X86ISelLowering.cpp revision 3ea97550e361bc6ae23e9415abc7b0a34c540f53
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalAlias.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Function.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/LLVMContext.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/MC/MCContext.h"
39#include "llvm/MC/MCExpr.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/Dwarf.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52using namespace llvm;
53using namespace dwarf;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57static cl::opt<bool>
58DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
59
60// Disable16Bit - 16-bit operations typically have a larger encoding than
61// corresponding 32-bit instructions, and 16-bit code is slow on some
62// processors. This is an experimental flag to disable 16-bit operations
63// (which forces them to be Legalized to 32-bit operations).
64static cl::opt<bool>
65Disable16Bit("disable-16bit", cl::Hidden,
66             cl::desc("Disable use of 16-bit instructions"));
67
68// Forward declarations.
69static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
70                       SDValue V2);
71
72static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
73  switch (TM.getSubtarget<X86Subtarget>().TargetType) {
74  default: llvm_unreachable("unknown subtarget type");
75  case X86Subtarget::isDarwin:
76    if (TM.getSubtarget<X86Subtarget>().is64Bit())
77      return new X8664_MachoTargetObjectFile();
78    return new TargetLoweringObjectFileMachO();
79  case X86Subtarget::isELF:
80   if (TM.getSubtarget<X86Subtarget>().is64Bit())
81     return new X8664_ELFTargetObjectFile(TM);
82    return new X8632_ELFTargetObjectFile(TM);
83  case X86Subtarget::isMingw:
84  case X86Subtarget::isCygwin:
85  case X86Subtarget::isWindows:
86    return new TargetLoweringObjectFileCOFF();
87  }
88}
89
90X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
91  : TargetLowering(TM, createTLOF(TM)) {
92  Subtarget = &TM.getSubtarget<X86Subtarget>();
93  X86ScalarSSEf64 = Subtarget->hasSSE2();
94  X86ScalarSSEf32 = Subtarget->hasSSE1();
95  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
96
97  RegInfo = TM.getRegisterInfo();
98  TD = getTargetData();
99
100  // Set up the TargetLowering object.
101
102  // X86 is weird, it always uses i8 for shift amounts and setcc results.
103  setShiftAmountType(MVT::i8);
104  setBooleanContents(ZeroOrOneBooleanContent);
105  setSchedulingPreference(SchedulingForRegPressure);
106  setStackPointerRegisterToSaveRestore(X86StackPtr);
107
108  if (Subtarget->isTargetDarwin()) {
109    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
110    setUseUnderscoreSetJmp(false);
111    setUseUnderscoreLongJmp(false);
112  } else if (Subtarget->isTargetMingw()) {
113    // MS runtime is weird: it exports _setjmp, but longjmp!
114    setUseUnderscoreSetJmp(true);
115    setUseUnderscoreLongJmp(false);
116  } else {
117    setUseUnderscoreSetJmp(true);
118    setUseUnderscoreLongJmp(true);
119  }
120
121  // Set up the register classes.
122  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
123  if (!Disable16Bit)
124    addRegisterClass(MVT::i16, X86::GR16RegisterClass);
125  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
126  if (Subtarget->is64Bit())
127    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
128
129  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
130
131  // We don't accept any truncstore of integer registers.
132  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
133  if (!Disable16Bit)
134    setTruncStoreAction(MVT::i64, MVT::i16, Expand);
135  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
136  if (!Disable16Bit)
137    setTruncStoreAction(MVT::i32, MVT::i16, Expand);
138  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
139  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
140
141  // SETOEQ and SETUNE require checking two conditions.
142  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
143  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
144  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
145  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
146  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
147  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
148
149  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
150  // operation.
151  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
152  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
153  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
154
155  if (Subtarget->is64Bit()) {
156    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
157    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
158  } else if (!UseSoftFloat) {
159    if (X86ScalarSSEf64) {
160      // We have an impenetrably clever algorithm for ui64->double only.
161      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
162    }
163    // We have an algorithm for SSE2, and we turn this into a 64-bit
164    // FILD for other targets.
165    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
166  }
167
168  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
169  // this operation.
170  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
171  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
172
173  if (!UseSoftFloat) {
174    // SSE has no i16 to fp conversion, only i32
175    if (X86ScalarSSEf32) {
176      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
177      // f32 and f64 cases are Legal, f80 case is not
178      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
179    } else {
180      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
181      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
182    }
183  } else {
184    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
185    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
186  }
187
188  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
189  // are Legal, f80 is custom lowered.
190  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
191  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
192
193  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
194  // this operation.
195  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
196  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
197
198  if (X86ScalarSSEf32) {
199    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
200    // f32 and f64 cases are Legal, f80 case is not
201    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
202  } else {
203    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
204    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
205  }
206
207  // Handle FP_TO_UINT by promoting the destination to a larger signed
208  // conversion.
209  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
210  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
211  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
212
213  if (Subtarget->is64Bit()) {
214    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
215    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
216  } else if (!UseSoftFloat) {
217    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
218      // Expand FP_TO_UINT into a select.
219      // FIXME: We would like to use a Custom expander here eventually to do
220      // the optimal thing for SSE vs. the default expansion in the legalizer.
221      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
222    else
223      // With SSE3 we can use fisttpll to convert to a signed i64; without
224      // SSE, we're stuck with a fistpll.
225      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
226  }
227
228  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
229  if (!X86ScalarSSEf64) {
230    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
231    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
232  }
233
234  // Scalar integer divide and remainder are lowered to use operations that
235  // produce two results, to match the available instructions. This exposes
236  // the two-result form to trivial CSE, which is able to combine x/y and x%y
237  // into a single instruction.
238  //
239  // Scalar integer multiply-high is also lowered to use two-result
240  // operations, to match the available instructions. However, plain multiply
241  // (low) operations are left as Legal, as there are single-result
242  // instructions for this in x86. Using the two-result multiply instructions
243  // when both high and low results are needed must be arranged by dagcombine.
244  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
245  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
246  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
247  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
248  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
249  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
250  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
251  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
252  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
253  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
254  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
255  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
256  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
257  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
258  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
259  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
260  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
261  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
262  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
263  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
264  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
265  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
266  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
267  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
268
269  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
270  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
271  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
272  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
273  if (Subtarget->is64Bit())
274    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
275  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
276  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
277  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
278  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
279  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
280  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
281  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
282  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
283
284  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
285  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
286  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
287  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
288  if (Disable16Bit) {
289    setOperationAction(ISD::CTTZ           , MVT::i16  , Expand);
290    setOperationAction(ISD::CTLZ           , MVT::i16  , Expand);
291  } else {
292    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
293    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
294  }
295  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
296  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
297  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
298  if (Subtarget->is64Bit()) {
299    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
300    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
301    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
302  }
303
304  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
305  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
306
307  // These should be promoted to a larger select which is supported.
308  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
309  // X86 wants to expand cmov itself.
310  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
311  if (Disable16Bit)
312    setOperationAction(ISD::SELECT        , MVT::i16  , Expand);
313  else
314    setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
315  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
316  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
317  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
318  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
319  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
320  if (Disable16Bit)
321    setOperationAction(ISD::SETCC         , MVT::i16  , Expand);
322  else
323    setOperationAction(ISD::SETCC         , MVT::i16  , Custom);
324  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
325  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
326  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
327  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
328  if (Subtarget->is64Bit()) {
329    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
330    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
331  }
332  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
333
334  // Darwin ABI issue.
335  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
336  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
337  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
338  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
339  if (Subtarget->is64Bit())
340    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
341  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
342  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
343  if (Subtarget->is64Bit()) {
344    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
345    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
346    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
347    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
348    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
349  }
350  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
351  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
352  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
353  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
354  if (Subtarget->is64Bit()) {
355    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
356    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
357    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
358  }
359
360  if (Subtarget->hasSSE1())
361    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
362
363  if (!Subtarget->hasSSE2())
364    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
365
366  // Expand certain atomics
367  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
368  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
369  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
370  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
371
372  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
373  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
374  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
375  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
376
377  if (!Subtarget->is64Bit()) {
378    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
379    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
380    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
381    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
382    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
383    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
384    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
385  }
386
387  // FIXME - use subtarget debug flags
388  if (!Subtarget->isTargetDarwin() &&
389      !Subtarget->isTargetELF() &&
390      !Subtarget->isTargetCygMing()) {
391    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
392  }
393
394  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
395  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
396  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
397  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
398  if (Subtarget->is64Bit()) {
399    setExceptionPointerRegister(X86::RAX);
400    setExceptionSelectorRegister(X86::RDX);
401  } else {
402    setExceptionPointerRegister(X86::EAX);
403    setExceptionSelectorRegister(X86::EDX);
404  }
405  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
406  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
407
408  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
409
410  setOperationAction(ISD::TRAP, MVT::Other, Legal);
411
412  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
413  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
414  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
415  if (Subtarget->is64Bit()) {
416    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
417    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
418  } else {
419    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
420    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
421  }
422
423  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
424  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
425  if (Subtarget->is64Bit())
426    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
427  if (Subtarget->isTargetCygMing())
428    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
429  else
430    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
431
432  if (!UseSoftFloat && X86ScalarSSEf64) {
433    // f32 and f64 use SSE.
434    // Set up the FP register classes.
435    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
436    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
437
438    // Use ANDPD to simulate FABS.
439    setOperationAction(ISD::FABS , MVT::f64, Custom);
440    setOperationAction(ISD::FABS , MVT::f32, Custom);
441
442    // Use XORP to simulate FNEG.
443    setOperationAction(ISD::FNEG , MVT::f64, Custom);
444    setOperationAction(ISD::FNEG , MVT::f32, Custom);
445
446    // Use ANDPD and ORPD to simulate FCOPYSIGN.
447    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
448    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
449
450    // We don't support sin/cos/fmod
451    setOperationAction(ISD::FSIN , MVT::f64, Expand);
452    setOperationAction(ISD::FCOS , MVT::f64, Expand);
453    setOperationAction(ISD::FSIN , MVT::f32, Expand);
454    setOperationAction(ISD::FCOS , MVT::f32, Expand);
455
456    // Expand FP immediates into loads from the stack, except for the special
457    // cases we handle.
458    addLegalFPImmediate(APFloat(+0.0)); // xorpd
459    addLegalFPImmediate(APFloat(+0.0f)); // xorps
460  } else if (!UseSoftFloat && X86ScalarSSEf32) {
461    // Use SSE for f32, x87 for f64.
462    // Set up the FP register classes.
463    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
464    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
465
466    // Use ANDPS to simulate FABS.
467    setOperationAction(ISD::FABS , MVT::f32, Custom);
468
469    // Use XORP to simulate FNEG.
470    setOperationAction(ISD::FNEG , MVT::f32, Custom);
471
472    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
473
474    // Use ANDPS and ORPS to simulate FCOPYSIGN.
475    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
476    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
477
478    // We don't support sin/cos/fmod
479    setOperationAction(ISD::FSIN , MVT::f32, Expand);
480    setOperationAction(ISD::FCOS , MVT::f32, Expand);
481
482    // Special cases we handle for FP constants.
483    addLegalFPImmediate(APFloat(+0.0f)); // xorps
484    addLegalFPImmediate(APFloat(+0.0)); // FLD0
485    addLegalFPImmediate(APFloat(+1.0)); // FLD1
486    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
487    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
488
489    if (!UnsafeFPMath) {
490      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
491      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
492    }
493  } else if (!UseSoftFloat) {
494    // f32 and f64 in x87.
495    // Set up the FP register classes.
496    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
497    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
498
499    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
500    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
501    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
502    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
503
504    if (!UnsafeFPMath) {
505      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
506      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
507    }
508    addLegalFPImmediate(APFloat(+0.0)); // FLD0
509    addLegalFPImmediate(APFloat(+1.0)); // FLD1
510    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
511    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
512    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
513    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
514    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
515    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
516  }
517
518  // Long double always uses X87.
519  if (!UseSoftFloat) {
520    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
521    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
522    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
523    {
524      bool ignored;
525      APFloat TmpFlt(+0.0);
526      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
527                     &ignored);
528      addLegalFPImmediate(TmpFlt);  // FLD0
529      TmpFlt.changeSign();
530      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
531      APFloat TmpFlt2(+1.0);
532      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
533                      &ignored);
534      addLegalFPImmediate(TmpFlt2);  // FLD1
535      TmpFlt2.changeSign();
536      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
537    }
538
539    if (!UnsafeFPMath) {
540      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
541      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
542    }
543  }
544
545  // Always use a library call for pow.
546  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
547  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
548  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
549
550  setOperationAction(ISD::FLOG, MVT::f80, Expand);
551  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
552  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
553  setOperationAction(ISD::FEXP, MVT::f80, Expand);
554  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
555
556  // First set operation action for all vector types to either promote
557  // (for widening) or expand (for scalarization). Then we will selectively
558  // turn on ones that can be effectively codegen'd.
559  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
560       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
561    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
576    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
577    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
604    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
605    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
606    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
607    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
608    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
609    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
610    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
611    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
612    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
613    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
614    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
615         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
616      setTruncStoreAction((MVT::SimpleValueType)VT,
617                          (MVT::SimpleValueType)InnerVT, Expand);
618    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
619    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
620    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
621  }
622
623  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
624  // with -msoft-float, disable use of MMX as well.
625  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
626    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
627    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
628    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
629    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
630    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
631
632    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
633    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
634    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
635    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
636
637    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
638    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
639    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
640    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
641
642    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
643    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
644
645    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
646    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
647    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
648    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
649    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
650    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
651    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
652
653    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
654    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
655    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
656    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
657    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
658    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
659    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
660
661    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
662    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
663    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
664    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
665    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
666    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
667    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
668
669    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
670    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
671    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
672    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
673    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
674    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
675    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
676    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
677    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
678
679    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
680    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
681    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
682    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
683    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
684
685    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
686    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
687    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
688    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
689
690    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
691    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
692    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
693    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
694
695    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
696
697    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
698    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
699    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
700    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
701    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
702    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
703    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
704  }
705
706  if (!UseSoftFloat && Subtarget->hasSSE1()) {
707    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
708
709    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
710    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
711    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
712    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
713    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
714    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
715    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
716    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
717    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
718    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
719    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
720    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
721  }
722
723  if (!UseSoftFloat && Subtarget->hasSSE2()) {
724    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
725
726    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
727    // registers cannot be used even for integer operations.
728    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
729    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
730    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
731    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
732
733    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
734    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
735    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
736    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
737    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
738    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
739    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
740    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
741    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
742    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
743    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
744    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
745    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
746    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
747    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
748    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
749
750    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
751    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
752    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
753    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
754
755    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
756    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
757    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
758    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
759    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
760
761    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
762    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
763    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
764    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
765    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
766
767    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
768    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
769      EVT VT = (MVT::SimpleValueType)i;
770      // Do not attempt to custom lower non-power-of-2 vectors
771      if (!isPowerOf2_32(VT.getVectorNumElements()))
772        continue;
773      // Do not attempt to custom lower non-128-bit vectors
774      if (!VT.is128BitVector())
775        continue;
776      setOperationAction(ISD::BUILD_VECTOR,
777                         VT.getSimpleVT().SimpleTy, Custom);
778      setOperationAction(ISD::VECTOR_SHUFFLE,
779                         VT.getSimpleVT().SimpleTy, Custom);
780      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
781                         VT.getSimpleVT().SimpleTy, Custom);
782    }
783
784    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
785    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
786    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
787    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
788    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
789    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
790
791    if (Subtarget->is64Bit()) {
792      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
793      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
794    }
795
796    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
797    // FIXME: This produces lots of inefficiencies in isel since
798    // we then need notice that most of our operands have been implicitly
799    // converted to v2i64.
800    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
801      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
802      EVT VT = SVT;
803
804      // Do not attempt to promote non-128-bit vectors
805      if (!VT.is128BitVector()) {
806        continue;
807      }
808
809      setOperationAction(ISD::AND,    SVT, Promote);
810      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
811      setOperationAction(ISD::OR,     SVT, Promote);
812      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
813      setOperationAction(ISD::XOR,    SVT, Promote);
814      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
815      setOperationAction(ISD::LOAD,   SVT, Promote);
816      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
817      setOperationAction(ISD::SELECT, SVT, Promote);
818      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
819    }
820
821    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
822
823    // Custom lower v2i64 and v2f64 selects.
824    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
825    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
826    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
827    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
828
829    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
830    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
831    if (!DisableMMX && Subtarget->hasMMX()) {
832      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
833      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
834    }
835  }
836
837  if (Subtarget->hasSSE41()) {
838    // FIXME: Do we need to handle scalar-to-vector here?
839    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
840
841    // i8 and i16 vectors are custom , because the source register and source
842    // source memory operand types are not the same width.  f32 vectors are
843    // custom since the immediate controlling the insert encodes additional
844    // information.
845    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
846    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
847    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
848    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
849
850    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
851    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
852    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
853    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
854
855    if (Subtarget->is64Bit()) {
856      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
857      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
858    }
859  }
860
861  if (Subtarget->hasSSE42()) {
862    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
863  }
864
865  if (!UseSoftFloat && Subtarget->hasAVX()) {
866    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
867    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
868    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
869    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
870
871    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
872    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
873    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
874    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
875    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
876    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
877    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
878    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
879    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
880    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
881    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
882    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
883    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
884    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
885    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
886
887    // Operations to consider commented out -v16i16 v32i8
888    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
889    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
890    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
891    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
892    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
893    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
894    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
895    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
896    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
897    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
898    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
899    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
900    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
901    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
902
903    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
904    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
905    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
906    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
907
908    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
909    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
910    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
911    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
912    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
913
914    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
915    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
916    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
917    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
918    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
919    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
920
921#if 0
922    // Not sure we want to do this since there are no 256-bit integer
923    // operations in AVX
924
925    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
926    // This includes 256-bit vectors
927    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
928      EVT VT = (MVT::SimpleValueType)i;
929
930      // Do not attempt to custom lower non-power-of-2 vectors
931      if (!isPowerOf2_32(VT.getVectorNumElements()))
932        continue;
933
934      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
935      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
936      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
937    }
938
939    if (Subtarget->is64Bit()) {
940      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
941      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
942    }
943#endif
944
945#if 0
946    // Not sure we want to do this since there are no 256-bit integer
947    // operations in AVX
948
949    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
950    // Including 256-bit vectors
951    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
952      EVT VT = (MVT::SimpleValueType)i;
953
954      if (!VT.is256BitVector()) {
955        continue;
956      }
957      setOperationAction(ISD::AND,    VT, Promote);
958      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
959      setOperationAction(ISD::OR,     VT, Promote);
960      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
961      setOperationAction(ISD::XOR,    VT, Promote);
962      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
963      setOperationAction(ISD::LOAD,   VT, Promote);
964      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
965      setOperationAction(ISD::SELECT, VT, Promote);
966      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
967    }
968
969    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
970#endif
971  }
972
973  // We want to custom lower some of our intrinsics.
974  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
975
976  // Add/Sub/Mul with overflow operations are custom lowered.
977  setOperationAction(ISD::SADDO, MVT::i32, Custom);
978  setOperationAction(ISD::SADDO, MVT::i64, Custom);
979  setOperationAction(ISD::UADDO, MVT::i32, Custom);
980  setOperationAction(ISD::UADDO, MVT::i64, Custom);
981  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
982  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
983  setOperationAction(ISD::USUBO, MVT::i32, Custom);
984  setOperationAction(ISD::USUBO, MVT::i64, Custom);
985  setOperationAction(ISD::SMULO, MVT::i32, Custom);
986  setOperationAction(ISD::SMULO, MVT::i64, Custom);
987
988  if (!Subtarget->is64Bit()) {
989    // These libcalls are not available in 32-bit.
990    setLibcallName(RTLIB::SHL_I128, 0);
991    setLibcallName(RTLIB::SRL_I128, 0);
992    setLibcallName(RTLIB::SRA_I128, 0);
993  }
994
995  // We have target-specific dag combine patterns for the following nodes:
996  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
997  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
998  setTargetDAGCombine(ISD::BUILD_VECTOR);
999  setTargetDAGCombine(ISD::SELECT);
1000  setTargetDAGCombine(ISD::SHL);
1001  setTargetDAGCombine(ISD::SRA);
1002  setTargetDAGCombine(ISD::SRL);
1003  setTargetDAGCombine(ISD::OR);
1004  setTargetDAGCombine(ISD::STORE);
1005  setTargetDAGCombine(ISD::MEMBARRIER);
1006  setTargetDAGCombine(ISD::ZERO_EXTEND);
1007  if (Subtarget->is64Bit())
1008    setTargetDAGCombine(ISD::MUL);
1009
1010  computeRegisterProperties();
1011
1012  // FIXME: These should be based on subtarget info. Plus, the values should
1013  // be smaller when we are in optimizing for size mode.
1014  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1015  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1016  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1017  setPrefLoopAlignment(16);
1018  benefitFromCodePlacementOpt = true;
1019}
1020
1021
1022MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1023  return MVT::i8;
1024}
1025
1026
1027/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1028/// the desired ByVal argument alignment.
1029static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1030  if (MaxAlign == 16)
1031    return;
1032  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1033    if (VTy->getBitWidth() == 128)
1034      MaxAlign = 16;
1035  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1036    unsigned EltAlign = 0;
1037    getMaxByValAlign(ATy->getElementType(), EltAlign);
1038    if (EltAlign > MaxAlign)
1039      MaxAlign = EltAlign;
1040  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1041    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1042      unsigned EltAlign = 0;
1043      getMaxByValAlign(STy->getElementType(i), EltAlign);
1044      if (EltAlign > MaxAlign)
1045        MaxAlign = EltAlign;
1046      if (MaxAlign == 16)
1047        break;
1048    }
1049  }
1050  return;
1051}
1052
1053/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1054/// function arguments in the caller parameter area. For X86, aggregates
1055/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1056/// are at 4-byte boundaries.
1057unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1058  if (Subtarget->is64Bit()) {
1059    // Max of 8 and alignment of type.
1060    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1061    if (TyAlign > 8)
1062      return TyAlign;
1063    return 8;
1064  }
1065
1066  unsigned Align = 4;
1067  if (Subtarget->hasSSE1())
1068    getMaxByValAlign(Ty, Align);
1069  return Align;
1070}
1071
1072/// getOptimalMemOpType - Returns the target specific optimal type for load
1073/// and store operations as a result of memset, memcpy, and memmove lowering.
1074/// If DstAlign is zero that means it's safe to destination alignment can
1075/// satisfy any constraint. Similarly if SrcAlign is zero it means there
1076/// isn't a need to check it against alignment requirement, probably because
1077/// the source does not need to be loaded. It returns EVT::Other if
1078/// SelectionDAG should be responsible for determining it.
1079EVT
1080X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1081                                       unsigned DstAlign, unsigned SrcAlign,
1082                                       bool SafeToUseFP,
1083                                       SelectionDAG &DAG) const {
1084  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1085  // linux.  This is because the stack realignment code can't handle certain
1086  // cases like PR2962.  This should be removed when PR2962 is fixed.
1087  const Function *F = DAG.getMachineFunction().getFunction();
1088  if (!F->hasFnAttr(Attribute::NoImplicitFloat)) {
1089    if (Size >= 16 &&
1090        (Subtarget->isUnalignedMemAccessFast() ||
1091         (DstAlign == 0 || DstAlign >= 16) &&
1092         (SrcAlign == 0 || SrcAlign >= 16)) &&
1093        Subtarget->getStackAlignment() >= 16) {
1094      if (Subtarget->hasSSE2())
1095        return MVT::v4i32;
1096      if (SafeToUseFP && Subtarget->hasSSE1())
1097        return MVT::v4f32;
1098    } else if (SafeToUseFP &&
1099               Size >= 8 &&
1100               !Subtarget->is64Bit() &&
1101               Subtarget->getStackAlignment() >= 8 &&
1102               Subtarget->hasSSE2())
1103      return MVT::f64;
1104  }
1105  if (Subtarget->is64Bit() && Size >= 8)
1106    return MVT::i64;
1107  return MVT::i32;
1108}
1109
1110/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1111/// current function.  The returned value is a member of the
1112/// MachineJumpTableInfo::JTEntryKind enum.
1113unsigned X86TargetLowering::getJumpTableEncoding() const {
1114  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1115  // symbol.
1116  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1117      Subtarget->isPICStyleGOT())
1118    return MachineJumpTableInfo::EK_Custom32;
1119
1120  // Otherwise, use the normal jump table encoding heuristics.
1121  return TargetLowering::getJumpTableEncoding();
1122}
1123
1124/// getPICBaseSymbol - Return the X86-32 PIC base.
1125MCSymbol *
1126X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1127                                    MCContext &Ctx) const {
1128  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1129  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1130                               Twine(MF->getFunctionNumber())+"$pb");
1131}
1132
1133
1134const MCExpr *
1135X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1136                                             const MachineBasicBlock *MBB,
1137                                             unsigned uid,MCContext &Ctx) const{
1138  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1139         Subtarget->isPICStyleGOT());
1140  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1141  // entries.
1142  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1143                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1144}
1145
1146/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1147/// jumptable.
1148SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1149                                                    SelectionDAG &DAG) const {
1150  if (!Subtarget->is64Bit())
1151    // This doesn't have DebugLoc associated with it, but is not really the
1152    // same as a Register.
1153    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
1154                       getPointerTy());
1155  return Table;
1156}
1157
1158/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1159/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1160/// MCExpr.
1161const MCExpr *X86TargetLowering::
1162getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1163                             MCContext &Ctx) const {
1164  // X86-64 uses RIP relative addressing based on the jump table label.
1165  if (Subtarget->isPICStyleRIPRel())
1166    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1167
1168  // Otherwise, the reference is relative to the PIC base.
1169  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1170}
1171
1172/// getFunctionAlignment - Return the Log2 alignment of this function.
1173unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1174  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1175}
1176
1177//===----------------------------------------------------------------------===//
1178//               Return Value Calling Convention Implementation
1179//===----------------------------------------------------------------------===//
1180
1181#include "X86GenCallingConv.inc"
1182
1183bool
1184X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1185                        const SmallVectorImpl<EVT> &OutTys,
1186                        const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1187                        SelectionDAG &DAG) {
1188  SmallVector<CCValAssign, 16> RVLocs;
1189  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1190                 RVLocs, *DAG.getContext());
1191  return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_X86);
1192}
1193
1194SDValue
1195X86TargetLowering::LowerReturn(SDValue Chain,
1196                               CallingConv::ID CallConv, bool isVarArg,
1197                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1198                               DebugLoc dl, SelectionDAG &DAG) {
1199
1200  SmallVector<CCValAssign, 16> RVLocs;
1201  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1202                 RVLocs, *DAG.getContext());
1203  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1204
1205  // Add the regs to the liveout set for the function.
1206  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1207  for (unsigned i = 0; i != RVLocs.size(); ++i)
1208    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1209      MRI.addLiveOut(RVLocs[i].getLocReg());
1210
1211  SDValue Flag;
1212
1213  SmallVector<SDValue, 6> RetOps;
1214  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1215  // Operand #1 = Bytes To Pop
1216  RetOps.push_back(DAG.getTargetConstant(getBytesToPopOnReturn(), MVT::i16));
1217
1218  // Copy the result values into the output registers.
1219  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1220    CCValAssign &VA = RVLocs[i];
1221    assert(VA.isRegLoc() && "Can only return in registers!");
1222    SDValue ValToCopy = Outs[i].Val;
1223
1224    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1225    // the RET instruction and handled by the FP Stackifier.
1226    if (VA.getLocReg() == X86::ST0 ||
1227        VA.getLocReg() == X86::ST1) {
1228      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1229      // change the value to the FP stack register class.
1230      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1231        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1232      RetOps.push_back(ValToCopy);
1233      // Don't emit a copytoreg.
1234      continue;
1235    }
1236
1237    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1238    // which is returned in RAX / RDX.
1239    if (Subtarget->is64Bit()) {
1240      EVT ValVT = ValToCopy.getValueType();
1241      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1242        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1243        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1244          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1245      }
1246    }
1247
1248    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1249    Flag = Chain.getValue(1);
1250  }
1251
1252  // The x86-64 ABI for returning structs by value requires that we copy
1253  // the sret argument into %rax for the return. We saved the argument into
1254  // a virtual register in the entry block, so now we copy the value out
1255  // and into %rax.
1256  if (Subtarget->is64Bit() &&
1257      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1258    MachineFunction &MF = DAG.getMachineFunction();
1259    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1260    unsigned Reg = FuncInfo->getSRetReturnReg();
1261    if (!Reg) {
1262      Reg = MRI.createVirtualRegister(getRegClassFor(MVT::i64));
1263      FuncInfo->setSRetReturnReg(Reg);
1264    }
1265    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1266
1267    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1268    Flag = Chain.getValue(1);
1269
1270    // RAX now acts like a return value.
1271    MRI.addLiveOut(X86::RAX);
1272  }
1273
1274  RetOps[0] = Chain;  // Update chain.
1275
1276  // Add the flag if we have it.
1277  if (Flag.getNode())
1278    RetOps.push_back(Flag);
1279
1280  return DAG.getNode(X86ISD::RET_FLAG, dl,
1281                     MVT::Other, &RetOps[0], RetOps.size());
1282}
1283
1284/// LowerCallResult - Lower the result values of a call into the
1285/// appropriate copies out of appropriate physical registers.
1286///
1287SDValue
1288X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1289                                   CallingConv::ID CallConv, bool isVarArg,
1290                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1291                                   DebugLoc dl, SelectionDAG &DAG,
1292                                   SmallVectorImpl<SDValue> &InVals) {
1293
1294  // Assign locations to each value returned by this call.
1295  SmallVector<CCValAssign, 16> RVLocs;
1296  bool Is64Bit = Subtarget->is64Bit();
1297  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1298                 RVLocs, *DAG.getContext());
1299  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1300
1301  // Copy all of the result registers out of their specified physreg.
1302  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1303    CCValAssign &VA = RVLocs[i];
1304    EVT CopyVT = VA.getValVT();
1305
1306    // If this is x86-64, and we disabled SSE, we can't return FP values
1307    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1308        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1309      llvm_report_error("SSE register return with SSE disabled");
1310    }
1311
1312    // If this is a call to a function that returns an fp value on the floating
1313    // point stack, but where we prefer to use the value in xmm registers, copy
1314    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1315    if ((VA.getLocReg() == X86::ST0 ||
1316         VA.getLocReg() == X86::ST1) &&
1317        isScalarFPTypeInSSEReg(VA.getValVT())) {
1318      CopyVT = MVT::f80;
1319    }
1320
1321    SDValue Val;
1322    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1323      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1324      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1325        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1326                                   MVT::v2i64, InFlag).getValue(1);
1327        Val = Chain.getValue(0);
1328        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1329                          Val, DAG.getConstant(0, MVT::i64));
1330      } else {
1331        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1332                                   MVT::i64, InFlag).getValue(1);
1333        Val = Chain.getValue(0);
1334      }
1335      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1336    } else {
1337      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1338                                 CopyVT, InFlag).getValue(1);
1339      Val = Chain.getValue(0);
1340    }
1341    InFlag = Chain.getValue(2);
1342
1343    if (CopyVT != VA.getValVT()) {
1344      // Round the F80 the right size, which also moves to the appropriate xmm
1345      // register.
1346      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1347                        // This truncation won't change the value.
1348                        DAG.getIntPtrConstant(1));
1349    }
1350
1351    InVals.push_back(Val);
1352  }
1353
1354  return Chain;
1355}
1356
1357
1358//===----------------------------------------------------------------------===//
1359//                C & StdCall & Fast Calling Convention implementation
1360//===----------------------------------------------------------------------===//
1361//  StdCall calling convention seems to be standard for many Windows' API
1362//  routines and around. It differs from C calling convention just a little:
1363//  callee should clean up the stack, not caller. Symbols should be also
1364//  decorated in some fancy way :) It doesn't support any vector arguments.
1365//  For info on fast calling convention see Fast Calling Convention (tail call)
1366//  implementation LowerX86_32FastCCCallTo.
1367
1368/// CallIsStructReturn - Determines whether a call uses struct return
1369/// semantics.
1370static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1371  if (Outs.empty())
1372    return false;
1373
1374  return Outs[0].Flags.isSRet();
1375}
1376
1377/// ArgsAreStructReturn - Determines whether a function uses struct
1378/// return semantics.
1379static bool
1380ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1381  if (Ins.empty())
1382    return false;
1383
1384  return Ins[0].Flags.isSRet();
1385}
1386
1387/// IsCalleePop - Determines whether the callee is required to pop its
1388/// own arguments. Callee pop is necessary to support tail calls.
1389bool X86TargetLowering::IsCalleePop(bool IsVarArg, CallingConv::ID CallingConv){
1390  if (IsVarArg)
1391    return false;
1392
1393  switch (CallingConv) {
1394  default:
1395    return false;
1396  case CallingConv::X86_StdCall:
1397    return !Subtarget->is64Bit();
1398  case CallingConv::X86_FastCall:
1399    return !Subtarget->is64Bit();
1400  case CallingConv::Fast:
1401    return GuaranteedTailCallOpt;
1402  case CallingConv::GHC:
1403    return GuaranteedTailCallOpt;
1404  }
1405}
1406
1407/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1408/// given CallingConvention value.
1409CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1410  if (Subtarget->is64Bit()) {
1411    if (CC == CallingConv::GHC)
1412      return CC_X86_64_GHC;
1413    else if (Subtarget->isTargetWin64())
1414      return CC_X86_Win64_C;
1415    else
1416      return CC_X86_64_C;
1417  }
1418
1419  if (CC == CallingConv::X86_FastCall)
1420    return CC_X86_32_FastCall;
1421  else if (CC == CallingConv::Fast)
1422    return CC_X86_32_FastCC;
1423  else if (CC == CallingConv::GHC)
1424    return CC_X86_32_GHC;
1425  else
1426    return CC_X86_32_C;
1427}
1428
1429/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1430/// by "Src" to address "Dst" with size and alignment information specified by
1431/// the specific parameter attribute. The copy will be passed as a byval
1432/// function parameter.
1433static SDValue
1434CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1435                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1436                          DebugLoc dl) {
1437  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1438  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1439                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1440}
1441
1442/// IsTailCallConvention - Return true if the calling convention is one that
1443/// supports tail call optimization.
1444static bool IsTailCallConvention(CallingConv::ID CC) {
1445  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1446}
1447
1448/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1449/// a tailcall target by changing its ABI.
1450static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1451  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1452}
1453
1454SDValue
1455X86TargetLowering::LowerMemArgument(SDValue Chain,
1456                                    CallingConv::ID CallConv,
1457                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1458                                    DebugLoc dl, SelectionDAG &DAG,
1459                                    const CCValAssign &VA,
1460                                    MachineFrameInfo *MFI,
1461                                    unsigned i) {
1462  // Create the nodes corresponding to a load from this parameter slot.
1463  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1464  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1465  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1466  EVT ValVT;
1467
1468  // If value is passed by pointer we have address passed instead of the value
1469  // itself.
1470  if (VA.getLocInfo() == CCValAssign::Indirect)
1471    ValVT = VA.getLocVT();
1472  else
1473    ValVT = VA.getValVT();
1474
1475  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1476  // changed with more analysis.
1477  // In case of tail call optimization mark all arguments mutable. Since they
1478  // could be overwritten by lowering of arguments in case of a tail call.
1479  if (Flags.isByVal()) {
1480    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1481                                    VA.getLocMemOffset(), isImmutable, false);
1482    return DAG.getFrameIndex(FI, getPointerTy());
1483  } else {
1484    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1485                                    VA.getLocMemOffset(), isImmutable, false);
1486    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1487    return DAG.getLoad(ValVT, dl, Chain, FIN,
1488                       PseudoSourceValue::getFixedStack(FI), 0,
1489                       false, false, 0);
1490  }
1491}
1492
1493SDValue
1494X86TargetLowering::LowerFormalArguments(SDValue Chain,
1495                                        CallingConv::ID CallConv,
1496                                        bool isVarArg,
1497                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1498                                        DebugLoc dl,
1499                                        SelectionDAG &DAG,
1500                                        SmallVectorImpl<SDValue> &InVals) {
1501  MachineFunction &MF = DAG.getMachineFunction();
1502  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1503
1504  const Function* Fn = MF.getFunction();
1505  if (Fn->hasExternalLinkage() &&
1506      Subtarget->isTargetCygMing() &&
1507      Fn->getName() == "main")
1508    FuncInfo->setForceFramePointer(true);
1509
1510  MachineFrameInfo *MFI = MF.getFrameInfo();
1511  bool Is64Bit = Subtarget->is64Bit();
1512  bool IsWin64 = Subtarget->isTargetWin64();
1513
1514  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1515         "Var args not supported with calling convention fastcc or ghc");
1516
1517  // Assign locations to all of the incoming arguments.
1518  SmallVector<CCValAssign, 16> ArgLocs;
1519  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1520                 ArgLocs, *DAG.getContext());
1521  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1522
1523  unsigned LastVal = ~0U;
1524  SDValue ArgValue;
1525  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1526    CCValAssign &VA = ArgLocs[i];
1527    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1528    // places.
1529    assert(VA.getValNo() != LastVal &&
1530           "Don't support value assigned to multiple locs yet");
1531    LastVal = VA.getValNo();
1532
1533    if (VA.isRegLoc()) {
1534      EVT RegVT = VA.getLocVT();
1535      TargetRegisterClass *RC = NULL;
1536      if (RegVT == MVT::i32)
1537        RC = X86::GR32RegisterClass;
1538      else if (Is64Bit && RegVT == MVT::i64)
1539        RC = X86::GR64RegisterClass;
1540      else if (RegVT == MVT::f32)
1541        RC = X86::FR32RegisterClass;
1542      else if (RegVT == MVT::f64)
1543        RC = X86::FR64RegisterClass;
1544      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1545        RC = X86::VR128RegisterClass;
1546      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1547        RC = X86::VR64RegisterClass;
1548      else
1549        llvm_unreachable("Unknown argument type!");
1550
1551      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1552      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1553
1554      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1555      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1556      // right size.
1557      if (VA.getLocInfo() == CCValAssign::SExt)
1558        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1559                               DAG.getValueType(VA.getValVT()));
1560      else if (VA.getLocInfo() == CCValAssign::ZExt)
1561        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1562                               DAG.getValueType(VA.getValVT()));
1563      else if (VA.getLocInfo() == CCValAssign::BCvt)
1564        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1565
1566      if (VA.isExtInLoc()) {
1567        // Handle MMX values passed in XMM regs.
1568        if (RegVT.isVector()) {
1569          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1570                                 ArgValue, DAG.getConstant(0, MVT::i64));
1571          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1572        } else
1573          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1574      }
1575    } else {
1576      assert(VA.isMemLoc());
1577      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1578    }
1579
1580    // If value is passed via pointer - do a load.
1581    if (VA.getLocInfo() == CCValAssign::Indirect)
1582      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1583                             false, false, 0);
1584
1585    InVals.push_back(ArgValue);
1586  }
1587
1588  // The x86-64 ABI for returning structs by value requires that we copy
1589  // the sret argument into %rax for the return. Save the argument into
1590  // a virtual register so that we can access it from the return points.
1591  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1592    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1593    unsigned Reg = FuncInfo->getSRetReturnReg();
1594    if (!Reg) {
1595      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1596      FuncInfo->setSRetReturnReg(Reg);
1597    }
1598    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1599    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1600  }
1601
1602  unsigned StackSize = CCInfo.getNextStackOffset();
1603  // Align stack specially for tail calls.
