bool
1489ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1490  if (Ins.empty())
1491    return false;
1492
1493  return Ins[0].Flags.isSRet();
1494}
1495
1496/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1497/// given CallingConvention value.
1498CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1499  if (Subtarget->is64Bit()) {
1500    if (CC == CallingConv::GHC)
1501      return CC_X86_64_GHC;
1502    else if (Subtarget->isTargetWin64())
1503      return CC_X86_Win64_C;
1504    else
1505      return CC_X86_64_C;
1506  }
1507
1508  if (CC == CallingConv::X86_FastCall)
1509    return CC_X86_32_FastCall;
1510  else if (CC == CallingConv::X86_ThisCall)
1511    return CC_X86_32_ThisCall;
1512  else if (CC == CallingConv::Fast)
1513    return CC_X86_32_FastCC;
1514  else if (CC == CallingConv::GHC)
1515    return CC_X86_32_GHC;
1516  else
1517    return CC_X86_32_C;
1518}
1519
1520/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1521/// by "Src" to address "Dst" with size and alignment information specified by
1522/// the specific parameter attribute. The copy will be passed as a byval
1523/// function parameter.
1524static SDValue
1525CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1526                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1527                          DebugLoc dl) {
1528  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1529  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1530                       /*isVolatile*/false, /*AlwaysInline=*/true,
1531                       NULL, 0, NULL, 0);
1532}
1533
1534/// IsTailCallConvention - Return true if the calling convention is one that
1535/// supports tail call optimization.
1536static bool IsTailCallConvention(CallingConv::ID CC) {
1537  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1538}
1539
1540/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1541/// a tailcall target by changing its ABI.
1542static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1543  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1544}
1545
1546SDValue
1547X86TargetLowering::LowerMemArgument(SDValue Chain,
1548                                    CallingConv::ID CallConv,
1549                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1550                                    DebugLoc dl, SelectionDAG &DAG,
1551                                    const CCValAssign &VA,
1552                                    MachineFrameInfo *MFI,
1553                                    unsigned i) const {
1554  // Create the nodes corresponding to a load from this parameter slot.
1555  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1556  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1557  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1558  EVT ValVT;
1559
1560  // If value is passed by pointer we have address passed instead of the value
1561  // itself.
1562  if (VA.getLocInfo() == CCValAssign::Indirect)
1563    ValVT = VA.getLocVT();
1564  else
1565    ValVT = VA.getValVT();
1566
1567  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1568  // changed with more analysis.
1569  // In case of tail call optimization mark all arguments mutable. Since they
1570  // could be overwritten by lowering of arguments in case of a tail call.
1571  if (Flags.isByVal()) {
1572    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1573                                    VA.getLocMemOffset(), isImmutable);
1574    return DAG.getFrameIndex(FI, getPointerTy());
1575  } else {
1576    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1577                                    VA.getLocMemOffset(), isImmutable);
1578    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1579    return DAG.getLoad(ValVT, dl, Chain, FIN,
1580                       PseudoSourceValue::getFixedStack(FI), 0,
1581                       false, false, 0);
1582  }
1583}
1584
1585SDValue
1586X86TargetLowering::LowerFormalArguments(SDValue Chain,
1587                                        CallingConv::ID CallConv,
1588                                        bool isVarArg,
1589                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1590                                        DebugLoc dl,
1591                                        SelectionDAG &DAG,
1592                                        SmallVectorImpl<SDValue> &InVals)
1593                                          const {
1594  MachineFunction &MF = DAG.getMachineFunction();
1595  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1596
1597  const Function* Fn = MF.getFunction();
1598  if (Fn->hasExternalLinkage() &&
1599      Subtarget->isTargetCygMing() &&
1600      Fn->getName() == "main")
1601    FuncInfo->setForceFramePointer(true);
1602
1603  MachineFrameInfo *MFI = MF.getFrameInfo();
1604  bool Is64Bit = Subtarget->is64Bit();
1605  bool IsWin64 = Subtarget->isTargetWin64();
1606
1607  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1608         "Var args not supported with calling convention fastcc or ghc");
1609
1610  // Assign locations to all of the incoming arguments.
1611  SmallVector<CCValAssign, 16> ArgLocs;
1612  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1613                 ArgLocs, *DAG.getContext());
1614  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1615
1616  unsigned LastVal = ~0U;
1617  SDValue ArgValue;
1618  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1619    CCValAssign &VA = ArgLocs[i];
1620    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1621    // places.
1622    assert(VA.getValNo() != LastVal &&
1623           "Don't support value assigned to multiple locs yet");
1624    LastVal = VA.getValNo();
1625
1626    if (VA.isRegLoc()) {
1627      EVT RegVT = VA.getLocVT();
1628      TargetRegisterClass *RC = NULL;
1629      if (RegVT == MVT::i32)
1630        RC = X86::GR32RegisterClass;
1631      else if (Is64Bit && RegVT == MVT::i64)
1632        RC = X86::GR64RegisterClass;
1633      else if (RegVT == MVT::f32)
1634        RC = X86::FR32RegisterClass;
1635      else if (RegVT == MVT::f64)
1636        RC = X86::FR64RegisterClass;
1637      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1638        RC = X86::VR256RegisterClass;
1639      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1640        RC = X86::VR128RegisterClass;
1641      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1642        RC = X86::VR64RegisterClass;
1643      else
1644        llvm_unreachable("Unknown argument type!");
1645
1646      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1647      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1648
1649      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1650      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1651      // right size.
1652      if (VA.getLocInfo() == CCValAssign::SExt)
1653        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1654                               DAG.getValueType(VA.getValVT()));
1655      else if (VA.getLocInfo() == CCValAssign::ZExt)
1656        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1657                               DAG.getValueType(VA.getValVT()));
1658      else if (VA.getLocInfo() == CCValAssign::BCvt)
1659        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1660
1661      if (VA.isExtInLoc()) {
1662        // Handle MMX values passed in XMM regs.
1663        if (RegVT.isVector()) {
1664          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1665                                 ArgValue, DAG.getConstant(0, MVT::i64));
1666          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1667        } else
1668          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1669      }
1670    } else {
1671      assert(VA.isMemLoc());
1672      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1673    }
1674
1675    // If value is passed via pointer - do a load.
1676    if (VA.getLocInfo() == CCValAssign::Indirect)
1677      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1678                             false, false, 0);
1679
1680    InVals.push_back(ArgValue);
1681  }
1682
1683  // The x86-64 ABI for returning structs by value requires that we copy
1684  // the sret argument into %rax for the return. Save the argument into
1685  // a virtual register so that we can access it from the return points.
1686  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1687    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1688    unsigned Reg = FuncInfo->getSRetReturnReg();
1689    if (!Reg) {
1690      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1691      FuncInfo->setSRetReturnReg(Reg);
1692    }
1693    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1694    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1695  }
1696
1697  unsigned StackSize = CCInfo.getNextStackOffset();
1698  // Align stack specially for tail calls.
1699  if (FuncIsMadeTailCallSafe(CallConv))
1700    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1701
1702  // If the function takes variable number of arguments, make a frame index for
1703  // the start of the first vararg value... for expansion of llvm.va_start.
1704  if (isVarArg) {
1705    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1706                    CallConv != CallingConv::X86_ThisCall)) {
1707      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1708    }
1709    if (Is64Bit) {
1710      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1711
1712      // FIXME: We should really autogenerate these arrays
1713      static const unsigned GPR64ArgRegsWin64[] = {
1714        X86::RCX, X86::RDX, X86::R8,  X86::R9
1715      };
1716      static const unsigned XMMArgRegsWin64[] = {
1717        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1718      };
1719      static const unsigned GPR64ArgRegs64Bit[] = {
1720        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1721      };
1722      static const unsigned XMMArgRegs64Bit[] = {
1723        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1724        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1725      };
1726      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1727
1728      if (IsWin64) {
1729        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1730        GPR64ArgRegs = GPR64ArgRegsWin64;
1731        XMMArgRegs = XMMArgRegsWin64;
1732      } else {
1733        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1734        GPR64ArgRegs = GPR64ArgRegs64Bit;
1735        XMMArgRegs = XMMArgRegs64Bit;
1736      }
1737      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1738                                                       TotalNumIntRegs);
1739      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1740                                                       TotalNumXMMRegs);
1741
1742      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1743      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1744             "SSE register cannot be used when SSE is disabled!");
1745      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1746             "SSE register cannot be used when SSE is disabled!");
1747      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1748        // Kernel mode asks for SSE to be disabled, so don't push them
1749        // on the stack.
1750        TotalNumXMMRegs = 0;
1751
1752      // For X86-64, if there are vararg parameters that are passed via
1753      // registers, then we must store them to their spots on the stack so they
1754      // may be loaded by deferencing the result of va_next.
1755      FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1756      FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1757      FuncInfo->setRegSaveFrameIndex(
1758        MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1759                               false));
1760
1761      // Store the integer parameter registers.
1762      SmallVector<SDValue, 8> MemOps;
1763      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1764                                        getPointerTy());
1765      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1766      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1767        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1768                                  DAG.getIntPtrConstant(Offset));
1769        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1770                                     X86::GR64RegisterClass);
1771        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1772        SDValue Store =
1773          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1774                       PseudoSourceValue::getFixedStack(
1775                         FuncInfo->getRegSaveFrameIndex()),
1776                       Offset, false, false, 0);
1777        MemOps.push_back(Store);
1778        Offset += 8;
1779      }
1780
1781      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1782        // Now store the XMM (fp + vector) parameter registers.
1783        SmallVector<SDValue, 11> SaveXMMOps;
1784        SaveXMMOps.push_back(Chain);
1785
1786        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1787        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1788        SaveXMMOps.push_back(ALVal);
1789
1790        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1791                               FuncInfo->getRegSaveFrameIndex()));
1792        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1793                               FuncInfo->getVarArgsFPOffset()));
1794
1795        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1796          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1797                                       X86::VR128RegisterClass);
1798          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1799          SaveXMMOps.push_back(Val);
1800        }
1801        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1802                                     MVT::Other,
1803                                     &SaveXMMOps[0], SaveXMMOps.size()));
1804      }
1805
1806      if (!MemOps.empty())
1807        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1808                            &MemOps[0], MemOps.size());
1809    }
1810  }
1811
1812  // Some CCs need callee pop.
1813  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1814    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1815  } else {
1816    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1817    // If this is an sret function, the return should pop the hidden pointer.
1818    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1819      FuncInfo->setBytesToPopOnReturn(4);
1820  }
1821
1822  if (!Is64Bit) {
1823    // RegSaveFrameIndex is X86-64 only.
1824    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1825    if (CallConv == CallingConv::X86_FastCall ||
1826        CallConv == CallingConv::X86_ThisCall)
1827      // fastcc functions can't have varargs.
1828      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1829  }
1830
1831  return Chain;
1832}
1833
1834SDValue
1835X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1836                                    SDValue StackPtr, SDValue Arg,
1837                                    DebugLoc dl, SelectionDAG &DAG,
1838                                    const CCValAssign &VA,
1839                                    ISD::ArgFlagsTy Flags) const {
1840  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1841  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1842  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1843  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1844  if (Flags.isByVal()) {
1845    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1846  }
1847  return DAG.getStore(Chain, dl, Arg, PtrOff,
1848                      PseudoSourceValue::getStack(), LocMemOffset,
1849                      false, false, 0);
1850}
1851
1852/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1853/// optimization is performed and it is required.
1854SDValue
1855X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1856                                           SDValue &OutRetAddr, SDValue Chain,
1857                                           bool IsTailCall, bool Is64Bit,
1858                                           int FPDiff, DebugLoc dl) const {
1859  // Adjust the Return address stack slot.
1860  EVT VT = getPointerTy();
1861  OutRetAddr = getReturnAddressFrameIndex(DAG);
1862
1863  // Load the "old" Return address.
1864  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1865  return SDValue(OutRetAddr.getNode(), 1);
1866}
1867
1868/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1869/// optimization is performed and it is required (FPDiff!=0).
1870static SDValue
1871EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1872                         SDValue Chain, SDValue RetAddrFrIdx,
1873                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1874  // Store the return address to the appropriate stack slot.
1875  if (!FPDiff) return Chain;
1876  // Calculate the new stack slot for the return address.
1877  int SlotSize = Is64Bit ? 8 : 4;
1878  int NewReturnAddrFI =
1879    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1880  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1881  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1882  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1883                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1884                       false, false, 0);
1885  return Chain;
1886}
1887
1888SDValue
1889X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1890                             CallingConv::ID CallConv, bool isVarArg,
1891                             bool &isTailCall,
1892                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1893                             const SmallVectorImpl<SDValue> &OutVals,
1894                             const SmallVectorImpl<ISD::InputArg> &Ins,
1895                             DebugLoc dl, SelectionDAG &DAG,
1896                             SmallVectorImpl<SDValue> &InVals) const {
1897  MachineFunction &MF = DAG.getMachineFunction();
1898  bool Is64Bit        = Subtarget->is64Bit();
1899  bool IsStructRet    = CallIsStructReturn(Outs);
1900  bool IsSibcall      = false;
1901
1902  if (isTailCall) {
1903    // Check if it's really possible to do a tail call.
1904    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1905                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1906                                                   Outs, OutVals, Ins, DAG);
1907
1908    // Sibcalls are automatically detected tailcalls which do not require
1909    // ABI changes.
1910    if (!GuaranteedTailCallOpt && isTailCall)
1911      IsSibcall = true;
1912
1913    if (isTailCall)
1914      ++NumTailCalls;
1915  }
1916
1917  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1918         "Var args not supported with calling convention fastcc or ghc");
1919
1920  // Analyze operands of the call, assigning locations to each operand.
1921  SmallVector<CCValAssign, 16> ArgLocs;
1922  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1923                 ArgLocs, *DAG.getContext());
1924  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1925
1926  // Get a count of how many bytes are to be pushed on the stack.
1927  unsigned NumBytes = CCInfo.getNextStackOffset();
1928  if (IsSibcall)
1929    // This is a sibcall. The memory operands are available in caller's
1930    // own caller's stack.
1931    NumBytes = 0;
1932  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1933    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1934
1935  int FPDiff = 0;
1936  if (isTailCall && !IsSibcall) {
1937    // Lower arguments at fp - stackoffset + fpdiff.
1938    unsigned NumBytesCallerPushed =
1939      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1940    FPDiff = NumBytesCallerPushed - NumBytes;
1941
1942    // Set the delta of movement of the returnaddr stackslot.
1943    // But only set if delta is greater than previous delta.
1944    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1945      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1946  }
1947
1948  if (!IsSibcall)
1949    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1950
1951  SDValue RetAddrFrIdx;
1952  // Load return adress for tail calls.
1953  if (isTailCall && FPDiff)
1954    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1955                                    Is64Bit, FPDiff, dl);
1956
1957  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1958  SmallVector<SDValue, 8> MemOpChains;
1959  SDValue StackPtr;
1960
1961  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1962  // of tail call optimization arguments are handle later.
1963  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1964    CCValAssign &VA = ArgLocs[i];
1965    EVT RegVT = VA.getLocVT();
1966    SDValue Arg = OutVals[i];
1967    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1968    bool isByVal = Flags.isByVal();
1969
1970    // Promote the value if needed.
1971    switch (VA.getLocInfo()) {
1972    default: llvm_unreachable("Unknown loc info!");
1973    case CCValAssign::Full: break;
1974    case CCValAssign::SExt:
1975      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1976      break;
1977    case CCValAssign::ZExt:
1978      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1979      break;
1980    case CCValAssign::AExt:
1981      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1982        // Special case: passing MMX values in XMM registers.
1983        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1984        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1985        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1986      } else
1987        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1988      break;
1989    case CCValAssign::BCvt:
1990      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1991      break;
1992    case CCValAssign::Indirect: {
1993      // Store the argument.
1994      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1995      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1996      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1997                           PseudoSourceValue::getFixedStack(FI), 0,
1998                           false, false, 0);
1999      Arg = SpillSlot;
2000      break;
2001    }
2002    }
2003
2004    if (VA.isRegLoc()) {
2005      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2006    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2007      assert(VA.isMemLoc());
2008      if (StackPtr.getNode() == 0)
2009        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2010      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2011                                             dl, DAG, VA, Flags));
2012    }
2013  }
2014
2015  if (!MemOpChains.empty())
2016    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2017                        &MemOpChains[0], MemOpChains.size());
2018
2019  // Build a sequence of copy-to-reg nodes chained together with token chain
2020  // and flag operands which copy the outgoing args into registers.
2021  SDValue InFlag;
2022  // Tail call byval lowering might overwrite argument registers so in case of
2023  // tail call optimization the copies to registers are lowered later.
2024  if (!isTailCall)
2025    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2026      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2027                               RegsToPass[i].second, InFlag);
2028      InFlag = Chain.getValue(1);
2029    }
2030
2031  if (Subtarget->isPICStyleGOT()) {
2032    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2033    // GOT pointer.
2034    if (!isTailCall) {
2035      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2036                               DAG.getNode(X86ISD::GlobalBaseReg,
2037                                           DebugLoc(), getPointerTy()),
2038                               InFlag);
2039      InFlag = Chain.getValue(1);
2040    } else {
2041      // If we are tail calling and generating PIC/GOT style code load the
2042      // address of the callee into ECX. The value in ecx is used as target of
2043      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2044      // for tail calls on PIC/GOT architectures. Normally we would just put the
2045      // address of GOT into ebx and then call target@PLT. But for tail calls
2046      // ebx would be restored (since ebx is callee saved) before jumping to the
2047      // target@PLT.
2048
2049      // Note: The actual moving to ECX is done further down.
2050      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2051      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2052          !G->getGlobal()->hasProtectedVisibility())
2053        Callee = LowerGlobalAddress(Callee, DAG);
2054      else if (isa<ExternalSymbolSDNode>(Callee))
2055        Callee = LowerExternalSymbol(Callee, DAG);
2056    }
2057  }
2058
2059  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) {
2060    // From AMD64 ABI document:
2061    // For calls that may call functions that use varargs or stdargs
2062    // (prototype-less calls or calls to functions containing ellipsis (...) in
2063    // the declaration) %al is used as hidden argument to specify the number
2064    // of SSE registers used. The contents of %al do not need to match exactly
2065    // the number of registers, but must be an ubound on the number of SSE
2066    // registers used and is in the range 0 - 8 inclusive.
2067
2068    // Count the number of XMM registers allocated.
2069    static const unsigned XMMArgRegs[] = {
2070      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2071      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2072    };
2073    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2074    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2075           && "SSE registers cannot be used when SSE is disabled");
2076
2077    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2078                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2079    InFlag = Chain.getValue(1);
2080  }
2081
2082
2083  // For tail calls lower the arguments to the 'real' stack slot.
2084  if (isTailCall) {
2085    // Force all the incoming stack arguments to be loaded from the stack
2086    // before any new outgoing arguments are stored to the stack, because the
2087    // outgoing stack slots may alias the incoming argument stack slots, and
2088    // the alias isn't otherwise explicit. This is slightly more conservative
2089    // than necessary, because it means that each store effectively depends
2090    // on every argument instead of just those arguments it would clobber.
2091    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2092
2093    SmallVector<SDValue, 8> MemOpChains2;
2094    SDValue FIN;
2095    int FI = 0;
2096    // Do not flag preceeding copytoreg stuff together with the following stuff.
2097    InFlag = SDValue();
2098    if (GuaranteedTailCallOpt) {
2099      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2100        CCValAssign &VA = ArgLocs[i];
2101        if (VA.isRegLoc())
2102          continue;
2103        assert(VA.isMemLoc());
2104        SDValue Arg = OutVals[i];
2105        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2106        // Create frame index.
2107        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2108        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2109        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2110        FIN = DAG.getFrameIndex(FI, getPointerTy());
2111
2112        if (Flags.isByVal()) {
2113          // Copy relative to framepointer.
2114          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2115          if (StackPtr.getNode() == 0)
2116            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2117                                          getPointerTy());
2118          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2119
2120          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2121                                                           ArgChain,
2122                                                           Flags, DAG, dl));
2123        } else {
2124          // Store relative to framepointer.
2125          MemOpChains2.push_back(
2126            DAG.getStore(ArgChain, dl, Arg, FIN,
2127                         PseudoSourceValue::getFixedStack(FI), 0,
2128                         false, false, 0));
2129        }
2130      }
2131    }
2132
2133    if (!MemOpChains2.empty())
2134      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2135                          &MemOpChains2[0], MemOpChains2.size());
2136
2137    // Copy arguments to their registers.
2138    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2139      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2140                               RegsToPass[i].second, InFlag);
2141      InFlag = Chain.getValue(1);
2142    }
2143    InFlag =SDValue();
2144
2145    // Store the return address to the appropriate stack slot.
2146    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2147                                     FPDiff, dl);
2148  }
2149
2150  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2151    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2152    // In the 64-bit large code model, we have to make all calls
2153    // through a register, since the call instruction's 32-bit
2154    // pc-relative offset may not be large enough to hold the whole
2155    // address.
2156  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2157    // If the callee is a GlobalAddress node (quite common, every direct call
2158    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2159    // it.
2160
2161    // We should use extra load for direct calls to dllimported functions in
2162    // non-JIT mode.
2163    const GlobalValue *GV = G->getGlobal();
2164    if (!GV->hasDLLImportLinkage()) {
2165      unsigned char OpFlags = 0;
2166
2167      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2168      // external symbols most go through the PLT in PIC mode.  If the symbol
2169      // has hidden or protected visibility, or if it is static or local, then
2170      // we don't need to use the PLT - we can directly call it.
2171      if (Subtarget->isTargetELF() &&
2172          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2173          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2174        OpFlags = X86II::MO_PLT;
2175      } else if (Subtarget->isPICStyleStubAny() &&
2176               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2177               Subtarget->getDarwinVers() < 9) {
2178        // PC-relative references to external symbols should go through $stub,
2179        // unless we're building with the leopard linker or later, which
2180        // automatically synthesizes these stubs.
2181        OpFlags = X86II::MO_DARWIN_STUB;
2182      }
2183
2184      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2185                                          G->getOffset(), OpFlags);
2186    }
2187  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2188    unsigned char OpFlags = 0;
2189
2190    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2191    // symbols should go through the PLT.
2192    if (Subtarget->isTargetELF() &&
2193        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2194      OpFlags = X86II::MO_PLT;
2195    } else if (Subtarget->isPICStyleStubAny() &&
2196             Subtarget->getDarwinVers() < 9) {
2197      // PC-relative references to external symbols should go through $stub,
2198      // unless we're building with the leopard linker or later, which
2199      // automatically synthesizes these stubs.
2200      OpFlags = X86II::MO_DARWIN_STUB;
2201    }
2202
2203    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2204                                         OpFlags);
2205  }
2206
2207  // Returns a chain & a flag for retval copy to use.
2208  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2209  SmallVector<SDValue, 8> Ops;
2210
2211  if (!IsSibcall && isTailCall) {
2212    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2213                           DAG.getIntPtrConstant(0, true), InFlag);
2214    InFlag = Chain.getValue(1);
2215  }
2216
2217  Ops.push_back(Chain);
2218  Ops.push_back(Callee);
2219
2220  if (isTailCall)
2221    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2222
2223  // Add argument registers to the end of the list so that they are known live
2224  // into the call.
2225  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2226    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2227                                  RegsToPass[i].second.getValueType()));
2228
2229  // Add an implicit use GOT pointer in EBX.
2230  if (!isTailCall && Subtarget->isPICStyleGOT())
2231    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2232
2233  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2234  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64())
2235    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2236
2237  if (InFlag.getNode())
2238    Ops.push_back(InFlag);
2239
2240  if (isTailCall) {
2241    // We used to do:
2242    //// If this is the first return lowered for this function, add the regs
2243    //// to the liveout set for the function.
2244    // This isn't right, although it's probably harmless on x86; liveouts
2245    // should be computed from returns not tail calls.  Consider a void
2246    // function making a tail call to a function returning int.
2247    return DAG.getNode(X86ISD::TC_RETURN, dl,
2248                       NodeTys, &Ops[0], Ops.size());
2249  }
2250
2251  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2252  InFlag = Chain.getValue(1);
2253
2254  // Create the CALLSEQ_END node.
2255  unsigned NumBytesForCalleeToPush;
2256  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2257    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2258  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2259    // If this is a call to a struct-return function, the callee
2260    // pops the hidden struct pointer, so we have to push it back.
2261    // This is common for Darwin/X86, Linux & Mingw32 targets.
2262    NumBytesForCalleeToPush = 4;
2263  else
2264    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2265
2266  // Returns a flag for retval copy to use.
2267  if (!IsSibcall) {
2268    Chain = DAG.getCALLSEQ_END(Chain,
2269                               DAG.getIntPtrConstant(NumBytes, true),
2270                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2271                                                     true),
2272                               InFlag);
2273    InFlag = Chain.getValue(1);
2274  }
2275
2276  // Handle result values, copying them out of physregs into vregs that we
2277  // return.
2278  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2279                         Ins, dl, DAG, InVals);
2280}
2281
2282
2283//===----------------------------------------------------------------------===//
2284//                Fast Calling Convention (tail call) implementation
2285//===----------------------------------------------------------------------===//
2286
2287//  Like std call, callee cleans arguments, convention except that ECX is
2288//  reserved for storing the tail called function address. Only 2 registers are
2289//  free for argument passing (inreg). Tail call optimization is performed
2290//  provided:
2291//                * tailcallopt is enabled
2292//                * caller/callee are fastcc
2293//  On X86_64 architecture with GOT-style position independent code only local
2294//  (within module) calls are supported at the moment.
2295//  To keep the stack aligned according to platform abi the function
2296//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2297//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2298//  If a tail called function callee has more arguments than the caller the
2299//  caller needs to make sure that there is room to move the RETADDR to. This is
2300//  achieved by reserving an area the size of the argument delta right after the
2301//  original REtADDR, but before the saved framepointer or the spilled registers
2302//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2303//  stack layout:
2304//    arg1
2305//    arg2
2306//    RETADDR
2307//    [ new RETADDR
2308//      move area ]
2309//    (possible EBP)
2310//    ESI
2311//    EDI
2312//    local1 ..
2313
2314/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2315/// for a 16 byte align requirement.
2316unsigned
2317X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2318                                               SelectionDAG& DAG) const {
2319  MachineFunction &MF = DAG.getMachineFunction();
2320  const TargetMachine &TM = MF.getTarget();
2321  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2322  unsigned StackAlignment = TFI.getStackAlignment();
2323  uint64_t AlignMask = StackAlignment - 1;
2324  int64_t Offset = StackSize;
2325  uint64_t SlotSize = TD->getPointerSize();
2326  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2327    // Number smaller than 12 so just add the difference.
2328    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2329  } else {
2330    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2331    Offset = ((~AlignMask) & Offset) + StackAlignment +
2332      (StackAlignment-SlotSize);
2333  }
2334  return Offset;
2335}
2336
2337/// MatchingStackOffset - Return true if the given stack call argument is
2338/// already available in the same position (relatively) of the caller's
2339/// incoming argument stack.
2340static
2341bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2342                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2343                         const X86InstrInfo *TII) {
2344  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2345  int FI = INT_MAX;
2346  if (Arg.getOpcode() == ISD::CopyFromReg) {
2347    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2348    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2349      return false;
2350    MachineInstr *Def = MRI->getVRegDef(VR);
2351    if (!Def)
2352      return false;
2353    if (!Flags.isByVal()) {
2354      if (!TII->isLoadFromStackSlot(Def, FI))
2355        return false;
2356    } else {
2357      unsigned Opcode = Def->getOpcode();
2358      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2359          Def->getOperand(1).isFI()) {
2360        FI = Def->getOperand(1).getIndex();
2361        Bytes = Flags.getByValSize();
2362      } else
2363        return false;
2364    }
2365  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2366    if (Flags.isByVal())
2367      // ByVal argument is passed in as a pointer but it's now being
2368      // dereferenced. e.g.
2369      // define @foo(%struct.X* %A) {
2370      //   tail call @bar(%struct.X* byval %A)
2371      // }
2372      return false;
2373    SDValue Ptr = Ld->getBasePtr();
2374    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2375    if (!FINode)
2376      return false;
2377    FI = FINode->getIndex();
2378  } else
2379    return false;
2380
2381  assert(FI != INT_MAX);
2382  if (!MFI->isFixedObjectIndex(FI))
2383    return false;
2384  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2385}
2386
2387/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2388/// for tail call optimization. Targets which want to do tail call
2389/// optimization should implement this function.
2390bool
2391X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2392                                                     CallingConv::ID CalleeCC,
2393                                                     bool isVarArg,
2394                                                     bool isCalleeStructRet,
2395                                                     bool isCallerStructRet,
2396                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2397                                    const SmallVectorImpl<SDValue> &OutVals,
2398                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2399                                                     SelectionDAG& DAG) const {
2400  if (!IsTailCallConvention(CalleeCC) &&
2401      CalleeCC != CallingConv::C)
2402    return false;
2403
2404  // If -tailcallopt is specified, make fastcc functions tail-callable.
2405  const MachineFunction &MF = DAG.getMachineFunction();
2406  const Function *CallerF = DAG.getMachineFunction().getFunction();
2407  CallingConv::ID CallerCC = CallerF->getCallingConv();
2408  bool CCMatch = CallerCC == CalleeCC;
2409
2410  if (GuaranteedTailCallOpt) {
2411    if (IsTailCallConvention(CalleeCC) && CCMatch)
2412      return true;
2413    return false;
2414  }
2415
2416  // Look for obvious safe cases to perform tail call optimization that do not
2417  // require ABI changes. This is what gcc calls sibcall.
2418
2419  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2420  // emit a special epilogue.
2421  if (RegInfo->needsStackRealignment(MF))
2422    return false;
2423
2424  // Do not sibcall optimize vararg calls unless the call site is not passing
2425  // any arguments.
2426  if (isVarArg && !Outs.empty())
2427    return false;
2428
2429  // Also avoid sibcall optimization if either caller or callee uses struct
2430  // return semantics.
2431  if (isCalleeStructRet || isCallerStructRet)
2432    return false;
2433
2434  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2435  // Therefore if it's not used by the call it is not safe to optimize this into
2436  // a sibcall.
2437  bool Unused = false;
2438  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2439    if (!Ins[i].Used) {
2440      Unused = true;
2441      break;
2442    }
2443  }
2444  if (Unused) {
2445    SmallVector<CCValAssign, 16> RVLocs;
2446    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2447                   RVLocs, *DAG.getContext());
2448    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2449    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2450      CCValAssign &VA = RVLocs[i];
2451      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2452        return false;
2453    }
2454  }
2455
2456  // If the calling conventions do not match, then we'd better make sure the
2457  // results are returned in the same way as what the caller expects.
2458  if (!CCMatch) {
2459    SmallVector<CCValAssign, 16> RVLocs1;
2460    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2461                    RVLocs1, *DAG.getContext());
2462    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2463
2464    SmallVector<CCValAssign, 16> RVLocs2;
2465    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2466                    RVLocs2, *DAG.getContext());
2467    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2468
2469    if (RVLocs1.size() != RVLocs2.size())
2470      return false;
2471    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2472      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2473        return false;
2474      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2475        return false;
2476      if (RVLocs1[i].isRegLoc()) {
2477        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2478          return false;
2479      } else {
2480        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2481          return false;
2482      }
2483    }
2484  }
2485
2486  // If the callee takes no arguments then go on to check the results of the
2487  // call.
2488  if (!Outs.empty()) {
2489    // Check if stack adjustment is needed. For now, do not do this if any
2490    // argument is passed on the stack.
2491    SmallVector<CCValAssign, 16> ArgLocs;
2492    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2493                   ArgLocs, *DAG.getContext());
2494    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2495    if (CCInfo.getNextStackOffset()) {
2496      MachineFunction &MF = DAG.getMachineFunction();
2497      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2498        return false;
2499      if (Subtarget->isTargetWin64())
2500        // Win64 ABI has additional complications.
2501        return false;
2502
2503      // Check if the arguments are already laid out in the right way as
2504      // the caller's fixed stack objects.
2505      MachineFrameInfo *MFI = MF.getFrameInfo();
2506      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2507      const X86InstrInfo *TII =
2508        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2509      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2510        CCValAssign &VA = ArgLocs[i];
2511        SDValue Arg = OutVals[i];
2512        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2513        if (VA.getLocInfo() == CCValAssign::Indirect)
2514          return false;
2515        if (!VA.isRegLoc()) {
2516          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2517                                   MFI, MRI, TII))
2518            return false;
2519        }
2520      }
2521    }
2522
2523    // If the tailcall address may be in a register, then make sure it's
2524    // possible to register allocate for it. In 32-bit, the call address can
2525    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2526    // callee-saved registers are restored. These happen to be the same
2527    // registers used to pass 'inreg' arguments so watch out for those.
2528    if (!Subtarget->is64Bit() &&
2529        !isa<GlobalAddressSDNode>(Callee) &&
2530        !isa<ExternalSymbolSDNode>(Callee)) {
2531      unsigned NumInRegs = 0;
2532      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2533        CCValAssign &VA = ArgLocs[i];
2534        if (!VA.isRegLoc())
2535          continue;
2536        unsigned Reg = VA.getLocReg();
2537        switch (Reg) {
2538        default: break;
2539        case X86::EAX: case X86::EDX: case X86::ECX:
2540          if (++NumInRegs == 3)
2541            return false;
2542          break;
2543        }
2544      }
2545    }
2546  }
2547
2548  return true;
2549}
2550
2551FastISel *
2552X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2553  return X86::createFastISel(funcInfo);
2554}
2555
2556
2557//===----------------------------------------------------------------------===//
2558//                           Other Lowering Hooks
2559//===----------------------------------------------------------------------===//
2560
2561static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2562                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2563  switch(Opc) {
2564  default: llvm_unreachable("Unknown x86 shuffle node");
2565  case X86ISD::PSHUFD:
2566  case X86ISD::PSHUFHW:
2567  case X86ISD::PSHUFLW:
2568    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2569  }
2570
2571  return SDValue();
2572}
2573
2574static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2575               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2576  switch(Opc) {
2577  default: llvm_unreachable("Unknown x86 shuffle node");
2578  case X86ISD::SHUFPD:
2579  case X86ISD::SHUFPS:
2580    return DAG.getNode(Opc, dl, VT, V1, V2,
2581                       DAG.getConstant(TargetMask, MVT::i8));
2582  }
2583  return SDValue();
2584}
2585
2586static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2587                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2588  switch(Opc) {
2589  default: llvm_unreachable("Unknown x86 shuffle node");
2590  case X86ISD::MOVLHPS:
2591  case X86ISD::PUNPCKLDQ:
2592    return DAG.getNode(Opc, dl, VT, V1, V2);
2593  }
2594  return SDValue();
2595}
2596
2597SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2598  MachineFunction &MF = DAG.getMachineFunction();
2599  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2600  int ReturnAddrIndex = FuncInfo->getRAIndex();
2601
2602  if (ReturnAddrIndex == 0) {
2603    // Set up a frame object for the return address.
2604    uint64_t SlotSize = TD->getPointerSize();
2605    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2606                                                           false);
2607    FuncInfo->setRAIndex(ReturnAddrIndex);
2608  }
2609
2610  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2611}
2612
2613
2614bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2615                                       bool hasSymbolicDisplacement) {
2616  // Offset should fit into 32 bit immediate field.
2617  if (!isInt<32>(Offset))
2618    return false;
2619
2620  // If we don't have a symbolic displacement - we don't have any extra
2621  // restrictions.
2622  if (!hasSymbolicDisplacement)
2623    return true;
2624
2625  // FIXME: Some tweaks might be needed for medium code model.
2626  if (M != CodeModel::Small && M != CodeModel::Kernel)
2627    return false;
2628
2629  // For small code model we assume that latest object is 16MB before end of 31
2630  // bits boundary. We may also accept pretty large negative constants knowing
2631  // that all objects are in the positive half of address space.
2632  if (M == CodeModel::Small && Offset < 16*1024*1024)
2633    return true;
2634
2635  // For kernel code model we know that all object resist in the negative half
2636  // of 32bits address space. We may not accept negative offsets, since they may
2637  // be just off and we may accept pretty large positive ones.
2638  if (M == CodeModel::Kernel && Offset > 0)
2639    return true;
2640
2641  return false;
2642}
2643
2644/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2645/// specific condition code, returning the condition code and the LHS/RHS of the
2646/// comparison to make.
2647static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2648                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2649  if (!isFP) {
2650    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2651      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2652        // X > -1   -> X == 0, jump !sign.
2653        RHS = DAG.getConstant(0, RHS.getValueType());
2654        return X86::COND_NS;
2655      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2656        // X < 0   -> X == 0, jump on sign.
