X86ISelLowering.cpp revision 3f2bf85d14759cc4b28a86805f566ac805a54d00
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86TargetMachine.h"
19#include "X86TargetObjectFile.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalAlias.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Function.h"
26#include "llvm/Instructions.h"
27#include "llvm/Intrinsics.h"
28#include "llvm/LLVMContext.h"
29#include "llvm/ADT/BitVector.h"
30#include "llvm/ADT/VectorExtras.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/ADT/SmallSet.h"
42#include "llvm/ADT/StringExtras.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/raw_ostream.h"
45using namespace llvm;
46
47static cl::opt<bool>
48DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
49
50// Disable16Bit - 16-bit operations typically have a larger encoding than
51// corresponding 32-bit instructions, and 16-bit code is slow on some
52// processors. This is an experimental flag to disable 16-bit operations
53// (which forces them to be Legalized to 32-bit operations).
54static cl::opt<bool>
55Disable16Bit("disable-16bit", cl::Hidden,
56             cl::desc("Disable use of 16-bit instructions"));
57
58// Forward declarations.
59static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
60                       SDValue V2);
61
62static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
63  switch (TM.getSubtarget<X86Subtarget>().TargetType) {
64  default: llvm_unreachable("unknown subtarget type");
65  case X86Subtarget::isDarwin:
66    if (TM.getSubtarget<X86Subtarget>().is64Bit())
67      return new X8664_MachoTargetObjectFile();
68    return new X8632_MachoTargetObjectFile();
69  case X86Subtarget::isELF:
70    return new TargetLoweringObjectFileELF();
71  case X86Subtarget::isMingw:
72  case X86Subtarget::isCygwin:
73  case X86Subtarget::isWindows:
74    return new TargetLoweringObjectFileCOFF();
75  }
76
77}
78
79X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
80  : TargetLowering(TM, createTLOF(TM)) {
81  Subtarget = &TM.getSubtarget<X86Subtarget>();
82  X86ScalarSSEf64 = Subtarget->hasSSE2();
83  X86ScalarSSEf32 = Subtarget->hasSSE1();
84  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
85
86  RegInfo = TM.getRegisterInfo();
87  TD = getTargetData();
88
89  // Set up the TargetLowering object.
90
91  // X86 is weird, it always uses i8 for shift amounts and setcc results.
92  setShiftAmountType(MVT::i8);
93  setBooleanContents(ZeroOrOneBooleanContent);
94  setSchedulingPreference(SchedulingForRegPressure);
95  setStackPointerRegisterToSaveRestore(X86StackPtr);
96
97  if (Subtarget->isTargetDarwin()) {
98    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
99    setUseUnderscoreSetJmp(false);
100    setUseUnderscoreLongJmp(false);
101  } else if (Subtarget->isTargetMingw()) {
102    // MS runtime is weird: it exports _setjmp, but longjmp!
103    setUseUnderscoreSetJmp(true);
104    setUseUnderscoreLongJmp(false);
105  } else {
106    setUseUnderscoreSetJmp(true);
107    setUseUnderscoreLongJmp(true);
108  }
109
110  // Set up the register classes.
111  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
112  if (!Disable16Bit)
113    addRegisterClass(MVT::i16, X86::GR16RegisterClass);
114  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
115  if (Subtarget->is64Bit())
116    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
117
118  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
119
120  // We don't accept any truncstore of integer registers.
121  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
122  if (!Disable16Bit)
123    setTruncStoreAction(MVT::i64, MVT::i16, Expand);
124  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
125  if (!Disable16Bit)
126    setTruncStoreAction(MVT::i32, MVT::i16, Expand);
127  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
128  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
129
130  // SETOEQ and SETUNE require checking two conditions.
131  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
132  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
133  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
134  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
135  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
136  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
137
138  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
139  // operation.
140  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
141  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
142  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
143
144  if (Subtarget->is64Bit()) {
145    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
146    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
147  } else if (!UseSoftFloat) {
148    if (X86ScalarSSEf64) {
149      // We have an impenetrably clever algorithm for ui64->double only.
150      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
151    }
152    // We have an algorithm for SSE2, and we turn this into a 64-bit
153    // FILD for other targets.
154    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
155  }
156
157  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
158  // this operation.
159  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
160  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
161
162  if (!UseSoftFloat) {
163    // SSE has no i16 to fp conversion, only i32
164    if (X86ScalarSSEf32) {
165      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
166      // f32 and f64 cases are Legal, f80 case is not
167      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
168    } else {
169      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
170      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
171    }
172  } else {
173    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
174    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
175  }
176
177  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
178  // are Legal, f80 is custom lowered.
179  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
180  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
181
182  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
183  // this operation.
184  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
185  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
186
187  if (X86ScalarSSEf32) {
188    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
189    // f32 and f64 cases are Legal, f80 case is not
190    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
191  } else {
192    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
193    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
194  }
195
196  // Handle FP_TO_UINT by promoting the destination to a larger signed
197  // conversion.
198  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
199  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
200  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
201
202  if (Subtarget->is64Bit()) {
203    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
204    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
205  } else if (!UseSoftFloat) {
206    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
207      // Expand FP_TO_UINT into a select.
208      // FIXME: We would like to use a Custom expander here eventually to do
209      // the optimal thing for SSE vs. the default expansion in the legalizer.
210      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
211    else
212      // With SSE3 we can use fisttpll to convert to a signed i64; without
213      // SSE, we're stuck with a fistpll.
214      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
215  }
216
217  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
218  if (!X86ScalarSSEf64) {
219    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
220    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
221  }
222
223  // Scalar integer divide and remainder are lowered to use operations that
224  // produce two results, to match the available instructions. This exposes
225  // the two-result form to trivial CSE, which is able to combine x/y and x%y
226  // into a single instruction.
227  //
228  // Scalar integer multiply-high is also lowered to use two-result
229  // operations, to match the available instructions. However, plain multiply
230  // (low) operations are left as Legal, as there are single-result
231  // instructions for this in x86. Using the two-result multiply instructions
232  // when both high and low results are needed must be arranged by dagcombine.
233  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
234  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
235  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
236  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
237  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
238  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
239  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
240  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
241  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
242  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
243  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
244  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
245  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
246  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
247  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
248  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
249  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
250  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
251  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
252  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
253  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
254  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
255  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
256  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
257
258  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
259  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
260  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
261  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
262  if (Subtarget->is64Bit())
263    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
264  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
265  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
266  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
267  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
268  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
269  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
270  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
271  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
272
273  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
274  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
275  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
276  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
277  if (Disable16Bit) {
278    setOperationAction(ISD::CTTZ           , MVT::i16  , Expand);
279    setOperationAction(ISD::CTLZ           , MVT::i16  , Expand);
280  } else {
281    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
282    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
283  }
284  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
285  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
286  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
287  if (Subtarget->is64Bit()) {
288    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
289    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
290    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
291  }
292
293  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
294  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
295
296  // These should be promoted to a larger select which is supported.
297  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
298  // X86 wants to expand cmov itself.
299  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
300  if (Disable16Bit)
301    setOperationAction(ISD::SELECT        , MVT::i16  , Expand);
302  else
303    setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
304  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
305  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
306  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
307  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
308  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
309  if (Disable16Bit)
310    setOperationAction(ISD::SETCC         , MVT::i16  , Expand);
311  else
312    setOperationAction(ISD::SETCC         , MVT::i16  , Custom);
313  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
314  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
315  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
316  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
317  if (Subtarget->is64Bit()) {
318    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
319    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
320  }
321  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
322
323  // Darwin ABI issue.
324  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
325  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
326  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
327  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
328  if (Subtarget->is64Bit())
329    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
330  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
331  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
332  if (Subtarget->is64Bit()) {
333    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
334    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
335    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
336    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
337    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
338  }
339  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
340  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
341  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
342  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
343  if (Subtarget->is64Bit()) {
344    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
345    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
346    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
347  }
348
349  if (Subtarget->hasSSE1())
350    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
351
352  if (!Subtarget->hasSSE2())
353    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
354
355  // Expand certain atomics
356  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
357  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
358  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
359  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
360
361  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
362  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
363  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
364  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
365
366  if (!Subtarget->is64Bit()) {
367    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
368    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
369    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
370    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
371    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
372    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
373    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
374  }
375
376  // Use the default ISD::DBG_STOPPOINT.
377  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
378  // FIXME - use subtarget debug flags
379  if (!Subtarget->isTargetDarwin() &&
380      !Subtarget->isTargetELF() &&
381      !Subtarget->isTargetCygMing()) {
382    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
383    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
384  }
385
386  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
387  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
388  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
389  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
390  if (Subtarget->is64Bit()) {
391    setExceptionPointerRegister(X86::RAX);
392    setExceptionSelectorRegister(X86::RDX);
393  } else {
394    setExceptionPointerRegister(X86::EAX);
395    setExceptionSelectorRegister(X86::EDX);
396  }
397  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
398  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
399
400  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
401
402  setOperationAction(ISD::TRAP, MVT::Other, Legal);
403
404  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
405  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
406  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
407  if (Subtarget->is64Bit()) {
408    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
409    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
410  } else {
411    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
412    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
413  }
414
415  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
416  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
417  if (Subtarget->is64Bit())
418    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
419  if (Subtarget->isTargetCygMing())
420    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
421  else
422    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
423
424  if (!UseSoftFloat && X86ScalarSSEf64) {
425    // f32 and f64 use SSE.
426    // Set up the FP register classes.
427    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
428    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
429
430    // Use ANDPD to simulate FABS.
431    setOperationAction(ISD::FABS , MVT::f64, Custom);
432    setOperationAction(ISD::FABS , MVT::f32, Custom);
433
434    // Use XORP to simulate FNEG.
435    setOperationAction(ISD::FNEG , MVT::f64, Custom);
436    setOperationAction(ISD::FNEG , MVT::f32, Custom);
437
438    // Use ANDPD and ORPD to simulate FCOPYSIGN.
439    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
440    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
441
442    // We don't support sin/cos/fmod
443    setOperationAction(ISD::FSIN , MVT::f64, Expand);
444    setOperationAction(ISD::FCOS , MVT::f64, Expand);
445    setOperationAction(ISD::FSIN , MVT::f32, Expand);
446    setOperationAction(ISD::FCOS , MVT::f32, Expand);
447
448    // Expand FP immediates into loads from the stack, except for the special
449    // cases we handle.
450    addLegalFPImmediate(APFloat(+0.0)); // xorpd
451    addLegalFPImmediate(APFloat(+0.0f)); // xorps
452  } else if (!UseSoftFloat && X86ScalarSSEf32) {
453    // Use SSE for f32, x87 for f64.
454    // Set up the FP register classes.
455    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
456    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
457
458    // Use ANDPS to simulate FABS.
459    setOperationAction(ISD::FABS , MVT::f32, Custom);
460
461    // Use XORP to simulate FNEG.
462    setOperationAction(ISD::FNEG , MVT::f32, Custom);
463
464    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
465
466    // Use ANDPS and ORPS to simulate FCOPYSIGN.