1604  if (FuncIsMadeTailCallSafe(CallConv))
1605    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1606
1607  // If the function takes variable number of arguments, make a frame index for
1608  // the start of the first vararg value... for expansion of llvm.va_start.
1609  if (isVarArg) {
1610    if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
1611      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize, true, false);
1612    }
1613    if (Is64Bit) {
1614      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1615
1616      // FIXME: We should really autogenerate these arrays
1617      static const unsigned GPR64ArgRegsWin64[] = {
1618        X86::RCX, X86::RDX, X86::R8,  X86::R9
1619      };
1620      static const unsigned XMMArgRegsWin64[] = {
1621        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1622      };
1623      static const unsigned GPR64ArgRegs64Bit[] = {
1624        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1625      };
1626      static const unsigned XMMArgRegs64Bit[] = {
1627        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1628        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1629      };
1630      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1631
1632      if (IsWin64) {
1633        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1634        GPR64ArgRegs = GPR64ArgRegsWin64;
1635        XMMArgRegs = XMMArgRegsWin64;
1636      } else {
1637        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1638        GPR64ArgRegs = GPR64ArgRegs64Bit;
1639        XMMArgRegs = XMMArgRegs64Bit;
1640      }
1641      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1642                                                       TotalNumIntRegs);
1643      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1644                                                       TotalNumXMMRegs);
1645
1646      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1647      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1648             "SSE register cannot be used when SSE is disabled!");
1649      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1650             "SSE register cannot be used when SSE is disabled!");
1651      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1652        // Kernel mode asks for SSE to be disabled, so don't push them
1653        // on the stack.
1654        TotalNumXMMRegs = 0;
1655
1656      // For X86-64, if there are vararg parameters that are passed via
1657      // registers, then we must store them to their spots on the stack so they
1658      // may be loaded by deferencing the result of va_next.
1659      VarArgsGPOffset = NumIntRegs * 8;
1660      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1661      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1662                                                 TotalNumXMMRegs * 16, 16,
1663                                                 false);
1664
1665      // Store the integer parameter registers.
1666      SmallVector<SDValue, 8> MemOps;
1667      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1668      unsigned Offset = VarArgsGPOffset;
1669      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1670        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1671                                  DAG.getIntPtrConstant(Offset));
1672        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1673                                     X86::GR64RegisterClass);
1674        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1675        SDValue Store =
1676          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1677                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
1678                       Offset, false, false, 0);
1679        MemOps.push_back(Store);
1680        Offset += 8;
1681      }
1682
1683      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1684        // Now store the XMM (fp + vector) parameter registers.
1685        SmallVector<SDValue, 11> SaveXMMOps;
1686        SaveXMMOps.push_back(Chain);
1687
1688        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1689        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1690        SaveXMMOps.push_back(ALVal);
1691
1692        SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex));
1693        SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset));
1694
1695        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1696          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1697                                       X86::VR128RegisterClass);
1698          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1699          SaveXMMOps.push_back(Val);
1700        }
1701        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1702                                     MVT::Other,
1703                                     &SaveXMMOps[0], SaveXMMOps.size()));
1704      }
1705
1706      if (!MemOps.empty())
1707        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1708                            &MemOps[0], MemOps.size());
1709    }
1710  }
1711
1712  // Some CCs need callee pop.
1713  if (IsCalleePop(isVarArg, CallConv)) {
1714    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1715  } else {
1716    BytesToPopOnReturn  = 0; // Callee pops nothing.
1717    // If this is an sret function, the return should pop the hidden pointer.
1718    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1719      BytesToPopOnReturn = 4;
1720  }
1721
1722  if (!Is64Bit) {
1723    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1724    if (CallConv == CallingConv::X86_FastCall)
1725      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1726  }
1727
1728  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1729
1730  return Chain;
1731}
1732
1733SDValue
1734X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1735                                    SDValue StackPtr, SDValue Arg,
1736                                    DebugLoc dl, SelectionDAG &DAG,
1737                                    const CCValAssign &VA,
1738                                    ISD::ArgFlagsTy Flags) {
1739  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1740  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1741  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1742  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1743  if (Flags.isByVal()) {
1744    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1745  }
1746  return DAG.getStore(Chain, dl, Arg, PtrOff,
1747                      PseudoSourceValue::getStack(), LocMemOffset,
1748                      false, false, 0);
1749}
1750
1751/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1752/// optimization is performed and it is required.
1753SDValue
1754X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1755                                           SDValue &OutRetAddr, SDValue Chain,
1756                                           bool IsTailCall, bool Is64Bit,
1757                                           int FPDiff, DebugLoc dl) {
1758  // Adjust the Return address stack slot.
1759  EVT VT = getPointerTy();
1760  OutRetAddr = getReturnAddressFrameIndex(DAG);
1761
1762  // Load the "old" Return address.
1763  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1764  return SDValue(OutRetAddr.getNode(), 1);
1765}
1766
1767/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1768/// optimization is performed and it is required (FPDiff!=0).
1769static SDValue
1770EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1771                         SDValue Chain, SDValue RetAddrFrIdx,
1772                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1773  // Store the return address to the appropriate stack slot.
1774  if (!FPDiff) return Chain;
1775  // Calculate the new stack slot for the return address.
1776  int SlotSize = Is64Bit ? 8 : 4;
1777  int NewReturnAddrFI =
1778    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false, false);
1779  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1780  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1781  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1782                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1783                       false, false, 0);
1784  return Chain;
1785}
1786
1787SDValue
1788X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1789                             CallingConv::ID CallConv, bool isVarArg,
1790                             bool &isTailCall,
1791                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1792                             const SmallVectorImpl<ISD::InputArg> &Ins,
1793                             DebugLoc dl, SelectionDAG &DAG,
1794                             SmallVectorImpl<SDValue> &InVals) {
1795  MachineFunction &MF = DAG.getMachineFunction();
1796  bool Is64Bit        = Subtarget->is64Bit();
1797  bool IsStructRet    = CallIsStructReturn(Outs);
1798  bool IsSibcall      = false;
1799
1800  if (isTailCall) {
1801    // Check if it's really possible to do a tail call.
1802    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1803                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1804                                                   Outs, Ins, DAG);
1805
1806    // Sibcalls are automatically detected tailcalls which do not require
1807    // ABI changes.
1808    if (!GuaranteedTailCallOpt && isTailCall)
1809      IsSibcall = true;
1810
1811    if (isTailCall)
1812      ++NumTailCalls;
1813  }
1814
1815  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1816         "Var args not supported with calling convention fastcc or ghc");
1817
1818  // Analyze operands of the call, assigning locations to each operand.
1819  SmallVector<CCValAssign, 16> ArgLocs;
1820  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1821                 ArgLocs, *DAG.getContext());
1822  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1823
1824  // Get a count of how many bytes are to be pushed on the stack.
1825  unsigned NumBytes = CCInfo.getNextStackOffset();
1826  if (IsSibcall)
1827    // This is a sibcall. The memory operands are available in caller's
1828    // own caller's stack.
1829    NumBytes = 0;
1830  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1831    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1832
1833  int FPDiff = 0;
1834  if (isTailCall && !IsSibcall) {
1835    // Lower arguments at fp - stackoffset + fpdiff.
1836    unsigned NumBytesCallerPushed =
1837      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1838    FPDiff = NumBytesCallerPushed - NumBytes;
1839
1840    // Set the delta of movement of the returnaddr stackslot.
1841    // But only set if delta is greater than previous delta.
1842    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1843      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1844  }
1845
1846  if (!IsSibcall)
1847    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1848
1849  SDValue RetAddrFrIdx;
1850  // Load return adress for tail calls.
1851  if (isTailCall && FPDiff)
1852    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1853                                    Is64Bit, FPDiff, dl);
1854
1855  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1856  SmallVector<SDValue, 8> MemOpChains;
1857  SDValue StackPtr;
1858
1859  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1860  // of tail call optimization arguments are handle later.
1861  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1862    CCValAssign &VA = ArgLocs[i];
1863    EVT RegVT = VA.getLocVT();
1864    SDValue Arg = Outs[i].Val;
1865    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1866    bool isByVal = Flags.isByVal();
1867
1868    // Promote the value if needed.
1869    switch (VA.getLocInfo()) {
1870    default: llvm_unreachable("Unknown loc info!");
1871    case CCValAssign::Full: break;
1872    case CCValAssign::SExt:
1873      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1874      break;
1875    case CCValAssign::ZExt:
1876      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1877      break;
1878    case CCValAssign::AExt:
1879      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1880        // Special case: passing MMX values in XMM registers.
1881        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1882        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1883        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1884      } else
1885        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1886      break;
1887    case CCValAssign::BCvt:
1888      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1889      break;
1890    case CCValAssign::Indirect: {
1891      // Store the argument.
1892      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1893      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1894      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1895                           PseudoSourceValue::getFixedStack(FI), 0,
1896                           false, false, 0);
1897      Arg = SpillSlot;
1898      break;
1899    }
1900    }
1901
1902    if (VA.isRegLoc()) {
1903      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1904    } else if (!IsSibcall && (!isTailCall || isByVal)) {
1905      assert(VA.isMemLoc());
1906      if (StackPtr.getNode() == 0)
1907        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1908      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1909                                             dl, DAG, VA, Flags));
1910    }
1911  }
1912
1913  if (!MemOpChains.empty())
1914    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1915                        &MemOpChains[0], MemOpChains.size());
1916
1917  // Build a sequence of copy-to-reg nodes chained together with token chain
1918  // and flag operands which copy the outgoing args into registers.
1919  SDValue InFlag;
1920  // Tail call byval lowering might overwrite argument registers so in case of
1921  // tail call optimization the copies to registers are lowered later.
1922  if (!isTailCall)
1923    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1924      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1925                               RegsToPass[i].second, InFlag);
1926      InFlag = Chain.getValue(1);
1927    }
1928
1929  if (Subtarget->isPICStyleGOT()) {
1930    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1931    // GOT pointer.
1932    if (!isTailCall) {
1933      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1934                               DAG.getNode(X86ISD::GlobalBaseReg,
1935                                           DebugLoc::getUnknownLoc(),
1936                                           getPointerTy()),
1937                               InFlag);
1938      InFlag = Chain.getValue(1);
1939    } else {
1940      // If we are tail calling and generating PIC/GOT style code load the
1941      // address of the callee into ECX. The value in ecx is used as target of
1942      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1943      // for tail calls on PIC/GOT architectures. Normally we would just put the
1944      // address of GOT into ebx and then call target@PLT. But for tail calls
1945      // ebx would be restored (since ebx is callee saved) before jumping to the
1946      // target@PLT.
1947
1948      // Note: The actual moving to ECX is done further down.
1949      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1950      if (G && !G->getGlobal()->hasHiddenVisibility() &&
1951          !G->getGlobal()->hasProtectedVisibility())
1952        Callee = LowerGlobalAddress(Callee, DAG);
1953      else if (isa<ExternalSymbolSDNode>(Callee))
1954        Callee = LowerExternalSymbol(Callee, DAG);
1955    }
1956  }
1957
1958  if (Is64Bit && isVarArg) {
1959    // From AMD64 ABI document:
1960    // For calls that may call functions that use varargs or stdargs
1961    // (prototype-less calls or calls to functions containing ellipsis (...) in
1962    // the declaration) %al is used as hidden argument to specify the number
1963    // of SSE registers used. The contents of %al do not need to match exactly
1964    // the number of registers, but must be an ubound on the number of SSE
1965    // registers used and is in the range 0 - 8 inclusive.
1966
1967    // FIXME: Verify this on Win64
1968    // Count the number of XMM registers allocated.
1969    static const unsigned XMMArgRegs[] = {
1970      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1971      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1972    };
1973    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1974    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1975           && "SSE registers cannot be used when SSE is disabled");
1976
1977    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1978                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1979    InFlag = Chain.getValue(1);
1980  }
1981
1982
1983  // For tail calls lower the arguments to the 'real' stack slot.
1984  if (isTailCall) {
1985    // Force all the incoming stack arguments to be loaded from the stack
1986    // before any new outgoing arguments are stored to the stack, because the
1987    // outgoing stack slots may alias the incoming argument stack slots, and
1988    // the alias isn't otherwise explicit. This is slightly more conservative
1989    // than necessary, because it means that each store effectively depends
1990    // on every argument instead of just those arguments it would clobber.
1991    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
1992
1993    SmallVector<SDValue, 8> MemOpChains2;
1994    SDValue FIN;
1995    int FI = 0;
1996    // Do not flag preceeding copytoreg stuff together with the following stuff.
1997    InFlag = SDValue();
1998    if (GuaranteedTailCallOpt) {
1999      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2000        CCValAssign &VA = ArgLocs[i];
2001        if (VA.isRegLoc())
2002          continue;
2003        assert(VA.isMemLoc());
2004        SDValue Arg = Outs[i].Val;
2005        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2006        // Create frame index.
2007        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2008        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2009        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true, false);
2010        FIN = DAG.getFrameIndex(FI, getPointerTy());
2011
2012        if (Flags.isByVal()) {
2013          // Copy relative to framepointer.
2014          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2015          if (StackPtr.getNode() == 0)
2016            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2017                                          getPointerTy());
2018          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2019
2020          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2021                                                           ArgChain,
2022                                                           Flags, DAG, dl));
2023        } else {
2024          // Store relative to framepointer.
2025          MemOpChains2.push_back(
2026            DAG.getStore(ArgChain, dl, Arg, FIN,
2027                         PseudoSourceValue::getFixedStack(FI), 0,
2028                         false, false, 0));
2029        }
2030      }
2031    }
2032
2033    if (!MemOpChains2.empty())
2034      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2035                          &MemOpChains2[0], MemOpChains2.size());
2036
2037    // Copy arguments to their registers.
2038    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2039      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2040                               RegsToPass[i].second, InFlag);
2041      InFlag = Chain.getValue(1);
2042    }
2043    InFlag =SDValue();
2044
2045    // Store the return address to the appropriate stack slot.
2046    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2047                                     FPDiff, dl);
2048  }
2049
2050  bool WasGlobalOrExternal = false;
2051  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2052    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2053    // In the 64-bit large code model, we have to make all calls
2054    // through a register, since the call instruction's 32-bit
2055    // pc-relative offset may not be large enough to hold the whole
2056    // address.
2057  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2058    WasGlobalOrExternal = true;
2059    // If the callee is a GlobalAddress node (quite common, every direct call
2060    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2061    // it.
2062
2063    // We should use extra load for direct calls to dllimported functions in
2064    // non-JIT mode.
2065    GlobalValue *GV = G->getGlobal();
2066    if (!GV->hasDLLImportLinkage()) {
2067      unsigned char OpFlags = 0;
2068
2069      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2070      // external symbols most go through the PLT in PIC mode.  If the symbol
2071      // has hidden or protected visibility, or if it is static or local, then
2072      // we don't need to use the PLT - we can directly call it.
2073      if (Subtarget->isTargetELF() &&
2074          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2075          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2076        OpFlags = X86II::MO_PLT;
2077      } else if (Subtarget->isPICStyleStubAny() &&
2078               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2079               Subtarget->getDarwinVers() < 9) {
2080        // PC-relative references to external symbols should go through $stub,
2081        // unless we're building with the leopard linker or later, which
2082        // automatically synthesizes these stubs.
2083        OpFlags = X86II::MO_DARWIN_STUB;
2084      }
2085
2086      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
2087                                          G->getOffset(), OpFlags);
2088    }
2089  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2090    WasGlobalOrExternal = true;
2091    unsigned char OpFlags = 0;
2092
2093    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2094    // symbols should go through the PLT.
2095    if (Subtarget->isTargetELF() &&
2096        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2097      OpFlags = X86II::MO_PLT;
2098    } else if (Subtarget->isPICStyleStubAny() &&
2099             Subtarget->getDarwinVers() < 9) {
2100      // PC-relative references to external symbols should go through $stub,
2101      // unless we're building with the leopard linker or later, which
2102      // automatically synthesizes these stubs.
2103      OpFlags = X86II::MO_DARWIN_STUB;
2104    }
2105
2106    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2107                                         OpFlags);
2108  }
2109
2110  // Returns a chain & a flag for retval copy to use.
2111  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2112  SmallVector<SDValue, 8> Ops;
2113
2114  if (!IsSibcall && isTailCall) {
2115    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2116                           DAG.getIntPtrConstant(0, true), InFlag);
2117    InFlag = Chain.getValue(1);
2118  }
2119
2120  Ops.push_back(Chain);
2121  Ops.push_back(Callee);
2122
2123  if (isTailCall)
2124    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2125
2126  // Add argument registers to the end of the list so that they are known live
2127  // into the call.
2128  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2129    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2130                                  RegsToPass[i].second.getValueType()));
2131
2132  // Add an implicit use GOT pointer in EBX.
2133  if (!isTailCall && Subtarget->isPICStyleGOT())
2134    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2135
2136  // Add an implicit use of AL for x86 vararg functions.
2137  if (Is64Bit && isVarArg)
2138    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2139
2140  if (InFlag.getNode())
2141    Ops.push_back(InFlag);
2142
2143  if (isTailCall) {
2144    // If this is the first return lowered for this function, add the regs
2145    // to the liveout set for the function.
2146    if (MF.getRegInfo().liveout_empty()) {
2147      SmallVector<CCValAssign, 16> RVLocs;
2148      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2149                     *DAG.getContext());
2150      CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2151      for (unsigned i = 0; i != RVLocs.size(); ++i)
2152        if (RVLocs[i].isRegLoc())
2153          MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2154    }
2155    return DAG.getNode(X86ISD::TC_RETURN, dl,
2156                       NodeTys, &Ops[0], Ops.size());
2157  }
2158
2159  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2160  InFlag = Chain.getValue(1);
2161
2162  // Create the CALLSEQ_END node.
2163  unsigned NumBytesForCalleeToPush;
2164  if (IsCalleePop(isVarArg, CallConv))
2165    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2166  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2167    // If this is a call to a struct-return function, the callee
2168    // pops the hidden struct pointer, so we have to push it back.
2169    // This is common for Darwin/X86, Linux & Mingw32 targets.
2170    NumBytesForCalleeToPush = 4;
2171  else
2172    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2173
2174  // Returns a flag for retval copy to use.
2175  if (!IsSibcall) {
2176    Chain = DAG.getCALLSEQ_END(Chain,
2177                               DAG.getIntPtrConstant(NumBytes, true),
2178                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2179                                                     true),
2180                               InFlag);
2181    InFlag = Chain.getValue(1);
2182  }
2183
2184  // Handle result values, copying them out of physregs into vregs that we
2185  // return.
2186  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2187                         Ins, dl, DAG, InVals);
2188}
2189
2190
2191//===----------------------------------------------------------------------===//
2192//                Fast Calling Convention (tail call) implementation
2193//===----------------------------------------------------------------------===//
2194
2195//  Like std call, callee cleans arguments, convention except that ECX is
2196//  reserved for storing the tail called function address. Only 2 registers are
2197//  free for argument passing (inreg). Tail call optimization is performed
2198//  provided:
2199//                * tailcallopt is enabled
2200//                * caller/callee are fastcc
2201//  On X86_64 architecture with GOT-style position independent code only local
2202//  (within module) calls are supported at the moment.
2203//  To keep the stack aligned according to platform abi the function
2204//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2205//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2206//  If a tail called function callee has more arguments than the caller the
2207//  caller needs to make sure that there is room to move the RETADDR to. This is
2208//  achieved by reserving an area the size of the argument delta right after the
2209//  original REtADDR, but before the saved framepointer or the spilled registers
2210//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2211//  stack layout:
2212//    arg1
2213//    arg2
2214//    RETADDR
2215//    [ new RETADDR
2216//      move area ]
2217//    (possible EBP)
2218//    ESI
2219//    EDI
2220//    local1 ..
2221
2222/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2223/// for a 16 byte align requirement.
2224unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2225                                                        SelectionDAG& DAG) {
2226  MachineFunction &MF = DAG.getMachineFunction();
2227  const TargetMachine &TM = MF.getTarget();
2228  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2229  unsigned StackAlignment = TFI.getStackAlignment();
2230  uint64_t AlignMask = StackAlignment - 1;
2231  int64_t Offset = StackSize;
2232  uint64_t SlotSize = TD->getPointerSize();
2233  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2234    // Number smaller than 12 so just add the difference.
2235    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2236  } else {
2237    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2238    Offset = ((~AlignMask) & Offset) + StackAlignment +
2239      (StackAlignment-SlotSize);
2240  }
2241  return Offset;
2242}
2243
2244/// MatchingStackOffset - Return true if the given stack call argument is
2245/// already available in the same position (relatively) of the caller's
2246/// incoming argument stack.
2247static
2248bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2249                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2250                         const X86InstrInfo *TII) {
2251  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2252  int FI = INT_MAX;
2253  if (Arg.getOpcode() == ISD::CopyFromReg) {
2254    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2255    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2256      return false;
2257    MachineInstr *Def = MRI->getVRegDef(VR);
2258    if (!Def)
2259      return false;
2260    if (!Flags.isByVal()) {
2261      if (!TII->isLoadFromStackSlot(Def, FI))
2262        return false;
2263    } else {
2264      unsigned Opcode = Def->getOpcode();
2265      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2266          Def->getOperand(1).isFI()) {
2267        FI = Def->getOperand(1).getIndex();
2268        Bytes = Flags.getByValSize();
2269      } else
2270        return false;
2271    }
2272  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2273    if (Flags.isByVal())
2274      // ByVal argument is passed in as a pointer but it's now being
2275      // dereferenced. e.g.
2276      // define @foo(%struct.X* %A) {
2277      //   tail call @bar(%struct.X* byval %A)
2278      // }
2279      return false;
2280    SDValue Ptr = Ld->getBasePtr();
2281    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2282    if (!FINode)
2283      return false;
2284    FI = FINode->getIndex();
2285  } else
2286    return false;
2287
2288  assert(FI != INT_MAX);
2289  if (!MFI->isFixedObjectIndex(FI))
2290    return false;
2291  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2292}
2293
2294/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2295/// for tail call optimization. Targets which want to do tail call
2296/// optimization should implement this function.
2297bool
2298X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2299                                                     CallingConv::ID CalleeCC,
2300                                                     bool isVarArg,
2301                                                     bool isCalleeStructRet,
2302                                                     bool isCallerStructRet,
2303                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2304                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2305                                                     SelectionDAG& DAG) const {
2306  if (!IsTailCallConvention(CalleeCC) &&
2307      CalleeCC != CallingConv::C)
2308    return false;
2309
2310  // If -tailcallopt is specified, make fastcc functions tail-callable.
2311  const MachineFunction &MF = DAG.getMachineFunction();
2312  const Function *CallerF = DAG.getMachineFunction().getFunction();
2313  if (GuaranteedTailCallOpt) {
2314    if (IsTailCallConvention(CalleeCC) &&
2315        CallerF->getCallingConv() == CalleeCC)
2316      return true;
2317    return false;
2318  }
2319
2320  // Look for obvious safe cases to perform tail call optimization that does not
2321  // requite ABI changes. This is what gcc calls sibcall.
2322
2323  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2324  // emit a special epilogue.
2325  if (RegInfo->needsStackRealignment(MF))
2326    return false;
2327
2328  // Do not sibcall optimize vararg calls unless the call site is not passing any
2329  // arguments.
2330  if (isVarArg && !Outs.empty())
2331    return false;
2332
2333  // Also avoid sibcall optimization if either caller or callee uses struct
2334  // return semantics.
2335  if (isCalleeStructRet || isCallerStructRet)
2336    return false;
2337
2338  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2339  // Therefore if it's not used by the call it is not safe to optimize this into
2340  // a sibcall.
2341  bool Unused = false;
2342  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2343    if (!Ins[i].Used) {
2344      Unused = true;
2345      break;
2346    }
2347  }
2348  if (Unused) {
2349    SmallVector<CCValAssign, 16> RVLocs;
2350    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2351                   RVLocs, *DAG.getContext());
2352    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2353    for (unsigned i = 0; i != RVLocs.size(); ++i) {
2354      CCValAssign &VA = RVLocs[i];
2355      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2356        return false;
2357    }
2358  }
2359
2360  // If the callee takes no arguments then go on to check the results of the
2361  // call.
2362  if (!Outs.empty()) {
2363    // Check if stack adjustment is needed. For now, do not do this if any
2364    // argument is passed on the stack.
2365    SmallVector<CCValAssign, 16> ArgLocs;
2366    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2367                   ArgLocs, *DAG.getContext());
2368    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2369    if (CCInfo.getNextStackOffset()) {
2370      MachineFunction &MF = DAG.getMachineFunction();
2371      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2372        return false;
2373      if (Subtarget->isTargetWin64())
2374        // Win64 ABI has additional complications.
2375        return false;
2376
2377      // Check if the arguments are already laid out in the right way as
2378      // the caller's fixed stack objects.
2379      MachineFrameInfo *MFI = MF.getFrameInfo();
2380      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2381      const X86InstrInfo *TII =
2382        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2383      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2384        CCValAssign &VA = ArgLocs[i];
2385        EVT RegVT = VA.getLocVT();
2386        SDValue Arg = Outs[i].Val;
2387        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2388        if (VA.getLocInfo() == CCValAssign::Indirect)
2389          return false;
2390        if (!VA.isRegLoc()) {
2391          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2392                                   MFI, MRI, TII))
2393            return false;
2394        }
2395      }
2396    }
2397  }
2398
2399  return true;
2400}
2401
2402FastISel *
2403X86TargetLowering::createFastISel(MachineFunction &mf, MachineModuleInfo *mmo,
2404                            DwarfWriter *dw,
2405                            DenseMap<const Value *, unsigned> &vm,
2406                            DenseMap<const BasicBlock*, MachineBasicBlock*> &bm,
2407                            DenseMap<const AllocaInst *, int> &am
2408#ifndef NDEBUG
2409                          , SmallSet<Instruction*, 8> &cil
2410#endif
2411                                  ) {
2412  return X86::createFastISel(mf, mmo, dw, vm, bm, am
2413#ifndef NDEBUG
2414                             , cil
2415#endif
2416                             );
2417}
2418
2419
2420//===----------------------------------------------------------------------===//
2421//                           Other Lowering Hooks
2422//===----------------------------------------------------------------------===//
2423
2424
2425SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2426  MachineFunction &MF = DAG.getMachineFunction();
2427  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2428  int ReturnAddrIndex = FuncInfo->getRAIndex();
2429
2430  if (ReturnAddrIndex == 0) {
2431    // Set up a frame object for the return address.
2432    uint64_t SlotSize = TD->getPointerSize();
2433    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2434                                                           false, false);
2435    FuncInfo->setRAIndex(ReturnAddrIndex);
2436  }
2437
2438  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2439}
2440
2441
2442bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2443                                       bool hasSymbolicDisplacement) {
2444  // Offset should fit into 32 bit immediate field.
2445  if (!isInt<32>(Offset))
2446    return false;
2447
2448  // If we don't have a symbolic displacement - we don't have any extra
2449  // restrictions.
2450  if (!hasSymbolicDisplacement)
2451    return true;
2452
2453  // FIXME: Some tweaks might be needed for medium code model.
2454  if (M != CodeModel::Small && M != CodeModel::Kernel)
2455    return false;
2456
2457  // For small code model we assume that latest object is 16MB before end of 31
2458  // bits boundary. We may also accept pretty large negative constants knowing
2459  // that all objects are in the positive half of address space.
2460  if (M == CodeModel::Small && Offset < 16*1024*1024)
2461    return true;
2462
2463  // For kernel code model we know that all object resist in the negative half
2464  // of 32bits address space. We may not accept negative offsets, since they may
2465  // be just off and we may accept pretty large positive ones.
2466  if (M == CodeModel::Kernel && Offset > 0)
2467    return true;
2468
2469  return false;
2470}
2471
2472/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2473/// specific condition code, returning the condition code and the LHS/RHS of the
2474/// comparison to make.
2475static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2476                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2477  if (!isFP) {
2478    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2479      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2480        // X > -1   -> X == 0, jump !sign.
2481        RHS = DAG.getConstant(0, RHS.getValueType());
2482        return X86::COND_NS;
2483      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2484        // X < 0   -> X == 0, jump on sign.
2485        return X86::COND_S;
2486      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2487        // X < 1   -> X <= 0
2488        RHS = DAG.getConstant(0, RHS.getValueType());
2489        return X86::COND_LE;
2490      }
2491    }
2492
2493    switch (SetCCOpcode) {
2494    default: llvm_unreachable("Invalid integer condition!");
2495    case ISD::SETEQ:  return X86::COND_E;
2496    case ISD::SETGT:  return X86::COND_G;
2497    case ISD::SETGE:  return X86::COND_GE;
2498    case ISD::SETLT:  return X86::COND_L;
2499    case ISD::SETLE:  return X86::COND_LE;
2500    case ISD::SETNE:  return X86::COND_NE;
2501    case ISD::SETULT: return X86::COND_B;
2502    case ISD::SETUGT: return X86::COND_A;
2503    case ISD::SETULE: return X86::COND_BE;
2504    case ISD::SETUGE: return X86::COND_AE;
2505    }
2506  }
2507
2508  // First determine if it is required or is profitable to flip the operands.
2509
2510  // If LHS is a foldable load, but RHS is not, flip the condition.
2511  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2512      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2513    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2514    std::swap(LHS, RHS);
2515  }
2516
2517  switch (SetCCOpcode) {
2518  default: break;
2519  case ISD::SETOLT:
2520  case ISD::SETOLE:
2521  case ISD::SETUGT:
2522  case ISD::SETUGE:
2523    std::swap(LHS, RHS);
2524    break;
2525  }
2526
2527  // On a floating point condition, the flags are set as follows:
2528  // ZF  PF  CF   op
2529  //  0 | 0 | 0 | X > Y
2530  //  0 | 0 | 1 | X < Y
2531  //  1 | 0 | 0 | X == Y
2532  //  1 | 1 | 1 | unordered
2533  switch (SetCCOpcode) {
2534  default: llvm_unreachable("Condcode should be pre-legalized away");
2535  case ISD::SETUEQ:
2536  case ISD::SETEQ:   return X86::COND_E;
2537  case ISD::SETOLT:              // flipped
2538  case ISD::SETOGT:
2539  case ISD::SETGT:   return X86::COND_A;
2540  case ISD::SETOLE:              // flipped
2541  case ISD::SETOGE:
2542  case ISD::SETGE:   return X86::COND_AE;
2543  case ISD::SETUGT:              // flipped
2544  case ISD::SETULT:
2545  case ISD::SETLT:   return X86::COND_B;
2546  case ISD::SETUGE:              // flipped
2547  case ISD::SETULE:
2548  case ISD::SETLE:   return X86::COND_BE;
2549  case ISD::SETONE:
2550  case ISD::SETNE:   return X86::COND_NE;
2551  case ISD::SETUO:   return X86::COND_P;
2552  case ISD::SETO:    return X86::COND_NP;
2553  case ISD::SETOEQ:
2554  case ISD::SETUNE:  return X86::COND_INVALID;
2555  }
2556}
2557
2558/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2559/// code. Current x86 isa includes the following FP cmov instructions:
2560/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2561static bool hasFPCMov(unsigned X86CC) {
2562  switch (X86CC) {
2563  default:
2564    return false;
2565  case X86::COND_B:
2566  case X86::COND_BE:
2567  case X86::COND_E:
2568  case X86::COND_P:
2569  case X86::COND_A:
2570  case X86::COND_AE:
2571  case X86::COND_NE:
2572  case X86::COND_NP:
2573    return true;
2574  }
2575}
2576
2577/// isFPImmLegal - Returns true if the target can instruction select the
2578/// specified FP immediate natively. If false, the legalizer will
2579/// materialize the FP immediate as a load from a constant pool.
2580bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2581  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2582    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2583      return true;
2584  }
2585  return false;
2586}
2587
2588/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2589/// the specified range (L, H].
2590static bool isUndefOrInRange(int Val, int Low, int Hi) {
2591  return (Val < 0) || (Val >= Low && Val < Hi);
2592}
2593
2594/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2595/// specified value.
2596static bool isUndefOrEqual(int Val, int CmpVal) {
2597  if (Val < 0 || Val == CmpVal)
2598    return true;
2599  return false;
2600}
2601
2602/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2603/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2604/// the second operand.
2605static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2606  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2607    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2608  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2609    return (Mask[0] < 2 && Mask[1] < 2);
2610  return false;
2611}
2612
2613bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2614  SmallVector<int, 8> M;
2615  N->getMask(M);
2616  return ::isPSHUFDMask(M, N->getValueType(0));
2617}
2618
2619/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2620/// is suitable for input to PSHUFHW.
2621static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2622  if (VT != MVT::v8i16)
2623    return false;
2624
2625  // Lower quadword copied in order or undef.
2626  for (int i = 0; i != 4; ++i)
2627    if (Mask[i] >= 0 && Mask[i] != i)
2628      return false;
2629
2630  // Upper quadword shuffled.
2631  for (int i = 4; i != 8; ++i)
2632    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2633      return false;
2634
2635  return true;
2636}
2637
2638bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2639  SmallVector<int, 8> M;
2640  N->getMask(M);
2641  return ::isPSHUFHWMask(M, N->getValueType(0));
2642}
2643
2644/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2645/// is suitable for input to PSHUFLW.
2646static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2647  if (VT != MVT::v8i16)
2648    return false;
2649
2650  // Upper quadword copied in order.
2651  for (int i = 4; i != 8; ++i)
2652    if (Mask[i] >= 0 && Mask[i] != i)
2653      return false;
2654
2655  // Lower quadword shuffled.
2656  for (int i = 0; i != 4; ++i)
2657    if (Mask[i] >= 4)
2658      return false;
2659
2660  return true;
2661}
2662
2663bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2664  SmallVector<int, 8> M;
2665  N->getMask(M);
2666  return ::isPSHUFLWMask(M, N->getValueType(0));
2667}
2668
2669/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2670/// is suitable for input to PALIGNR.
2671static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2672                          bool hasSSSE3) {
2673  int i, e = VT.getVectorNumElements();
2674
2675  // Do not handle v2i64 / v2f64 shuffles with palignr.
2676  if (e < 4 || !hasSSSE3)
2677    return false;
2678
2679  for (i = 0; i != e; ++i)
2680    if (Mask[i] >= 0)
2681      break;
2682
2683  // All undef, not a palignr.
2684  if (i == e)
2685    return false;
2686
2687  // Determine if it's ok to perform a palignr with only the LHS, since we
2688  // don't have access to the actual shuffle elements to see if RHS is undef.
2689  bool Unary = Mask[i] < (int)e;
2690  bool NeedsUnary = false;
2691
2692  int s = Mask[i] - i;
2693
2694  // Check the rest of the elements to see if they are consecutive.
2695  for (++i; i != e; ++i) {
2696    int m = Mask[i];
2697    if (m < 0)
2698      continue;
2699
2700    Unary = Unary && (m < (int)e);
2701    NeedsUnary = NeedsUnary || (m < s);
2702
2703    if (NeedsUnary && !Unary)
2704      return false;
2705    if (Unary && m != ((s+i) & (e-1)))
2706      return false;
2707    if (!Unary && m != (s+i))
2708      return false;
2709  }
2710  return true;
2711}
2712
2713bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2714  SmallVector<int, 8> M;
2715  N->getMask(M);
2716  return ::isPALIGNRMask(M, N->getValueType(0), true);
2717}
2718
2719/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2720/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2721static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2722  int NumElems = VT.getVectorNumElements();
2723  if (NumElems != 2 && NumElems != 4)
2724    return false;
2725
2726  int Half = NumElems / 2;
2727  for (int i = 0; i < Half; ++i)
2728    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2729      return false;
2730  for (int i = Half; i < NumElems; ++i)
2731    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2732      return false;
2733
2734  return true;
2735}
2736
2737bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2738  SmallVector<int, 8> M;
2739  N->getMask(M);
2740  return ::isSHUFPMask(M, N->getValueType(0));
2741}
2742
2743/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2744/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2745/// half elements to come from vector 1 (which would equal the dest.) and
2746/// the upper half to come from vector 2.
2747static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2748  int NumElems = VT.getVectorNumElements();
2749
2750  if (NumElems != 2 && NumElems != 4)
2751    return false;
2752
2753  int Half = NumElems / 2;
2754  for (int i = 0; i < Half; ++i)
2755    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2756      return false;
2757  for (int i = Half; i < NumElems; ++i)
2758    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2759      return false;
2760  return true;
2761}
2762
2763static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2764  SmallVector<int, 8> M;
2765  N->getMask(M);
2766  return isCommutedSHUFPMask(M, N->getValueType(0));
2767}
2768
2769/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2770/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2771bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2772  if (N->getValueType(0).getVectorNumElements() != 4)
2773    return false;
2774
2775  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2776  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2777         isUndefOrEqual(N->getMaskElt(1), 7) &&
2778         isUndefOrEqual(N->getMaskElt(2), 2) &&
2779         isUndefOrEqual(N->getMaskElt(3), 3);
2780}
2781
2782/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2783/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2784/// <2, 3, 2, 3>
2785bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2786  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2787
2788  if (NumElems != 4)
2789    return false;
2790
2791  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2792  isUndefOrEqual(N->getMaskElt(1), 3) &&
2793  isUndefOrEqual(N->getMaskElt(2), 2) &&
2794  isUndefOrEqual(N->getMaskElt(3), 3);
2795}
2796
2797/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2798/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2799bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2800  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2801
2802  if (NumElems != 2 && NumElems != 4)
2803    return false;
2804
2805  for (unsigned i = 0; i < NumElems/2; ++i)
2806    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2807      return false;
2808
2809  for (unsigned i = NumElems/2; i < NumElems; ++i)
2810    if (!isUndefOrEqual(N->getMaskElt(i), i))
2811      return false;
2812
2813  return true;
2814}
2815
2816/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2817/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2818bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2819  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2820
2821  if (NumElems != 2 && NumElems != 4)
2822    return false;
2823
2824  for (unsigned i = 0; i < NumElems/2; ++i)
2825    if (!isUndefOrEqual(N->getMaskElt(i), i))
2826      return false;
2827
2828  for (unsigned i = 0; i < NumElems/2; ++i)
2829    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2830      return false;
2831
2832  return true;
2833}
2834
2835/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2836/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2837static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2838                         bool V2IsSplat = false) {
2839  int NumElts = VT.getVectorNumElements();
2840  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2841    return false;
2842
2843  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2844    int BitI  = Mask[i];
2845    int BitI1 = Mask[i+1];
2846    if (!isUndefOrEqual(BitI, j))
2847      return false;
2848    if (V2IsSplat) {
2849      if (!isUndefOrEqual(BitI1, NumElts))
2850        return false;
2851    } else {
2852      if (!isUndefOrEqual(BitI1, j + NumElts))
2853        return false;
2854    }
2855  }
2856  return true;
2857}
2858
2859bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2860  SmallVector<int, 8> M;
2861  N->getMask(M);
2862  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2863}
2864
2865/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2866/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2867static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2868                         bool V2IsSplat = false) {
2869  int NumElts = VT.getVectorNumElements();
2870  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2871    return false;
2872
2873  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2874    int BitI  = Mask[i];
2875    int BitI1 = Mask[i+1];
2876    if (!isUndefOrEqual(BitI, j + NumElts/2))
2877      return false;
2878    if (V2IsSplat) {
2879      if (isUndefOrEqual(BitI1, NumElts))
2880        return false;
2881    } else {
2882      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2883        return false;
2884    }
2885  }
2886  return true;
2887}
2888
2889bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2890  SmallVector<int, 8> M;
2891  N->getMask(M);
2892  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2893}
2894
2895/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2896/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2897/// <0, 0, 1, 1>
2898static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2899  int NumElems = VT.getVectorNumElements();
2900  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2901    return false;
2902
2903  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2904    int BitI  = Mask[i];
2905    int BitI1 = Mask[i+1];
2906    if (!isUndefOrEqual(BitI, j))
2907      return false;
2908    if (!isUndefOrEqual(BitI1, j))
2909      return false;
2910  }
2911  return true;
2912}
2913
2914bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2915  SmallVector<int, 8> M;
2916  N->getMask(M);
2917  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2918}
2919
2920/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2921/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2922/// <2, 2, 3, 3>
2923static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2924  int NumElems = VT.getVectorNumElements();
2925  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2926    return false;
2927
2928  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2929    int BitI  = Mask[i];
2930    int BitI1 = Mask[i+1];
2931    if (!isUndefOrEqual(BitI, j))
2932      return false;
2933    if (!isUndefOrEqual(BitI1, j))
2934      return false;
2935  }
2936  return true;
2937}
2938
2939bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2940  SmallVector<int, 8> M;
2941  N->getMask(M);
2942  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2943}
2944
2945/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2946/// specifies a shuffle of elements that is suitable for input to MOVSS,
2947/// MOVSD, and MOVD, i.e. setting the lowest element.