2657        return X86::COND_S;
2658      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2659        // X < 1   -> X <= 0
2660        RHS = DAG.getConstant(0, RHS.getValueType());
2661        return X86::COND_LE;
2662      }
2663    }
2664
2665    switch (SetCCOpcode) {
2666    default: llvm_unreachable("Invalid integer condition!");
2667    case ISD::SETEQ:  return X86::COND_E;
2668    case ISD::SETGT:  return X86::COND_G;
2669    case ISD::SETGE:  return X86::COND_GE;
2670    case ISD::SETLT:  return X86::COND_L;
2671    case ISD::SETLE:  return X86::COND_LE;
2672    case ISD::SETNE:  return X86::COND_NE;
2673    case ISD::SETULT: return X86::COND_B;
2674    case ISD::SETUGT: return X86::COND_A;
2675    case ISD::SETULE: return X86::COND_BE;
2676    case ISD::SETUGE: return X86::COND_AE;
2677    }
2678  }
2679
2680  // First determine if it is required or is profitable to flip the operands.
2681
2682  // If LHS is a foldable load, but RHS is not, flip the condition.
2683  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2684      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2685    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2686    std::swap(LHS, RHS);
2687  }
2688
2689  switch (SetCCOpcode) {
2690  default: break;
2691  case ISD::SETOLT:
2692  case ISD::SETOLE:
2693  case ISD::SETUGT:
2694  case ISD::SETUGE:
2695    std::swap(LHS, RHS);
2696    break;
2697  }
2698
2699  // On a floating point condition, the flags are set as follows:
2700  // ZF  PF  CF   op
2701  //  0 | 0 | 0 | X > Y
2702  //  0 | 0 | 1 | X < Y
2703  //  1 | 0 | 0 | X == Y
2704  //  1 | 1 | 1 | unordered
2705  switch (SetCCOpcode) {
2706  default: llvm_unreachable("Condcode should be pre-legalized away");
2707  case ISD::SETUEQ:
2708  case ISD::SETEQ:   return X86::COND_E;
2709  case ISD::SETOLT:              // flipped
2710  case ISD::SETOGT:
2711  case ISD::SETGT:   return X86::COND_A;
2712  case ISD::SETOLE:              // flipped
2713  case ISD::SETOGE:
2714  case ISD::SETGE:   return X86::COND_AE;
2715  case ISD::SETUGT:              // flipped
2716  case ISD::SETULT:
2717  case ISD::SETLT:   return X86::COND_B;
2718  case ISD::SETUGE:              // flipped
2719  case ISD::SETULE:
2720  case ISD::SETLE:   return X86::COND_BE;
2721  case ISD::SETONE:
2722  case ISD::SETNE:   return X86::COND_NE;
2723  case ISD::SETUO:   return X86::COND_P;
2724  case ISD::SETO:    return X86::COND_NP;
2725  case ISD::SETOEQ:
2726  case ISD::SETUNE:  return X86::COND_INVALID;
2727  }
2728}
2729
2730/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2731/// code. Current x86 isa includes the following FP cmov instructions:
2732/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2733static bool hasFPCMov(unsigned X86CC) {
2734  switch (X86CC) {
2735  default:
2736    return false;
2737  case X86::COND_B:
2738  case X86::COND_BE:
2739  case X86::COND_E:
2740  case X86::COND_P:
2741  case X86::COND_A:
2742  case X86::COND_AE:
2743  case X86::COND_NE:
2744  case X86::COND_NP:
2745    return true;
2746  }
2747}
2748
2749/// isFPImmLegal - Returns true if the target can instruction select the
2750/// specified FP immediate natively. If false, the legalizer will
2751/// materialize the FP immediate as a load from a constant pool.
2752bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2753  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2754    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2755      return true;
2756  }
2757  return false;
2758}
2759
2760/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2761/// the specified range (L, H].
2762static bool isUndefOrInRange(int Val, int Low, int Hi) {
2763  return (Val < 0) || (Val >= Low && Val < Hi);
2764}
2765
2766/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2767/// specified value.
2768static bool isUndefOrEqual(int Val, int CmpVal) {
2769  if (Val < 0 || Val == CmpVal)
2770    return true;
2771  return false;
2772}
2773
2774/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2775/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2776/// the second operand.
2777static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2778  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2779    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2780  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2781    return (Mask[0] < 2 && Mask[1] < 2);
2782  return false;
2783}
2784
2785bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2786  SmallVector<int, 8> M;
2787  N->getMask(M);
2788  return ::isPSHUFDMask(M, N->getValueType(0));
2789}
2790
2791/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2792/// is suitable for input to PSHUFHW.
2793static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2794  if (VT != MVT::v8i16)
2795    return false;
2796
2797  // Lower quadword copied in order or undef.
2798  for (int i = 0; i != 4; ++i)
2799    if (Mask[i] >= 0 && Mask[i] != i)
2800      return false;
2801
2802  // Upper quadword shuffled.
2803  for (int i = 4; i != 8; ++i)
2804    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2805      return false;
2806
2807  return true;
2808}
2809
2810bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2811  SmallVector<int, 8> M;
2812  N->getMask(M);
2813  return ::isPSHUFHWMask(M, N->getValueType(0));
2814}
2815
2816/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2817/// is suitable for input to PSHUFLW.
2818static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2819  if (VT != MVT::v8i16)
2820    return false;
2821
2822  // Upper quadword copied in order.
2823  for (int i = 4; i != 8; ++i)
2824    if (Mask[i] >= 0 && Mask[i] != i)
2825      return false;
2826
2827  // Lower quadword shuffled.
2828  for (int i = 0; i != 4; ++i)
2829    if (Mask[i] >= 4)
2830      return false;
2831
2832  return true;
2833}
2834
2835bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2836  SmallVector<int, 8> M;
2837  N->getMask(M);
2838  return ::isPSHUFLWMask(M, N->getValueType(0));
2839}
2840
2841/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2842/// is suitable for input to PALIGNR.
2843static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2844                          bool hasSSSE3) {
2845  int i, e = VT.getVectorNumElements();
2846
2847  // Do not handle v2i64 / v2f64 shuffles with palignr.
2848  if (e < 4 || !hasSSSE3)
2849    return false;
2850
2851  for (i = 0; i != e; ++i)
2852    if (Mask[i] >= 0)
2853      break;
2854
2855  // All undef, not a palignr.
2856  if (i == e)
2857    return false;
2858
2859  // Determine if it's ok to perform a palignr with only the LHS, since we
2860  // don't have access to the actual shuffle elements to see if RHS is undef.
2861  bool Unary = Mask[i] < (int)e;
2862  bool NeedsUnary = false;
2863
2864  int s = Mask[i] - i;
2865
2866  // Check the rest of the elements to see if they are consecutive.
2867  for (++i; i != e; ++i) {
2868    int m = Mask[i];
2869    if (m < 0)
2870      continue;
2871
2872    Unary = Unary && (m < (int)e);
2873    NeedsUnary = NeedsUnary || (m < s);
2874
2875    if (NeedsUnary && !Unary)
2876      return false;
2877    if (Unary && m != ((s+i) & (e-1)))
2878      return false;
2879    if (!Unary && m != (s+i))
2880      return false;
2881  }
2882  return true;
2883}
2884
2885bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2886  SmallVector<int, 8> M;
2887  N->getMask(M);
2888  return ::isPALIGNRMask(M, N->getValueType(0), true);
2889}
2890
2891/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2892/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2893static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2894  int NumElems = VT.getVectorNumElements();
2895  if (NumElems != 2 && NumElems != 4)
2896    return false;
2897
2898  int Half = NumElems / 2;
2899  for (int i = 0; i < Half; ++i)
2900    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2901      return false;
2902  for (int i = Half; i < NumElems; ++i)
2903    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2904      return false;
2905
2906  return true;
2907}
2908
2909bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2910  SmallVector<int, 8> M;
2911  N->getMask(M);
2912  return ::isSHUFPMask(M, N->getValueType(0));
2913}
2914
2915/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2916/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2917/// half elements to come from vector 1 (which would equal the dest.) and
2918/// the upper half to come from vector 2.
2919static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2920  int NumElems = VT.getVectorNumElements();
2921
2922  if (NumElems != 2 && NumElems != 4)
2923    return false;
2924
2925  int Half = NumElems / 2;
2926  for (int i = 0; i < Half; ++i)
2927    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2928      return false;
2929  for (int i = Half; i < NumElems; ++i)
2930    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2931      return false;
2932  return true;
2933}
2934
2935static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2936  SmallVector<int, 8> M;
2937  N->getMask(M);
2938  return isCommutedSHUFPMask(M, N->getValueType(0));
2939}
2940
2941/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2942/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2943bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2944  if (N->getValueType(0).getVectorNumElements() != 4)
2945    return false;
2946
2947  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2948  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2949         isUndefOrEqual(N->getMaskElt(1), 7) &&
2950         isUndefOrEqual(N->getMaskElt(2), 2) &&
2951         isUndefOrEqual(N->getMaskElt(3), 3);
2952}
2953
2954/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2955/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2956/// <2, 3, 2, 3>
2957bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2958  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2959
2960  if (NumElems != 4)
2961    return false;
2962
2963  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2964  isUndefOrEqual(N->getMaskElt(1), 3) &&
2965  isUndefOrEqual(N->getMaskElt(2), 2) &&
2966  isUndefOrEqual(N->getMaskElt(3), 3);
2967}
2968
2969/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2970/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2971bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2972  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2973
2974  if (NumElems != 2 && NumElems != 4)
2975    return false;
2976
2977  for (unsigned i = 0; i < NumElems/2; ++i)
2978    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2979      return false;
2980
2981  for (unsigned i = NumElems/2; i < NumElems; ++i)
2982    if (!isUndefOrEqual(N->getMaskElt(i), i))
2983      return false;
2984
2985  return true;
2986}
2987
2988/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2989/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2990bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2991  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2992
2993  if (NumElems != 2 && NumElems != 4)
2994    return false;
2995
2996  for (unsigned i = 0; i < NumElems/2; ++i)
2997    if (!isUndefOrEqual(N->getMaskElt(i), i))
2998      return false;
2999
3000  for (unsigned i = 0; i < NumElems/2; ++i)
3001    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3002      return false;
3003
3004  return true;
3005}
3006
3007/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3008/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3009static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3010                         bool V2IsSplat = false) {
3011  int NumElts = VT.getVectorNumElements();
3012  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3013    return false;
3014
3015  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3016    int BitI  = Mask[i];
3017    int BitI1 = Mask[i+1];
3018    if (!isUndefOrEqual(BitI, j))
3019      return false;
3020    if (V2IsSplat) {
3021      if (!isUndefOrEqual(BitI1, NumElts))
3022        return false;
3023    } else {
3024      if (!isUndefOrEqual(BitI1, j + NumElts))
3025        return false;
3026    }
3027  }
3028  return true;
3029}
3030
3031bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3032  SmallVector<int, 8> M;
3033  N->getMask(M);
3034  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3035}
3036
3037/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3038/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3039static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3040                         bool V2IsSplat = false) {
3041  int NumElts = VT.getVectorNumElements();
3042  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3043    return false;
3044
3045  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3046    int BitI  = Mask[i];
3047    int BitI1 = Mask[i+1];
3048    if (!isUndefOrEqual(BitI, j + NumElts/2))
3049      return false;
3050    if (V2IsSplat) {
3051      if (isUndefOrEqual(BitI1, NumElts))
3052        return false;
3053    } else {
3054      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3055        return false;
3056    }
3057  }
3058  return true;
3059}
3060
3061bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3062  SmallVector<int, 8> M;
3063  N->getMask(M);
3064  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3065}
3066
3067/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3068/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3069/// <0, 0, 1, 1>
3070static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3071  int NumElems = VT.getVectorNumElements();
3072  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3073    return false;
3074
3075  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
3076    int BitI  = Mask[i];
3077    int BitI1 = Mask[i+1];
3078    if (!isUndefOrEqual(BitI, j))
3079      return false;
3080    if (!isUndefOrEqual(BitI1, j))
3081      return false;
3082  }
3083  return true;
3084}
3085
3086bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3087  SmallVector<int, 8> M;
3088  N->getMask(M);
3089  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3090}
3091
3092/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3093/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3094/// <2, 2, 3, 3>
3095static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3096  int NumElems = VT.getVectorNumElements();
3097  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3098    return false;
3099
3100  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3101    int BitI  = Mask[i];
3102    int BitI1 = Mask[i+1];
3103    if (!isUndefOrEqual(BitI, j))
3104      return false;
3105    if (!isUndefOrEqual(BitI1, j))
3106      return false;
3107  }
3108  return true;
3109}
3110
3111bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3112  SmallVector<int, 8> M;
3113  N->getMask(M);
3114  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3115}
3116
3117/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3118/// specifies a shuffle of elements that is suitable for input to MOVSS,
3119/// MOVSD, and MOVD, i.e. setting the lowest element.
3120static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3121  if (VT.getVectorElementType().getSizeInBits() < 32)
3122    return false;
3123
3124  int NumElts = VT.getVectorNumElements();
3125
3126  if (!isUndefOrEqual(Mask[0], NumElts))
3127    return false;
3128
3129  for (int i = 1; i < NumElts; ++i)
3130    if (!isUndefOrEqual(Mask[i], i))
3131      return false;
3132
3133  return true;
3134}
3135
3136bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3137  SmallVector<int, 8> M;
3138  N->getMask(M);
3139  return ::isMOVLMask(M, N->getValueType(0));
3140}
3141
3142/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3143/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3144/// element of vector 2 and the other elements to come from vector 1 in order.
3145static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3146                               bool V2IsSplat = false, bool V2IsUndef = false) {
3147  int NumOps = VT.getVectorNumElements();
3148  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3149    return false;
3150
3151  if (!isUndefOrEqual(Mask[0], 0))
3152    return false;
3153
3154  for (int i = 1; i < NumOps; ++i)
3155    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3156          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3157          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3158      return false;
3159
3160  return true;
3161}
3162
3163static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3164                           bool V2IsUndef = false) {
3165  SmallVector<int, 8> M;
3166  N->getMask(M);
3167  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3168}
3169
3170/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3171/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3172bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3173  if (N->getValueType(0).getVectorNumElements() != 4)
3174    return false;
3175
3176  // Expect 1, 1, 3, 3
3177  for (unsigned i = 0; i < 2; ++i) {
3178    int Elt = N->getMaskElt(i);
3179    if (Elt >= 0 && Elt != 1)
3180      return false;
3181  }
3182
3183  bool HasHi = false;
3184  for (unsigned i = 2; i < 4; ++i) {
3185    int Elt = N->getMaskElt(i);
3186    if (Elt >= 0 && Elt != 3)
3187      return false;
3188    if (Elt == 3)
3189      HasHi = true;
3190  }
3191  // Don't use movshdup if it can be done with a shufps.
3192  // FIXME: verify that matching u, u, 3, 3 is what we want.
3193  return HasHi;
3194}
3195
3196/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3197/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3198bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3199  if (N->getValueType(0).getVectorNumElements() != 4)
3200    return false;
3201
3202  // Expect 0, 0, 2, 2
3203  for (unsigned i = 0; i < 2; ++i)
3204    if (N->getMaskElt(i) > 0)
3205      return false;
3206
3207  bool HasHi = false;
3208  for (unsigned i = 2; i < 4; ++i) {
3209    int Elt = N->getMaskElt(i);
3210    if (Elt >= 0 && Elt != 2)
3211      return false;
3212    if (Elt == 2)
3213      HasHi = true;
3214  }
3215  // Don't use movsldup if it can be done with a shufps.
3216  return HasHi;
3217}
3218
3219/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3220/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3221bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3222  int e = N->getValueType(0).getVectorNumElements() / 2;
3223
3224  for (int i = 0; i < e; ++i)
3225    if (!isUndefOrEqual(N->getMaskElt(i), i))
3226      return false;
3227  for (int i = 0; i < e; ++i)
3228    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3229      return false;
3230  return true;
3231}
3232
3233/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3234/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3235unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3236  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3237  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3238
3239  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3240  unsigned Mask = 0;
3241  for (int i = 0; i < NumOperands; ++i) {
3242    int Val = SVOp->getMaskElt(NumOperands-i-1);
3243    if (Val < 0) Val = 0;
3244    if (Val >= NumOperands) Val -= NumOperands;
3245    Mask |= Val;
3246    if (i != NumOperands - 1)
3247      Mask <<= Shift;
3248  }
3249  return Mask;
3250}
3251
3252/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3253/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3254unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3255  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3256  unsigned Mask = 0;
3257  // 8 nodes, but we only care about the last 4.
3258  for (unsigned i = 7; i >= 4; --i) {
3259    int Val = SVOp->getMaskElt(i);
3260    if (Val >= 0)
3261      Mask |= (Val - 4);
3262    if (i != 4)
3263      Mask <<= 2;
3264  }
3265  return Mask;
3266}
3267
3268/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3269/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3270unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3271  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3272  unsigned Mask = 0;
3273  // 8 nodes, but we only care about the first 4.
3274  for (int i = 3; i >= 0; --i) {
3275    int Val = SVOp->getMaskElt(i);
3276    if (Val >= 0)
3277      Mask |= Val;
3278    if (i != 0)
3279      Mask <<= 2;
3280  }
3281  return Mask;
3282}
3283
3284/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3285/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3286unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3287  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3288  EVT VVT = N->getValueType(0);
3289  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3290  int Val = 0;
3291
3292  unsigned i, e;
3293  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3294    Val = SVOp->getMaskElt(i);
3295    if (Val >= 0)
3296      break;
3297  }
3298  return (Val - i) * EltSize;
3299}
3300
3301/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3302/// constant +0.0.
3303bool X86::isZeroNode(SDValue Elt) {
3304  return ((isa<ConstantSDNode>(Elt) &&
3305           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3306          (isa<ConstantFPSDNode>(Elt) &&
3307           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3308}
3309
3310/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3311/// their permute mask.
3312static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3313                                    SelectionDAG &DAG) {
3314  EVT VT = SVOp->getValueType(0);
3315  unsigned NumElems = VT.getVectorNumElements();
3316  SmallVector<int, 8> MaskVec;
3317
3318  for (unsigned i = 0; i != NumElems; ++i) {
3319    int idx = SVOp->getMaskElt(i);
3320    if (idx < 0)
3321      MaskVec.push_back(idx);
3322    else if (idx < (int)NumElems)
3323      MaskVec.push_back(idx + NumElems);
3324    else
3325      MaskVec.push_back(idx - NumElems);
3326  }
3327  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3328                              SVOp->getOperand(0), &MaskVec[0]);
3329}
3330
3331/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3332/// the two vector operands have swapped position.
3333static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3334  unsigned NumElems = VT.getVectorNumElements();
3335  for (unsigned i = 0; i != NumElems; ++i) {
3336    int idx = Mask[i];
3337    if (idx < 0)
3338      continue;
3339    else if (idx < (int)NumElems)
3340      Mask[i] = idx + NumElems;
3341    else
3342      Mask[i] = idx - NumElems;
3343  }
3344}
3345
3346/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3347/// match movhlps. The lower half elements should come from upper half of
3348/// V1 (and in order), and the upper half elements should come from the upper
3349/// half of V2 (and in order).
3350static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3351  if (Op->getValueType(0).getVectorNumElements() != 4)
3352    return false;
3353  for (unsigned i = 0, e = 2; i != e; ++i)
3354    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3355      return false;
3356  for (unsigned i = 2; i != 4; ++i)
3357    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3358      return false;
3359  return true;
3360}
3361
3362/// isScalarLoadToVector - Returns true if the node is a scalar load that
3363/// is promoted to a vector. It also returns the LoadSDNode by reference if
3364/// required.
3365static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3366  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3367    return false;
3368  N = N->getOperand(0).getNode();
3369  if (!ISD::isNON_EXTLoad(N))
3370    return false;
3371  if (LD)
3372    *LD = cast<LoadSDNode>(N);
3373  return true;
3374}
3375
3376/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3377/// match movlp{s|d}. The lower half elements should come from lower half of
3378/// V1 (and in order), and the upper half elements should come from the upper
3379/// half of V2 (and in order). And since V1 will become the source of the
3380/// MOVLP, it must be either a vector load or a scalar load to vector.
3381static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3382                               ShuffleVectorSDNode *Op) {
3383  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3384    return false;
3385  // Is V2 is a vector load, don't do this transformation. We will try to use
3386  // load folding shufps op.
3387  if (ISD::isNON_EXTLoad(V2))
3388    return false;
3389
3390  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3391
3392  if (NumElems != 2 && NumElems != 4)
3393    return false;
3394  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3395    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3396      return false;
3397  for (unsigned i = NumElems/2; i != NumElems; ++i)
3398    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3399      return false;
3400  return true;
3401}
3402
3403/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3404/// all the same.
3405static bool isSplatVector(SDNode *N) {
3406  if (N->getOpcode() != ISD::BUILD_VECTOR)
3407    return false;
3408
3409  SDValue SplatValue = N->getOperand(0);
3410  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3411    if (N->getOperand(i) != SplatValue)
3412      return false;
3413  return true;
3414}
3415
3416/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3417/// to an zero vector.
3418/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3419static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3420  SDValue V1 = N->getOperand(0);
3421  SDValue V2 = N->getOperand(1);
3422  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3423  for (unsigned i = 0; i != NumElems; ++i) {
3424    int Idx = N->getMaskElt(i);
3425    if (Idx >= (int)NumElems) {
3426      unsigned Opc = V2.getOpcode();
3427      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3428        continue;
3429      if (Opc != ISD::BUILD_VECTOR ||
3430          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3431        return false;
3432    } else if (Idx >= 0) {
3433      unsigned Opc = V1.getOpcode();
3434      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3435        continue;
3436      if (Opc != ISD::BUILD_VECTOR ||
3437          !X86::isZeroNode(V1.getOperand(Idx)))
3438        return false;
3439    }
3440  }
3441  return true;
3442}
3443
3444/// getZeroVector - Returns a vector of specified type with all zero elements.
3445///
3446static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3447                             DebugLoc dl) {
3448  assert(VT.isVector() && "Expected a vector type");
3449
3450  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted
3451  // to their dest type. This ensures they get CSE'd.
3452  SDValue Vec;
3453  if (VT.getSizeInBits() == 64) { // MMX
3454    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3455    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3456  } else if (VT.getSizeInBits() == 128) {
3457    if (HasSSE2) {  // SSE2
3458      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3459      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3460    } else { // SSE1
3461      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3462      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3463    }
3464  } else if (VT.getSizeInBits() == 256) { // AVX
3465    // 256-bit logic and arithmetic instructions in AVX are
3466    // all floating-point, no support for integer ops. Default
3467    // to emitting fp zeroed vectors then.
3468    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3469    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3470    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3471  }
3472  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3473}
3474
3475/// getOnesVector - Returns a vector of specified type with all bits set.
3476///
3477static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3478  assert(VT.isVector() && "Expected a vector type");
3479
3480  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3481  // type.  This ensures they get CSE'd.
3482  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3483  SDValue Vec;
3484  if (VT.getSizeInBits() == 64) // MMX
3485    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3486  else // SSE
3487    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3488  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3489}
3490
3491
3492/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3493/// that point to V2 points to its first element.
3494static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3495  EVT VT = SVOp->getValueType(0);
3496  unsigned NumElems = VT.getVectorNumElements();
3497
3498  bool Changed = false;
3499  SmallVector<int, 8> MaskVec;
3500  SVOp->getMask(MaskVec);
3501
3502  for (unsigned i = 0; i != NumElems; ++i) {
3503    if (MaskVec[i] > (int)NumElems) {
3504      MaskVec[i] = NumElems;
3505      Changed = true;
3506    }
3507  }
3508  if (Changed)
3509    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3510                                SVOp->getOperand(1), &MaskVec[0]);
3511  return SDValue(SVOp, 0);
3512}
3513
3514/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3515/// operation of specified width.
3516static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3517                       SDValue V2) {
3518  unsigned NumElems = VT.getVectorNumElements();
3519  SmallVector<int, 8> Mask;
3520  Mask.push_back(NumElems);
3521  for (unsigned i = 1; i != NumElems; ++i)
3522    Mask.push_back(i);
3523  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3524}
3525
3526/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3527static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3528                          SDValue V2) {
3529  unsigned NumElems = VT.getVectorNumElements();
3530  SmallVector<int, 8> Mask;
3531  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3532    Mask.push_back(i);
3533    Mask.push_back(i + NumElems);
3534  }
3535  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3536}
3537
3538/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3539static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3540                          SDValue V2) {
3541  unsigned NumElems = VT.getVectorNumElements();
3542  unsigned Half = NumElems/2;
3543  SmallVector<int, 8> Mask;
3544  for (unsigned i = 0; i != Half; ++i) {
3545    Mask.push_back(i + Half);
3546    Mask.push_back(i + NumElems + Half);
3547  }
3548  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3549}
3550
3551/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3552static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3553  if (SV->getValueType(0).getVectorNumElements() <= 4)
3554    return SDValue(SV, 0);
3555
3556  EVT PVT = MVT::v4f32;
3557  EVT VT = SV->getValueType(0);
3558  DebugLoc dl = SV->getDebugLoc();
3559  SDValue V1 = SV->getOperand(0);
3560  int NumElems = VT.getVectorNumElements();
3561  int EltNo = SV->getSplatIndex();
3562
3563  // unpack elements to the correct location
3564  while (NumElems > 4) {
3565    if (EltNo < NumElems/2) {
3566      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3567    } else {
3568      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3569      EltNo -= NumElems/2;
3570    }
3571    NumElems >>= 1;
3572  }
3573
3574  // Perform the splat.
3575  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3576  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3577  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3578  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3579}
3580
3581/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3582/// vector of zero or undef vector.  This produces a shuffle where the low
3583/// element of V2 is swizzled into the zero/undef vector, landing at element
3584/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3585static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3586                                             bool isZero, bool HasSSE2,
3587                                             SelectionDAG &DAG) {
3588  EVT VT = V2.getValueType();
3589  SDValue V1 = isZero
3590    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3591  unsigned NumElems = VT.getVectorNumElements();
3592  SmallVector<int, 16> MaskVec;
3593  for (unsigned i = 0; i != NumElems; ++i)
3594    // If this is the insertion idx, put the low elt of V2 here.
3595    MaskVec.push_back(i == Idx ? NumElems : i);
3596  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3597}
3598
3599/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3600/// a shuffle that is zero.
3601static
3602unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3603                                  bool Low, SelectionDAG &DAG) {
3604  unsigned NumZeros = 0;
3605  for (int i = 0; i < NumElems; ++i) {
3606    unsigned Index = Low ? i : NumElems-i-1;
3607    int Idx = SVOp->getMaskElt(Index);
3608    if (Idx < 0) {
3609      ++NumZeros;
3610      continue;
3611    }
3612    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3613    if (Elt.getNode() && X86::isZeroNode(Elt))
3614      ++NumZeros;
3615    else
3616      break;
3617  }
3618  return NumZeros;
3619}
3620
3621/// isVectorShift - Returns true if the shuffle can be implemented as a
3622/// logical left or right shift of a vector.
3623/// FIXME: split into pslldqi, psrldqi, palignr variants.
3624static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3625                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3626  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3627
3628  isLeft = true;
3629  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3630  if (!NumZeros) {
3631    isLeft = false;
3632    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3633    if (!NumZeros)
3634      return false;
3635  }
3636  bool SeenV1 = false;
3637  bool SeenV2 = false;
3638  for (unsigned i = NumZeros; i < NumElems; ++i) {
3639    unsigned Val = isLeft ? (i - NumZeros) : i;
3640    int Idx_ = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3641    if (Idx_ < 0)
3642      continue;
3643    unsigned Idx = (unsigned) Idx_;
3644    if (Idx < NumElems)
3645      SeenV1 = true;
3646    else {
3647      Idx -= NumElems;
3648      SeenV2 = true;
3649    }
3650    if (Idx != Val)
3651      return false;
3652  }
3653  if (SeenV1 && SeenV2)
3654    return false;
3655
3656  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3657  ShAmt = NumZeros;
3658  return true;
3659}
3660
3661
3662/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3663///
3664static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3665                                       unsigned NumNonZero, unsigned NumZero,
3666                                       SelectionDAG &DAG,
3667                                       const TargetLowering &TLI) {
3668  if (NumNonZero > 8)
3669    return SDValue();
3670
3671  DebugLoc dl = Op.getDebugLoc();
3672  SDValue V(0, 0);
3673  bool First = true;
3674  for (unsigned i = 0; i < 16; ++i) {
3675    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3676    if (ThisIsNonZero && First) {
3677      if (NumZero)
3678        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3679      else
3680        V = DAG.getUNDEF(MVT::v8i16);
3681      First = false;
3682    }
3683
3684    if ((i & 1) != 0) {
3685      SDValue ThisElt(0, 0), LastElt(0, 0);
3686      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3687      if (LastIsNonZero) {
3688        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3689                              MVT::i16, Op.getOperand(i-1));
3690      }
3691      if (ThisIsNonZero) {
3692        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3693        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3694                              ThisElt, DAG.getConstant(8, MVT::i8));
3695        if (LastIsNonZero)
3696          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3697      } else
3698        ThisElt = LastElt;
3699
3700      if (ThisElt.getNode())
3701        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3702                        DAG.getIntPtrConstant(i/2));
3703    }
3704  }
3705
3706  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3707}
3708
3709/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3710///
3711static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3712                                     unsigned NumNonZero, unsigned NumZero,
3713                                     SelectionDAG &DAG,
3714                                     const TargetLowering &TLI) {
3715  if (NumNonZero > 4)
3716    return SDValue();
3717
3718  DebugLoc dl = Op.getDebugLoc();
3719  SDValue V(0, 0);
3720  bool First = true;
3721  for (unsigned i = 0; i < 8; ++i) {
3722    bool isNonZero = (NonZeros & (1 << i)) != 0;
3723    if (isNonZero) {
3724      if (First) {
3725        if (NumZero)
3726          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3727        else
3728          V = DAG.getUNDEF(MVT::v8i16);
3729        First = false;
3730      }
3731      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3732                      MVT::v8i16, V, Op.getOperand(i),
3733                      DAG.getIntPtrConstant(i));
3734    }
3735  }
3736
3737  return V;
3738}
3739
3740/// getVShift - Return a vector logical shift node.
3741///
3742static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3743                         unsigned NumBits, SelectionDAG &DAG,
3744                         const TargetLowering &TLI, DebugLoc dl) {
3745  bool isMMX = VT.getSizeInBits() == 64;
3746  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3747  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3748  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3749  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3750                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3751                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3752}
3753
3754SDValue
3755X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3756                                          SelectionDAG &DAG) const {
3757
3758  // Check if the scalar load can be widened into a vector load. And if
3759  // the address is "base + cst" see if the cst can be "absorbed" into
3760  // the shuffle mask.
3761  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3762    SDValue Ptr = LD->getBasePtr();
3763    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3764      return SDValue();
3765    EVT PVT = LD->getValueType(0);
3766    if (PVT != MVT::i32 && PVT != MVT::f32)
3767      return SDValue();
3768
3769    int FI = -1;
3770    int64_t Offset = 0;
3771    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3772      FI = FINode->getIndex();
3773      Offset = 0;
3774    } else if (Ptr.getOpcode() == ISD::ADD &&
3775               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3776               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3777      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3778      Offset = Ptr.getConstantOperandVal(1);
3779      Ptr = Ptr.getOperand(0);
3780    } else {
3781      return SDValue();
3782    }
3783
3784    SDValue Chain = LD->getChain();
3785    // Make sure the stack object alignment is at least 16.
3786    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3787    if (DAG.InferPtrAlignment(Ptr) < 16) {
3788      if (MFI->isFixedObjectIndex(FI)) {
3789        // Can't change the alignment. FIXME: It's possible to compute
3790        // the exact stack offset and reference FI + adjust offset instead.
3791        // If someone *really* cares about this. That's the way to implement it.
3792        return SDValue();
3793      } else {
3794        MFI->setObjectAlignment(FI, 16);
3795      }
3796    }
3797
3798    // (Offset % 16) must be multiple of 4. Then address is then
3799    // Ptr + (Offset & ~15).
3800    if (Offset < 0)
3801      return SDValue();
3802    if ((Offset % 16) & 3)
3803      return SDValue();
3804    int64_t StartOffset = Offset & ~15;
3805    if (StartOffset)
3806      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
3807                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
3808
3809    int EltNo = (Offset - StartOffset) >> 2;
3810    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
3811    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
3812    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
3813                             false, false, 0);
3814    // Canonicalize it to a v4i32 shuffle.
3815    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
3816    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3817                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
3818                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
3819  }
3820
3821  return SDValue();
3822}
3823
3824/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
3825/// vector of type 'VT', see if the elements can be replaced by a single large
3826/// load which has the same value as a build_vector whose operands are 'elts'.
3827///
3828/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
3829///
3830/// FIXME: we'd also like to handle the case where the last elements are zero
3831/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
3832/// There's even a handy isZeroNode for that purpose.
3833static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
3834                                        DebugLoc &dl, SelectionDAG &DAG) {
3835  EVT EltVT = VT.getVectorElementType();
3836  unsigned NumElems = Elts.size();
3837
3838  LoadSDNode *LDBase = NULL;
3839  unsigned LastLoadedElt = -1U;
3840
3841  // For each element in the initializer, see if we've found a load or an undef.
3842  // If we don't find an initial load element, or later load elements are
3843  // non-consecutive, bail out.
3844  for (unsigned i = 0; i < NumElems; ++i) {
3845    SDValue Elt = Elts[i];
3846
3847    if (!Elt.getNode() ||
3848        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
3849      return SDValue();
3850    if (!LDBase) {
3851      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
3852        return SDValue();
3853      LDBase = cast<LoadSDNode>(Elt.getNode());
3854      LastLoadedElt = i;
3855      continue;
3856    }
3857    if (Elt.getOpcode() == ISD::UNDEF)
3858      continue;
3859
3860    LoadSDNode *LD = cast<LoadSDNode>(Elt);
3861    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
3862      return SDValue();
3863    LastLoadedElt = i;
3864  }
3865
3866  // If we have found an entire vector of loads and undefs, then return a large
3867  // load of the entire vector width starting at the base pointer.  If we found
3868  // consecutive loads for the low half, generate a vzext_load node.
3869  if (LastLoadedElt == NumElems - 1) {
3870    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
3871      return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3872                         LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3873                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
3874    return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3875                       LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3876                       LDBase->isVolatile(), LDBase->isNonTemporal(),
3877                       LDBase->getAlignment());
3878  } else if (NumElems == 4 && LastLoadedElt == 1) {
3879    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
3880    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
3881    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
3882    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
3883  }
3884  return SDValue();
3885}
3886
3887SDValue
3888X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
3889  DebugLoc dl = Op.getDebugLoc();
3890  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1 and
3891  // all one's are handled with pcmpeqd. In AVX, zero's are handled with
3892  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
3893  // is present, so AllOnes is ignored.
3894  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
3895      (Op.getValueType().getSizeInBits() != 256 &&
3896       ISD::isBuildVectorAllOnes(Op.getNode()))) {
3897    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3898    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3899    // eliminated on x86-32 hosts.
3900    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3901      return Op;
3902
3903    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3904      return getOnesVector(Op.getValueType(), DAG, dl);
3905    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3906  }
3907
3908  EVT VT = Op.getValueType();
3909  EVT ExtVT = VT.getVectorElementType();
3910  unsigned EVTBits = ExtVT.getSizeInBits();
3911
3912  unsigned NumElems = Op.getNumOperands();
3913  unsigned NumZero  = 0;
3914  unsigned NumNonZero = 0;
3915  unsigned NonZeros = 0;
3916  bool IsAllConstants = true;
3917  SmallSet<SDValue, 8> Values;
3918  for (unsigned i = 0; i < NumElems; ++i) {
3919    SDValue Elt = Op.getOperand(i);
3920    if (Elt.getOpcode() == ISD::UNDEF)
3921      continue;
3922    Values.insert(Elt);
3923    if (Elt.getOpcode() != ISD::Constant &&
3924        Elt.getOpcode() != ISD::ConstantFP)
3925      IsAllConstants = false;
3926    if (X86::isZeroNode(Elt))
3927      NumZero++;
3928    else {
3929      NonZeros |= (1 << i);
3930      NumNonZero++;
3931    }
3932  }
3933
3934  if (NumNonZero == 0) {
3935    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3936    return DAG.getUNDEF(VT);
3937  }
3938
3939  // Special case for single non-zero, non-undef, element.
3940  if (NumNonZero == 1) {
3941    unsigned Idx = CountTrailingZeros_32(NonZeros);
3942    SDValue Item = Op.getOperand(Idx);
3943
3944    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3945    // the value are obviously zero, truncate the value to i32 and do the
3946    // insertion that way.  Only do this if the value is non-constant or if the
3947    // value is a constant being inserted into element 0.  It is cheaper to do
3948    // a constant pool load than it is to do a movd + shuffle.