467    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
468    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
469
470    // We don't support sin/cos/fmod
471    setOperationAction(ISD::FSIN , MVT::f32, Expand);
472    setOperationAction(ISD::FCOS , MVT::f32, Expand);
473
474    // Special cases we handle for FP constants.
475    addLegalFPImmediate(APFloat(+0.0f)); // xorps
476    addLegalFPImmediate(APFloat(+0.0)); // FLD0
477    addLegalFPImmediate(APFloat(+1.0)); // FLD1
478    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
479    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
480
481    if (!UnsafeFPMath) {
482      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
483      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
484    }
485  } else if (!UseSoftFloat) {
486    // f32 and f64 in x87.
487    // Set up the FP register classes.
488    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
489    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
490
491    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
492    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
493    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
494    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
495
496    if (!UnsafeFPMath) {
497      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
498      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
499    }
500    addLegalFPImmediate(APFloat(+0.0)); // FLD0
501    addLegalFPImmediate(APFloat(+1.0)); // FLD1
502    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
503    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
504    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
505    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
506    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
507    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
508  }
509
510  // Long double always uses X87.
511  if (!UseSoftFloat) {
512    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
513    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
514    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
515    {
516      bool ignored;
517      APFloat TmpFlt(+0.0);
518      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
519                     &ignored);
520      addLegalFPImmediate(TmpFlt);  // FLD0
521      TmpFlt.changeSign();
522      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
523      APFloat TmpFlt2(+1.0);
524      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
525                      &ignored);
526      addLegalFPImmediate(TmpFlt2);  // FLD1
527      TmpFlt2.changeSign();
528      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
529    }
530
531    if (!UnsafeFPMath) {
532      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
533      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
534    }
535  }
536
537  // Always use a library call for pow.
538  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
539  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
540  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
541
542  setOperationAction(ISD::FLOG, MVT::f80, Expand);
543  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
544  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
545  setOperationAction(ISD::FEXP, MVT::f80, Expand);
546  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
547
548  // First set operation action for all vector types to either promote
549  // (for widening) or expand (for scalarization). Then we will selectively
550  // turn on ones that can be effectively codegen'd.
551  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
552       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
553    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
568    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
569    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
601  }
602
603  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
604  // with -msoft-float, disable use of MMX as well.
605  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
606    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
607    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
608    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
609    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
610    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
611
612    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
613    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
614    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
615    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
616
617    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
618    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
619    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
620    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
621
622    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
623    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
624
625    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
626    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
627    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
628    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
629    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
630    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
631    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
632
633    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
634    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
635    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
636    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
637    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
638    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
639    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
640
641    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
642    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
643    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
644    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
645    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
646    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
647    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
648
649    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
650    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
651    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
652    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
653    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
654    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
655    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
656    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
657    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
658
659    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
660    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
661    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
662    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
663    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
664
665    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
666    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
667    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
668    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
669
670    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
671    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
672    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
673    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
674
675    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
676
677    setTruncStoreAction(MVT::v8i16,             MVT::v8i8, Expand);
678    setOperationAction(ISD::TRUNCATE,           MVT::v8i8, Expand);
679    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
680    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
681    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
682    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
683    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
684    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
685    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
686  }
687
688  if (!UseSoftFloat && Subtarget->hasSSE1()) {
689    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
690
691    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
692    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
693    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
694    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
695    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
696    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
697    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
698    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
699    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
700    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
701    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
702    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
703  }
704
705  if (!UseSoftFloat && Subtarget->hasSSE2()) {
706    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
707
708    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
709    // registers cannot be used even for integer operations.
710    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
711    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
712    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
713    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
714
715    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
716    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
717    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
718    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
719    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
720    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
721    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
722    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
723    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
724    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
725    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
726    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
727    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
728    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
729    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
730    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
731
732    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
733    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
734    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
735    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
736
737    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
738    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
739    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
740    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
741    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
742
743    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
744    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
745      EVT VT = (MVT::SimpleValueType)i;
746      // Do not attempt to custom lower non-power-of-2 vectors
747      if (!isPowerOf2_32(VT.getVectorNumElements()))
748        continue;
749      // Do not attempt to custom lower non-128-bit vectors
750      if (!VT.is128BitVector())
751        continue;
752      setOperationAction(ISD::BUILD_VECTOR,
753                         VT.getSimpleVT().SimpleTy, Custom);
754      setOperationAction(ISD::VECTOR_SHUFFLE,
755                         VT.getSimpleVT().SimpleTy, Custom);
756      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
757                         VT.getSimpleVT().SimpleTy, Custom);
758    }
759
760    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
761    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
762    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
763    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
764    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
765    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
766
767    if (Subtarget->is64Bit()) {
768      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
769      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
770    }
771
772    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
773    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
774      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
775      EVT VT = SVT;
776
777      // Do not attempt to promote non-128-bit vectors
778      if (!VT.is128BitVector()) {
779        continue;
780      }
781      setOperationAction(ISD::AND,    SVT, Promote);
782      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
783      setOperationAction(ISD::OR,     SVT, Promote);
784      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
785      setOperationAction(ISD::XOR,    SVT, Promote);
786      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
787      setOperationAction(ISD::LOAD,   SVT, Promote);
788      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
789      setOperationAction(ISD::SELECT, SVT, Promote);
790      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
791    }
792
793    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
794
795    // Custom lower v2i64 and v2f64 selects.
796    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
797    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
798    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
799    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
800
801    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
802    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
803    if (!DisableMMX && Subtarget->hasMMX()) {
804      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
805      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
806    }
807  }
808
809  if (Subtarget->hasSSE41()) {
810    // FIXME: Do we need to handle scalar-to-vector here?
811    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
812
813    // i8 and i16 vectors are custom , because the source register and source
814    // source memory operand types are not the same width.  f32 vectors are
815    // custom since the immediate controlling the insert encodes additional
816    // information.
817    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
818    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
819    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
820    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
821
822    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
823    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
824    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
825    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
826
827    if (Subtarget->is64Bit()) {
828      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
829      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
830    }
831  }
832
833  if (Subtarget->hasSSE42()) {
834    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
835  }
836
837  if (!UseSoftFloat && Subtarget->hasAVX()) {
838    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
839    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
840    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
841    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
842
843    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
844    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
845    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
846    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
847    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
848    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
849    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
850    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
851    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
852    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
853    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
854    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
855    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
856    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
857    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
858
859    // Operations to consider commented out -v16i16 v32i8
860    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
861    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
862    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
863    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
864    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
865    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
866    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
867    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
868    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
869    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
870    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
871    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
872    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
873    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
874
875    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
876    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
877    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
878    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
879
880    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
881    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
882    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
883    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
884    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
885
886    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
887    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
888    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
889    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
890    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
891    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
892
893#if 0
894    // Not sure we want to do this since there are no 256-bit integer
895    // operations in AVX
896
897    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
898    // This includes 256-bit vectors
899    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
900      EVT VT = (MVT::SimpleValueType)i;
901
902      // Do not attempt to custom lower non-power-of-2 vectors
903      if (!isPowerOf2_32(VT.getVectorNumElements()))
904        continue;
905
906      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
907      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
908      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
909    }
910
911    if (Subtarget->is64Bit()) {
912      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
913      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
914    }
915#endif
916
917#if 0
918    // Not sure we want to do this since there are no 256-bit integer
919    // operations in AVX
920
921    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
922    // Including 256-bit vectors
923    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
924      EVT VT = (MVT::SimpleValueType)i;
925
926      if (!VT.is256BitVector()) {
927        continue;
928      }
929      setOperationAction(ISD::AND,    VT, Promote);
930      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
931      setOperationAction(ISD::OR,     VT, Promote);
932      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
933      setOperationAction(ISD::XOR,    VT, Promote);
934      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
935      setOperationAction(ISD::LOAD,   VT, Promote);
936      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
937      setOperationAction(ISD::SELECT, VT, Promote);
938      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
939    }
940
941    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
942#endif
943  }
944
945  // We want to custom lower some of our intrinsics.
946  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
947
948  // Add/Sub/Mul with overflow operations are custom lowered.
949  setOperationAction(ISD::SADDO, MVT::i32, Custom);
950  setOperationAction(ISD::SADDO, MVT::i64, Custom);
951  setOperationAction(ISD::UADDO, MVT::i32, Custom);
952  setOperationAction(ISD::UADDO, MVT::i64, Custom);
953  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
954  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
955  setOperationAction(ISD::USUBO, MVT::i32, Custom);
956  setOperationAction(ISD::USUBO, MVT::i64, Custom);
957  setOperationAction(ISD::SMULO, MVT::i32, Custom);
958  setOperationAction(ISD::SMULO, MVT::i64, Custom);
959
960  if (!Subtarget->is64Bit()) {
961    // These libcalls are not available in 32-bit.
962    setLibcallName(RTLIB::SHL_I128, 0);
963    setLibcallName(RTLIB::SRL_I128, 0);
964    setLibcallName(RTLIB::SRA_I128, 0);
965  }
966
967  // We have target-specific dag combine patterns for the following nodes:
968  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
969  setTargetDAGCombine(ISD::BUILD_VECTOR);
970  setTargetDAGCombine(ISD::SELECT);
971  setTargetDAGCombine(ISD::SHL);
972  setTargetDAGCombine(ISD::SRA);
973  setTargetDAGCombine(ISD::SRL);
974  setTargetDAGCombine(ISD::STORE);
975  setTargetDAGCombine(ISD::MEMBARRIER);
976  if (Subtarget->is64Bit())
977    setTargetDAGCombine(ISD::MUL);
978
979  computeRegisterProperties();
980
981  // FIXME: These should be based on subtarget info. Plus, the values should
982  // be smaller when we are in optimizing for size mode.
983  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
984  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
985  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
986  setPrefLoopAlignment(16);
987  benefitFromCodePlacementOpt = true;
988}
989
990
991MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
992  return MVT::i8;
993}
994
995
996/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
997/// the desired ByVal argument alignment.
998static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
999  if (MaxAlign == 16)
1000    return;
1001  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1002    if (VTy->getBitWidth() == 128)
1003      MaxAlign = 16;
1004  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1005    unsigned EltAlign = 0;
1006    getMaxByValAlign(ATy->getElementType(), EltAlign);
1007    if (EltAlign > MaxAlign)
1008      MaxAlign = EltAlign;
1009  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1010    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1011      unsigned EltAlign = 0;
1012      getMaxByValAlign(STy->getElementType(i), EltAlign);
1013      if (EltAlign > MaxAlign)
1014        MaxAlign = EltAlign;
1015      if (MaxAlign == 16)
1016        break;
1017    }
1018  }
1019  return;
1020}
1021
1022/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1023/// function arguments in the caller parameter area. For X86, aggregates
1024/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1025/// are at 4-byte boundaries.
1026unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1027  if (Subtarget->is64Bit()) {
1028    // Max of 8 and alignment of type.