2948static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2949  if (VT.getVectorElementType().getSizeInBits() < 32)
2950    return false;
2951
2952  int NumElts = VT.getVectorNumElements();
2953
2954  if (!isUndefOrEqual(Mask[0], NumElts))
2955    return false;
2956
2957  for (int i = 1; i < NumElts; ++i)
2958    if (!isUndefOrEqual(Mask[i], i))
2959      return false;
2960
2961  return true;
2962}
2963
2964bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2965  SmallVector<int, 8> M;
2966  N->getMask(M);
2967  return ::isMOVLMask(M, N->getValueType(0));
2968}
2969
2970/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2971/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2972/// element of vector 2 and the other elements to come from vector 1 in order.
2973static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2974                               bool V2IsSplat = false, bool V2IsUndef = false) {
2975  int NumOps = VT.getVectorNumElements();
2976  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2977    return false;
2978
2979  if (!isUndefOrEqual(Mask[0], 0))
2980    return false;
2981
2982  for (int i = 1; i < NumOps; ++i)
2983    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2984          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2985          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2986      return false;
2987
2988  return true;
2989}
2990
2991static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2992                           bool V2IsUndef = false) {
2993  SmallVector<int, 8> M;
2994  N->getMask(M);
2995  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2996}
2997
2998/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2999/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3000bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3001  if (N->getValueType(0).getVectorNumElements() != 4)
3002    return false;
3003
3004  // Expect 1, 1, 3, 3
3005  for (unsigned i = 0; i < 2; ++i) {
3006    int Elt = N->getMaskElt(i);
3007    if (Elt >= 0 && Elt != 1)
3008      return false;
3009  }
3010
3011  bool HasHi = false;
3012  for (unsigned i = 2; i < 4; ++i) {
3013    int Elt = N->getMaskElt(i);
3014    if (Elt >= 0 && Elt != 3)
3015      return false;
3016    if (Elt == 3)
3017      HasHi = true;
3018  }
3019  // Don't use movshdup if it can be done with a shufps.
3020  // FIXME: verify that matching u, u, 3, 3 is what we want.
3021  return HasHi;
3022}
3023
3024/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3025/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3026bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3027  if (N->getValueType(0).getVectorNumElements() != 4)
3028    return false;
3029
3030  // Expect 0, 0, 2, 2
3031  for (unsigned i = 0; i < 2; ++i)
3032    if (N->getMaskElt(i) > 0)
3033      return false;
3034
3035  bool HasHi = false;
3036  for (unsigned i = 2; i < 4; ++i) {
3037    int Elt = N->getMaskElt(i);
3038    if (Elt >= 0 && Elt != 2)
3039      return false;
3040    if (Elt == 2)
3041      HasHi = true;
3042  }
3043  // Don't use movsldup if it can be done with a shufps.
3044  return HasHi;
3045}
3046
3047/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3048/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3049bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3050  int e = N->getValueType(0).getVectorNumElements() / 2;
3051
3052  for (int i = 0; i < e; ++i)
3053    if (!isUndefOrEqual(N->getMaskElt(i), i))
3054      return false;
3055  for (int i = 0; i < e; ++i)
3056    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3057      return false;
3058  return true;
3059}
3060
3061/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3062/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3063unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3064  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3065  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3066
3067  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3068  unsigned Mask = 0;
3069  for (int i = 0; i < NumOperands; ++i) {
3070    int Val = SVOp->getMaskElt(NumOperands-i-1);
3071    if (Val < 0) Val = 0;
3072    if (Val >= NumOperands) Val -= NumOperands;
3073    Mask |= Val;
3074    if (i != NumOperands - 1)
3075      Mask <<= Shift;
3076  }
3077  return Mask;
3078}
3079
3080/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3081/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3082unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3083  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3084  unsigned Mask = 0;
3085  // 8 nodes, but we only care about the last 4.
3086  for (unsigned i = 7; i >= 4; --i) {
3087    int Val = SVOp->getMaskElt(i);
3088    if (Val >= 0)
3089      Mask |= (Val - 4);
3090    if (i != 4)
3091      Mask <<= 2;
3092  }
3093  return Mask;
3094}
3095
3096/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3097/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3098unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3099  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3100  unsigned Mask = 0;
3101  // 8 nodes, but we only care about the first 4.
3102  for (int i = 3; i >= 0; --i) {
3103    int Val = SVOp->getMaskElt(i);
3104    if (Val >= 0)
3105      Mask |= Val;
3106    if (i != 0)
3107      Mask <<= 2;
3108  }
3109  return Mask;
3110}
3111
3112/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3113/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3114unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3115  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3116  EVT VVT = N->getValueType(0);
3117  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3118  int Val = 0;
3119
3120  unsigned i, e;
3121  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3122    Val = SVOp->getMaskElt(i);
3123    if (Val >= 0)
3124      break;
3125  }
3126  return (Val - i) * EltSize;
3127}
3128
3129/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3130/// constant +0.0.
3131bool X86::isZeroNode(SDValue Elt) {
3132  return ((isa<ConstantSDNode>(Elt) &&
3133           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
3134          (isa<ConstantFPSDNode>(Elt) &&
3135           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3136}
3137
3138/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3139/// their permute mask.
3140static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3141                                    SelectionDAG &DAG) {
3142  EVT VT = SVOp->getValueType(0);
3143  unsigned NumElems = VT.getVectorNumElements();
3144  SmallVector<int, 8> MaskVec;
3145
3146  for (unsigned i = 0; i != NumElems; ++i) {
3147    int idx = SVOp->getMaskElt(i);
3148    if (idx < 0)
3149      MaskVec.push_back(idx);
3150    else if (idx < (int)NumElems)
3151      MaskVec.push_back(idx + NumElems);
3152    else
3153      MaskVec.push_back(idx - NumElems);
3154  }
3155  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3156                              SVOp->getOperand(0), &MaskVec[0]);
3157}
3158
3159/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3160/// the two vector operands have swapped position.
3161static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3162  unsigned NumElems = VT.getVectorNumElements();
3163  for (unsigned i = 0; i != NumElems; ++i) {
3164    int idx = Mask[i];
3165    if (idx < 0)
3166      continue;
3167    else if (idx < (int)NumElems)
3168      Mask[i] = idx + NumElems;
3169    else
3170      Mask[i] = idx - NumElems;
3171  }
3172}
3173
3174/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3175/// match movhlps. The lower half elements should come from upper half of
3176/// V1 (and in order), and the upper half elements should come from the upper
3177/// half of V2 (and in order).
3178static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3179  if (Op->getValueType(0).getVectorNumElements() != 4)
3180    return false;
3181  for (unsigned i = 0, e = 2; i != e; ++i)
3182    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3183      return false;
3184  for (unsigned i = 2; i != 4; ++i)
3185    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3186      return false;
3187  return true;
3188}
3189
3190/// isScalarLoadToVector - Returns true if the node is a scalar load that
3191/// is promoted to a vector. It also returns the LoadSDNode by reference if
3192/// required.
3193static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3194  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3195    return false;
3196  N = N->getOperand(0).getNode();
3197  if (!ISD::isNON_EXTLoad(N))
3198    return false;
3199  if (LD)
3200    *LD = cast<LoadSDNode>(N);
3201  return true;
3202}
3203
3204/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3205/// match movlp{s|d}. The lower half elements should come from lower half of
3206/// V1 (and in order), and the upper half elements should come from the upper
3207/// half of V2 (and in order). And since V1 will become the source of the
3208/// MOVLP, it must be either a vector load or a scalar load to vector.
3209static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3210                               ShuffleVectorSDNode *Op) {
3211  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3212    return false;
3213  // Is V2 is a vector load, don't do this transformation. We will try to use
3214  // load folding shufps op.
3215  if (ISD::isNON_EXTLoad(V2))
3216    return false;
3217
3218  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3219
3220  if (NumElems != 2 && NumElems != 4)
3221    return false;
3222  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3223    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3224      return false;
3225  for (unsigned i = NumElems/2; i != NumElems; ++i)
3226    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3227      return false;
3228  return true;
3229}
3230
3231/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3232/// all the same.
3233static bool isSplatVector(SDNode *N) {
3234  if (N->getOpcode() != ISD::BUILD_VECTOR)
3235    return false;
3236
3237  SDValue SplatValue = N->getOperand(0);
3238  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3239    if (N->getOperand(i) != SplatValue)
3240      return false;
3241  return true;
3242}
3243
3244/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3245/// to an zero vector.
3246/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3247static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3248  SDValue V1 = N->getOperand(0);
3249  SDValue V2 = N->getOperand(1);
3250  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3251  for (unsigned i = 0; i != NumElems; ++i) {
3252    int Idx = N->getMaskElt(i);
3253    if (Idx >= (int)NumElems) {
3254      unsigned Opc = V2.getOpcode();
3255      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3256        continue;
3257      if (Opc != ISD::BUILD_VECTOR ||
3258          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3259        return false;
3260    } else if (Idx >= 0) {
3261      unsigned Opc = V1.getOpcode();
3262      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3263        continue;
3264      if (Opc != ISD::BUILD_VECTOR ||
3265          !X86::isZeroNode(V1.getOperand(Idx)))
3266        return false;
3267    }
3268  }
3269  return true;
3270}
3271
3272/// getZeroVector - Returns a vector of specified type with all zero elements.
3273///
3274static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3275                             DebugLoc dl) {
3276  assert(VT.isVector() && "Expected a vector type");
3277
3278  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3279  // type.  This ensures they get CSE'd.
3280  SDValue Vec;
3281  if (VT.getSizeInBits() == 64) { // MMX
3282    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3283    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3284  } else if (HasSSE2) {  // SSE2
3285    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3286    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3287  } else { // SSE1
3288    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3289    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3290  }
3291  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3292}
3293
3294/// getOnesVector - Returns a vector of specified type with all bits set.
3295///
3296static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3297  assert(VT.isVector() && "Expected a vector type");
3298
3299  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3300  // type.  This ensures they get CSE'd.
3301  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3302  SDValue Vec;
3303  if (VT.getSizeInBits() == 64)  // MMX
3304    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3305  else                                              // SSE
3306    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3307  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3308}
3309
3310
3311/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3312/// that point to V2 points to its first element.
3313static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3314  EVT VT = SVOp->getValueType(0);
3315  unsigned NumElems = VT.getVectorNumElements();
3316
3317  bool Changed = false;
3318  SmallVector<int, 8> MaskVec;
3319  SVOp->getMask(MaskVec);
3320
3321  for (unsigned i = 0; i != NumElems; ++i) {
3322    if (MaskVec[i] > (int)NumElems) {
3323      MaskVec[i] = NumElems;
3324      Changed = true;
3325    }
3326  }
3327  if (Changed)
3328    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3329                                SVOp->getOperand(1), &MaskVec[0]);
3330  return SDValue(SVOp, 0);
3331}
3332
3333/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3334/// operation of specified width.
3335static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3336                       SDValue V2) {
3337  unsigned NumElems = VT.getVectorNumElements();
3338  SmallVector<int, 8> Mask;
3339  Mask.push_back(NumElems);
3340  for (unsigned i = 1; i != NumElems; ++i)
3341    Mask.push_back(i);
3342  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3343}
3344
3345/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3346static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3347                          SDValue V2) {
3348  unsigned NumElems = VT.getVectorNumElements();
3349  SmallVector<int, 8> Mask;
3350  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3351    Mask.push_back(i);
3352    Mask.push_back(i + NumElems);
3353  }
3354  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3355}
3356
3357/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3358static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3359                          SDValue V2) {
3360  unsigned NumElems = VT.getVectorNumElements();
3361  unsigned Half = NumElems/2;
3362  SmallVector<int, 8> Mask;
3363  for (unsigned i = 0; i != Half; ++i) {
3364    Mask.push_back(i + Half);
3365    Mask.push_back(i + NumElems + Half);
3366  }
3367  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3368}
3369
3370/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3371static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3372                            bool HasSSE2) {
3373  if (SV->getValueType(0).getVectorNumElements() <= 4)
3374    return SDValue(SV, 0);
3375
3376  EVT PVT = MVT::v4f32;
3377  EVT VT = SV->getValueType(0);
3378  DebugLoc dl = SV->getDebugLoc();
3379  SDValue V1 = SV->getOperand(0);
3380  int NumElems = VT.getVectorNumElements();
3381  int EltNo = SV->getSplatIndex();
3382
3383  // unpack elements to the correct location
3384  while (NumElems > 4) {
3385    if (EltNo < NumElems/2) {
3386      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3387    } else {
3388      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3389      EltNo -= NumElems/2;
3390    }
3391    NumElems >>= 1;
3392  }
3393
3394  // Perform the splat.
3395  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3396  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3397  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3398  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3399}
3400
3401/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3402/// vector of zero or undef vector.  This produces a shuffle where the low
3403/// element of V2 is swizzled into the zero/undef vector, landing at element
3404/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3405static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3406                                             bool isZero, bool HasSSE2,
3407                                             SelectionDAG &DAG) {
3408  EVT VT = V2.getValueType();
3409  SDValue V1 = isZero
3410    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3411  unsigned NumElems = VT.getVectorNumElements();
3412  SmallVector<int, 16> MaskVec;
3413  for (unsigned i = 0; i != NumElems; ++i)
3414    // If this is the insertion idx, put the low elt of V2 here.
3415    MaskVec.push_back(i == Idx ? NumElems : i);
3416  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3417}
3418
3419/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3420/// a shuffle that is zero.
3421static
3422unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3423                                  bool Low, SelectionDAG &DAG) {
3424  unsigned NumZeros = 0;
3425  for (int i = 0; i < NumElems; ++i) {
3426    unsigned Index = Low ? i : NumElems-i-1;
3427    int Idx = SVOp->getMaskElt(Index);
3428    if (Idx < 0) {
3429      ++NumZeros;
3430      continue;
3431    }
3432    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3433    if (Elt.getNode() && X86::isZeroNode(Elt))
3434      ++NumZeros;
3435    else
3436      break;
3437  }
3438  return NumZeros;
3439}
3440
3441/// isVectorShift - Returns true if the shuffle can be implemented as a
3442/// logical left or right shift of a vector.
3443/// FIXME: split into pslldqi, psrldqi, palignr variants.
3444static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3445                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3446  int NumElems = SVOp->getValueType(0).getVectorNumElements();
3447
3448  isLeft = true;
3449  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3450  if (!NumZeros) {
3451    isLeft = false;
3452    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3453    if (!NumZeros)
3454      return false;
3455  }
3456  bool SeenV1 = false;
3457  bool SeenV2 = false;
3458  for (int i = NumZeros; i < NumElems; ++i) {
3459    int Val = isLeft ? (i - NumZeros) : i;
3460    int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3461    if (Idx < 0)
3462      continue;
3463    if (Idx < NumElems)
3464      SeenV1 = true;
3465    else {
3466      Idx -= NumElems;
3467      SeenV2 = true;
3468    }
3469    if (Idx != Val)
3470      return false;
3471  }
3472  if (SeenV1 && SeenV2)
3473    return false;
3474
3475  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3476  ShAmt = NumZeros;
3477  return true;
3478}
3479
3480
3481/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3482///
3483static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3484                                       unsigned NumNonZero, unsigned NumZero,
3485                                       SelectionDAG &DAG, TargetLowering &TLI) {
3486  if (NumNonZero > 8)
3487    return SDValue();
3488
3489  DebugLoc dl = Op.getDebugLoc();
3490  SDValue V(0, 0);
3491  bool First = true;
3492  for (unsigned i = 0; i < 16; ++i) {
3493    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3494    if (ThisIsNonZero && First) {
3495      if (NumZero)
3496        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3497      else
3498        V = DAG.getUNDEF(MVT::v8i16);
3499      First = false;
3500    }
3501
3502    if ((i & 1) != 0) {
3503      SDValue ThisElt(0, 0), LastElt(0, 0);
3504      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3505      if (LastIsNonZero) {
3506        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3507                              MVT::i16, Op.getOperand(i-1));
3508      }
3509      if (ThisIsNonZero) {
3510        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3511        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3512                              ThisElt, DAG.getConstant(8, MVT::i8));
3513        if (LastIsNonZero)
3514          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3515      } else
3516        ThisElt = LastElt;
3517
3518      if (ThisElt.getNode())
3519        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3520                        DAG.getIntPtrConstant(i/2));
3521    }
3522  }
3523
3524  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3525}
3526
3527/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3528///
3529static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3530                                       unsigned NumNonZero, unsigned NumZero,
3531                                       SelectionDAG &DAG, TargetLowering &TLI) {
3532  if (NumNonZero > 4)
3533    return SDValue();
3534
3535  DebugLoc dl = Op.getDebugLoc();
3536  SDValue V(0, 0);
3537  bool First = true;
3538  for (unsigned i = 0; i < 8; ++i) {
3539    bool isNonZero = (NonZeros & (1 << i)) != 0;
3540    if (isNonZero) {
3541      if (First) {
3542        if (NumZero)
3543          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3544        else
3545          V = DAG.getUNDEF(MVT::v8i16);
3546        First = false;
3547      }
3548      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3549                      MVT::v8i16, V, Op.getOperand(i),
3550                      DAG.getIntPtrConstant(i));
3551    }
3552  }
3553
3554  return V;
3555}
3556
3557/// getVShift - Return a vector logical shift node.
3558///
3559static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3560                         unsigned NumBits, SelectionDAG &DAG,
3561                         const TargetLowering &TLI, DebugLoc dl) {
3562  bool isMMX = VT.getSizeInBits() == 64;
3563  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3564  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3565  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3566  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3567                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3568                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3569}
3570
3571SDValue
3572X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3573                                          SelectionDAG &DAG) {
3574
3575  // Check if the scalar load can be widened into a vector load. And if
3576  // the address is "base + cst" see if the cst can be "absorbed" into
3577  // the shuffle mask.
3578  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3579    SDValue Ptr = LD->getBasePtr();
3580    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3581      return SDValue();
3582    EVT PVT = LD->getValueType(0);
3583    if (PVT != MVT::i32 && PVT != MVT::f32)
3584      return SDValue();
3585
3586    int FI = -1;
3587    int64_t Offset = 0;
3588    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3589      FI = FINode->getIndex();
3590      Offset = 0;
3591    } else if (Ptr.getOpcode() == ISD::ADD &&
3592               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3593               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3594      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3595      Offset = Ptr.getConstantOperandVal(1);
3596      Ptr = Ptr.getOperand(0);
3597    } else {
3598      return SDValue();
3599    }
3600
3601    SDValue Chain = LD->getChain();
3602    // Make sure the stack object alignment is at least 16.
3603    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3604    if (DAG.InferPtrAlignment(Ptr) < 16) {
3605      if (MFI->isFixedObjectIndex(FI)) {
3606        // Can't change the alignment. FIXME: It's possible to compute
3607        // the exact stack offset and reference FI + adjust offset instead.
3608        // If someone *really* cares about this. That's the way to implement it.
3609        return SDValue();
3610      } else {
3611        MFI->setObjectAlignment(FI, 16);
3612      }
3613    }
3614
3615    // (Offset % 16) must be multiple of 4. Then address is then
3616    // Ptr + (Offset & ~15).
3617    if (Offset < 0)
3618      return SDValue();
3619    if ((Offset % 16) & 3)
3620      return SDValue();
3621    int64_t StartOffset = Offset & ~15;
3622    if (StartOffset)
3623      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
3624                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
3625
3626    int EltNo = (Offset - StartOffset) >> 2;
3627    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
3628    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
3629    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
3630                             false, false, 0);
3631    // Canonicalize it to a v4i32 shuffle.
3632    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
3633    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3634                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
3635                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
3636  }
3637
3638  return SDValue();
3639}
3640
3641/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
3642/// vector of type 'VT', see if the elements can be replaced by a single large
3643/// load which has the same value as a build_vector whose operands are 'elts'.
3644///
3645/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
3646///
3647/// FIXME: we'd also like to handle the case where the last elements are zero
3648/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
3649/// There's even a handy isZeroNode for that purpose.
3650static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
3651                                        DebugLoc &dl, SelectionDAG &DAG) {
3652  EVT EltVT = VT.getVectorElementType();
3653  unsigned NumElems = Elts.size();
3654
3655  LoadSDNode *LDBase = NULL;
3656  unsigned LastLoadedElt = -1U;
3657
3658  // For each element in the initializer, see if we've found a load or an undef.
3659  // If we don't find an initial load element, or later load elements are
3660  // non-consecutive, bail out.
3661  for (unsigned i = 0; i < NumElems; ++i) {
3662    SDValue Elt = Elts[i];
3663
3664    if (!Elt.getNode() ||
3665        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
3666      return SDValue();
3667    if (!LDBase) {
3668      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
3669        return SDValue();
3670      LDBase = cast<LoadSDNode>(Elt.getNode());
3671      LastLoadedElt = i;
3672      continue;
3673    }
3674    if (Elt.getOpcode() == ISD::UNDEF)
3675      continue;
3676
3677    LoadSDNode *LD = cast<LoadSDNode>(Elt);
3678    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
3679      return SDValue();
3680    LastLoadedElt = i;
3681  }
3682
3683  // If we have found an entire vector of loads and undefs, then return a large
3684  // load of the entire vector width starting at the base pointer.  If we found
3685  // consecutive loads for the low half, generate a vzext_load node.
3686  if (LastLoadedElt == NumElems - 1) {
3687    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
3688      return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3689                         LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3690                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
3691    return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3692                       LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3693                       LDBase->isVolatile(), LDBase->isNonTemporal(),
3694                       LDBase->getAlignment());
3695  } else if (NumElems == 4 && LastLoadedElt == 1) {
3696    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
3697    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
3698    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
3699    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
3700  }
3701  return SDValue();
3702}
3703
3704SDValue
3705X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3706  DebugLoc dl = Op.getDebugLoc();
3707  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3708  if (ISD::isBuildVectorAllZeros(Op.getNode())
3709      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3710    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3711    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3712    // eliminated on x86-32 hosts.
3713    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3714      return Op;
3715
3716    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3717      return getOnesVector(Op.getValueType(), DAG, dl);
3718    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3719  }
3720
3721  EVT VT = Op.getValueType();
3722  EVT ExtVT = VT.getVectorElementType();
3723  unsigned EVTBits = ExtVT.getSizeInBits();
3724
3725  unsigned NumElems = Op.getNumOperands();
3726  unsigned NumZero  = 0;
3727  unsigned NumNonZero = 0;
3728  unsigned NonZeros = 0;
3729  bool IsAllConstants = true;
3730  SmallSet<SDValue, 8> Values;
3731  for (unsigned i = 0; i < NumElems; ++i) {
3732    SDValue Elt = Op.getOperand(i);
3733    if (Elt.getOpcode() == ISD::UNDEF)
3734      continue;
3735    Values.insert(Elt);
3736    if (Elt.getOpcode() != ISD::Constant &&
3737        Elt.getOpcode() != ISD::ConstantFP)
3738      IsAllConstants = false;
3739    if (X86::isZeroNode(Elt))
3740      NumZero++;
3741    else {
3742      NonZeros |= (1 << i);
3743      NumNonZero++;
3744    }
3745  }
3746
3747  if (NumNonZero == 0) {
3748    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3749    return DAG.getUNDEF(VT);
3750  }
3751
3752  // Special case for single non-zero, non-undef, element.
3753  if (NumNonZero == 1) {
3754    unsigned Idx = CountTrailingZeros_32(NonZeros);
3755    SDValue Item = Op.getOperand(Idx);
3756
3757    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3758    // the value are obviously zero, truncate the value to i32 and do the
3759    // insertion that way.  Only do this if the value is non-constant or if the
3760    // value is a constant being inserted into element 0.  It is cheaper to do
3761    // a constant pool load than it is to do a movd + shuffle.
3762    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3763        (!IsAllConstants || Idx == 0)) {
3764      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3765        // Handle MMX and SSE both.
3766        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3767        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3768
3769        // Truncate the value (which may itself be a constant) to i32, and
3770        // convert it to a vector with movd (S2V+shuffle to zero extend).
3771        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3772        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3773        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3774                                           Subtarget->hasSSE2(), DAG);
3775
3776        // Now we have our 32-bit value zero extended in the low element of
3777        // a vector.  If Idx != 0, swizzle it into place.
3778        if (Idx != 0) {
3779          SmallVector<int, 4> Mask;
3780          Mask.push_back(Idx);
3781          for (unsigned i = 1; i != VecElts; ++i)
3782            Mask.push_back(i);
3783          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3784                                      DAG.getUNDEF(Item.getValueType()),
3785                                      &Mask[0]);
3786        }
3787        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3788      }
3789    }
3790
3791    // If we have a constant or non-constant insertion into the low element of
3792    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3793    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3794    // depending on what the source datatype is.
3795    if (Idx == 0) {
3796      if (NumZero == 0) {
3797        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3798      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3799          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3800        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3801        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3802        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3803                                           DAG);
3804      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3805        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3806        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3807        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3808        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3809                                           Subtarget->hasSSE2(), DAG);
3810        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3811      }
3812    }
3813
3814    // Is it a vector logical left shift?
3815    if (NumElems == 2 && Idx == 1 &&
3816        X86::isZeroNode(Op.getOperand(0)) &&
3817        !X86::isZeroNode(Op.getOperand(1))) {
3818      unsigned NumBits = VT.getSizeInBits();
3819      return getVShift(true, VT,
3820                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3821                                   VT, Op.getOperand(1)),
3822                       NumBits/2, DAG, *this, dl);
3823    }
3824
3825    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3826      return SDValue();
3827
3828    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3829    // is a non-constant being inserted into an element other than the low one,
3830    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3831    // movd/movss) to move this into the low element, then shuffle it into
3832    // place.
3833    if (EVTBits == 32) {
3834      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3835
3836      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3837      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3838                                         Subtarget->hasSSE2(), DAG);
3839      SmallVector<int, 8> MaskVec;
3840      for (unsigned i = 0; i < NumElems; i++)
3841        MaskVec.push_back(i == Idx ? 0 : 1);
3842      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3843    }
3844  }
3845
3846  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3847  if (Values.size() == 1) {
3848    if (EVTBits == 32) {
3849      // Instead of a shuffle like this:
3850      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
3851      // Check if it's possible to issue this instead.
3852      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
3853      unsigned Idx = CountTrailingZeros_32(NonZeros);
3854      SDValue Item = Op.getOperand(Idx);
3855      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
3856        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
3857    }
3858    return SDValue();
3859  }
3860
3861  // A vector full of immediates; various special cases are already
3862  // handled, so this is best done with a single constant-pool load.
3863  if (IsAllConstants)
3864    return SDValue();
3865
3866  // Let legalizer expand 2-wide build_vectors.
3867  if (EVTBits == 64) {
3868    if (NumNonZero == 1) {
3869      // One half is zero or undef.
3870      unsigned Idx = CountTrailingZeros_32(NonZeros);
3871      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3872                                 Op.getOperand(Idx));
3873      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3874                                         Subtarget->hasSSE2(), DAG);
3875    }
3876    return SDValue();
3877  }
3878
3879  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3880  if (EVTBits == 8 && NumElems == 16) {
3881    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3882                                        *this);
3883    if (V.getNode()) return V;
3884  }
3885
3886  if (EVTBits == 16 && NumElems == 8) {
3887    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3888                                        *this);
3889    if (V.getNode()) return V;
3890  }
3891
3892  // If element VT is == 32 bits, turn it into a number of shuffles.
3893  SmallVector<SDValue, 8> V;
3894  V.resize(NumElems);
3895  if (NumElems == 4 && NumZero > 0) {
3896    for (unsigned i = 0; i < 4; ++i) {
3897      bool isZero = !(NonZeros & (1 << i));
3898      if (isZero)
3899        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3900      else
3901        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3902    }
3903
3904    for (unsigned i = 0; i < 2; ++i) {
3905      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3906        default: break;
3907        case 0:
3908          V[i] = V[i*2];  // Must be a zero vector.
3909          break;
3910        case 1:
3911          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3912          break;
3913        case 2:
3914          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3915          break;
3916        case 3:
3917          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3918          break;
3919      }
3920    }
3921
3922    SmallVector<int, 8> MaskVec;
3923    bool Reverse = (NonZeros & 0x3) == 2;
3924    for (unsigned i = 0; i < 2; ++i)
3925      MaskVec.push_back(Reverse ? 1-i : i);
3926    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3927    for (unsigned i = 0; i < 2; ++i)
3928      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3929    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3930  }
3931
3932  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
3933    // Check for a build vector of consecutive loads.
3934    for (unsigned i = 0; i < NumElems; ++i)
3935      V[i] = Op.getOperand(i);
3936
3937    // Check for elements which are consecutive loads.
3938    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
3939    if (LD.getNode())
3940      return LD;
3941
3942    // For SSE 4.1, use inserts into undef.
3943    if (getSubtarget()->hasSSE41()) {
3944      V[0] = DAG.getUNDEF(VT);
3945      for (unsigned i = 0; i < NumElems; ++i)
3946        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3947          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3948                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3949      return V[0];
3950    }
3951
3952    // Otherwise, expand into a number of unpckl*
3953    // e.g. for v4f32
3954    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3955    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3956    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3957    for (unsigned i = 0; i < NumElems; ++i)
3958      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3959    NumElems >>= 1;
3960    while (NumElems != 0) {
3961      for (unsigned i = 0; i < NumElems; ++i)
3962        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3963      NumElems >>= 1;
3964    }
3965    return V[0];
3966  }
3967  return SDValue();
3968}
3969
3970SDValue
3971X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3972  // We support concatenate two MMX registers and place them in a MMX
3973  // register.  This is better than doing a stack convert.
3974  DebugLoc dl = Op.getDebugLoc();
3975  EVT ResVT = Op.getValueType();
3976  assert(Op.getNumOperands() == 2);
3977  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
3978         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
3979  int Mask[2];
3980  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
3981  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
3982  InVec = Op.getOperand(1);
3983  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3984    unsigned NumElts = ResVT.getVectorNumElements();
3985    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
3986    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
3987                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
3988  } else {
3989    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
3990    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
3991    Mask[0] = 0; Mask[1] = 2;
3992    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
3993  }
3994  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
3995}
3996
3997// v8i16 shuffles - Prefer shuffles in the following order:
3998// 1. [all]   pshuflw, pshufhw, optional move
3999// 2. [ssse3] 1 x pshufb
4000// 3. [ssse3] 2 x pshufb + 1 x por
4001// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4002static
4003SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
4004                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
4005  SDValue V1 = SVOp->getOperand(0);
4006  SDValue V2 = SVOp->getOperand(1);
4007  DebugLoc dl = SVOp->getDebugLoc();
4008  SmallVector<int, 8> MaskVals;
4009
4010  // Determine if more than 1 of the words in each of the low and high quadwords
4011  // of the result come from the same quadword of one of the two inputs.  Undef
4012  // mask values count as coming from any quadword, for better codegen.
4013  SmallVector<unsigned, 4> LoQuad(4);
4014  SmallVector<unsigned, 4> HiQuad(4);
4015  BitVector InputQuads(4);
4016  for (unsigned i = 0; i < 8; ++i) {
4017    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4018    int EltIdx = SVOp->getMaskElt(i);
4019    MaskVals.push_back(EltIdx);
4020    if (EltIdx < 0) {
4021      ++Quad[0];
4022      ++Quad[1];
4023      ++Quad[2];
4024      ++Quad[3];
4025      continue;
4026    }
4027    ++Quad[EltIdx / 4];
4028    InputQuads.set(EltIdx / 4);
4029  }
4030
4031  int BestLoQuad = -1;
4032  unsigned MaxQuad = 1;
4033  for (unsigned i = 0; i < 4; ++i) {
4034    if (LoQuad[i] > MaxQuad) {
4035      BestLoQuad = i;
4036      MaxQuad = LoQuad[i];
4037    }
4038  }
4039
4040  int BestHiQuad = -1;
4041  MaxQuad = 1;
4042  for (unsigned i = 0; i < 4; ++i) {
4043    if (HiQuad[i] > MaxQuad) {
4044      BestHiQuad = i;
4045      MaxQuad = HiQuad[i];
4046    }
4047  }
4048
4049  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4050  // of the two input vectors, shuffle them into one input vector so only a
4051  // single pshufb instruction is necessary. If There are more than 2 input
4052  // quads, disable the next transformation since it does not help SSSE3.
4053  bool V1Used = InputQuads[0] || InputQuads[1];
4054  bool V2Used = InputQuads[2] || InputQuads[3];
4055  if (TLI.getSubtarget()->hasSSSE3()) {
4056    if (InputQuads.count() == 2 && V1Used && V2Used) {
4057      BestLoQuad = InputQuads.find_first();
4058      BestHiQuad = InputQuads.find_next(BestLoQuad);
4059    }
4060    if (InputQuads.count() > 2) {
4061      BestLoQuad = -1;
4062      BestHiQuad = -1;
4063    }
4064  }
4065
4066  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4067  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4068  // words from all 4 input quadwords.
4069  SDValue NewV;
4070  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4071    SmallVector<int, 8> MaskV;
4072    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4073    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4074    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4075                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4076                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4077    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4078
4079    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4080    // source words for the shuffle, to aid later transformations.
4081    bool AllWordsInNewV = true;
4082    bool InOrder[2] = { true, true };
4083    for (unsigned i = 0; i != 8; ++i) {
4084      int idx = MaskVals[i];
4085      if (idx != (int)i)
4086        InOrder[i/4] = false;
4087      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4088        continue;
4089      AllWordsInNewV = false;
4090      break;
4091    }
4092
4093    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4094    if (AllWordsInNewV) {
4095      for (int i = 0; i != 8; ++i) {
4096        int idx = MaskVals[i];
4097        if (idx < 0)
4098          continue;
4099        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4100        if ((idx != i) && idx < 4)
4101          pshufhw = false;
4102        if ((idx != i) && idx > 3)
4103          pshuflw = false;
4104      }
4105      V1 = NewV;
4106      V2Used = false;
4107      BestLoQuad = 0;
4108      BestHiQuad = 1;
4109    }
4110
4111    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4112    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4113    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4114      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4115                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4116    }
4117  }
4118
4119  // If we have SSSE3, and all words of the result are from 1 input vector,
4120  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4121  // is present, fall back to case 4.
4122  if (TLI.getSubtarget()->hasSSSE3()) {
4123    SmallVector<SDValue,16> pshufbMask;
4124
4125    // If we have elements from both input vectors, set the high bit of the
4126    // shuffle mask element to zero out elements that come from V2 in the V1
4127    // mask, and elements that come from V1 in the V2 mask, so that the two
4128    // results can be OR'd together.
4129    bool TwoInputs = V1Used && V2Used;
4130    for (unsigned i = 0; i != 8; ++i) {
4131      int EltIdx = MaskVals[i] * 2;
4132      if (TwoInputs && (EltIdx >= 16)) {
4133        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4134        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4135        continue;
4136      }
4137      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4138      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4139    }
4140    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4141    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4142                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4143                                 MVT::v16i8, &pshufbMask[0], 16));
4144    if (!TwoInputs)
4145      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4146
4147    // Calculate the shuffle mask for the second input, shuffle it, and
4148    // OR it with the first shuffled input.
4149    pshufbMask.clear();
4150    for (unsigned i = 0; i != 8; ++i) {
4151      int EltIdx = MaskVals[i] * 2;
4152      if (EltIdx < 16) {
4153        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4154        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4155        continue;
4156      }
4157      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4158      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4159    }
4160    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4161    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4162                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4163                                 MVT::v16i8, &pshufbMask[0], 16));
4164    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4165    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4166  }
4167
4168  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4169  // and update MaskVals with new element order.
4170  BitVector InOrder(8);
4171  if (BestLoQuad >= 0) {
4172    SmallVector<int, 8> MaskV;
4173    for (int i = 0; i != 4; ++i) {
4174      int idx = MaskVals[i];
4175      if (idx < 0) {
4176        MaskV.push_back(-1);
4177        InOrder.set(i);
4178      } else if ((idx / 4) == BestLoQuad) {
4179        MaskV.push_back(idx & 3);
4180        InOrder.set(i);
4181      } else {
4182        MaskV.push_back(-1);
4183      }
4184    }
4185    for (unsigned i = 4; i != 8; ++i)
4186      MaskV.push_back(i);
4187    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4188                                &MaskV[0]);
4189  }
4190
4191  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4192  // and update MaskVals with the new element order.
4193  if (BestHiQuad >= 0) {
4194    SmallVector<int, 8> MaskV;
4195    for (unsigned i = 0; i != 4; ++i)
4196      MaskV.push_back(i);
4197    for (unsigned i = 4; i != 8; ++i) {
4198      int idx = MaskVals[i];
4199      if (idx < 0) {
4200        MaskV.push_back(-1);
4201        InOrder.set(i);
4202      } else if ((idx / 4) == BestHiQuad) {
4203        MaskV.push_back((idx & 3) + 4);
4204        InOrder.set(i);
4205      } else {
4206        MaskV.push_back(-1);
4207      }
4208    }
4209    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4210                                &MaskV[0]);
4211  }
4212
4213  // In case BestHi & BestLo were both -1, which means each quadword has a word
4214  // from each of the four input quadwords, calculate the InOrder bitvector now
4215  // before falling through to the insert/extract cleanup.
4216  if (BestLoQuad == -1 && BestHiQuad == -1) {
4217    NewV = V1;
4218    for (int i = 0; i != 8; ++i)
4219      if (MaskVals[i] < 0 || MaskVals[i] == i)
4220        InOrder.set(i);
4221  }
4222
4223  // The other elements are put in the right place using pextrw and pinsrw.
4224  for (unsigned i = 0; i != 8; ++i) {
4225    if (InOrder[i])
4226      continue;
4227    int EltIdx = MaskVals[i];
4228    if (EltIdx < 0)
4229      continue;
4230    SDValue ExtOp = (EltIdx < 8)
4231    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4232                  DAG.getIntPtrConstant(EltIdx))
4233    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4234                  DAG.getIntPtrConstant(EltIdx - 8));
4235    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4236                       DAG.getIntPtrConstant(i));
4237  }
4238  return NewV;
4239}
4240
4241// v16i8 shuffles - Prefer shuffles in the following order:
4242// 1. [ssse3] 1 x pshufb
4243// 2. [ssse3] 2 x pshufb + 1 x por
4244// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4245static
4246SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4247                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
4248  SDValue V1 = SVOp->getOperand(0);
4249  SDValue V2 = SVOp->getOperand(1);
4250  DebugLoc dl = SVOp->getDebugLoc();
4251  SmallVector<int, 16> MaskVals;
4252  SVOp->getMask(MaskVals);
4253
4254  // If we have SSSE3, case 1 is generated when all result bytes come from
4255  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4256  // present, fall back to case 3.