3949    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3950        (!IsAllConstants || Idx == 0)) {
3951      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3952        // Handle MMX and SSE both.
3953        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3954        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3955
3956        // Truncate the value (which may itself be a constant) to i32, and
3957        // convert it to a vector with movd (S2V+shuffle to zero extend).
3958        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3959        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3960        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3961                                           Subtarget->hasSSE2(), DAG);
3962
3963        // Now we have our 32-bit value zero extended in the low element of
3964        // a vector.  If Idx != 0, swizzle it into place.
3965        if (Idx != 0) {
3966          SmallVector<int, 4> Mask;
3967          Mask.push_back(Idx);
3968          for (unsigned i = 1; i != VecElts; ++i)
3969            Mask.push_back(i);
3970          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3971                                      DAG.getUNDEF(Item.getValueType()),
3972                                      &Mask[0]);
3973        }
3974        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3975      }
3976    }
3977
3978    // If we have a constant or non-constant insertion into the low element of
3979    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3980    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3981    // depending on what the source datatype is.
3982    if (Idx == 0) {
3983      if (NumZero == 0) {
3984        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3985      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3986          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3987        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3988        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3989        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3990                                           DAG);
3991      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3992        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3993        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3994        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3995        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3996                                           Subtarget->hasSSE2(), DAG);
3997        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3998      }
3999    }
4000
4001    // Is it a vector logical left shift?
4002    if (NumElems == 2 && Idx == 1 &&
4003        X86::isZeroNode(Op.getOperand(0)) &&
4004        !X86::isZeroNode(Op.getOperand(1))) {
4005      unsigned NumBits = VT.getSizeInBits();
4006      return getVShift(true, VT,
4007                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4008                                   VT, Op.getOperand(1)),
4009                       NumBits/2, DAG, *this, dl);
4010    }
4011
4012    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4013      return SDValue();
4014
4015    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4016    // is a non-constant being inserted into an element other than the low one,
4017    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4018    // movd/movss) to move this into the low element, then shuffle it into
4019    // place.
4020    if (EVTBits == 32) {
4021      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4022
4023      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4024      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4025                                         Subtarget->hasSSE2(), DAG);
4026      SmallVector<int, 8> MaskVec;
4027      for (unsigned i = 0; i < NumElems; i++)
4028        MaskVec.push_back(i == Idx ? 0 : 1);
4029      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4030    }
4031  }
4032
4033  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4034  if (Values.size() == 1) {
4035    if (EVTBits == 32) {
4036      // Instead of a shuffle like this:
4037      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4038      // Check if it's possible to issue this instead.
4039      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4040      unsigned Idx = CountTrailingZeros_32(NonZeros);
4041      SDValue Item = Op.getOperand(Idx);
4042      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4043        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4044    }
4045    return SDValue();
4046  }
4047
4048  // A vector full of immediates; various special cases are already
4049  // handled, so this is best done with a single constant-pool load.
4050  if (IsAllConstants)
4051    return SDValue();
4052
4053  // Let legalizer expand 2-wide build_vectors.
4054  if (EVTBits == 64) {
4055    if (NumNonZero == 1) {
4056      // One half is zero or undef.
4057      unsigned Idx = CountTrailingZeros_32(NonZeros);
4058      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4059                                 Op.getOperand(Idx));
4060      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4061                                         Subtarget->hasSSE2(), DAG);
4062    }
4063    return SDValue();
4064  }
4065
4066  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4067  if (EVTBits == 8 && NumElems == 16) {
4068    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4069                                        *this);
4070    if (V.getNode()) return V;
4071  }
4072
4073  if (EVTBits == 16 && NumElems == 8) {
4074    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4075                                        *this);
4076    if (V.getNode()) return V;
4077  }
4078
4079  // If element VT is == 32 bits, turn it into a number of shuffles.
4080  SmallVector<SDValue, 8> V;
4081  V.resize(NumElems);
4082  if (NumElems == 4 && NumZero > 0) {
4083    for (unsigned i = 0; i < 4; ++i) {
4084      bool isZero = !(NonZeros & (1 << i));
4085      if (isZero)
4086        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4087      else
4088        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4089    }
4090
4091    for (unsigned i = 0; i < 2; ++i) {
4092      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4093        default: break;
4094        case 0:
4095          V[i] = V[i*2];  // Must be a zero vector.
4096          break;
4097        case 1:
4098          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4099          break;
4100        case 2:
4101          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4102          break;
4103        case 3:
4104          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4105          break;
4106      }
4107    }
4108
4109    SmallVector<int, 8> MaskVec;
4110    bool Reverse = (NonZeros & 0x3) == 2;
4111    for (unsigned i = 0; i < 2; ++i)
4112      MaskVec.push_back(Reverse ? 1-i : i);
4113    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4114    for (unsigned i = 0; i < 2; ++i)
4115      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4116    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4117  }
4118
4119  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4120    // Check for a build vector of consecutive loads.
4121    for (unsigned i = 0; i < NumElems; ++i)
4122      V[i] = Op.getOperand(i);
4123
4124    // Check for elements which are consecutive loads.
4125    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4126    if (LD.getNode())
4127      return LD;
4128
4129    // For SSE 4.1, use inserts into undef.
4130    if (getSubtarget()->hasSSE41()) {
4131      V[0] = DAG.getUNDEF(VT);
4132      for (unsigned i = 0; i < NumElems; ++i)
4133        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4134          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
4135                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4136      return V[0];
4137    }
4138
4139    // Otherwise, expand into a number of unpckl*
4140    // e.g. for v4f32
4141    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4142    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4143    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4144    for (unsigned i = 0; i < NumElems; ++i)
4145      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4146    NumElems >>= 1;
4147    while (NumElems != 0) {
4148      for (unsigned i = 0; i < NumElems; ++i)
4149        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
4150      NumElems >>= 1;
4151    }
4152    return V[0];
4153  }
4154  return SDValue();
4155}
4156
4157SDValue
4158X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4159  // We support concatenate two MMX registers and place them in a MMX
4160  // register.  This is better than doing a stack convert.
4161  DebugLoc dl = Op.getDebugLoc();
4162  EVT ResVT = Op.getValueType();
4163  assert(Op.getNumOperands() == 2);
4164  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4165         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4166  int Mask[2];
4167  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
4168  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4169  InVec = Op.getOperand(1);
4170  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4171    unsigned NumElts = ResVT.getVectorNumElements();
4172    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4173    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4174                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4175  } else {
4176    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
4177    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4178    Mask[0] = 0; Mask[1] = 2;
4179    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4180  }
4181  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4182}
4183
4184// v8i16 shuffles - Prefer shuffles in the following order:
4185// 1. [all]   pshuflw, pshufhw, optional move
4186// 2. [ssse3] 1 x pshufb
4187// 3. [ssse3] 2 x pshufb + 1 x por
4188// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4189SDValue
4190X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4191                                            SelectionDAG &DAG) const {
4192  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4193  SDValue V1 = SVOp->getOperand(0);
4194  SDValue V2 = SVOp->getOperand(1);
4195  DebugLoc dl = SVOp->getDebugLoc();
4196  SmallVector<int, 8> MaskVals;
4197
4198  // Determine if more than 1 of the words in each of the low and high quadwords
4199  // of the result come from the same quadword of one of the two inputs.  Undef
4200  // mask values count as coming from any quadword, for better codegen.
4201  SmallVector<unsigned, 4> LoQuad(4);
4202  SmallVector<unsigned, 4> HiQuad(4);
4203  BitVector InputQuads(4);
4204  for (unsigned i = 0; i < 8; ++i) {
4205    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4206    int EltIdx = SVOp->getMaskElt(i);
4207    MaskVals.push_back(EltIdx);
4208    if (EltIdx < 0) {
4209      ++Quad[0];
4210      ++Quad[1];
4211      ++Quad[2];
4212      ++Quad[3];
4213      continue;
4214    }
4215    ++Quad[EltIdx / 4];
4216    InputQuads.set(EltIdx / 4);
4217  }
4218
4219  int BestLoQuad = -1;
4220  unsigned MaxQuad = 1;
4221  for (unsigned i = 0; i < 4; ++i) {
4222    if (LoQuad[i] > MaxQuad) {
4223      BestLoQuad = i;
4224      MaxQuad = LoQuad[i];
4225    }
4226  }
4227
4228  int BestHiQuad = -1;
4229  MaxQuad = 1;
4230  for (unsigned i = 0; i < 4; ++i) {
4231    if (HiQuad[i] > MaxQuad) {
4232      BestHiQuad = i;
4233      MaxQuad = HiQuad[i];
4234    }
4235  }
4236
4237  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4238  // of the two input vectors, shuffle them into one input vector so only a
4239  // single pshufb instruction is necessary. If There are more than 2 input
4240  // quads, disable the next transformation since it does not help SSSE3.
4241  bool V1Used = InputQuads[0] || InputQuads[1];
4242  bool V2Used = InputQuads[2] || InputQuads[3];
4243  if (Subtarget->hasSSSE3()) {
4244    if (InputQuads.count() == 2 && V1Used && V2Used) {
4245      BestLoQuad = InputQuads.find_first();
4246      BestHiQuad = InputQuads.find_next(BestLoQuad);
4247    }
4248    if (InputQuads.count() > 2) {
4249      BestLoQuad = -1;
4250      BestHiQuad = -1;
4251    }
4252  }
4253
4254  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4255  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4256  // words from all 4 input quadwords.
4257  SDValue NewV;
4258  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4259    SmallVector<int, 8> MaskV;
4260    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4261    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4262    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4263                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4264                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4265    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4266
4267    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4268    // source words for the shuffle, to aid later transformations.
4269    bool AllWordsInNewV = true;
4270    bool InOrder[2] = { true, true };
4271    for (unsigned i = 0; i != 8; ++i) {
4272      int idx = MaskVals[i];
4273      if (idx != (int)i)
4274        InOrder[i/4] = false;
4275      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4276        continue;
4277      AllWordsInNewV = false;
4278      break;
4279    }
4280
4281    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4282    if (AllWordsInNewV) {
4283      for (int i = 0; i != 8; ++i) {
4284        int idx = MaskVals[i];
4285        if (idx < 0)
4286          continue;
4287        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4288        if ((idx != i) && idx < 4)
4289          pshufhw = false;
4290        if ((idx != i) && idx > 3)
4291          pshuflw = false;
4292      }
4293      V1 = NewV;
4294      V2Used = false;
4295      BestLoQuad = 0;
4296      BestHiQuad = 1;
4297    }
4298
4299    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4300    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4301    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4302      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4303      unsigned TargetMask = 0;
4304      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4305                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4306      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4307                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4308      V1 = NewV.getOperand(0);
4309      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4310    }
4311  }
4312
4313  // If we have SSSE3, and all words of the result are from 1 input vector,
4314  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4315  // is present, fall back to case 4.
4316  if (Subtarget->hasSSSE3()) {
4317    SmallVector<SDValue,16> pshufbMask;
4318
4319    // If we have elements from both input vectors, set the high bit of the
4320    // shuffle mask element to zero out elements that come from V2 in the V1
4321    // mask, and elements that come from V1 in the V2 mask, so that the two
4322    // results can be OR'd together.
4323    bool TwoInputs = V1Used && V2Used;
4324    for (unsigned i = 0; i != 8; ++i) {
4325      int EltIdx = MaskVals[i] * 2;
4326      if (TwoInputs && (EltIdx >= 16)) {
4327        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4328        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4329        continue;
4330      }
4331      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4332      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4333    }
4334    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4335    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4336                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4337                                 MVT::v16i8, &pshufbMask[0], 16));
4338    if (!TwoInputs)
4339      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4340
4341    // Calculate the shuffle mask for the second input, shuffle it, and
4342    // OR it with the first shuffled input.
4343    pshufbMask.clear();
4344    for (unsigned i = 0; i != 8; ++i) {
4345      int EltIdx = MaskVals[i] * 2;
4346      if (EltIdx < 16) {
4347        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4348        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4349        continue;
4350      }
4351      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4352      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4353    }
4354    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4355    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4356                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4357                                 MVT::v16i8, &pshufbMask[0], 16));
4358    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4359    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4360  }
4361
4362  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4363  // and update MaskVals with new element order.
4364  BitVector InOrder(8);
4365  if (BestLoQuad >= 0) {
4366    SmallVector<int, 8> MaskV;
4367    for (int i = 0; i != 4; ++i) {
4368      int idx = MaskVals[i];
4369      if (idx < 0) {
4370        MaskV.push_back(-1);
4371        InOrder.set(i);
4372      } else if ((idx / 4) == BestLoQuad) {
4373        MaskV.push_back(idx & 3);
4374        InOrder.set(i);
4375      } else {
4376        MaskV.push_back(-1);
4377      }
4378    }
4379    for (unsigned i = 4; i != 8; ++i)
4380      MaskV.push_back(i);
4381    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4382                                &MaskV[0]);
4383
4384    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4385      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4386                               NewV.getOperand(0),
4387                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4388                               DAG);
4389  }
4390
4391  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4392  // and update MaskVals with the new element order.
4393  if (BestHiQuad >= 0) {
4394    SmallVector<int, 8> MaskV;
4395    for (unsigned i = 0; i != 4; ++i)
4396      MaskV.push_back(i);
4397    for (unsigned i = 4; i != 8; ++i) {
4398      int idx = MaskVals[i];
4399      if (idx < 0) {
4400        MaskV.push_back(-1);
4401        InOrder.set(i);
4402      } else if ((idx / 4) == BestHiQuad) {
4403        MaskV.push_back((idx & 3) + 4);
4404        InOrder.set(i);
4405      } else {
4406        MaskV.push_back(-1);
4407      }
4408    }
4409    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4410                                &MaskV[0]);
4411
4412    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4413      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4414                              NewV.getOperand(0),
4415                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4416                              DAG);
4417  }
4418
4419  // In case BestHi & BestLo were both -1, which means each quadword has a word
4420  // from each of the four input quadwords, calculate the InOrder bitvector now
4421  // before falling through to the insert/extract cleanup.
4422  if (BestLoQuad == -1 && BestHiQuad == -1) {
4423    NewV = V1;
4424    for (int i = 0; i != 8; ++i)
4425      if (MaskVals[i] < 0 || MaskVals[i] == i)
4426        InOrder.set(i);
4427  }
4428
4429  // The other elements are put in the right place using pextrw and pinsrw.
4430  for (unsigned i = 0; i != 8; ++i) {
4431    if (InOrder[i])
4432      continue;
4433    int EltIdx = MaskVals[i];
4434    if (EltIdx < 0)
4435      continue;
4436    SDValue ExtOp = (EltIdx < 8)
4437    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4438                  DAG.getIntPtrConstant(EltIdx))
4439    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4440                  DAG.getIntPtrConstant(EltIdx - 8));
4441    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4442                       DAG.getIntPtrConstant(i));
4443  }
4444  return NewV;
4445}
4446
4447// v16i8 shuffles - Prefer shuffles in the following order:
4448// 1. [ssse3] 1 x pshufb
4449// 2. [ssse3] 2 x pshufb + 1 x por
4450// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4451static
4452SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4453                                 SelectionDAG &DAG,
4454                                 const X86TargetLowering &TLI) {
4455  SDValue V1 = SVOp->getOperand(0);
4456  SDValue V2 = SVOp->getOperand(1);
4457  DebugLoc dl = SVOp->getDebugLoc();
4458  SmallVector<int, 16> MaskVals;
4459  SVOp->getMask(MaskVals);
4460
4461  // If we have SSSE3, case 1 is generated when all result bytes come from
4462  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4463  // present, fall back to case 3.
4464  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4465  bool V1Only = true;
4466  bool V2Only = true;
4467  for (unsigned i = 0; i < 16; ++i) {
4468    int EltIdx = MaskVals[i];
4469    if (EltIdx < 0)
4470      continue;
4471    if (EltIdx < 16)
4472      V2Only = false;
4473    else
4474      V1Only = false;
4475  }
4476
4477  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4478  if (TLI.getSubtarget()->hasSSSE3()) {
4479    SmallVector<SDValue,16> pshufbMask;
4480
4481    // If all result elements are from one input vector, then only translate
4482    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4483    //
4484    // Otherwise, we have elements from both input vectors, and must zero out
4485    // elements that come from V2 in the first mask, and V1 in the second mask
4486    // so that we can OR them together.
4487    bool TwoInputs = !(V1Only || V2Only);
4488    for (unsigned i = 0; i != 16; ++i) {
4489      int EltIdx = MaskVals[i];
4490      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4491        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4492        continue;
4493      }
4494      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4495    }
4496    // If all the elements are from V2, assign it to V1 and return after
4497    // building the first pshufb.
4498    if (V2Only)
4499      V1 = V2;
4500    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4501                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4502                                 MVT::v16i8, &pshufbMask[0], 16));
4503    if (!TwoInputs)
4504      return V1;
4505
4506    // Calculate the shuffle mask for the second input, shuffle it, and
4507    // OR it with the first shuffled input.
4508    pshufbMask.clear();
4509    for (unsigned i = 0; i != 16; ++i) {
4510      int EltIdx = MaskVals[i];
4511      if (EltIdx < 16) {
4512        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4513        continue;
4514      }
4515      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4516    }
4517    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4518                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4519                                 MVT::v16i8, &pshufbMask[0], 16));
4520    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4521  }
4522
4523  // No SSSE3 - Calculate in place words and then fix all out of place words
4524  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4525  // the 16 different words that comprise the two doublequadword input vectors.
4526  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4527  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4528  SDValue NewV = V2Only ? V2 : V1;
4529  for (int i = 0; i != 8; ++i) {
4530    int Elt0 = MaskVals[i*2];
4531    int Elt1 = MaskVals[i*2+1];
4532
4533    // This word of the result is all undef, skip it.
4534    if (Elt0 < 0 && Elt1 < 0)
4535      continue;
4536
4537    // This word of the result is already in the correct place, skip it.
4538    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4539      continue;
4540    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4541      continue;
4542
4543    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4544    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4545    SDValue InsElt;
4546
4547    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4548    // using a single extract together, load it and store it.
4549    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4550      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4551                           DAG.getIntPtrConstant(Elt1 / 2));
4552      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4553                        DAG.getIntPtrConstant(i));
4554      continue;
4555    }
4556
4557    // If Elt1 is defined, extract it from the appropriate source.  If the
4558    // source byte is not also odd, shift the extracted word left 8 bits
4559    // otherwise clear the bottom 8 bits if we need to do an or.
4560    if (Elt1 >= 0) {
4561      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4562                           DAG.getIntPtrConstant(Elt1 / 2));
4563      if ((Elt1 & 1) == 0)
4564        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4565                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4566      else if (Elt0 >= 0)
4567        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4568                             DAG.getConstant(0xFF00, MVT::i16));
4569    }
4570    // If Elt0 is defined, extract it from the appropriate source.  If the
4571    // source byte is not also even, shift the extracted word right 8 bits. If
4572    // Elt1 was also defined, OR the extracted values together before
4573    // inserting them in the result.
4574    if (Elt0 >= 0) {
4575      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4576                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4577      if ((Elt0 & 1) != 0)
4578        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4579                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4580      else if (Elt1 >= 0)
4581        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4582                             DAG.getConstant(0x00FF, MVT::i16));
4583      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4584                         : InsElt0;
4585    }
4586    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4587                       DAG.getIntPtrConstant(i));
4588  }
4589  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4590}
4591
4592/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4593/// ones, or rewriting v4i32 / v2i32 as 2 wide ones if possible. This can be
4594/// done when every pair / quad of shuffle mask elements point to elements in
4595/// the right sequence. e.g.
4596/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4597static
4598SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4599                                 SelectionDAG &DAG,
4600                                 const TargetLowering &TLI, DebugLoc dl) {
4601  EVT VT = SVOp->getValueType(0);
4602  SDValue V1 = SVOp->getOperand(0);
4603  SDValue V2 = SVOp->getOperand(1);
4604  unsigned NumElems = VT.getVectorNumElements();
4605  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4606  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
4607  EVT NewVT = MaskVT;
4608  switch (VT.getSimpleVT().SimpleTy) {
4609  default: assert(false && "Unexpected!");
4610  case MVT::v4f32: NewVT = MVT::v2f64; break;
4611  case MVT::v4i32: NewVT = MVT::v2i64; break;
4612  case MVT::v8i16: NewVT = MVT::v4i32; break;
4613  case MVT::v16i8: NewVT = MVT::v4i32; break;
4614  }
4615
4616  if (NewWidth == 2) {
4617    if (VT.isInteger())
4618      NewVT = MVT::v2i64;
4619    else
4620      NewVT = MVT::v2f64;
4621  }
4622  int Scale = NumElems / NewWidth;
4623  SmallVector<int, 8> MaskVec;
4624  for (unsigned i = 0; i < NumElems; i += Scale) {
4625    int StartIdx = -1;
4626    for (int j = 0; j < Scale; ++j) {
4627      int EltIdx = SVOp->getMaskElt(i+j);
4628      if (EltIdx < 0)
4629        continue;
4630      if (StartIdx == -1)
4631        StartIdx = EltIdx - (EltIdx % Scale);
4632      if (EltIdx != StartIdx + j)
4633        return SDValue();
4634    }
4635    if (StartIdx == -1)
4636      MaskVec.push_back(-1);
4637    else
4638      MaskVec.push_back(StartIdx / Scale);
4639  }
4640
4641  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4642  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4643  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4644}
4645
4646/// getVZextMovL - Return a zero-extending vector move low node.
4647///
4648static SDValue getVZextMovL(EVT VT, EVT OpVT,
4649                            SDValue SrcOp, SelectionDAG &DAG,
4650                            const X86Subtarget *Subtarget, DebugLoc dl) {
4651  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4652    LoadSDNode *LD = NULL;
4653    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4654      LD = dyn_cast<LoadSDNode>(SrcOp);
4655    if (!LD) {
4656      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4657      // instead.
4658      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4659      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4660          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4661          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4662          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4663        // PR2108
4664        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4665        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4666                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4667                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4668                                                   OpVT,
4669                                                   SrcOp.getOperand(0)
4670                                                          .getOperand(0))));
4671      }
4672    }
4673  }
4674
4675  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4676                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4677                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4678                                             OpVT, SrcOp)));
4679}
4680
4681/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4682/// shuffles.
4683static SDValue
4684LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4685  SDValue V1 = SVOp->getOperand(0);
4686  SDValue V2 = SVOp->getOperand(1);
4687  DebugLoc dl = SVOp->getDebugLoc();
4688  EVT VT = SVOp->getValueType(0);
4689
4690  SmallVector<std::pair<int, int>, 8> Locs;
4691  Locs.resize(4);
4692  SmallVector<int, 8> Mask1(4U, -1);
4693  SmallVector<int, 8> PermMask;
4694  SVOp->getMask(PermMask);
4695
4696  unsigned NumHi = 0;
4697  unsigned NumLo = 0;
4698  for (unsigned i = 0; i != 4; ++i) {
4699    int Idx = PermMask[i];
4700    if (Idx < 0) {
4701      Locs[i] = std::make_pair(-1, -1);
4702    } else {
4703      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4704      if (Idx < 4) {
4705        Locs[i] = std::make_pair(0, NumLo);
4706        Mask1[NumLo] = Idx;
4707        NumLo++;
4708      } else {
4709        Locs[i] = std::make_pair(1, NumHi);
4710        if (2+NumHi < 4)
4711          Mask1[2+NumHi] = Idx;
4712        NumHi++;
4713      }
4714    }
4715  }
4716
4717  if (NumLo <= 2 && NumHi <= 2) {
4718    // If no more than two elements come from either vector. This can be
4719    // implemented with two shuffles. First shuffle gather the elements.
4720    // The second shuffle, which takes the first shuffle as both of its
4721    // vector operands, put the elements into the right order.
4722    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4723
4724    SmallVector<int, 8> Mask2(4U, -1);
4725
4726    for (unsigned i = 0; i != 4; ++i) {
4727      if (Locs[i].first == -1)
4728        continue;
4729      else {
4730        unsigned Idx = (i < 2) ? 0 : 4;
4731        Idx += Locs[i].first * 2 + Locs[i].second;
4732        Mask2[i] = Idx;
4733      }
4734    }
4735
4736    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4737  } else if (NumLo == 3 || NumHi == 3) {
4738    // Otherwise, we must have three elements from one vector, call it X, and
4739    // one element from the other, call it Y.  First, use a shufps to build an
4740    // intermediate vector with the one element from Y and the element from X
4741    // that will be in the same half in the final destination (the indexes don't
4742    // matter). Then, use a shufps to build the final vector, taking the half
4743    // containing the element from Y from the intermediate, and the other half
4744    // from X.
4745    if (NumHi == 3) {
4746      // Normalize it so the 3 elements come from V1.
4747      CommuteVectorShuffleMask(PermMask, VT);
4748      std::swap(V1, V2);
4749    }
4750
4751    // Find the element from V2.
4752    unsigned HiIndex;
4753    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4754      int Val = PermMask[HiIndex];
4755      if (Val < 0)
4756        continue;
4757      if (Val >= 4)
4758        break;
4759    }
4760
4761    Mask1[0] = PermMask[HiIndex];
4762    Mask1[1] = -1;
4763    Mask1[2] = PermMask[HiIndex^1];
4764    Mask1[3] = -1;
4765    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4766
4767    if (HiIndex >= 2) {
4768      Mask1[0] = PermMask[0];
4769      Mask1[1] = PermMask[1];
4770      Mask1[2] = HiIndex & 1 ? 6 : 4;
4771      Mask1[3] = HiIndex & 1 ? 4 : 6;
4772      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4773    } else {
4774      Mask1[0] = HiIndex & 1 ? 2 : 0;
4775      Mask1[1] = HiIndex & 1 ? 0 : 2;
4776      Mask1[2] = PermMask[2];
4777      Mask1[3] = PermMask[3];
4778      if (Mask1[2] >= 0)
4779        Mask1[2] += 4;
4780      if (Mask1[3] >= 0)
4781        Mask1[3] += 4;
4782      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4783    }
4784  }
4785
4786  // Break it into (shuffle shuffle_hi, shuffle_lo).
4787  Locs.clear();
4788  SmallVector<int,8> LoMask(4U, -1);
4789  SmallVector<int,8> HiMask(4U, -1);
4790
4791  SmallVector<int,8> *MaskPtr = &LoMask;
4792  unsigned MaskIdx = 0;
4793  unsigned LoIdx = 0;
4794  unsigned HiIdx = 2;
4795  for (unsigned i = 0; i != 4; ++i) {
4796    if (i == 2) {
4797      MaskPtr = &HiMask;
4798      MaskIdx = 1;
4799      LoIdx = 0;
4800      HiIdx = 2;
4801    }
4802    int Idx = PermMask[i];
4803    if (Idx < 0) {
4804      Locs[i] = std::make_pair(-1, -1);
4805    } else if (Idx < 4) {
4806      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4807      (*MaskPtr)[LoIdx] = Idx;
4808      LoIdx++;
4809    } else {
4810      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4811      (*MaskPtr)[HiIdx] = Idx;
4812      HiIdx++;
4813    }
4814  }
4815
4816  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4817  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4818  SmallVector<int, 8> MaskOps;
4819  for (unsigned i = 0; i != 4; ++i) {
4820    if (Locs[i].first == -1) {
4821      MaskOps.push_back(-1);
4822    } else {
4823      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4824      MaskOps.push_back(Idx);
4825    }
4826  }
4827  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4828}
4829
4830SDValue
4831X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
4832  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4833  SDValue V1 = Op.getOperand(0);
4834  SDValue V2 = Op.getOperand(1);
4835  EVT VT = Op.getValueType();
4836  DebugLoc dl = Op.getDebugLoc();
4837  unsigned NumElems = VT.getVectorNumElements();
4838  bool isMMX = VT.getSizeInBits() == 64;
4839  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4840  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4841  bool V1IsSplat = false;
4842  bool V2IsSplat = false;
4843  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
4844  MachineFunction &MF = DAG.getMachineFunction();
4845  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
4846
4847  if (isZeroShuffle(SVOp))
4848    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4849
4850  // Promote splats to v4f32.
4851  if (SVOp->isSplat()) {
4852    if (isMMX || NumElems < 4)
4853      return Op;
4854    return PromoteSplat(SVOp, DAG);
4855  }
4856
4857  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4858  // do it!
4859  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4860    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4861    if (NewOp.getNode())
4862      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4863                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4864  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4865    // FIXME: Figure out a cleaner way to do this.
4866    // Try to make use of movq to zero out the top part.
4867    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4868      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4869      if (NewOp.getNode()) {
4870        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4871          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4872                              DAG, Subtarget, dl);
4873      }
4874    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4875      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4876      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4877        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4878                            DAG, Subtarget, dl);
4879    }
4880  }
4881
4882  if (X86::isPSHUFDMask(SVOp)) {
4883    // The actual implementation will match the mask in the if above and then
4884    // during isel it can match several different instructions, not only pshufd
4885    // as its name says, sad but true, emulate the behavior for now...
4886    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
4887        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
4888
4889    if (OptForSize && HasSSE2 && X86::isUNPCKL_v_undef_Mask(SVOp) &&
4890        VT == MVT::v4i32)
4891      return getTargetShuffleNode(X86ISD::PUNPCKLDQ, dl, VT, V1, V1, DAG);
4892
4893    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
4894
4895    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
4896      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
4897
4898    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
4899      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
4900                                  TargetMask, DAG);
4901
4902    if (VT == MVT::v4f32)
4903      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
4904                                  TargetMask, DAG);
4905  }
4906
4907  // Check if this can be converted into a logical shift.
4908  bool isLeft = false;
4909  unsigned ShAmt = 0;
4910  SDValue ShVal;
4911  bool isShift = getSubtarget()->hasSSE2() &&
4912    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4913  if (isShift && ShVal.hasOneUse()) {
4914    // If the shifted value has multiple uses, it may be cheaper to use
4915    // v_set0 + movlhps or movhlps, etc.
4916    EVT EltVT = VT.getVectorElementType();
4917    ShAmt *= EltVT.getSizeInBits();
4918    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4919  }
4920
4921  if (X86::isMOVLMask(SVOp)) {
4922    if (V1IsUndef)
4923      return V2;
4924    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4925      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4926    if (!isMMX)
4927      return Op;
4928  }
4929
4930  // FIXME: fold these into legal mask.
4931  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4932                 X86::isMOVSLDUPMask(SVOp) ||
4933                 X86::isMOVHLPSMask(SVOp) ||
4934                 X86::isMOVLHPSMask(SVOp) ||
4935                 X86::isMOVLPMask(SVOp)))
4936    return Op;
4937
4938  if (ShouldXformToMOVHLPS(SVOp) ||
4939      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4940    return CommuteVectorShuffle(SVOp, DAG);
4941
4942  if (isShift) {
4943    // No better options. Use a vshl / vsrl.
4944    EVT EltVT = VT.getVectorElementType();
4945    ShAmt *= EltVT.getSizeInBits();
4946    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4947  }
4948
4949  bool Commuted = false;
4950  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4951  // 1,1,1,1 -> v8i16 though.
4952  V1IsSplat = isSplatVector(V1.getNode());
4953  V2IsSplat = isSplatVector(V2.getNode());
4954
4955  // Canonicalize the splat or undef, if present, to be on the RHS.
4956  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4957    Op = CommuteVectorShuffle(SVOp, DAG);
4958    SVOp = cast<ShuffleVectorSDNode>(Op);
4959    V1 = SVOp->getOperand(0);
4960    V2 = SVOp->getOperand(1);
4961    std::swap(V1IsSplat, V2IsSplat);
4962    std::swap(V1IsUndef, V2IsUndef);
4963    Commuted = true;
4964  }
4965
4966  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4967    // Shuffling low element of v1 into undef, just return v1.
4968    if (V2IsUndef)
4969      return V1;
4970    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4971    // the instruction selector will not match, so get a canonical MOVL with
4972    // swapped operands to undo the commute.
4973    return getMOVL(DAG, dl, VT, V2, V1);
4974  }
4975
4976  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4977      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4978      X86::isUNPCKLMask(SVOp) ||
4979      X86::isUNPCKHMask(SVOp))
4980    return Op;
4981
4982  if (V2IsSplat) {
4983    // Normalize mask so all entries that point to V2 points to its first
4984    // element then try to match unpck{h|l} again. If match, return a
4985    // new vector_shuffle with the corrected mask.
4986    SDValue NewMask = NormalizeMask(SVOp, DAG);
4987    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4988    if (NSVOp != SVOp) {
4989      if (X86::isUNPCKLMask(NSVOp, true)) {
4990        return NewMask;
4991      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4992        return NewMask;
4993      }
4994    }
4995  }
4996
4997  if (Commuted) {
4998    // Commute is back and try unpck* again.
4999    // FIXME: this seems wrong.
5000    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5001    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5002    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
5003        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
5004        X86::isUNPCKLMask(NewSVOp) ||
5005        X86::isUNPCKHMask(NewSVOp))
5006      return NewOp;
5007  }
5008
5009  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
5010
5011  // Normalize the node to match x86 shuffle ops if needed
5012  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5013    return CommuteVectorShuffle(SVOp, DAG);
5014
5015  // Check for legal shuffle and return?
5016  SmallVector<int, 16> PermMask;
5017  SVOp->getMask(PermMask);
5018  if (isShuffleMaskLegal(PermMask, VT))
5019    return Op;
5020
5021  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5022  if (VT == MVT::v8i16) {
5023    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5024    if (NewOp.getNode())
5025      return NewOp;
5026  }
5027
5028  if (VT == MVT::v16i8) {
5029    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5030    if (NewOp.getNode())
5031      return NewOp;
5032  }
5033
5034  // Handle all 4 wide cases with a number of shuffles except for MMX.
5035  if (NumElems == 4 && !isMMX)
5036    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5037
5038  return SDValue();
5039}
5040
5041SDValue
5042X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5043                                                SelectionDAG &DAG) const {
5044  EVT VT = Op.getValueType();
5045  DebugLoc dl = Op.getDebugLoc();
5046  if (VT.getSizeInBits() == 8) {
5047    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5048                                    Op.getOperand(0), Op.getOperand(1));
5049    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5050                                    DAG.getValueType(VT));
5051    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5052  } else if (VT.getSizeInBits() == 16) {
5053    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5054    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5055    if (Idx == 0)
5056      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5057                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5058                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5059                                                 MVT::v4i32,
5060                                                 Op.getOperand(0)),
5061                                     Op.getOperand(1)));
5062    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5063                                    Op.getOperand(0), Op.getOperand(1));
5064    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5065                                    DAG.getValueType(VT));
5066    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5067  } else if (VT == MVT::f32) {
5068    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5069    // the result back to FR32 register. It's only worth matching if the
5070    // result has a single use which is a store or a bitcast to i32.  And in
5071    // the case of a store, it's not worth it if the index is a constant 0,
5072    // because a MOVSSmr can be used instead, which is smaller and faster.
5073    if (!Op.hasOneUse())
5074      return SDValue();
5075    SDNode *User = *Op.getNode()->use_begin();
5076    if ((User->getOpcode() != ISD::STORE ||
5077         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5078          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5079        (User->getOpcode() != ISD::BIT_CONVERT ||
5080         User->getValueType(0) != MVT::i32))
5081      return SDValue();
5082    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5083                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
5084                                              Op.getOperand(0)),
5085                                              Op.getOperand(1));
5086    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
5087  } else if (VT == MVT::i32) {
5088    // ExtractPS works with constant index.
5089    if (isa<ConstantSDNode>(Op.getOperand(1)))
5090      return Op;
5091  }
5092  return SDValue();
5093}
5094
5095
5096SDValue
5097X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5098                                           SelectionDAG &DAG) const {
5099  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5100    return SDValue();
5101
5102  if (Subtarget->hasSSE41()) {
5103    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
5104    if (Res.getNode())
5105      return Res;
5106  }
5107
5108  EVT VT = Op.getValueType();
5109  DebugLoc dl = Op.getDebugLoc();
5110  // TODO: handle v16i8.
5111  if (VT.getSizeInBits() == 16) {
5112    SDValue Vec = Op.getOperand(0);
5113    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5114    if (Idx == 0)
5115      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5116                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5117                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5118                                                 MVT::v4i32, Vec),
5119                                     Op.getOperand(1)));
5120    // Transform it so it match pextrw which produces a 32-bit result.
5121    EVT EltVT = MVT::i32;
5122    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
5123                                    Op.getOperand(0), Op.getOperand(1));
5124    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
5125                                    DAG.getValueType(VT));
5126    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5127  } else if (VT.getSizeInBits() == 32) {
5128    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5129    if (Idx == 0)
5130      return Op;
5131
5132    // SHUFPS the element to the lowest double word, then movss.
5133    int Mask[4] = { Idx, -1, -1, -1 };
5134    EVT VVT = Op.getOperand(0).getValueType();
5135    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5136                                       DAG.getUNDEF(VVT), Mask);
5137    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5138                       DAG.getIntPtrConstant(0));
5139  } else if (VT.getSizeInBits() == 64) {
5140    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
5141    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
5142    //        to match extract_elt for f64.