1029    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1030    if (TyAlign > 8)
1031      return TyAlign;
1032    return 8;
1033  }
1034
1035  unsigned Align = 4;
1036  if (Subtarget->hasSSE1())
1037    getMaxByValAlign(Ty, Align);
1038  return Align;
1039}
1040
1041/// getOptimalMemOpType - Returns the target specific optimal type for load
1042/// and store operations as a result of memset, memcpy, and memmove
1043/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
1044/// determining it.
1045EVT
1046X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
1047                                       bool isSrcConst, bool isSrcStr,
1048                                       SelectionDAG &DAG) const {
1049  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1050  // linux.  This is because the stack realignment code can't handle certain
1051  // cases like PR2962.  This should be removed when PR2962 is fixed.
1052  const Function *F = DAG.getMachineFunction().getFunction();
1053  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
1054  if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) {
1055    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
1056      return MVT::v4i32;
1057    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
1058      return MVT::v4f32;
1059  }
1060  if (Subtarget->is64Bit() && Size >= 8)
1061    return MVT::i64;
1062  return MVT::i32;
1063}
1064
1065/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1066/// jumptable.
1067SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1068                                                      SelectionDAG &DAG) const {
1069  if (usesGlobalOffsetTable())
1070    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1071  if (!Subtarget->is64Bit())
1072    // This doesn't have DebugLoc associated with it, but is not really the
1073    // same as a Register.
1074    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
1075                       getPointerTy());
1076  return Table;
1077}
1078
1079/// getFunctionAlignment - Return the Log2 alignment of this function.
1080unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1081  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1082}
1083
1084//===----------------------------------------------------------------------===//
1085//               Return Value Calling Convention Implementation
1086//===----------------------------------------------------------------------===//
1087
1088#include "X86GenCallingConv.inc"
1089
1090bool
1091X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1092                        const SmallVectorImpl<EVT> &OutTys,
1093                        const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1094                        SelectionDAG &DAG) {
1095  SmallVector<CCValAssign, 16> RVLocs;
1096  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1097                 RVLocs, *DAG.getContext());
1098  return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_X86);
1099}
1100
1101SDValue
1102X86TargetLowering::LowerReturn(SDValue Chain,
1103                               CallingConv::ID CallConv, bool isVarArg,
1104                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1105                               DebugLoc dl, SelectionDAG &DAG) {
1106
1107  SmallVector<CCValAssign, 16> RVLocs;
1108  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1109                 RVLocs, *DAG.getContext());
1110  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1111
1112  // If this is the first return lowered for this function, add the regs to the
1113  // liveout set for the function.
1114  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1115    for (unsigned i = 0; i != RVLocs.size(); ++i)
1116      if (RVLocs[i].isRegLoc())
1117        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1118  }
1119
1120  SDValue Flag;
1121
1122  SmallVector<SDValue, 6> RetOps;
1123  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1124  // Operand #1 = Bytes To Pop
1125  RetOps.push_back(DAG.getTargetConstant(getBytesToPopOnReturn(), MVT::i16));
1126
1127  // Copy the result values into the output registers.
1128  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1129    CCValAssign &VA = RVLocs[i];
1130    assert(VA.isRegLoc() && "Can only return in registers!");
1131    SDValue ValToCopy = Outs[i].Val;
1132
1133    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1134    // the RET instruction and handled by the FP Stackifier.
1135    if (VA.getLocReg() == X86::ST0 ||
1136        VA.getLocReg() == X86::ST1) {
1137      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1138      // change the value to the FP stack register class.
1139      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1140        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1141      RetOps.push_back(ValToCopy);
1142      // Don't emit a copytoreg.
1143      continue;
1144    }
1145
1146    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1147    // which is returned in RAX / RDX.
1148    if (Subtarget->is64Bit()) {
1149      EVT ValVT = ValToCopy.getValueType();
1150      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1151        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1152        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1153          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1154      }
1155    }
1156
1157    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1158    Flag = Chain.getValue(1);
1159  }
1160
1161  // The x86-64 ABI for returning structs by value requires that we copy
1162  // the sret argument into %rax for the return. We saved the argument into
1163  // a virtual register in the entry block, so now we copy the value out
1164  // and into %rax.
1165  if (Subtarget->is64Bit() &&
1166      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1167    MachineFunction &MF = DAG.getMachineFunction();
1168    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1169    unsigned Reg = FuncInfo->getSRetReturnReg();
1170    if (!Reg) {
1171      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1172      FuncInfo->setSRetReturnReg(Reg);
1173    }
1174    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1175
1176    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1177    Flag = Chain.getValue(1);
1178
1179    // RAX now acts like a return value.
1180    MF.getRegInfo().addLiveOut(X86::RAX);
1181  }
1182
1183  RetOps[0] = Chain;  // Update chain.
1184
1185  // Add the flag if we have it.
1186  if (Flag.getNode())
1187    RetOps.push_back(Flag);
1188
1189  return DAG.getNode(X86ISD::RET_FLAG, dl,
1190                     MVT::Other, &RetOps[0], RetOps.size());
1191}
1192
1193/// LowerCallResult - Lower the result values of a call into the
1194/// appropriate copies out of appropriate physical registers.
1195///
1196SDValue
1197X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1198                                   CallingConv::ID CallConv, bool isVarArg,
1199                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1200                                   DebugLoc dl, SelectionDAG &DAG,
1201                                   SmallVectorImpl<SDValue> &InVals) {
1202
1203  // Assign locations to each value returned by this call.
1204  SmallVector<CCValAssign, 16> RVLocs;
1205  bool Is64Bit = Subtarget->is64Bit();
1206  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1207                 RVLocs, *DAG.getContext());
1208  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1209
1210  // Copy all of the result registers out of their specified physreg.
1211  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1212    CCValAssign &VA = RVLocs[i];
1213    EVT CopyVT = VA.getValVT();
1214
1215    // If this is x86-64, and we disabled SSE, we can't return FP values
1216    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1217        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1218      llvm_report_error("SSE register return with SSE disabled");
1219    }
1220
1221    // If this is a call to a function that returns an fp value on the floating
1222    // point stack, but where we prefer to use the value in xmm registers, copy
1223    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1224    if ((VA.getLocReg() == X86::ST0 ||
1225         VA.getLocReg() == X86::ST1) &&
1226        isScalarFPTypeInSSEReg(VA.getValVT())) {
1227      CopyVT = MVT::f80;
1228    }
1229
1230    SDValue Val;
1231    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1232      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1233      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1234        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1235                                   MVT::v2i64, InFlag).getValue(1);
1236        Val = Chain.getValue(0);
1237        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1238                          Val, DAG.getConstant(0, MVT::i64));
1239      } else {
1240        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1241                                   MVT::i64, InFlag).getValue(1);
1242        Val = Chain.getValue(0);
1243      }
1244      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1245    } else {
1246      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1247                                 CopyVT, InFlag).getValue(1);
1248      Val = Chain.getValue(0);
1249    }
1250    InFlag = Chain.getValue(2);
1251
1252    if (CopyVT != VA.getValVT()) {
1253      // Round the F80 the right size, which also moves to the appropriate xmm
1254      // register.
1255      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1256                        // This truncation won't change the value.
1257                        DAG.getIntPtrConstant(1));
1258    }
1259
1260    InVals.push_back(Val);
1261  }
1262
1263  return Chain;
1264}
1265
1266
1267//===----------------------------------------------------------------------===//
1268//                C & StdCall & Fast Calling Convention implementation
1269//===----------------------------------------------------------------------===//
1270//  StdCall calling convention seems to be standard for many Windows' API
1271//  routines and around. It differs from C calling convention just a little:
1272//  callee should clean up the stack, not caller. Symbols should be also
1273//  decorated in some fancy way :) It doesn't support any vector arguments.
1274//  For info on fast calling convention see Fast Calling Convention (tail call)
1275//  implementation LowerX86_32FastCCCallTo.
1276
1277/// CallIsStructReturn - Determines whether a call uses struct return
1278/// semantics.
1279static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1280  if (Outs.empty())
1281    return false;
1282
1283  return Outs[0].Flags.isSRet();
1284}
1285
1286/// ArgsAreStructReturn - Determines whether a function uses struct
1287/// return semantics.
1288static bool
1289ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1290  if (Ins.empty())
1291    return false;
1292
1293  return Ins[0].Flags.isSRet();
1294}
1295
1296/// IsCalleePop - Determines whether the callee is required to pop its
1297/// own arguments. Callee pop is necessary to support tail calls.
1298bool X86TargetLowering::IsCalleePop(bool IsVarArg, CallingConv::ID CallingConv){
1299  if (IsVarArg)
1300    return false;
1301
1302  switch (CallingConv) {
1303  default:
1304    return false;
1305  case CallingConv::X86_StdCall:
1306    return !Subtarget->is64Bit();
1307  case CallingConv::X86_FastCall:
1308    return !Subtarget->is64Bit();
1309  case CallingConv::Fast:
1310    return PerformTailCallOpt;
1311  }
1312}
1313
1314/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1315/// given CallingConvention value.
1316CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1317  if (Subtarget->is64Bit()) {
1318    if (Subtarget->isTargetWin64())
1319      return CC_X86_Win64_C;
1320    else
1321      return CC_X86_64_C;
1322  }
1323
1324  if (CC == CallingConv::X86_FastCall)
1325    return CC_X86_32_FastCall;
1326  else if (CC == CallingConv::Fast)
1327    return CC_X86_32_FastCC;
1328  else
1329    return CC_X86_32_C;
1330}
1331
1332/// NameDecorationForCallConv - Selects the appropriate decoration to
1333/// apply to a MachineFunction containing a given calling convention.
1334NameDecorationStyle
1335X86TargetLowering::NameDecorationForCallConv(CallingConv::ID CallConv) {
1336  if (CallConv == CallingConv::X86_FastCall)
1337    return FastCall;
1338  else if (CallConv == CallingConv::X86_StdCall)
1339    return StdCall;
1340  return None;
1341}
1342
1343
1344/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1345/// by "Src" to address "Dst" with size and alignment information specified by
1346/// the specific parameter attribute. The copy will be passed as a byval
1347/// function parameter.
1348static SDValue
1349CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1350                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1351                          DebugLoc dl) {
1352  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1353  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1354                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1355}
1356
1357SDValue
1358X86TargetLowering::LowerMemArgument(SDValue Chain,
1359                                    CallingConv::ID CallConv,
1360                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1361                                    DebugLoc dl, SelectionDAG &DAG,
1362                                    const CCValAssign &VA,
1363                                    MachineFrameInfo *MFI,
1364                                    unsigned i) {
1365
1366  // Create the nodes corresponding to a load from this parameter slot.
1367  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1368  bool AlwaysUseMutable = (CallConv==CallingConv::Fast) && PerformTailCallOpt;
1369  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1370  EVT ValVT;
1371
1372  // If value is passed by pointer we have address passed instead of the value
1373  // itself.