4257  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4258  bool V1Only = true;
4259  bool V2Only = true;
4260  for (unsigned i = 0; i < 16; ++i) {
4261    int EltIdx = MaskVals[i];
4262    if (EltIdx < 0)
4263      continue;
4264    if (EltIdx < 16)
4265      V2Only = false;
4266    else
4267      V1Only = false;
4268  }
4269
4270  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4271  if (TLI.getSubtarget()->hasSSSE3()) {
4272    SmallVector<SDValue,16> pshufbMask;
4273
4274    // If all result elements are from one input vector, then only translate
4275    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4276    //
4277    // Otherwise, we have elements from both input vectors, and must zero out
4278    // elements that come from V2 in the first mask, and V1 in the second mask
4279    // so that we can OR them together.
4280    bool TwoInputs = !(V1Only || V2Only);
4281    for (unsigned i = 0; i != 16; ++i) {
4282      int EltIdx = MaskVals[i];
4283      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4284        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4285        continue;
4286      }
4287      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4288    }
4289    // If all the elements are from V2, assign it to V1 and return after
4290    // building the first pshufb.
4291    if (V2Only)
4292      V1 = V2;
4293    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4294                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4295                                 MVT::v16i8, &pshufbMask[0], 16));
4296    if (!TwoInputs)
4297      return V1;
4298
4299    // Calculate the shuffle mask for the second input, shuffle it, and
4300    // OR it with the first shuffled input.
4301    pshufbMask.clear();
4302    for (unsigned i = 0; i != 16; ++i) {
4303      int EltIdx = MaskVals[i];
4304      if (EltIdx < 16) {
4305        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4306        continue;
4307      }
4308      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4309    }
4310    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4311                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4312                                 MVT::v16i8, &pshufbMask[0], 16));
4313    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4314  }
4315
4316  // No SSSE3 - Calculate in place words and then fix all out of place words
4317  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4318  // the 16 different words that comprise the two doublequadword input vectors.
4319  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4320  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4321  SDValue NewV = V2Only ? V2 : V1;
4322  for (int i = 0; i != 8; ++i) {
4323    int Elt0 = MaskVals[i*2];
4324    int Elt1 = MaskVals[i*2+1];
4325
4326    // This word of the result is all undef, skip it.
4327    if (Elt0 < 0 && Elt1 < 0)
4328      continue;
4329
4330    // This word of the result is already in the correct place, skip it.
4331    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4332      continue;
4333    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4334      continue;
4335
4336    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4337    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4338    SDValue InsElt;
4339
4340    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4341    // using a single extract together, load it and store it.
4342    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4343      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4344                           DAG.getIntPtrConstant(Elt1 / 2));
4345      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4346                        DAG.getIntPtrConstant(i));
4347      continue;
4348    }
4349
4350    // If Elt1 is defined, extract it from the appropriate source.  If the
4351    // source byte is not also odd, shift the extracted word left 8 bits
4352    // otherwise clear the bottom 8 bits if we need to do an or.
4353    if (Elt1 >= 0) {
4354      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4355                           DAG.getIntPtrConstant(Elt1 / 2));
4356      if ((Elt1 & 1) == 0)
4357        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4358                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4359      else if (Elt0 >= 0)
4360        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4361                             DAG.getConstant(0xFF00, MVT::i16));
4362    }
4363    // If Elt0 is defined, extract it from the appropriate source.  If the
4364    // source byte is not also even, shift the extracted word right 8 bits. If
4365    // Elt1 was also defined, OR the extracted values together before
4366    // inserting them in the result.
4367    if (Elt0 >= 0) {
4368      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4369                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4370      if ((Elt0 & 1) != 0)
4371        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4372                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4373      else if (Elt1 >= 0)
4374        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4375                             DAG.getConstant(0x00FF, MVT::i16));
4376      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4377                         : InsElt0;
4378    }
4379    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4380                       DAG.getIntPtrConstant(i));
4381  }
4382  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4383}
4384
4385/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4386/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
4387/// done when every pair / quad of shuffle mask elements point to elements in
4388/// the right sequence. e.g.
4389/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4390static
4391SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4392                                 SelectionDAG &DAG,
4393                                 TargetLowering &TLI, DebugLoc dl) {
4394  EVT VT = SVOp->getValueType(0);
4395  SDValue V1 = SVOp->getOperand(0);
4396  SDValue V2 = SVOp->getOperand(1);
4397  unsigned NumElems = VT.getVectorNumElements();
4398  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4399  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
4400  EVT MaskEltVT = MaskVT.getVectorElementType();
4401  EVT NewVT = MaskVT;
4402  switch (VT.getSimpleVT().SimpleTy) {
4403  default: assert(false && "Unexpected!");
4404  case MVT::v4f32: NewVT = MVT::v2f64; break;
4405  case MVT::v4i32: NewVT = MVT::v2i64; break;
4406  case MVT::v8i16: NewVT = MVT::v4i32; break;
4407  case MVT::v16i8: NewVT = MVT::v4i32; break;
4408  }
4409
4410  if (NewWidth == 2) {
4411    if (VT.isInteger())
4412      NewVT = MVT::v2i64;
4413    else
4414      NewVT = MVT::v2f64;
4415  }
4416  int Scale = NumElems / NewWidth;
4417  SmallVector<int, 8> MaskVec;
4418  for (unsigned i = 0; i < NumElems; i += Scale) {
4419    int StartIdx = -1;
4420    for (int j = 0; j < Scale; ++j) {
4421      int EltIdx = SVOp->getMaskElt(i+j);
4422      if (EltIdx < 0)
4423        continue;
4424      if (StartIdx == -1)
4425        StartIdx = EltIdx - (EltIdx % Scale);
4426      if (EltIdx != StartIdx + j)
4427        return SDValue();
4428    }
4429    if (StartIdx == -1)
4430      MaskVec.push_back(-1);
4431    else
4432      MaskVec.push_back(StartIdx / Scale);
4433  }
4434
4435  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4436  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4437  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4438}
4439
4440/// getVZextMovL - Return a zero-extending vector move low node.
4441///
4442static SDValue getVZextMovL(EVT VT, EVT OpVT,
4443                            SDValue SrcOp, SelectionDAG &DAG,
4444                            const X86Subtarget *Subtarget, DebugLoc dl) {
4445  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4446    LoadSDNode *LD = NULL;
4447    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4448      LD = dyn_cast<LoadSDNode>(SrcOp);
4449    if (!LD) {
4450      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4451      // instead.
4452      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4453      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4454          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4455          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4456          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4457        // PR2108
4458        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4459        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4460                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4461                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4462                                                   OpVT,
4463                                                   SrcOp.getOperand(0)
4464                                                          .getOperand(0))));
4465      }
4466    }
4467  }
4468
4469  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4470                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4471                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4472                                             OpVT, SrcOp)));
4473}
4474
4475/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4476/// shuffles.
4477static SDValue
4478LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4479  SDValue V1 = SVOp->getOperand(0);
4480  SDValue V2 = SVOp->getOperand(1);
4481  DebugLoc dl = SVOp->getDebugLoc();
4482  EVT VT = SVOp->getValueType(0);
4483
4484  SmallVector<std::pair<int, int>, 8> Locs;
4485  Locs.resize(4);
4486  SmallVector<int, 8> Mask1(4U, -1);
4487  SmallVector<int, 8> PermMask;
4488  SVOp->getMask(PermMask);
4489
4490  unsigned NumHi = 0;
4491  unsigned NumLo = 0;
4492  for (unsigned i = 0; i != 4; ++i) {
4493    int Idx = PermMask[i];
4494    if (Idx < 0) {
4495      Locs[i] = std::make_pair(-1, -1);
4496    } else {
4497      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4498      if (Idx < 4) {
4499        Locs[i] = std::make_pair(0, NumLo);
4500        Mask1[NumLo] = Idx;
4501        NumLo++;
4502      } else {
4503        Locs[i] = std::make_pair(1, NumHi);
4504        if (2+NumHi < 4)
4505          Mask1[2+NumHi] = Idx;
4506        NumHi++;
4507      }
4508    }
4509  }
4510
4511  if (NumLo <= 2 && NumHi <= 2) {
4512    // If no more than two elements come from either vector. This can be
4513    // implemented with two shuffles. First shuffle gather the elements.
4514    // The second shuffle, which takes the first shuffle as both of its
4515    // vector operands, put the elements into the right order.
4516    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4517
4518    SmallVector<int, 8> Mask2(4U, -1);
4519
4520    for (unsigned i = 0; i != 4; ++i) {
4521      if (Locs[i].first == -1)
4522        continue;
4523      else {
4524        unsigned Idx = (i < 2) ? 0 : 4;
4525        Idx += Locs[i].first * 2 + Locs[i].second;
4526        Mask2[i] = Idx;
4527      }
4528    }
4529
4530    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4531  } else if (NumLo == 3 || NumHi == 3) {
4532    // Otherwise, we must have three elements from one vector, call it X, and
4533    // one element from the other, call it Y.  First, use a shufps to build an
4534    // intermediate vector with the one element from Y and the element from X
4535    // that will be in the same half in the final destination (the indexes don't
4536    // matter). Then, use a shufps to build the final vector, taking the half
4537    // containing the element from Y from the intermediate, and the other half
4538    // from X.
4539    if (NumHi == 3) {
4540      // Normalize it so the 3 elements come from V1.
4541      CommuteVectorShuffleMask(PermMask, VT);
4542      std::swap(V1, V2);
4543    }
4544
4545    // Find the element from V2.
4546    unsigned HiIndex;
4547    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4548      int Val = PermMask[HiIndex];
4549      if (Val < 0)
4550        continue;
4551      if (Val >= 4)
4552        break;
4553    }
4554
4555    Mask1[0] = PermMask[HiIndex];
4556    Mask1[1] = -1;
4557    Mask1[2] = PermMask[HiIndex^1];
4558    Mask1[3] = -1;
4559    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4560
4561    if (HiIndex >= 2) {
4562      Mask1[0] = PermMask[0];
4563      Mask1[1] = PermMask[1];
4564      Mask1[2] = HiIndex & 1 ? 6 : 4;
4565      Mask1[3] = HiIndex & 1 ? 4 : 6;
4566      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4567    } else {
4568      Mask1[0] = HiIndex & 1 ? 2 : 0;
4569      Mask1[1] = HiIndex & 1 ? 0 : 2;
4570      Mask1[2] = PermMask[2];
4571      Mask1[3] = PermMask[3];
4572      if (Mask1[2] >= 0)
4573        Mask1[2] += 4;
4574      if (Mask1[3] >= 0)
4575        Mask1[3] += 4;
4576      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4577    }
4578  }
4579
4580  // Break it into (shuffle shuffle_hi, shuffle_lo).
4581  Locs.clear();
4582  SmallVector<int,8> LoMask(4U, -1);
4583  SmallVector<int,8> HiMask(4U, -1);
4584
4585  SmallVector<int,8> *MaskPtr = &LoMask;
4586  unsigned MaskIdx = 0;
4587  unsigned LoIdx = 0;
4588  unsigned HiIdx = 2;
4589  for (unsigned i = 0; i != 4; ++i) {
4590    if (i == 2) {
4591      MaskPtr = &HiMask;
4592      MaskIdx = 1;
4593      LoIdx = 0;
4594      HiIdx = 2;
4595    }
4596    int Idx = PermMask[i];
4597    if (Idx < 0) {
4598      Locs[i] = std::make_pair(-1, -1);
4599    } else if (Idx < 4) {
4600      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4601      (*MaskPtr)[LoIdx] = Idx;
4602      LoIdx++;
4603    } else {
4604      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4605      (*MaskPtr)[HiIdx] = Idx;
4606      HiIdx++;
4607    }
4608  }
4609
4610  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4611  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4612  SmallVector<int, 8> MaskOps;
4613  for (unsigned i = 0; i != 4; ++i) {
4614    if (Locs[i].first == -1) {
4615      MaskOps.push_back(-1);
4616    } else {
4617      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4618      MaskOps.push_back(Idx);
4619    }
4620  }
4621  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4622}
4623
4624SDValue
4625X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4626  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4627  SDValue V1 = Op.getOperand(0);
4628  SDValue V2 = Op.getOperand(1);
4629  EVT VT = Op.getValueType();
4630  DebugLoc dl = Op.getDebugLoc();
4631  unsigned NumElems = VT.getVectorNumElements();
4632  bool isMMX = VT.getSizeInBits() == 64;
4633  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4634  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4635  bool V1IsSplat = false;
4636  bool V2IsSplat = false;
4637
4638  if (isZeroShuffle(SVOp))
4639    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4640
4641  // Promote splats to v4f32.
4642  if (SVOp->isSplat()) {
4643    if (isMMX || NumElems < 4)
4644      return Op;
4645    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4646  }
4647
4648  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4649  // do it!
4650  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4651    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4652    if (NewOp.getNode())
4653      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4654                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4655  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4656    // FIXME: Figure out a cleaner way to do this.
4657    // Try to make use of movq to zero out the top part.
4658    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4659      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4660      if (NewOp.getNode()) {
4661        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4662          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4663                              DAG, Subtarget, dl);
4664      }
4665    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4666      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4667      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4668        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4669                            DAG, Subtarget, dl);
4670    }
4671  }
4672
4673  if (X86::isPSHUFDMask(SVOp))
4674    return Op;
4675
4676  // Check if this can be converted into a logical shift.
4677  bool isLeft = false;
4678  unsigned ShAmt = 0;
4679  SDValue ShVal;
4680  bool isShift = getSubtarget()->hasSSE2() &&
4681    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4682  if (isShift && ShVal.hasOneUse()) {
4683    // If the shifted value has multiple uses, it may be cheaper to use
4684    // v_set0 + movlhps or movhlps, etc.
4685    EVT EltVT = VT.getVectorElementType();
4686    ShAmt *= EltVT.getSizeInBits();
4687    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4688  }
4689
4690  if (X86::isMOVLMask(SVOp)) {
4691    if (V1IsUndef)
4692      return V2;
4693    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4694      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4695    if (!isMMX)
4696      return Op;
4697  }
4698
4699  // FIXME: fold these into legal mask.
4700  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4701                 X86::isMOVSLDUPMask(SVOp) ||
4702                 X86::isMOVHLPSMask(SVOp) ||
4703                 X86::isMOVLHPSMask(SVOp) ||
4704                 X86::isMOVLPMask(SVOp)))
4705    return Op;
4706
4707  if (ShouldXformToMOVHLPS(SVOp) ||
4708      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4709    return CommuteVectorShuffle(SVOp, DAG);
4710
4711  if (isShift) {
4712    // No better options. Use a vshl / vsrl.
4713    EVT EltVT = VT.getVectorElementType();
4714    ShAmt *= EltVT.getSizeInBits();
4715    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4716  }
4717
4718  bool Commuted = false;
4719  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4720  // 1,1,1,1 -> v8i16 though.
4721  V1IsSplat = isSplatVector(V1.getNode());
4722  V2IsSplat = isSplatVector(V2.getNode());
4723
4724  // Canonicalize the splat or undef, if present, to be on the RHS.
4725  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4726    Op = CommuteVectorShuffle(SVOp, DAG);
4727    SVOp = cast<ShuffleVectorSDNode>(Op);
4728    V1 = SVOp->getOperand(0);
4729    V2 = SVOp->getOperand(1);
4730    std::swap(V1IsSplat, V2IsSplat);
4731    std::swap(V1IsUndef, V2IsUndef);
4732    Commuted = true;
4733  }
4734
4735  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4736    // Shuffling low element of v1 into undef, just return v1.
4737    if (V2IsUndef)
4738      return V1;
4739    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4740    // the instruction selector will not match, so get a canonical MOVL with
4741    // swapped operands to undo the commute.
4742    return getMOVL(DAG, dl, VT, V2, V1);
4743  }
4744
4745  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4746      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4747      X86::isUNPCKLMask(SVOp) ||
4748      X86::isUNPCKHMask(SVOp))
4749    return Op;
4750
4751  if (V2IsSplat) {
4752    // Normalize mask so all entries that point to V2 points to its first
4753    // element then try to match unpck{h|l} again. If match, return a
4754    // new vector_shuffle with the corrected mask.
4755    SDValue NewMask = NormalizeMask(SVOp, DAG);
4756    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4757    if (NSVOp != SVOp) {
4758      if (X86::isUNPCKLMask(NSVOp, true)) {
4759        return NewMask;
4760      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4761        return NewMask;
4762      }
4763    }
4764  }
4765
4766  if (Commuted) {
4767    // Commute is back and try unpck* again.
4768    // FIXME: this seems wrong.
4769    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4770    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4771    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4772        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4773        X86::isUNPCKLMask(NewSVOp) ||
4774        X86::isUNPCKHMask(NewSVOp))
4775      return NewOp;
4776  }
4777
4778  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4779
4780  // Normalize the node to match x86 shuffle ops if needed
4781  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4782    return CommuteVectorShuffle(SVOp, DAG);
4783
4784  // Check for legal shuffle and return?
4785  SmallVector<int, 16> PermMask;
4786  SVOp->getMask(PermMask);
4787  if (isShuffleMaskLegal(PermMask, VT))
4788    return Op;
4789
4790  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4791  if (VT == MVT::v8i16) {
4792    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4793    if (NewOp.getNode())
4794      return NewOp;
4795  }
4796
4797  if (VT == MVT::v16i8) {
4798    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4799    if (NewOp.getNode())
4800      return NewOp;
4801  }
4802
4803  // Handle all 4 wide cases with a number of shuffles except for MMX.
4804  if (NumElems == 4 && !isMMX)
4805    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4806
4807  return SDValue();
4808}
4809
4810SDValue
4811X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4812                                                SelectionDAG &DAG) {
4813  EVT VT = Op.getValueType();
4814  DebugLoc dl = Op.getDebugLoc();
4815  if (VT.getSizeInBits() == 8) {
4816    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4817                                    Op.getOperand(0), Op.getOperand(1));
4818    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4819                                    DAG.getValueType(VT));
4820    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4821  } else if (VT.getSizeInBits() == 16) {
4822    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4823    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4824    if (Idx == 0)
4825      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4826                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4827                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4828                                                 MVT::v4i32,
4829                                                 Op.getOperand(0)),
4830                                     Op.getOperand(1)));
4831    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4832                                    Op.getOperand(0), Op.getOperand(1));
4833    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4834                                    DAG.getValueType(VT));
4835    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4836  } else if (VT == MVT::f32) {
4837    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4838    // the result back to FR32 register. It's only worth matching if the
4839    // result has a single use which is a store or a bitcast to i32.  And in
4840    // the case of a store, it's not worth it if the index is a constant 0,
4841    // because a MOVSSmr can be used instead, which is smaller and faster.
4842    if (!Op.hasOneUse())
4843      return SDValue();
4844    SDNode *User = *Op.getNode()->use_begin();
4845    if ((User->getOpcode() != ISD::STORE ||
4846         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4847          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4848        (User->getOpcode() != ISD::BIT_CONVERT ||
4849         User->getValueType(0) != MVT::i32))
4850      return SDValue();
4851    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4852                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4853                                              Op.getOperand(0)),
4854                                              Op.getOperand(1));
4855    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4856  } else if (VT == MVT::i32) {
4857    // ExtractPS works with constant index.
4858    if (isa<ConstantSDNode>(Op.getOperand(1)))
4859      return Op;
4860  }
4861  return SDValue();
4862}
4863
4864
4865SDValue
4866X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4867  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4868    return SDValue();
4869
4870  if (Subtarget->hasSSE41()) {
4871    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4872    if (Res.getNode())
4873      return Res;
4874  }
4875
4876  EVT VT = Op.getValueType();
4877  DebugLoc dl = Op.getDebugLoc();
4878  // TODO: handle v16i8.
4879  if (VT.getSizeInBits() == 16) {
4880    SDValue Vec = Op.getOperand(0);
4881    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4882    if (Idx == 0)
4883      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4884                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4885                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4886                                                 MVT::v4i32, Vec),
4887                                     Op.getOperand(1)));
4888    // Transform it so it match pextrw which produces a 32-bit result.
4889    EVT EltVT = MVT::i32;
4890    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
4891                                    Op.getOperand(0), Op.getOperand(1));
4892    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
4893                                    DAG.getValueType(VT));
4894    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4895  } else if (VT.getSizeInBits() == 32) {
4896    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4897    if (Idx == 0)
4898      return Op;
4899
4900    // SHUFPS the element to the lowest double word, then movss.
4901    int Mask[4] = { Idx, -1, -1, -1 };
4902    EVT VVT = Op.getOperand(0).getValueType();
4903    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4904                                       DAG.getUNDEF(VVT), Mask);
4905    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4906                       DAG.getIntPtrConstant(0));
4907  } else if (VT.getSizeInBits() == 64) {
4908    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4909    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4910    //        to match extract_elt for f64.
4911    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4912    if (Idx == 0)
4913      return Op;
4914
4915    // UNPCKHPD the element to the lowest double word, then movsd.
4916    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4917    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4918    int Mask[2] = { 1, -1 };
4919    EVT VVT = Op.getOperand(0).getValueType();
4920    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4921                                       DAG.getUNDEF(VVT), Mask);
4922    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4923                       DAG.getIntPtrConstant(0));
4924  }
4925
4926  return SDValue();
4927}
4928
4929SDValue
4930X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4931  EVT VT = Op.getValueType();
4932  EVT EltVT = VT.getVectorElementType();
4933  DebugLoc dl = Op.getDebugLoc();
4934
4935  SDValue N0 = Op.getOperand(0);
4936  SDValue N1 = Op.getOperand(1);
4937  SDValue N2 = Op.getOperand(2);
4938
4939  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
4940      isa<ConstantSDNode>(N2)) {
4941    unsigned Opc;
4942    if (VT == MVT::v8i16)
4943      Opc = X86ISD::PINSRW;
4944    else if (VT == MVT::v4i16)
4945      Opc = X86ISD::MMX_PINSRW;
4946    else if (VT == MVT::v16i8)
4947      Opc = X86ISD::PINSRB;
4948    else
4949      Opc = X86ISD::PINSRB;
4950
4951    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4952    // argument.
4953    if (N1.getValueType() != MVT::i32)
4954      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4955    if (N2.getValueType() != MVT::i32)
4956      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4957    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4958  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4959    // Bits [7:6] of the constant are the source select.  This will always be
4960    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4961    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4962    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4963    // Bits [5:4] of the constant are the destination select.  This is the
4964    //  value of the incoming immediate.
4965    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4966    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4967    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4968    // Create this as a scalar to vector..
4969    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
4970    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4971  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
4972    // PINSR* works with constant index.
4973    return Op;
4974  }
4975  return SDValue();
4976}
4977
4978SDValue
4979X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4980  EVT VT = Op.getValueType();
4981  EVT EltVT = VT.getVectorElementType();
4982
4983  if (Subtarget->hasSSE41())
4984    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4985
4986  if (EltVT == MVT::i8)
4987    return SDValue();
4988
4989  DebugLoc dl = Op.getDebugLoc();
4990  SDValue N0 = Op.getOperand(0);
4991  SDValue N1 = Op.getOperand(1);
4992  SDValue N2 = Op.getOperand(2);
4993
4994  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4995    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4996    // as its second argument.
4997    if (N1.getValueType() != MVT::i32)
4998      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4999    if (N2.getValueType() != MVT::i32)
5000      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5001    return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW,
5002                       dl, VT, N0, N1, N2);
5003  }
5004  return SDValue();
5005}
5006
5007SDValue
5008X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
5009  DebugLoc dl = Op.getDebugLoc();
5010  if (Op.getValueType() == MVT::v2f32)
5011    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
5012                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
5013                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
5014                                               Op.getOperand(0))));
5015
5016  if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
5017    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5018
5019  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5020  EVT VT = MVT::v2i32;
5021  switch (Op.getValueType().getSimpleVT().SimpleTy) {
5022  default: break;
5023  case MVT::v16i8:
5024  case MVT::v8i16:
5025    VT = MVT::v4i32;
5026    break;
5027  }
5028  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5029                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
5030}
5031
5032// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5033// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5034// one of the above mentioned nodes. It has to be wrapped because otherwise
5035// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5036// be used to form addressing mode. These wrapped nodes will be selected
5037// into MOV32ri.
5038SDValue
5039X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
5040  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5041
5042  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5043  // global base reg.
5044  unsigned char OpFlag = 0;
5045  unsigned WrapperKind = X86ISD::Wrapper;
5046  CodeModel::Model M = getTargetMachine().getCodeModel();
5047
5048  if (Subtarget->isPICStyleRIPRel() &&
5049      (M == CodeModel::Small || M == CodeModel::Kernel))
5050    WrapperKind = X86ISD::WrapperRIP;
5051  else if (Subtarget->isPICStyleGOT())
5052    OpFlag = X86II::MO_GOTOFF;
5053  else if (Subtarget->isPICStyleStubPIC())
5054    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5055
5056  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5057                                             CP->getAlignment(),
5058                                             CP->getOffset(), OpFlag);
5059  DebugLoc DL = CP->getDebugLoc();
5060  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5061  // With PIC, the address is actually $g + Offset.
5062  if (OpFlag) {
5063    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5064                         DAG.getNode(X86ISD::GlobalBaseReg,
5065                                     DebugLoc::getUnknownLoc(), getPointerTy()),
5066                         Result);
5067  }
5068
5069  return Result;
5070}
5071
5072SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
5073  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5074
5075  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5076  // global base reg.
5077  unsigned char OpFlag = 0;
5078  unsigned WrapperKind = X86ISD::Wrapper;
5079  CodeModel::Model M = getTargetMachine().getCodeModel();
5080
5081  if (Subtarget->isPICStyleRIPRel() &&
5082      (M == CodeModel::Small || M == CodeModel::Kernel))
5083    WrapperKind = X86ISD::WrapperRIP;
5084  else if (Subtarget->isPICStyleGOT())
5085    OpFlag = X86II::MO_GOTOFF;
5086  else if (Subtarget->isPICStyleStubPIC())
5087    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5088
5089  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5090                                          OpFlag);
5091  DebugLoc DL = JT->getDebugLoc();
5092  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5093
5094  // With PIC, the address is actually $g + Offset.
5095  if (OpFlag) {
5096    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5097                         DAG.getNode(X86ISD::GlobalBaseReg,
5098                                     DebugLoc::getUnknownLoc(), getPointerTy()),
5099                         Result);
5100  }
5101
5102  return Result;
5103}
5104
5105SDValue
5106X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
5107  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5108
5109  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5110  // global base reg.
5111  unsigned char OpFlag = 0;
5112  unsigned WrapperKind = X86ISD::Wrapper;
5113  CodeModel::Model M = getTargetMachine().getCodeModel();
5114
5115  if (Subtarget->isPICStyleRIPRel() &&
5116      (M == CodeModel::Small || M == CodeModel::Kernel))
5117    WrapperKind = X86ISD::WrapperRIP;
5118  else if (Subtarget->isPICStyleGOT())
5119    OpFlag = X86II::MO_GOTOFF;
5120  else if (Subtarget->isPICStyleStubPIC())
5121    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5122
5123  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5124
5125  DebugLoc DL = Op.getDebugLoc();
5126  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5127
5128
5129  // With PIC, the address is actually $g + Offset.
5130  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5131      !Subtarget->is64Bit()) {
5132    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5133                         DAG.getNode(X86ISD::GlobalBaseReg,
5134                                     DebugLoc::getUnknownLoc(),
5135                                     getPointerTy()),
5136                         Result);
5137  }
5138
5139  return Result;
5140}
5141
5142SDValue
5143X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
5144  // Create the TargetBlockAddressAddress node.
5145  unsigned char OpFlags =
5146    Subtarget->ClassifyBlockAddressReference();
5147  CodeModel::Model M = getTargetMachine().getCodeModel();
5148  BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5149  DebugLoc dl = Op.getDebugLoc();
5150  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5151                                       /*isTarget=*/true, OpFlags);
5152
5153  if (Subtarget->isPICStyleRIPRel() &&
5154      (M == CodeModel::Small || M == CodeModel::Kernel))
5155    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5156  else
5157    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5158
5159  // With PIC, the address is actually $g + Offset.
5160  if (isGlobalRelativeToPICBase(OpFlags)) {
5161    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5162                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5163                         Result);
5164  }
5165
5166  return Result;
5167}
5168
5169SDValue
5170X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5171                                      int64_t Offset,
5172                                      SelectionDAG &DAG) const {
5173  // Create the TargetGlobalAddress node, folding in the constant
5174  // offset if it is legal.
5175  unsigned char OpFlags =
5176    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5177  CodeModel::Model M = getTargetMachine().getCodeModel();
5178  SDValue Result;
5179  if (OpFlags == X86II::MO_NO_FLAG &&
5180      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5181    // A direct static reference to a global.
5182    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
5183    Offset = 0;
5184  } else {
5185    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
5186  }
5187
5188  if (Subtarget->isPICStyleRIPRel() &&
5189      (M == CodeModel::Small || M == CodeModel::Kernel))
5190    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5191  else
5192    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5193
5194  // With PIC, the address is actually $g + Offset.
5195  if (isGlobalRelativeToPICBase(OpFlags)) {
5196    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5197                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5198                         Result);
5199  }
5200
5201  // For globals that require a load from a stub to get the address, emit the
5202  // load.
5203  if (isGlobalStubReference(OpFlags))
5204    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5205                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5206
5207  // If there was a non-zero offset that we didn't fold, create an explicit
5208  // addition for it.
5209  if (Offset != 0)
5210    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5211                         DAG.getConstant(Offset, getPointerTy()));
5212
5213  return Result;
5214}
5215
5216SDValue
5217X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
5218  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5219  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5220  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5221}
5222
5223static SDValue
5224GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5225           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5226           unsigned char OperandFlags) {
5227  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5228  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5229  DebugLoc dl = GA->getDebugLoc();
5230  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
5231                                           GA->getValueType(0),
5232                                           GA->getOffset(),
5233                                           OperandFlags);
5234  if (InFlag) {
5235    SDValue Ops[] = { Chain,  TGA, *InFlag };
5236    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5237  } else {
5238    SDValue Ops[]  = { Chain, TGA };
5239    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5240  }
5241
5242  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5243  MFI->setHasCalls(true);
5244
5245  SDValue Flag = Chain.getValue(1);
5246  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5247}
5248
5249// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5250static SDValue
5251LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5252                                const EVT PtrVT) {
5253  SDValue InFlag;
5254  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5255  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5256                                     DAG.getNode(X86ISD::GlobalBaseReg,
5257                                                 DebugLoc::getUnknownLoc(),
5258                                                 PtrVT), InFlag);
5259  InFlag = Chain.getValue(1);
5260
5261  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5262}
5263
5264// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5265static SDValue
5266LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5267                                const EVT PtrVT) {
5268  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5269                    X86::RAX, X86II::MO_TLSGD);
5270}
5271
5272// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5273// "local exec" model.
5274static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5275                                   const EVT PtrVT, TLSModel::Model model,
5276                                   bool is64Bit) {
5277  DebugLoc dl = GA->getDebugLoc();
5278  // Get the Thread Pointer
5279  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5280                             DebugLoc::getUnknownLoc(), PtrVT,
5281                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5282                                             MVT::i32));
5283
5284  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5285                                      NULL, 0, false, false, 0);
5286
5287  unsigned char OperandFlags = 0;
5288  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5289  // initialexec.
5290  unsigned WrapperKind = X86ISD::Wrapper;
5291  if (model == TLSModel::LocalExec) {
5292    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5293  } else if (is64Bit) {
5294    assert(model == TLSModel::InitialExec);
5295    OperandFlags = X86II::MO_GOTTPOFF;
5296    WrapperKind = X86ISD::WrapperRIP;
5297  } else {
5298    assert(model == TLSModel::InitialExec);
5299    OperandFlags = X86II::MO_INDNTPOFF;
5300  }
5301
5302  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5303  // exec)
5304  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5305                                           GA->getOffset(), OperandFlags);
5306  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5307
5308  if (model == TLSModel::InitialExec)
5309    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5310                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5311
5312  // The address of the thread local variable is the add of the thread
5313  // pointer with the offset of the variable.
5314  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5315}
5316
5317SDValue
5318X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
5319  // TODO: implement the "local dynamic" model
5320  // TODO: implement the "initial exec"model for pic executables
5321  assert(Subtarget->isTargetELF() &&
5322         "TLS not implemented for non-ELF targets");
5323  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5324  const GlobalValue *GV = GA->getGlobal();
5325
5326  // If GV is an alias then use the aliasee for determining
5327  // thread-localness.
5328  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5329    GV = GA->resolveAliasedGlobal(false);
5330
5331  TLSModel::Model model = getTLSModel(GV,
5332                                      getTargetMachine().getRelocationModel());
5333
5334  switch (model) {
5335  case TLSModel::GeneralDynamic:
5336  case TLSModel::LocalDynamic: // not implemented
5337    if (Subtarget->is64Bit())
5338      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5339    return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5340
5341  case TLSModel::InitialExec:
5342  case TLSModel::LocalExec:
5343    return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5344                               Subtarget->is64Bit());
5345  }
5346
5347  llvm_unreachable("Unreachable");
5348  return SDValue();
5349}
5350
5351
5352/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5353/// take a 2 x i32 value to shift plus a shift amount.
5354SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
5355  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5356  EVT VT = Op.getValueType();
5357  unsigned VTBits = VT.getSizeInBits();
5358  DebugLoc dl = Op.getDebugLoc();
5359  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5360  SDValue ShOpLo = Op.getOperand(0);
5361  SDValue ShOpHi = Op.getOperand(1);
5362  SDValue ShAmt  = Op.getOperand(2);
5363  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5364                                     DAG.getConstant(VTBits - 1, MVT::i8))
5365                       : DAG.getConstant(0, VT);
5366
5367  SDValue Tmp2, Tmp3;
5368  if (Op.getOpcode() == ISD::SHL_PARTS) {
5369    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
5370    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5371  } else {
5372    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
5373    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
5374  }
5375
5376  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
5377                                DAG.getConstant(VTBits, MVT::i8));
5378  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
5379                             AndNode, DAG.getConstant(0, MVT::i8));
5380
5381  SDValue Hi, Lo;
5382  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5383  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
5384  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
5385
5386  if (Op.getOpcode() == ISD::SHL_PARTS) {
5387    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5388    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5389  } else {
5390    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5391    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5392  }
5393
5394  SDValue Ops[2] = { Lo, Hi };
5395  return DAG.getMergeValues(Ops, 2, dl);
5396}
5397
5398SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5399  EVT SrcVT = Op.getOperand(0).getValueType();
5400
5401  if (SrcVT.isVector()) {
5402    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
5403      return Op;
5404    }
5405    return SDValue();
5406  }
5407
5408  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
5409         "Unknown SINT_TO_FP to lower!");
5410
5411  // These are really Legal; return the operand so the caller accepts it as
5412  // Legal.
5413  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
5414    return Op;
5415  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
5416      Subtarget->is64Bit()) {
5417    return Op;
5418  }
5419
5420  DebugLoc dl = Op.getDebugLoc();
5421  unsigned Size = SrcVT.getSizeInBits()/8;
5422  MachineFunction &MF = DAG.getMachineFunction();
5423  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
5424  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5425  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5426                               StackSlot,
5427                               PseudoSourceValue::getFixedStack(SSFI), 0,
5428                               false, false, 0);
5429  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
5430}
5431
5432SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
5433                                     SDValue StackSlot,
5434                                     SelectionDAG &DAG) {
5435  // Build the FILD
5436  DebugLoc dl = Op.getDebugLoc();
5437  SDVTList Tys;
5438  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5439  if (useSSE)
5440    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5441  else
5442    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5443  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
5444  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5445                               Tys, Ops, array_lengthof(Ops));
5446
5447  if (useSSE) {
5448    Chain = Result.getValue(1);
5449    SDValue InFlag = Result.getValue(2);
5450
5451    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5452    // shouldn't be necessary except that RFP cannot be live across
5453    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5454    MachineFunction &MF = DAG.getMachineFunction();
5455    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5456    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5457    Tys = DAG.getVTList(MVT::Other);
5458    SDValue Ops[] = {
5459      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
5460    };
5461    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
5462    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5463                         PseudoSourceValue::getFixedStack(SSFI), 0,
5464                         false, false, 0);
5465  }
5466
5467  return Result;
5468}
5469
5470// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5471SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
5472  // This algorithm is not obvious. Here it is in C code, more or less:
5473  /*
5474    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5475      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5476      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5477
5478      // Copy ints to xmm registers.
5479      __m128i xh = _mm_cvtsi32_si128( hi );
5480      __m128i xl = _mm_cvtsi32_si128( lo );
5481
5482      // Combine into low half of a single xmm register.
5483      __m128i x = _mm_unpacklo_epi32( xh, xl );
5484      __m128d d;
5485      double sd;
5486
5487      // Merge in appropriate exponents to give the integer bits the right
5488      // magnitude.
5489      x = _mm_unpacklo_epi32( x, exp );
5490
5491      // Subtract away the biases to deal with the IEEE-754 double precision
5492      // implicit 1.
5493      d = _mm_sub_pd( (__m128d) x, bias );
5494
5495      // All conversions up to here are exact. The correctly rounded result is
5496      // calculated using the current rounding mode using the following
5497      // horizontal add.
5498      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5499      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5500                                // store doesn't really need to be here (except
5501                                // maybe to zero the other double)
5502      return sd;
5503    }
5504  */
5505
5506  DebugLoc dl = Op.getDebugLoc();
5507  LLVMContext *Context = DAG.getContext();
5508
5509  // Build some magic constants.
5510  std::vector<Constant*> CV0;
5511  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5512  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5513  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5514  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5515  Constant *C0 = ConstantVector::get(CV0);
5516  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5517
5518  std::vector<Constant*> CV1;
5519  CV1.push_back(
5520    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5521  CV1.push_back(
5522    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5523  Constant *C1 = ConstantVector::get(CV1);
5524  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5525
5526  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5527                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5528                                        Op.getOperand(0),
5529                                        DAG.getIntPtrConstant(1)));
5530  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5531                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5532                                        Op.getOperand(0),
5533                                        DAG.getIntPtrConstant(0)));
5534  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5535  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5536                              PseudoSourceValue::getConstantPool(), 0,
5537                              false, false, 16);
5538  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5539  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5540  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5541                              PseudoSourceValue::getConstantPool(), 0,
5542                              false, false, 16);
5543  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5544
5545  // Add the halves; easiest way is to swap them into another reg first.
5546  int ShufMask[2] = { 1, -1 };
5547  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5548                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5549  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5550  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5551                     DAG.getIntPtrConstant(0));
5552}
5553
5554// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5555SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
5556  DebugLoc dl = Op.getDebugLoc();
5557  // FP constant to bias correct the final result.
5558  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5559                                   MVT::f64);
5560
5561  // Load the 32-bit value into an XMM register.