5143    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5144    if (Idx == 0)
5145      return Op;
5146
5147    // UNPCKHPD the element to the lowest double word, then movsd.
5148    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
5149    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
5150    int Mask[2] = { 1, -1 };
5151    EVT VVT = Op.getOperand(0).getValueType();
5152    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5153                                       DAG.getUNDEF(VVT), Mask);
5154    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5155                       DAG.getIntPtrConstant(0));
5156  }
5157
5158  return SDValue();
5159}
5160
5161SDValue
5162X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
5163                                               SelectionDAG &DAG) const {
5164  EVT VT = Op.getValueType();
5165  EVT EltVT = VT.getVectorElementType();
5166  DebugLoc dl = Op.getDebugLoc();
5167
5168  SDValue N0 = Op.getOperand(0);
5169  SDValue N1 = Op.getOperand(1);
5170  SDValue N2 = Op.getOperand(2);
5171
5172  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
5173      isa<ConstantSDNode>(N2)) {
5174    unsigned Opc;
5175    if (VT == MVT::v8i16)
5176      Opc = X86ISD::PINSRW;
5177    else if (VT == MVT::v4i16)
5178      Opc = X86ISD::MMX_PINSRW;
5179    else if (VT == MVT::v16i8)
5180      Opc = X86ISD::PINSRB;
5181    else
5182      Opc = X86ISD::PINSRB;
5183
5184    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5185    // argument.
5186    if (N1.getValueType() != MVT::i32)
5187      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5188    if (N2.getValueType() != MVT::i32)
5189      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5190    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
5191  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
5192    // Bits [7:6] of the constant are the source select.  This will always be
5193    //  zero here.  The DAG Combiner may combine an extract_elt index into these
5194    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
5195    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
5196    // Bits [5:4] of the constant are the destination select.  This is the
5197    //  value of the incoming immediate.
5198    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
5199    //   combine either bitwise AND or insert of float 0.0 to set these bits.
5200    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
5201    // Create this as a scalar to vector..
5202    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
5203    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
5204  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
5205    // PINSR* works with constant index.
5206    return Op;
5207  }
5208  return SDValue();
5209}
5210
5211SDValue
5212X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5213  EVT VT = Op.getValueType();
5214  EVT EltVT = VT.getVectorElementType();
5215
5216  if (Subtarget->hasSSE41())
5217    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5218
5219  if (EltVT == MVT::i8)
5220    return SDValue();
5221
5222  DebugLoc dl = Op.getDebugLoc();
5223  SDValue N0 = Op.getOperand(0);
5224  SDValue N1 = Op.getOperand(1);
5225  SDValue N2 = Op.getOperand(2);
5226
5227  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5228    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5229    // as its second argument.
5230    if (N1.getValueType() != MVT::i32)
5231      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5232    if (N2.getValueType() != MVT::i32)
5233      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5234    return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW,
5235                       dl, VT, N0, N1, N2);
5236  }
5237  return SDValue();
5238}
5239
5240SDValue
5241X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5242  DebugLoc dl = Op.getDebugLoc();
5243
5244  if (Op.getValueType() == MVT::v1i64 &&
5245      Op.getOperand(0).getValueType() == MVT::i64)
5246    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5247
5248  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5249  EVT VT = MVT::v2i32;
5250  switch (Op.getValueType().getSimpleVT().SimpleTy) {
5251  default: break;
5252  case MVT::v16i8:
5253  case MVT::v8i16:
5254    VT = MVT::v4i32;
5255    break;
5256  }
5257  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5258                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
5259}
5260
5261// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5262// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5263// one of the above mentioned nodes. It has to be wrapped because otherwise
5264// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5265// be used to form addressing mode. These wrapped nodes will be selected
5266// into MOV32ri.
5267SDValue
5268X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5269  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5270
5271  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5272  // global base reg.
5273  unsigned char OpFlag = 0;
5274  unsigned WrapperKind = X86ISD::Wrapper;
5275  CodeModel::Model M = getTargetMachine().getCodeModel();
5276
5277  if (Subtarget->isPICStyleRIPRel() &&
5278      (M == CodeModel::Small || M == CodeModel::Kernel))
5279    WrapperKind = X86ISD::WrapperRIP;
5280  else if (Subtarget->isPICStyleGOT())
5281    OpFlag = X86II::MO_GOTOFF;
5282  else if (Subtarget->isPICStyleStubPIC())
5283    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5284
5285  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5286                                             CP->getAlignment(),
5287                                             CP->getOffset(), OpFlag);
5288  DebugLoc DL = CP->getDebugLoc();
5289  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5290  // With PIC, the address is actually $g + Offset.
5291  if (OpFlag) {
5292    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5293                         DAG.getNode(X86ISD::GlobalBaseReg,
5294                                     DebugLoc(), getPointerTy()),
5295                         Result);
5296  }
5297
5298  return Result;
5299}
5300
5301SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5302  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5303
5304  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5305  // global base reg.
5306  unsigned char OpFlag = 0;
5307  unsigned WrapperKind = X86ISD::Wrapper;
5308  CodeModel::Model M = getTargetMachine().getCodeModel();
5309
5310  if (Subtarget->isPICStyleRIPRel() &&
5311      (M == CodeModel::Small || M == CodeModel::Kernel))
5312    WrapperKind = X86ISD::WrapperRIP;
5313  else if (Subtarget->isPICStyleGOT())
5314    OpFlag = X86II::MO_GOTOFF;
5315  else if (Subtarget->isPICStyleStubPIC())
5316    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5317
5318  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5319                                          OpFlag);
5320  DebugLoc DL = JT->getDebugLoc();
5321  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5322
5323  // With PIC, the address is actually $g + Offset.
5324  if (OpFlag) {
5325    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5326                         DAG.getNode(X86ISD::GlobalBaseReg,
5327                                     DebugLoc(), getPointerTy()),
5328                         Result);
5329  }
5330
5331  return Result;
5332}
5333
5334SDValue
5335X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
5336  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5337
5338  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5339  // global base reg.
5340  unsigned char OpFlag = 0;
5341  unsigned WrapperKind = X86ISD::Wrapper;
5342  CodeModel::Model M = getTargetMachine().getCodeModel();
5343
5344  if (Subtarget->isPICStyleRIPRel() &&
5345      (M == CodeModel::Small || M == CodeModel::Kernel))
5346    WrapperKind = X86ISD::WrapperRIP;
5347  else if (Subtarget->isPICStyleGOT())
5348    OpFlag = X86II::MO_GOTOFF;
5349  else if (Subtarget->isPICStyleStubPIC())
5350    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5351
5352  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5353
5354  DebugLoc DL = Op.getDebugLoc();
5355  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5356
5357
5358  // With PIC, the address is actually $g + Offset.
5359  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5360      !Subtarget->is64Bit()) {
5361    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5362                         DAG.getNode(X86ISD::GlobalBaseReg,
5363                                     DebugLoc(), getPointerTy()),
5364                         Result);
5365  }
5366
5367  return Result;
5368}
5369
5370SDValue
5371X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
5372  // Create the TargetBlockAddressAddress node.
5373  unsigned char OpFlags =
5374    Subtarget->ClassifyBlockAddressReference();
5375  CodeModel::Model M = getTargetMachine().getCodeModel();
5376  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5377  DebugLoc dl = Op.getDebugLoc();
5378  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5379                                       /*isTarget=*/true, OpFlags);
5380
5381  if (Subtarget->isPICStyleRIPRel() &&
5382      (M == CodeModel::Small || M == CodeModel::Kernel))
5383    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5384  else
5385    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5386
5387  // With PIC, the address is actually $g + Offset.
5388  if (isGlobalRelativeToPICBase(OpFlags)) {
5389    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5390                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5391                         Result);
5392  }
5393
5394  return Result;
5395}
5396
5397SDValue
5398X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5399                                      int64_t Offset,
5400                                      SelectionDAG &DAG) const {
5401  // Create the TargetGlobalAddress node, folding in the constant
5402  // offset if it is legal.
5403  unsigned char OpFlags =
5404    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5405  CodeModel::Model M = getTargetMachine().getCodeModel();
5406  SDValue Result;
5407  if (OpFlags == X86II::MO_NO_FLAG &&
5408      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5409    // A direct static reference to a global.
5410    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
5411    Offset = 0;
5412  } else {
5413    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
5414  }
5415
5416  if (Subtarget->isPICStyleRIPRel() &&
5417      (M == CodeModel::Small || M == CodeModel::Kernel))
5418    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5419  else
5420    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5421
5422  // With PIC, the address is actually $g + Offset.
5423  if (isGlobalRelativeToPICBase(OpFlags)) {
5424    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5425                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5426                         Result);
5427  }
5428
5429  // For globals that require a load from a stub to get the address, emit the
5430  // load.
5431  if (isGlobalStubReference(OpFlags))
5432    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5433                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5434
5435  // If there was a non-zero offset that we didn't fold, create an explicit
5436  // addition for it.
5437  if (Offset != 0)
5438    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5439                         DAG.getConstant(Offset, getPointerTy()));
5440
5441  return Result;
5442}
5443
5444SDValue
5445X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
5446  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5447  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5448  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5449}
5450
5451static SDValue
5452GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5453           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5454           unsigned char OperandFlags) {
5455  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5456  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5457  DebugLoc dl = GA->getDebugLoc();
5458  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
5459                                           GA->getValueType(0),
5460                                           GA->getOffset(),
5461                                           OperandFlags);
5462  if (InFlag) {
5463    SDValue Ops[] = { Chain,  TGA, *InFlag };
5464    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5465  } else {
5466    SDValue Ops[]  = { Chain, TGA };
5467    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5468  }
5469
5470  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5471  MFI->setAdjustsStack(true);
5472
5473  SDValue Flag = Chain.getValue(1);
5474  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5475}
5476
5477// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5478static SDValue
5479LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5480                                const EVT PtrVT) {
5481  SDValue InFlag;
5482  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5483  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5484                                     DAG.getNode(X86ISD::GlobalBaseReg,
5485                                                 DebugLoc(), PtrVT), InFlag);
5486  InFlag = Chain.getValue(1);
5487
5488  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5489}
5490
5491// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5492static SDValue
5493LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5494                                const EVT PtrVT) {
5495  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5496                    X86::RAX, X86II::MO_TLSGD);
5497}
5498
5499// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5500// "local exec" model.
5501static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5502                                   const EVT PtrVT, TLSModel::Model model,
5503                                   bool is64Bit) {
5504  DebugLoc dl = GA->getDebugLoc();
5505  // Get the Thread Pointer
5506  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5507                             DebugLoc(), PtrVT,
5508                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5509                                             MVT::i32));
5510
5511  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5512                                      NULL, 0, false, false, 0);
5513
5514  unsigned char OperandFlags = 0;
5515  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5516  // initialexec.
5517  unsigned WrapperKind = X86ISD::Wrapper;
5518  if (model == TLSModel::LocalExec) {
5519    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5520  } else if (is64Bit) {
5521    assert(model == TLSModel::InitialExec);
5522    OperandFlags = X86II::MO_GOTTPOFF;
5523    WrapperKind = X86ISD::WrapperRIP;
5524  } else {
5525    assert(model == TLSModel::InitialExec);
5526    OperandFlags = X86II::MO_INDNTPOFF;
5527  }
5528
5529  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5530  // exec)
5531  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
5532                                           GA->getValueType(0),
5533                                           GA->getOffset(), OperandFlags);
5534  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5535
5536  if (model == TLSModel::InitialExec)
5537    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5538                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5539
5540  // The address of the thread local variable is the add of the thread
5541  // pointer with the offset of the variable.
5542  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5543}
5544
5545SDValue
5546X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
5547
5548  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5549  const GlobalValue *GV = GA->getGlobal();
5550
5551  if (Subtarget->isTargetELF()) {
5552    // TODO: implement the "local dynamic" model
5553    // TODO: implement the "initial exec"model for pic executables
5554
5555    // If GV is an alias then use the aliasee for determining
5556    // thread-localness.
5557    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5558      GV = GA->resolveAliasedGlobal(false);
5559
5560    TLSModel::Model model
5561      = getTLSModel(GV, getTargetMachine().getRelocationModel());
5562
5563    switch (model) {
5564      case TLSModel::GeneralDynamic:
5565      case TLSModel::LocalDynamic: // not implemented
5566        if (Subtarget->is64Bit())
5567          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5568        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5569
5570      case TLSModel::InitialExec:
5571      case TLSModel::LocalExec:
5572        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5573                                   Subtarget->is64Bit());
5574    }
5575  } else if (Subtarget->isTargetDarwin()) {
5576    // Darwin only has one model of TLS.  Lower to that.
5577    unsigned char OpFlag = 0;
5578    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
5579                           X86ISD::WrapperRIP : X86ISD::Wrapper;
5580
5581    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5582    // global base reg.
5583    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
5584                  !Subtarget->is64Bit();
5585    if (PIC32)
5586      OpFlag = X86II::MO_TLVP_PIC_BASE;
5587    else
5588      OpFlag = X86II::MO_TLVP;
5589    DebugLoc DL = Op.getDebugLoc();
5590    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
5591                                                getPointerTy(),
5592                                                GA->getOffset(), OpFlag);
5593    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5594
5595    // With PIC32, the address is actually $g + Offset.
5596    if (PIC32)
5597      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5598                           DAG.getNode(X86ISD::GlobalBaseReg,
5599                                       DebugLoc(), getPointerTy()),
5600                           Offset);
5601
5602    // Lowering the machine isd will make sure everything is in the right
5603    // location.
5604    SDValue Args[] = { Offset };
5605    SDValue Chain = DAG.getNode(X86ISD::TLSCALL, DL, MVT::Other, Args, 1);
5606
5607    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
5608    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5609    MFI->setAdjustsStack(true);
5610
5611    // And our return value (tls address) is in the standard call return value
5612    // location.
5613    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
5614    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
5615  }
5616
5617  assert(false &&
5618         "TLS not implemented for this target.");
5619
5620  llvm_unreachable("Unreachable");
5621  return SDValue();
5622}
5623
5624
5625/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5626/// take a 2 x i32 value to shift plus a shift amount.
5627SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
5628  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5629  EVT VT = Op.getValueType();
5630  unsigned VTBits = VT.getSizeInBits();
5631  DebugLoc dl = Op.getDebugLoc();
5632  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5633  SDValue ShOpLo = Op.getOperand(0);
5634  SDValue ShOpHi = Op.getOperand(1);
5635  SDValue ShAmt  = Op.getOperand(2);
5636  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5637                                     DAG.getConstant(VTBits - 1, MVT::i8))
5638                       : DAG.getConstant(0, VT);
5639
5640  SDValue Tmp2, Tmp3;
5641  if (Op.getOpcode() == ISD::SHL_PARTS) {
5642    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
5643    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5644  } else {
5645    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
5646    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
5647  }
5648
5649  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
5650                                DAG.getConstant(VTBits, MVT::i8));
5651  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
5652                             AndNode, DAG.getConstant(0, MVT::i8));
5653
5654  SDValue Hi, Lo;
5655  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5656  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
5657  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
5658
5659  if (Op.getOpcode() == ISD::SHL_PARTS) {
5660    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5661    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5662  } else {
5663    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5664    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5665  }
5666
5667  SDValue Ops[2] = { Lo, Hi };
5668  return DAG.getMergeValues(Ops, 2, dl);
5669}
5670
5671SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
5672                                           SelectionDAG &DAG) const {
5673  EVT SrcVT = Op.getOperand(0).getValueType();
5674
5675  if (SrcVT.isVector()) {
5676    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
5677      return Op;
5678    }
5679    return SDValue();
5680  }
5681
5682  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
5683         "Unknown SINT_TO_FP to lower!");
5684
5685  // These are really Legal; return the operand so the caller accepts it as
5686  // Legal.
5687  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
5688    return Op;
5689  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
5690      Subtarget->is64Bit()) {
5691    return Op;
5692  }
5693
5694  DebugLoc dl = Op.getDebugLoc();
5695  unsigned Size = SrcVT.getSizeInBits()/8;
5696  MachineFunction &MF = DAG.getMachineFunction();
5697  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
5698  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5699  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5700                               StackSlot,
5701                               PseudoSourceValue::getFixedStack(SSFI), 0,
5702                               false, false, 0);
5703  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
5704}
5705
5706SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
5707                                     SDValue StackSlot,
5708                                     SelectionDAG &DAG) const {
5709  // Build the FILD
5710  DebugLoc dl = Op.getDebugLoc();
5711  SDVTList Tys;
5712  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5713  if (useSSE)
5714    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5715  else
5716    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5717  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
5718  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5719                               Tys, Ops, array_lengthof(Ops));
5720
5721  if (useSSE) {
5722    Chain = Result.getValue(1);
5723    SDValue InFlag = Result.getValue(2);
5724
5725    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5726    // shouldn't be necessary except that RFP cannot be live across
5727    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5728    MachineFunction &MF = DAG.getMachineFunction();
5729    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5730    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5731    Tys = DAG.getVTList(MVT::Other);
5732    SDValue Ops[] = {
5733      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
5734    };
5735    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
5736    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5737                         PseudoSourceValue::getFixedStack(SSFI), 0,
5738                         false, false, 0);
5739  }
5740
5741  return Result;
5742}
5743
5744// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5745SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
5746                                               SelectionDAG &DAG) const {
5747  // This algorithm is not obvious. Here it is in C code, more or less:
5748  /*
5749    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5750      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5751      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5752
5753      // Copy ints to xmm registers.
5754      __m128i xh = _mm_cvtsi32_si128( hi );
5755      __m128i xl = _mm_cvtsi32_si128( lo );
5756
5757      // Combine into low half of a single xmm register.
5758      __m128i x = _mm_unpacklo_epi32( xh, xl );
5759      __m128d d;
5760      double sd;
5761
5762      // Merge in appropriate exponents to give the integer bits the right
5763      // magnitude.
5764      x = _mm_unpacklo_epi32( x, exp );
5765
5766      // Subtract away the biases to deal with the IEEE-754 double precision
5767      // implicit 1.
5768      d = _mm_sub_pd( (__m128d) x, bias );
5769
5770      // All conversions up to here are exact. The correctly rounded result is
5771      // calculated using the current rounding mode using the following
5772      // horizontal add.
5773      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5774      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5775                                // store doesn't really need to be here (except
5776                                // maybe to zero the other double)
5777      return sd;
5778    }
5779  */
5780
5781  DebugLoc dl = Op.getDebugLoc();
5782  LLVMContext *Context = DAG.getContext();
5783
5784  // Build some magic constants.
5785  std::vector<Constant*> CV0;
5786  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5787  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5788  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5789  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5790  Constant *C0 = ConstantVector::get(CV0);
5791  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5792
5793  std::vector<Constant*> CV1;
5794  CV1.push_back(
5795    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5796  CV1.push_back(
5797    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5798  Constant *C1 = ConstantVector::get(CV1);
5799  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5800
5801  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5802                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5803                                        Op.getOperand(0),
5804                                        DAG.getIntPtrConstant(1)));
5805  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5806                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5807                                        Op.getOperand(0),
5808                                        DAG.getIntPtrConstant(0)));
5809  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5810  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5811                              PseudoSourceValue::getConstantPool(), 0,
5812                              false, false, 16);
5813  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5814  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5815  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5816                              PseudoSourceValue::getConstantPool(), 0,
5817                              false, false, 16);
5818  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5819
5820  // Add the halves; easiest way is to swap them into another reg first.
5821  int ShufMask[2] = { 1, -1 };
5822  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5823                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5824  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5825  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5826                     DAG.getIntPtrConstant(0));
5827}
5828
5829// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5830SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
5831                                               SelectionDAG &DAG) const {
5832  DebugLoc dl = Op.getDebugLoc();
5833  // FP constant to bias correct the final result.
5834  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5835                                   MVT::f64);
5836
5837  // Load the 32-bit value into an XMM register.
5838  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5839                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5840                                         Op.getOperand(0),
5841                                         DAG.getIntPtrConstant(0)));
5842
5843  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5844                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5845                     DAG.getIntPtrConstant(0));
5846
5847  // Or the load with the bias.
5848  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5849                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5850                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5851                                                   MVT::v2f64, Load)),
5852                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5853                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5854                                                   MVT::v2f64, Bias)));
5855  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5856                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5857                   DAG.getIntPtrConstant(0));
5858
5859  // Subtract the bias.
5860  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5861
5862  // Handle final rounding.
5863  EVT DestVT = Op.getValueType();
5864
5865  if (DestVT.bitsLT(MVT::f64)) {
5866    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5867                       DAG.getIntPtrConstant(0));
5868  } else if (DestVT.bitsGT(MVT::f64)) {
5869    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5870  }
5871
5872  // Handle final rounding.
5873  return Sub;
5874}
5875
5876SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
5877                                           SelectionDAG &DAG) const {
5878  SDValue N0 = Op.getOperand(0);
5879  DebugLoc dl = Op.getDebugLoc();
5880
5881  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
5882  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5883  // the optimization here.
5884  if (DAG.SignBitIsZero(N0))
5885    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5886
5887  EVT SrcVT = N0.getValueType();
5888  EVT DstVT = Op.getValueType();
5889  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
5890    return LowerUINT_TO_FP_i64(Op, DAG);
5891  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
5892    return LowerUINT_TO_FP_i32(Op, DAG);
5893
5894  // Make a 64-bit buffer, and use it to build an FILD.
5895  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5896  if (SrcVT == MVT::i32) {
5897    SDValue WordOff = DAG.getConstant(4, getPointerTy());
5898    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5899                                     getPointerTy(), StackSlot, WordOff);
5900    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5901                                  StackSlot, NULL, 0, false, false, 0);
5902    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5903                                  OffsetSlot, NULL, 0, false, false, 0);
5904    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5905    return Fild;
5906  }
5907
5908  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
5909  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5910                                StackSlot, NULL, 0, false, false, 0);
5911  // For i64 source, we need to add the appropriate power of 2 if the input
5912  // was negative.  This is the same as the optimization in
5913  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
5914  // we must be careful to do the computation in x87 extended precision, not
5915  // in SSE. (The generic code can't know it's OK to do this, or how to.)
5916  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
5917  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
5918  SDValue Fild = DAG.getNode(X86ISD::FILD, dl, Tys, Ops, 3);
5919
5920  APInt FF(32, 0x5F800000ULL);
5921
5922  // Check whether the sign bit is set.
5923  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
5924                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
5925                                 ISD::SETLT);
5926
5927  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
5928  SDValue FudgePtr = DAG.getConstantPool(
5929                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
5930                                         getPointerTy());
5931
5932  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
5933  SDValue Zero = DAG.getIntPtrConstant(0);
5934  SDValue Four = DAG.getIntPtrConstant(4);
5935  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
5936                               Zero, Four);
5937  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
5938
5939  // Load the value out, extending it from f32 to f80.
5940  // FIXME: Avoid the extend by constructing the right constant pool?
5941  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(),
5942                                 FudgePtr, PseudoSourceValue::getConstantPool(),
5943                                 0, MVT::f32, false, false, 4);
5944  // Extend everything to 80 bits to force it to be done on x87.
5945  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
5946  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
5947}
5948
5949std::pair<SDValue,SDValue> X86TargetLowering::
5950FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
5951  DebugLoc dl = Op.getDebugLoc();
5952
5953  EVT DstTy = Op.getValueType();
5954
5955  if (!IsSigned) {
5956    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5957    DstTy = MVT::i64;
5958  }
5959
5960  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5961         DstTy.getSimpleVT() >= MVT::i16 &&
5962         "Unknown FP_TO_SINT to lower!");
5963
5964  // These are really Legal.
5965  if (DstTy == MVT::i32 &&
5966      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5967    return std::make_pair(SDValue(), SDValue());
5968  if (Subtarget->is64Bit() &&
5969      DstTy == MVT::i64 &&
5970      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5971    return std::make_pair(SDValue(), SDValue());
5972
5973  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5974  // stack slot.
5975  MachineFunction &MF = DAG.getMachineFunction();
5976  unsigned MemSize = DstTy.getSizeInBits()/8;
5977  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5978  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5979
5980  unsigned Opc;
5981  switch (DstTy.getSimpleVT().SimpleTy) {
5982  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5983  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5984  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5985  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5986  }
5987
5988  SDValue Chain = DAG.getEntryNode();
5989  SDValue Value = Op.getOperand(0);
5990  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5991    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5992    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5993                         PseudoSourceValue::getFixedStack(SSFI), 0,
5994                         false, false, 0);
5995    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5996    SDValue Ops[] = {
5997      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5998    };
5999    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
6000    Chain = Value.getValue(1);
6001    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6002    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6003  }
6004
6005  // Build the FP_TO_INT*_IN_MEM
6006  SDValue Ops[] = { Chain, Value, StackSlot };
6007  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
6008
6009  return std::make_pair(FIST, StackSlot);
6010}
6011
6012SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
6013                                           SelectionDAG &DAG) const {
6014  if (Op.getValueType().isVector()) {
6015    if (Op.getValueType() == MVT::v2i32 &&
6016        Op.getOperand(0).getValueType() == MVT::v2f64) {
6017      return Op;
6018    }
6019    return SDValue();
6020  }
6021
6022  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
6023  SDValue FIST = Vals.first, StackSlot = Vals.second;
6024  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
6025  if (FIST.getNode() == 0) return Op;
6026
6027  // Load the result.
6028  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6029                     FIST, StackSlot, NULL, 0, false, false, 0);
6030}
6031
6032SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
6033                                           SelectionDAG &DAG) const {
6034  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
6035  SDValue FIST = Vals.first, StackSlot = Vals.second;
6036  assert(FIST.getNode() && "Unexpected failure");
6037
6038  // Load the result.
6039  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6040                     FIST, StackSlot, NULL, 0, false, false, 0);
6041}
6042
6043SDValue X86TargetLowering::LowerFABS(SDValue Op,
6044                                     SelectionDAG &DAG) const {
6045  LLVMContext *Context = DAG.getContext();
6046  DebugLoc dl = Op.getDebugLoc();
6047  EVT VT = Op.getValueType();
6048  EVT EltVT = VT;
6049  if (VT.isVector())
6050    EltVT = VT.getVectorElementType();
6051  std::vector<Constant*> CV;
6052  if (EltVT == MVT::f64) {
6053    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
6054    CV.push_back(C);
6055    CV.push_back(C);
6056  } else {
6057    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
6058    CV.push_back(C);
6059    CV.push_back(C);
6060    CV.push_back(C);
6061    CV.push_back(C);
6062  }
6063  Constant *C = ConstantVector::get(CV);
6064  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6065  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6066                             PseudoSourceValue::getConstantPool(), 0,
6067                             false, false, 16);
6068  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
6069}
6070
6071SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
6072  LLVMContext *Context = DAG.getContext();
6073  DebugLoc dl = Op.getDebugLoc();
6074  EVT VT = Op.getValueType();
6075  EVT EltVT = VT;
6076  if (VT.isVector())
6077    EltVT = VT.getVectorElementType();
6078  std::vector<Constant*> CV;
6079  if (EltVT == MVT::f64) {
6080    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
6081    CV.push_back(C);
6082    CV.push_back(C);
6083  } else {
6084    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
6085    CV.push_back(C);
6086    CV.push_back(C);
6087    CV.push_back(C);
6088    CV.push_back(C);
6089  }
6090  Constant *C = ConstantVector::get(CV);
6091  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6092  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6093                             PseudoSourceValue::getConstantPool(), 0,
6094                             false, false, 16);
6095  if (VT.isVector()) {
6096    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6097                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
6098                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6099                                Op.getOperand(0)),
6100                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
6101  } else {
6102    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
6103  }
6104}
6105
6106SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6107  LLVMContext *Context = DAG.getContext();
6108  SDValue Op0 = Op.getOperand(0);
6109  SDValue Op1 = Op.getOperand(1);
6110  DebugLoc dl = Op.getDebugLoc();
6111  EVT VT = Op.getValueType();
6112  EVT SrcVT = Op1.getValueType();
6113
6114  // If second operand is smaller, extend it first.
6115  if (SrcVT.bitsLT(VT)) {
6116    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
6117    SrcVT = VT;
6118  }
6119  // And if it is bigger, shrink it first.
6120  if (SrcVT.bitsGT(VT)) {
6121    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
6122    SrcVT = VT;
6123  }
6124
6125  // At this point the operands and the result should have the same
6126  // type, and that won't be f80 since that is not custom lowered.
6127
6128  // First get the sign bit of second operand.
6129  std::vector<Constant*> CV;
6130  if (SrcVT == MVT::f64) {
6131    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
6132    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6133  } else {
6134    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
6135    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6136    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6137    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6138  }
6139  Constant *C = ConstantVector::get(CV);
6140  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6141  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
6142                              PseudoSourceValue::getConstantPool(), 0,
6143                              false, false, 16);
6144  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
6145
6146  // Shift sign bit right or left if the two operands have different types.
6147  if (SrcVT.bitsGT(VT)) {
6148    // Op0 is MVT::f32, Op1 is MVT::f64.
6149    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
6150    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
6151                          DAG.getConstant(32, MVT::i32));
6152    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
6153    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
6154                          DAG.getIntPtrConstant(0));
6155  }
6156
6157  // Clear first operand sign bit.
6158  CV.clear();
6159  if (VT == MVT::f64) {
6160    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
6161    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6162  } else {
6163    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
6164    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6165    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6166    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6167  }
6168  C = ConstantVector::get(CV);
6169  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6170  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6171                              PseudoSourceValue::getConstantPool(), 0,
6172                              false, false, 16);
6173  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
6174
6175  // Or the value with the sign bit.
6176  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
6177}
6178
6179/// Emit nodes that will be selected as "test Op0,Op0", or something
6180/// equivalent.
6181SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
6182                                    SelectionDAG &DAG) const {
6183  DebugLoc dl = Op.getDebugLoc();
6184
6185  // CF and OF aren't always set the way we want. Determine which
6186  // of these we need.
6187  bool NeedCF = false;
6188  bool NeedOF = false;
6189  switch (X86CC) {
6190  default: break;
6191  case X86::COND_A: case X86::COND_AE:
6192  case X86::COND_B: case X86::COND_BE:
6193    NeedCF = true;
6194    break;
6195  case X86::COND_G: case X86::COND_GE:
6196  case X86::COND_L: case X86::COND_LE:
6197  case X86::COND_O: case X86::COND_NO:
6198    NeedOF = true;
6199    break;
6200  }
6201
6202  // See if we can use the EFLAGS value from the operand instead of
6203  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6204  // we prove that the arithmetic won't overflow, we can't use OF or CF.
6205  if (Op.getResNo() != 0 || NeedOF || NeedCF)
6206    // Emit a CMP with 0, which is the TEST pattern.
6207    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6208                       DAG.getConstant(0, Op.getValueType()));
6209
6210  unsigned Opcode = 0;
6211  unsigned NumOperands = 0;
6212  switch (Op.getNode()->getOpcode()) {
6213  case ISD::ADD:
6214    // Due to an isel shortcoming, be conservative if this add is likely to be
6215    // selected as part of a load-modify-store instruction. When the root node
6216    // in a match is a store, isel doesn't know how to remap non-chain non-flag
6217    // uses of other nodes in the match, such as the ADD in this case. This
6218    // leads to the ADD being left around and reselected, with the result being
6219    // two adds in the output.  Alas, even if none our users are stores, that
6220    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
6221    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
6222    // climbing the DAG back to the root, and it doesn't seem to be worth the
6223    // effort.
6224    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6225           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6226      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
6227        goto default_case;
6228
6229    if (ConstantSDNode *C =
6230        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
6231      // An add of one will be selected as an INC.
6232      if (C->getAPIntValue() == 1) {
6233        Opcode = X86ISD::INC;
6234        NumOperands = 1;
6235        break;
6236      }
6237
6238      // An add of negative one (subtract of one) will be selected as a DEC.
6239      if (C->getAPIntValue().isAllOnesValue()) {
6240        Opcode = X86ISD::DEC;
6241        NumOperands = 1;
6242        break;
6243      }
6244    }
6245
6246    // Otherwise use a regular EFLAGS-setting add.
6247    Opcode = X86ISD::ADD;
6248    NumOperands = 2;
6249    break;
6250  case ISD::AND: {
6251    // If the primary and result isn't used, don't bother using X86ISD::AND,
6252    // because a TEST instruction will be better.
6253    bool NonFlagUse = false;
6254    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6255           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
6256      SDNode *User = *UI;
6257      unsigned UOpNo = UI.getOperandNo();
6258      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
6259        // Look pass truncate.
6260        UOpNo = User->use_begin().getOperandNo();
6261        User = *User->use_begin();
6262      }
6263
6264      if (User->getOpcode() != ISD::BRCOND &&
6265          User->getOpcode() != ISD::SETCC &&
6266          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
6267        NonFlagUse = true;
6268        break;
6269      }
6270    }
6271
6272    if (!NonFlagUse)
6273      break;
6274  }
6275    // FALL THROUGH
6276  case ISD::SUB:
6277  case ISD::OR:
6278  case ISD::XOR:
6279    // Due to the ISEL shortcoming noted above, be conservative if this op is
6280    // likely to be selected as part of a load-modify-store instruction.
6281    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6282           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6283      if (UI->getOpcode() == ISD::STORE)
6284        goto default_case;
6285
6286    // Otherwise use a regular EFLAGS-setting instruction.
6287    switch (Op.getNode()->getOpcode()) {
6288    default: llvm_unreachable("unexpected operator!");
6289    case ISD::SUB: Opcode = X86ISD::SUB; break;
6290    case ISD::OR:  Opcode = X86ISD::OR;  break;
6291    case ISD::XOR: Opcode = X86ISD::XOR; break;
6292    case ISD::AND: Opcode = X86ISD::AND; break;
6293    }
6294
6295    NumOperands = 2;
6296    break;
6297  case X86ISD::ADD:
6298  case X86ISD::SUB:
6299  case X86ISD::INC:
6300  case X86ISD::DEC:
6301  case X86ISD::OR:
6302  case X86ISD::XOR:
6303  case X86ISD::AND:
6304    return SDValue(Op.getNode(), 1);
6305  default:
6306  default_case:
6307    break;
6308  }
6309
6310  if (Opcode == 0)
6311    // Emit a CMP with 0, which is the TEST pattern.
6312    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6313                       DAG.getConstant(0, Op.getValueType()));
6314
6315  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
6316  SmallVector<SDValue, 4> Ops;
6317  for (unsigned i = 0; i != NumOperands; ++i)
6318    Ops.push_back(Op.getOperand(i));
6319
6320  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
6321  DAG.ReplaceAllUsesWith(Op, New);
6322  return SDValue(New.getNode(), 1);
6323}
6324
6325/// Emit nodes that will be selected as "cmp Op0,Op1", or something
6326/// equivalent.
6327SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6328                                   SelectionDAG &DAG) const {
6329  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6330    if (C->getAPIntValue() == 0)
6331      return EmitTest(Op0, X86CC, DAG);
6332
6333  DebugLoc dl = Op0.getDebugLoc();
6334  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6335}
6336
6337/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6338/// if it's possible.
6339SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
6340                                     DebugLoc dl, SelectionDAG &DAG) const {
6341  SDValue Op0 = And.getOperand(0);
6342  SDValue Op1 = And.getOperand(1);
6343  if (Op0.getOpcode() == ISD::TRUNCATE)
6344    Op0 = Op0.getOperand(0);
6345  if (Op1.getOpcode() == ISD::TRUNCATE)
6346    Op1 = Op1.getOperand(0);
6347
6348  SDValue LHS, RHS;
6349  if (Op1.getOpcode() == ISD::SHL)
6350    std::swap(Op0, Op1);
6351  if (Op0.getOpcode() == ISD::SHL) {
6352    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6353      if (And00C->getZExtValue() == 1) {
6354        // If we looked past a truncate, check that it's only truncating away
6355        // known zeros.
6356        unsigned BitWidth = Op0.getValueSizeInBits();
6357        unsigned AndBitWidth = And.getValueSizeInBits();
6358        if (BitWidth > AndBitWidth) {
6359          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
6360          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
6361          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
6362            return SDValue();
6363        }
6364        LHS = Op1;
6365        RHS = Op0.getOperand(1);
6366      }
6367  } else if (Op1.getOpcode() == ISD::Constant) {
6368    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6369    SDValue AndLHS = Op0;
6370    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6371      LHS = AndLHS.getOperand(0);
6372      RHS = AndLHS.getOperand(1);
6373    }
6374  }
6375
6376  if (LHS.getNode()) {
6377    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
6378    // instruction.  Since the shift amount is in-range-or-undefined, we know
6379    // that doing a bittest on the i32 value is ok.  We extend to i32 because
6380    // the encoding for the i16 version is larger than the i32 version.