1374  if (VA.getLocInfo() == CCValAssign::Indirect)
1375    ValVT = VA.getLocVT();
1376  else
1377    ValVT = VA.getValVT();
1378
1379  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1380  // changed with more analysis.
1381  // In case of tail call optimization mark all arguments mutable. Since they
1382  // could be overwritten by lowering of arguments in case of a tail call.
1383  int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1384                                  VA.getLocMemOffset(), isImmutable, false);
1385  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1386  if (Flags.isByVal())
1387    return FIN;
1388  return DAG.getLoad(ValVT, dl, Chain, FIN,
1389                     PseudoSourceValue::getFixedStack(FI), 0);
1390}
1391
1392SDValue
1393X86TargetLowering::LowerFormalArguments(SDValue Chain,
1394                                        CallingConv::ID CallConv,
1395                                        bool isVarArg,
1396                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1397                                        DebugLoc dl,
1398                                        SelectionDAG &DAG,
1399                                        SmallVectorImpl<SDValue> &InVals) {
1400
1401  MachineFunction &MF = DAG.getMachineFunction();
1402  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1403
1404  const Function* Fn = MF.getFunction();
1405  if (Fn->hasExternalLinkage() &&
1406      Subtarget->isTargetCygMing() &&
1407      Fn->getName() == "main")
1408    FuncInfo->setForceFramePointer(true);
1409
1410  // Decorate the function name.
1411  FuncInfo->setDecorationStyle(NameDecorationForCallConv(CallConv));
1412
1413  MachineFrameInfo *MFI = MF.getFrameInfo();
1414  bool Is64Bit = Subtarget->is64Bit();
1415  bool IsWin64 = Subtarget->isTargetWin64();
1416
1417  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1418         "Var args not supported with calling convention fastcc");
1419
1420  // Assign locations to all of the incoming arguments.
1421  SmallVector<CCValAssign, 16> ArgLocs;
1422  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1423                 ArgLocs, *DAG.getContext());
1424  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1425
1426  unsigned LastVal = ~0U;
1427  SDValue ArgValue;
1428  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1429    CCValAssign &VA = ArgLocs[i];
1430    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1431    // places.
1432    assert(VA.getValNo() != LastVal &&
1433           "Don't support value assigned to multiple locs yet");
1434    LastVal = VA.getValNo();
1435
1436    if (VA.isRegLoc()) {
1437      EVT RegVT = VA.getLocVT();
1438      TargetRegisterClass *RC = NULL;
1439      if (RegVT == MVT::i32)
1440        RC = X86::GR32RegisterClass;
1441      else if (Is64Bit && RegVT == MVT::i64)
1442        RC = X86::GR64RegisterClass;
1443      else if (RegVT == MVT::f32)
1444        RC = X86::FR32RegisterClass;
1445      else if (RegVT == MVT::f64)
1446        RC = X86::FR64RegisterClass;
1447      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1448        RC = X86::VR128RegisterClass;
1449      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1450        RC = X86::VR64RegisterClass;
1451      else
1452        llvm_unreachable("Unknown argument type!");
1453
1454      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1455      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1456
1457      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1458      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1459      // right size.
1460      if (VA.getLocInfo() == CCValAssign::SExt)
1461        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1462                               DAG.getValueType(VA.getValVT()));
1463      else if (VA.getLocInfo() == CCValAssign::ZExt)
1464        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1465                               DAG.getValueType(VA.getValVT()));
1466      else if (VA.getLocInfo() == CCValAssign::BCvt)
1467        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1468
1469      if (VA.isExtInLoc()) {
1470        // Handle MMX values passed in XMM regs.
1471        if (RegVT.isVector()) {
1472          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1473                                 ArgValue, DAG.getConstant(0, MVT::i64));
1474          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1475        } else
1476          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1477      }
1478    } else {
1479      assert(VA.isMemLoc());
1480      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1481    }
1482
1483    // If value is passed via pointer - do a load.
1484    if (VA.getLocInfo() == CCValAssign::Indirect)
1485      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0);
1486
1487    InVals.push_back(ArgValue);
1488  }
1489
1490  // The x86-64 ABI for returning structs by value requires that we copy
1491  // the sret argument into %rax for the return. Save the argument into
1492  // a virtual register so that we can access it from the return points.
1493  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1494    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1495    unsigned Reg = FuncInfo->getSRetReturnReg();
1496    if (!Reg) {
1497      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1498      FuncInfo->setSRetReturnReg(Reg);
1499    }
1500    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1501    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1502  }
1503
1504  unsigned StackSize = CCInfo.getNextStackOffset();
1505  // align stack specially for tail calls
1506  if (PerformTailCallOpt && CallConv == CallingConv::Fast)
1507    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1508
1509  // If the function takes variable number of arguments, make a frame index for
1510  // the start of the first vararg value... for expansion of llvm.va_start.
1511  if (isVarArg) {
1512    if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
1513      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize, true, false);
1514    }
1515    if (Is64Bit) {
1516      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1517
1518      // FIXME: We should really autogenerate these arrays
1519      static const unsigned GPR64ArgRegsWin64[] = {
1520        X86::RCX, X86::RDX, X86::R8,  X86::R9
1521      };
1522      static const unsigned XMMArgRegsWin64[] = {
1523        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1524      };
1525      static const unsigned GPR64ArgRegs64Bit[] = {
1526        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1527      };
1528      static const unsigned XMMArgRegs64Bit[] = {
1529        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1530        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1531      };
1532      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1533
1534      if (IsWin64) {
1535        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1536        GPR64ArgRegs = GPR64ArgRegsWin64;
1537        XMMArgRegs = XMMArgRegsWin64;
1538      } else {
1539        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1540        GPR64ArgRegs = GPR64ArgRegs64Bit;
1541        XMMArgRegs = XMMArgRegs64Bit;
1542      }
1543      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1544                                                       TotalNumIntRegs);
1545      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1546                                                       TotalNumXMMRegs);
1547
1548      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1549      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1550             "SSE register cannot be used when SSE is disabled!");
1551      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1552             "SSE register cannot be used when SSE is disabled!");
1553      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1554        // Kernel mode asks for SSE to be disabled, so don't push them
1555        // on the stack.
1556        TotalNumXMMRegs = 0;
1557
1558      // For X86-64, if there are vararg parameters that are passed via
1559      // registers, then we must store them to their spots on the stack so they
1560      // may be loaded by deferencing the result of va_next.
1561      VarArgsGPOffset = NumIntRegs * 8;
1562      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1563      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1564                                                 TotalNumXMMRegs * 16, 16,
1565                                                 false);
1566
1567      // Store the integer parameter registers.
1568      SmallVector<SDValue, 8> MemOps;
1569      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1570      unsigned Offset = VarArgsGPOffset;
1571      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1572        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1573                                  DAG.getIntPtrConstant(Offset));
1574        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1575                                     X86::GR64RegisterClass);
1576        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1577        SDValue Store =
1578          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1579                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
1580                       Offset);
1581        MemOps.push_back(Store);
1582        Offset += 8;
1583      }
1584
1585      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1586        // Now store the XMM (fp + vector) parameter registers.
1587        SmallVector<SDValue, 11> SaveXMMOps;
1588        SaveXMMOps.push_back(Chain);
1589
1590        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1591        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1592        SaveXMMOps.push_back(ALVal);
1593
1594        SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex));
1595        SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset));
1596
1597        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1598          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1599                                       X86::VR128RegisterClass);
1600          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1601          SaveXMMOps.push_back(Val);
1602        }
1603        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1604                                     MVT::Other,
1605                                     &SaveXMMOps[0], SaveXMMOps.size()));
1606      }
1607
1608      if (!MemOps.empty())
1609        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1610                            &MemOps[0], MemOps.size());
1611    }
1612  }
1613
1614  // Some CCs need callee pop.
1615  if (IsCalleePop(isVarArg, CallConv)) {
1616    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1617    BytesCallerReserves = 0;
1618  } else {
1619    BytesToPopOnReturn  = 0; // Callee pops nothing.
1620    // If this is an sret function, the return should pop the hidden pointer.
1621    if (!Is64Bit && CallConv != CallingConv::Fast && ArgsAreStructReturn(Ins))
1622      BytesToPopOnReturn = 4;
1623    BytesCallerReserves = StackSize;
1624  }
1625
1626  if (!Is64Bit) {
1627    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1628    if (CallConv == CallingConv::X86_FastCall)
1629      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1630  }
1631
1632  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1633
1634  return Chain;
1635}
1636
1637SDValue
1638X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1639                                    SDValue StackPtr, SDValue Arg,
1640                                    DebugLoc dl, SelectionDAG &DAG,
1641                                    const CCValAssign &VA,
1642                                    ISD::ArgFlagsTy Flags) {
1643  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1644  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1645  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1646  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1647  if (Flags.isByVal()) {
1648    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1649  }
1650  return DAG.getStore(Chain, dl, Arg, PtrOff,
1651                      PseudoSourceValue::getStack(), LocMemOffset);
1652}
1653
1654/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1655/// optimization is performed and it is required.
1656SDValue
1657X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1658                                           SDValue &OutRetAddr,
1659                                           SDValue Chain,
1660                                           bool IsTailCall,
1661                                           bool Is64Bit,
1662                                           int FPDiff,
1663                                           DebugLoc dl) {
1664  if (!IsTailCall || FPDiff==0) return Chain;
1665
1666  // Adjust the Return address stack slot.
1667  EVT VT = getPointerTy();
1668  OutRetAddr = getReturnAddressFrameIndex(DAG);
1669
1670  // Load the "old" Return address.
1671  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0);
1672  return SDValue(OutRetAddr.getNode(), 1);
1673}
1674
1675/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1676/// optimization is performed and it is required (FPDiff!=0).
1677static SDValue
1678EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1679                         SDValue Chain, SDValue RetAddrFrIdx,
1680                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1681  // Store the return address to the appropriate stack slot.
1682  if (!FPDiff) return Chain;
1683  // Calculate the new stack slot for the return address.
1684  int SlotSize = Is64Bit ? 8 : 4;
1685  int NewReturnAddrFI =
1686    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize,
1687                                         true, false);
1688  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1689  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1690  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1691                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1692  return Chain;
1693}
1694
1695SDValue
1696X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1697                             CallingConv::ID CallConv, bool isVarArg,
1698                             bool isTailCall,
1699                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1700                             const SmallVectorImpl<ISD::InputArg> &Ins,
1701                             DebugLoc dl, SelectionDAG &DAG,
1702                             SmallVectorImpl<SDValue> &InVals) {
1703
1704  MachineFunction &MF = DAG.getMachineFunction();
1705  bool Is64Bit        = Subtarget->is64Bit();
1706  bool IsStructRet    = CallIsStructReturn(Outs);
1707
1708  assert((!isTailCall ||
1709          (CallConv == CallingConv::Fast && PerformTailCallOpt)) &&
1710         "IsEligibleForTailCallOptimization missed a case!");
1711  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1712         "Var args not supported with calling convention fastcc");
1713
1714  // Analyze operands of the call, assigning locations to each operand.