5562  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5563                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5564                                         Op.getOperand(0),
5565                                         DAG.getIntPtrConstant(0)));
5566
5567  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5568                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5569                     DAG.getIntPtrConstant(0));
5570
5571  // Or the load with the bias.
5572  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5573                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5574                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5575                                                   MVT::v2f64, Load)),
5576                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5577                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5578                                                   MVT::v2f64, Bias)));
5579  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5580                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5581                   DAG.getIntPtrConstant(0));
5582
5583  // Subtract the bias.
5584  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5585
5586  // Handle final rounding.
5587  EVT DestVT = Op.getValueType();
5588
5589  if (DestVT.bitsLT(MVT::f64)) {
5590    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5591                       DAG.getIntPtrConstant(0));
5592  } else if (DestVT.bitsGT(MVT::f64)) {
5593    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5594  }
5595
5596  // Handle final rounding.
5597  return Sub;
5598}
5599
5600SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5601  SDValue N0 = Op.getOperand(0);
5602  DebugLoc dl = Op.getDebugLoc();
5603
5604  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5605  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5606  // the optimization here.
5607  if (DAG.SignBitIsZero(N0))
5608    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5609
5610  EVT SrcVT = N0.getValueType();
5611  if (SrcVT == MVT::i64) {
5612    // We only handle SSE2 f64 target here; caller can expand the rest.
5613    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5614      return SDValue();
5615
5616    return LowerUINT_TO_FP_i64(Op, DAG);
5617  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
5618    return LowerUINT_TO_FP_i32(Op, DAG);
5619  }
5620
5621  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5622
5623  // Make a 64-bit buffer, and use it to build an FILD.
5624  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5625  SDValue WordOff = DAG.getConstant(4, getPointerTy());
5626  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5627                                   getPointerTy(), StackSlot, WordOff);
5628  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5629                                StackSlot, NULL, 0, false, false, 0);
5630  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5631                                OffsetSlot, NULL, 0, false, false, 0);
5632  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5633}
5634
5635std::pair<SDValue,SDValue> X86TargetLowering::
5636FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5637  DebugLoc dl = Op.getDebugLoc();
5638
5639  EVT DstTy = Op.getValueType();
5640
5641  if (!IsSigned) {
5642    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5643    DstTy = MVT::i64;
5644  }
5645
5646  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5647         DstTy.getSimpleVT() >= MVT::i16 &&
5648         "Unknown FP_TO_SINT to lower!");
5649
5650  // These are really Legal.
5651  if (DstTy == MVT::i32 &&
5652      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5653    return std::make_pair(SDValue(), SDValue());
5654  if (Subtarget->is64Bit() &&
5655      DstTy == MVT::i64 &&
5656      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5657    return std::make_pair(SDValue(), SDValue());
5658
5659  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5660  // stack slot.
5661  MachineFunction &MF = DAG.getMachineFunction();
5662  unsigned MemSize = DstTy.getSizeInBits()/8;
5663  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5664  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5665
5666  unsigned Opc;
5667  switch (DstTy.getSimpleVT().SimpleTy) {
5668  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5669  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5670  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5671  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5672  }
5673
5674  SDValue Chain = DAG.getEntryNode();
5675  SDValue Value = Op.getOperand(0);
5676  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5677    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5678    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5679                         PseudoSourceValue::getFixedStack(SSFI), 0,
5680                         false, false, 0);
5681    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5682    SDValue Ops[] = {
5683      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5684    };
5685    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5686    Chain = Value.getValue(1);
5687    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5688    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5689  }
5690
5691  // Build the FP_TO_INT*_IN_MEM
5692  SDValue Ops[] = { Chain, Value, StackSlot };
5693  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5694
5695  return std::make_pair(FIST, StackSlot);
5696}
5697
5698SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5699  if (Op.getValueType().isVector()) {
5700    if (Op.getValueType() == MVT::v2i32 &&
5701        Op.getOperand(0).getValueType() == MVT::v2f64) {
5702      return Op;
5703    }
5704    return SDValue();
5705  }
5706
5707  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5708  SDValue FIST = Vals.first, StackSlot = Vals.second;
5709  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5710  if (FIST.getNode() == 0) return Op;
5711
5712  // Load the result.
5713  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5714                     FIST, StackSlot, NULL, 0, false, false, 0);
5715}
5716
5717SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5718  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5719  SDValue FIST = Vals.first, StackSlot = Vals.second;
5720  assert(FIST.getNode() && "Unexpected failure");
5721
5722  // Load the result.
5723  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5724                     FIST, StackSlot, NULL, 0, false, false, 0);
5725}
5726
5727SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5728  LLVMContext *Context = DAG.getContext();
5729  DebugLoc dl = Op.getDebugLoc();
5730  EVT VT = Op.getValueType();
5731  EVT EltVT = VT;
5732  if (VT.isVector())
5733    EltVT = VT.getVectorElementType();
5734  std::vector<Constant*> CV;
5735  if (EltVT == MVT::f64) {
5736    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5737    CV.push_back(C);
5738    CV.push_back(C);
5739  } else {
5740    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5741    CV.push_back(C);
5742    CV.push_back(C);
5743    CV.push_back(C);
5744    CV.push_back(C);
5745  }
5746  Constant *C = ConstantVector::get(CV);
5747  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5748  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5749                             PseudoSourceValue::getConstantPool(), 0,
5750                             false, false, 16);
5751  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5752}
5753
5754SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5755  LLVMContext *Context = DAG.getContext();
5756  DebugLoc dl = Op.getDebugLoc();
5757  EVT VT = Op.getValueType();
5758  EVT EltVT = VT;
5759  if (VT.isVector())
5760    EltVT = VT.getVectorElementType();
5761  std::vector<Constant*> CV;
5762  if (EltVT == MVT::f64) {
5763    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5764    CV.push_back(C);
5765    CV.push_back(C);
5766  } else {
5767    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5768    CV.push_back(C);
5769    CV.push_back(C);
5770    CV.push_back(C);
5771    CV.push_back(C);
5772  }
5773  Constant *C = ConstantVector::get(CV);
5774  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5775  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5776                             PseudoSourceValue::getConstantPool(), 0,
5777                             false, false, 16);
5778  if (VT.isVector()) {
5779    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5780                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5781                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5782                                Op.getOperand(0)),
5783                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5784  } else {
5785    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5786  }
5787}
5788
5789SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5790  LLVMContext *Context = DAG.getContext();
5791  SDValue Op0 = Op.getOperand(0);
5792  SDValue Op1 = Op.getOperand(1);
5793  DebugLoc dl = Op.getDebugLoc();
5794  EVT VT = Op.getValueType();
5795  EVT SrcVT = Op1.getValueType();
5796
5797  // If second operand is smaller, extend it first.
5798  if (SrcVT.bitsLT(VT)) {
5799    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5800    SrcVT = VT;
5801  }
5802  // And if it is bigger, shrink it first.
5803  if (SrcVT.bitsGT(VT)) {
5804    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5805    SrcVT = VT;
5806  }
5807
5808  // At this point the operands and the result should have the same
5809  // type, and that won't be f80 since that is not custom lowered.
5810
5811  // First get the sign bit of second operand.
5812  std::vector<Constant*> CV;
5813  if (SrcVT == MVT::f64) {
5814    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5815    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5816  } else {
5817    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5818    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5819    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5820    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5821  }
5822  Constant *C = ConstantVector::get(CV);
5823  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5824  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5825                              PseudoSourceValue::getConstantPool(), 0,
5826                              false, false, 16);
5827  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5828
5829  // Shift sign bit right or left if the two operands have different types.
5830  if (SrcVT.bitsGT(VT)) {
5831    // Op0 is MVT::f32, Op1 is MVT::f64.
5832    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5833    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5834                          DAG.getConstant(32, MVT::i32));
5835    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5836    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5837                          DAG.getIntPtrConstant(0));
5838  }
5839
5840  // Clear first operand sign bit.
5841  CV.clear();
5842  if (VT == MVT::f64) {
5843    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5844    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5845  } else {
5846    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5847    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5848    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5849    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5850  }
5851  C = ConstantVector::get(CV);
5852  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5853  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5854                              PseudoSourceValue::getConstantPool(), 0,
5855                              false, false, 16);
5856  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5857
5858  // Or the value with the sign bit.
5859  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5860}
5861
5862/// Emit nodes that will be selected as "test Op0,Op0", or something
5863/// equivalent.
5864SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5865                                    SelectionDAG &DAG) {
5866  DebugLoc dl = Op.getDebugLoc();
5867
5868  // CF and OF aren't always set the way we want. Determine which
5869  // of these we need.
5870  bool NeedCF = false;
5871  bool NeedOF = false;
5872  switch (X86CC) {
5873  case X86::COND_A: case X86::COND_AE:
5874  case X86::COND_B: case X86::COND_BE:
5875    NeedCF = true;
5876    break;
5877  case X86::COND_G: case X86::COND_GE:
5878  case X86::COND_L: case X86::COND_LE:
5879  case X86::COND_O: case X86::COND_NO:
5880    NeedOF = true;
5881    break;
5882  default: break;
5883  }
5884
5885  // See if we can use the EFLAGS value from the operand instead of
5886  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5887  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5888  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5889    unsigned Opcode = 0;
5890    unsigned NumOperands = 0;
5891    switch (Op.getNode()->getOpcode()) {
5892    case ISD::ADD:
5893      // Due to an isel shortcoming, be conservative if this add is likely to
5894      // be selected as part of a load-modify-store instruction. When the root
5895      // node in a match is a store, isel doesn't know how to remap non-chain
5896      // non-flag uses of other nodes in the match, such as the ADD in this
5897      // case. This leads to the ADD being left around and reselected, with
5898      // the result being two adds in the output.
5899      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5900           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5901        if (UI->getOpcode() == ISD::STORE)
5902          goto default_case;
5903      if (ConstantSDNode *C =
5904            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5905        // An add of one will be selected as an INC.
5906        if (C->getAPIntValue() == 1) {
5907          Opcode = X86ISD::INC;
5908          NumOperands = 1;
5909          break;
5910        }
5911        // An add of negative one (subtract of one) will be selected as a DEC.
5912        if (C->getAPIntValue().isAllOnesValue()) {
5913          Opcode = X86ISD::DEC;
5914          NumOperands = 1;
5915          break;
5916        }
5917      }
5918      // Otherwise use a regular EFLAGS-setting add.
5919      Opcode = X86ISD::ADD;
5920      NumOperands = 2;
5921      break;
5922    case ISD::AND: {
5923      // If the primary and result isn't used, don't bother using X86ISD::AND,
5924      // because a TEST instruction will be better.
5925      bool NonFlagUse = false;
5926      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5927             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
5928        SDNode *User = *UI;
5929        unsigned UOpNo = UI.getOperandNo();
5930        if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
5931          // Look pass truncate.
5932          UOpNo = User->use_begin().getOperandNo();
5933          User = *User->use_begin();
5934        }
5935        if (User->getOpcode() != ISD::BRCOND &&
5936            User->getOpcode() != ISD::SETCC &&
5937            (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
5938          NonFlagUse = true;
5939          break;
5940        }
5941      }
5942      if (!NonFlagUse)
5943        break;
5944    }
5945    // FALL THROUGH
5946    case ISD::SUB:
5947    case ISD::OR:
5948    case ISD::XOR:
5949      // Due to the ISEL shortcoming noted above, be conservative if this op is
5950      // likely to be selected as part of a load-modify-store instruction.
5951      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5952           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5953        if (UI->getOpcode() == ISD::STORE)
5954          goto default_case;
5955      // Otherwise use a regular EFLAGS-setting instruction.
5956      switch (Op.getNode()->getOpcode()) {
5957      case ISD::SUB: Opcode = X86ISD::SUB; break;
5958      case ISD::OR:  Opcode = X86ISD::OR;  break;
5959      case ISD::XOR: Opcode = X86ISD::XOR; break;
5960      case ISD::AND: Opcode = X86ISD::AND; break;
5961      default: llvm_unreachable("unexpected operator!");
5962      }
5963      NumOperands = 2;
5964      break;
5965    case X86ISD::ADD:
5966    case X86ISD::SUB:
5967    case X86ISD::INC:
5968    case X86ISD::DEC:
5969    case X86ISD::OR:
5970    case X86ISD::XOR:
5971    case X86ISD::AND:
5972      return SDValue(Op.getNode(), 1);
5973    default:
5974    default_case:
5975      break;
5976    }
5977    if (Opcode != 0) {
5978      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5979      SmallVector<SDValue, 4> Ops;
5980      for (unsigned i = 0; i != NumOperands; ++i)
5981        Ops.push_back(Op.getOperand(i));
5982      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5983      DAG.ReplaceAllUsesWith(Op, New);
5984      return SDValue(New.getNode(), 1);
5985    }
5986  }
5987
5988  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5989  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5990                     DAG.getConstant(0, Op.getValueType()));
5991}
5992
5993/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5994/// equivalent.
5995SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5996                                   SelectionDAG &DAG) {
5997  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5998    if (C->getAPIntValue() == 0)
5999      return EmitTest(Op0, X86CC, DAG);
6000
6001  DebugLoc dl = Op0.getDebugLoc();
6002  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6003}
6004
6005/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6006/// if it's possible.
6007static SDValue LowerToBT(SDValue And, ISD::CondCode CC,
6008                         DebugLoc dl, SelectionDAG &DAG) {
6009  SDValue Op0 = And.getOperand(0);
6010  SDValue Op1 = And.getOperand(1);
6011  if (Op0.getOpcode() == ISD::TRUNCATE)
6012    Op0 = Op0.getOperand(0);
6013  if (Op1.getOpcode() == ISD::TRUNCATE)
6014    Op1 = Op1.getOperand(0);
6015
6016  SDValue LHS, RHS;
6017  if (Op1.getOpcode() == ISD::SHL) {
6018    if (ConstantSDNode *And10C = dyn_cast<ConstantSDNode>(Op1.getOperand(0)))
6019      if (And10C->getZExtValue() == 1) {
6020        LHS = Op0;
6021        RHS = Op1.getOperand(1);
6022      }
6023  } else if (Op0.getOpcode() == ISD::SHL) {
6024    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6025      if (And00C->getZExtValue() == 1) {
6026        LHS = Op1;
6027        RHS = Op0.getOperand(1);
6028      }
6029  } else if (Op1.getOpcode() == ISD::Constant) {
6030    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6031    SDValue AndLHS = Op0;
6032    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6033      LHS = AndLHS.getOperand(0);
6034      RHS = AndLHS.getOperand(1);
6035    }
6036  }
6037
6038  if (LHS.getNode()) {
6039    // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
6040    // instruction.  Since the shift amount is in-range-or-undefined, we know
6041    // that doing a bittest on the i16 value is ok.  We extend to i32 because
6042    // the encoding for the i16 version is larger than the i32 version.
6043    if (LHS.getValueType() == MVT::i8)
6044      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6045
6046    // If the operand types disagree, extend the shift amount to match.  Since
6047    // BT ignores high bits (like shifts) we can use anyextend.
6048    if (LHS.getValueType() != RHS.getValueType())
6049      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6050
6051    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6052    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6053    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6054                       DAG.getConstant(Cond, MVT::i8), BT);
6055  }
6056
6057  return SDValue();
6058}
6059
6060SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
6061  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
6062  SDValue Op0 = Op.getOperand(0);
6063  SDValue Op1 = Op.getOperand(1);
6064  DebugLoc dl = Op.getDebugLoc();
6065  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6066
6067  // Optimize to BT if possible.
6068  // Lower (X & (1 << N)) == 0 to BT(X, N).
6069  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
6070  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
6071  if (Op0.getOpcode() == ISD::AND &&
6072      Op0.hasOneUse() &&
6073      Op1.getOpcode() == ISD::Constant &&
6074      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
6075      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6076    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
6077    if (NewSetCC.getNode())
6078      return NewSetCC;
6079  }
6080
6081  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
6082  if (Op0.getOpcode() == X86ISD::SETCC &&
6083      Op1.getOpcode() == ISD::Constant &&
6084      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
6085       cast<ConstantSDNode>(Op1)->isNullValue()) &&
6086      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6087    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
6088    bool Invert = (CC == ISD::SETNE) ^
6089      cast<ConstantSDNode>(Op1)->isNullValue();
6090    if (Invert)
6091      CCode = X86::GetOppositeBranchCondition(CCode);
6092    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6093                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
6094  }
6095
6096  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6097  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
6098  if (X86CC == X86::COND_INVALID)
6099    return SDValue();
6100
6101  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
6102
6103  // Use sbb x, x to materialize carry bit into a GPR.
6104  if (X86CC == X86::COND_B)
6105    return DAG.getNode(ISD::AND, dl, MVT::i8,
6106                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
6107                                   DAG.getConstant(X86CC, MVT::i8), Cond),
6108                       DAG.getConstant(1, MVT::i8));
6109
6110  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6111                     DAG.getConstant(X86CC, MVT::i8), Cond);
6112}
6113
6114SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
6115  SDValue Cond;
6116  SDValue Op0 = Op.getOperand(0);
6117  SDValue Op1 = Op.getOperand(1);
6118  SDValue CC = Op.getOperand(2);
6119  EVT VT = Op.getValueType();
6120  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6121  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6122  DebugLoc dl = Op.getDebugLoc();
6123
6124  if (isFP) {
6125    unsigned SSECC = 8;
6126    EVT VT0 = Op0.getValueType();
6127    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
6128    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
6129    bool Swap = false;
6130
6131    switch (SetCCOpcode) {
6132    default: break;
6133    case ISD::SETOEQ:
6134    case ISD::SETEQ:  SSECC = 0; break;
6135    case ISD::SETOGT:
6136    case ISD::SETGT: Swap = true; // Fallthrough
6137    case ISD::SETLT:
6138    case ISD::SETOLT: SSECC = 1; break;
6139    case ISD::SETOGE:
6140    case ISD::SETGE: Swap = true; // Fallthrough
6141    case ISD::SETLE:
6142    case ISD::SETOLE: SSECC = 2; break;
6143    case ISD::SETUO:  SSECC = 3; break;
6144    case ISD::SETUNE:
6145    case ISD::SETNE:  SSECC = 4; break;
6146    case ISD::SETULE: Swap = true;
6147    case ISD::SETUGE: SSECC = 5; break;
6148    case ISD::SETULT: Swap = true;
6149    case ISD::SETUGT: SSECC = 6; break;
6150    case ISD::SETO:   SSECC = 7; break;
6151    }
6152    if (Swap)
6153      std::swap(Op0, Op1);
6154
6155    // In the two special cases we can't handle, emit two comparisons.
6156    if (SSECC == 8) {
6157      if (SetCCOpcode == ISD::SETUEQ) {
6158        SDValue UNORD, EQ;
6159        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6160        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6161        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6162      }
6163      else if (SetCCOpcode == ISD::SETONE) {
6164        SDValue ORD, NEQ;
6165        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6166        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6167        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6168      }
6169      llvm_unreachable("Illegal FP comparison");
6170    }
6171    // Handle all other FP comparisons here.
6172    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6173  }
6174
6175  // We are handling one of the integer comparisons here.  Since SSE only has
6176  // GT and EQ comparisons for integer, swapping operands and multiple
6177  // operations may be required for some comparisons.
6178  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6179  bool Swap = false, Invert = false, FlipSigns = false;
6180
6181  switch (VT.getSimpleVT().SimpleTy) {
6182  default: break;
6183  case MVT::v8i8:
6184  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6185  case MVT::v4i16:
6186  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6187  case MVT::v2i32:
6188  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6189  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6190  }
6191
6192  switch (SetCCOpcode) {
6193  default: break;
6194  case ISD::SETNE:  Invert = true;
6195  case ISD::SETEQ:  Opc = EQOpc; break;
6196  case ISD::SETLT:  Swap = true;
6197  case ISD::SETGT:  Opc = GTOpc; break;
6198  case ISD::SETGE:  Swap = true;
6199  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6200  case ISD::SETULT: Swap = true;
6201  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6202  case ISD::SETUGE: Swap = true;
6203  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6204  }
6205  if (Swap)
6206    std::swap(Op0, Op1);
6207
6208  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6209  // bits of the inputs before performing those operations.
6210  if (FlipSigns) {
6211    EVT EltVT = VT.getVectorElementType();
6212    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6213                                      EltVT);
6214    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6215    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6216                                    SignBits.size());
6217    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6218    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6219  }
6220
6221  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6222
6223  // If the logical-not of the result is required, perform that now.
6224  if (Invert)
6225    Result = DAG.getNOT(dl, Result, VT);
6226
6227  return Result;
6228}
6229
6230// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6231static bool isX86LogicalCmp(SDValue Op) {
6232  unsigned Opc = Op.getNode()->getOpcode();
6233  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6234    return true;
6235  if (Op.getResNo() == 1 &&
6236      (Opc == X86ISD::ADD ||
6237       Opc == X86ISD::SUB ||
6238       Opc == X86ISD::SMUL ||
6239       Opc == X86ISD::UMUL ||
6240       Opc == X86ISD::INC ||
6241       Opc == X86ISD::DEC ||
6242       Opc == X86ISD::OR ||
6243       Opc == X86ISD::XOR ||
6244       Opc == X86ISD::AND))
6245    return true;
6246
6247  return false;
6248}
6249
6250SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
6251  bool addTest = true;
6252  SDValue Cond  = Op.getOperand(0);
6253  DebugLoc dl = Op.getDebugLoc();
6254  SDValue CC;
6255
6256  if (Cond.getOpcode() == ISD::SETCC) {
6257    SDValue NewCond = LowerSETCC(Cond, DAG);
6258    if (NewCond.getNode())
6259      Cond = NewCond;
6260  }
6261
6262  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6263  SDValue Op1 = Op.getOperand(1);
6264  SDValue Op2 = Op.getOperand(2);
6265  if (Cond.getOpcode() == X86ISD::SETCC &&
6266      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6267    SDValue Cmp = Cond.getOperand(1);
6268    if (Cmp.getOpcode() == X86ISD::CMP) {
6269      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6270      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6271      ConstantSDNode *RHSC =
6272        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6273      if (N1C && N1C->isAllOnesValue() &&
6274          N2C && N2C->isNullValue() &&
6275          RHSC && RHSC->isNullValue()) {
6276        SDValue CmpOp0 = Cmp.getOperand(0);
6277        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6278                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6279        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6280                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6281      }
6282    }
6283  }
6284
6285  // Look pass (and (setcc_carry (cmp ...)), 1).
6286  if (Cond.getOpcode() == ISD::AND &&
6287      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6288    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6289    if (C && C->getAPIntValue() == 1)
6290      Cond = Cond.getOperand(0);
6291  }
6292
6293  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6294  // setting operand in place of the X86ISD::SETCC.
6295  if (Cond.getOpcode() == X86ISD::SETCC ||
6296      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6297    CC = Cond.getOperand(0);
6298
6299    SDValue Cmp = Cond.getOperand(1);
6300    unsigned Opc = Cmp.getOpcode();
6301    EVT VT = Op.getValueType();
6302
6303    bool IllegalFPCMov = false;
6304    if (VT.isFloatingPoint() && !VT.isVector() &&
6305        !isScalarFPTypeInSSEReg(VT))  // FPStack?
6306      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
6307
6308    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
6309        Opc == X86ISD::BT) { // FIXME
6310      Cond = Cmp;
6311      addTest = false;
6312    }
6313  }
6314
6315  if (addTest) {
6316    // Look pass the truncate.
6317    if (Cond.getOpcode() == ISD::TRUNCATE)
6318      Cond = Cond.getOperand(0);
6319
6320    // We know the result of AND is compared against zero. Try to match
6321    // it to BT.
6322    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6323      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6324      if (NewSetCC.getNode()) {
6325        CC = NewSetCC.getOperand(0);
6326        Cond = NewSetCC.getOperand(1);
6327        addTest = false;
6328      }
6329    }
6330  }
6331
6332  if (addTest) {
6333    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6334    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6335  }
6336
6337  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
6338  // condition is true.
6339  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
6340  SDValue Ops[] = { Op2, Op1, CC, Cond };
6341  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
6342}
6343
6344// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
6345// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
6346// from the AND / OR.
6347static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
6348  Opc = Op.getOpcode();
6349  if (Opc != ISD::OR && Opc != ISD::AND)
6350    return false;
6351  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6352          Op.getOperand(0).hasOneUse() &&
6353          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
6354          Op.getOperand(1).hasOneUse());
6355}
6356
6357// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
6358// 1 and that the SETCC node has a single use.
6359static bool isXor1OfSetCC(SDValue Op) {
6360  if (Op.getOpcode() != ISD::XOR)
6361    return false;
6362  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6363  if (N1C && N1C->getAPIntValue() == 1) {
6364    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6365      Op.getOperand(0).hasOneUse();
6366  }
6367  return false;
6368}
6369
6370SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
6371  bool addTest = true;
6372  SDValue Chain = Op.getOperand(0);
6373  SDValue Cond  = Op.getOperand(1);
6374  SDValue Dest  = Op.getOperand(2);
6375  DebugLoc dl = Op.getDebugLoc();
6376  SDValue CC;
6377
6378  if (Cond.getOpcode() == ISD::SETCC) {
6379    SDValue NewCond = LowerSETCC(Cond, DAG);
6380    if (NewCond.getNode())
6381      Cond = NewCond;
6382  }
6383#if 0
6384  // FIXME: LowerXALUO doesn't handle these!!
6385  else if (Cond.getOpcode() == X86ISD::ADD  ||
6386           Cond.getOpcode() == X86ISD::SUB  ||
6387           Cond.getOpcode() == X86ISD::SMUL ||
6388           Cond.getOpcode() == X86ISD::UMUL)
6389    Cond = LowerXALUO(Cond, DAG);
6390#endif
6391
6392  // Look pass (and (setcc_carry (cmp ...)), 1).
6393  if (Cond.getOpcode() == ISD::AND &&
6394      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6395    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6396    if (C && C->getAPIntValue() == 1)
6397      Cond = Cond.getOperand(0);
6398  }
6399
6400  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6401  // setting operand in place of the X86ISD::SETCC.
6402  if (Cond.getOpcode() == X86ISD::SETCC ||
6403      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6404    CC = Cond.getOperand(0);
6405
6406    SDValue Cmp = Cond.getOperand(1);
6407    unsigned Opc = Cmp.getOpcode();
6408    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
6409    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
6410      Cond = Cmp;
6411      addTest = false;
6412    } else {
6413      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
6414      default: break;
6415      case X86::COND_O:
6416      case X86::COND_B:
6417        // These can only come from an arithmetic instruction with overflow,
6418        // e.g. SADDO, UADDO.
6419        Cond = Cond.getNode()->getOperand(1);
6420        addTest = false;
6421        break;
6422      }
6423    }
6424  } else {
6425    unsigned CondOpc;
6426    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
6427      SDValue Cmp = Cond.getOperand(0).getOperand(1);
6428      if (CondOpc == ISD::OR) {
6429        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
6430        // two branches instead of an explicit OR instruction with a
6431        // separate test.
6432        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6433            isX86LogicalCmp(Cmp)) {
6434          CC = Cond.getOperand(0).getOperand(0);
6435          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6436                              Chain, Dest, CC, Cmp);
6437          CC = Cond.getOperand(1).getOperand(0);
6438          Cond = Cmp;
6439          addTest = false;
6440        }
6441      } else { // ISD::AND
6442        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
6443        // two branches instead of an explicit AND instruction with a
6444        // separate test. However, we only do this if this block doesn't
6445        // have a fall-through edge, because this requires an explicit
6446        // jmp when the condition is false.
6447        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6448            isX86LogicalCmp(Cmp) &&
6449            Op.getNode()->hasOneUse()) {
6450          X86::CondCode CCode =
6451            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6452          CCode = X86::GetOppositeBranchCondition(CCode);
6453          CC = DAG.getConstant(CCode, MVT::i8);
6454          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
6455          // Look for an unconditional branch following this conditional branch.
6456          // We need this because we need to reverse the successors in order
6457          // to implement FCMP_OEQ.
6458          if (User.getOpcode() == ISD::BR) {
6459            SDValue FalseBB = User.getOperand(1);
6460            SDValue NewBR =
6461              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
6462            assert(NewBR == User);
6463            Dest = FalseBB;
6464
6465            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6466                                Chain, Dest, CC, Cmp);
6467            X86::CondCode CCode =
6468              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
6469            CCode = X86::GetOppositeBranchCondition(CCode);
6470            CC = DAG.getConstant(CCode, MVT::i8);
6471            Cond = Cmp;
6472            addTest = false;
6473          }
6474        }
6475      }
6476    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
6477      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
6478      // It should be transformed during dag combiner except when the condition
6479      // is set by a arithmetics with overflow node.
6480      X86::CondCode CCode =
6481        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6482      CCode = X86::GetOppositeBranchCondition(CCode);
6483      CC = DAG.getConstant(CCode, MVT::i8);
6484      Cond = Cond.getOperand(0).getOperand(1);
6485      addTest = false;
6486    }
6487  }
6488
6489  if (addTest) {
6490    // Look pass the truncate.
6491    if (Cond.getOpcode() == ISD::TRUNCATE)
6492      Cond = Cond.getOperand(0);
6493
6494    // We know the result of AND is compared against zero. Try to match
6495    // it to BT.
6496    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6497      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6498      if (NewSetCC.getNode()) {
6499        CC = NewSetCC.getOperand(0);
6500        Cond = NewSetCC.getOperand(1);
6501        addTest = false;
6502      }
6503    }
6504  }
6505
6506  if (addTest) {
6507    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6508    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6509  }
6510  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6511                     Chain, Dest, CC, Cond);
6512}
6513
6514
6515// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
6516// Calls to _alloca is needed to probe the stack when allocating more than 4k
6517// bytes in one go. Touching the stack at 4K increments is necessary to ensure
6518// that the guard pages used by the OS virtual memory manager are allocated in
6519// correct sequence.
6520SDValue
6521X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6522                                           SelectionDAG &DAG) {
6523  assert(Subtarget->isTargetCygMing() &&
6524         "This should be used only on Cygwin/Mingw targets");
6525  DebugLoc dl = Op.getDebugLoc();
6526
6527  // Get the inputs.
6528  SDValue Chain = Op.getOperand(0);
6529  SDValue Size  = Op.getOperand(1);
6530  // FIXME: Ensure alignment here
6531
6532  SDValue Flag;
6533
6534  EVT IntPtr = getPointerTy();
6535  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
6536
6537  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
6538  Flag = Chain.getValue(1);
6539
6540  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6541
6542  Chain = DAG.getNode(X86ISD::MINGW_ALLOCA, dl, NodeTys, Chain, Flag);
6543  Flag = Chain.getValue(1);
6544
6545  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
6546
6547  SDValue Ops1[2] = { Chain.getValue(0), Chain };
6548  return DAG.getMergeValues(Ops1, 2, dl);
6549}
6550
6551SDValue
6552X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
6553                                           SDValue Chain,
6554                                           SDValue Dst, SDValue Src,
6555                                           SDValue Size, unsigned Align,
6556                                           const Value *DstSV,
6557                                           uint64_t DstSVOff) {
6558  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6559
6560  // If not DWORD aligned or size is more than the threshold, call the library.
6561  // The libc version is likely to be faster for these cases. It can use the
6562  // address value and run time information about the CPU.
6563  if ((Align & 3) != 0 ||
6564      !ConstantSize ||
6565      ConstantSize->getZExtValue() >
6566        getSubtarget()->getMaxInlineSizeThreshold()) {
6567    SDValue InFlag(0, 0);
6568
6569    // Check to see if there is a specialized entry-point for memory zeroing.
6570    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
6571
6572    if (const char *bzeroEntry =  V &&
6573        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
6574      EVT IntPtr = getPointerTy();
6575      const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext());
6576      TargetLowering::ArgListTy Args;
6577      TargetLowering::ArgListEntry Entry;
6578      Entry.Node = Dst;
6579      Entry.Ty = IntPtrTy;
6580      Args.push_back(Entry);
6581      Entry.Node = Size;
6582      Args.push_back(Entry);
6583      std::pair<SDValue,SDValue> CallResult =
6584        LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
6585                    false, false, false, false,
6586                    0, CallingConv::C, false, /*isReturnValueUsed=*/false,
6587                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
6588      return CallResult.second;
6589    }
6590
6591    // Otherwise have the target-independent code call memset.
6592    return SDValue();
6593  }
6594
6595  uint64_t SizeVal = ConstantSize->getZExtValue();
6596  SDValue InFlag(0, 0);
6597  EVT AVT;
6598  SDValue Count;
6599  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
6600  unsigned BytesLeft = 0;
6601  bool TwoRepStos = false;
6602  if (ValC) {
6603    unsigned ValReg;
6604    uint64_t Val = ValC->getZExtValue() & 255;
6605
6606    // If the value is a constant, then we can potentially use larger sets.
6607    switch (Align & 3) {
6608    case 2:   // WORD aligned
6609      AVT = MVT::i16;
6610      ValReg = X86::AX;
6611      Val = (Val << 8) | Val;
6612      break;
6613    case 0:  // DWORD aligned
6614      AVT = MVT::i32;
6615      ValReg = X86::EAX;
6616      Val = (Val << 8)  | Val;
6617      Val = (Val << 16) | Val;
6618      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
6619        AVT = MVT::i64;
6620        ValReg = X86::RAX;
6621        Val = (Val << 32) | Val;
6622      }
6623      break;
6624    default:  // Byte aligned
6625      AVT = MVT::i8;
6626      ValReg = X86::AL;
6627      Count = DAG.getIntPtrConstant(SizeVal);
6628      break;
6629    }
6630
6631    if (AVT.bitsGT(MVT::i8)) {
6632      unsigned UBytes = AVT.getSizeInBits() / 8;
6633      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
6634      BytesLeft = SizeVal % UBytes;
6635    }
6636
6637    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
6638                              InFlag);
6639    InFlag = Chain.getValue(1);
6640  } else {
6641    AVT = MVT::i8;
6642    Count  = DAG.getIntPtrConstant(SizeVal);
6643    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
6644    InFlag = Chain.getValue(1);
6645  }
6646
6647  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6648                                                              X86::ECX,
6649                            Count, InFlag);
6650  InFlag = Chain.getValue(1);
6651  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6652                                                              X86::EDI,
6653                            Dst, InFlag);
6654  InFlag = Chain.getValue(1);
6655
6656  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6657  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6658  Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6659
6660  if (TwoRepStos) {
6661    InFlag = Chain.getValue(1);
6662    Count  = Size;
6663    EVT CVT = Count.getValueType();
6664    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
6665                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
6666    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
6667                                                             X86::ECX,
6668                              Left, InFlag);
6669    InFlag = Chain.getValue(1);
6670    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6671    SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag };
6672    Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6673  } else if (BytesLeft) {
6674    // Handle the last 1 - 7 bytes.
6675    unsigned Offset = SizeVal - BytesLeft;
6676    EVT AddrVT = Dst.getValueType();
6677    EVT SizeVT = Size.getValueType();
6678
6679    Chain = DAG.getMemset(Chain, dl,
6680                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
6681                                      DAG.getConstant(Offset, AddrVT)),
6682                          Src,
6683                          DAG.getConstant(BytesLeft, SizeVT),
6684                          Align, DstSV, DstSVOff + Offset);
6685  }
6686
6687  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
6688  return Chain;
6689}
6690
6691SDValue
6692X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
6693                                      SDValue Chain, SDValue Dst, SDValue Src,
6694                                      SDValue Size, unsigned Align,
6695                                      bool AlwaysInline,
6696                                      const Value *DstSV, uint64_t DstSVOff,
6697                                      const Value *SrcSV, uint64_t SrcSVOff) {
6698  // This requires the copy size to be a constant, preferrably
6699  // within a subtarget-specific limit.
6700  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6701  if (!ConstantSize)
6702    return SDValue();
6703  uint64_t SizeVal = ConstantSize->getZExtValue();
6704  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
6705    return SDValue();
6706
6707  /// If not DWORD aligned, call the library.
6708  if ((Align & 3) != 0)
6709    return SDValue();
6710
6711  // DWORD aligned
6712  EVT AVT = MVT::i32;
6713  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
6714    AVT = MVT::i64;
6715
6716  unsigned UBytes = AVT.getSizeInBits() / 8;
6717  unsigned CountVal = SizeVal / UBytes;
6718  SDValue Count = DAG.getIntPtrConstant(CountVal);
6719  unsigned BytesLeft = SizeVal % UBytes;
6720
6721  SDValue InFlag(0, 0);
6722  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6723                                                              X86::ECX,
6724                            Count, InFlag);
6725  InFlag = Chain.getValue(1);
6726  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6727                                                             X86::EDI,
6728                            Dst, InFlag);
6729  InFlag = Chain.getValue(1);
6730  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6731                                                              X86::ESI,
6732                            Src, InFlag);
6733  InFlag = Chain.getValue(1);
6734
6735  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6736  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6737  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops,
6738                                array_lengthof(Ops));
6739
6740  SmallVector<SDValue, 4> Results;
6741  Results.push_back(RepMovs);
6742  if (BytesLeft) {
6743    // Handle the last 1 - 7 bytes.
6744    unsigned Offset = SizeVal - BytesLeft;
6745    EVT DstVT = Dst.getValueType();
6746    EVT SrcVT = Src.getValueType();
6747    EVT SizeVT = Size.getValueType();
6748    Results.push_back(DAG.getMemcpy(Chain, dl,
6749                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6750                                                DAG.getConstant(Offset, DstVT)),
6751                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6752                                                DAG.getConstant(Offset, SrcVT)),
6753                                    DAG.getConstant(BytesLeft, SizeVT),
6754                                    Align, AlwaysInline,
6755                                    DstSV, DstSVOff + Offset,
6756                                    SrcSV, SrcSVOff + Offset));
6757  }
6758
6759  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6760                     &Results[0], Results.size());
6761}
6762
6763SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6764  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6765  DebugLoc dl = Op.getDebugLoc();
6766
6767  if (!Subtarget->is64Bit()) {
6768    // vastart just stores the address of the VarArgsFrameIndex slot into the
6769    // memory location argument.
6770    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6771    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
6772                        false, false, 0);
6773  }
6774
6775  // __va_list_tag:
6776  //   gp_offset         (0 - 6 * 8)
6777  //   fp_offset         (48 - 48 + 8 * 16)
6778  //   overflow_arg_area (point to parameters coming in memory).
6779  //   reg_save_area
6780  SmallVector<SDValue, 8> MemOps;
6781  SDValue FIN = Op.getOperand(1);
6782  // Store gp_offset
6783  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6784                               DAG.getConstant(VarArgsGPOffset, MVT::i32),
6785                               FIN, SV, 0, false, false, 0);
6786  MemOps.push_back(Store);
6787
6788  // Store fp_offset
6789  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6790                    FIN, DAG.getIntPtrConstant(4));
6791  Store = DAG.getStore(Op.getOperand(0), dl,
6792                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
6793                       FIN, SV, 0, false, false, 0);
6794  MemOps.push_back(Store);
6795
6796  // Store ptr to overflow_arg_area
6797  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6798                    FIN, DAG.getIntPtrConstant(4));
6799  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6800  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0,
6801                       false, false, 0);
6802  MemOps.push_back(Store);
6803
6804  // Store ptr to reg_save_area.