6381    // Also promote i16 to i32 for performance / code size reason.
6382    if (LHS.getValueType() == MVT::i8 ||
6383        LHS.getValueType() == MVT::i16)
6384      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6385
6386    // If the operand types disagree, extend the shift amount to match.  Since
6387    // BT ignores high bits (like shifts) we can use anyextend.
6388    if (LHS.getValueType() != RHS.getValueType())
6389      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6390
6391    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6392    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6393    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6394                       DAG.getConstant(Cond, MVT::i8), BT);
6395  }
6396
6397  return SDValue();
6398}
6399
6400SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
6401  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
6402  SDValue Op0 = Op.getOperand(0);
6403  SDValue Op1 = Op.getOperand(1);
6404  DebugLoc dl = Op.getDebugLoc();
6405  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6406
6407  // Optimize to BT if possible.
6408  // Lower (X & (1 << N)) == 0 to BT(X, N).
6409  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
6410  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
6411  if (Op0.getOpcode() == ISD::AND &&
6412      Op0.hasOneUse() &&
6413      Op1.getOpcode() == ISD::Constant &&
6414      cast<ConstantSDNode>(Op1)->isNullValue() &&
6415      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6416    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
6417    if (NewSetCC.getNode())
6418      return NewSetCC;
6419  }
6420
6421  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
6422  if (Op0.getOpcode() == X86ISD::SETCC &&
6423      Op1.getOpcode() == ISD::Constant &&
6424      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
6425       cast<ConstantSDNode>(Op1)->isNullValue()) &&
6426      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6427    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
6428    bool Invert = (CC == ISD::SETNE) ^
6429      cast<ConstantSDNode>(Op1)->isNullValue();
6430    if (Invert)
6431      CCode = X86::GetOppositeBranchCondition(CCode);
6432    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6433                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
6434  }
6435
6436  bool isFP = Op1.getValueType().isFloatingPoint();
6437  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
6438  if (X86CC == X86::COND_INVALID)
6439    return SDValue();
6440
6441  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
6442
6443  // Use sbb x, x to materialize carry bit into a GPR.
6444  if (X86CC == X86::COND_B)
6445    return DAG.getNode(ISD::AND, dl, MVT::i8,
6446                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
6447                                   DAG.getConstant(X86CC, MVT::i8), Cond),
6448                       DAG.getConstant(1, MVT::i8));
6449
6450  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6451                     DAG.getConstant(X86CC, MVT::i8), Cond);
6452}
6453
6454SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
6455  SDValue Cond;
6456  SDValue Op0 = Op.getOperand(0);
6457  SDValue Op1 = Op.getOperand(1);
6458  SDValue CC = Op.getOperand(2);
6459  EVT VT = Op.getValueType();
6460  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6461  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6462  DebugLoc dl = Op.getDebugLoc();
6463
6464  if (isFP) {
6465    unsigned SSECC = 8;
6466    EVT VT0 = Op0.getValueType();
6467    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
6468    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
6469    bool Swap = false;
6470
6471    switch (SetCCOpcode) {
6472    default: break;
6473    case ISD::SETOEQ:
6474    case ISD::SETEQ:  SSECC = 0; break;
6475    case ISD::SETOGT:
6476    case ISD::SETGT: Swap = true; // Fallthrough
6477    case ISD::SETLT:
6478    case ISD::SETOLT: SSECC = 1; break;
6479    case ISD::SETOGE:
6480    case ISD::SETGE: Swap = true; // Fallthrough
6481    case ISD::SETLE:
6482    case ISD::SETOLE: SSECC = 2; break;
6483    case ISD::SETUO:  SSECC = 3; break;
6484    case ISD::SETUNE:
6485    case ISD::SETNE:  SSECC = 4; break;
6486    case ISD::SETULE: Swap = true;
6487    case ISD::SETUGE: SSECC = 5; break;
6488    case ISD::SETULT: Swap = true;
6489    case ISD::SETUGT: SSECC = 6; break;
6490    case ISD::SETO:   SSECC = 7; break;
6491    }
6492    if (Swap)
6493      std::swap(Op0, Op1);
6494
6495    // In the two special cases we can't handle, emit two comparisons.
6496    if (SSECC == 8) {
6497      if (SetCCOpcode == ISD::SETUEQ) {
6498        SDValue UNORD, EQ;
6499        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6500        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6501        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6502      }
6503      else if (SetCCOpcode == ISD::SETONE) {
6504        SDValue ORD, NEQ;
6505        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6506        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6507        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6508      }
6509      llvm_unreachable("Illegal FP comparison");
6510    }
6511    // Handle all other FP comparisons here.
6512    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6513  }
6514
6515  // We are handling one of the integer comparisons here.  Since SSE only has
6516  // GT and EQ comparisons for integer, swapping operands and multiple
6517  // operations may be required for some comparisons.
6518  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6519  bool Swap = false, Invert = false, FlipSigns = false;
6520
6521  switch (VT.getSimpleVT().SimpleTy) {
6522  default: break;
6523  case MVT::v8i8:
6524  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6525  case MVT::v4i16:
6526  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6527  case MVT::v2i32:
6528  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6529  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6530  }
6531
6532  switch (SetCCOpcode) {
6533  default: break;
6534  case ISD::SETNE:  Invert = true;
6535  case ISD::SETEQ:  Opc = EQOpc; break;
6536  case ISD::SETLT:  Swap = true;
6537  case ISD::SETGT:  Opc = GTOpc; break;
6538  case ISD::SETGE:  Swap = true;
6539  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6540  case ISD::SETULT: Swap = true;
6541  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6542  case ISD::SETUGE: Swap = true;
6543  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6544  }
6545  if (Swap)
6546    std::swap(Op0, Op1);
6547
6548  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6549  // bits of the inputs before performing those operations.
6550  if (FlipSigns) {
6551    EVT EltVT = VT.getVectorElementType();
6552    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6553                                      EltVT);
6554    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6555    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6556                                    SignBits.size());
6557    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6558    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6559  }
6560
6561  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6562
6563  // If the logical-not of the result is required, perform that now.
6564  if (Invert)
6565    Result = DAG.getNOT(dl, Result, VT);
6566
6567  return Result;
6568}
6569
6570// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6571static bool isX86LogicalCmp(SDValue Op) {
6572  unsigned Opc = Op.getNode()->getOpcode();
6573  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6574    return true;
6575  if (Op.getResNo() == 1 &&
6576      (Opc == X86ISD::ADD ||
6577       Opc == X86ISD::SUB ||
6578       Opc == X86ISD::SMUL ||
6579       Opc == X86ISD::UMUL ||
6580       Opc == X86ISD::INC ||
6581       Opc == X86ISD::DEC ||
6582       Opc == X86ISD::OR ||
6583       Opc == X86ISD::XOR ||
6584       Opc == X86ISD::AND))
6585    return true;
6586
6587  return false;
6588}
6589
6590SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
6591  bool addTest = true;
6592  SDValue Cond  = Op.getOperand(0);
6593  DebugLoc dl = Op.getDebugLoc();
6594  SDValue CC;
6595
6596  if (Cond.getOpcode() == ISD::SETCC) {
6597    SDValue NewCond = LowerSETCC(Cond, DAG);
6598    if (NewCond.getNode())
6599      Cond = NewCond;
6600  }
6601
6602  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6603  SDValue Op1 = Op.getOperand(1);
6604  SDValue Op2 = Op.getOperand(2);
6605  if (Cond.getOpcode() == X86ISD::SETCC &&
6606      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6607    SDValue Cmp = Cond.getOperand(1);
6608    if (Cmp.getOpcode() == X86ISD::CMP) {
6609      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6610      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6611      ConstantSDNode *RHSC =
6612        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6613      if (N1C && N1C->isAllOnesValue() &&
6614          N2C && N2C->isNullValue() &&
6615          RHSC && RHSC->isNullValue()) {
6616        SDValue CmpOp0 = Cmp.getOperand(0);
6617        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6618                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6619        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6620                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6621      }
6622    }
6623  }
6624
6625  // Look pass (and (setcc_carry (cmp ...)), 1).
6626  if (Cond.getOpcode() == ISD::AND &&
6627      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6628    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6629    if (C && C->getAPIntValue() == 1)
6630      Cond = Cond.getOperand(0);
6631  }
6632
6633  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6634  // setting operand in place of the X86ISD::SETCC.
6635  if (Cond.getOpcode() == X86ISD::SETCC ||
6636      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6637    CC = Cond.getOperand(0);
6638
6639    SDValue Cmp = Cond.getOperand(1);
6640    unsigned Opc = Cmp.getOpcode();
6641    EVT VT = Op.getValueType();
6642
6643    bool IllegalFPCMov = false;
6644    if (VT.isFloatingPoint() && !VT.isVector() &&
6645        !isScalarFPTypeInSSEReg(VT))  // FPStack?
6646      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
6647
6648    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
6649        Opc == X86ISD::BT) { // FIXME
6650      Cond = Cmp;
6651      addTest = false;
6652    }
6653  }
6654
6655  if (addTest) {
6656    // Look pass the truncate.
6657    if (Cond.getOpcode() == ISD::TRUNCATE)
6658      Cond = Cond.getOperand(0);
6659
6660    // We know the result of AND is compared against zero. Try to match
6661    // it to BT.
6662    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6663      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6664      if (NewSetCC.getNode()) {
6665        CC = NewSetCC.getOperand(0);
6666        Cond = NewSetCC.getOperand(1);
6667        addTest = false;
6668      }
6669    }
6670  }
6671
6672  if (addTest) {
6673    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6674    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6675  }
6676
6677  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
6678  // condition is true.
6679  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
6680  SDValue Ops[] = { Op2, Op1, CC, Cond };
6681  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
6682}
6683
6684// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
6685// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
6686// from the AND / OR.
6687static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
6688  Opc = Op.getOpcode();
6689  if (Opc != ISD::OR && Opc != ISD::AND)
6690    return false;
6691  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6692          Op.getOperand(0).hasOneUse() &&
6693          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
6694          Op.getOperand(1).hasOneUse());
6695}
6696
6697// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
6698// 1 and that the SETCC node has a single use.
6699static bool isXor1OfSetCC(SDValue Op) {
6700  if (Op.getOpcode() != ISD::XOR)
6701    return false;
6702  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6703  if (N1C && N1C->getAPIntValue() == 1) {
6704    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6705      Op.getOperand(0).hasOneUse();
6706  }
6707  return false;
6708}
6709
6710SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
6711  bool addTest = true;
6712  SDValue Chain = Op.getOperand(0);
6713  SDValue Cond  = Op.getOperand(1);
6714  SDValue Dest  = Op.getOperand(2);
6715  DebugLoc dl = Op.getDebugLoc();
6716  SDValue CC;
6717
6718  if (Cond.getOpcode() == ISD::SETCC) {
6719    SDValue NewCond = LowerSETCC(Cond, DAG);
6720    if (NewCond.getNode())
6721      Cond = NewCond;
6722  }
6723#if 0
6724  // FIXME: LowerXALUO doesn't handle these!!
6725  else if (Cond.getOpcode() == X86ISD::ADD  ||
6726           Cond.getOpcode() == X86ISD::SUB  ||
6727           Cond.getOpcode() == X86ISD::SMUL ||
6728           Cond.getOpcode() == X86ISD::UMUL)
6729    Cond = LowerXALUO(Cond, DAG);
6730#endif
6731
6732  // Look pass (and (setcc_carry (cmp ...)), 1).
6733  if (Cond.getOpcode() == ISD::AND &&
6734      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6735    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6736    if (C && C->getAPIntValue() == 1)
6737      Cond = Cond.getOperand(0);
6738  }
6739
6740  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6741  // setting operand in place of the X86ISD::SETCC.
6742  if (Cond.getOpcode() == X86ISD::SETCC ||
6743      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6744    CC = Cond.getOperand(0);
6745
6746    SDValue Cmp = Cond.getOperand(1);
6747    unsigned Opc = Cmp.getOpcode();
6748    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
6749    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
6750      Cond = Cmp;
6751      addTest = false;
6752    } else {
6753      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
6754      default: break;
6755      case X86::COND_O:
6756      case X86::COND_B:
6757        // These can only come from an arithmetic instruction with overflow,
6758        // e.g. SADDO, UADDO.
6759        Cond = Cond.getNode()->getOperand(1);
6760        addTest = false;
6761        break;
6762      }
6763    }
6764  } else {
6765    unsigned CondOpc;
6766    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
6767      SDValue Cmp = Cond.getOperand(0).getOperand(1);
6768      if (CondOpc == ISD::OR) {
6769        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
6770        // two branches instead of an explicit OR instruction with a
6771        // separate test.
6772        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6773            isX86LogicalCmp(Cmp)) {
6774          CC = Cond.getOperand(0).getOperand(0);
6775          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6776                              Chain, Dest, CC, Cmp);
6777          CC = Cond.getOperand(1).getOperand(0);
6778          Cond = Cmp;
6779          addTest = false;
6780        }
6781      } else { // ISD::AND
6782        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
6783        // two branches instead of an explicit AND instruction with a
6784        // separate test. However, we only do this if this block doesn't
6785        // have a fall-through edge, because this requires an explicit
6786        // jmp when the condition is false.
6787        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6788            isX86LogicalCmp(Cmp) &&
6789            Op.getNode()->hasOneUse()) {
6790          X86::CondCode CCode =
6791            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6792          CCode = X86::GetOppositeBranchCondition(CCode);
6793          CC = DAG.getConstant(CCode, MVT::i8);
6794          SDNode *User = *Op.getNode()->use_begin();
6795          // Look for an unconditional branch following this conditional branch.
6796          // We need this because we need to reverse the successors in order
6797          // to implement FCMP_OEQ.
6798          if (User->getOpcode() == ISD::BR) {
6799            SDValue FalseBB = User->getOperand(1);
6800            SDNode *NewBR =
6801              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
6802            assert(NewBR == User);
6803            (void)NewBR;
6804            Dest = FalseBB;
6805
6806            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6807                                Chain, Dest, CC, Cmp);
6808            X86::CondCode CCode =
6809              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
6810            CCode = X86::GetOppositeBranchCondition(CCode);
6811            CC = DAG.getConstant(CCode, MVT::i8);
6812            Cond = Cmp;
6813            addTest = false;
6814          }
6815        }
6816      }
6817    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
6818      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
6819      // It should be transformed during dag combiner except when the condition
6820      // is set by a arithmetics with overflow node.
6821      X86::CondCode CCode =
6822        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6823      CCode = X86::GetOppositeBranchCondition(CCode);
6824      CC = DAG.getConstant(CCode, MVT::i8);
6825      Cond = Cond.getOperand(0).getOperand(1);
6826      addTest = false;
6827    }
6828  }
6829
6830  if (addTest) {
6831    // Look pass the truncate.
6832    if (Cond.getOpcode() == ISD::TRUNCATE)
6833      Cond = Cond.getOperand(0);
6834
6835    // We know the result of AND is compared against zero. Try to match
6836    // it to BT.
6837    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6838      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6839      if (NewSetCC.getNode()) {
6840        CC = NewSetCC.getOperand(0);
6841        Cond = NewSetCC.getOperand(1);
6842        addTest = false;
6843      }
6844    }
6845  }
6846
6847  if (addTest) {
6848    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6849    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6850  }
6851  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6852                     Chain, Dest, CC, Cond);
6853}
6854
6855
6856// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
6857// Calls to _alloca is needed to probe the stack when allocating more than 4k
6858// bytes in one go. Touching the stack at 4K increments is necessary to ensure
6859// that the guard pages used by the OS virtual memory manager are allocated in
6860// correct sequence.
6861SDValue
6862X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6863                                           SelectionDAG &DAG) const {
6864  assert(Subtarget->isTargetCygMing() &&
6865         "This should be used only on Cygwin/Mingw targets");
6866  DebugLoc dl = Op.getDebugLoc();
6867
6868  // Get the inputs.
6869  SDValue Chain = Op.getOperand(0);
6870  SDValue Size  = Op.getOperand(1);
6871  // FIXME: Ensure alignment here
6872
6873  SDValue Flag;
6874
6875  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
6876
6877  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
6878  Flag = Chain.getValue(1);
6879
6880  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6881
6882  Chain = DAG.getNode(X86ISD::MINGW_ALLOCA, dl, NodeTys, Chain, Flag);
6883  Flag = Chain.getValue(1);
6884
6885  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
6886
6887  SDValue Ops1[2] = { Chain.getValue(0), Chain };
6888  return DAG.getMergeValues(Ops1, 2, dl);
6889}
6890
6891SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
6892  MachineFunction &MF = DAG.getMachineFunction();
6893  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
6894
6895  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6896  DebugLoc dl = Op.getDebugLoc();
6897
6898  if (!Subtarget->is64Bit()) {
6899    // vastart just stores the address of the VarArgsFrameIndex slot into the
6900    // memory location argument.
6901    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
6902                                   getPointerTy());
6903    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
6904                        false, false, 0);
6905  }
6906
6907  // __va_list_tag:
6908  //   gp_offset         (0 - 6 * 8)
6909  //   fp_offset         (48 - 48 + 8 * 16)
6910  //   overflow_arg_area (point to parameters coming in memory).
6911  //   reg_save_area
6912  SmallVector<SDValue, 8> MemOps;
6913  SDValue FIN = Op.getOperand(1);
6914  // Store gp_offset
6915  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6916                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
6917                                               MVT::i32),
6918                               FIN, SV, 0, false, false, 0);
6919  MemOps.push_back(Store);
6920
6921  // Store fp_offset
6922  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6923                    FIN, DAG.getIntPtrConstant(4));
6924  Store = DAG.getStore(Op.getOperand(0), dl,
6925                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
6926                                       MVT::i32),
6927                       FIN, SV, 4, false, false, 0);
6928  MemOps.push_back(Store);
6929
6930  // Store ptr to overflow_arg_area
6931  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6932                    FIN, DAG.getIntPtrConstant(4));
6933  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
6934                                    getPointerTy());
6935  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 8,
6936                       false, false, 0);
6937  MemOps.push_back(Store);
6938
6939  // Store ptr to reg_save_area.
6940  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6941                    FIN, DAG.getIntPtrConstant(8));
6942  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
6943                                    getPointerTy());
6944  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 16,
6945                       false, false, 0);
6946  MemOps.push_back(Store);
6947  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6948                     &MemOps[0], MemOps.size());
6949}
6950
6951SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
6952  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6953  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6954
6955  report_fatal_error("VAArgInst is not yet implemented for x86-64!");
6956  return SDValue();
6957}
6958
6959SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
6960  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6961  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6962  SDValue Chain = Op.getOperand(0);
6963  SDValue DstPtr = Op.getOperand(1);
6964  SDValue SrcPtr = Op.getOperand(2);
6965  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6966  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6967  DebugLoc dl = Op.getDebugLoc();
6968
6969  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6970                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
6971                       false, DstSV, 0, SrcSV, 0);
6972}
6973
6974SDValue
6975X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
6976  DebugLoc dl = Op.getDebugLoc();
6977  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6978  switch (IntNo) {
6979  default: return SDValue();    // Don't custom lower most intrinsics.
6980  // Comparison intrinsics.
6981  case Intrinsic::x86_sse_comieq_ss:
6982  case Intrinsic::x86_sse_comilt_ss:
6983  case Intrinsic::x86_sse_comile_ss:
6984  case Intrinsic::x86_sse_comigt_ss:
6985  case Intrinsic::x86_sse_comige_ss:
6986  case Intrinsic::x86_sse_comineq_ss:
6987  case Intrinsic::x86_sse_ucomieq_ss:
6988  case Intrinsic::x86_sse_ucomilt_ss:
6989  case Intrinsic::x86_sse_ucomile_ss:
6990  case Intrinsic::x86_sse_ucomigt_ss:
6991  case Intrinsic::x86_sse_ucomige_ss:
6992  case Intrinsic::x86_sse_ucomineq_ss:
6993  case Intrinsic::x86_sse2_comieq_sd:
6994  case Intrinsic::x86_sse2_comilt_sd:
6995  case Intrinsic::x86_sse2_comile_sd:
6996  case Intrinsic::x86_sse2_comigt_sd:
6997  case Intrinsic::x86_sse2_comige_sd:
6998  case Intrinsic::x86_sse2_comineq_sd:
6999  case Intrinsic::x86_sse2_ucomieq_sd:
7000  case Intrinsic::x86_sse2_ucomilt_sd:
7001  case Intrinsic::x86_sse2_ucomile_sd:
7002  case Intrinsic::x86_sse2_ucomigt_sd:
7003  case Intrinsic::x86_sse2_ucomige_sd:
7004  case Intrinsic::x86_sse2_ucomineq_sd: {
7005    unsigned Opc = 0;
7006    ISD::CondCode CC = ISD::SETCC_INVALID;
7007    switch (IntNo) {
7008    default: break;
7009    case Intrinsic::x86_sse_comieq_ss:
7010    case Intrinsic::x86_sse2_comieq_sd:
7011      Opc = X86ISD::COMI;
7012      CC = ISD::SETEQ;
7013      break;
7014    case Intrinsic::x86_sse_comilt_ss:
7015    case Intrinsic::x86_sse2_comilt_sd:
7016      Opc = X86ISD::COMI;
7017      CC = ISD::SETLT;
7018      break;
7019    case Intrinsic::x86_sse_comile_ss:
7020    case Intrinsic::x86_sse2_comile_sd:
7021      Opc = X86ISD::COMI;
7022      CC = ISD::SETLE;
7023      break;
7024    case Intrinsic::x86_sse_comigt_ss:
7025    case Intrinsic::x86_sse2_comigt_sd:
7026      Opc = X86ISD::COMI;
7027      CC = ISD::SETGT;
7028      break;
7029    case Intrinsic::x86_sse_comige_ss:
7030    case Intrinsic::x86_sse2_comige_sd:
7031      Opc = X86ISD::COMI;
7032      CC = ISD::SETGE;
7033      break;
7034    case Intrinsic::x86_sse_comineq_ss:
7035    case Intrinsic::x86_sse2_comineq_sd:
7036      Opc = X86ISD::COMI;
7037      CC = ISD::SETNE;
7038      break;
7039    case Intrinsic::x86_sse_ucomieq_ss:
7040    case Intrinsic::x86_sse2_ucomieq_sd:
7041      Opc = X86ISD::UCOMI;
7042      CC = ISD::SETEQ;
7043      break;
7044    case Intrinsic::x86_sse_ucomilt_ss:
7045    case Intrinsic::x86_sse2_ucomilt_sd:
7046      Opc = X86ISD::UCOMI;
7047      CC = ISD::SETLT;
7048      break;
7049    case Intrinsic::x86_sse_ucomile_ss:
7050    case Intrinsic::x86_sse2_ucomile_sd:
7051      Opc = X86ISD::UCOMI;
7052      CC = ISD::SETLE;
7053      break;
7054    case Intrinsic::x86_sse_ucomigt_ss:
7055    case Intrinsic::x86_sse2_ucomigt_sd:
7056      Opc = X86ISD::UCOMI;
7057      CC = ISD::SETGT;
7058      break;
7059    case Intrinsic::x86_sse_ucomige_ss:
7060    case Intrinsic::x86_sse2_ucomige_sd:
7061      Opc = X86ISD::UCOMI;
7062      CC = ISD::SETGE;
7063      break;
7064    case Intrinsic::x86_sse_ucomineq_ss:
7065    case Intrinsic::x86_sse2_ucomineq_sd:
7066      Opc = X86ISD::UCOMI;
7067      CC = ISD::SETNE;
7068      break;
7069    }
7070
7071    SDValue LHS = Op.getOperand(1);
7072    SDValue RHS = Op.getOperand(2);
7073    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
7074    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
7075    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
7076    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7077                                DAG.getConstant(X86CC, MVT::i8), Cond);
7078    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7079  }
7080  // ptest and testp intrinsics. The intrinsic these come from are designed to
7081  // return an integer value, not just an instruction so lower it to the ptest
7082  // or testp pattern and a setcc for the result.
7083  case Intrinsic::x86_sse41_ptestz:
7084  case Intrinsic::x86_sse41_ptestc:
7085  case Intrinsic::x86_sse41_ptestnzc:
7086  case Intrinsic::x86_avx_ptestz_256:
7087  case Intrinsic::x86_avx_ptestc_256:
7088  case Intrinsic::x86_avx_ptestnzc_256:
7089  case Intrinsic::x86_avx_vtestz_ps:
7090  case Intrinsic::x86_avx_vtestc_ps:
7091  case Intrinsic::x86_avx_vtestnzc_ps:
7092  case Intrinsic::x86_avx_vtestz_pd:
7093  case Intrinsic::x86_avx_vtestc_pd:
7094  case Intrinsic::x86_avx_vtestnzc_pd:
7095  case Intrinsic::x86_avx_vtestz_ps_256:
7096  case Intrinsic::x86_avx_vtestc_ps_256:
7097  case Intrinsic::x86_avx_vtestnzc_ps_256:
7098  case Intrinsic::x86_avx_vtestz_pd_256:
7099  case Intrinsic::x86_avx_vtestc_pd_256:
7100  case Intrinsic::x86_avx_vtestnzc_pd_256: {
7101    bool IsTestPacked = false;
7102    unsigned X86CC = 0;
7103    switch (IntNo) {
7104    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
7105    case Intrinsic::x86_avx_vtestz_ps:
7106    case Intrinsic::x86_avx_vtestz_pd:
7107    case Intrinsic::x86_avx_vtestz_ps_256:
7108    case Intrinsic::x86_avx_vtestz_pd_256:
7109      IsTestPacked = true; // Fallthrough
7110    case Intrinsic::x86_sse41_ptestz:
7111    case Intrinsic::x86_avx_ptestz_256:
7112      // ZF = 1
7113      X86CC = X86::COND_E;
7114      break;
7115    case Intrinsic::x86_avx_vtestc_ps:
7116    case Intrinsic::x86_avx_vtestc_pd:
7117    case Intrinsic::x86_avx_vtestc_ps_256:
7118    case Intrinsic::x86_avx_vtestc_pd_256:
7119      IsTestPacked = true; // Fallthrough
7120    case Intrinsic::x86_sse41_ptestc:
7121    case Intrinsic::x86_avx_ptestc_256:
7122      // CF = 1
7123      X86CC = X86::COND_B;
7124      break;
7125    case Intrinsic::x86_avx_vtestnzc_ps:
7126    case Intrinsic::x86_avx_vtestnzc_pd:
7127    case Intrinsic::x86_avx_vtestnzc_ps_256:
7128    case Intrinsic::x86_avx_vtestnzc_pd_256:
7129      IsTestPacked = true; // Fallthrough
7130    case Intrinsic::x86_sse41_ptestnzc:
7131    case Intrinsic::x86_avx_ptestnzc_256:
7132      // ZF and CF = 0
7133      X86CC = X86::COND_A;
7134      break;
7135    }
7136
7137    SDValue LHS = Op.getOperand(1);
7138    SDValue RHS = Op.getOperand(2);
7139    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
7140    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
7141    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
7142    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
7143    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7144  }
7145
7146  // Fix vector shift instructions where the last operand is a non-immediate
7147  // i32 value.
7148  case Intrinsic::x86_sse2_pslli_w:
7149  case Intrinsic::x86_sse2_pslli_d:
7150  case Intrinsic::x86_sse2_pslli_q:
7151  case Intrinsic::x86_sse2_psrli_w:
7152  case Intrinsic::x86_sse2_psrli_d:
7153  case Intrinsic::x86_sse2_psrli_q:
7154  case Intrinsic::x86_sse2_psrai_w:
7155  case Intrinsic::x86_sse2_psrai_d:
7156  case Intrinsic::x86_mmx_pslli_w:
7157  case Intrinsic::x86_mmx_pslli_d:
7158  case Intrinsic::x86_mmx_pslli_q:
7159  case Intrinsic::x86_mmx_psrli_w:
7160  case Intrinsic::x86_mmx_psrli_d:
7161  case Intrinsic::x86_mmx_psrli_q:
7162  case Intrinsic::x86_mmx_psrai_w:
7163  case Intrinsic::x86_mmx_psrai_d: {
7164    SDValue ShAmt = Op.getOperand(2);
7165    if (isa<ConstantSDNode>(ShAmt))
7166      return SDValue();
7167
7168    unsigned NewIntNo = 0;
7169    EVT ShAmtVT = MVT::v4i32;
7170    switch (IntNo) {
7171    case Intrinsic::x86_sse2_pslli_w:
7172      NewIntNo = Intrinsic::x86_sse2_psll_w;
7173      break;
7174    case Intrinsic::x86_sse2_pslli_d:
7175      NewIntNo = Intrinsic::x86_sse2_psll_d;
7176      break;
7177    case Intrinsic::x86_sse2_pslli_q:
7178      NewIntNo = Intrinsic::x86_sse2_psll_q;
7179      break;
7180    case Intrinsic::x86_sse2_psrli_w:
7181      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7182      break;
7183    case Intrinsic::x86_sse2_psrli_d:
7184      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7185      break;
7186    case Intrinsic::x86_sse2_psrli_q:
7187      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7188      break;
7189    case Intrinsic::x86_sse2_psrai_w:
7190      NewIntNo = Intrinsic::x86_sse2_psra_w;
7191      break;
7192    case Intrinsic::x86_sse2_psrai_d:
7193      NewIntNo = Intrinsic::x86_sse2_psra_d;
7194      break;
7195    default: {
7196      ShAmtVT = MVT::v2i32;
7197      switch (IntNo) {
7198      case Intrinsic::x86_mmx_pslli_w:
7199        NewIntNo = Intrinsic::x86_mmx_psll_w;
7200        break;
7201      case Intrinsic::x86_mmx_pslli_d:
7202        NewIntNo = Intrinsic::x86_mmx_psll_d;
7203        break;
7204      case Intrinsic::x86_mmx_pslli_q:
7205        NewIntNo = Intrinsic::x86_mmx_psll_q;
7206        break;
7207      case Intrinsic::x86_mmx_psrli_w:
7208        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7209        break;
7210      case Intrinsic::x86_mmx_psrli_d:
7211        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7212        break;
7213      case Intrinsic::x86_mmx_psrli_q:
7214        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7215        break;
7216      case Intrinsic::x86_mmx_psrai_w:
7217        NewIntNo = Intrinsic::x86_mmx_psra_w;
7218        break;
7219      case Intrinsic::x86_mmx_psrai_d:
7220        NewIntNo = Intrinsic::x86_mmx_psra_d;
7221        break;
7222      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7223      }
7224      break;
7225    }
7226    }
7227
7228    // The vector shift intrinsics with scalars uses 32b shift amounts but
7229    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7230    // to be zero.
7231    SDValue ShOps[4];
7232    ShOps[0] = ShAmt;
7233    ShOps[1] = DAG.getConstant(0, MVT::i32);
7234    if (ShAmtVT == MVT::v4i32) {
7235      ShOps[2] = DAG.getUNDEF(MVT::i32);
7236      ShOps[3] = DAG.getUNDEF(MVT::i32);
7237      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7238    } else {
7239      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7240    }
7241
7242    EVT VT = Op.getValueType();
7243    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7244    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7245                       DAG.getConstant(NewIntNo, MVT::i32),
7246                       Op.getOperand(1), ShAmt);
7247  }
7248  }
7249}
7250
7251SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
7252                                           SelectionDAG &DAG) const {
7253  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7254  MFI->setReturnAddressIsTaken(true);
7255
7256  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7257  DebugLoc dl = Op.getDebugLoc();
7258
7259  if (Depth > 0) {
7260    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7261    SDValue Offset =
7262      DAG.getConstant(TD->getPointerSize(),
7263                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7264    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7265                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7266                                   FrameAddr, Offset),
7267                       NULL, 0, false, false, 0);
7268  }
7269
7270  // Just load the return address.
7271  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7272  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7273                     RetAddrFI, NULL, 0, false, false, 0);
7274}
7275
7276SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
7277  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7278  MFI->setFrameAddressIsTaken(true);
7279
7280  EVT VT = Op.getValueType();
7281  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7282  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7283  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7284  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7285  while (Depth--)
7286    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
7287                            false, false, 0);
7288  return FrameAddr;
7289}
7290
7291SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7292                                                     SelectionDAG &DAG) const {
7293  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7294}
7295
7296SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
7297  MachineFunction &MF = DAG.getMachineFunction();
7298  SDValue Chain     = Op.getOperand(0);
7299  SDValue Offset    = Op.getOperand(1);
7300  SDValue Handler   = Op.getOperand(2);
7301  DebugLoc dl       = Op.getDebugLoc();
7302
7303  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
7304                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7305                                     getPointerTy());
7306  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7307
7308  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
7309                                  DAG.getIntPtrConstant(TD->getPointerSize()));
7310  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7311  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
7312  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7313  MF.getRegInfo().addLiveOut(StoreAddrReg);
7314
7315  return DAG.getNode(X86ISD::EH_RETURN, dl,
7316                     MVT::Other,
7317                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7318}
7319
7320SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7321                                             SelectionDAG &DAG) const {
7322  SDValue Root = Op.getOperand(0);
7323  SDValue Trmp = Op.getOperand(1); // trampoline
7324  SDValue FPtr = Op.getOperand(2); // nested function
7325  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7326  DebugLoc dl  = Op.getDebugLoc();
7327
7328  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7329
7330  if (Subtarget->is64Bit()) {
7331    SDValue OutChains[6];
7332
7333    // Large code-model.
7334    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7335    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7336
7337    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7338    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7339
7340    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7341
7342    // Load the pointer to the nested function into R11.
7343    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7344    SDValue Addr = Trmp;
7345    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7346                                Addr, TrmpAddr, 0, false, false, 0);
7347
7348    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7349                       DAG.getConstant(2, MVT::i64));
7350    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7351                                false, false, 2);
7352
7353    // Load the 'nest' parameter value into R10.
7354    // R10 is specified in X86CallingConv.td
7355    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7356    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7357                       DAG.getConstant(10, MVT::i64));
7358    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7359                                Addr, TrmpAddr, 10, false, false, 0);
7360
7361    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7362                       DAG.getConstant(12, MVT::i64));
7363    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7364                                false, false, 2);
7365
7366    // Jump to the nested function.
7367    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7368    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7369                       DAG.getConstant(20, MVT::i64));
7370    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7371                                Addr, TrmpAddr, 20, false, false, 0);
7372
7373    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7374    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7375                       DAG.getConstant(22, MVT::i64));
7376    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7377                                TrmpAddr, 22, false, false, 0);
7378
7379    SDValue Ops[] =
7380      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7381    return DAG.getMergeValues(Ops, 2, dl);
7382  } else {
7383    const Function *Func =
7384      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7385    CallingConv::ID CC = Func->getCallingConv();
7386    unsigned NestReg;
7387
7388    switch (CC) {
7389    default:
7390      llvm_unreachable("Unsupported calling convention");
7391    case CallingConv::C:
7392    case CallingConv::X86_StdCall: {
7393      // Pass 'nest' parameter in ECX.
7394      // Must be kept in sync with X86CallingConv.td
7395      NestReg = X86::ECX;
7396
7397      // Check that ECX wasn't needed by an 'inreg' parameter.
7398      const FunctionType *FTy = Func->getFunctionType();
7399      const AttrListPtr &Attrs = Func->getAttributes();
7400
7401      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7402        unsigned InRegCount = 0;
7403        unsigned Idx = 1;
7404
7405        for (FunctionType::param_iterator I = FTy->param_begin(),
7406             E = FTy->param_end(); I != E; ++I, ++Idx)
7407          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7408            // FIXME: should only count parameters that are lowered to integers.
7409            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7410
7411        if (InRegCount > 2) {
7412          report_fatal_error("Nest register in use - reduce number of inreg"
7413                             " parameters!");
7414        }
7415      }
7416      break;
7417    }
7418    case CallingConv::X86_FastCall:
7419    case CallingConv::X86_ThisCall:
7420    case CallingConv::Fast:
7421      // Pass 'nest' parameter in EAX.
7422      // Must be kept in sync with X86CallingConv.td
7423      NestReg = X86::EAX;
7424      break;
7425    }
7426
7427    SDValue OutChains[4];
7428    SDValue Addr, Disp;
7429
7430    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7431                       DAG.getConstant(10, MVT::i32));
7432    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7433
7434    // This is storing the opcode for MOV32ri.