1715  SmallVector<CCValAssign, 16> ArgLocs;
1716  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1717                 ArgLocs, *DAG.getContext());
1718  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1719
1720  // Get a count of how many bytes are to be pushed on the stack.
1721  unsigned NumBytes = CCInfo.getNextStackOffset();
1722  if (PerformTailCallOpt && CallConv == CallingConv::Fast)
1723    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1724
1725  int FPDiff = 0;
1726  if (isTailCall) {
1727    // Lower arguments at fp - stackoffset + fpdiff.
1728    unsigned NumBytesCallerPushed =
1729      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1730    FPDiff = NumBytesCallerPushed - NumBytes;
1731
1732    // Set the delta of movement of the returnaddr stackslot.
1733    // But only set if delta is greater than previous delta.
1734    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1735      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1736  }
1737
1738  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1739
1740  SDValue RetAddrFrIdx;
1741  // Load return adress for tail calls.
1742  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, Is64Bit,
1743                                  FPDiff, dl);
1744
1745  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1746  SmallVector<SDValue, 8> MemOpChains;
1747  SDValue StackPtr;
1748
1749  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1750  // of tail call optimization arguments are handle later.
1751  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1752    CCValAssign &VA = ArgLocs[i];
1753    EVT RegVT = VA.getLocVT();
1754    SDValue Arg = Outs[i].Val;
1755    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1756    bool isByVal = Flags.isByVal();
1757
1758    // Promote the value if needed.
1759    switch (VA.getLocInfo()) {
1760    default: llvm_unreachable("Unknown loc info!");
1761    case CCValAssign::Full: break;
1762    case CCValAssign::SExt:
1763      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1764      break;
1765    case CCValAssign::ZExt:
1766      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1767      break;
1768    case CCValAssign::AExt:
1769      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1770        // Special case: passing MMX values in XMM registers.
1771        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1772        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1773        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1774      } else
1775        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1776      break;
1777    case CCValAssign::BCvt:
1778      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1779      break;
1780    case CCValAssign::Indirect: {
1781      // Store the argument.
1782      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1783      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1784      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1785                           PseudoSourceValue::getFixedStack(FI), 0);
1786      Arg = SpillSlot;
1787      break;
1788    }
1789    }
1790
1791    if (VA.isRegLoc()) {
1792      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1793    } else {
1794      if (!isTailCall || (isTailCall && isByVal)) {
1795        assert(VA.isMemLoc());
1796        if (StackPtr.getNode() == 0)
1797          StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1798
1799        MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1800                                               dl, DAG, VA, Flags));
1801      }
1802    }
1803  }
1804
1805  if (!MemOpChains.empty())
1806    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1807                        &MemOpChains[0], MemOpChains.size());
1808
1809  // Build a sequence of copy-to-reg nodes chained together with token chain
1810  // and flag operands which copy the outgoing args into registers.
1811  SDValue InFlag;
1812  // Tail call byval lowering might overwrite argument registers so in case of
1813  // tail call optimization the copies to registers are lowered later.
1814  if (!isTailCall)
1815    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1816      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1817                               RegsToPass[i].second, InFlag);
1818      InFlag = Chain.getValue(1);
1819    }
1820
1821
1822  if (Subtarget->isPICStyleGOT()) {
1823    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1824    // GOT pointer.
1825    if (!isTailCall) {
1826      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1827                               DAG.getNode(X86ISD::GlobalBaseReg,
1828                                           DebugLoc::getUnknownLoc(),
1829                                           getPointerTy()),
1830                               InFlag);
1831      InFlag = Chain.getValue(1);
1832    } else {
1833      // If we are tail calling and generating PIC/GOT style code load the
1834      // address of the callee into ECX. The value in ecx is used as target of
1835      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1836      // for tail calls on PIC/GOT architectures. Normally we would just put the
1837      // address of GOT into ebx and then call target@PLT. But for tail calls
1838      // ebx would be restored (since ebx is callee saved) before jumping to the
1839      // target@PLT.
1840
1841      // Note: The actual moving to ECX is done further down.
1842      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1843      if (G && !G->getGlobal()->hasHiddenVisibility() &&
1844          !G->getGlobal()->hasProtectedVisibility())
1845        Callee = LowerGlobalAddress(Callee, DAG);
1846      else if (isa<ExternalSymbolSDNode>(Callee))
1847        Callee = LowerExternalSymbol(Callee, DAG);
1848    }
1849  }
1850
1851  if (Is64Bit && isVarArg) {
1852    // From AMD64 ABI document:
1853    // For calls that may call functions that use varargs or stdargs
1854    // (prototype-less calls or calls to functions containing ellipsis (...) in
1855    // the declaration) %al is used as hidden argument to specify the number
1856    // of SSE registers used. The contents of %al do not need to match exactly
1857    // the number of registers, but must be an ubound on the number of SSE
1858    // registers used and is in the range 0 - 8 inclusive.
1859
1860    // FIXME: Verify this on Win64
1861    // Count the number of XMM registers allocated.
1862    static const unsigned XMMArgRegs[] = {
1863      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1864      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1865    };
1866    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1867    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1868           && "SSE registers cannot be used when SSE is disabled");
1869
1870    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1871                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1872    InFlag = Chain.getValue(1);
1873  }
1874
1875
1876  // For tail calls lower the arguments to the 'real' stack slot.
1877  if (isTailCall) {
1878    // Force all the incoming stack arguments to be loaded from the stack
1879    // before any new outgoing arguments are stored to the stack, because the
1880    // outgoing stack slots may alias the incoming argument stack slots, and
1881    // the alias isn't otherwise explicit. This is slightly more conservative
1882    // than necessary, because it means that each store effectively depends
1883    // on every argument instead of just those arguments it would clobber.
1884    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
1885
1886    SmallVector<SDValue, 8> MemOpChains2;
1887    SDValue FIN;
1888    int FI = 0;
1889    // Do not flag preceeding copytoreg stuff together with the following stuff.
1890    InFlag = SDValue();
1891    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1892      CCValAssign &VA = ArgLocs[i];
1893      if (!VA.isRegLoc()) {
1894        assert(VA.isMemLoc());
1895        SDValue Arg = Outs[i].Val;
1896        ISD::ArgFlagsTy Flags = Outs[i].Flags;
1897        // Create frame index.
1898        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1899        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1900        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true, false);
1901        FIN = DAG.getFrameIndex(FI, getPointerTy());
1902
1903        if (Flags.isByVal()) {
1904          // Copy relative to framepointer.
1905          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1906          if (StackPtr.getNode() == 0)
1907            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1908                                          getPointerTy());
1909          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1910
1911          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
1912                                                           ArgChain,
1913                                                           Flags, DAG, dl));
1914        } else {
1915          // Store relative to framepointer.
1916          MemOpChains2.push_back(
1917            DAG.getStore(ArgChain, dl, Arg, FIN,
1918                         PseudoSourceValue::getFixedStack(FI), 0));
1919        }
1920      }
1921    }
1922
1923    if (!MemOpChains2.empty())
1924      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1925                          &MemOpChains2[0], MemOpChains2.size());
1926
1927    // Copy arguments to their registers.
1928    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1929      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1930                               RegsToPass[i].second, InFlag);
1931      InFlag = Chain.getValue(1);
1932    }
1933    InFlag =SDValue();
1934
1935    // Store the return address to the appropriate stack slot.
1936    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1937                                     FPDiff, dl);
1938  }
1939
1940  // If the callee is a GlobalAddress node (quite common, every direct call is)
1941  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1942  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1943    // We should use extra load for direct calls to dllimported functions in
1944    // non-JIT mode.
1945    GlobalValue *GV = G->getGlobal();
1946    if (!GV->hasDLLImportLinkage()) {
1947      unsigned char OpFlags = 0;
1948
1949      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1950      // external symbols most go through the PLT in PIC mode.  If the symbol
1951      // has hidden or protected visibility, or if it is static or local, then
1952      // we don't need to use the PLT - we can directly call it.
1953      if (Subtarget->isTargetELF() &&
1954          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1955          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1956        OpFlags = X86II::MO_PLT;
1957      } else if (Subtarget->isPICStyleStubAny() &&
1958               (GV->isDeclaration() || GV->isWeakForLinker()) &&
1959               Subtarget->getDarwinVers() < 9) {
1960        // PC-relative references to external symbols should go through $stub,
1961        // unless we're building with the leopard linker or later, which
1962        // automatically synthesizes these stubs.
1963        OpFlags = X86II::MO_DARWIN_STUB;
1964      }
1965
1966      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
1967                                          G->getOffset(), OpFlags);
1968    }
1969  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1970    unsigned char OpFlags = 0;
1971
1972    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
1973    // symbols should go through the PLT.
1974    if (Subtarget->isTargetELF() &&
1975        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1976      OpFlags = X86II::MO_PLT;
1977    } else if (Subtarget->isPICStyleStubAny() &&
1978             Subtarget->getDarwinVers() < 9) {
1979      // PC-relative references to external symbols should go through $stub,
1980      // unless we're building with the leopard linker or later, which
1981      // automatically synthesizes these stubs.
1982      OpFlags = X86II::MO_DARWIN_STUB;
1983    }
1984
1985    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
1986                                         OpFlags);
1987  } else if (isTailCall) {
1988    unsigned Opc = Is64Bit ? X86::R11 : X86::EAX;
1989
1990    Chain = DAG.getCopyToReg(Chain,  dl,
1991                             DAG.getRegister(Opc, getPointerTy()),
1992                             Callee,InFlag);
1993    Callee = DAG.getRegister(Opc, getPointerTy());
1994    // Add register as live out.
1995    MF.getRegInfo().addLiveOut(Opc);
1996  }
1997
1998  // Returns a chain & a flag for retval copy to use.
1999  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2000  SmallVector<SDValue, 8> Ops;
2001
2002  if (isTailCall) {
2003    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2004                           DAG.getIntPtrConstant(0, true), InFlag);
2005    InFlag = Chain.getValue(1);
2006  }
2007
2008  Ops.push_back(Chain);
2009  Ops.push_back(Callee);
2010
2011  if (isTailCall)
2012    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2013
2014  // Add argument registers to the end of the list so that they are known live
2015  // into the call.
2016  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2017    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2018                                  RegsToPass[i].second.getValueType()));
2019
2020  // Add an implicit use GOT pointer in EBX.
2021  if (!isTailCall && Subtarget->isPICStyleGOT())
2022    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2023
2024  // Add an implicit use of AL for x86 vararg functions.
2025  if (Is64Bit && isVarArg)
2026    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2027
2028  if (InFlag.getNode())
2029    Ops.push_back(InFlag);
2030
2031  if (isTailCall) {
2032    // If this is the first return lowered for this function, add the regs
2033    // to the liveout set for the function.