6805  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6806                    FIN, DAG.getIntPtrConstant(8));
6807  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6808  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0,
6809                       false, false, 0);
6810  MemOps.push_back(Store);
6811  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6812                     &MemOps[0], MemOps.size());
6813}
6814
6815SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6816  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6817  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6818  SDValue Chain = Op.getOperand(0);
6819  SDValue SrcPtr = Op.getOperand(1);
6820  SDValue SrcSV = Op.getOperand(2);
6821
6822  llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6823  return SDValue();
6824}
6825
6826SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6827  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6828  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6829  SDValue Chain = Op.getOperand(0);
6830  SDValue DstPtr = Op.getOperand(1);
6831  SDValue SrcPtr = Op.getOperand(2);
6832  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6833  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6834  DebugLoc dl = Op.getDebugLoc();
6835
6836  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6837                       DAG.getIntPtrConstant(24), 8, false,
6838                       DstSV, 0, SrcSV, 0);
6839}
6840
6841SDValue
6842X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6843  DebugLoc dl = Op.getDebugLoc();
6844  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6845  switch (IntNo) {
6846  default: return SDValue();    // Don't custom lower most intrinsics.
6847  // Comparison intrinsics.
6848  case Intrinsic::x86_sse_comieq_ss:
6849  case Intrinsic::x86_sse_comilt_ss:
6850  case Intrinsic::x86_sse_comile_ss:
6851  case Intrinsic::x86_sse_comigt_ss:
6852  case Intrinsic::x86_sse_comige_ss:
6853  case Intrinsic::x86_sse_comineq_ss:
6854  case Intrinsic::x86_sse_ucomieq_ss:
6855  case Intrinsic::x86_sse_ucomilt_ss:
6856  case Intrinsic::x86_sse_ucomile_ss:
6857  case Intrinsic::x86_sse_ucomigt_ss:
6858  case Intrinsic::x86_sse_ucomige_ss:
6859  case Intrinsic::x86_sse_ucomineq_ss:
6860  case Intrinsic::x86_sse2_comieq_sd:
6861  case Intrinsic::x86_sse2_comilt_sd:
6862  case Intrinsic::x86_sse2_comile_sd:
6863  case Intrinsic::x86_sse2_comigt_sd:
6864  case Intrinsic::x86_sse2_comige_sd:
6865  case Intrinsic::x86_sse2_comineq_sd:
6866  case Intrinsic::x86_sse2_ucomieq_sd:
6867  case Intrinsic::x86_sse2_ucomilt_sd:
6868  case Intrinsic::x86_sse2_ucomile_sd:
6869  case Intrinsic::x86_sse2_ucomigt_sd:
6870  case Intrinsic::x86_sse2_ucomige_sd:
6871  case Intrinsic::x86_sse2_ucomineq_sd: {
6872    unsigned Opc = 0;
6873    ISD::CondCode CC = ISD::SETCC_INVALID;
6874    switch (IntNo) {
6875    default: break;
6876    case Intrinsic::x86_sse_comieq_ss:
6877    case Intrinsic::x86_sse2_comieq_sd:
6878      Opc = X86ISD::COMI;
6879      CC = ISD::SETEQ;
6880      break;
6881    case Intrinsic::x86_sse_comilt_ss:
6882    case Intrinsic::x86_sse2_comilt_sd:
6883      Opc = X86ISD::COMI;
6884      CC = ISD::SETLT;
6885      break;
6886    case Intrinsic::x86_sse_comile_ss:
6887    case Intrinsic::x86_sse2_comile_sd:
6888      Opc = X86ISD::COMI;
6889      CC = ISD::SETLE;
6890      break;
6891    case Intrinsic::x86_sse_comigt_ss:
6892    case Intrinsic::x86_sse2_comigt_sd:
6893      Opc = X86ISD::COMI;
6894      CC = ISD::SETGT;
6895      break;
6896    case Intrinsic::x86_sse_comige_ss:
6897    case Intrinsic::x86_sse2_comige_sd:
6898      Opc = X86ISD::COMI;
6899      CC = ISD::SETGE;
6900      break;
6901    case Intrinsic::x86_sse_comineq_ss:
6902    case Intrinsic::x86_sse2_comineq_sd:
6903      Opc = X86ISD::COMI;
6904      CC = ISD::SETNE;
6905      break;
6906    case Intrinsic::x86_sse_ucomieq_ss:
6907    case Intrinsic::x86_sse2_ucomieq_sd:
6908      Opc = X86ISD::UCOMI;
6909      CC = ISD::SETEQ;
6910      break;
6911    case Intrinsic::x86_sse_ucomilt_ss:
6912    case Intrinsic::x86_sse2_ucomilt_sd:
6913      Opc = X86ISD::UCOMI;
6914      CC = ISD::SETLT;
6915      break;
6916    case Intrinsic::x86_sse_ucomile_ss:
6917    case Intrinsic::x86_sse2_ucomile_sd:
6918      Opc = X86ISD::UCOMI;
6919      CC = ISD::SETLE;
6920      break;
6921    case Intrinsic::x86_sse_ucomigt_ss:
6922    case Intrinsic::x86_sse2_ucomigt_sd:
6923      Opc = X86ISD::UCOMI;
6924      CC = ISD::SETGT;
6925      break;
6926    case Intrinsic::x86_sse_ucomige_ss:
6927    case Intrinsic::x86_sse2_ucomige_sd:
6928      Opc = X86ISD::UCOMI;
6929      CC = ISD::SETGE;
6930      break;
6931    case Intrinsic::x86_sse_ucomineq_ss:
6932    case Intrinsic::x86_sse2_ucomineq_sd:
6933      Opc = X86ISD::UCOMI;
6934      CC = ISD::SETNE;
6935      break;
6936    }
6937
6938    SDValue LHS = Op.getOperand(1);
6939    SDValue RHS = Op.getOperand(2);
6940    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6941    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
6942    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6943    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6944                                DAG.getConstant(X86CC, MVT::i8), Cond);
6945    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6946  }
6947  // ptest intrinsics. The intrinsic these come from are designed to return
6948  // an integer value, not just an instruction so lower it to the ptest
6949  // pattern and a setcc for the result.
6950  case Intrinsic::x86_sse41_ptestz:
6951  case Intrinsic::x86_sse41_ptestc:
6952  case Intrinsic::x86_sse41_ptestnzc:{
6953    unsigned X86CC = 0;
6954    switch (IntNo) {
6955    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6956    case Intrinsic::x86_sse41_ptestz:
6957      // ZF = 1
6958      X86CC = X86::COND_E;
6959      break;
6960    case Intrinsic::x86_sse41_ptestc:
6961      // CF = 1
6962      X86CC = X86::COND_B;
6963      break;
6964    case Intrinsic::x86_sse41_ptestnzc:
6965      // ZF and CF = 0
6966      X86CC = X86::COND_A;
6967      break;
6968    }
6969
6970    SDValue LHS = Op.getOperand(1);
6971    SDValue RHS = Op.getOperand(2);
6972    SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
6973    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
6974    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
6975    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6976  }
6977
6978  // Fix vector shift instructions where the last operand is a non-immediate
6979  // i32 value.
6980  case Intrinsic::x86_sse2_pslli_w:
6981  case Intrinsic::x86_sse2_pslli_d:
6982  case Intrinsic::x86_sse2_pslli_q:
6983  case Intrinsic::x86_sse2_psrli_w:
6984  case Intrinsic::x86_sse2_psrli_d:
6985  case Intrinsic::x86_sse2_psrli_q:
6986  case Intrinsic::x86_sse2_psrai_w:
6987  case Intrinsic::x86_sse2_psrai_d:
6988  case Intrinsic::x86_mmx_pslli_w:
6989  case Intrinsic::x86_mmx_pslli_d:
6990  case Intrinsic::x86_mmx_pslli_q:
6991  case Intrinsic::x86_mmx_psrli_w:
6992  case Intrinsic::x86_mmx_psrli_d:
6993  case Intrinsic::x86_mmx_psrli_q:
6994  case Intrinsic::x86_mmx_psrai_w:
6995  case Intrinsic::x86_mmx_psrai_d: {
6996    SDValue ShAmt = Op.getOperand(2);
6997    if (isa<ConstantSDNode>(ShAmt))
6998      return SDValue();
6999
7000    unsigned NewIntNo = 0;
7001    EVT ShAmtVT = MVT::v4i32;
7002    switch (IntNo) {
7003    case Intrinsic::x86_sse2_pslli_w:
7004      NewIntNo = Intrinsic::x86_sse2_psll_w;
7005      break;
7006    case Intrinsic::x86_sse2_pslli_d:
7007      NewIntNo = Intrinsic::x86_sse2_psll_d;
7008      break;
7009    case Intrinsic::x86_sse2_pslli_q:
7010      NewIntNo = Intrinsic::x86_sse2_psll_q;
7011      break;
7012    case Intrinsic::x86_sse2_psrli_w:
7013      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7014      break;
7015    case Intrinsic::x86_sse2_psrli_d:
7016      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7017      break;
7018    case Intrinsic::x86_sse2_psrli_q:
7019      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7020      break;
7021    case Intrinsic::x86_sse2_psrai_w:
7022      NewIntNo = Intrinsic::x86_sse2_psra_w;
7023      break;
7024    case Intrinsic::x86_sse2_psrai_d:
7025      NewIntNo = Intrinsic::x86_sse2_psra_d;
7026      break;
7027    default: {
7028      ShAmtVT = MVT::v2i32;
7029      switch (IntNo) {
7030      case Intrinsic::x86_mmx_pslli_w:
7031        NewIntNo = Intrinsic::x86_mmx_psll_w;
7032        break;
7033      case Intrinsic::x86_mmx_pslli_d:
7034        NewIntNo = Intrinsic::x86_mmx_psll_d;
7035        break;
7036      case Intrinsic::x86_mmx_pslli_q:
7037        NewIntNo = Intrinsic::x86_mmx_psll_q;
7038        break;
7039      case Intrinsic::x86_mmx_psrli_w:
7040        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7041        break;
7042      case Intrinsic::x86_mmx_psrli_d:
7043        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7044        break;
7045      case Intrinsic::x86_mmx_psrli_q:
7046        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7047        break;
7048      case Intrinsic::x86_mmx_psrai_w:
7049        NewIntNo = Intrinsic::x86_mmx_psra_w;
7050        break;
7051      case Intrinsic::x86_mmx_psrai_d:
7052        NewIntNo = Intrinsic::x86_mmx_psra_d;
7053        break;
7054      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7055      }
7056      break;
7057    }
7058    }
7059
7060    // The vector shift intrinsics with scalars uses 32b shift amounts but
7061    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7062    // to be zero.
7063    SDValue ShOps[4];
7064    ShOps[0] = ShAmt;
7065    ShOps[1] = DAG.getConstant(0, MVT::i32);
7066    if (ShAmtVT == MVT::v4i32) {
7067      ShOps[2] = DAG.getUNDEF(MVT::i32);
7068      ShOps[3] = DAG.getUNDEF(MVT::i32);
7069      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7070    } else {
7071      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7072    }
7073
7074    EVT VT = Op.getValueType();
7075    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7076    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7077                       DAG.getConstant(NewIntNo, MVT::i32),
7078                       Op.getOperand(1), ShAmt);
7079  }
7080  }
7081}
7082
7083SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
7084  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7085  DebugLoc dl = Op.getDebugLoc();
7086
7087  if (Depth > 0) {
7088    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7089    SDValue Offset =
7090      DAG.getConstant(TD->getPointerSize(),
7091                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7092    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7093                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7094                                   FrameAddr, Offset),
7095                       NULL, 0, false, false, 0);
7096  }
7097
7098  // Just load the return address.
7099  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7100  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7101                     RetAddrFI, NULL, 0, false, false, 0);
7102}
7103
7104SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
7105  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7106  MFI->setFrameAddressIsTaken(true);
7107  EVT VT = Op.getValueType();
7108  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7109  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7110  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7111  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7112  while (Depth--)
7113    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
7114                            false, false, 0);
7115  return FrameAddr;
7116}
7117
7118SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7119                                                     SelectionDAG &DAG) {
7120  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7121}
7122
7123SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
7124{
7125  MachineFunction &MF = DAG.getMachineFunction();
7126  SDValue Chain     = Op.getOperand(0);
7127  SDValue Offset    = Op.getOperand(1);
7128  SDValue Handler   = Op.getOperand(2);
7129  DebugLoc dl       = Op.getDebugLoc();
7130
7131  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7132                                  getPointerTy());
7133  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7134
7135  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
7136                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
7137  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7138  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
7139  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7140  MF.getRegInfo().addLiveOut(StoreAddrReg);
7141
7142  return DAG.getNode(X86ISD::EH_RETURN, dl,
7143                     MVT::Other,
7144                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7145}
7146
7147SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7148                                             SelectionDAG &DAG) {
7149  SDValue Root = Op.getOperand(0);
7150  SDValue Trmp = Op.getOperand(1); // trampoline
7151  SDValue FPtr = Op.getOperand(2); // nested function
7152  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7153  DebugLoc dl  = Op.getDebugLoc();
7154
7155  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7156
7157  if (Subtarget->is64Bit()) {
7158    SDValue OutChains[6];
7159
7160    // Large code-model.
7161    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7162    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7163
7164    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7165    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7166
7167    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7168
7169    // Load the pointer to the nested function into R11.
7170    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7171    SDValue Addr = Trmp;
7172    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7173                                Addr, TrmpAddr, 0, false, false, 0);
7174
7175    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7176                       DAG.getConstant(2, MVT::i64));
7177    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7178                                false, false, 2);
7179
7180    // Load the 'nest' parameter value into R10.
7181    // R10 is specified in X86CallingConv.td
7182    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7183    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7184                       DAG.getConstant(10, MVT::i64));
7185    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7186                                Addr, TrmpAddr, 10, false, false, 0);
7187
7188    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7189                       DAG.getConstant(12, MVT::i64));
7190    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7191                                false, false, 2);
7192
7193    // Jump to the nested function.
7194    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7195    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7196                       DAG.getConstant(20, MVT::i64));
7197    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7198                                Addr, TrmpAddr, 20, false, false, 0);
7199
7200    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7201    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7202                       DAG.getConstant(22, MVT::i64));
7203    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7204                                TrmpAddr, 22, false, false, 0);
7205
7206    SDValue Ops[] =
7207      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7208    return DAG.getMergeValues(Ops, 2, dl);
7209  } else {
7210    const Function *Func =
7211      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7212    CallingConv::ID CC = Func->getCallingConv();
7213    unsigned NestReg;
7214
7215    switch (CC) {
7216    default:
7217      llvm_unreachable("Unsupported calling convention");
7218    case CallingConv::C:
7219    case CallingConv::X86_StdCall: {
7220      // Pass 'nest' parameter in ECX.
7221      // Must be kept in sync with X86CallingConv.td
7222      NestReg = X86::ECX;
7223
7224      // Check that ECX wasn't needed by an 'inreg' parameter.
7225      const FunctionType *FTy = Func->getFunctionType();
7226      const AttrListPtr &Attrs = Func->getAttributes();
7227
7228      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7229        unsigned InRegCount = 0;
7230        unsigned Idx = 1;
7231
7232        for (FunctionType::param_iterator I = FTy->param_begin(),
7233             E = FTy->param_end(); I != E; ++I, ++Idx)
7234          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7235            // FIXME: should only count parameters that are lowered to integers.
7236            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7237
7238        if (InRegCount > 2) {
7239          llvm_report_error("Nest register in use - reduce number of inreg parameters!");
7240        }
7241      }
7242      break;
7243    }
7244    case CallingConv::X86_FastCall:
7245    case CallingConv::Fast:
7246      // Pass 'nest' parameter in EAX.
7247      // Must be kept in sync with X86CallingConv.td
7248      NestReg = X86::EAX;
7249      break;
7250    }
7251
7252    SDValue OutChains[4];
7253    SDValue Addr, Disp;
7254
7255    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7256                       DAG.getConstant(10, MVT::i32));
7257    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7258
7259    // This is storing the opcode for MOV32ri.
7260    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7261    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7262    OutChains[0] = DAG.getStore(Root, dl,
7263                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7264                                Trmp, TrmpAddr, 0, false, false, 0);
7265
7266    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7267                       DAG.getConstant(1, MVT::i32));
7268    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7269                                false, false, 1);
7270
7271    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7272    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7273                       DAG.getConstant(5, MVT::i32));
7274    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7275                                TrmpAddr, 5, false, false, 1);
7276
7277    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7278                       DAG.getConstant(6, MVT::i32));
7279    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7280                                false, false, 1);
7281
7282    SDValue Ops[] =
7283      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7284    return DAG.getMergeValues(Ops, 2, dl);
7285  }
7286}
7287
7288SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
7289  /*
7290   The rounding mode is in bits 11:10 of FPSR, and has the following
7291   settings:
7292     00 Round to nearest
7293     01 Round to -inf
7294     10 Round to +inf
7295     11 Round to 0
7296
7297  FLT_ROUNDS, on the other hand, expects the following:
7298    -1 Undefined
7299     0 Round to 0
7300     1 Round to nearest
7301     2 Round to +inf
7302     3 Round to -inf
7303
7304  To perform the conversion, we do:
7305    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7306  */
7307
7308  MachineFunction &MF = DAG.getMachineFunction();
7309  const TargetMachine &TM = MF.getTarget();
7310  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7311  unsigned StackAlignment = TFI.getStackAlignment();
7312  EVT VT = Op.getValueType();
7313  DebugLoc dl = Op.getDebugLoc();
7314
7315  // Save FP Control Word to stack slot
7316  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7317  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7318
7319  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7320                              DAG.getEntryNode(), StackSlot);
7321
7322  // Load FP Control Word from stack slot
7323  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
7324                            false, false, 0);
7325
7326  // Transform as necessary
7327  SDValue CWD1 =
7328    DAG.getNode(ISD::SRL, dl, MVT::i16,
7329                DAG.getNode(ISD::AND, dl, MVT::i16,
7330                            CWD, DAG.getConstant(0x800, MVT::i16)),
7331                DAG.getConstant(11, MVT::i8));
7332  SDValue CWD2 =
7333    DAG.getNode(ISD::SRL, dl, MVT::i16,
7334                DAG.getNode(ISD::AND, dl, MVT::i16,
7335                            CWD, DAG.getConstant(0x400, MVT::i16)),
7336                DAG.getConstant(9, MVT::i8));
7337
7338  SDValue RetVal =
7339    DAG.getNode(ISD::AND, dl, MVT::i16,
7340                DAG.getNode(ISD::ADD, dl, MVT::i16,
7341                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7342                            DAG.getConstant(1, MVT::i16)),
7343                DAG.getConstant(3, MVT::i16));
7344
7345
7346  return DAG.getNode((VT.getSizeInBits() < 16 ?
7347                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7348}
7349
7350SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
7351  EVT VT = Op.getValueType();
7352  EVT OpVT = VT;
7353  unsigned NumBits = VT.getSizeInBits();
7354  DebugLoc dl = Op.getDebugLoc();
7355
7356  Op = Op.getOperand(0);
7357  if (VT == MVT::i8) {
7358    // Zero extend to i32 since there is not an i8 bsr.
7359    OpVT = MVT::i32;
7360    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7361  }
7362
7363  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7364  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7365  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7366
7367  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7368  SDValue Ops[] = {
7369    Op,
7370    DAG.getConstant(NumBits+NumBits-1, OpVT),
7371    DAG.getConstant(X86::COND_E, MVT::i8),
7372    Op.getValue(1)
7373  };
7374  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7375
7376  // Finally xor with NumBits-1.
7377  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7378
7379  if (VT == MVT::i8)
7380    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7381  return Op;
7382}
7383
7384SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
7385  EVT VT = Op.getValueType();
7386  EVT OpVT = VT;
7387  unsigned NumBits = VT.getSizeInBits();
7388  DebugLoc dl = Op.getDebugLoc();
7389
7390  Op = Op.getOperand(0);
7391  if (VT == MVT::i8) {
7392    OpVT = MVT::i32;
7393    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7394  }
7395
7396  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7397  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7398  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7399
7400  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7401  SDValue Ops[] = {
7402    Op,
7403    DAG.getConstant(NumBits, OpVT),
7404    DAG.getConstant(X86::COND_E, MVT::i8),
7405    Op.getValue(1)
7406  };
7407  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7408
7409  if (VT == MVT::i8)
7410    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7411  return Op;
7412}
7413
7414SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
7415  EVT VT = Op.getValueType();
7416  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7417  DebugLoc dl = Op.getDebugLoc();
7418
7419  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7420  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7421  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7422  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7423  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7424  //
7425  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7426  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7427  //  return AloBlo + AloBhi + AhiBlo;
7428
7429  SDValue A = Op.getOperand(0);
7430  SDValue B = Op.getOperand(1);
7431
7432  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7433                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7434                       A, DAG.getConstant(32, MVT::i32));
7435  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7436                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7437                       B, DAG.getConstant(32, MVT::i32));
7438  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7439                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7440                       A, B);
7441  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7442                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7443                       A, Bhi);
7444  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7445                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7446                       Ahi, B);
7447  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7448                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7449                       AloBhi, DAG.getConstant(32, MVT::i32));
7450  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7451                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7452                       AhiBlo, DAG.getConstant(32, MVT::i32));
7453  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7454  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7455  return Res;
7456}
7457
7458
7459SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
7460  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
7461  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
7462  // looks for this combo and may remove the "setcc" instruction if the "setcc"
7463  // has only one use.
7464  SDNode *N = Op.getNode();
7465  SDValue LHS = N->getOperand(0);
7466  SDValue RHS = N->getOperand(1);
7467  unsigned BaseOp = 0;
7468  unsigned Cond = 0;
7469  DebugLoc dl = Op.getDebugLoc();
7470
7471  switch (Op.getOpcode()) {
7472  default: llvm_unreachable("Unknown ovf instruction!");
7473  case ISD::SADDO:
7474    // A subtract of one will be selected as a INC. Note that INC doesn't
7475    // set CF, so we can't do this for UADDO.
7476    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7477      if (C->getAPIntValue() == 1) {
7478        BaseOp = X86ISD::INC;
7479        Cond = X86::COND_O;
7480        break;
7481      }
7482    BaseOp = X86ISD::ADD;
7483    Cond = X86::COND_O;
7484    break;
7485  case ISD::UADDO:
7486    BaseOp = X86ISD::ADD;
7487    Cond = X86::COND_B;
7488    break;
7489  case ISD::SSUBO:
7490    // A subtract of one will be selected as a DEC. Note that DEC doesn't
7491    // set CF, so we can't do this for USUBO.
7492    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7493      if (C->getAPIntValue() == 1) {
7494        BaseOp = X86ISD::DEC;
7495        Cond = X86::COND_O;
7496        break;
7497      }
7498    BaseOp = X86ISD::SUB;
7499    Cond = X86::COND_O;
7500    break;
7501  case ISD::USUBO:
7502    BaseOp = X86ISD::SUB;
7503    Cond = X86::COND_B;
7504    break;
7505  case ISD::SMULO:
7506    BaseOp = X86ISD::SMUL;
7507    Cond = X86::COND_O;
7508    break;
7509  case ISD::UMULO:
7510    BaseOp = X86ISD::UMUL;
7511    Cond = X86::COND_B;
7512    break;
7513  }
7514
7515  // Also sets EFLAGS.
7516  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
7517  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
7518
7519  SDValue SetCC =
7520    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
7521                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
7522
7523  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
7524  return Sum;
7525}
7526
7527SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
7528  EVT T = Op.getValueType();
7529  DebugLoc dl = Op.getDebugLoc();
7530  unsigned Reg = 0;
7531  unsigned size = 0;
7532  switch(T.getSimpleVT().SimpleTy) {
7533  default:
7534    assert(false && "Invalid value type!");
7535  case MVT::i8:  Reg = X86::AL;  size = 1; break;
7536  case MVT::i16: Reg = X86::AX;  size = 2; break;
7537  case MVT::i32: Reg = X86::EAX; size = 4; break;
7538  case MVT::i64:
7539    assert(Subtarget->is64Bit() && "Node not type legal!");
7540    Reg = X86::RAX; size = 8;
7541    break;
7542  }
7543  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
7544                                    Op.getOperand(2), SDValue());
7545  SDValue Ops[] = { cpIn.getValue(0),
7546                    Op.getOperand(1),
7547                    Op.getOperand(3),
7548                    DAG.getTargetConstant(size, MVT::i8),
7549                    cpIn.getValue(1) };
7550  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7551  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7552  SDValue cpOut =
7553    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7554  return cpOut;
7555}
7556
7557SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7558                                                 SelectionDAG &DAG) {
7559  assert(Subtarget->is64Bit() && "Result not type legalized?");
7560  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7561  SDValue TheChain = Op.getOperand(0);
7562  DebugLoc dl = Op.getDebugLoc();
7563  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7564  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7565  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7566                                   rax.getValue(2));
7567  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7568                            DAG.getConstant(32, MVT::i8));
7569  SDValue Ops[] = {
7570    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7571    rdx.getValue(1)
7572  };
7573  return DAG.getMergeValues(Ops, 2, dl);
7574}
7575
7576SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
7577  SDNode *Node = Op.getNode();
7578  DebugLoc dl = Node->getDebugLoc();
7579  EVT T = Node->getValueType(0);
7580  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7581                              DAG.getConstant(0, T), Node->getOperand(2));
7582  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7583                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7584                       Node->getOperand(0),
7585                       Node->getOperand(1), negOp,
7586                       cast<AtomicSDNode>(Node)->getSrcValue(),
7587                       cast<AtomicSDNode>(Node)->getAlignment());
7588}
7589
7590/// LowerOperation - Provide custom lowering hooks for some operations.
7591///
7592SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
7593  switch (Op.getOpcode()) {
7594  default: llvm_unreachable("Should not custom lower this!");
7595  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7596  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7597  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7598  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
7599  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7600  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7601  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7602  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7603  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7604  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7605  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7606  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7607  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7608  case ISD::SHL_PARTS:
7609  case ISD::SRA_PARTS:
7610  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7611  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7612  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7613  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7614  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7615  case ISD::FABS:               return LowerFABS(Op, DAG);
7616  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7617  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7618  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7619  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7620  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7621  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7622  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7623  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7624  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7625  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7626  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7627  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7628  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7629  case ISD::FRAME_TO_ARGS_OFFSET:
7630                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7631  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7632  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7633  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7634  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7635  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7636  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7637  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7638  case ISD::SADDO:
7639  case ISD::UADDO:
7640  case ISD::SSUBO:
7641  case ISD::USUBO:
7642  case ISD::SMULO:
7643  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7644  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7645  }
7646}
7647
7648void X86TargetLowering::
7649ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7650                        SelectionDAG &DAG, unsigned NewOp) {
7651  EVT T = Node->getValueType(0);
7652  DebugLoc dl = Node->getDebugLoc();
7653  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7654
7655  SDValue Chain = Node->getOperand(0);
7656  SDValue In1 = Node->getOperand(1);
7657  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7658                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7659  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7660                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7661  SDValue Ops[] = { Chain, In1, In2L, In2H };
7662  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7663  SDValue Result =
7664    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7665                            cast<MemSDNode>(Node)->getMemOperand());
7666  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7667  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7668  Results.push_back(Result.getValue(2));
7669}
7670
7671/// ReplaceNodeResults - Replace a node with an illegal result type
7672/// with a new node built out of custom code.
7673void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7674                                           SmallVectorImpl<SDValue>&Results,
7675                                           SelectionDAG &DAG) {
7676  DebugLoc dl = N->getDebugLoc();
7677  switch (N->getOpcode()) {
7678  default:
7679    assert(false && "Do not know how to custom type legalize this operation!");
7680    return;
7681  case ISD::FP_TO_SINT: {
7682    std::pair<SDValue,SDValue> Vals =
7683        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7684    SDValue FIST = Vals.first, StackSlot = Vals.second;
7685    if (FIST.getNode() != 0) {
7686      EVT VT = N->getValueType(0);
7687      // Return a load from the stack slot.
7688      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
7689                                    false, false, 0));
7690    }
7691    return;
7692  }
7693  case ISD::READCYCLECOUNTER: {
7694    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7695    SDValue TheChain = N->getOperand(0);
7696    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7697    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7698                                     rd.getValue(1));
7699    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7700                                     eax.getValue(2));
7701    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7702    SDValue Ops[] = { eax, edx };
7703    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7704    Results.push_back(edx.getValue(1));
7705    return;
7706  }
7707  case ISD::ATOMIC_CMP_SWAP: {
7708    EVT T = N->getValueType(0);
7709    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7710    SDValue cpInL, cpInH;
7711    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7712                        DAG.getConstant(0, MVT::i32));
7713    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7714                        DAG.getConstant(1, MVT::i32));
7715    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7716    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7717                             cpInL.getValue(1));
7718    SDValue swapInL, swapInH;
7719    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7720                          DAG.getConstant(0, MVT::i32));
7721    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7722                          DAG.getConstant(1, MVT::i32));
7723    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7724                               cpInH.getValue(1));
7725    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7726                               swapInL.getValue(1));
7727    SDValue Ops[] = { swapInH.getValue(0),
7728                      N->getOperand(1),
7729                      swapInH.getValue(1) };
7730    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7731    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7732    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7733                                        MVT::i32, Result.getValue(1));
7734    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7735                                        MVT::i32, cpOutL.getValue(2));
7736    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7737    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7738    Results.push_back(cpOutH.getValue(1));
7739    return;
7740  }
7741  case ISD::ATOMIC_LOAD_ADD:
7742    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7743    return;
7744  case ISD::ATOMIC_LOAD_AND:
7745    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7746    return;
7747  case ISD::ATOMIC_LOAD_NAND:
7748    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7749    return;
7750  case ISD::ATOMIC_LOAD_OR:
7751    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7752    return;
7753  case ISD::ATOMIC_LOAD_SUB:
7754    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7755    return;
7756  case ISD::ATOMIC_LOAD_XOR:
7757    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7758    return;
7759  case ISD::ATOMIC_SWAP:
7760    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7761    return;
7762  }
7763}
7764
7765const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7766  switch (Opcode) {
7767  default: return NULL;
7768  case X86ISD::BSF:                return "X86ISD::BSF";
7769  case X86ISD::BSR:                return "X86ISD::BSR";
7770  case X86ISD::SHLD:               return "X86ISD::SHLD";
7771  case X86ISD::SHRD:               return "X86ISD::SHRD";
7772  case X86ISD::FAND:               return "X86ISD::FAND";
7773  case X86ISD::FOR:                return "X86ISD::FOR";
7774  case X86ISD::FXOR:               return "X86ISD::FXOR";
7775  case X86ISD::FSRL:               return "X86ISD::FSRL";
7776  case X86ISD::FILD:               return "X86ISD::FILD";
7777  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7778  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7779  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7780  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7781  case X86ISD::FLD:                return "X86ISD::FLD";
7782  case X86ISD::FST:                return "X86ISD::FST";
7783  case X86ISD::CALL:               return "X86ISD::CALL";
7784  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7785  case X86ISD::BT:                 return "X86ISD::BT";
7786  case X86ISD::CMP:                return "X86ISD::CMP";
7787  case X86ISD::COMI:               return "X86ISD::COMI";
7788  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7789  case X86ISD::SETCC:              return "X86ISD::SETCC";
7790  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
7791  case X86ISD::CMOV:               return "X86ISD::CMOV";
7792  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7793  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7794  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7795  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7796  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7797  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7798  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
7799  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7800  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7801  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7802  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7803  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7804  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
7805  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7806  case X86ISD::FMAX:               return "X86ISD::FMAX";
7807  case X86ISD::FMIN:               return "X86ISD::FMIN";
7808  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7809  case X86ISD::FRCP:               return "X86ISD::FRCP";
7810  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7811  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7812  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7813  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7814  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7815  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7816  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7817  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7818  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7819  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7820  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7821  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7822  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7823  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7824  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7825  case X86ISD::VSHL:               return "X86ISD::VSHL";
7826  case X86ISD::VSRL:               return "X86ISD::VSRL";
7827  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7828  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7829  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7830  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7831  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7832  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7833  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7834  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7835  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7836  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7837  case X86ISD::ADD:                return "X86ISD::ADD";
7838  case X86ISD::SUB:                return "X86ISD::SUB";
7839  case X86ISD::SMUL:               return "X86ISD::SMUL";
7840  case X86ISD::UMUL:               return "X86ISD::UMUL";
7841  case X86ISD::INC:                return "X86ISD::INC";
7842  case X86ISD::DEC:                return "X86ISD::DEC";
7843  case X86ISD::OR:                 return "X86ISD::OR";
7844  case X86ISD::XOR:                return "X86ISD::XOR";
7845  case X86ISD::AND:                return "X86ISD::AND";
7846  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
7847  case X86ISD::PTEST:              return "X86ISD::PTEST";
7848  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7849  case X86ISD::MINGW_ALLOCA:       return "X86ISD::MINGW_ALLOCA";
7850  }
7851}
7852
7853// isLegalAddressingMode - Return true if the addressing mode represented
7854// by AM is legal for this target, for a load/store of the specified type.
7855bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7856                                              const Type *Ty) const {
7857  // X86 supports extremely general addressing modes.
7858  CodeModel::Model M = getTargetMachine().getCodeModel();
7859
7860  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7861  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7862    return false;
7863
7864  if (AM.BaseGV) {
7865    unsigned GVFlags =
7866      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7867
7868    // If a reference to this global requires an extra load, we can't fold it.
7869    if (isGlobalStubReference(GVFlags))
7870      return false;
7871
7872    // If BaseGV requires a register for the PIC base, we cannot also have a
7873    // BaseReg specified.
7874    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7875      return false;
7876
7877    // If lower 4G is not available, then we must use rip-relative addressing.
7878    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7879      return false;
7880  }
7881
7882  switch (AM.Scale) {
7883  case 0:
7884  case 1:
7885  case 2:
7886  case 4:
7887  case 8:
7888    // These scales always work.
7889    break;
7890  case 3:
7891  case 5:
7892  case 9:
7893    // These scales are formed with basereg+scalereg.  Only accept if there is
7894    // no basereg yet.
7895    if (AM.HasBaseReg)
7896      return false;
7897    break;
7898  default:  // Other stuff never works.
7899    return false;
7900  }
7901
7902  return true;
7903}
7904
7905
7906bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7907  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
7908    return false;
7909  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7910  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7911  if (NumBits1 <= NumBits2)
7912    return false;
7913  return true;
7914}
7915
7916bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7917  if (!VT1.isInteger() || !VT2.isInteger())
7918    return false;
7919  unsigned NumBits1 = VT1.getSizeInBits();
7920  unsigned NumBits2 = VT2.getSizeInBits();
7921  if (NumBits1 <= NumBits2)
7922    return false;
7923  return true;
7924}
7925
7926bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7927  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7928  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
7929}
7930
7931bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7932  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7933  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7934}
7935
7936bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
7937  // i16 instructions are longer (0x66 prefix) and potentially slower.
7938  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7939}
7940
7941/// isShuffleMaskLegal - Targets can use this to indicate that they only
7942/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7943/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7944/// are assumed to be legal.
7945bool
7946X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7947                                      EVT VT) const {
7948  // Only do shuffles on 128-bit vector types for now.
7949  if (VT.getSizeInBits() == 64)
7950    return false;
7951
7952  // FIXME: pshufb, blends, shifts.
7953  return (VT.getVectorNumElements() == 2 ||
7954          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7955          isMOVLMask(M, VT) ||
7956          isSHUFPMask(M, VT) ||
7957          isPSHUFDMask(M, VT) ||
7958          isPSHUFHWMask(M, VT) ||
7959          isPSHUFLWMask(M, VT) ||
7960          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
7961          isUNPCKLMask(M, VT) ||
7962          isUNPCKHMask(M, VT) ||
7963          isUNPCKL_v_undef_Mask(M, VT) ||
7964          isUNPCKH_v_undef_Mask(M, VT));
7965}
7966
7967bool
7968X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7969                                          EVT VT) const {
7970  unsigned NumElts = VT.getVectorNumElements();
7971  // FIXME: This collection of masks seems suspect.
7972  if (NumElts == 2)
7973    return true;
7974  if (NumElts == 4 && VT.getSizeInBits() == 128) {
7975    return (isMOVLMask(Mask, VT)  ||
7976            isCommutedMOVLMask(Mask, VT, true) ||
7977            isSHUFPMask(Mask, VT) ||
7978            isCommutedSHUFPMask(Mask, VT));
7979  }
7980  return false;
7981}
7982
7983//===----------------------------------------------------------------------===//
7984//                           X86 Scheduler Hooks
7985//===----------------------------------------------------------------------===//
7986
7987// private utility function
7988MachineBasicBlock *
7989X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7990                                                       MachineBasicBlock *MBB,
7991                                                       unsigned regOpc,
7992                                                       unsigned immOpc,
7993                                                       unsigned LoadOpc,
7994                                                       unsigned CXchgOpc,
7995                                                       unsigned copyOpc,
7996                                                       unsigned notOpc,
7997                                                       unsigned EAXreg,
7998                                                       TargetRegisterClass *RC,
7999                                                       bool invSrc) const {
8000  // For the atomic bitwise operator, we generate
8001  //   thisMBB:
8002  //   newMBB:
8003  //     ld  t1 = [bitinstr.addr]
8004  //     op  t2 = t1, [bitinstr.val]
8005  //     mov EAX = t1
8006  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8007  //     bz  newMBB
8008  //     fallthrough -->nextMBB
8009  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8010  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8011  MachineFunction::iterator MBBIter = MBB;
8012  ++MBBIter;
8013
8014  /// First build the CFG
8015  MachineFunction *F = MBB->getParent();
8016  MachineBasicBlock *thisMBB = MBB;
8017  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8018  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8019  F->insert(MBBIter, newMBB);
8020  F->insert(MBBIter, nextMBB);
8021
8022  // Move all successors to thisMBB to nextMBB
8023  nextMBB->transferSuccessors(thisMBB);
8024
8025  // Update thisMBB to fall through to newMBB
8026  thisMBB->addSuccessor(newMBB);
8027
8028  // newMBB jumps to itself and fall through to nextMBB
8029  newMBB->addSuccessor(nextMBB);
8030  newMBB->addSuccessor(newMBB);
8031
8032  // Insert instructions into newMBB based on incoming instruction
8033  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
8034         "unexpected number of operands");
8035  DebugLoc dl = bInstr->getDebugLoc();
8036  MachineOperand& destOper = bInstr->getOperand(0);
8037  MachineOperand* argOpers[2 + X86AddrNumOperands];
8038  int numArgs = bInstr->getNumOperands() - 1;
8039  for (int i=0; i < numArgs; ++i)
8040    argOpers[i] = &bInstr->getOperand(i+1);
8041
8042  // x86 address has 4 operands: base, index, scale, and displacement
8043  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8044  int valArgIndx = lastAddrIndx + 1;
8045
8046  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8047  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
8048  for (int i=0; i <= lastAddrIndx; ++i)
8049    (*MIB).addOperand(*argOpers[i]);
8050
8051  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
8052  if (invSrc) {
8053    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
8054  }
8055  else
8056    tt = t1;
8057
8058  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8059  assert((argOpers[valArgIndx]->isReg() ||
8060          argOpers[valArgIndx]->isImm()) &&
8061         "invalid operand");
8062  if (argOpers[valArgIndx]->isReg())
8063    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
8064  else
8065    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
8066  MIB.addReg(tt);
8067  (*MIB).addOperand(*argOpers[valArgIndx]);
8068
8069  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
8070  MIB.addReg(t1);
8071
8072  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
8073  for (int i=0; i <= lastAddrIndx; ++i)
8074    (*MIB).addOperand(*argOpers[i]);
8075  MIB.addReg(t2);
8076  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8077  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8078                    bInstr->memoperands_end());
8079
8080  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
8081  MIB.addReg(EAXreg);
8082
8083  // insert branch
8084  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8085
8086  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
8087  return nextMBB;
8088}
8089
8090// private utility function:  64 bit atomics on 32 bit host.