7435    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7436    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7437    OutChains[0] = DAG.getStore(Root, dl,
7438                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7439                                Trmp, TrmpAddr, 0, false, false, 0);
7440
7441    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7442                       DAG.getConstant(1, MVT::i32));
7443    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7444                                false, false, 1);
7445
7446    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7447    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7448                       DAG.getConstant(5, MVT::i32));
7449    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7450                                TrmpAddr, 5, false, false, 1);
7451
7452    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7453                       DAG.getConstant(6, MVT::i32));
7454    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7455                                false, false, 1);
7456
7457    SDValue Ops[] =
7458      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7459    return DAG.getMergeValues(Ops, 2, dl);
7460  }
7461}
7462
7463SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7464                                            SelectionDAG &DAG) const {
7465  /*
7466   The rounding mode is in bits 11:10 of FPSR, and has the following
7467   settings:
7468     00 Round to nearest
7469     01 Round to -inf
7470     10 Round to +inf
7471     11 Round to 0
7472
7473  FLT_ROUNDS, on the other hand, expects the following:
7474    -1 Undefined
7475     0 Round to 0
7476     1 Round to nearest
7477     2 Round to +inf
7478     3 Round to -inf
7479
7480  To perform the conversion, we do:
7481    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7482  */
7483
7484  MachineFunction &MF = DAG.getMachineFunction();
7485  const TargetMachine &TM = MF.getTarget();
7486  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7487  unsigned StackAlignment = TFI.getStackAlignment();
7488  EVT VT = Op.getValueType();
7489  DebugLoc dl = Op.getDebugLoc();
7490
7491  // Save FP Control Word to stack slot
7492  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7493  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7494
7495  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7496                              DAG.getEntryNode(), StackSlot);
7497
7498  // Load FP Control Word from stack slot
7499  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
7500                            false, false, 0);
7501
7502  // Transform as necessary
7503  SDValue CWD1 =
7504    DAG.getNode(ISD::SRL, dl, MVT::i16,
7505                DAG.getNode(ISD::AND, dl, MVT::i16,
7506                            CWD, DAG.getConstant(0x800, MVT::i16)),
7507                DAG.getConstant(11, MVT::i8));
7508  SDValue CWD2 =
7509    DAG.getNode(ISD::SRL, dl, MVT::i16,
7510                DAG.getNode(ISD::AND, dl, MVT::i16,
7511                            CWD, DAG.getConstant(0x400, MVT::i16)),
7512                DAG.getConstant(9, MVT::i8));
7513
7514  SDValue RetVal =
7515    DAG.getNode(ISD::AND, dl, MVT::i16,
7516                DAG.getNode(ISD::ADD, dl, MVT::i16,
7517                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7518                            DAG.getConstant(1, MVT::i16)),
7519                DAG.getConstant(3, MVT::i16));
7520
7521
7522  return DAG.getNode((VT.getSizeInBits() < 16 ?
7523                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7524}
7525
7526SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
7527  EVT VT = Op.getValueType();
7528  EVT OpVT = VT;
7529  unsigned NumBits = VT.getSizeInBits();
7530  DebugLoc dl = Op.getDebugLoc();
7531
7532  Op = Op.getOperand(0);
7533  if (VT == MVT::i8) {
7534    // Zero extend to i32 since there is not an i8 bsr.
7535    OpVT = MVT::i32;
7536    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7537  }
7538
7539  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7540  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7541  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7542
7543  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7544  SDValue Ops[] = {
7545    Op,
7546    DAG.getConstant(NumBits+NumBits-1, OpVT),
7547    DAG.getConstant(X86::COND_E, MVT::i8),
7548    Op.getValue(1)
7549  };
7550  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7551
7552  // Finally xor with NumBits-1.
7553  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7554
7555  if (VT == MVT::i8)
7556    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7557  return Op;
7558}
7559
7560SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
7561  EVT VT = Op.getValueType();
7562  EVT OpVT = VT;
7563  unsigned NumBits = VT.getSizeInBits();
7564  DebugLoc dl = Op.getDebugLoc();
7565
7566  Op = Op.getOperand(0);
7567  if (VT == MVT::i8) {
7568    OpVT = MVT::i32;
7569    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7570  }
7571
7572  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7573  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7574  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7575
7576  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7577  SDValue Ops[] = {
7578    Op,
7579    DAG.getConstant(NumBits, OpVT),
7580    DAG.getConstant(X86::COND_E, MVT::i8),
7581    Op.getValue(1)
7582  };
7583  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7584
7585  if (VT == MVT::i8)
7586    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7587  return Op;
7588}
7589
7590SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
7591  EVT VT = Op.getValueType();
7592  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7593  DebugLoc dl = Op.getDebugLoc();
7594
7595  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7596  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7597  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7598  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7599  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7600  //
7601  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7602  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7603  //  return AloBlo + AloBhi + AhiBlo;
7604
7605  SDValue A = Op.getOperand(0);
7606  SDValue B = Op.getOperand(1);
7607
7608  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7609                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7610                       A, DAG.getConstant(32, MVT::i32));
7611  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7612                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7613                       B, DAG.getConstant(32, MVT::i32));
7614  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7615                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7616                       A, B);
7617  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7618                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7619                       A, Bhi);
7620  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7621                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7622                       Ahi, B);
7623  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7624                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7625                       AloBhi, DAG.getConstant(32, MVT::i32));
7626  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7627                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7628                       AhiBlo, DAG.getConstant(32, MVT::i32));
7629  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7630  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7631  return Res;
7632}
7633
7634SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
7635  EVT VT = Op.getValueType();
7636  DebugLoc dl = Op.getDebugLoc();
7637  SDValue R = Op.getOperand(0);
7638
7639  LLVMContext *Context = DAG.getContext();
7640
7641  assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
7642
7643  if (VT == MVT::v4i32) {
7644    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7645                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
7646                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
7647
7648    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
7649
7650    std::vector<Constant*> CV(4, CI);
7651    Constant *C = ConstantVector::get(CV);
7652    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7653    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7654                                 PseudoSourceValue::getConstantPool(), 0,
7655                                 false, false, 16);
7656
7657    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
7658    Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, Op);
7659    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
7660    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
7661  }
7662  if (VT == MVT::v16i8) {
7663    // a = a << 5;
7664    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7665                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
7666                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
7667
7668    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
7669    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
7670
7671    std::vector<Constant*> CVM1(16, CM1);
7672    std::vector<Constant*> CVM2(16, CM2);
7673    Constant *C = ConstantVector::get(CVM1);
7674    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7675    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7676                            PseudoSourceValue::getConstantPool(), 0,
7677                            false, false, 16);
7678
7679    // r = pblendv(r, psllw(r & (char16)15, 4), a);
7680    M = DAG.getNode(ISD::AND, dl, VT, R, M);
7681    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7682                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
7683                    DAG.getConstant(4, MVT::i32));
7684    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7685                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
7686                    R, M, Op);
7687    // a += a
7688    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
7689
7690    C = ConstantVector::get(CVM2);
7691    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7692    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7693                    PseudoSourceValue::getConstantPool(), 0, false, false, 16);
7694
7695    // r = pblendv(r, psllw(r & (char16)63, 2), a);
7696    M = DAG.getNode(ISD::AND, dl, VT, R, M);
7697    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7698                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
7699                    DAG.getConstant(2, MVT::i32));
7700    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7701                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
7702                    R, M, Op);
7703    // a += a
7704    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
7705
7706    // return pblendv(r, r+r, a);
7707    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7708                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
7709                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
7710    return R;
7711  }
7712  return SDValue();
7713}
7714
7715SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
7716  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
7717  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
7718  // looks for this combo and may remove the "setcc" instruction if the "setcc"
7719  // has only one use.
7720  SDNode *N = Op.getNode();
7721  SDValue LHS = N->getOperand(0);
7722  SDValue RHS = N->getOperand(1);
7723  unsigned BaseOp = 0;
7724  unsigned Cond = 0;
7725  DebugLoc dl = Op.getDebugLoc();
7726
7727  switch (Op.getOpcode()) {
7728  default: llvm_unreachable("Unknown ovf instruction!");
7729  case ISD::SADDO:
7730    // A subtract of one will be selected as a INC. Note that INC doesn't
7731    // set CF, so we can't do this for UADDO.
7732    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7733      if (C->getAPIntValue() == 1) {
7734        BaseOp = X86ISD::INC;
7735        Cond = X86::COND_O;
7736        break;
7737      }
7738    BaseOp = X86ISD::ADD;
7739    Cond = X86::COND_O;
7740    break;
7741  case ISD::UADDO:
7742    BaseOp = X86ISD::ADD;
7743    Cond = X86::COND_B;
7744    break;
7745  case ISD::SSUBO:
7746    // A subtract of one will be selected as a DEC. Note that DEC doesn't
7747    // set CF, so we can't do this for USUBO.
7748    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7749      if (C->getAPIntValue() == 1) {
7750        BaseOp = X86ISD::DEC;
7751        Cond = X86::COND_O;
7752        break;
7753      }
7754    BaseOp = X86ISD::SUB;
7755    Cond = X86::COND_O;
7756    break;
7757  case ISD::USUBO:
7758    BaseOp = X86ISD::SUB;
7759    Cond = X86::COND_B;
7760    break;
7761  case ISD::SMULO:
7762    BaseOp = X86ISD::SMUL;
7763    Cond = X86::COND_O;
7764    break;
7765  case ISD::UMULO:
7766    BaseOp = X86ISD::UMUL;
7767    Cond = X86::COND_B;
7768    break;
7769  }
7770
7771  // Also sets EFLAGS.
7772  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
7773  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
7774
7775  SDValue SetCC =
7776    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
7777                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
7778
7779  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
7780  return Sum;
7781}
7782
7783SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
7784  DebugLoc dl = Op.getDebugLoc();
7785
7786  if (!Subtarget->hasSSE2()) {
7787    SDValue Chain = Op.getOperand(0);
7788    SDValue Zero = DAG.getConstant(0,
7789                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7790    SDValue Ops[] = {
7791      DAG.getRegister(X86::ESP, MVT::i32), // Base
7792      DAG.getTargetConstant(1, MVT::i8),   // Scale
7793      DAG.getRegister(0, MVT::i32),        // Index
7794      DAG.getTargetConstant(0, MVT::i32),  // Disp
7795      DAG.getRegister(0, MVT::i32),        // Segment.
7796      Zero,
7797      Chain
7798    };
7799    SDNode *Res =
7800      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
7801                          array_lengthof(Ops));
7802    return SDValue(Res, 0);
7803  }
7804
7805  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
7806  if (!isDev)
7807    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
7808
7809  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7810  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
7811  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
7812  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
7813
7814  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
7815  if (!Op1 && !Op2 && !Op3 && Op4)
7816    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
7817
7818  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
7819  if (Op1 && !Op2 && !Op3 && !Op4)
7820    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
7821
7822  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
7823  //           (MFENCE)>;
7824  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
7825}
7826
7827SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
7828  EVT T = Op.getValueType();
7829  DebugLoc dl = Op.getDebugLoc();
7830  unsigned Reg = 0;
7831  unsigned size = 0;
7832  switch(T.getSimpleVT().SimpleTy) {
7833  default:
7834    assert(false && "Invalid value type!");
7835  case MVT::i8:  Reg = X86::AL;  size = 1; break;
7836  case MVT::i16: Reg = X86::AX;  size = 2; break;
7837  case MVT::i32: Reg = X86::EAX; size = 4; break;
7838  case MVT::i64:
7839    assert(Subtarget->is64Bit() && "Node not type legal!");
7840    Reg = X86::RAX; size = 8;
7841    break;
7842  }
7843  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
7844                                    Op.getOperand(2), SDValue());
7845  SDValue Ops[] = { cpIn.getValue(0),
7846                    Op.getOperand(1),
7847                    Op.getOperand(3),
7848                    DAG.getTargetConstant(size, MVT::i8),
7849                    cpIn.getValue(1) };
7850  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7851  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7852  SDValue cpOut =
7853    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7854  return cpOut;
7855}
7856
7857SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7858                                                 SelectionDAG &DAG) const {
7859  assert(Subtarget->is64Bit() && "Result not type legalized?");
7860  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7861  SDValue TheChain = Op.getOperand(0);
7862  DebugLoc dl = Op.getDebugLoc();
7863  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7864  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7865  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7866                                   rax.getValue(2));
7867  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7868                            DAG.getConstant(32, MVT::i8));
7869  SDValue Ops[] = {
7870    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7871    rdx.getValue(1)
7872  };
7873  return DAG.getMergeValues(Ops, 2, dl);
7874}
7875
7876SDValue X86TargetLowering::LowerBIT_CONVERT(SDValue Op,
7877                                            SelectionDAG &DAG) const {
7878  EVT SrcVT = Op.getOperand(0).getValueType();
7879  EVT DstVT = Op.getValueType();
7880  assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
7881          Subtarget->hasMMX() && !DisableMMX) &&
7882         "Unexpected custom BIT_CONVERT");
7883  assert((DstVT == MVT::i64 ||
7884          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
7885         "Unexpected custom BIT_CONVERT");
7886  // i64 <=> MMX conversions are Legal.
7887  if (SrcVT==MVT::i64 && DstVT.isVector())
7888    return Op;
7889  if (DstVT==MVT::i64 && SrcVT.isVector())
7890    return Op;
7891  // MMX <=> MMX conversions are Legal.
7892  if (SrcVT.isVector() && DstVT.isVector())
7893    return Op;
7894  // All other conversions need to be expanded.
7895  return SDValue();
7896}
7897SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
7898  SDNode *Node = Op.getNode();
7899  DebugLoc dl = Node->getDebugLoc();
7900  EVT T = Node->getValueType(0);
7901  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7902                              DAG.getConstant(0, T), Node->getOperand(2));
7903  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7904                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7905                       Node->getOperand(0),
7906                       Node->getOperand(1), negOp,
7907                       cast<AtomicSDNode>(Node)->getSrcValue(),
7908                       cast<AtomicSDNode>(Node)->getAlignment());
7909}
7910
7911/// LowerOperation - Provide custom lowering hooks for some operations.
7912///
7913SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7914  switch (Op.getOpcode()) {
7915  default: llvm_unreachable("Should not custom lower this!");
7916  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
7917  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7918  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7919  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7920  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
7921  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7922  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7923  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7924  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7925  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7926  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7927  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7928  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7929  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7930  case ISD::SHL_PARTS:
7931  case ISD::SRA_PARTS:
7932  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7933  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7934  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7935  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7936  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7937  case ISD::FABS:               return LowerFABS(Op, DAG);
7938  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7939  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7940  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7941  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7942  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7943  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7944  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7945  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7946  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7947  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7948  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7949  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7950  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7951  case ISD::FRAME_TO_ARGS_OFFSET:
7952                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7953  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7954  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7955  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7956  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7957  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7958  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7959  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7960  case ISD::SHL:                return LowerSHL(Op, DAG);
7961  case ISD::SADDO:
7962  case ISD::UADDO:
7963  case ISD::SSUBO:
7964  case ISD::USUBO:
7965  case ISD::SMULO:
7966  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7967  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7968  case ISD::BIT_CONVERT:        return LowerBIT_CONVERT(Op, DAG);
7969  }
7970}
7971
7972void X86TargetLowering::
7973ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7974                        SelectionDAG &DAG, unsigned NewOp) const {
7975  EVT T = Node->getValueType(0);
7976  DebugLoc dl = Node->getDebugLoc();
7977  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7978
7979  SDValue Chain = Node->getOperand(0);
7980  SDValue In1 = Node->getOperand(1);
7981  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7982                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7983  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7984                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7985  SDValue Ops[] = { Chain, In1, In2L, In2H };
7986  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7987  SDValue Result =
7988    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7989                            cast<MemSDNode>(Node)->getMemOperand());
7990  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7991  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7992  Results.push_back(Result.getValue(2));
7993}
7994
7995/// ReplaceNodeResults - Replace a node with an illegal result type
7996/// with a new node built out of custom code.
7997void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7998                                           SmallVectorImpl<SDValue>&Results,
7999                                           SelectionDAG &DAG) const {
8000  DebugLoc dl = N->getDebugLoc();
8001  switch (N->getOpcode()) {
8002  default:
8003    assert(false && "Do not know how to custom type legalize this operation!");
8004    return;
8005  case ISD::FP_TO_SINT: {
8006    std::pair<SDValue,SDValue> Vals =
8007        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
8008    SDValue FIST = Vals.first, StackSlot = Vals.second;
8009    if (FIST.getNode() != 0) {
8010      EVT VT = N->getValueType(0);
8011      // Return a load from the stack slot.
8012      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
8013                                    false, false, 0));
8014    }
8015    return;
8016  }
8017  case ISD::READCYCLECOUNTER: {
8018    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8019    SDValue TheChain = N->getOperand(0);
8020    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8021    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
8022                                     rd.getValue(1));
8023    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
8024                                     eax.getValue(2));
8025    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
8026    SDValue Ops[] = { eax, edx };
8027    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
8028    Results.push_back(edx.getValue(1));
8029    return;
8030  }
8031  case ISD::ATOMIC_CMP_SWAP: {
8032    EVT T = N->getValueType(0);
8033    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
8034    SDValue cpInL, cpInH;
8035    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8036                        DAG.getConstant(0, MVT::i32));
8037    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8038                        DAG.getConstant(1, MVT::i32));
8039    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
8040    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
8041                             cpInL.getValue(1));
8042    SDValue swapInL, swapInH;
8043    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8044                          DAG.getConstant(0, MVT::i32));
8045    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8046                          DAG.getConstant(1, MVT::i32));
8047    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
8048                               cpInH.getValue(1));
8049    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
8050                               swapInL.getValue(1));
8051    SDValue Ops[] = { swapInH.getValue(0),
8052                      N->getOperand(1),
8053                      swapInH.getValue(1) };
8054    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8055    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
8056    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
8057                                        MVT::i32, Result.getValue(1));
8058    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
8059                                        MVT::i32, cpOutL.getValue(2));
8060    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
8061    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8062    Results.push_back(cpOutH.getValue(1));
8063    return;
8064  }
8065  case ISD::ATOMIC_LOAD_ADD:
8066    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
8067    return;
8068  case ISD::ATOMIC_LOAD_AND:
8069    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
8070    return;
8071  case ISD::ATOMIC_LOAD_NAND:
8072    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
8073    return;
8074  case ISD::ATOMIC_LOAD_OR:
8075    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
8076    return;
8077  case ISD::ATOMIC_LOAD_SUB:
8078    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
8079    return;
8080  case ISD::ATOMIC_LOAD_XOR:
8081    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
8082    return;
8083  case ISD::ATOMIC_SWAP:
8084    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
8085    return;
8086  }
8087}
8088
8089const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
8090  switch (Opcode) {
8091  default: return NULL;
8092  case X86ISD::BSF:                return "X86ISD::BSF";
8093  case X86ISD::BSR:                return "X86ISD::BSR";
8094  case X86ISD::SHLD:               return "X86ISD::SHLD";
8095  case X86ISD::SHRD:               return "X86ISD::SHRD";
8096  case X86ISD::FAND:               return "X86ISD::FAND";
8097  case X86ISD::FOR:                return "X86ISD::FOR";
8098  case X86ISD::FXOR:               return "X86ISD::FXOR";
8099  case X86ISD::FSRL:               return "X86ISD::FSRL";
8100  case X86ISD::FILD:               return "X86ISD::FILD";
8101  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
8102  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
8103  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
8104  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
8105  case X86ISD::FLD:                return "X86ISD::FLD";
8106  case X86ISD::FST:                return "X86ISD::FST";
8107  case X86ISD::CALL:               return "X86ISD::CALL";
8108  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
8109  case X86ISD::BT:                 return "X86ISD::BT";
8110  case X86ISD::CMP:                return "X86ISD::CMP";
8111  case X86ISD::COMI:               return "X86ISD::COMI";
8112  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
8113  case X86ISD::SETCC:              return "X86ISD::SETCC";
8114  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
8115  case X86ISD::CMOV:               return "X86ISD::CMOV";
8116  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
8117  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
8118  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
8119  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
8120  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
8121  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
8122  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
8123  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
8124  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
8125  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
8126  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
8127  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
8128  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
8129  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
8130  case X86ISD::FMAX:               return "X86ISD::FMAX";
8131  case X86ISD::FMIN:               return "X86ISD::FMIN";
8132  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
8133  case X86ISD::FRCP:               return "X86ISD::FRCP";
8134  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
8135  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
8136  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
8137  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
8138  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
8139  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
8140  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
8141  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
8142  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
8143  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
8144  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
8145  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
8146  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
8147  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
8148  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
8149  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
8150  case X86ISD::VSHL:               return "X86ISD::VSHL";
8151  case X86ISD::VSRL:               return "X86ISD::VSRL";
8152  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
8153  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
8154  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
8155  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
8156  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
8157  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
8158  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
8159  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
8160  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
8161  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
8162  case X86ISD::ADD:                return "X86ISD::ADD";
8163  case X86ISD::SUB:                return "X86ISD::SUB";
8164  case X86ISD::SMUL:               return "X86ISD::SMUL";
8165  case X86ISD::UMUL:               return "X86ISD::UMUL";
8166  case X86ISD::INC:                return "X86ISD::INC";
8167  case X86ISD::DEC:                return "X86ISD::DEC";
8168  case X86ISD::OR:                 return "X86ISD::OR";
8169  case X86ISD::XOR:                return "X86ISD::XOR";
8170  case X86ISD::AND:                return "X86ISD::AND";
8171  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
8172  case X86ISD::PTEST:              return "X86ISD::PTEST";
8173  case X86ISD::TESTP:              return "X86ISD::TESTP";
8174  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
8175  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
8176  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
8177  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
8178  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
8179  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
8180  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
8181  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
8182  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
8183  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
8184  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
8185  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
8186  case X86ISD::MOVHPS:             return "X86ISD::MOVHPS";
8187  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
8188  case X86ISD::MOVHPD:             return "X86ISD::MOVHPD";
8189  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
8190  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
8191  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
8192  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
8193  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
8194  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
8195  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
8196  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
8197  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
8198  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
8199  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
8200  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
8201  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
8202  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
8203  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
8204  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
8205  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
8206  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
8207  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
8208  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
8209  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
8210  case X86ISD::MINGW_ALLOCA:       return "X86ISD::MINGW_ALLOCA";
8211  }
8212}
8213
8214// isLegalAddressingMode - Return true if the addressing mode represented
8215// by AM is legal for this target, for a load/store of the specified type.
8216bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
8217                                              const Type *Ty) const {
8218  // X86 supports extremely general addressing modes.
8219  CodeModel::Model M = getTargetMachine().getCodeModel();
8220  Reloc::Model R = getTargetMachine().getRelocationModel();
8221
8222  // X86 allows a sign-extended 32-bit immediate field as a displacement.
8223  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
8224    return false;
8225
8226  if (AM.BaseGV) {
8227    unsigned GVFlags =
8228      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
8229
8230    // If a reference to this global requires an extra load, we can't fold it.
8231    if (isGlobalStubReference(GVFlags))
8232      return false;
8233
8234    // If BaseGV requires a register for the PIC base, we cannot also have a
8235    // BaseReg specified.
8236    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
8237      return false;
8238
8239    // If lower 4G is not available, then we must use rip-relative addressing.
8240    if ((M != CodeModel::Small || R != Reloc::Static) &&
8241        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
8242      return false;
8243  }
8244
8245  switch (AM.Scale) {
8246  case 0:
8247  case 1:
8248  case 2:
8249  case 4:
8250  case 8:
8251    // These scales always work.
8252    break;
8253  case 3:
8254  case 5:
8255  case 9:
8256    // These scales are formed with basereg+scalereg.  Only accept if there is
8257    // no basereg yet.
8258    if (AM.HasBaseReg)
8259      return false;
8260    break;
8261  default:  // Other stuff never works.
8262    return false;
8263  }
8264
8265  return true;
8266}
8267
8268
8269bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
8270  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8271    return false;
8272  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8273  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8274  if (NumBits1 <= NumBits2)
8275    return false;
8276  return true;
8277}
8278
8279bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8280  if (!VT1.isInteger() || !VT2.isInteger())
8281    return false;
8282  unsigned NumBits1 = VT1.getSizeInBits();
8283  unsigned NumBits2 = VT2.getSizeInBits();
8284  if (NumBits1 <= NumBits2)
8285    return false;
8286  return true;
8287}
8288
8289bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
8290  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8291  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
8292}
8293
8294bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
8295  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8296  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
8297}
8298
8299bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
8300  // i16 instructions are longer (0x66 prefix) and potentially slower.
8301  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
8302}
8303
8304/// isShuffleMaskLegal - Targets can use this to indicate that they only
8305/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8306/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8307/// are assumed to be legal.
8308bool
8309X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
8310                                      EVT VT) const {
8311  // Very little shuffling can be done for 64-bit vectors right now.
8312  if (VT.getSizeInBits() == 64)
8313    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
8314
8315  // FIXME: pshufb, blends, shifts.
8316  return (VT.getVectorNumElements() == 2 ||
8317          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
8318          isMOVLMask(M, VT) ||
8319          isSHUFPMask(M, VT) ||
8320          isPSHUFDMask(M, VT) ||
8321          isPSHUFHWMask(M, VT) ||
8322          isPSHUFLWMask(M, VT) ||
8323          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
8324          isUNPCKLMask(M, VT) ||
8325          isUNPCKHMask(M, VT) ||
8326          isUNPCKL_v_undef_Mask(M, VT) ||
8327          isUNPCKH_v_undef_Mask(M, VT));
8328}
8329
8330bool
8331X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
8332                                          EVT VT) const {
8333  unsigned NumElts = VT.getVectorNumElements();
8334  // FIXME: This collection of masks seems suspect.
8335  if (NumElts == 2)
8336    return true;
8337  if (NumElts == 4 && VT.getSizeInBits() == 128) {
8338    return (isMOVLMask(Mask, VT)  ||
8339            isCommutedMOVLMask(Mask, VT, true) ||
8340            isSHUFPMask(Mask, VT) ||
8341            isCommutedSHUFPMask(Mask, VT));
8342  }
8343  return false;
8344}
8345
8346//===----------------------------------------------------------------------===//
8347//                           X86 Scheduler Hooks
8348//===----------------------------------------------------------------------===//
8349
8350// private utility function
8351MachineBasicBlock *
8352X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
8353                                                       MachineBasicBlock *MBB,
8354                                                       unsigned regOpc,
8355                                                       unsigned immOpc,
8356                                                       unsigned LoadOpc,
8357                                                       unsigned CXchgOpc,
8358                                                       unsigned notOpc,
8359                                                       unsigned EAXreg,
8360                                                       TargetRegisterClass *RC,
8361                                                       bool invSrc) const {
8362  // For the atomic bitwise operator, we generate
8363  //   thisMBB:
8364  //   newMBB:
8365  //     ld  t1 = [bitinstr.addr]
8366  //     op  t2 = t1, [bitinstr.val]
8367  //     mov EAX = t1
8368  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8369  //     bz  newMBB
8370  //     fallthrough -->nextMBB
8371  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8372  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8373  MachineFunction::iterator MBBIter = MBB;
8374  ++MBBIter;
8375
8376  /// First build the CFG
8377  MachineFunction *F = MBB->getParent();
8378  MachineBasicBlock *thisMBB = MBB;
8379  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8380  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8381  F->insert(MBBIter, newMBB);
8382  F->insert(MBBIter, nextMBB);
8383
8384  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8385  nextMBB->splice(nextMBB->begin(), thisMBB,
8386                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8387                  thisMBB->end());
8388  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8389
8390  // Update thisMBB to fall through to newMBB
8391  thisMBB->addSuccessor(newMBB);
8392
8393  // newMBB jumps to itself and fall through to nextMBB
8394  newMBB->addSuccessor(nextMBB);
8395  newMBB->addSuccessor(newMBB);
8396
8397  // Insert instructions into newMBB based on incoming instruction
8398  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
8399         "unexpected number of operands");
8400  DebugLoc dl = bInstr->getDebugLoc();
8401  MachineOperand& destOper = bInstr->getOperand(0);
8402  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8403  int numArgs = bInstr->getNumOperands() - 1;
8404  for (int i=0; i < numArgs; ++i)
8405    argOpers[i] = &bInstr->getOperand(i+1);
8406
8407  // x86 address has 4 operands: base, index, scale, and displacement
8408  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8409  int valArgIndx = lastAddrIndx + 1;
8410
8411  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8412  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
8413  for (int i=0; i <= lastAddrIndx; ++i)
8414    (*MIB).addOperand(*argOpers[i]);
8415
8416  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
8417  if (invSrc) {
8418    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
8419  }
8420  else
8421    tt = t1;
8422
8423  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8424  assert((argOpers[valArgIndx]->isReg() ||
8425          argOpers[valArgIndx]->isImm()) &&
8426         "invalid operand");
8427  if (argOpers[valArgIndx]->isReg())
8428    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
8429  else
8430    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
8431  MIB.addReg(tt);
8432  (*MIB).addOperand(*argOpers[valArgIndx]);
8433
8434  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
8435  MIB.addReg(t1);
8436
8437  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
8438  for (int i=0; i <= lastAddrIndx; ++i)
8439    (*MIB).addOperand(*argOpers[i]);
8440  MIB.addReg(t2);
8441  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8442  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8443                    bInstr->memoperands_end());
8444
8445  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
8446  MIB.addReg(EAXreg);
8447
8448  // insert branch
8449  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8450
8451  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
8452  return nextMBB;
8453}
8454
8455// private utility function:  64 bit atomics on 32 bit host.
8456MachineBasicBlock *
8457X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
8458                                                       MachineBasicBlock *MBB,
8459                                                       unsigned regOpcL,
8460                                                       unsigned regOpcH,
8461                                                       unsigned immOpcL,
8462                                                       unsigned immOpcH,
8463                                                       bool invSrc) const {
8464  // For the atomic bitwise operator, we generate
8465  //   thisMBB (instructions are in pairs, except cmpxchg8b)
8466  //     ld t1,t2 = [bitinstr.addr]
8467  //   newMBB:
8468  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
8469  //     op  t5, t6 <- out1, out2, [bitinstr.val]
8470  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
8471  //     mov ECX, EBX <- t5, t6
8472  //     mov EAX, EDX <- t1, t2
8473  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
8474  //     mov t3, t4 <- EAX, EDX
8475  //     bz  newMBB
8476  //     result in out1, out2
8477  //     fallthrough -->nextMBB
8478
8479  const TargetRegisterClass *RC = X86::GR32RegisterClass;
8480  const unsigned LoadOpc = X86::MOV32rm;
8481  const unsigned NotOpc = X86::NOT32r;
8482  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8483  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8484  MachineFunction::iterator MBBIter = MBB;
8485  ++MBBIter;
8486
8487  /// First build the CFG
8488  MachineFunction *F = MBB->getParent();
8489  MachineBasicBlock *thisMBB = MBB;
8490  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8491  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8492  F->insert(MBBIter, newMBB);
8493  F->insert(MBBIter, nextMBB);
8494
8495  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8496  nextMBB->splice(nextMBB->begin(), thisMBB,
8497                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8498                  thisMBB->end());
8499  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8500
8501  // Update thisMBB to fall through to newMBB
8502  thisMBB->addSuccessor(newMBB);
8503
8504  // newMBB jumps to itself and fall through to nextMBB
8505  newMBB->addSuccessor(nextMBB);
8506  newMBB->addSuccessor(newMBB);
8507
8508  DebugLoc dl = bInstr->getDebugLoc();
8509  // Insert instructions into newMBB based on incoming instruction
8510  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
8511  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
8512         "unexpected number of operands");
8513  MachineOperand& dest1Oper = bInstr->getOperand(0);
8514  MachineOperand& dest2Oper = bInstr->getOperand(1);
8515  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8516  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
8517    argOpers[i] = &bInstr->getOperand(i+2);
8518
8519    // We use some of the operands multiple times, so conservatively just
8520    // clear any kill flags that might be present.
8521    if (argOpers[i]->isReg() && argOpers[i]->isUse())
8522      argOpers[i]->setIsKill(false);
8523  }
8524
8525  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8526  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8527
8528  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8529  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8530  for (int i=0; i <= lastAddrIndx; ++i)
8531    (*MIB).addOperand(*argOpers[i]);
8532  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8533  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8534  // add 4 to displacement.
8535  for (int i=0; i <= lastAddrIndx-2; ++i)
8536    (*MIB).addOperand(*argOpers[i]);
8537  MachineOperand newOp3 = *(argOpers[3]);
8538  if (newOp3.isImm())
8539    newOp3.setImm(newOp3.getImm()+4);
8540  else
8541    newOp3.setOffset(newOp3.getOffset()+4);
8542  (*MIB).addOperand(newOp3);
8543  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8544
8545  // t3/4 are defined later, at the bottom of the loop
8546  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8547  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8548  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8549    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8550  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8551    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8552
8553  // The subsequent operations should be using the destination registers of
8554  //the PHI instructions.
8555  if (invSrc) {
8556    t1 = F->getRegInfo().createVirtualRegister(RC);
8557    t2 = F->getRegInfo().createVirtualRegister(RC);
8558    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8559    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8560  } else {
8561    t1 = dest1Oper.getReg();
8562    t2 = dest2Oper.getReg();
8563  }
8564
8565  int valArgIndx = lastAddrIndx + 1;
8566  assert((argOpers[valArgIndx]->isReg() ||
8567          argOpers[valArgIndx]->isImm()) &&
8568         "invalid operand");
8569  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8570  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8571  if (argOpers[valArgIndx]->isReg())
8572    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8573  else
8574    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8575  if (regOpcL != X86::MOV32rr)
8576    MIB.addReg(t1);
8577  (*MIB).addOperand(*argOpers[valArgIndx]);
8578  assert(argOpers[valArgIndx + 1]->isReg() ==
8579         argOpers[valArgIndx]->isReg());
8580  assert(argOpers[valArgIndx + 1]->isImm() ==
8581         argOpers[valArgIndx]->isImm());
8582  if (argOpers[valArgIndx + 1]->isReg())
8583    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8584  else
8585    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8586  if (regOpcH != X86::MOV32rr)
8587    MIB.addReg(t2);
8588  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8589
8590  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
8591  MIB.addReg(t1);
8592  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
8593  MIB.addReg(t2);
8594
8595  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
8596  MIB.addReg(t5);
8597  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
8598  MIB.addReg(t6);
8599
8600  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8601  for (int i=0; i <= lastAddrIndx; ++i)
8602    (*MIB).addOperand(*argOpers[i]);
8603
8604  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8605  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8606                    bInstr->memoperands_end());
8607
8608  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
8609  MIB.addReg(X86::EAX);
8610  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
8611  MIB.addReg(X86::EDX);
8612
8613  // insert branch
8614  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8615
8616  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
8617  return nextMBB;
8618}
8619
8620// private utility function
8621MachineBasicBlock *
8622X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8623                                                      MachineBasicBlock *MBB,
8624                                                      unsigned cmovOpc) const {
8625  // For the atomic min/max operator, we generate
8626  //   thisMBB:
8627  //   newMBB:
8628  //     ld t1 = [min/max.addr]
8629  //     mov t2 = [min/max.val]
8630  //     cmp  t1, t2
8631  //     cmov[cond] t2 = t1
8632  //     mov EAX = t1
8633  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8634  //     bz   newMBB
8635  //     fallthrough -->nextMBB
8636  //
8637  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8638  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8639  MachineFunction::iterator MBBIter = MBB;
8640  ++MBBIter;
8641
8642  /// First build the CFG
8643  MachineFunction *F = MBB->getParent();
8644  MachineBasicBlock *thisMBB = MBB;
8645  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8646  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8647  F->insert(MBBIter, newMBB);
8648  F->insert(MBBIter, nextMBB);
8649
8650  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8651  nextMBB->splice(nextMBB->begin(), thisMBB,
8652                  llvm::next(MachineBasicBlock::iterator(mInstr)),
8653                  thisMBB->end());
8654  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8655
8656  // Update thisMBB to fall through to newMBB
8657  thisMBB->addSuccessor(newMBB);
8658
8659  // newMBB jumps to newMBB and fall through to nextMBB
8660  newMBB->addSuccessor(nextMBB);
8661  newMBB->addSuccessor(newMBB);
8662
8663  DebugLoc dl = mInstr->getDebugLoc();
8664  // Insert instructions into newMBB based on incoming instruction
8665  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
8666         "unexpected number of operands");
8667  MachineOperand& destOper = mInstr->getOperand(0);
8668  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8669  int numArgs = mInstr->getNumOperands() - 1;
8670  for (int i=0; i < numArgs; ++i)
8671    argOpers[i] = &mInstr->getOperand(i+1);
8672
8673  // x86 address has 4 operands: base, index, scale, and displacement
8674  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8675  int valArgIndx = lastAddrIndx + 1;
8676
8677  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8678  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
8679  for (int i=0; i <= lastAddrIndx; ++i)
8680    (*MIB).addOperand(*argOpers[i]);
8681
8682  // We only support register and immediate values
8683  assert((argOpers[valArgIndx]->isReg() ||
8684          argOpers[valArgIndx]->isImm()) &&
8685         "invalid operand");
8686
8687  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8688  if (argOpers[valArgIndx]->isReg())
8689    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
8690  else
8691    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8692  (*MIB).addOperand(*argOpers[valArgIndx]);
8693
8694  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
8695  MIB.addReg(t1);
8696
8697  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
8698  MIB.addReg(t1);
8699  MIB.addReg(t2);
8700
8701  // Generate movc
8702  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8703  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
8704  MIB.addReg(t2);
8705  MIB.addReg(t1);
8706
8707  // Cmp and exchange if none has modified the memory location
8708  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
8709  for (int i=0; i <= lastAddrIndx; ++i)
8710    (*MIB).addOperand(*argOpers[i]);
8711  MIB.addReg(t3);
8712  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8713  (*MIB).setMemRefs(mInstr->memoperands_begin(),
8714                    mInstr->memoperands_end());
8715
8716  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
8717  MIB.addReg(X86::EAX);
8718
8719  // insert branch
8720  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8721
8722  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
8723  return nextMBB;
8724}
8725
8726// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
8727// or XMM0_V32I8 in AVX all of this code can be replaced with that
8728// in the .td file.