2034    if (MF.getRegInfo().liveout_empty()) {
2035      SmallVector<CCValAssign, 16> RVLocs;
2036      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2037                     *DAG.getContext());
2038      CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2039      for (unsigned i = 0; i != RVLocs.size(); ++i)
2040        if (RVLocs[i].isRegLoc())
2041          MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2042    }
2043
2044    assert(((Callee.getOpcode() == ISD::Register &&
2045               (cast<RegisterSDNode>(Callee)->getReg() == X86::EAX ||
2046                cast<RegisterSDNode>(Callee)->getReg() == X86::R9)) ||
2047              Callee.getOpcode() == ISD::TargetExternalSymbol ||
2048              Callee.getOpcode() == ISD::TargetGlobalAddress) &&
2049             "Expecting an global address, external symbol, or register");
2050
2051    return DAG.getNode(X86ISD::TC_RETURN, dl,
2052                       NodeTys, &Ops[0], Ops.size());
2053  }
2054
2055  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2056  InFlag = Chain.getValue(1);
2057
2058  // Create the CALLSEQ_END node.
2059  unsigned NumBytesForCalleeToPush;
2060  if (IsCalleePop(isVarArg, CallConv))
2061    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2062  else if (!Is64Bit && CallConv != CallingConv::Fast && IsStructRet)
2063    // If this is is a call to a struct-return function, the callee
2064    // pops the hidden struct pointer, so we have to push it back.
2065    // This is common for Darwin/X86, Linux & Mingw32 targets.
2066    NumBytesForCalleeToPush = 4;
2067  else
2068    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2069
2070  // Returns a flag for retval copy to use.
2071  Chain = DAG.getCALLSEQ_END(Chain,
2072                             DAG.getIntPtrConstant(NumBytes, true),
2073                             DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2074                                                   true),
2075                             InFlag);
2076  InFlag = Chain.getValue(1);
2077
2078  // Handle result values, copying them out of physregs into vregs that we
2079  // return.
2080  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2081                         Ins, dl, DAG, InVals);
2082}
2083
2084
2085//===----------------------------------------------------------------------===//
2086//                Fast Calling Convention (tail call) implementation
2087//===----------------------------------------------------------------------===//
2088
2089//  Like std call, callee cleans arguments, convention except that ECX is
2090//  reserved for storing the tail called function address. Only 2 registers are
2091//  free for argument passing (inreg). Tail call optimization is performed
2092//  provided:
2093//                * tailcallopt is enabled
2094//                * caller/callee are fastcc
2095//  On X86_64 architecture with GOT-style position independent code only local
2096//  (within module) calls are supported at the moment.
2097//  To keep the stack aligned according to platform abi the function
2098//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2099//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2100//  If a tail called function callee has more arguments than the caller the
2101//  caller needs to make sure that there is room to move the RETADDR to. This is
2102//  achieved by reserving an area the size of the argument delta right after the
2103//  original REtADDR, but before the saved framepointer or the spilled registers
2104//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2105//  stack layout:
2106//    arg1
2107//    arg2
2108//    RETADDR
2109//    [ new RETADDR
2110//      move area ]
2111//    (possible EBP)
2112//    ESI
2113//    EDI
2114//    local1 ..
2115
2116/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2117/// for a 16 byte align requirement.
2118unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2119                                                        SelectionDAG& DAG) {
2120  MachineFunction &MF = DAG.getMachineFunction();
2121  const TargetMachine &TM = MF.getTarget();
2122  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2123  unsigned StackAlignment = TFI.getStackAlignment();
2124  uint64_t AlignMask = StackAlignment - 1;
2125  int64_t Offset = StackSize;
2126  uint64_t SlotSize = TD->getPointerSize();
2127  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2128    // Number smaller than 12 so just add the difference.
2129    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2130  } else {
2131    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2132    Offset = ((~AlignMask) & Offset) + StackAlignment +
2133      (StackAlignment-SlotSize);
2134  }
2135  return Offset;
2136}
2137
2138/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2139/// for tail call optimization. Targets which want to do tail call
2140/// optimization should implement this function.
2141bool
2142X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2143                                                     CallingConv::ID CalleeCC,
2144                                                     bool isVarArg,
2145                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2146                                                     SelectionDAG& DAG) const {
2147  MachineFunction &MF = DAG.getMachineFunction();
2148  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2149  return CalleeCC == CallingConv::Fast && CallerCC == CalleeCC;
2150}
2151
2152FastISel *
2153X86TargetLowering::createFastISel(MachineFunction &mf,
2154                                  MachineModuleInfo *mmo,
2155                                  DwarfWriter *dw,
2156                                  DenseMap<const Value *, unsigned> &vm,
2157                                  DenseMap<const BasicBlock *,
2158                                           MachineBasicBlock *> &bm,
2159                                  DenseMap<const AllocaInst *, int> &am
2160#ifndef NDEBUG
2161                                  , SmallSet<Instruction*, 8> &cil
2162#endif
2163                                  ) {
2164  return X86::createFastISel(mf, mmo, dw, vm, bm, am
2165#ifndef NDEBUG
2166                             , cil
2167#endif
2168                             );
2169}
2170
2171
2172//===----------------------------------------------------------------------===//
2173//                           Other Lowering Hooks
2174//===----------------------------------------------------------------------===//
2175
2176
2177SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2178  MachineFunction &MF = DAG.getMachineFunction();
2179  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2180  int ReturnAddrIndex = FuncInfo->getRAIndex();
2181
2182  if (ReturnAddrIndex == 0) {
2183    // Set up a frame object for the return address.
2184    uint64_t SlotSize = TD->getPointerSize();
2185    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2186                                                           true, false);
2187    FuncInfo->setRAIndex(ReturnAddrIndex);
2188  }
2189
2190  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2191}
2192
2193
2194bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2195                                       bool hasSymbolicDisplacement) {
2196  // Offset should fit into 32 bit immediate field.
2197  if (!isInt32(Offset))
2198    return false;
2199
2200  // If we don't have a symbolic displacement - we don't have any extra
2201  // restrictions.
2202  if (!hasSymbolicDisplacement)
2203    return true;
2204
2205  // FIXME: Some tweaks might be needed for medium code model.
2206  if (M != CodeModel::Small && M != CodeModel::Kernel)
2207    return false;
2208
2209  // For small code model we assume that latest object is 16MB before end of 31
2210  // bits boundary. We may also accept pretty large negative constants knowing
2211  // that all objects are in the positive half of address space.
2212  if (M == CodeModel::Small && Offset < 16*1024*1024)
2213    return true;
2214
2215  // For kernel code model we know that all object resist in the negative half
2216  // of 32bits address space. We may not accept negative offsets, since they may
2217  // be just off and we may accept pretty large positive ones.
2218  if (M == CodeModel::Kernel && Offset > 0)
2219    return true;
2220
2221  return false;
2222}
2223
2224/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2225/// specific condition code, returning the condition code and the LHS/RHS of the
2226/// comparison to make.
2227static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2228                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2229  if (!isFP) {
2230    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2231      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2232        // X > -1   -> X == 0, jump !sign.
2233        RHS = DAG.getConstant(0, RHS.getValueType());
2234        return X86::COND_NS;
2235      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2236        // X < 0   -> X == 0, jump on sign.
2237        return X86::COND_S;
2238      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2239        // X < 1   -> X <= 0
2240        RHS = DAG.getConstant(0, RHS.getValueType());
2241        return X86::COND_LE;
2242      }
2243    }
2244
2245    switch (SetCCOpcode) {
2246    default: llvm_unreachable("Invalid integer condition!");
2247    case ISD::SETEQ:  return X86::COND_E;
2248    case ISD::SETGT:  return X86::COND_G;
2249    case ISD::SETGE:  return X86::COND_GE;
2250    case ISD::SETLT:  return X86::COND_L;
2251    case ISD::SETLE:  return X86::COND_LE;
2252    case ISD::SETNE:  return X86::COND_NE;
2253    case ISD::SETULT: return X86::COND_B;
2254    case ISD::SETUGT: return X86::COND_A;
2255    case ISD::SETULE: return X86::COND_BE;
2256    case ISD::SETUGE: return X86::COND_AE;
2257    }
2258  }
2259
2260  // First determine if it is required or is profitable to flip the operands.
2261
2262  // If LHS is a foldable load, but RHS is not, flip the condition.
2263  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2264      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2265    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2266    std::swap(LHS, RHS);
2267  }
2268
2269  switch (SetCCOpcode) {
2270  default: break;
2271  case ISD::SETOLT:
2272  case ISD::SETOLE:
2273  case ISD::SETUGT:
2274  case ISD::SETUGE:
2275    std::swap(LHS, RHS);
2276    break;
2277  }
2278
2279  // On a floating point condition, the flags are set as follows:
2280  // ZF  PF  CF   op
2281  //  0 | 0 | 0 | X > Y
2282  //  0 | 0 | 1 | X < Y
2283  //  1 | 0 | 0 | X == Y
2284  //  1 | 1 | 1 | unordered
2285  switch (SetCCOpcode) {
2286  default: llvm_unreachable("Condcode should be pre-legalized away");
2287  case ISD::SETUEQ:
2288  case ISD::SETEQ:   return X86::COND_E;
2289  case ISD::SETOLT:              // flipped
2290  case ISD::SETOGT:
2291  case ISD::SETGT:   return X86::COND_A;
2292  case ISD::SETOLE:              // flipped
2293  case ISD::SETOGE:
2294  case ISD::SETGE:   return X86::COND_AE;
2295  case ISD::SETUGT:              // flipped
2296  case ISD::SETULT:
2297  case ISD::SETLT:   return X86::COND_B;
2298  case ISD::SETUGE:              // flipped
2299  case ISD::SETULE:
2300  case ISD::SETLE:   return X86::COND_BE;
2301  case ISD::SETONE:
2302  case ISD::SETNE:   return X86::COND_NE;
2303  case ISD::SETUO:   return X86::COND_P;
2304  case ISD::SETO:    return X86::COND_NP;
2305  case ISD::SETOEQ:
2306  case ISD::SETUNE:  return X86::COND_INVALID;
2307  }
2308}
2309
2310/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2311/// code. Current x86 isa includes the following FP cmov instructions:
2312/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2313static bool hasFPCMov(unsigned X86CC) {
2314  switch (X86CC) {
2315  default:
2316    return false;
2317  case X86::COND_B:
2318  case X86::COND_BE:
2319  case X86::COND_E:
2320  case X86::COND_P:
2321  case X86::COND_A:
2322  case X86::COND_AE:
2323  case X86::COND_NE:
2324  case X86::COND_NP:
2325    return true;
2326  }
2327}
2328
2329/// isFPImmLegal - Returns true if the target can instruction select the
2330/// specified FP immediate natively. If false, the legalizer will
2331/// materialize the FP immediate as a load from a constant pool.
2332bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2333  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2334    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2335      return true;
2336  }
2337  return false;
2338}
2339
2340/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2341/// the specified range (L, H].
2342static bool isUndefOrInRange(int Val, int Low, int Hi) {
2343  return (Val < 0) || (Val >= Low && Val < Hi);
2344}
2345
2346/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2347/// specified value.