8091MachineBasicBlock *
8092X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
8093                                                       MachineBasicBlock *MBB,
8094                                                       unsigned regOpcL,
8095                                                       unsigned regOpcH,
8096                                                       unsigned immOpcL,
8097                                                       unsigned immOpcH,
8098                                                       bool invSrc) const {
8099  // For the atomic bitwise operator, we generate
8100  //   thisMBB (instructions are in pairs, except cmpxchg8b)
8101  //     ld t1,t2 = [bitinstr.addr]
8102  //   newMBB:
8103  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
8104  //     op  t5, t6 <- out1, out2, [bitinstr.val]
8105  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
8106  //     mov ECX, EBX <- t5, t6
8107  //     mov EAX, EDX <- t1, t2
8108  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
8109  //     mov t3, t4 <- EAX, EDX
8110  //     bz  newMBB
8111  //     result in out1, out2
8112  //     fallthrough -->nextMBB
8113
8114  const TargetRegisterClass *RC = X86::GR32RegisterClass;
8115  const unsigned LoadOpc = X86::MOV32rm;
8116  const unsigned copyOpc = X86::MOV32rr;
8117  const unsigned NotOpc = X86::NOT32r;
8118  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8119  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8120  MachineFunction::iterator MBBIter = MBB;
8121  ++MBBIter;
8122
8123  /// First build the CFG
8124  MachineFunction *F = MBB->getParent();
8125  MachineBasicBlock *thisMBB = MBB;
8126  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8127  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8128  F->insert(MBBIter, newMBB);
8129  F->insert(MBBIter, nextMBB);
8130
8131  // Move all successors to thisMBB to nextMBB
8132  nextMBB->transferSuccessors(thisMBB);
8133
8134  // Update thisMBB to fall through to newMBB
8135  thisMBB->addSuccessor(newMBB);
8136
8137  // newMBB jumps to itself and fall through to nextMBB
8138  newMBB->addSuccessor(nextMBB);
8139  newMBB->addSuccessor(newMBB);
8140
8141  DebugLoc dl = bInstr->getDebugLoc();
8142  // Insert instructions into newMBB based on incoming instruction
8143  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
8144  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
8145         "unexpected number of operands");
8146  MachineOperand& dest1Oper = bInstr->getOperand(0);
8147  MachineOperand& dest2Oper = bInstr->getOperand(1);
8148  MachineOperand* argOpers[2 + X86AddrNumOperands];
8149  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
8150    argOpers[i] = &bInstr->getOperand(i+2);
8151
8152  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8153  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8154
8155  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8156  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8157  for (int i=0; i <= lastAddrIndx; ++i)
8158    (*MIB).addOperand(*argOpers[i]);
8159  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8160  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8161  // add 4 to displacement.
8162  for (int i=0; i <= lastAddrIndx-2; ++i)
8163    (*MIB).addOperand(*argOpers[i]);
8164  MachineOperand newOp3 = *(argOpers[3]);
8165  if (newOp3.isImm())
8166    newOp3.setImm(newOp3.getImm()+4);
8167  else
8168    newOp3.setOffset(newOp3.getOffset()+4);
8169  (*MIB).addOperand(newOp3);
8170  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8171
8172  // t3/4 are defined later, at the bottom of the loop
8173  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8174  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8175  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8176    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8177  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8178    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8179
8180  // The subsequent operations should be using the destination registers of
8181  //the PHI instructions.
8182  if (invSrc) {
8183    t1 = F->getRegInfo().createVirtualRegister(RC);
8184    t2 = F->getRegInfo().createVirtualRegister(RC);
8185    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8186    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8187  } else {
8188    t1 = dest1Oper.getReg();
8189    t2 = dest2Oper.getReg();
8190  }
8191
8192  int valArgIndx = lastAddrIndx + 1;
8193  assert((argOpers[valArgIndx]->isReg() ||
8194          argOpers[valArgIndx]->isImm()) &&
8195         "invalid operand");
8196  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8197  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8198  if (argOpers[valArgIndx]->isReg())
8199    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8200  else
8201    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8202  if (regOpcL != X86::MOV32rr)
8203    MIB.addReg(t1);
8204  (*MIB).addOperand(*argOpers[valArgIndx]);
8205  assert(argOpers[valArgIndx + 1]->isReg() ==
8206         argOpers[valArgIndx]->isReg());
8207  assert(argOpers[valArgIndx + 1]->isImm() ==
8208         argOpers[valArgIndx]->isImm());
8209  if (argOpers[valArgIndx + 1]->isReg())
8210    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8211  else
8212    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8213  if (regOpcH != X86::MOV32rr)
8214    MIB.addReg(t2);
8215  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8216
8217  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
8218  MIB.addReg(t1);
8219  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
8220  MIB.addReg(t2);
8221
8222  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
8223  MIB.addReg(t5);
8224  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
8225  MIB.addReg(t6);
8226
8227  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8228  for (int i=0; i <= lastAddrIndx; ++i)
8229    (*MIB).addOperand(*argOpers[i]);
8230
8231  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8232  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8233                    bInstr->memoperands_end());
8234
8235  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
8236  MIB.addReg(X86::EAX);
8237  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
8238  MIB.addReg(X86::EDX);
8239
8240  // insert branch
8241  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8242
8243  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
8244  return nextMBB;
8245}
8246
8247// private utility function
8248MachineBasicBlock *
8249X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8250                                                      MachineBasicBlock *MBB,
8251                                                      unsigned cmovOpc) const {
8252  // For the atomic min/max operator, we generate
8253  //   thisMBB:
8254  //   newMBB:
8255  //     ld t1 = [min/max.addr]
8256  //     mov t2 = [min/max.val]
8257  //     cmp  t1, t2
8258  //     cmov[cond] t2 = t1
8259  //     mov EAX = t1
8260  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8261  //     bz   newMBB
8262  //     fallthrough -->nextMBB
8263  //
8264  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8265  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8266  MachineFunction::iterator MBBIter = MBB;
8267  ++MBBIter;
8268
8269  /// First build the CFG
8270  MachineFunction *F = MBB->getParent();
8271  MachineBasicBlock *thisMBB = MBB;
8272  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8273  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8274  F->insert(MBBIter, newMBB);
8275  F->insert(MBBIter, nextMBB);
8276
8277  // Move all successors of thisMBB to nextMBB
8278  nextMBB->transferSuccessors(thisMBB);
8279
8280  // Update thisMBB to fall through to newMBB
8281  thisMBB->addSuccessor(newMBB);
8282
8283  // newMBB jumps to newMBB and fall through to nextMBB
8284  newMBB->addSuccessor(nextMBB);
8285  newMBB->addSuccessor(newMBB);
8286
8287  DebugLoc dl = mInstr->getDebugLoc();
8288  // Insert instructions into newMBB based on incoming instruction
8289  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
8290         "unexpected number of operands");
8291  MachineOperand& destOper = mInstr->getOperand(0);
8292  MachineOperand* argOpers[2 + X86AddrNumOperands];
8293  int numArgs = mInstr->getNumOperands() - 1;
8294  for (int i=0; i < numArgs; ++i)
8295    argOpers[i] = &mInstr->getOperand(i+1);
8296
8297  // x86 address has 4 operands: base, index, scale, and displacement
8298  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8299  int valArgIndx = lastAddrIndx + 1;
8300
8301  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8302  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
8303  for (int i=0; i <= lastAddrIndx; ++i)
8304    (*MIB).addOperand(*argOpers[i]);
8305
8306  // We only support register and immediate values
8307  assert((argOpers[valArgIndx]->isReg() ||
8308          argOpers[valArgIndx]->isImm()) &&
8309         "invalid operand");
8310
8311  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8312  if (argOpers[valArgIndx]->isReg())
8313    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8314  else
8315    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8316  (*MIB).addOperand(*argOpers[valArgIndx]);
8317
8318  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
8319  MIB.addReg(t1);
8320
8321  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
8322  MIB.addReg(t1);
8323  MIB.addReg(t2);
8324
8325  // Generate movc
8326  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8327  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
8328  MIB.addReg(t2);
8329  MIB.addReg(t1);
8330
8331  // Cmp and exchange if none has modified the memory location
8332  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
8333  for (int i=0; i <= lastAddrIndx; ++i)
8334    (*MIB).addOperand(*argOpers[i]);
8335  MIB.addReg(t3);
8336  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8337  (*MIB).setMemRefs(mInstr->memoperands_begin(),
8338                    mInstr->memoperands_end());
8339
8340  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
8341  MIB.addReg(X86::EAX);
8342
8343  // insert branch
8344  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8345
8346  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
8347  return nextMBB;
8348}
8349
8350// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
8351// all of this code can be replaced with that in the .td file.
8352MachineBasicBlock *
8353X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
8354                            unsigned numArgs, bool memArg) const {
8355
8356  MachineFunction *F = BB->getParent();
8357  DebugLoc dl = MI->getDebugLoc();
8358  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8359
8360  unsigned Opc;
8361  if (memArg)
8362    Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
8363  else
8364    Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
8365
8366  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
8367
8368  for (unsigned i = 0; i < numArgs; ++i) {
8369    MachineOperand &Op = MI->getOperand(i+1);
8370
8371    if (!(Op.isReg() && Op.isImplicit()))
8372      MIB.addOperand(Op);
8373  }
8374
8375  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
8376    .addReg(X86::XMM0);
8377
8378  F->DeleteMachineInstr(MI);
8379
8380  return BB;
8381}
8382
8383MachineBasicBlock *
8384X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
8385                                                 MachineInstr *MI,
8386                                                 MachineBasicBlock *MBB) const {
8387  // Emit code to save XMM registers to the stack. The ABI says that the
8388  // number of registers to save is given in %al, so it's theoretically
8389  // possible to do an indirect jump trick to avoid saving all of them,
8390  // however this code takes a simpler approach and just executes all
8391  // of the stores if %al is non-zero. It's less code, and it's probably
8392  // easier on the hardware branch predictor, and stores aren't all that
8393  // expensive anyway.
8394
8395  // Create the new basic blocks. One block contains all the XMM stores,
8396  // and one block is the final destination regardless of whether any
8397  // stores were performed.
8398  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8399  MachineFunction *F = MBB->getParent();
8400  MachineFunction::iterator MBBIter = MBB;
8401  ++MBBIter;
8402  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
8403  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
8404  F->insert(MBBIter, XMMSaveMBB);
8405  F->insert(MBBIter, EndMBB);
8406
8407  // Set up the CFG.
8408  // Move any original successors of MBB to the end block.
8409  EndMBB->transferSuccessors(MBB);
8410  // The original block will now fall through to the XMM save block.
8411  MBB->addSuccessor(XMMSaveMBB);
8412  // The XMMSaveMBB will fall through to the end block.
8413  XMMSaveMBB->addSuccessor(EndMBB);
8414
8415  // Now add the instructions.
8416  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8417  DebugLoc DL = MI->getDebugLoc();
8418
8419  unsigned CountReg = MI->getOperand(0).getReg();
8420  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
8421  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
8422
8423  if (!Subtarget->isTargetWin64()) {
8424    // If %al is 0, branch around the XMM save block.
8425    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
8426    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
8427    MBB->addSuccessor(EndMBB);
8428  }
8429
8430  // In the XMM save block, save all the XMM argument registers.
8431  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
8432    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
8433    MachineMemOperand *MMO =
8434      F->getMachineMemOperand(
8435        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
8436        MachineMemOperand::MOStore, Offset,
8437        /*Size=*/16, /*Align=*/16);
8438    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
8439      .addFrameIndex(RegSaveFrameIndex)
8440      .addImm(/*Scale=*/1)
8441      .addReg(/*IndexReg=*/0)
8442      .addImm(/*Disp=*/Offset)
8443      .addReg(/*Segment=*/0)
8444      .addReg(MI->getOperand(i).getReg())
8445      .addMemOperand(MMO);
8446  }
8447
8448  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8449
8450  return EndMBB;
8451}
8452
8453MachineBasicBlock *
8454X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
8455                                     MachineBasicBlock *BB,
8456                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8457  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8458  DebugLoc DL = MI->getDebugLoc();
8459
8460  // To "insert" a SELECT_CC instruction, we actually have to insert the
8461  // diamond control-flow pattern.  The incoming instruction knows the
8462  // destination vreg to set, the condition code register to branch on, the
8463  // true/false values to select between, and a branch opcode to use.
8464  const BasicBlock *LLVM_BB = BB->getBasicBlock();
8465  MachineFunction::iterator It = BB;
8466  ++It;
8467
8468  //  thisMBB:
8469  //  ...
8470  //   TrueVal = ...
8471  //   cmpTY ccX, r1, r2
8472  //   bCC copy1MBB
8473  //   fallthrough --> copy0MBB
8474  MachineBasicBlock *thisMBB = BB;
8475  MachineFunction *F = BB->getParent();
8476  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8477  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8478  unsigned Opc =
8479    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
8480  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
8481  F->insert(It, copy0MBB);
8482  F->insert(It, sinkMBB);
8483  // Update machine-CFG edges by first adding all successors of the current
8484  // block to the new block which will contain the Phi node for the select.
8485  // Also inform sdisel of the edge changes.
8486  for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
8487         E = BB->succ_end(); I != E; ++I) {
8488    EM->insert(std::make_pair(*I, sinkMBB));
8489    sinkMBB->addSuccessor(*I);
8490  }
8491  // Next, remove all successors of the current block, and add the true
8492  // and fallthrough blocks as its successors.
8493  while (!BB->succ_empty())
8494    BB->removeSuccessor(BB->succ_begin());
8495  // Add the true and fallthrough blocks as its successors.
8496  BB->addSuccessor(copy0MBB);
8497  BB->addSuccessor(sinkMBB);
8498
8499  //  copy0MBB:
8500  //   %FalseValue = ...
8501  //   # fallthrough to sinkMBB
8502  BB = copy0MBB;
8503
8504  // Update machine-CFG edges
8505  BB->addSuccessor(sinkMBB);
8506
8507  //  sinkMBB:
8508  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8509  //  ...
8510  BB = sinkMBB;
8511  BuildMI(BB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg())
8512    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
8513    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8514
8515  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8516  return BB;
8517}
8518
8519MachineBasicBlock *
8520X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI,
8521                                          MachineBasicBlock *BB,
8522                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8523  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8524  DebugLoc DL = MI->getDebugLoc();
8525  MachineFunction *F = BB->getParent();
8526
8527  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
8528  // non-trivial part is impdef of ESP.
8529  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
8530  // mingw-w64.
8531
8532  BuildMI(BB, DL, TII->get(X86::CALLpcrel32))
8533    .addExternalSymbol("_alloca")
8534    .addReg(X86::EAX, RegState::Implicit)
8535    .addReg(X86::ESP, RegState::Implicit)
8536    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
8537    .addReg(X86::ESP, RegState::Define | RegState::Implicit);
8538
8539  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8540  return BB;
8541}
8542
8543MachineBasicBlock *
8544X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8545                                               MachineBasicBlock *BB,
8546                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8547  switch (MI->getOpcode()) {
8548  default: assert(false && "Unexpected instr type to insert");
8549  case X86::MINGW_ALLOCA:
8550    return EmitLoweredMingwAlloca(MI, BB, EM);
8551  case X86::CMOV_GR8:
8552  case X86::CMOV_V1I64:
8553  case X86::CMOV_FR32:
8554  case X86::CMOV_FR64:
8555  case X86::CMOV_V4F32:
8556  case X86::CMOV_V2F64:
8557  case X86::CMOV_V2I64:
8558  case X86::CMOV_GR16:
8559  case X86::CMOV_GR32:
8560  case X86::CMOV_RFP32:
8561  case X86::CMOV_RFP64:
8562  case X86::CMOV_RFP80:
8563    return EmitLoweredSelect(MI, BB, EM);
8564
8565  case X86::FP32_TO_INT16_IN_MEM:
8566  case X86::FP32_TO_INT32_IN_MEM:
8567  case X86::FP32_TO_INT64_IN_MEM:
8568  case X86::FP64_TO_INT16_IN_MEM:
8569  case X86::FP64_TO_INT32_IN_MEM:
8570  case X86::FP64_TO_INT64_IN_MEM:
8571  case X86::FP80_TO_INT16_IN_MEM:
8572  case X86::FP80_TO_INT32_IN_MEM:
8573  case X86::FP80_TO_INT64_IN_MEM: {
8574    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8575    DebugLoc DL = MI->getDebugLoc();
8576
8577    // Change the floating point control register to use "round towards zero"
8578    // mode when truncating to an integer value.
8579    MachineFunction *F = BB->getParent();
8580    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
8581    addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx);
8582
8583    // Load the old value of the high byte of the control word...
8584    unsigned OldCW =
8585      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
8586    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW),
8587                      CWFrameIdx);
8588
8589    // Set the high part to be round to zero...
8590    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
8591      .addImm(0xC7F);
8592
8593    // Reload the modified control word now...
8594    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8595
8596    // Restore the memory image of control word to original value
8597    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
8598      .addReg(OldCW);
8599
8600    // Get the X86 opcode to use.
8601    unsigned Opc;
8602    switch (MI->getOpcode()) {
8603    default: llvm_unreachable("illegal opcode!");
8604    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
8605    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
8606    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
8607    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
8608    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
8609    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
8610    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
8611    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
8612    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
8613    }
8614
8615    X86AddressMode AM;
8616    MachineOperand &Op = MI->getOperand(0);
8617    if (Op.isReg()) {
8618      AM.BaseType = X86AddressMode::RegBase;
8619      AM.Base.Reg = Op.getReg();
8620    } else {
8621      AM.BaseType = X86AddressMode::FrameIndexBase;
8622      AM.Base.FrameIndex = Op.getIndex();
8623    }
8624    Op = MI->getOperand(1);
8625    if (Op.isImm())
8626      AM.Scale = Op.getImm();
8627    Op = MI->getOperand(2);
8628    if (Op.isImm())
8629      AM.IndexReg = Op.getImm();
8630    Op = MI->getOperand(3);
8631    if (Op.isGlobal()) {
8632      AM.GV = Op.getGlobal();
8633    } else {
8634      AM.Disp = Op.getImm();
8635    }
8636    addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM)
8637                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
8638
8639    // Reload the original control word now.
8640    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8641
8642    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8643    return BB;
8644  }
8645    // DBG_VALUE.  Only the frame index case is done here.
8646  case X86::DBG_VALUE: {
8647    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8648    DebugLoc DL = MI->getDebugLoc();
8649    X86AddressMode AM;
8650    MachineFunction *F = BB->getParent();
8651    AM.BaseType = X86AddressMode::FrameIndexBase;
8652    AM.Base.FrameIndex = MI->getOperand(0).getImm();
8653    addFullAddress(BuildMI(BB, DL, TII->get(X86::DBG_VALUE)), AM).
8654      addImm(MI->getOperand(1).getImm()).
8655      addMetadata(MI->getOperand(2).getMetadata());
8656    F->DeleteMachineInstr(MI);      // Remove pseudo.
8657    return BB;
8658  }
8659
8660    // String/text processing lowering.
8661  case X86::PCMPISTRM128REG:
8662    return EmitPCMP(MI, BB, 3, false /* in-mem */);
8663  case X86::PCMPISTRM128MEM:
8664    return EmitPCMP(MI, BB, 3, true /* in-mem */);
8665  case X86::PCMPESTRM128REG:
8666    return EmitPCMP(MI, BB, 5, false /* in mem */);
8667  case X86::PCMPESTRM128MEM:
8668    return EmitPCMP(MI, BB, 5, true /* in mem */);
8669
8670    // Atomic Lowering.
8671  case X86::ATOMAND32:
8672    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8673                                               X86::AND32ri, X86::MOV32rm,
8674                                               X86::LCMPXCHG32, X86::MOV32rr,
8675                                               X86::NOT32r, X86::EAX,
8676                                               X86::GR32RegisterClass);
8677  case X86::ATOMOR32:
8678    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
8679                                               X86::OR32ri, X86::MOV32rm,
8680                                               X86::LCMPXCHG32, X86::MOV32rr,
8681                                               X86::NOT32r, X86::EAX,
8682                                               X86::GR32RegisterClass);
8683  case X86::ATOMXOR32:
8684    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
8685                                               X86::XOR32ri, X86::MOV32rm,
8686                                               X86::LCMPXCHG32, X86::MOV32rr,
8687                                               X86::NOT32r, X86::EAX,
8688                                               X86::GR32RegisterClass);
8689  case X86::ATOMNAND32:
8690    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8691                                               X86::AND32ri, X86::MOV32rm,
8692                                               X86::LCMPXCHG32, X86::MOV32rr,
8693                                               X86::NOT32r, X86::EAX,
8694                                               X86::GR32RegisterClass, true);
8695  case X86::ATOMMIN32:
8696    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
8697  case X86::ATOMMAX32:
8698    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
8699  case X86::ATOMUMIN32:
8700    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
8701  case X86::ATOMUMAX32:
8702    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
8703
8704  case X86::ATOMAND16:
8705    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8706                                               X86::AND16ri, X86::MOV16rm,
8707                                               X86::LCMPXCHG16, X86::MOV16rr,
8708                                               X86::NOT16r, X86::AX,
8709                                               X86::GR16RegisterClass);
8710  case X86::ATOMOR16:
8711    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
8712                                               X86::OR16ri, X86::MOV16rm,
8713                                               X86::LCMPXCHG16, X86::MOV16rr,
8714                                               X86::NOT16r, X86::AX,
8715                                               X86::GR16RegisterClass);
8716  case X86::ATOMXOR16:
8717    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
8718                                               X86::XOR16ri, X86::MOV16rm,
8719                                               X86::LCMPXCHG16, X86::MOV16rr,
8720                                               X86::NOT16r, X86::AX,
8721                                               X86::GR16RegisterClass);
8722  case X86::ATOMNAND16:
8723    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8724                                               X86::AND16ri, X86::MOV16rm,
8725                                               X86::LCMPXCHG16, X86::MOV16rr,
8726                                               X86::NOT16r, X86::AX,
8727                                               X86::GR16RegisterClass, true);
8728  case X86::ATOMMIN16:
8729    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
8730  case X86::ATOMMAX16:
8731    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
8732  case X86::ATOMUMIN16:
8733    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
8734  case X86::ATOMUMAX16:
8735    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
8736
8737  case X86::ATOMAND8:
8738    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8739                                               X86::AND8ri, X86::MOV8rm,
8740                                               X86::LCMPXCHG8, X86::MOV8rr,
8741                                               X86::NOT8r, X86::AL,
8742                                               X86::GR8RegisterClass);
8743  case X86::ATOMOR8:
8744    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
8745                                               X86::OR8ri, X86::MOV8rm,
8746                                               X86::LCMPXCHG8, X86::MOV8rr,
8747                                               X86::NOT8r, X86::AL,
8748                                               X86::GR8RegisterClass);
8749  case X86::ATOMXOR8:
8750    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
8751                                               X86::XOR8ri, X86::MOV8rm,
8752                                               X86::LCMPXCHG8, X86::MOV8rr,
8753                                               X86::NOT8r, X86::AL,
8754                                               X86::GR8RegisterClass);
8755  case X86::ATOMNAND8:
8756    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8757                                               X86::AND8ri, X86::MOV8rm,
8758                                               X86::LCMPXCHG8, X86::MOV8rr,
8759                                               X86::NOT8r, X86::AL,
8760                                               X86::GR8RegisterClass, true);
8761  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
8762  // This group is for 64-bit host.
8763  case X86::ATOMAND64:
8764    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8765                                               X86::AND64ri32, X86::MOV64rm,
8766                                               X86::LCMPXCHG64, X86::MOV64rr,
8767                                               X86::NOT64r, X86::RAX,
8768                                               X86::GR64RegisterClass);
8769  case X86::ATOMOR64:
8770    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
8771                                               X86::OR64ri32, X86::MOV64rm,
8772                                               X86::LCMPXCHG64, X86::MOV64rr,
8773                                               X86::NOT64r, X86::RAX,
8774                                               X86::GR64RegisterClass);
8775  case X86::ATOMXOR64:
8776    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
8777                                               X86::XOR64ri32, X86::MOV64rm,
8778                                               X86::LCMPXCHG64, X86::MOV64rr,
8779                                               X86::NOT64r, X86::RAX,
8780                                               X86::GR64RegisterClass);
8781  case X86::ATOMNAND64:
8782    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8783                                               X86::AND64ri32, X86::MOV64rm,
8784                                               X86::LCMPXCHG64, X86::MOV64rr,
8785                                               X86::NOT64r, X86::RAX,
8786                                               X86::GR64RegisterClass, true);
8787  case X86::ATOMMIN64:
8788    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
8789  case X86::ATOMMAX64:
8790    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
8791  case X86::ATOMUMIN64:
8792    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
8793  case X86::ATOMUMAX64:
8794    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
8795
8796  // This group does 64-bit operations on a 32-bit host.
8797  case X86::ATOMAND6432:
8798    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8799                                               X86::AND32rr, X86::AND32rr,
8800                                               X86::AND32ri, X86::AND32ri,
8801                                               false);
8802  case X86::ATOMOR6432:
8803    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8804                                               X86::OR32rr, X86::OR32rr,
8805                                               X86::OR32ri, X86::OR32ri,
8806                                               false);
8807  case X86::ATOMXOR6432:
8808    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8809                                               X86::XOR32rr, X86::XOR32rr,
8810                                               X86::XOR32ri, X86::XOR32ri,
8811                                               false);
8812  case X86::ATOMNAND6432:
8813    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8814                                               X86::AND32rr, X86::AND32rr,
8815                                               X86::AND32ri, X86::AND32ri,
8816                                               true);
8817  case X86::ATOMADD6432:
8818    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8819                                               X86::ADD32rr, X86::ADC32rr,
8820                                               X86::ADD32ri, X86::ADC32ri,
8821                                               false);
8822  case X86::ATOMSUB6432:
8823    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8824                                               X86::SUB32rr, X86::SBB32rr,
8825                                               X86::SUB32ri, X86::SBB32ri,
8826                                               false);
8827  case X86::ATOMSWAP6432:
8828    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8829                                               X86::MOV32rr, X86::MOV32rr,
8830                                               X86::MOV32ri, X86::MOV32ri,
8831                                               false);
8832  case X86::VASTART_SAVE_XMM_REGS:
8833    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
8834  }
8835}
8836
8837//===----------------------------------------------------------------------===//
8838//                           X86 Optimization Hooks
8839//===----------------------------------------------------------------------===//
8840
8841void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8842                                                       const APInt &Mask,
8843                                                       APInt &KnownZero,
8844                                                       APInt &KnownOne,
8845                                                       const SelectionDAG &DAG,
8846                                                       unsigned Depth) const {
8847  unsigned Opc = Op.getOpcode();
8848  assert((Opc >= ISD::BUILTIN_OP_END ||
8849          Opc == ISD::INTRINSIC_WO_CHAIN ||
8850          Opc == ISD::INTRINSIC_W_CHAIN ||
8851          Opc == ISD::INTRINSIC_VOID) &&
8852         "Should use MaskedValueIsZero if you don't know whether Op"
8853         " is a target node!");
8854
8855  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
8856  switch (Opc) {
8857  default: break;
8858  case X86ISD::ADD:
8859  case X86ISD::SUB:
8860  case X86ISD::SMUL:
8861  case X86ISD::UMUL:
8862  case X86ISD::INC:
8863  case X86ISD::DEC:
8864  case X86ISD::OR:
8865  case X86ISD::XOR:
8866  case X86ISD::AND:
8867    // These nodes' second result is a boolean.
8868    if (Op.getResNo() == 0)
8869      break;
8870    // Fallthrough
8871  case X86ISD::SETCC:
8872    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8873                                       Mask.getBitWidth() - 1);
8874    break;
8875  }
8876}
8877
8878/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8879/// node is a GlobalAddress + offset.
8880bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8881                                       GlobalValue* &GA, int64_t &Offset) const{
8882  if (N->getOpcode() == X86ISD::Wrapper) {
8883    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8884      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8885      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8886      return true;
8887    }
8888  }
8889  return TargetLowering::isGAPlusOffset(N, GA, Offset);
8890}
8891
8892/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8893/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8894/// if the load addresses are consecutive, non-overlapping, and in the right
8895/// order.
8896static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8897                                     const TargetLowering &TLI) {
8898  DebugLoc dl = N->getDebugLoc();
8899  EVT VT = N->getValueType(0);
8900  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8901
8902  if (VT.getSizeInBits() != 128)
8903    return SDValue();
8904
8905  SmallVector<SDValue, 16> Elts;
8906  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
8907    Elts.push_back(DAG.getShuffleScalarElt(SVN, i));
8908
8909  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
8910}
8911
8912/// PerformShuffleCombine - Detect vector gather/scatter index generation
8913/// and convert it from being a bunch of shuffles and extracts to a simple
8914/// store and scalar loads to extract the elements.
8915static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
8916                                                const TargetLowering &TLI) {
8917  SDValue InputVector = N->getOperand(0);
8918
8919  // Only operate on vectors of 4 elements, where the alternative shuffling
8920  // gets to be more expensive.
8921  if (InputVector.getValueType() != MVT::v4i32)
8922    return SDValue();
8923
8924  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
8925  // single use which is a sign-extend or zero-extend, and all elements are
8926  // used.
8927  SmallVector<SDNode *, 4> Uses;
8928  unsigned ExtractedElements = 0;
8929  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
8930       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
8931    if (UI.getUse().getResNo() != InputVector.getResNo())
8932      return SDValue();
8933
8934    SDNode *Extract = *UI;
8935    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8936      return SDValue();
8937
8938    if (Extract->getValueType(0) != MVT::i32)
8939      return SDValue();
8940    if (!Extract->hasOneUse())
8941      return SDValue();
8942    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
8943        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
8944      return SDValue();
8945    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
8946      return SDValue();
8947
8948    // Record which element was extracted.
8949    ExtractedElements |=
8950      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
8951
8952    Uses.push_back(Extract);
8953  }
8954
8955  // If not all the elements were used, this may not be worthwhile.
8956  if (ExtractedElements != 15)
8957    return SDValue();
8958
8959  // Ok, we've now decided to do the transformation.
8960  DebugLoc dl = InputVector.getDebugLoc();
8961
8962  // Store the value to a temporary stack slot.
8963  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
8964  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, NULL, 0,
8965                            false, false, 0);
8966
8967  // Replace each use (extract) with a load of the appropriate element.
8968  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
8969       UE = Uses.end(); UI != UE; ++UI) {
8970    SDNode *Extract = *UI;
8971
8972    // Compute the element's address.
8973    SDValue Idx = Extract->getOperand(1);
8974    unsigned EltSize =
8975        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
8976    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
8977    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
8978
8979    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), OffsetVal, StackPtr);
8980
8981    // Load the scalar.
8982    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch, ScalarAddr,
8983                          NULL, 0, false, false, 0);
8984
8985    // Replace the exact with the load.
8986    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
8987  }
8988
8989  // The replacement was made in place; don't return anything.
8990  return SDValue();
8991}
8992
8993/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8994static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
8995                                    const X86Subtarget *Subtarget) {
8996  DebugLoc DL = N->getDebugLoc();
8997  SDValue Cond = N->getOperand(0);
8998  // Get the LHS/RHS of the select.
8999  SDValue LHS = N->getOperand(1);
9000  SDValue RHS = N->getOperand(2);
9001
9002  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
9003  // instructions match the semantics of the common C idiom x<y?x:y but not
9004  // x<=y?x:y, because of how they handle negative zero (which can be
9005  // ignored in unsafe-math mode).
9006  if (Subtarget->hasSSE2() &&
9007      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
9008      Cond.getOpcode() == ISD::SETCC) {
9009    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
9010
9011    unsigned Opcode = 0;
9012    // Check for x CC y ? x : y.
9013    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
9014        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
9015      switch (CC) {
9016      default: break;
9017      case ISD::SETULT:
9018        // Converting this to a min would handle NaNs incorrectly, and swapping
9019        // the operands would cause it to handle comparisons between positive
9020        // and negative zero incorrectly.
9021        if (!FiniteOnlyFPMath() &&
9022            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) {
9023          if (!UnsafeFPMath &&
9024              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9025            break;
9026          std::swap(LHS, RHS);
9027        }
9028        Opcode = X86ISD::FMIN;
9029        break;
9030      case ISD::SETOLE:
9031        // Converting this to a min would handle comparisons between positive
9032        // and negative zero incorrectly.
9033        if (!UnsafeFPMath &&
9034            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
9035          break;
9036        Opcode = X86ISD::FMIN;
9037        break;
9038      case ISD::SETULE:
9039        // Converting this to a min would handle both negative zeros and NaNs
9040        // incorrectly, but we can swap the operands to fix both.
9041        std::swap(LHS, RHS);
9042      case ISD::SETOLT:
9043      case ISD::SETLT:
9044      case ISD::SETLE:
9045        Opcode = X86ISD::FMIN;
9046        break;
9047
9048      case ISD::SETOGE:
9049        // Converting this to a max would handle comparisons between positive
9050        // and negative zero incorrectly.
9051        if (!UnsafeFPMath &&
9052            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
9053          break;
9054        Opcode = X86ISD::FMAX;
9055        break;
9056      case ISD::SETUGT:
9057        // Converting this to a max would handle NaNs incorrectly, and swapping
9058        // the operands would cause it to handle comparisons between positive
9059        // and negative zero incorrectly.
9060        if (!FiniteOnlyFPMath() &&
9061            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) {
9062          if (!UnsafeFPMath &&
9063              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9064            break;
9065          std::swap(LHS, RHS);
9066        }
9067        Opcode = X86ISD::FMAX;
9068        break;
9069      case ISD::SETUGE:
9070        // Converting this to a max would handle both negative zeros and NaNs
9071        // incorrectly, but we can swap the operands to fix both.
9072        std::swap(LHS, RHS);
9073      case ISD::SETOGT:
9074      case ISD::SETGT:
9075      case ISD::SETGE:
9076        Opcode = X86ISD::FMAX;
9077        break;
9078      }
9079    // Check for x CC y ? y : x -- a min/max with reversed arms.
9080    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
9081               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
9082      switch (CC) {
9083      default: break;
9084      case ISD::SETOGE:
9085        // Converting this to a min would handle comparisons between positive
9086        // and negative zero incorrectly, and swapping the operands would
9087        // cause it to handle NaNs incorrectly.
9088        if (!UnsafeFPMath &&
9089            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
9090          if (!FiniteOnlyFPMath() &&
9091              (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9092            break;
9093          std::swap(LHS, RHS);
9094        }
9095        Opcode = X86ISD::FMIN;
9096        break;
9097      case ISD::SETUGT:
9098        // Converting this to a min would handle NaNs incorrectly.
9099        if (!UnsafeFPMath &&
9100            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9101          break;
9102        Opcode = X86ISD::FMIN;
9103        break;
9104      case ISD::SETUGE:
9105        // Converting this to a min would handle both negative zeros and NaNs
9106        // incorrectly, but we can swap the operands to fix both.
9107        std::swap(LHS, RHS);
9108      case ISD::SETOGT:
9109      case ISD::SETGT:
9110      case ISD::SETGE:
9111        Opcode = X86ISD::FMIN;
9112        break;
9113
9114      case ISD::SETULT:
9115        // Converting this to a max would handle NaNs incorrectly.
9116        if (!FiniteOnlyFPMath() &&
9117            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9118          break;
9119        Opcode = X86ISD::FMAX;
9120        break;
9121      case ISD::SETOLE:
9122        // Converting this to a max would handle comparisons between positive
9123        // and negative zero incorrectly, and swapping the operands would
9124        // cause it to handle NaNs incorrectly.
9125        if (!UnsafeFPMath &&
9126            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
9127          if (!FiniteOnlyFPMath() &&
9128              (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9129            break;
9130          std::swap(LHS, RHS);
9131        }
9132        Opcode = X86ISD::FMAX;
9133        break;
9134      case ISD::SETULE:
9135        // Converting this to a max would handle both negative zeros and NaNs
9136        // incorrectly, but we can swap the operands to fix both.
9137        std::swap(LHS, RHS);
9138      case ISD::SETOLT:
9139      case ISD::SETLT:
9140      case ISD::SETLE:
9141        Opcode = X86ISD::FMAX;
9142        break;
9143      }
9144    }
9145
9146    if (Opcode)
9147      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
9148  }
9149
9150  // If this is a select between two integer constants, try to do some
9151  // optimizations.
9152  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
9153    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
9154      // Don't do this for crazy integer types.
9155      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
9156        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
9157        // so that TrueC (the true value) is larger than FalseC.
9158        bool NeedsCondInvert = false;
9159
9160        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
9161            // Efficiently invertible.
9162            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
9163             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
9164              isa<ConstantSDNode>(Cond.getOperand(1))))) {
9165          NeedsCondInvert = true;
9166          std::swap(TrueC, FalseC);
9167        }
9168
9169        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
9170        if (FalseC->getAPIntValue() == 0 &&
9171            TrueC->getAPIntValue().isPowerOf2()) {
9172          if (NeedsCondInvert) // Invert the condition if needed.
9173            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9174                               DAG.getConstant(1, Cond.getValueType()));
9175
9176          // Zero extend the condition if needed.
9177          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
9178
9179          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9180          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
9181                             DAG.getConstant(ShAmt, MVT::i8));
9182        }
9183
9184        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
9185        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9186          if (NeedsCondInvert) // Invert the condition if needed.
9187            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9188                               DAG.getConstant(1, Cond.getValueType()));
9189
9190          // Zero extend the condition if needed.
9191          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9192                             FalseC->getValueType(0), Cond);
9193          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9194                             SDValue(FalseC, 0));
9195        }
9196
9197        // Optimize cases that will turn into an LEA instruction.  This requires
9198        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9199        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9200          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9201          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9202
9203          bool isFastMultiplier = false;
9204          if (Diff < 10) {
9205            switch ((unsigned char)Diff) {
9206              default: break;
9207              case 1:  // result = add base, cond
9208              case 2:  // result = lea base(    , cond*2)
9209              case 3:  // result = lea base(cond, cond*2)
9210              case 4:  // result = lea base(    , cond*4)
9211              case 5:  // result = lea base(cond, cond*4)
9212              case 8:  // result = lea base(    , cond*8)
9213              case 9:  // result = lea base(cond, cond*8)
9214                isFastMultiplier = true;
9215                break;
9216            }
9217          }
9218
9219          if (isFastMultiplier) {
9220            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9221            if (NeedsCondInvert) // Invert the condition if needed.
9222              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9223                                 DAG.getConstant(1, Cond.getValueType()));
9224
9225            // Zero extend the condition if needed.
9226            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9227                               Cond);
9228            // Scale the condition by the difference.
9229            if (Diff != 1)
9230              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9231                                 DAG.getConstant(Diff, Cond.getValueType()));
9232
9233            // Add the base if non-zero.
9234            if (FalseC->getAPIntValue() != 0)
9235              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9236                                 SDValue(FalseC, 0));
9237            return Cond;
9238          }
9239        }
9240      }
9241  }
9242
9243  return SDValue();
9244}
9245
9246/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
9247static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
9248                                  TargetLowering::DAGCombinerInfo &DCI) {
9249  DebugLoc DL = N->getDebugLoc();
9250
9251  // If the flag operand isn't dead, don't touch this CMOV.