8729MachineBasicBlock *
8730X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
8731                            unsigned numArgs, bool memArg) const {
8732
8733  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
8734         "Target must have SSE4.2 or AVX features enabled");
8735
8736  DebugLoc dl = MI->getDebugLoc();
8737  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8738
8739  unsigned Opc;
8740
8741  if (!Subtarget->hasAVX()) {
8742    if (memArg)
8743      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
8744    else
8745      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
8746  } else {
8747    if (memArg)
8748      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
8749    else
8750      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
8751  }
8752
8753  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
8754
8755  for (unsigned i = 0; i < numArgs; ++i) {
8756    MachineOperand &Op = MI->getOperand(i+1);
8757
8758    if (!(Op.isReg() && Op.isImplicit()))
8759      MIB.addOperand(Op);
8760  }
8761
8762  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
8763    .addReg(X86::XMM0);
8764
8765  MI->eraseFromParent();
8766
8767  return BB;
8768}
8769
8770MachineBasicBlock *
8771X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
8772                                                 MachineInstr *MI,
8773                                                 MachineBasicBlock *MBB) const {
8774  // Emit code to save XMM registers to the stack. The ABI says that the
8775  // number of registers to save is given in %al, so it's theoretically
8776  // possible to do an indirect jump trick to avoid saving all of them,
8777  // however this code takes a simpler approach and just executes all
8778  // of the stores if %al is non-zero. It's less code, and it's probably
8779  // easier on the hardware branch predictor, and stores aren't all that
8780  // expensive anyway.
8781
8782  // Create the new basic blocks. One block contains all the XMM stores,
8783  // and one block is the final destination regardless of whether any
8784  // stores were performed.
8785  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8786  MachineFunction *F = MBB->getParent();
8787  MachineFunction::iterator MBBIter = MBB;
8788  ++MBBIter;
8789  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
8790  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
8791  F->insert(MBBIter, XMMSaveMBB);
8792  F->insert(MBBIter, EndMBB);
8793
8794  // Transfer the remainder of MBB and its successor edges to EndMBB.
8795  EndMBB->splice(EndMBB->begin(), MBB,
8796                 llvm::next(MachineBasicBlock::iterator(MI)),
8797                 MBB->end());
8798  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
8799
8800  // The original block will now fall through to the XMM save block.
8801  MBB->addSuccessor(XMMSaveMBB);
8802  // The XMMSaveMBB will fall through to the end block.
8803  XMMSaveMBB->addSuccessor(EndMBB);
8804
8805  // Now add the instructions.
8806  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8807  DebugLoc DL = MI->getDebugLoc();
8808
8809  unsigned CountReg = MI->getOperand(0).getReg();
8810  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
8811  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
8812
8813  if (!Subtarget->isTargetWin64()) {
8814    // If %al is 0, branch around the XMM save block.
8815    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
8816    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
8817    MBB->addSuccessor(EndMBB);
8818  }
8819
8820  // In the XMM save block, save all the XMM argument registers.
8821  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
8822    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
8823    MachineMemOperand *MMO =
8824      F->getMachineMemOperand(
8825        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
8826        MachineMemOperand::MOStore, Offset,
8827        /*Size=*/16, /*Align=*/16);
8828    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
8829      .addFrameIndex(RegSaveFrameIndex)
8830      .addImm(/*Scale=*/1)
8831      .addReg(/*IndexReg=*/0)
8832      .addImm(/*Disp=*/Offset)
8833      .addReg(/*Segment=*/0)
8834      .addReg(MI->getOperand(i).getReg())
8835      .addMemOperand(MMO);
8836  }
8837
8838  MI->eraseFromParent();   // The pseudo instruction is gone now.
8839
8840  return EndMBB;
8841}
8842
8843MachineBasicBlock *
8844X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
8845                                     MachineBasicBlock *BB) const {
8846  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8847  DebugLoc DL = MI->getDebugLoc();
8848
8849  // To "insert" a SELECT_CC instruction, we actually have to insert the
8850  // diamond control-flow pattern.  The incoming instruction knows the
8851  // destination vreg to set, the condition code register to branch on, the
8852  // true/false values to select between, and a branch opcode to use.
8853  const BasicBlock *LLVM_BB = BB->getBasicBlock();
8854  MachineFunction::iterator It = BB;
8855  ++It;
8856
8857  //  thisMBB:
8858  //  ...
8859  //   TrueVal = ...
8860  //   cmpTY ccX, r1, r2
8861  //   bCC copy1MBB
8862  //   fallthrough --> copy0MBB
8863  MachineBasicBlock *thisMBB = BB;
8864  MachineFunction *F = BB->getParent();
8865  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8866  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8867  F->insert(It, copy0MBB);
8868  F->insert(It, sinkMBB);
8869
8870  // If the EFLAGS register isn't dead in the terminator, then claim that it's
8871  // live into the sink and copy blocks.
8872  const MachineFunction *MF = BB->getParent();
8873  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
8874  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
8875
8876  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
8877    const MachineOperand &MO = MI->getOperand(I);
8878    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
8879    unsigned Reg = MO.getReg();
8880    if (Reg != X86::EFLAGS) continue;
8881    copy0MBB->addLiveIn(Reg);
8882    sinkMBB->addLiveIn(Reg);
8883  }
8884
8885  // Transfer the remainder of BB and its successor edges to sinkMBB.
8886  sinkMBB->splice(sinkMBB->begin(), BB,
8887                  llvm::next(MachineBasicBlock::iterator(MI)),
8888                  BB->end());
8889  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8890
8891  // Add the true and fallthrough blocks as its successors.
8892  BB->addSuccessor(copy0MBB);
8893  BB->addSuccessor(sinkMBB);
8894
8895  // Create the conditional branch instruction.
8896  unsigned Opc =
8897    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
8898  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
8899
8900  //  copy0MBB:
8901  //   %FalseValue = ...
8902  //   # fallthrough to sinkMBB
8903  copy0MBB->addSuccessor(sinkMBB);
8904
8905  //  sinkMBB:
8906  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8907  //  ...
8908  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
8909          TII->get(X86::PHI), MI->getOperand(0).getReg())
8910    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
8911    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8912
8913  MI->eraseFromParent();   // The pseudo instruction is gone now.
8914  return sinkMBB;
8915}
8916
8917MachineBasicBlock *
8918X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI,
8919                                          MachineBasicBlock *BB) const {
8920  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8921  DebugLoc DL = MI->getDebugLoc();
8922
8923  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
8924  // non-trivial part is impdef of ESP.
8925  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
8926  // mingw-w64.
8927
8928  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
8929    .addExternalSymbol("_alloca")
8930    .addReg(X86::EAX, RegState::Implicit)
8931    .addReg(X86::ESP, RegState::Implicit)
8932    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
8933    .addReg(X86::ESP, RegState::Define | RegState::Implicit)
8934    .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
8935
8936  MI->eraseFromParent();   // The pseudo instruction is gone now.
8937  return BB;
8938}
8939
8940MachineBasicBlock *
8941X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
8942                                      MachineBasicBlock *BB) const {
8943  // This is pretty easy.  We're taking the value that we received from
8944  // our load from the relocation, sticking it in either RDI (x86-64)
8945  // or EAX and doing an indirect call.  The return value will then
8946  // be in the normal return register.
8947  const X86InstrInfo *TII
8948    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
8949  DebugLoc DL = MI->getDebugLoc();
8950  MachineFunction *F = BB->getParent();
8951  bool IsWin64 = Subtarget->isTargetWin64();
8952
8953  assert(MI->getOperand(3).isGlobal() && "This should be a global");
8954
8955  if (Subtarget->is64Bit()) {
8956    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
8957                                      TII->get(X86::MOV64rm), X86::RDI)
8958    .addReg(X86::RIP)
8959    .addImm(0).addReg(0)
8960    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8961                      MI->getOperand(3).getTargetFlags())
8962    .addReg(0);
8963    MIB = BuildMI(*BB, MI, DL, TII->get(IsWin64 ? X86::WINCALL64m : X86::CALL64m));
8964    addDirectMem(MIB, X86::RDI);
8965  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
8966    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
8967                                      TII->get(X86::MOV32rm), X86::EAX)
8968    .addReg(0)
8969    .addImm(0).addReg(0)
8970    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8971                      MI->getOperand(3).getTargetFlags())
8972    .addReg(0);
8973    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
8974    addDirectMem(MIB, X86::EAX);
8975  } else {
8976    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
8977                                      TII->get(X86::MOV32rm), X86::EAX)
8978    .addReg(TII->getGlobalBaseReg(F))
8979    .addImm(0).addReg(0)
8980    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8981                      MI->getOperand(3).getTargetFlags())
8982    .addReg(0);
8983    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
8984    addDirectMem(MIB, X86::EAX);
8985  }
8986
8987  MI->eraseFromParent(); // The pseudo instruction is gone now.
8988  return BB;
8989}
8990
8991MachineBasicBlock *
8992X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8993                                               MachineBasicBlock *BB) const {
8994  switch (MI->getOpcode()) {
8995  default: assert(false && "Unexpected instr type to insert");
8996  case X86::MINGW_ALLOCA:
8997    return EmitLoweredMingwAlloca(MI, BB);
8998  case X86::TLSCall_32:
8999  case X86::TLSCall_64:
9000    return EmitLoweredTLSCall(MI, BB);
9001  case X86::CMOV_GR8:
9002  case X86::CMOV_V1I64:
9003  case X86::CMOV_FR32:
9004  case X86::CMOV_FR64:
9005  case X86::CMOV_V4F32:
9006  case X86::CMOV_V2F64:
9007  case X86::CMOV_V2I64:
9008  case X86::CMOV_GR16:
9009  case X86::CMOV_GR32:
9010  case X86::CMOV_RFP32:
9011  case X86::CMOV_RFP64:
9012  case X86::CMOV_RFP80:
9013    return EmitLoweredSelect(MI, BB);
9014
9015  case X86::FP32_TO_INT16_IN_MEM:
9016  case X86::FP32_TO_INT32_IN_MEM:
9017  case X86::FP32_TO_INT64_IN_MEM:
9018  case X86::FP64_TO_INT16_IN_MEM:
9019  case X86::FP64_TO_INT32_IN_MEM:
9020  case X86::FP64_TO_INT64_IN_MEM:
9021  case X86::FP80_TO_INT16_IN_MEM:
9022  case X86::FP80_TO_INT32_IN_MEM:
9023  case X86::FP80_TO_INT64_IN_MEM: {
9024    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9025    DebugLoc DL = MI->getDebugLoc();
9026
9027    // Change the floating point control register to use "round towards zero"
9028    // mode when truncating to an integer value.
9029    MachineFunction *F = BB->getParent();
9030    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
9031    addFrameReference(BuildMI(*BB, MI, DL,
9032                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
9033
9034    // Load the old value of the high byte of the control word...
9035    unsigned OldCW =
9036      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
9037    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
9038                      CWFrameIdx);
9039
9040    // Set the high part to be round to zero...
9041    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
9042      .addImm(0xC7F);
9043
9044    // Reload the modified control word now...
9045    addFrameReference(BuildMI(*BB, MI, DL,
9046                              TII->get(X86::FLDCW16m)), CWFrameIdx);
9047
9048    // Restore the memory image of control word to original value
9049    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
9050      .addReg(OldCW);
9051
9052    // Get the X86 opcode to use.
9053    unsigned Opc;
9054    switch (MI->getOpcode()) {
9055    default: llvm_unreachable("illegal opcode!");
9056    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
9057    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
9058    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
9059    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
9060    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
9061    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
9062    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
9063    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
9064    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
9065    }
9066
9067    X86AddressMode AM;
9068    MachineOperand &Op = MI->getOperand(0);
9069    if (Op.isReg()) {
9070      AM.BaseType = X86AddressMode::RegBase;
9071      AM.Base.Reg = Op.getReg();
9072    } else {
9073      AM.BaseType = X86AddressMode::FrameIndexBase;
9074      AM.Base.FrameIndex = Op.getIndex();
9075    }
9076    Op = MI->getOperand(1);
9077    if (Op.isImm())
9078      AM.Scale = Op.getImm();
9079    Op = MI->getOperand(2);
9080    if (Op.isImm())
9081      AM.IndexReg = Op.getImm();
9082    Op = MI->getOperand(3);
9083    if (Op.isGlobal()) {
9084      AM.GV = Op.getGlobal();
9085    } else {
9086      AM.Disp = Op.getImm();
9087    }
9088    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
9089                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
9090
9091    // Reload the original control word now.
9092    addFrameReference(BuildMI(*BB, MI, DL,
9093                              TII->get(X86::FLDCW16m)), CWFrameIdx);
9094
9095    MI->eraseFromParent();   // The pseudo instruction is gone now.
9096    return BB;
9097  }
9098    // String/text processing lowering.
9099  case X86::PCMPISTRM128REG:
9100  case X86::VPCMPISTRM128REG:
9101    return EmitPCMP(MI, BB, 3, false /* in-mem */);
9102  case X86::PCMPISTRM128MEM:
9103  case X86::VPCMPISTRM128MEM:
9104    return EmitPCMP(MI, BB, 3, true /* in-mem */);
9105  case X86::PCMPESTRM128REG:
9106  case X86::VPCMPESTRM128REG:
9107    return EmitPCMP(MI, BB, 5, false /* in mem */);
9108  case X86::PCMPESTRM128MEM:
9109  case X86::VPCMPESTRM128MEM:
9110    return EmitPCMP(MI, BB, 5, true /* in mem */);
9111
9112    // Atomic Lowering.
9113  case X86::ATOMAND32:
9114    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
9115                                               X86::AND32ri, X86::MOV32rm,
9116                                               X86::LCMPXCHG32,
9117                                               X86::NOT32r, X86::EAX,
9118                                               X86::GR32RegisterClass);
9119  case X86::ATOMOR32:
9120    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
9121                                               X86::OR32ri, X86::MOV32rm,
9122                                               X86::LCMPXCHG32,
9123                                               X86::NOT32r, X86::EAX,
9124                                               X86::GR32RegisterClass);
9125  case X86::ATOMXOR32:
9126    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
9127                                               X86::XOR32ri, X86::MOV32rm,
9128                                               X86::LCMPXCHG32,
9129                                               X86::NOT32r, X86::EAX,
9130                                               X86::GR32RegisterClass);
9131  case X86::ATOMNAND32:
9132    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
9133                                               X86::AND32ri, X86::MOV32rm,
9134                                               X86::LCMPXCHG32,
9135                                               X86::NOT32r, X86::EAX,
9136                                               X86::GR32RegisterClass, true);
9137  case X86::ATOMMIN32:
9138    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
9139  case X86::ATOMMAX32:
9140    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
9141  case X86::ATOMUMIN32:
9142    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
9143  case X86::ATOMUMAX32:
9144    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
9145
9146  case X86::ATOMAND16:
9147    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
9148                                               X86::AND16ri, X86::MOV16rm,
9149                                               X86::LCMPXCHG16,
9150                                               X86::NOT16r, X86::AX,
9151                                               X86::GR16RegisterClass);
9152  case X86::ATOMOR16:
9153    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
9154                                               X86::OR16ri, X86::MOV16rm,
9155                                               X86::LCMPXCHG16,
9156                                               X86::NOT16r, X86::AX,
9157                                               X86::GR16RegisterClass);
9158  case X86::ATOMXOR16:
9159    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
9160                                               X86::XOR16ri, X86::MOV16rm,
9161                                               X86::LCMPXCHG16,
9162                                               X86::NOT16r, X86::AX,
9163                                               X86::GR16RegisterClass);
9164  case X86::ATOMNAND16:
9165    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
9166                                               X86::AND16ri, X86::MOV16rm,
9167                                               X86::LCMPXCHG16,
9168                                               X86::NOT16r, X86::AX,
9169                                               X86::GR16RegisterClass, true);
9170  case X86::ATOMMIN16:
9171    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
9172  case X86::ATOMMAX16:
9173    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
9174  case X86::ATOMUMIN16:
9175    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
9176  case X86::ATOMUMAX16:
9177    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
9178
9179  case X86::ATOMAND8:
9180    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
9181                                               X86::AND8ri, X86::MOV8rm,
9182                                               X86::LCMPXCHG8,
9183                                               X86::NOT8r, X86::AL,
9184                                               X86::GR8RegisterClass);
9185  case X86::ATOMOR8:
9186    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
9187                                               X86::OR8ri, X86::MOV8rm,
9188                                               X86::LCMPXCHG8,
9189                                               X86::NOT8r, X86::AL,
9190                                               X86::GR8RegisterClass);
9191  case X86::ATOMXOR8:
9192    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
9193                                               X86::XOR8ri, X86::MOV8rm,
9194                                               X86::LCMPXCHG8,
9195                                               X86::NOT8r, X86::AL,
9196                                               X86::GR8RegisterClass);
9197  case X86::ATOMNAND8:
9198    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
9199                                               X86::AND8ri, X86::MOV8rm,
9200                                               X86::LCMPXCHG8,
9201                                               X86::NOT8r, X86::AL,
9202                                               X86::GR8RegisterClass, true);
9203  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
9204  // This group is for 64-bit host.
9205  case X86::ATOMAND64:
9206    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
9207                                               X86::AND64ri32, X86::MOV64rm,
9208                                               X86::LCMPXCHG64,
9209                                               X86::NOT64r, X86::RAX,
9210                                               X86::GR64RegisterClass);
9211  case X86::ATOMOR64:
9212    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
9213                                               X86::OR64ri32, X86::MOV64rm,
9214                                               X86::LCMPXCHG64,
9215                                               X86::NOT64r, X86::RAX,
9216                                               X86::GR64RegisterClass);
9217  case X86::ATOMXOR64:
9218    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
9219                                               X86::XOR64ri32, X86::MOV64rm,
9220                                               X86::LCMPXCHG64,
9221                                               X86::NOT64r, X86::RAX,
9222                                               X86::GR64RegisterClass);
9223  case X86::ATOMNAND64:
9224    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
9225                                               X86::AND64ri32, X86::MOV64rm,
9226                                               X86::LCMPXCHG64,
9227                                               X86::NOT64r, X86::RAX,
9228                                               X86::GR64RegisterClass, true);
9229  case X86::ATOMMIN64:
9230    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
9231  case X86::ATOMMAX64:
9232    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
9233  case X86::ATOMUMIN64:
9234    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
9235  case X86::ATOMUMAX64:
9236    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
9237
9238  // This group does 64-bit operations on a 32-bit host.
9239  case X86::ATOMAND6432:
9240    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9241                                               X86::AND32rr, X86::AND32rr,
9242                                               X86::AND32ri, X86::AND32ri,
9243                                               false);
9244  case X86::ATOMOR6432:
9245    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9246                                               X86::OR32rr, X86::OR32rr,
9247                                               X86::OR32ri, X86::OR32ri,
9248                                               false);
9249  case X86::ATOMXOR6432:
9250    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9251                                               X86::XOR32rr, X86::XOR32rr,
9252                                               X86::XOR32ri, X86::XOR32ri,
9253                                               false);
9254  case X86::ATOMNAND6432:
9255    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9256                                               X86::AND32rr, X86::AND32rr,
9257                                               X86::AND32ri, X86::AND32ri,
9258                                               true);
9259  case X86::ATOMADD6432:
9260    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9261                                               X86::ADD32rr, X86::ADC32rr,
9262                                               X86::ADD32ri, X86::ADC32ri,
9263                                               false);
9264  case X86::ATOMSUB6432:
9265    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9266                                               X86::SUB32rr, X86::SBB32rr,
9267                                               X86::SUB32ri, X86::SBB32ri,
9268                                               false);
9269  case X86::ATOMSWAP6432:
9270    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9271                                               X86::MOV32rr, X86::MOV32rr,
9272                                               X86::MOV32ri, X86::MOV32ri,
9273                                               false);
9274  case X86::VASTART_SAVE_XMM_REGS:
9275    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
9276  }
9277}
9278
9279//===----------------------------------------------------------------------===//
9280//                           X86 Optimization Hooks
9281//===----------------------------------------------------------------------===//
9282
9283void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
9284                                                       const APInt &Mask,
9285                                                       APInt &KnownZero,
9286                                                       APInt &KnownOne,
9287                                                       const SelectionDAG &DAG,
9288                                                       unsigned Depth) const {
9289  unsigned Opc = Op.getOpcode();
9290  assert((Opc >= ISD::BUILTIN_OP_END ||
9291          Opc == ISD::INTRINSIC_WO_CHAIN ||
9292          Opc == ISD::INTRINSIC_W_CHAIN ||
9293          Opc == ISD::INTRINSIC_VOID) &&
9294         "Should use MaskedValueIsZero if you don't know whether Op"
9295         " is a target node!");
9296
9297  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
9298  switch (Opc) {
9299  default: break;
9300  case X86ISD::ADD:
9301  case X86ISD::SUB:
9302  case X86ISD::SMUL:
9303  case X86ISD::UMUL:
9304  case X86ISD::INC:
9305  case X86ISD::DEC:
9306  case X86ISD::OR:
9307  case X86ISD::XOR:
9308  case X86ISD::AND:
9309    // These nodes' second result is a boolean.
9310    if (Op.getResNo() == 0)
9311      break;
9312    // Fallthrough
9313  case X86ISD::SETCC:
9314    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
9315                                       Mask.getBitWidth() - 1);
9316    break;
9317  }
9318}
9319
9320/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
9321/// node is a GlobalAddress + offset.
9322bool X86TargetLowering::isGAPlusOffset(SDNode *N,
9323                                       const GlobalValue* &GA,
9324                                       int64_t &Offset) const {
9325  if (N->getOpcode() == X86ISD::Wrapper) {
9326    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
9327      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
9328      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
9329      return true;
9330    }
9331  }
9332  return TargetLowering::isGAPlusOffset(N, GA, Offset);
9333}
9334
9335/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
9336/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
9337/// if the load addresses are consecutive, non-overlapping, and in the right
9338/// order.
9339static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
9340                                     const TargetLowering &TLI) {
9341  DebugLoc dl = N->getDebugLoc();
9342  EVT VT = N->getValueType(0);
9343  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9344
9345  if (VT.getSizeInBits() != 128)
9346    return SDValue();
9347
9348  SmallVector<SDValue, 16> Elts;
9349  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
9350    Elts.push_back(DAG.getShuffleScalarElt(SVN, i));
9351
9352  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
9353}
9354
9355/// PerformShuffleCombine - Detect vector gather/scatter index generation
9356/// and convert it from being a bunch of shuffles and extracts to a simple
9357/// store and scalar loads to extract the elements.
9358static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
9359                                                const TargetLowering &TLI) {
9360  SDValue InputVector = N->getOperand(0);
9361
9362  // Only operate on vectors of 4 elements, where the alternative shuffling
9363  // gets to be more expensive.
9364  if (InputVector.getValueType() != MVT::v4i32)
9365    return SDValue();
9366
9367  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
9368  // single use which is a sign-extend or zero-extend, and all elements are
9369  // used.
9370  SmallVector<SDNode *, 4> Uses;
9371  unsigned ExtractedElements = 0;
9372  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
9373       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
9374    if (UI.getUse().getResNo() != InputVector.getResNo())
9375      return SDValue();
9376
9377    SDNode *Extract = *UI;
9378    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9379      return SDValue();
9380
9381    if (Extract->getValueType(0) != MVT::i32)
9382      return SDValue();
9383    if (!Extract->hasOneUse())
9384      return SDValue();
9385    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
9386        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
9387      return SDValue();
9388    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
9389      return SDValue();
9390
9391    // Record which element was extracted.
9392    ExtractedElements |=
9393      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
9394
9395    Uses.push_back(Extract);
9396  }
9397
9398  // If not all the elements were used, this may not be worthwhile.
9399  if (ExtractedElements != 15)
9400    return SDValue();
9401
9402  // Ok, we've now decided to do the transformation.
9403  DebugLoc dl = InputVector.getDebugLoc();
9404
9405  // Store the value to a temporary stack slot.
9406  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
9407  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, NULL,
9408                            0, false, false, 0);
9409
9410  // Replace each use (extract) with a load of the appropriate element.
9411  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
9412       UE = Uses.end(); UI != UE; ++UI) {
9413    SDNode *Extract = *UI;
9414
9415    // Compute the element's address.
9416    SDValue Idx = Extract->getOperand(1);
9417    unsigned EltSize =
9418        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
9419    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
9420    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
9421
9422    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
9423                                     OffsetVal, StackPtr);
9424
9425    // Load the scalar.
9426    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
9427                                     ScalarAddr, NULL, 0, false, false, 0);
9428
9429    // Replace the exact with the load.
9430    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
9431  }
9432
9433  // The replacement was made in place; don't return anything.
9434  return SDValue();
9435}
9436
9437/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
9438static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
9439                                    const X86Subtarget *Subtarget) {
9440  DebugLoc DL = N->getDebugLoc();
9441  SDValue Cond = N->getOperand(0);
9442  // Get the LHS/RHS of the select.
9443  SDValue LHS = N->getOperand(1);
9444  SDValue RHS = N->getOperand(2);
9445
9446  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
9447  // instructions match the semantics of the common C idiom x<y?x:y but not
9448  // x<=y?x:y, because of how they handle negative zero (which can be
9449  // ignored in unsafe-math mode).
9450  if (Subtarget->hasSSE2() &&
9451      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
9452      Cond.getOpcode() == ISD::SETCC) {
9453    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
9454
9455    unsigned Opcode = 0;
9456    // Check for x CC y ? x : y.
9457    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
9458        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
9459      switch (CC) {
9460      default: break;
9461      case ISD::SETULT:
9462        // Converting this to a min would handle NaNs incorrectly, and swapping
9463        // the operands would cause it to handle comparisons between positive
9464        // and negative zero incorrectly.
9465        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
9466          if (!UnsafeFPMath &&
9467              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9468            break;
9469          std::swap(LHS, RHS);
9470        }
9471        Opcode = X86ISD::FMIN;
9472        break;
9473      case ISD::SETOLE:
9474        // Converting this to a min would handle comparisons between positive
9475        // and negative zero incorrectly.
9476        if (!UnsafeFPMath &&
9477            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
9478          break;
9479        Opcode = X86ISD::FMIN;
9480        break;
9481      case ISD::SETULE:
9482        // Converting this to a min would handle both negative zeros and NaNs
9483        // incorrectly, but we can swap the operands to fix both.
9484        std::swap(LHS, RHS);
9485      case ISD::SETOLT:
9486      case ISD::SETLT:
9487      case ISD::SETLE:
9488        Opcode = X86ISD::FMIN;
9489        break;
9490
9491      case ISD::SETOGE:
9492        // Converting this to a max would handle comparisons between positive
9493        // and negative zero incorrectly.
9494        if (!UnsafeFPMath &&
9495            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
9496          break;
9497        Opcode = X86ISD::FMAX;
9498        break;
9499      case ISD::SETUGT:
9500        // Converting this to a max would handle NaNs incorrectly, and swapping
9501        // the operands would cause it to handle comparisons between positive
9502        // and negative zero incorrectly.
9503        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
9504          if (!UnsafeFPMath &&
9505              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9506            break;
9507          std::swap(LHS, RHS);
9508        }
9509        Opcode = X86ISD::FMAX;
9510        break;
9511      case ISD::SETUGE:
9512        // Converting this to a max would handle both negative zeros and NaNs
9513        // incorrectly, but we can swap the operands to fix both.
9514        std::swap(LHS, RHS);
9515      case ISD::SETOGT:
9516      case ISD::SETGT:
9517      case ISD::SETGE:
9518        Opcode = X86ISD::FMAX;
9519        break;
9520      }
9521    // Check for x CC y ? y : x -- a min/max with reversed arms.
9522    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
9523               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
9524      switch (CC) {
9525      default: break;
9526      case ISD::SETOGE:
9527        // Converting this to a min would handle comparisons between positive
9528        // and negative zero incorrectly, and swapping the operands would
9529        // cause it to handle NaNs incorrectly.
9530        if (!UnsafeFPMath &&
9531            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
9532          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9533            break;
9534          std::swap(LHS, RHS);
9535        }
9536        Opcode = X86ISD::FMIN;
9537        break;
9538      case ISD::SETUGT:
9539        // Converting this to a min would handle NaNs incorrectly.
9540        if (!UnsafeFPMath &&
9541            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9542          break;
9543        Opcode = X86ISD::FMIN;
9544        break;
9545      case ISD::SETUGE:
9546        // Converting this to a min would handle both negative zeros and NaNs
9547        // incorrectly, but we can swap the operands to fix both.
9548        std::swap(LHS, RHS);
9549      case ISD::SETOGT:
9550      case ISD::SETGT:
9551      case ISD::SETGE:
9552        Opcode = X86ISD::FMIN;
9553        break;
9554
9555      case ISD::SETULT:
9556        // Converting this to a max would handle NaNs incorrectly.
9557        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9558          break;
9559        Opcode = X86ISD::FMAX;
9560        break;
9561      case ISD::SETOLE:
9562        // Converting this to a max would handle comparisons between positive
9563        // and negative zero incorrectly, and swapping the operands would
9564        // cause it to handle NaNs incorrectly.
9565        if (!UnsafeFPMath &&
9566            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
9567          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9568            break;
9569          std::swap(LHS, RHS);
9570        }
9571        Opcode = X86ISD::FMAX;
9572        break;
9573      case ISD::SETULE:
9574        // Converting this to a max would handle both negative zeros and NaNs
9575        // incorrectly, but we can swap the operands to fix both.
9576        std::swap(LHS, RHS);
9577      case ISD::SETOLT:
9578      case ISD::SETLT:
9579      case ISD::SETLE:
9580        Opcode = X86ISD::FMAX;
9581        break;
9582      }
9583    }
9584
9585    if (Opcode)
9586      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
9587  }
9588
9589  // If this is a select between two integer constants, try to do some
9590  // optimizations.
9591  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
9592    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
9593      // Don't do this for crazy integer types.
9594      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
9595        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
9596        // so that TrueC (the true value) is larger than FalseC.
9597        bool NeedsCondInvert = false;
9598
9599        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
9600            // Efficiently invertible.
9601            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
9602             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
9603              isa<ConstantSDNode>(Cond.getOperand(1))))) {
9604          NeedsCondInvert = true;
9605          std::swap(TrueC, FalseC);
9606        }
9607
9608        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
9609        if (FalseC->getAPIntValue() == 0 &&
9610            TrueC->getAPIntValue().isPowerOf2()) {
9611          if (NeedsCondInvert) // Invert the condition if needed.
9612            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9613                               DAG.getConstant(1, Cond.getValueType()));
9614
9615          // Zero extend the condition if needed.
9616          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
9617
9618          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9619          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
9620                             DAG.getConstant(ShAmt, MVT::i8));
9621        }
9622
9623        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
9624        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9625          if (NeedsCondInvert) // Invert the condition if needed.
9626            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9627                               DAG.getConstant(1, Cond.getValueType()));
9628
9629          // Zero extend the condition if needed.
9630          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9631                             FalseC->getValueType(0), Cond);
9632          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9633                             SDValue(FalseC, 0));
9634        }
9635
9636        // Optimize cases that will turn into an LEA instruction.  This requires
9637        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9638        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9639          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9640          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9641
9642          bool isFastMultiplier = false;
9643          if (Diff < 10) {
9644            switch ((unsigned char)Diff) {
9645              default: break;
9646              case 1:  // result = add base, cond
9647              case 2:  // result = lea base(    , cond*2)
9648              case 3:  // result = lea base(cond, cond*2)
9649              case 4:  // result = lea base(    , cond*4)
9650              case 5:  // result = lea base(cond, cond*4)
9651              case 8:  // result = lea base(    , cond*8)
9652              case 9:  // result = lea base(cond, cond*8)
9653                isFastMultiplier = true;
9654                break;
9655            }
9656          }
9657
9658          if (isFastMultiplier) {
9659            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9660            if (NeedsCondInvert) // Invert the condition if needed.
9661              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9662                                 DAG.getConstant(1, Cond.getValueType()));
9663
9664            // Zero extend the condition if needed.
9665            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9666                               Cond);
9667            // Scale the condition by the difference.
9668            if (Diff != 1)
9669              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9670                                 DAG.getConstant(Diff, Cond.getValueType()));
9671
9672            // Add the base if non-zero.
9673            if (FalseC->getAPIntValue() != 0)
9674              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9675                                 SDValue(FalseC, 0));
9676            return Cond;
9677          }
9678        }
9679      }
9680  }
9681
9682  return SDValue();
9683}
9684
9685/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
9686static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
9687                                  TargetLowering::DAGCombinerInfo &DCI) {
9688  DebugLoc DL = N->getDebugLoc();
9689
9690  // If the flag operand isn't dead, don't touch this CMOV.
9691  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
9692    return SDValue();
9693
9694  // If this is a select between two integer constants, try to do some
9695  // optimizations.  Note that the operands are ordered the opposite of SELECT
9696  // operands.
9697  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
9698    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9699      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
9700      // larger than FalseC (the false value).
9701      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
9702
9703      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
9704        CC = X86::GetOppositeBranchCondition(CC);
9705        std::swap(TrueC, FalseC);
9706      }
9707
9708      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
9709      // This is efficient for any integer data type (including i8/i16) and
9710      // shift amount.
9711      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
9712        SDValue Cond = N->getOperand(3);
9713        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9714                           DAG.getConstant(CC, MVT::i8), Cond);
9715
9716        // Zero extend the condition if needed.
9717        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
9718
9719        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9720        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
9721                           DAG.getConstant(ShAmt, MVT::i8));
9722        if (N->getNumValues() == 2)  // Dead flag value?
9723          return DCI.CombineTo(N, Cond, SDValue());
9724        return Cond;
9725      }
9726
9727      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
9728      // for any integer data type, including i8/i16.
9729      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9730        SDValue Cond = N->getOperand(3);
9731        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9732                           DAG.getConstant(CC, MVT::i8), Cond);
9733
9734        // Zero extend the condition if needed.
9735        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9736                           FalseC->getValueType(0), Cond);
9737        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9738                           SDValue(FalseC, 0));
9739
9740        if (N->getNumValues() == 2)  // Dead flag value?
9741          return DCI.CombineTo(N, Cond, SDValue());
9742        return Cond;
9743      }
9744
9745      // Optimize cases that will turn into an LEA instruction.  This requires
9746      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9747      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9748        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9749        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9750
9751        bool isFastMultiplier = false;
9752        if (Diff < 10) {
9753          switch ((unsigned char)Diff) {
9754          default: break;
9755          case 1:  // result = add base, cond
9756          case 2:  // result = lea base(    , cond*2)
9757          case 3:  // result = lea base(cond, cond*2)
9758          case 4:  // result = lea base(    , cond*4)
9759          case 5:  // result = lea base(cond, cond*4)
9760          case 8:  // result = lea base(    , cond*8)
9761          case 9:  // result = lea base(cond, cond*8)
9762            isFastMultiplier = true;
9763            break;
9764          }
9765        }
9766
9767        if (isFastMultiplier) {
9768          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9769          SDValue Cond = N->getOperand(3);
9770          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9771                             DAG.getConstant(CC, MVT::i8), Cond);
9772          // Zero extend the condition if needed.
9773          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9774                             Cond);
9775          // Scale the condition by the difference.
9776          if (Diff != 1)
9777            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9778                               DAG.getConstant(Diff, Cond.getValueType()));
9779
9780          // Add the base if non-zero.
9781          if (FalseC->getAPIntValue() != 0)
9782            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9783                               SDValue(FalseC, 0));
9784          if (N->getNumValues() == 2)  // Dead flag value?
9785            return DCI.CombineTo(N, Cond, SDValue());
9786          return Cond;
9787        }
9788      }
9789    }
9790  }
9791  return SDValue();
9792}
9793
9794
9795/// PerformMulCombine - Optimize a single multiply with constant into two
9796/// in order to implement it with two cheaper instructions, e.g.
9797/// LEA + SHL, LEA + LEA.