2348static bool isUndefOrEqual(int Val, int CmpVal) {
2349  if (Val < 0 || Val == CmpVal)
2350    return true;
2351  return false;
2352}
2353
2354/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2355/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2356/// the second operand.
2357static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2358  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2359    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2360  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2361    return (Mask[0] < 2 && Mask[1] < 2);
2362  return false;
2363}
2364
2365bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2366  SmallVector<int, 8> M;
2367  N->getMask(M);
2368  return ::isPSHUFDMask(M, N->getValueType(0));
2369}
2370
2371/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2372/// is suitable for input to PSHUFHW.
2373static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2374  if (VT != MVT::v8i16)
2375    return false;
2376
2377  // Lower quadword copied in order or undef.
2378  for (int i = 0; i != 4; ++i)
2379    if (Mask[i] >= 0 && Mask[i] != i)
2380      return false;
2381
2382  // Upper quadword shuffled.
2383  for (int i = 4; i != 8; ++i)
2384    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2385      return false;
2386
2387  return true;
2388}
2389
2390bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2391  SmallVector<int, 8> M;
2392  N->getMask(M);
2393  return ::isPSHUFHWMask(M, N->getValueType(0));
2394}
2395
2396/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2397/// is suitable for input to PSHUFLW.
2398static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2399  if (VT != MVT::v8i16)
2400    return false;
2401
2402  // Upper quadword copied in order.
2403  for (int i = 4; i != 8; ++i)
2404    if (Mask[i] >= 0 && Mask[i] != i)
2405      return false;
2406
2407  // Lower quadword shuffled.
2408  for (int i = 0; i != 4; ++i)
2409    if (Mask[i] >= 4)
2410      return false;
2411
2412  return true;
2413}
2414
2415bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2416  SmallVector<int, 8> M;
2417  N->getMask(M);
2418  return ::isPSHUFLWMask(M, N->getValueType(0));
2419}
2420
2421/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2422/// is suitable for input to PALIGNR.
2423static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2424                          bool hasSSSE3) {
2425  int i, e = VT.getVectorNumElements();
2426
2427  // Do not handle v2i64 / v2f64 shuffles with palignr.
2428  if (e < 4 || !hasSSSE3)
2429    return false;
2430
2431  for (i = 0; i != e; ++i)
2432    if (Mask[i] >= 0)
2433      break;
2434
2435  // All undef, not a palignr.
2436  if (i == e)
2437    return false;
2438
2439  // Determine if it's ok to perform a palignr with only the LHS, since we
2440  // don't have access to the actual shuffle elements to see if RHS is undef.
2441  bool Unary = Mask[i] < (int)e;
2442  bool NeedsUnary = false;
2443
2444  int s = Mask[i] - i;
2445
2446  // Check the rest of the elements to see if they are consecutive.
2447  for (++i; i != e; ++i) {
2448    int m = Mask[i];
2449    if (m < 0)
2450      continue;
2451
2452    Unary = Unary && (m < (int)e);
2453    NeedsUnary = NeedsUnary || (m < s);
2454
2455    if (NeedsUnary && !Unary)
2456      return false;
2457    if (Unary && m != ((s+i) & (e-1)))
2458      return false;
2459    if (!Unary && m != (s+i))
2460      return false;
2461  }
2462  return true;
2463}
2464
2465bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2466  SmallVector<int, 8> M;
2467  N->getMask(M);
2468  return ::isPALIGNRMask(M, N->getValueType(0), true);
2469}
2470
2471/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2472/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2473static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2474  int NumElems = VT.getVectorNumElements();
2475  if (NumElems != 2 && NumElems != 4)
2476    return false;
2477
2478  int Half = NumElems / 2;
2479  for (int i = 0; i < Half; ++i)
2480    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2481      return false;
2482  for (int i = Half; i < NumElems; ++i)
2483    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2484      return false;
2485
2486  return true;
2487}
2488
2489bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2490  SmallVector<int, 8> M;
2491  N->getMask(M);
2492  return ::isSHUFPMask(M, N->getValueType(0));
2493}
2494
2495/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2496/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2497/// half elements to come from vector 1 (which would equal the dest.) and
2498/// the upper half to come from vector 2.
2499static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2500  int NumElems = VT.getVectorNumElements();
2501
2502  if (NumElems != 2 && NumElems != 4)
2503    return false;
2504
2505  int Half = NumElems / 2;
2506  for (int i = 0; i < Half; ++i)
2507    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2508      return false;
2509  for (int i = Half; i < NumElems; ++i)
2510    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2511      return false;
2512  return true;
2513}
2514
2515static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2516  SmallVector<int, 8> M;
2517  N->getMask(M);
2518  return isCommutedSHUFPMask(M, N->getValueType(0));
2519}
2520
2521/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2522/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2523bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2524  if (N->getValueType(0).getVectorNumElements() != 4)
2525    return false;
2526
2527  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2528  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2529         isUndefOrEqual(N->getMaskElt(1), 7) &&
2530         isUndefOrEqual(N->getMaskElt(2), 2) &&
2531         isUndefOrEqual(N->getMaskElt(3), 3);
2532}
2533
2534/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2535/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2536/// <2, 3, 2, 3>
2537bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2538  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2539
2540  if (NumElems != 4)
2541    return false;
2542
2543  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2544  isUndefOrEqual(N->getMaskElt(1), 3) &&
2545  isUndefOrEqual(N->getMaskElt(2), 2) &&
2546  isUndefOrEqual(N->getMaskElt(3), 3);
2547}
2548
2549/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2550/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2551bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2552  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2553
2554  if (NumElems != 2 && NumElems != 4)
2555    return false;
2556
2557  for (unsigned i = 0; i < NumElems/2; ++i)
2558    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2559      return false;
2560
2561  for (unsigned i = NumElems/2; i < NumElems; ++i)
2562    if (!isUndefOrEqual(N->getMaskElt(i), i))
2563      return false;
2564
2565  return true;
2566}
2567
2568/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2569/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2570bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2571  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2572
2573  if (NumElems != 2 && NumElems != 4)
2574    return false;
2575
2576  for (unsigned i = 0; i < NumElems/2; ++i)
2577    if (!isUndefOrEqual(N->getMaskElt(i), i))
2578      return false;
2579
2580  for (unsigned i = 0; i < NumElems/2; ++i)
2581    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2582      return false;
2583
2584  return true;
2585}
2586
2587/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2588/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2589static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2590                         bool V2IsSplat = false) {
2591  int NumElts = VT.getVectorNumElements();
2592  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2593    return false;
2594
2595  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2596    int BitI  = Mask[i];
2597    int BitI1 = Mask[i+1];
2598    if (!isUndefOrEqual(BitI, j))
2599      return false;
2600    if (V2IsSplat) {
2601      if (!isUndefOrEqual(BitI1, NumElts))
2602        return false;
2603    } else {
2604      if (!isUndefOrEqual(BitI1, j + NumElts))
2605        return false;
2606    }
2607  }
2608  return true;
2609}
2610
2611bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2612  SmallVector<int, 8> M;
2613  N->getMask(M);
2614  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2615}
2616
2617/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2618/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2619static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2620                         bool V2IsSplat = false) {
2621  int NumElts = VT.getVectorNumElements();
2622  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2623    return false;
2624
2625  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2626    int BitI  = Mask[i];
2627    int BitI1 = Mask[i+1];
2628    if (!isUndefOrEqual(BitI, j + NumElts/2))
2629      return false;
2630    if (V2IsSplat) {
2631      if (isUndefOrEqual(BitI1, NumElts))
2632        return false;
2633    } else {
2634      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2635        return false;
2636    }
2637  }
2638  return true;
2639}
2640
2641bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2642  SmallVector<int, 8> M;
2643  N->getMask(M);
2644  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2645}
2646
2647/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2648/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2649/// <0, 0, 1, 1>
2650static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2651  int NumElems = VT.getVectorNumElements();
2652  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2653    return false;
2654
2655  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2656    int BitI  = Mask[i];
2657    int BitI1 = Mask[i+1];
2658    if (!isUndefOrEqual(BitI, j))
2659      return false;
2660    if (!isUndefOrEqual(BitI1, j))
2661      return false;
2662  }
2663  return true;
2664}
2665
2666bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2667  SmallVector<int, 8> M;
2668  N->getMask(M);
2669  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2670}
2671
2672/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2673/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2674/// <2, 2, 3, 3>
2675static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2676  int NumElems = VT.getVectorNumElements();
2677  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2678    return false;
2679
2680  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2681    int BitI  = Mask[i];
2682    int BitI1 = Mask[i+1];
2683    if (!isUndefOrEqual(BitI, j))
2684      return false;
2685    if (!isUndefOrEqual(BitI1, j))
2686      return false;
2687  }
2688  return true;
2689}
2690
2691bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2692  SmallVector<int, 8> M;
2693  N->getMask(M);
2694  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2695}
2696
2697/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2698/// specifies a shuffle of elements that is suitable for input to MOVSS,
2699/// MOVSD, and MOVD, i.e. setting the lowest element.
2700static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2701  if (VT.getVectorElementType().getSizeInBits() < 32)
2702    return false;
2703
2704  int NumElts = VT.getVectorNumElements();
2705
2706  if (!isUndefOrEqual(Mask[0], NumElts))
2707    return false;
2708
2709  for (int i = 1; i < NumElts; ++i)
2710    if (!isUndefOrEqual(Mask[i], i))
2711      return false;
2712
2713  return true;
2714}
2715
2716bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2717  SmallVector<int, 8> M;
2718  N->getMask(M);
2719  return ::isMOVLMask(M, N->getValueType(0));
2720}
2721
2722/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2723/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2724/// element of vector 2 and the other elements to come from vector 1 in order.
2725static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2726                               bool V2IsSplat = false, bool V2IsUndef = false) {
2727  int NumOps = VT.getVectorNumElements();
2728  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2729    return false;
2730
2731  if (!isUndefOrEqual(Mask[0], 0))
2732    return false;
2733
2734  for (int i = 1; i < NumOps; ++i)
2735    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2736          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2737          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2738      return false;
2739
2740  return true;
2741}
2742
2743static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2744                           bool V2IsUndef = false) {
2745  SmallVector<int, 8> M;
2746  N->getMask(M);
2747  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2748}
2749
2750/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2751/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2752bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2753  if (N->getValueType(0).getVectorNumElements() != 4)
2754    return false;
2755
2756  // Expect 1, 1, 3, 3
2757  for (unsigned i = 0; i < 2; ++i) {
2758    int Elt = N->getMaskElt(i);
2759    if (Elt >= 0 && Elt != 1)
2760      return false;
2761  }
2762
2763  bool HasHi = false;
2764  for (unsigned i = 2; i < 4; ++i) {
2765    int Elt = N->getMaskElt(i);
2766    if (Elt >= 0 && Elt != 3)
2767      return false;
2768    if (Elt == 3)
2769      HasHi = true;
2770  }
2771  // Don't use movshdup if it can be done with a shufps.