9252  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
9253    return SDValue();
9254
9255  // If this is a select between two integer constants, try to do some
9256  // optimizations.  Note that the operands are ordered the opposite of SELECT
9257  // operands.
9258  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
9259    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9260      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
9261      // larger than FalseC (the false value).
9262      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
9263
9264      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
9265        CC = X86::GetOppositeBranchCondition(CC);
9266        std::swap(TrueC, FalseC);
9267      }
9268
9269      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
9270      // This is efficient for any integer data type (including i8/i16) and
9271      // shift amount.
9272      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
9273        SDValue Cond = N->getOperand(3);
9274        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9275                           DAG.getConstant(CC, MVT::i8), Cond);
9276
9277        // Zero extend the condition if needed.
9278        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
9279
9280        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9281        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
9282                           DAG.getConstant(ShAmt, MVT::i8));
9283        if (N->getNumValues() == 2)  // Dead flag value?
9284          return DCI.CombineTo(N, Cond, SDValue());
9285        return Cond;
9286      }
9287
9288      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
9289      // for any integer data type, including i8/i16.
9290      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9291        SDValue Cond = N->getOperand(3);
9292        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9293                           DAG.getConstant(CC, MVT::i8), Cond);
9294
9295        // Zero extend the condition if needed.
9296        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9297                           FalseC->getValueType(0), Cond);
9298        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9299                           SDValue(FalseC, 0));
9300
9301        if (N->getNumValues() == 2)  // Dead flag value?
9302          return DCI.CombineTo(N, Cond, SDValue());
9303        return Cond;
9304      }
9305
9306      // Optimize cases that will turn into an LEA instruction.  This requires
9307      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9308      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9309        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9310        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9311
9312        bool isFastMultiplier = false;
9313        if (Diff < 10) {
9314          switch ((unsigned char)Diff) {
9315          default: break;
9316          case 1:  // result = add base, cond
9317          case 2:  // result = lea base(    , cond*2)
9318          case 3:  // result = lea base(cond, cond*2)
9319          case 4:  // result = lea base(    , cond*4)
9320          case 5:  // result = lea base(cond, cond*4)
9321          case 8:  // result = lea base(    , cond*8)
9322          case 9:  // result = lea base(cond, cond*8)
9323            isFastMultiplier = true;
9324            break;
9325          }
9326        }
9327
9328        if (isFastMultiplier) {
9329          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9330          SDValue Cond = N->getOperand(3);
9331          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9332                             DAG.getConstant(CC, MVT::i8), Cond);
9333          // Zero extend the condition if needed.
9334          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9335                             Cond);
9336          // Scale the condition by the difference.
9337          if (Diff != 1)
9338            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9339                               DAG.getConstant(Diff, Cond.getValueType()));
9340
9341          // Add the base if non-zero.
9342          if (FalseC->getAPIntValue() != 0)
9343            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9344                               SDValue(FalseC, 0));
9345          if (N->getNumValues() == 2)  // Dead flag value?
9346            return DCI.CombineTo(N, Cond, SDValue());
9347          return Cond;
9348        }
9349      }
9350    }
9351  }
9352  return SDValue();
9353}
9354
9355
9356/// PerformMulCombine - Optimize a single multiply with constant into two
9357/// in order to implement it with two cheaper instructions, e.g.
9358/// LEA + SHL, LEA + LEA.
9359static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
9360                                 TargetLowering::DAGCombinerInfo &DCI) {
9361  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9362    return SDValue();
9363
9364  EVT VT = N->getValueType(0);
9365  if (VT != MVT::i64)
9366    return SDValue();
9367
9368  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9369  if (!C)
9370    return SDValue();
9371  uint64_t MulAmt = C->getZExtValue();
9372  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
9373    return SDValue();
9374
9375  uint64_t MulAmt1 = 0;
9376  uint64_t MulAmt2 = 0;
9377  if ((MulAmt % 9) == 0) {
9378    MulAmt1 = 9;
9379    MulAmt2 = MulAmt / 9;
9380  } else if ((MulAmt % 5) == 0) {
9381    MulAmt1 = 5;
9382    MulAmt2 = MulAmt / 5;
9383  } else if ((MulAmt % 3) == 0) {
9384    MulAmt1 = 3;
9385    MulAmt2 = MulAmt / 3;
9386  }
9387  if (MulAmt2 &&
9388      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
9389    DebugLoc DL = N->getDebugLoc();
9390
9391    if (isPowerOf2_64(MulAmt2) &&
9392        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
9393      // If second multiplifer is pow2, issue it first. We want the multiply by
9394      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
9395      // is an add.
9396      std::swap(MulAmt1, MulAmt2);
9397
9398    SDValue NewMul;
9399    if (isPowerOf2_64(MulAmt1))
9400      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
9401                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
9402    else
9403      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
9404                           DAG.getConstant(MulAmt1, VT));
9405
9406    if (isPowerOf2_64(MulAmt2))
9407      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
9408                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
9409    else
9410      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
9411                           DAG.getConstant(MulAmt2, VT));
9412
9413    // Do not add new nodes to DAG combiner worklist.
9414    DCI.CombineTo(N, NewMul, false);
9415  }
9416  return SDValue();
9417}
9418
9419static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
9420  SDValue N0 = N->getOperand(0);
9421  SDValue N1 = N->getOperand(1);
9422  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9423  EVT VT = N0.getValueType();
9424
9425  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
9426  // since the result of setcc_c is all zero's or all ones.
9427  if (N1C && N0.getOpcode() == ISD::AND &&
9428      N0.getOperand(1).getOpcode() == ISD::Constant) {
9429    SDValue N00 = N0.getOperand(0);
9430    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
9431        ((N00.getOpcode() == ISD::ANY_EXTEND ||
9432          N00.getOpcode() == ISD::ZERO_EXTEND) &&
9433         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
9434      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9435      APInt ShAmt = N1C->getAPIntValue();
9436      Mask = Mask.shl(ShAmt);
9437      if (Mask != 0)
9438        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
9439                           N00, DAG.getConstant(Mask, VT));
9440    }
9441  }
9442
9443  return SDValue();
9444}
9445
9446/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
9447///                       when possible.
9448static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
9449                                   const X86Subtarget *Subtarget) {
9450  EVT VT = N->getValueType(0);
9451  if (!VT.isVector() && VT.isInteger() &&
9452      N->getOpcode() == ISD::SHL)
9453    return PerformSHLCombine(N, DAG);
9454
9455  // On X86 with SSE2 support, we can transform this to a vector shift if
9456  // all elements are shifted by the same amount.  We can't do this in legalize
9457  // because the a constant vector is typically transformed to a constant pool
9458  // so we have no knowledge of the shift amount.
9459  if (!Subtarget->hasSSE2())
9460    return SDValue();
9461
9462  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
9463    return SDValue();
9464
9465  SDValue ShAmtOp = N->getOperand(1);
9466  EVT EltVT = VT.getVectorElementType();
9467  DebugLoc DL = N->getDebugLoc();
9468  SDValue BaseShAmt = SDValue();
9469  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
9470    unsigned NumElts = VT.getVectorNumElements();
9471    unsigned i = 0;
9472    for (; i != NumElts; ++i) {
9473      SDValue Arg = ShAmtOp.getOperand(i);
9474      if (Arg.getOpcode() == ISD::UNDEF) continue;
9475      BaseShAmt = Arg;
9476      break;
9477    }
9478    for (; i != NumElts; ++i) {
9479      SDValue Arg = ShAmtOp.getOperand(i);
9480      if (Arg.getOpcode() == ISD::UNDEF) continue;
9481      if (Arg != BaseShAmt) {
9482        return SDValue();
9483      }
9484    }
9485  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
9486             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
9487    SDValue InVec = ShAmtOp.getOperand(0);
9488    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
9489      unsigned NumElts = InVec.getValueType().getVectorNumElements();
9490      unsigned i = 0;
9491      for (; i != NumElts; ++i) {
9492        SDValue Arg = InVec.getOperand(i);
9493        if (Arg.getOpcode() == ISD::UNDEF) continue;
9494        BaseShAmt = Arg;
9495        break;
9496      }
9497    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
9498       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
9499         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
9500         if (C->getZExtValue() == SplatIdx)
9501           BaseShAmt = InVec.getOperand(1);
9502       }
9503    }
9504    if (BaseShAmt.getNode() == 0)
9505      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
9506                              DAG.getIntPtrConstant(0));
9507  } else
9508    return SDValue();
9509
9510  // The shift amount is an i32.
9511  if (EltVT.bitsGT(MVT::i32))
9512    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
9513  else if (EltVT.bitsLT(MVT::i32))
9514    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
9515
9516  // The shift amount is identical so we can do a vector shift.
9517  SDValue  ValOp = N->getOperand(0);
9518  switch (N->getOpcode()) {
9519  default:
9520    llvm_unreachable("Unknown shift opcode!");
9521    break;
9522  case ISD::SHL:
9523    if (VT == MVT::v2i64)
9524      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9525                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9526                         ValOp, BaseShAmt);
9527    if (VT == MVT::v4i32)
9528      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9529                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9530                         ValOp, BaseShAmt);
9531    if (VT == MVT::v8i16)
9532      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9533                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9534                         ValOp, BaseShAmt);
9535    break;
9536  case ISD::SRA:
9537    if (VT == MVT::v4i32)
9538      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9539                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9540                         ValOp, BaseShAmt);
9541    if (VT == MVT::v8i16)
9542      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9543                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9544                         ValOp, BaseShAmt);
9545    break;
9546  case ISD::SRL:
9547    if (VT == MVT::v2i64)
9548      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9549                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9550                         ValOp, BaseShAmt);
9551    if (VT == MVT::v4i32)
9552      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9553                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9554                         ValOp, BaseShAmt);
9555    if (VT ==  MVT::v8i16)
9556      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9557                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9558                         ValOp, BaseShAmt);
9559    break;
9560  }
9561  return SDValue();
9562}
9563
9564static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
9565                                const X86Subtarget *Subtarget) {
9566  EVT VT = N->getValueType(0);
9567  if (VT != MVT::i64 || !Subtarget->is64Bit())
9568    return SDValue();
9569
9570  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
9571  SDValue N0 = N->getOperand(0);
9572  SDValue N1 = N->getOperand(1);
9573  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
9574    std::swap(N0, N1);
9575  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
9576    return SDValue();
9577
9578  SDValue ShAmt0 = N0.getOperand(1);
9579  if (ShAmt0.getValueType() != MVT::i8)
9580    return SDValue();
9581  SDValue ShAmt1 = N1.getOperand(1);
9582  if (ShAmt1.getValueType() != MVT::i8)
9583    return SDValue();
9584  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
9585    ShAmt0 = ShAmt0.getOperand(0);
9586  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
9587    ShAmt1 = ShAmt1.getOperand(0);
9588
9589  DebugLoc DL = N->getDebugLoc();
9590  unsigned Opc = X86ISD::SHLD;
9591  SDValue Op0 = N0.getOperand(0);
9592  SDValue Op1 = N1.getOperand(0);
9593  if (ShAmt0.getOpcode() == ISD::SUB) {
9594    Opc = X86ISD::SHRD;
9595    std::swap(Op0, Op1);
9596    std::swap(ShAmt0, ShAmt1);
9597  }
9598
9599  if (ShAmt1.getOpcode() == ISD::SUB) {
9600    SDValue Sum = ShAmt1.getOperand(0);
9601    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
9602      if (SumC->getSExtValue() == 64 &&
9603          ShAmt1.getOperand(1) == ShAmt0)
9604        return DAG.getNode(Opc, DL, VT,
9605                           Op0, Op1,
9606                           DAG.getNode(ISD::TRUNCATE, DL,
9607                                       MVT::i8, ShAmt0));
9608    }
9609  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
9610    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
9611    if (ShAmt0C &&
9612        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == 64)
9613      return DAG.getNode(Opc, DL, VT,
9614                         N0.getOperand(0), N1.getOperand(0),
9615                         DAG.getNode(ISD::TRUNCATE, DL,
9616                                       MVT::i8, ShAmt0));
9617  }
9618
9619  return SDValue();
9620}
9621
9622/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
9623static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
9624                                   const X86Subtarget *Subtarget) {
9625  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
9626  // the FP state in cases where an emms may be missing.
9627  // A preferable solution to the general problem is to figure out the right
9628  // places to insert EMMS.  This qualifies as a quick hack.
9629
9630  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
9631  StoreSDNode *St = cast<StoreSDNode>(N);
9632  EVT VT = St->getValue().getValueType();
9633  if (VT.getSizeInBits() != 64)
9634    return SDValue();
9635
9636  const Function *F = DAG.getMachineFunction().getFunction();
9637  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
9638  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
9639    && Subtarget->hasSSE2();
9640  if ((VT.isVector() ||
9641       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
9642      isa<LoadSDNode>(St->getValue()) &&
9643      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
9644      St->getChain().hasOneUse() && !St->isVolatile()) {
9645    SDNode* LdVal = St->getValue().getNode();
9646    LoadSDNode *Ld = 0;
9647    int TokenFactorIndex = -1;
9648    SmallVector<SDValue, 8> Ops;
9649    SDNode* ChainVal = St->getChain().getNode();
9650    // Must be a store of a load.  We currently handle two cases:  the load
9651    // is a direct child, and it's under an intervening TokenFactor.  It is
9652    // possible to dig deeper under nested TokenFactors.
9653    if (ChainVal == LdVal)
9654      Ld = cast<LoadSDNode>(St->getChain());
9655    else if (St->getValue().hasOneUse() &&
9656             ChainVal->getOpcode() == ISD::TokenFactor) {
9657      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
9658        if (ChainVal->getOperand(i).getNode() == LdVal) {
9659          TokenFactorIndex = i;
9660          Ld = cast<LoadSDNode>(St->getValue());
9661        } else
9662          Ops.push_back(ChainVal->getOperand(i));
9663      }
9664    }
9665
9666    if (!Ld || !ISD::isNormalLoad(Ld))
9667      return SDValue();
9668
9669    // If this is not the MMX case, i.e. we are just turning i64 load/store
9670    // into f64 load/store, avoid the transformation if there are multiple
9671    // uses of the loaded value.
9672    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
9673      return SDValue();
9674
9675    DebugLoc LdDL = Ld->getDebugLoc();
9676    DebugLoc StDL = N->getDebugLoc();
9677    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
9678    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
9679    // pair instead.
9680    if (Subtarget->is64Bit() || F64IsLegal) {
9681      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
9682      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
9683                                  Ld->getBasePtr(), Ld->getSrcValue(),
9684                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
9685                                  Ld->isNonTemporal(), Ld->getAlignment());
9686      SDValue NewChain = NewLd.getValue(1);
9687      if (TokenFactorIndex != -1) {
9688        Ops.push_back(NewChain);
9689        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9690                               Ops.size());
9691      }
9692      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
9693                          St->getSrcValue(), St->getSrcValueOffset(),
9694                          St->isVolatile(), St->isNonTemporal(),
9695                          St->getAlignment());
9696    }
9697
9698    // Otherwise, lower to two pairs of 32-bit loads / stores.
9699    SDValue LoAddr = Ld->getBasePtr();
9700    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
9701                                 DAG.getConstant(4, MVT::i32));
9702
9703    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
9704                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
9705                               Ld->isVolatile(), Ld->isNonTemporal(),
9706                               Ld->getAlignment());
9707    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
9708                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
9709                               Ld->isVolatile(), Ld->isNonTemporal(),
9710                               MinAlign(Ld->getAlignment(), 4));
9711
9712    SDValue NewChain = LoLd.getValue(1);
9713    if (TokenFactorIndex != -1) {
9714      Ops.push_back(LoLd);
9715      Ops.push_back(HiLd);
9716      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9717                             Ops.size());
9718    }
9719
9720    LoAddr = St->getBasePtr();
9721    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
9722                         DAG.getConstant(4, MVT::i32));
9723
9724    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
9725                                St->getSrcValue(), St->getSrcValueOffset(),
9726                                St->isVolatile(), St->isNonTemporal(),
9727                                St->getAlignment());
9728    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
9729                                St->getSrcValue(),
9730                                St->getSrcValueOffset() + 4,
9731                                St->isVolatile(),
9732                                St->isNonTemporal(),
9733                                MinAlign(St->getAlignment(), 4));
9734    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
9735  }
9736  return SDValue();
9737}
9738
9739/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
9740/// X86ISD::FXOR nodes.
9741static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
9742  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
9743  // F[X]OR(0.0, x) -> x
9744  // F[X]OR(x, 0.0) -> x
9745  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9746    if (C->getValueAPF().isPosZero())
9747      return N->getOperand(1);
9748  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9749    if (C->getValueAPF().isPosZero())
9750      return N->getOperand(0);
9751  return SDValue();
9752}
9753
9754/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
9755static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
9756  // FAND(0.0, x) -> 0.0
9757  // FAND(x, 0.0) -> 0.0
9758  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9759    if (C->getValueAPF().isPosZero())
9760      return N->getOperand(0);
9761  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9762    if (C->getValueAPF().isPosZero())
9763      return N->getOperand(1);
9764  return SDValue();
9765}
9766
9767static SDValue PerformBTCombine(SDNode *N,
9768                                SelectionDAG &DAG,
9769                                TargetLowering::DAGCombinerInfo &DCI) {
9770  // BT ignores high bits in the bit index operand.
9771  SDValue Op1 = N->getOperand(1);
9772  if (Op1.hasOneUse()) {
9773    unsigned BitWidth = Op1.getValueSizeInBits();
9774    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
9775    APInt KnownZero, KnownOne;
9776    TargetLowering::TargetLoweringOpt TLO(DAG);
9777    TargetLowering &TLI = DAG.getTargetLoweringInfo();
9778    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
9779        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
9780      DCI.CommitTargetLoweringOpt(TLO);
9781  }
9782  return SDValue();
9783}
9784
9785static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
9786  SDValue Op = N->getOperand(0);
9787  if (Op.getOpcode() == ISD::BIT_CONVERT)
9788    Op = Op.getOperand(0);
9789  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
9790  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
9791      VT.getVectorElementType().getSizeInBits() ==
9792      OpVT.getVectorElementType().getSizeInBits()) {
9793    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
9794  }
9795  return SDValue();
9796}
9797
9798// On X86 and X86-64, atomic operations are lowered to locked instructions.
9799// Locked instructions, in turn, have implicit fence semantics (all memory
9800// operations are flushed before issuing the locked instruction, and the
9801// are not buffered), so we can fold away the common pattern of
9802// fence-atomic-fence.
9803static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
9804  SDValue atomic = N->getOperand(0);
9805  switch (atomic.getOpcode()) {
9806    case ISD::ATOMIC_CMP_SWAP:
9807    case ISD::ATOMIC_SWAP:
9808    case ISD::ATOMIC_LOAD_ADD:
9809    case ISD::ATOMIC_LOAD_SUB:
9810    case ISD::ATOMIC_LOAD_AND:
9811    case ISD::ATOMIC_LOAD_OR:
9812    case ISD::ATOMIC_LOAD_XOR:
9813    case ISD::ATOMIC_LOAD_NAND:
9814    case ISD::ATOMIC_LOAD_MIN:
9815    case ISD::ATOMIC_LOAD_MAX:
9816    case ISD::ATOMIC_LOAD_UMIN:
9817    case ISD::ATOMIC_LOAD_UMAX:
9818      break;
9819    default:
9820      return SDValue();
9821  }
9822
9823  SDValue fence = atomic.getOperand(0);
9824  if (fence.getOpcode() != ISD::MEMBARRIER)
9825    return SDValue();
9826
9827  switch (atomic.getOpcode()) {
9828    case ISD::ATOMIC_CMP_SWAP:
9829      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9830                                    atomic.getOperand(1), atomic.getOperand(2),
9831                                    atomic.getOperand(3));
9832    case ISD::ATOMIC_SWAP:
9833    case ISD::ATOMIC_LOAD_ADD:
9834    case ISD::ATOMIC_LOAD_SUB:
9835    case ISD::ATOMIC_LOAD_AND:
9836    case ISD::ATOMIC_LOAD_OR:
9837    case ISD::ATOMIC_LOAD_XOR:
9838    case ISD::ATOMIC_LOAD_NAND:
9839    case ISD::ATOMIC_LOAD_MIN:
9840    case ISD::ATOMIC_LOAD_MAX:
9841    case ISD::ATOMIC_LOAD_UMIN:
9842    case ISD::ATOMIC_LOAD_UMAX:
9843      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9844                                    atomic.getOperand(1), atomic.getOperand(2));
9845    default:
9846      return SDValue();
9847  }
9848}
9849
9850static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
9851  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
9852  //           (and (i32 x86isd::setcc_carry), 1)
9853  // This eliminates the zext. This transformation is necessary because
9854  // ISD::SETCC is always legalized to i8.
9855  DebugLoc dl = N->getDebugLoc();
9856  SDValue N0 = N->getOperand(0);
9857  EVT VT = N->getValueType(0);
9858  if (N0.getOpcode() == ISD::AND &&
9859      N0.hasOneUse() &&
9860      N0.getOperand(0).hasOneUse()) {
9861    SDValue N00 = N0.getOperand(0);
9862    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
9863      return SDValue();
9864    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9865    if (!C || C->getZExtValue() != 1)
9866      return SDValue();
9867    return DAG.getNode(ISD::AND, dl, VT,
9868                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
9869                                   N00.getOperand(0), N00.getOperand(1)),
9870                       DAG.getConstant(1, VT));
9871  }
9872
9873  return SDValue();
9874}
9875
9876SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
9877                                             DAGCombinerInfo &DCI) const {
9878  SelectionDAG &DAG = DCI.DAG;
9879  switch (N->getOpcode()) {
9880  default: break;
9881  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
9882  case ISD::EXTRACT_VECTOR_ELT:
9883                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
9884  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
9885  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
9886  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
9887  case ISD::SHL:
9888  case ISD::SRA:
9889  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
9890  case ISD::OR:             return PerformOrCombine(N, DAG, Subtarget);
9891  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
9892  case X86ISD::FXOR:
9893  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
9894  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
9895  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
9896  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
9897  case ISD::MEMBARRIER:     return PerformMEMBARRIERCombine(N, DAG);
9898  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
9899  }
9900
9901  return SDValue();
9902}
9903
9904//===----------------------------------------------------------------------===//
9905//                           X86 Inline Assembly Support
9906//===----------------------------------------------------------------------===//
9907
9908static bool LowerToBSwap(CallInst *CI) {
9909  // FIXME: this should verify that we are targetting a 486 or better.  If not,
9910  // we will turn this bswap into something that will be lowered to logical ops
9911  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
9912  // so don't worry about this.
9913
9914  // Verify this is a simple bswap.
9915  if (CI->getNumOperands() != 2 ||
9916      CI->getType() != CI->getOperand(1)->getType() ||
9917      !CI->getType()->isIntegerTy())
9918    return false;
9919
9920  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
9921  if (!Ty || Ty->getBitWidth() % 16 != 0)
9922    return false;
9923
9924  // Okay, we can do this xform, do so now.
9925  const Type *Tys[] = { Ty };
9926  Module *M = CI->getParent()->getParent()->getParent();
9927  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
9928
9929  Value *Op = CI->getOperand(1);
9930  Op = CallInst::Create(Int, Op, CI->getName(), CI);
9931
9932  CI->replaceAllUsesWith(Op);
9933  CI->eraseFromParent();
9934  return true;
9935}
9936
9937bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
9938  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
9939  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
9940
9941  std::string AsmStr = IA->getAsmString();
9942
9943  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
9944  SmallVector<StringRef, 4> AsmPieces;
9945  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
9946
9947  switch (AsmPieces.size()) {
9948  default: return false;
9949  case 1:
9950    AsmStr = AsmPieces[0];
9951    AsmPieces.clear();
9952    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
9953
9954    // bswap $0
9955    if (AsmPieces.size() == 2 &&
9956        (AsmPieces[0] == "bswap" ||
9957         AsmPieces[0] == "bswapq" ||
9958         AsmPieces[0] == "bswapl") &&
9959        (AsmPieces[1] == "$0" ||
9960         AsmPieces[1] == "${0:q}")) {
9961      // No need to check constraints, nothing other than the equivalent of
9962      // "=r,0" would be valid here.
9963      return LowerToBSwap(CI);
9964    }
9965    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
9966    if (CI->getType()->isIntegerTy(16) &&
9967        AsmPieces.size() == 3 &&
9968        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
9969        AsmPieces[1] == "$$8," &&
9970        AsmPieces[2] == "${0:w}" &&
9971        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
9972      AsmPieces.clear();
9973      const std::string &Constraints = IA->getConstraintString();
9974      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
9975      std::sort(AsmPieces.begin(), AsmPieces.end());
9976      if (AsmPieces.size() == 4 &&
9977          AsmPieces[0] == "~{cc}" &&
9978          AsmPieces[1] == "~{dirflag}" &&
9979          AsmPieces[2] == "~{flags}" &&
9980          AsmPieces[3] == "~{fpsr}") {
9981        return LowerToBSwap(CI);
9982      }
9983    }
9984    break;
9985  case 3:
9986    if (CI->getType()->isIntegerTy(64) &&
9987        Constraints.size() >= 2 &&
9988        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
9989        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
9990      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
9991      SmallVector<StringRef, 4> Words;
9992      SplitString(AsmPieces[0], Words, " \t");
9993      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
9994        Words.clear();
9995        SplitString(AsmPieces[1], Words, " \t");
9996        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
9997          Words.clear();
9998          SplitString(AsmPieces[2], Words, " \t,");
9999          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
10000              Words[2] == "%edx") {
10001            return LowerToBSwap(CI);
10002          }
10003        }
10004      }
10005    }
10006    break;
10007  }
10008  return false;
10009}
10010
10011
10012
10013/// getConstraintType - Given a constraint letter, return the type of
10014/// constraint it is for this target.
10015X86TargetLowering::ConstraintType
10016X86TargetLowering::getConstraintType(const std::string &Constraint) const {
10017  if (Constraint.size() == 1) {
10018    switch (Constraint[0]) {
10019    case 'A':
10020      return C_Register;
10021    case 'f':
10022    case 'r':
10023    case 'R':
10024    case 'l':
10025    case 'q':
10026    case 'Q':
10027    case 'x':
10028    case 'y':
10029    case 'Y':
10030      return C_RegisterClass;
10031    case 'e':
10032    case 'Z':
10033      return C_Other;
10034    default:
10035      break;
10036    }
10037  }
10038  return TargetLowering::getConstraintType(Constraint);
10039}
10040
10041/// LowerXConstraint - try to replace an X constraint, which matches anything,
10042/// with another that has more specific requirements based on the type of the
10043/// corresponding operand.
10044const char *X86TargetLowering::
10045LowerXConstraint(EVT ConstraintVT) const {
10046  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
10047  // 'f' like normal targets.
10048  if (ConstraintVT.isFloatingPoint()) {
10049    if (Subtarget->hasSSE2())
10050      return "Y";
10051    if (Subtarget->hasSSE1())
10052      return "x";
10053  }
10054
10055  return TargetLowering::LowerXConstraint(ConstraintVT);
10056}
10057
10058/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10059/// vector.  If it is invalid, don't add anything to Ops.
10060void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10061                                                     char Constraint,
10062                                                     bool hasMemory,
10063                                                     std::vector<SDValue>&Ops,
10064                                                     SelectionDAG &DAG) const {
10065  SDValue Result(0, 0);
10066
10067  switch (Constraint) {
10068  default: break;
10069  case 'I':
10070    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10071      if (C->getZExtValue() <= 31) {
10072        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10073        break;
10074      }
10075    }
10076    return;
10077  case 'J':
10078    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10079      if (C->getZExtValue() <= 63) {
10080        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10081        break;
10082      }
10083    }
10084    return;
10085  case 'K':
10086    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10087      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
10088        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10089        break;
10090      }
10091    }
10092    return;
10093  case 'N':
10094    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10095      if (C->getZExtValue() <= 255) {
10096        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10097        break;
10098      }
10099    }
10100    return;
10101  case 'e': {
10102    // 32-bit signed value
10103    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10104      const ConstantInt *CI = C->getConstantIntValue();
10105      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10106                                  C->getSExtValue())) {
10107        // Widen to 64 bits here to get it sign extended.
10108        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
10109        break;
10110      }
10111    // FIXME gcc accepts some relocatable values here too, but only in certain
10112    // memory models; it's complicated.
10113    }
10114    return;
10115  }
10116  case 'Z': {
10117    // 32-bit unsigned value
10118    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10119      const ConstantInt *CI = C->getConstantIntValue();
10120      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10121                                  C->getZExtValue())) {
10122        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10123        break;
10124      }
10125    }
10126    // FIXME gcc accepts some relocatable values here too, but only in certain
10127    // memory models; it's complicated.
10128    return;
10129  }
10130  case 'i': {
10131    // Literal immediates are always ok.
10132    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
10133      // Widen to 64 bits here to get it sign extended.
10134      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
10135      break;
10136    }
10137
10138    // If we are in non-pic codegen mode, we allow the address of a global (with
10139    // an optional displacement) to be used with 'i'.
10140    GlobalAddressSDNode *GA = 0;
10141    int64_t Offset = 0;
10142
10143    // Match either (GA), (GA+C), (GA+C1+C2), etc.
10144    while (1) {
10145      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
10146        Offset += GA->getOffset();
10147        break;
10148      } else if (Op.getOpcode() == ISD::ADD) {
10149        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10150          Offset += C->getZExtValue();
10151          Op = Op.getOperand(0);
10152          continue;
10153        }
10154      } else if (Op.getOpcode() == ISD::SUB) {
10155        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10156          Offset += -C->getZExtValue();
10157          Op = Op.getOperand(0);
10158          continue;
10159        }
10160      }
10161
10162      // Otherwise, this isn't something we can handle, reject it.
10163      return;
10164    }
10165
10166    GlobalValue *GV = GA->getGlobal();
10167    // If we require an extra load to get this address, as in PIC mode, we
10168    // can't accept it.
10169    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
10170                                                        getTargetMachine())))
10171      return;
10172
10173    if (hasMemory)
10174      Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
10175    else
10176      Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
10177    Result = Op;
10178    break;
10179  }
10180  }
10181
10182  if (Result.getNode()) {
10183    Ops.push_back(Result);
10184    return;
10185  }
10186  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
10187                                                      Ops, DAG);
10188}
10189
10190std::vector<unsigned> X86TargetLowering::
10191getRegClassForInlineAsmConstraint(const std::string &Constraint,
10192                                  EVT VT) const {
10193  if (Constraint.size() == 1) {
10194    // FIXME: not handling fp-stack yet!
10195    switch (Constraint[0]) {      // GCC X86 Constraint Letters
10196    default: break;  // Unknown constraint letter
10197    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
10198      if (Subtarget->is64Bit()) {
10199        if (VT == MVT::i32)
10200          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
10201                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
10202                                       X86::R10D,X86::R11D,X86::R12D,
10203                                       X86::R13D,X86::R14D,X86::R15D,
10204                                       X86::EBP, X86::ESP, 0);
10205        else if (VT == MVT::i16)
10206          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
10207                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
10208                                       X86::R10W,X86::R11W,X86::R12W,
10209                                       X86::R13W,X86::R14W,X86::R15W,
10210                                       X86::BP,  X86::SP, 0);
10211        else if (VT == MVT::i8)
10212          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
10213                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
10214                                       X86::R10B,X86::R11B,X86::R12B,
10215                                       X86::R13B,X86::R14B,X86::R15B,
10216                                       X86::BPL, X86::SPL, 0);
10217
10218        else if (VT == MVT::i64)
10219          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
10220                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
10221                                       X86::R10, X86::R11, X86::R12,
10222                                       X86::R13, X86::R14, X86::R15,
10223                                       X86::RBP, X86::RSP, 0);
10224
10225        break;
10226      }
10227      // 32-bit fallthrough
10228    case 'Q':   // Q_REGS
10229      if (VT == MVT::i32)
10230        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
10231      else if (VT == MVT::i16)
10232        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
10233      else if (VT == MVT::i8)
10234        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
10235      else if (VT == MVT::i64)
10236        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
10237      break;
10238    }
10239  }
10240
10241  return std::vector<unsigned>();
10242}
10243
10244std::pair<unsigned, const TargetRegisterClass*>
10245X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10246                                                EVT VT) const {
10247  // First, see if this is a constraint that directly corresponds to an LLVM
10248  // register class.
10249  if (Constraint.size() == 1) {
10250    // GCC Constraint Letters
10251    switch (Constraint[0]) {
10252    default: break;
10253    case 'r':   // GENERAL_REGS
10254    case 'l':   // INDEX_REGS
10255      if (VT == MVT::i8)
10256        return std::make_pair(0U, X86::GR8RegisterClass);
10257      if (VT == MVT::i16)
10258        return std::make_pair(0U, X86::GR16RegisterClass);
10259      if (VT == MVT::i32 || !Subtarget->is64Bit())
10260        return std::make_pair(0U, X86::GR32RegisterClass);
10261      return std::make_pair(0U, X86::GR64RegisterClass);
10262    case 'R':   // LEGACY_REGS
10263      if (VT == MVT::i8)
10264        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
10265      if (VT == MVT::i16)
10266        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
10267      if (VT == MVT::i32 || !Subtarget->is64Bit())
10268        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
10269      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
10270    case 'f':  // FP Stack registers.
10271      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
10272      // value to the correct fpstack register class.
10273      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
10274        return std::make_pair(0U, X86::RFP32RegisterClass);
10275      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
10276        return std::make_pair(0U, X86::RFP64RegisterClass);
10277      return std::make_pair(0U, X86::RFP80RegisterClass);
10278    case 'y':   // MMX_REGS if MMX allowed.
10279      if (!Subtarget->hasMMX()) break;
10280      return std::make_pair(0U, X86::VR64RegisterClass);
10281    case 'Y':   // SSE_REGS if SSE2 allowed
10282      if (!Subtarget->hasSSE2()) break;
10283      // FALL THROUGH.
10284    case 'x':   // SSE_REGS if SSE1 allowed
10285      if (!Subtarget->hasSSE1()) break;
10286
10287      switch (VT.getSimpleVT().SimpleTy) {
10288      default: break;
10289      // Scalar SSE types.
10290      case MVT::f32:
10291      case MVT::i32:
10292        return std::make_pair(0U, X86::FR32RegisterClass);
10293      case MVT::f64:
10294      case MVT::i64:
10295        return std::make_pair(0U, X86::FR64RegisterClass);
10296      // Vector types.
10297      case MVT::v16i8:
10298      case MVT::v8i16:
10299      case MVT::v4i32:
10300      case MVT::v2i64:
10301      case MVT::v4f32:
10302      case MVT::v2f64:
10303        return std::make_pair(0U, X86::VR128RegisterClass);
10304      }
10305      break;
10306    }
10307  }
10308
10309  // Use the default implementation in TargetLowering to convert the register
10310  // constraint into a member of a register class.
10311  std::pair<unsigned, const TargetRegisterClass*> Res;
10312  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10313
10314  // Not found as a standard register?
10315  if (Res.second == 0) {
10316    // Map st(0) -> st(7) -> ST0
10317    if (Constraint.size() == 7 && Constraint[0] == '{' &&
10318        tolower(Constraint[1]) == 's' &&
10319        tolower(Constraint[2]) == 't' &&
10320        Constraint[3] == '(' &&
10321        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
10322        Constraint[5] == ')' &&
10323        Constraint[6] == '}') {
10324
10325      Res.first = X86::ST0+Constraint[4]-'0';
10326      Res.second = X86::RFP80RegisterClass;
10327      return Res;
10328    }
10329
10330    // GCC allows "st(0)" to be called just plain "st".
10331    if (StringRef("{st}").equals_lower(Constraint)) {
10332      Res.first = X86::ST0;
10333      Res.second = X86::RFP80RegisterClass;
10334      return Res;
10335    }
10336
10337    // flags -> EFLAGS
10338    if (StringRef("{flags}").equals_lower(Constraint)) {
10339      Res.first = X86::EFLAGS;
10340      Res.second = X86::CCRRegisterClass;
10341      return Res;
10342    }
10343
10344    // 'A' means EAX + EDX.
10345    if (Constraint == "A") {
10346      Res.first = X86::EAX;
10347      Res.second = X86::GR32_ADRegisterClass;
10348      return Res;
10349    }
10350    return Res;
10351  }
10352
10353  // Otherwise, check to see if this is a register class of the wrong value
10354  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
10355  // turn into {ax},{dx}.
10356  if (Res.second->hasType(VT))
10357    return Res;   // Correct type already, nothing to do.
10358
10359  // All of the single-register GCC register classes map their values onto
10360  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
10361  // really want an 8-bit or 32-bit register, map to the appropriate register
10362  // class and return the appropriate register.
10363  if (Res.second == X86::GR16RegisterClass) {
10364    if (VT == MVT::i8) {
10365      unsigned DestReg = 0;
10366      switch (Res.first) {
10367      default: break;
10368      case X86::AX: DestReg = X86::AL; break;
10369      case X86::DX: DestReg = X86::DL; break;
10370      case X86::CX: DestReg = X86::CL; break;
10371      case X86::BX: DestReg = X86::BL; break;
10372      }
10373      if (DestReg) {
10374        Res.first = DestReg;
10375        Res.second = X86::GR8RegisterClass;
10376      }
10377    } else if (VT == MVT::i32) {
10378      unsigned DestReg = 0;
10379      switch (Res.first) {
10380      default: break;
10381      case X86::AX: DestReg = X86::EAX; break;
10382      case X86::DX: DestReg = X86::EDX; break;
10383      case X86::CX: DestReg = X86::ECX; break;
10384      case X86::BX: DestReg = X86::EBX; break;
10385      case X86::SI: DestReg = X86::ESI; break;
10386      case X86::DI: DestReg = X86::EDI; break;
10387      case X86::BP: DestReg = X86::EBP; break;
10388      case X86::SP: DestReg = X86::ESP; break;
10389      }
10390      if (DestReg) {
10391        Res.first = DestReg;
10392        Res.second = X86::GR32RegisterClass;
10393      }
10394    } else if (VT == MVT::i64) {
10395      unsigned DestReg = 0;
10396      switch (Res.first) {
10397      default: break;
10398      case X86::AX: DestReg = X86::RAX; break;
10399      case X86::DX: DestReg = X86::RDX; break;
10400      case X86::CX: DestReg = X86::RCX; break;
10401      case X86::BX: DestReg = X86::RBX; break;
10402      case X86::SI: DestReg = X86::RSI; break;
10403      case X86::DI: DestReg = X86::RDI; break;
10404      case X86::BP: DestReg = X86::RBP; break;
10405      case X86::SP: DestReg = X86::RSP; break;
10406      }
10407      if (DestReg) {
10408        Res.first = DestReg;
10409        Res.second = X86::GR64RegisterClass;
10410      }
10411    }
10412  } else if (Res.second == X86::FR32RegisterClass ||
10413             Res.second == X86::FR64RegisterClass ||
10414             Res.second == X86::VR128RegisterClass) {
10415    // Handle references to XMM physical registers that got mapped into the
10416    // wrong class.  This can happen with constraints like {xmm0} where the
10417    // target independent register mapper will just pick the first match it can
10418    // find, ignoring the required type.
10419    if (VT == MVT::f32)
10420      Res.second = X86::FR32RegisterClass;
10421    else if (VT == MVT::f64)
10422      Res.second = X86::FR64RegisterClass;
10423    else if (X86::VR128RegisterClass->hasType(VT))
10424      Res.second = X86::VR128RegisterClass;
10425  }
10426
10427  return Res;
10428}
10429