9798static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
9799                                 TargetLowering::DAGCombinerInfo &DCI) {
9800  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9801    return SDValue();
9802
9803  EVT VT = N->getValueType(0);
9804  if (VT != MVT::i64)
9805    return SDValue();
9806
9807  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9808  if (!C)
9809    return SDValue();
9810  uint64_t MulAmt = C->getZExtValue();
9811  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
9812    return SDValue();
9813
9814  uint64_t MulAmt1 = 0;
9815  uint64_t MulAmt2 = 0;
9816  if ((MulAmt % 9) == 0) {
9817    MulAmt1 = 9;
9818    MulAmt2 = MulAmt / 9;
9819  } else if ((MulAmt % 5) == 0) {
9820    MulAmt1 = 5;
9821    MulAmt2 = MulAmt / 5;
9822  } else if ((MulAmt % 3) == 0) {
9823    MulAmt1 = 3;
9824    MulAmt2 = MulAmt / 3;
9825  }
9826  if (MulAmt2 &&
9827      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
9828    DebugLoc DL = N->getDebugLoc();
9829
9830    if (isPowerOf2_64(MulAmt2) &&
9831        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
9832      // If second multiplifer is pow2, issue it first. We want the multiply by
9833      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
9834      // is an add.
9835      std::swap(MulAmt1, MulAmt2);
9836
9837    SDValue NewMul;
9838    if (isPowerOf2_64(MulAmt1))
9839      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
9840                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
9841    else
9842      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
9843                           DAG.getConstant(MulAmt1, VT));
9844
9845    if (isPowerOf2_64(MulAmt2))
9846      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
9847                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
9848    else
9849      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
9850                           DAG.getConstant(MulAmt2, VT));
9851
9852    // Do not add new nodes to DAG combiner worklist.
9853    DCI.CombineTo(N, NewMul, false);
9854  }
9855  return SDValue();
9856}
9857
9858static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
9859  SDValue N0 = N->getOperand(0);
9860  SDValue N1 = N->getOperand(1);
9861  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9862  EVT VT = N0.getValueType();
9863
9864  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
9865  // since the result of setcc_c is all zero's or all ones.
9866  if (N1C && N0.getOpcode() == ISD::AND &&
9867      N0.getOperand(1).getOpcode() == ISD::Constant) {
9868    SDValue N00 = N0.getOperand(0);
9869    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
9870        ((N00.getOpcode() == ISD::ANY_EXTEND ||
9871          N00.getOpcode() == ISD::ZERO_EXTEND) &&
9872         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
9873      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9874      APInt ShAmt = N1C->getAPIntValue();
9875      Mask = Mask.shl(ShAmt);
9876      if (Mask != 0)
9877        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
9878                           N00, DAG.getConstant(Mask, VT));
9879    }
9880  }
9881
9882  return SDValue();
9883}
9884
9885/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
9886///                       when possible.
9887static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
9888                                   const X86Subtarget *Subtarget) {
9889  EVT VT = N->getValueType(0);
9890  if (!VT.isVector() && VT.isInteger() &&
9891      N->getOpcode() == ISD::SHL)
9892    return PerformSHLCombine(N, DAG);
9893
9894  // On X86 with SSE2 support, we can transform this to a vector shift if
9895  // all elements are shifted by the same amount.  We can't do this in legalize
9896  // because the a constant vector is typically transformed to a constant pool
9897  // so we have no knowledge of the shift amount.
9898  if (!Subtarget->hasSSE2())
9899    return SDValue();
9900
9901  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
9902    return SDValue();
9903
9904  SDValue ShAmtOp = N->getOperand(1);
9905  EVT EltVT = VT.getVectorElementType();
9906  DebugLoc DL = N->getDebugLoc();
9907  SDValue BaseShAmt = SDValue();
9908  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
9909    unsigned NumElts = VT.getVectorNumElements();
9910    unsigned i = 0;
9911    for (; i != NumElts; ++i) {
9912      SDValue Arg = ShAmtOp.getOperand(i);
9913      if (Arg.getOpcode() == ISD::UNDEF) continue;
9914      BaseShAmt = Arg;
9915      break;
9916    }
9917    for (; i != NumElts; ++i) {
9918      SDValue Arg = ShAmtOp.getOperand(i);
9919      if (Arg.getOpcode() == ISD::UNDEF) continue;
9920      if (Arg != BaseShAmt) {
9921        return SDValue();
9922      }
9923    }
9924  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
9925             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
9926    SDValue InVec = ShAmtOp.getOperand(0);
9927    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
9928      unsigned NumElts = InVec.getValueType().getVectorNumElements();
9929      unsigned i = 0;
9930      for (; i != NumElts; ++i) {
9931        SDValue Arg = InVec.getOperand(i);
9932        if (Arg.getOpcode() == ISD::UNDEF) continue;
9933        BaseShAmt = Arg;
9934        break;
9935      }
9936    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
9937       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
9938         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
9939         if (C->getZExtValue() == SplatIdx)
9940           BaseShAmt = InVec.getOperand(1);
9941       }
9942    }
9943    if (BaseShAmt.getNode() == 0)
9944      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
9945                              DAG.getIntPtrConstant(0));
9946  } else
9947    return SDValue();
9948
9949  // The shift amount is an i32.
9950  if (EltVT.bitsGT(MVT::i32))
9951    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
9952  else if (EltVT.bitsLT(MVT::i32))
9953    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
9954
9955  // The shift amount is identical so we can do a vector shift.
9956  SDValue  ValOp = N->getOperand(0);
9957  switch (N->getOpcode()) {
9958  default:
9959    llvm_unreachable("Unknown shift opcode!");
9960    break;
9961  case ISD::SHL:
9962    if (VT == MVT::v2i64)
9963      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9964                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9965                         ValOp, BaseShAmt);
9966    if (VT == MVT::v4i32)
9967      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9968                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9969                         ValOp, BaseShAmt);
9970    if (VT == MVT::v8i16)
9971      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9972                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9973                         ValOp, BaseShAmt);
9974    break;
9975  case ISD::SRA:
9976    if (VT == MVT::v4i32)
9977      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9978                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9979                         ValOp, BaseShAmt);
9980    if (VT == MVT::v8i16)
9981      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9982                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9983                         ValOp, BaseShAmt);
9984    break;
9985  case ISD::SRL:
9986    if (VT == MVT::v2i64)
9987      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9988                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9989                         ValOp, BaseShAmt);
9990    if (VT == MVT::v4i32)
9991      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9992                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9993                         ValOp, BaseShAmt);
9994    if (VT ==  MVT::v8i16)
9995      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9996                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9997                         ValOp, BaseShAmt);
9998    break;
9999  }
10000  return SDValue();
10001}
10002
10003static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
10004                                TargetLowering::DAGCombinerInfo &DCI,
10005                                const X86Subtarget *Subtarget) {
10006  if (DCI.isBeforeLegalizeOps())
10007    return SDValue();
10008
10009  EVT VT = N->getValueType(0);
10010  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
10011    return SDValue();
10012
10013  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
10014  SDValue N0 = N->getOperand(0);
10015  SDValue N1 = N->getOperand(1);
10016  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
10017    std::swap(N0, N1);
10018  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
10019    return SDValue();
10020  if (!N0.hasOneUse() || !N1.hasOneUse())
10021    return SDValue();
10022
10023  SDValue ShAmt0 = N0.getOperand(1);
10024  if (ShAmt0.getValueType() != MVT::i8)
10025    return SDValue();
10026  SDValue ShAmt1 = N1.getOperand(1);
10027  if (ShAmt1.getValueType() != MVT::i8)
10028    return SDValue();
10029  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
10030    ShAmt0 = ShAmt0.getOperand(0);
10031  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
10032    ShAmt1 = ShAmt1.getOperand(0);
10033
10034  DebugLoc DL = N->getDebugLoc();
10035  unsigned Opc = X86ISD::SHLD;
10036  SDValue Op0 = N0.getOperand(0);
10037  SDValue Op1 = N1.getOperand(0);
10038  if (ShAmt0.getOpcode() == ISD::SUB) {
10039    Opc = X86ISD::SHRD;
10040    std::swap(Op0, Op1);
10041    std::swap(ShAmt0, ShAmt1);
10042  }
10043
10044  unsigned Bits = VT.getSizeInBits();
10045  if (ShAmt1.getOpcode() == ISD::SUB) {
10046    SDValue Sum = ShAmt1.getOperand(0);
10047    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
10048      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
10049      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
10050        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
10051      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
10052        return DAG.getNode(Opc, DL, VT,
10053                           Op0, Op1,
10054                           DAG.getNode(ISD::TRUNCATE, DL,
10055                                       MVT::i8, ShAmt0));
10056    }
10057  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
10058    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
10059    if (ShAmt0C &&
10060        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
10061      return DAG.getNode(Opc, DL, VT,
10062                         N0.getOperand(0), N1.getOperand(0),
10063                         DAG.getNode(ISD::TRUNCATE, DL,
10064                                       MVT::i8, ShAmt0));
10065  }
10066
10067  return SDValue();
10068}
10069
10070/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
10071static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
10072                                   const X86Subtarget *Subtarget) {
10073  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
10074  // the FP state in cases where an emms may be missing.
10075  // A preferable solution to the general problem is to figure out the right
10076  // places to insert EMMS.  This qualifies as a quick hack.
10077
10078  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
10079  StoreSDNode *St = cast<StoreSDNode>(N);
10080  EVT VT = St->getValue().getValueType();
10081  if (VT.getSizeInBits() != 64)
10082    return SDValue();
10083
10084  const Function *F = DAG.getMachineFunction().getFunction();
10085  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
10086  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
10087    && Subtarget->hasSSE2();
10088  if ((VT.isVector() ||
10089       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
10090      isa<LoadSDNode>(St->getValue()) &&
10091      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
10092      St->getChain().hasOneUse() && !St->isVolatile()) {
10093    SDNode* LdVal = St->getValue().getNode();
10094    LoadSDNode *Ld = 0;
10095    int TokenFactorIndex = -1;
10096    SmallVector<SDValue, 8> Ops;
10097    SDNode* ChainVal = St->getChain().getNode();
10098    // Must be a store of a load.  We currently handle two cases:  the load
10099    // is a direct child, and it's under an intervening TokenFactor.  It is
10100    // possible to dig deeper under nested TokenFactors.
10101    if (ChainVal == LdVal)
10102      Ld = cast<LoadSDNode>(St->getChain());
10103    else if (St->getValue().hasOneUse() &&
10104             ChainVal->getOpcode() == ISD::TokenFactor) {
10105      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
10106        if (ChainVal->getOperand(i).getNode() == LdVal) {
10107          TokenFactorIndex = i;
10108          Ld = cast<LoadSDNode>(St->getValue());
10109        } else
10110          Ops.push_back(ChainVal->getOperand(i));
10111      }
10112    }
10113
10114    if (!Ld || !ISD::isNormalLoad(Ld))
10115      return SDValue();
10116
10117    // If this is not the MMX case, i.e. we are just turning i64 load/store
10118    // into f64 load/store, avoid the transformation if there are multiple
10119    // uses of the loaded value.
10120    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
10121      return SDValue();
10122
10123    DebugLoc LdDL = Ld->getDebugLoc();
10124    DebugLoc StDL = N->getDebugLoc();
10125    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
10126    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
10127    // pair instead.
10128    if (Subtarget->is64Bit() || F64IsLegal) {
10129      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
10130      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
10131                                  Ld->getBasePtr(), Ld->getSrcValue(),
10132                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
10133                                  Ld->isNonTemporal(), Ld->getAlignment());
10134      SDValue NewChain = NewLd.getValue(1);
10135      if (TokenFactorIndex != -1) {
10136        Ops.push_back(NewChain);
10137        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
10138                               Ops.size());
10139      }
10140      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
10141                          St->getSrcValue(), St->getSrcValueOffset(),
10142                          St->isVolatile(), St->isNonTemporal(),
10143                          St->getAlignment());
10144    }
10145
10146    // Otherwise, lower to two pairs of 32-bit loads / stores.
10147    SDValue LoAddr = Ld->getBasePtr();
10148    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
10149                                 DAG.getConstant(4, MVT::i32));
10150
10151    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
10152                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
10153                               Ld->isVolatile(), Ld->isNonTemporal(),
10154                               Ld->getAlignment());
10155    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
10156                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
10157                               Ld->isVolatile(), Ld->isNonTemporal(),
10158                               MinAlign(Ld->getAlignment(), 4));
10159
10160    SDValue NewChain = LoLd.getValue(1);
10161    if (TokenFactorIndex != -1) {
10162      Ops.push_back(LoLd);
10163      Ops.push_back(HiLd);
10164      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
10165                             Ops.size());
10166    }
10167
10168    LoAddr = St->getBasePtr();
10169    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
10170                         DAG.getConstant(4, MVT::i32));
10171
10172    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
10173                                St->getSrcValue(), St->getSrcValueOffset(),
10174                                St->isVolatile(), St->isNonTemporal(),
10175                                St->getAlignment());
10176    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
10177                                St->getSrcValue(),
10178                                St->getSrcValueOffset() + 4,
10179                                St->isVolatile(),
10180                                St->isNonTemporal(),
10181                                MinAlign(St->getAlignment(), 4));
10182    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
10183  }
10184  return SDValue();
10185}
10186
10187/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
10188/// X86ISD::FXOR nodes.
10189static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
10190  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
10191  // F[X]OR(0.0, x) -> x
10192  // F[X]OR(x, 0.0) -> x
10193  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
10194    if (C->getValueAPF().isPosZero())
10195      return N->getOperand(1);
10196  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
10197    if (C->getValueAPF().isPosZero())
10198      return N->getOperand(0);
10199  return SDValue();
10200}
10201
10202/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
10203static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
10204  // FAND(0.0, x) -> 0.0
10205  // FAND(x, 0.0) -> 0.0
10206  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
10207    if (C->getValueAPF().isPosZero())
10208      return N->getOperand(0);
10209  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
10210    if (C->getValueAPF().isPosZero())
10211      return N->getOperand(1);
10212  return SDValue();
10213}
10214
10215static SDValue PerformBTCombine(SDNode *N,
10216                                SelectionDAG &DAG,
10217                                TargetLowering::DAGCombinerInfo &DCI) {
10218  // BT ignores high bits in the bit index operand.
10219  SDValue Op1 = N->getOperand(1);
10220  if (Op1.hasOneUse()) {
10221    unsigned BitWidth = Op1.getValueSizeInBits();
10222    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
10223    APInt KnownZero, KnownOne;
10224    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
10225                                          !DCI.isBeforeLegalizeOps());
10226    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10227    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
10228        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
10229      DCI.CommitTargetLoweringOpt(TLO);
10230  }
10231  return SDValue();
10232}
10233
10234static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
10235  SDValue Op = N->getOperand(0);
10236  if (Op.getOpcode() == ISD::BIT_CONVERT)
10237    Op = Op.getOperand(0);
10238  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
10239  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
10240      VT.getVectorElementType().getSizeInBits() ==
10241      OpVT.getVectorElementType().getSizeInBits()) {
10242    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
10243  }
10244  return SDValue();
10245}
10246
10247static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
10248  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
10249  //           (and (i32 x86isd::setcc_carry), 1)
10250  // This eliminates the zext. This transformation is necessary because
10251  // ISD::SETCC is always legalized to i8.
10252  DebugLoc dl = N->getDebugLoc();
10253  SDValue N0 = N->getOperand(0);
10254  EVT VT = N->getValueType(0);
10255  if (N0.getOpcode() == ISD::AND &&
10256      N0.hasOneUse() &&
10257      N0.getOperand(0).hasOneUse()) {
10258    SDValue N00 = N0.getOperand(0);
10259    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
10260      return SDValue();
10261    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
10262    if (!C || C->getZExtValue() != 1)
10263      return SDValue();
10264    return DAG.getNode(ISD::AND, dl, VT,
10265                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
10266                                   N00.getOperand(0), N00.getOperand(1)),
10267                       DAG.getConstant(1, VT));
10268  }
10269
10270  return SDValue();
10271}
10272
10273SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
10274                                             DAGCombinerInfo &DCI) const {
10275  SelectionDAG &DAG = DCI.DAG;
10276  switch (N->getOpcode()) {
10277  default: break;
10278  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
10279  case ISD::EXTRACT_VECTOR_ELT:
10280                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
10281  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
10282  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
10283  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
10284  case ISD::SHL:
10285  case ISD::SRA:
10286  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
10287  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
10288  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
10289  case X86ISD::FXOR:
10290  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
10291  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
10292  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
10293  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
10294  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
10295  }
10296
10297  return SDValue();
10298}
10299
10300/// isTypeDesirableForOp - Return true if the target has native support for
10301/// the specified value type and it is 'desirable' to use the type for the
10302/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
10303/// instruction encodings are longer and some i16 instructions are slow.
10304bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
10305  if (!isTypeLegal(VT))
10306    return false;
10307  if (VT != MVT::i16)
10308    return true;
10309
10310  switch (Opc) {
10311  default:
10312    return true;
10313  case ISD::LOAD:
10314  case ISD::SIGN_EXTEND:
10315  case ISD::ZERO_EXTEND:
10316  case ISD::ANY_EXTEND:
10317  case ISD::SHL:
10318  case ISD::SRL:
10319  case ISD::SUB:
10320  case ISD::ADD:
10321  case ISD::MUL:
10322  case ISD::AND:
10323  case ISD::OR:
10324  case ISD::XOR:
10325    return false;
10326  }
10327}
10328
10329static bool MayFoldLoad(SDValue Op) {
10330  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
10331}
10332
10333static bool MayFoldIntoStore(SDValue Op) {
10334  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
10335}
10336
10337/// IsDesirableToPromoteOp - This method query the target whether it is
10338/// beneficial for dag combiner to promote the specified node. If true, it
10339/// should return the desired promotion type by reference.
10340bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
10341  EVT VT = Op.getValueType();
10342  if (VT != MVT::i16)
10343    return false;
10344
10345  bool Promote = false;
10346  bool Commute = false;
10347  switch (Op.getOpcode()) {
10348  default: break;
10349  case ISD::LOAD: {
10350    LoadSDNode *LD = cast<LoadSDNode>(Op);
10351    // If the non-extending load has a single use and it's not live out, then it
10352    // might be folded.
10353    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
10354                                                     Op.hasOneUse()*/) {
10355      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
10356             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
10357        // The only case where we'd want to promote LOAD (rather then it being
10358        // promoted as an operand is when it's only use is liveout.
10359        if (UI->getOpcode() != ISD::CopyToReg)
10360          return false;
10361      }
10362    }
10363    Promote = true;
10364    break;
10365  }
10366  case ISD::SIGN_EXTEND:
10367  case ISD::ZERO_EXTEND:
10368  case ISD::ANY_EXTEND:
10369    Promote = true;
10370    break;
10371  case ISD::SHL:
10372  case ISD::SRL: {
10373    SDValue N0 = Op.getOperand(0);
10374    // Look out for (store (shl (load), x)).
10375    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
10376      return false;
10377    Promote = true;
10378    break;
10379  }
10380  case ISD::ADD:
10381  case ISD::MUL:
10382  case ISD::AND:
10383  case ISD::OR:
10384  case ISD::XOR:
10385    Commute = true;
10386    // fallthrough
10387  case ISD::SUB: {
10388    SDValue N0 = Op.getOperand(0);
10389    SDValue N1 = Op.getOperand(1);
10390    if (!Commute && MayFoldLoad(N1))
10391      return false;
10392    // Avoid disabling potential load folding opportunities.
10393    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
10394      return false;
10395    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
10396      return false;
10397    Promote = true;
10398  }
10399  }
10400
10401  PVT = MVT::i32;
10402  return Promote;
10403}
10404
10405//===----------------------------------------------------------------------===//
10406//                           X86 Inline Assembly Support
10407//===----------------------------------------------------------------------===//
10408
10409static bool LowerToBSwap(CallInst *CI) {
10410  // FIXME: this should verify that we are targetting a 486 or better.  If not,
10411  // we will turn this bswap into something that will be lowered to logical ops
10412  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
10413  // so don't worry about this.
10414
10415  // Verify this is a simple bswap.
10416  if (CI->getNumArgOperands() != 1 ||
10417      CI->getType() != CI->getArgOperand(0)->getType() ||
10418      !CI->getType()->isIntegerTy())
10419    return false;
10420
10421  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
10422  if (!Ty || Ty->getBitWidth() % 16 != 0)
10423    return false;
10424
10425  // Okay, we can do this xform, do so now.
10426  const Type *Tys[] = { Ty };
10427  Module *M = CI->getParent()->getParent()->getParent();
10428  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
10429
10430  Value *Op = CI->getArgOperand(0);
10431  Op = CallInst::Create(Int, Op, CI->getName(), CI);
10432
10433  CI->replaceAllUsesWith(Op);
10434  CI->eraseFromParent();
10435  return true;
10436}
10437
10438bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
10439  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
10440  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
10441
10442  std::string AsmStr = IA->getAsmString();
10443
10444  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
10445  SmallVector<StringRef, 4> AsmPieces;
10446  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
10447
10448  switch (AsmPieces.size()) {
10449  default: return false;
10450  case 1:
10451    AsmStr = AsmPieces[0];
10452    AsmPieces.clear();
10453    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
10454
10455    // bswap $0
10456    if (AsmPieces.size() == 2 &&
10457        (AsmPieces[0] == "bswap" ||
10458         AsmPieces[0] == "bswapq" ||
10459         AsmPieces[0] == "bswapl") &&
10460        (AsmPieces[1] == "$0" ||
10461         AsmPieces[1] == "${0:q}")) {
10462      // No need to check constraints, nothing other than the equivalent of
10463      // "=r,0" would be valid here.
10464      return LowerToBSwap(CI);
10465    }
10466    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
10467    if (CI->getType()->isIntegerTy(16) &&
10468        AsmPieces.size() == 3 &&
10469        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
10470        AsmPieces[1] == "$$8," &&
10471        AsmPieces[2] == "${0:w}" &&
10472        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
10473      AsmPieces.clear();
10474      const std::string &Constraints = IA->getConstraintString();
10475      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
10476      std::sort(AsmPieces.begin(), AsmPieces.end());
10477      if (AsmPieces.size() == 4 &&
10478          AsmPieces[0] == "~{cc}" &&
10479          AsmPieces[1] == "~{dirflag}" &&
10480          AsmPieces[2] == "~{flags}" &&
10481          AsmPieces[3] == "~{fpsr}") {
10482        return LowerToBSwap(CI);
10483      }
10484    }
10485    break;
10486  case 3:
10487    if (CI->getType()->isIntegerTy(64) &&
10488        Constraints.size() >= 2 &&
10489        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
10490        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
10491      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
10492      SmallVector<StringRef, 4> Words;
10493      SplitString(AsmPieces[0], Words, " \t");
10494      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
10495        Words.clear();
10496        SplitString(AsmPieces[1], Words, " \t");
10497        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
10498          Words.clear();
10499          SplitString(AsmPieces[2], Words, " \t,");
10500          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
10501              Words[2] == "%edx") {
10502            return LowerToBSwap(CI);
10503          }
10504        }
10505      }
10506    }
10507    break;
10508  }
10509  return false;
10510}
10511
10512
10513
10514/// getConstraintType - Given a constraint letter, return the type of
10515/// constraint it is for this target.
10516X86TargetLowering::ConstraintType
10517X86TargetLowering::getConstraintType(const std::string &Constraint) const {
10518  if (Constraint.size() == 1) {
10519    switch (Constraint[0]) {
10520    case 'A':
10521      return C_Register;
10522    case 'f':
10523    case 'r':
10524    case 'R':
10525    case 'l':
10526    case 'q':
10527    case 'Q':
10528    case 'x':
10529    case 'y':
10530    case 'Y':
10531      return C_RegisterClass;
10532    case 'e':
10533    case 'Z':
10534      return C_Other;
10535    default:
10536      break;
10537    }
10538  }
10539  return TargetLowering::getConstraintType(Constraint);
10540}
10541
10542/// LowerXConstraint - try to replace an X constraint, which matches anything,
10543/// with another that has more specific requirements based on the type of the
10544/// corresponding operand.
10545const char *X86TargetLowering::
10546LowerXConstraint(EVT ConstraintVT) const {
10547  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
10548  // 'f' like normal targets.
10549  if (ConstraintVT.isFloatingPoint()) {
10550    if (Subtarget->hasSSE2())
10551      return "Y";
10552    if (Subtarget->hasSSE1())
10553      return "x";
10554  }
10555
10556  return TargetLowering::LowerXConstraint(ConstraintVT);
10557}
10558
10559/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10560/// vector.  If it is invalid, don't add anything to Ops.
10561void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10562                                                     char Constraint,
10563                                                     std::vector<SDValue>&Ops,
10564                                                     SelectionDAG &DAG) const {
10565  SDValue Result(0, 0);
10566
10567  switch (Constraint) {
10568  default: break;
10569  case 'I':
10570    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10571      if (C->getZExtValue() <= 31) {
10572        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10573        break;
10574      }
10575    }
10576    return;
10577  case 'J':
10578    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10579      if (C->getZExtValue() <= 63) {
10580        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10581        break;
10582      }
10583    }
10584    return;
10585  case 'K':
10586    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10587      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
10588        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10589        break;
10590      }
10591    }
10592    return;
10593  case 'N':
10594    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10595      if (C->getZExtValue() <= 255) {
10596        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10597        break;
10598      }
10599    }
10600    return;
10601  case 'e': {
10602    // 32-bit signed value
10603    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10604      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10605                                           C->getSExtValue())) {
10606        // Widen to 64 bits here to get it sign extended.
10607        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
10608        break;
10609      }
10610    // FIXME gcc accepts some relocatable values here too, but only in certain
10611    // memory models; it's complicated.
10612    }
10613    return;
10614  }
10615  case 'Z': {
10616    // 32-bit unsigned value
10617    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10618      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10619                                           C->getZExtValue())) {
10620        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10621        break;
10622      }
10623    }
10624    // FIXME gcc accepts some relocatable values here too, but only in certain
10625    // memory models; it's complicated.
10626    return;
10627  }
10628  case 'i': {
10629    // Literal immediates are always ok.
10630    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
10631      // Widen to 64 bits here to get it sign extended.
10632      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
10633      break;
10634    }
10635
10636    // In any sort of PIC mode addresses need to be computed at runtime by
10637    // adding in a register or some sort of table lookup.  These can't
10638    // be used as immediates.
10639    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
10640      return;
10641
10642    // If we are in non-pic codegen mode, we allow the address of a global (with
10643    // an optional displacement) to be used with 'i'.
10644    GlobalAddressSDNode *GA = 0;
10645    int64_t Offset = 0;
10646
10647    // Match either (GA), (GA+C), (GA+C1+C2), etc.
10648    while (1) {
10649      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
10650        Offset += GA->getOffset();
10651        break;
10652      } else if (Op.getOpcode() == ISD::ADD) {
10653        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10654          Offset += C->getZExtValue();
10655          Op = Op.getOperand(0);
10656          continue;
10657        }
10658      } else if (Op.getOpcode() == ISD::SUB) {
10659        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10660          Offset += -C->getZExtValue();
10661          Op = Op.getOperand(0);
10662          continue;
10663        }
10664      }
10665
10666      // Otherwise, this isn't something we can handle, reject it.
10667      return;
10668    }
10669
10670    const GlobalValue *GV = GA->getGlobal();
10671    // If we require an extra load to get this address, as in PIC mode, we
10672    // can't accept it.
10673    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
10674                                                        getTargetMachine())))
10675      return;
10676
10677    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
10678                                        GA->getValueType(0), Offset);
10679    break;
10680  }
10681  }
10682
10683  if (Result.getNode()) {
10684    Ops.push_back(Result);
10685    return;
10686  }
10687  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10688}
10689
10690std::vector<unsigned> X86TargetLowering::
10691getRegClassForInlineAsmConstraint(const std::string &Constraint,
10692                                  EVT VT) const {
10693  if (Constraint.size() == 1) {
10694    // FIXME: not handling fp-stack yet!
10695    switch (Constraint[0]) {      // GCC X86 Constraint Letters
10696    default: break;  // Unknown constraint letter
10697    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
10698      if (Subtarget->is64Bit()) {
10699        if (VT == MVT::i32)
10700          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
10701                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
10702                                       X86::R10D,X86::R11D,X86::R12D,
10703                                       X86::R13D,X86::R14D,X86::R15D,
10704                                       X86::EBP, X86::ESP, 0);
10705        else if (VT == MVT::i16)
10706          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
10707                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
10708                                       X86::R10W,X86::R11W,X86::R12W,
10709                                       X86::R13W,X86::R14W,X86::R15W,
10710                                       X86::BP,  X86::SP, 0);
10711        else if (VT == MVT::i8)
10712          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
10713                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
10714                                       X86::R10B,X86::R11B,X86::R12B,
10715                                       X86::R13B,X86::R14B,X86::R15B,
10716                                       X86::BPL, X86::SPL, 0);
10717
10718        else if (VT == MVT::i64)
10719          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
10720                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
10721                                       X86::R10, X86::R11, X86::R12,
10722                                       X86::R13, X86::R14, X86::R15,
10723                                       X86::RBP, X86::RSP, 0);
10724
10725        break;
10726      }
10727      // 32-bit fallthrough
10728    case 'Q':   // Q_REGS
10729      if (VT == MVT::i32)
10730        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
10731      else if (VT == MVT::i16)
10732        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
10733      else if (VT == MVT::i8)
10734        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
10735      else if (VT == MVT::i64)
10736        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
10737      break;
10738    }
10739  }
10740
10741  return std::vector<unsigned>();
10742}
10743
10744std::pair<unsigned, const TargetRegisterClass*>
10745X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10746                                                EVT VT) const {
10747  // First, see if this is a constraint that directly corresponds to an LLVM
10748  // register class.
10749  if (Constraint.size() == 1) {
10750    // GCC Constraint Letters
10751    switch (Constraint[0]) {
10752    default: break;
10753    case 'r':   // GENERAL_REGS
10754    case 'l':   // INDEX_REGS
10755      if (VT == MVT::i8)
10756        return std::make_pair(0U, X86::GR8RegisterClass);
10757      if (VT == MVT::i16)
10758        return std::make_pair(0U, X86::GR16RegisterClass);
10759      if (VT == MVT::i32 || !Subtarget->is64Bit())
10760        return std::make_pair(0U, X86::GR32RegisterClass);
10761      return std::make_pair(0U, X86::GR64RegisterClass);
10762    case 'R':   // LEGACY_REGS
10763      if (VT == MVT::i8)
10764        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
10765      if (VT == MVT::i16)
10766        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
10767      if (VT == MVT::i32 || !Subtarget->is64Bit())
10768        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
10769      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
10770    case 'f':  // FP Stack registers.
10771      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
10772      // value to the correct fpstack register class.
10773      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
10774        return std::make_pair(0U, X86::RFP32RegisterClass);
10775      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
10776        return std::make_pair(0U, X86::RFP64RegisterClass);
10777      return std::make_pair(0U, X86::RFP80RegisterClass);
10778    case 'y':   // MMX_REGS if MMX allowed.
10779      if (!Subtarget->hasMMX()) break;
10780      return std::make_pair(0U, X86::VR64RegisterClass);
10781    case 'Y':   // SSE_REGS if SSE2 allowed
10782      if (!Subtarget->hasSSE2()) break;
10783      // FALL THROUGH.
10784    case 'x':   // SSE_REGS if SSE1 allowed
10785      if (!Subtarget->hasSSE1()) break;
10786
10787      switch (VT.getSimpleVT().SimpleTy) {
10788      default: break;
10789      // Scalar SSE types.
10790      case MVT::f32:
10791      case MVT::i32:
10792        return std::make_pair(0U, X86::FR32RegisterClass);
10793      case MVT::f64:
10794      case MVT::i64:
10795        return std::make_pair(0U, X86::FR64RegisterClass);
10796      // Vector types.
10797      case MVT::v16i8:
10798      case MVT::v8i16:
10799      case MVT::v4i32:
10800      case MVT::v2i64:
10801      case MVT::v4f32:
10802      case MVT::v2f64:
10803        return std::make_pair(0U, X86::VR128RegisterClass);
10804      }
10805      break;
10806    }
10807  }
10808
10809  // Use the default implementation in TargetLowering to convert the register
10810  // constraint into a member of a register class.
10811  std::pair<unsigned, const TargetRegisterClass*> Res;
10812  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10813
10814  // Not found as a standard register?
10815  if (Res.second == 0) {
10816    // Map st(0) -> st(7) -> ST0
10817    if (Constraint.size() == 7 && Constraint[0] == '{' &&
10818        tolower(Constraint[1]) == 's' &&
10819        tolower(Constraint[2]) == 't' &&
10820        Constraint[3] == '(' &&
10821        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
10822        Constraint[5] == ')' &&
10823        Constraint[6] == '}') {
10824
10825      Res.first = X86::ST0+Constraint[4]-'0';
10826      Res.second = X86::RFP80RegisterClass;
10827      return Res;
10828    }
10829
10830    // GCC allows "st(0)" to be called just plain "st".
10831    if (StringRef("{st}").equals_lower(Constraint)) {
10832      Res.first = X86::ST0;
10833      Res.second = X86::RFP80RegisterClass;
10834      return Res;
10835    }
10836
10837    // flags -> EFLAGS
10838    if (StringRef("{flags}").equals_lower(Constraint)) {
10839      Res.first = X86::EFLAGS;
10840      Res.second = X86::CCRRegisterClass;
10841      return Res;
10842    }
10843
10844    // 'A' means EAX + EDX.
10845    if (Constraint == "A") {
10846      Res.first = X86::EAX;
10847      Res.second = X86::GR32_ADRegisterClass;
10848      return Res;
10849    }
10850    return Res;
10851  }
10852
10853  // Otherwise, check to see if this is a register class of the wrong value
10854  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
10855  // turn into {ax},{dx}.
10856  if (Res.second->hasType(VT))
10857    return Res;   // Correct type already, nothing to do.
10858
10859  // All of the single-register GCC register classes map their values onto
10860  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
10861  // really want an 8-bit or 32-bit register, map to the appropriate register
10862  // class and return the appropriate register.
10863  if (Res.second == X86::GR16RegisterClass) {
10864    if (VT == MVT::i8) {
10865      unsigned DestReg = 0;
10866      switch (Res.first) {
10867      default: break;
10868      case X86::AX: DestReg = X86::AL; break;
10869      case X86::DX: DestReg = X86::DL; break;
10870      case X86::CX: DestReg = X86::CL; break;
10871      case X86::BX: DestReg = X86::BL; break;
10872      }
10873      if (DestReg) {
10874        Res.first = DestReg;
10875        Res.second = X86::GR8RegisterClass;
10876      }
10877    } else if (VT == MVT::i32) {
10878      unsigned DestReg = 0;
10879      switch (Res.first) {
10880      default: break;
10881      case X86::AX: DestReg = X86::EAX; break;
10882      case X86::DX: DestReg = X86::EDX; break;
10883      case X86::CX: DestReg = X86::ECX; break;
10884      case X86::BX: DestReg = X86::EBX; break;
10885      case X86::SI: DestReg = X86::ESI; break;
10886      case X86::DI: DestReg = X86::EDI; break;
10887      case X86::BP: DestReg = X86::EBP; break;
10888      case X86::SP: DestReg = X86::ESP; break;
10889      }
10890      if (DestReg) {
10891        Res.first = DestReg;
10892        Res.second = X86::GR32RegisterClass;
10893      }
10894    } else if (VT == MVT::i64) {
10895      unsigned DestReg = 0;
10896      switch (Res.first) {
10897      default: break;
10898      case X86::AX: DestReg = X86::RAX; break;
10899      case X86::DX: DestReg = X86::RDX; break;
10900      case X86::CX: DestReg = X86::RCX; break;
10901      case X86::BX: DestReg = X86::RBX; break;
10902      case X86::SI: DestReg = X86::RSI; break;
10903      case X86::DI: DestReg = X86::RDI; break;
10904      case X86::BP: DestReg = X86::RBP; break;
10905      case X86::SP: DestReg = X86::RSP; break;
10906      }
10907      if (DestReg) {
10908        Res.first = DestReg;
10909        Res.second = X86::GR64RegisterClass;
10910      }
10911    }
10912  } else if (Res.second == X86::FR32RegisterClass ||
10913             Res.second == X86::FR64RegisterClass ||
10914             Res.second == X86::VR128RegisterClass) {
10915    // Handle references to XMM physical registers that got mapped into the
10916    // wrong class.  This can happen with constraints like {xmm0} where the
10917    // target independent register mapper will just pick the first match it can
10918    // find, ignoring the required type.
10919    if (VT == MVT::f32)
10920      Res.second = X86::FR32RegisterClass;
10921    else if (VT == MVT::f64)
10922      Res.second = X86::FR64RegisterClass;
10923    else if (X86::VR128RegisterClass->hasType(VT))
10924      Res.second = X86::VR128RegisterClass;
10925  }
10926
10927  return Res;
10928}
10929