2772  // FIXME: verify that matching u, u, 3, 3 is what we want.
2773  return HasHi;
2774}
2775
2776/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2777/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2778bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
2779  if (N->getValueType(0).getVectorNumElements() != 4)
2780    return false;
2781
2782  // Expect 0, 0, 2, 2
2783  for (unsigned i = 0; i < 2; ++i)
2784    if (N->getMaskElt(i) > 0)
2785      return false;
2786
2787  bool HasHi = false;
2788  for (unsigned i = 2; i < 4; ++i) {
2789    int Elt = N->getMaskElt(i);
2790    if (Elt >= 0 && Elt != 2)
2791      return false;
2792    if (Elt == 2)
2793      HasHi = true;
2794  }
2795  // Don't use movsldup if it can be done with a shufps.
2796  return HasHi;
2797}
2798
2799/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2800/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2801bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
2802  int e = N->getValueType(0).getVectorNumElements() / 2;
2803
2804  for (int i = 0; i < e; ++i)
2805    if (!isUndefOrEqual(N->getMaskElt(i), i))
2806      return false;
2807  for (int i = 0; i < e; ++i)
2808    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
2809      return false;
2810  return true;
2811}
2812
2813/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2814/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
2815unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2816  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2817  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
2818
2819  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2820  unsigned Mask = 0;
2821  for (int i = 0; i < NumOperands; ++i) {
2822    int Val = SVOp->getMaskElt(NumOperands-i-1);
2823    if (Val < 0) Val = 0;
2824    if (Val >= NumOperands) Val -= NumOperands;
2825    Mask |= Val;
2826    if (i != NumOperands - 1)
2827      Mask <<= Shift;
2828  }
2829  return Mask;
2830}
2831
2832/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2833/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
2834unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2835  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2836  unsigned Mask = 0;
2837  // 8 nodes, but we only care about the last 4.
2838  for (unsigned i = 7; i >= 4; --i) {
2839    int Val = SVOp->getMaskElt(i);
2840    if (Val >= 0)
2841      Mask |= (Val - 4);
2842    if (i != 4)
2843      Mask <<= 2;
2844  }
2845  return Mask;
2846}
2847
2848/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2849/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
2850unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2851  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2852  unsigned Mask = 0;
2853  // 8 nodes, but we only care about the first 4.
2854  for (int i = 3; i >= 0; --i) {
2855    int Val = SVOp->getMaskElt(i);
2856    if (Val >= 0)
2857      Mask |= Val;
2858    if (i != 0)
2859      Mask <<= 2;
2860  }
2861  return Mask;
2862}
2863
2864/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
2865/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
2866unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
2867  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2868  EVT VVT = N->getValueType(0);
2869  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
2870  int Val = 0;
2871
2872  unsigned i, e;
2873  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
2874    Val = SVOp->getMaskElt(i);
2875    if (Val >= 0)
2876      break;
2877  }
2878  return (Val - i) * EltSize;
2879}
2880
2881/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2882/// constant +0.0.
2883bool X86::isZeroNode(SDValue Elt) {
2884  return ((isa<ConstantSDNode>(Elt) &&
2885           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2886          (isa<ConstantFPSDNode>(Elt) &&
2887           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2888}
2889
2890/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
2891/// their permute mask.
2892static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
2893                                    SelectionDAG &DAG) {
2894  EVT VT = SVOp->getValueType(0);
2895  unsigned NumElems = VT.getVectorNumElements();
2896  SmallVector<int, 8> MaskVec;
2897
2898  for (unsigned i = 0; i != NumElems; ++i) {
2899    int idx = SVOp->getMaskElt(i);
2900    if (idx < 0)
2901      MaskVec.push_back(idx);
2902    else if (idx < (int)NumElems)
2903      MaskVec.push_back(idx + NumElems);
2904    else
2905      MaskVec.push_back(idx - NumElems);
2906  }
2907  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
2908                              SVOp->getOperand(0), &MaskVec[0]);
2909}
2910
2911/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2912/// the two vector operands have swapped position.
2913static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
2914  unsigned NumElems = VT.getVectorNumElements();
2915  for (unsigned i = 0; i != NumElems; ++i) {
2916    int idx = Mask[i];
2917    if (idx < 0)
2918      continue;
2919    else if (idx < (int)NumElems)
2920      Mask[i] = idx + NumElems;
2921    else
2922      Mask[i] = idx - NumElems;
2923  }
2924}
2925
2926/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2927/// match movhlps. The lower half elements should come from upper half of
2928/// V1 (and in order), and the upper half elements should come from the upper
2929/// half of V2 (and in order).
2930static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
2931  if (Op->getValueType(0).getVectorNumElements() != 4)
2932    return false;
2933  for (unsigned i = 0, e = 2; i != e; ++i)
2934    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
2935      return false;
2936  for (unsigned i = 2; i != 4; ++i)
2937    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
2938      return false;
2939  return true;
2940}
2941
2942/// isScalarLoadToVector - Returns true if the node is a scalar load that
2943/// is promoted to a vector. It also returns the LoadSDNode by reference if
2944/// required.
2945static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2946  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2947    return false;
2948  N = N->getOperand(0).getNode();
2949  if (!ISD::isNON_EXTLoad(N))
2950    return false;
2951  if (LD)
2952    *LD = cast<LoadSDNode>(N);
2953  return true;
2954}
2955
2956/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2957/// match movlp{s|d}. The lower half elements should come from lower half of
2958/// V1 (and in order), and the upper half elements should come from the upper
2959/// half of V2 (and in order). And since V1 will become the source of the
2960/// MOVLP, it must be either a vector load or a scalar load to vector.
2961static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
2962                               ShuffleVectorSDNode *Op) {
2963  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2964    return false;
2965  // Is V2 is a vector load, don't do this transformation. We will try to use
2966  // load folding shufps op.
2967  if (ISD::isNON_EXTLoad(V2))
2968    return false;
2969
2970  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
2971
2972  if (NumElems != 2 && NumElems != 4)
2973    return false;
2974  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2975    if (!isUndefOrEqual(Op->getMaskElt(i), i))
2976      return false;
2977  for (unsigned i = NumElems/2; i != NumElems; ++i)
2978    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
2979      return false;
2980  return true;
2981}
2982
2983/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2984/// all the same.
2985static bool isSplatVector(SDNode *N) {
2986  if (N->getOpcode() != ISD::BUILD_VECTOR)
2987    return false;
2988
2989  SDValue SplatValue = N->getOperand(0);
2990  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2991    if (N->getOperand(i) != SplatValue)
2992      return false;
2993  return true;
2994}
2995
2996/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2997/// to an zero vector.
2998/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
2999static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3000  SDValue V1 = N->getOperand(0);
3001  SDValue V2 = N->getOperand(1);
3002  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3003  for (unsigned i = 0; i != NumElems; ++i) {
3004    int Idx = N->getMaskElt(i);
3005    if (Idx >= (int)NumElems) {
3006      unsigned Opc = V2.getOpcode();
3007      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3008        continue;
3009      if (Opc != ISD::BUILD_VECTOR ||
3010          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3011        return false;
3012    } else if (Idx >= 0) {
3013      unsigned Opc = V1.getOpcode();
3014      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3015        continue;
3016      if (Opc != ISD::BUILD_VECTOR ||
3017          !X86::isZeroNode(V1.getOperand(Idx)))
3018        return false;
3019    }
3020  }
3021  return true;
3022}
3023
3024/// getZeroVector - Returns a vector of specified type with all zero elements.
3025///
3026static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3027                             DebugLoc dl) {
3028  assert(VT.isVector() && "Expected a vector type");
3029
3030  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3031  // type.  This ensures they get CSE'd.
3032  SDValue Vec;
3033  if (VT.getSizeInBits() == 64) { // MMX
3034    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3035    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3036  } else if (HasSSE2) {  // SSE2
3037    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3038    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3039  } else { // SSE1
3040    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3041    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3042  }
3043  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3044}
3045
3046/// getOnesVector - Returns a vector of specified type with all bits set.
3047///
3048static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3049  assert(VT.isVector() && "Expected a vector type");
3050
3051  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3052  // type.  This ensures they get CSE'd.
3053  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3054  SDValue Vec;
3055  if (VT.getSizeInBits() == 64)  // MMX
3056    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3057  else                                              // SSE
3058    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3059  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3060}
3061
3062
3063/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3064/// that point to V2 points to its first element.
3065static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3066  EVT VT = SVOp->getValueType(0);
3067  unsigned NumElems = VT.getVectorNumElements();
3068
3069  bool Changed = false;
3070  SmallVector<int, 8> MaskVec;
3071  SVOp->getMask(MaskVec);
3072
3073  for (unsigned i = 0; i != NumElems; ++i) {
3074    if (MaskVec[i] > (int)NumElems) {
3075      MaskVec[i] = NumElems;
3076      Changed = true;
3077    }
3078  }
3079  if (Changed)
3080    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3081                                SVOp->getOperand(1), &MaskVec[0]);
3082  return SDValue(SVOp, 0);
3083}
3084
3085/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3086/// operation of specified width.
3087static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3088                       SDValue V2) {
3089  unsigned NumElems = VT.getVectorNumElements();
3090  SmallVector<int, 8> Mask;
3091  Mask.push_back(NumElems);
3092  for (unsigned i = 1; i != NumElems; ++i)
3093    Mask.push_back(i);
3094  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3095}
3096
3097/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3098static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3099                          SDValue V2) {
3100  unsigned NumElems = VT.getVectorNumElements();
3101  SmallVector<int, 8> Mask;
3102  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3103    Mask.push_back(i);
3104    Mask.push_back(i + NumElems);
3105  }
3106  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3107}
3108
3109/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3110static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3111                          SDValue V2) {
3112  unsigned NumElems = VT.getVectorNumElements();
3113  unsigned Half = NumElems/2;
3114  SmallVector<int, 8> Mask;
3115  for (unsigned i = 0; i != Half; ++i) {
3116    Mask.push_back(i + Half);
3117    Mask.push_back(i + NumElems + Half);
3118  }
3119  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3120}
3121
3122/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3123static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3124                            bool HasSSE2) {
3125  if (SV->getValueType(0).getVectorNumElements() <= 4)
3126    return SDValue(SV, 0);
3127
3128  EVT PVT = MVT::v4f32;
3129  EVT VT = SV->getValueType(0);
3130  DebugLoc dl = SV->getDebugLoc();
3131  SDValue V1 = SV->getOperand(0);
3132  int NumElems = VT.getVectorNumElements();
3133  int EltNo = SV->getSplatIndex();
3134
3135  // unpack elements to the correct location
3136  while (NumElems > 4) {
3137    if (EltNo < NumElems/2) {
3138      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3139    } else {
3140      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3141      EltNo -= NumElems/2;
3142    }
3143    NumElems >>= 1;
3144  }
3145
3146  // Perform the splat.
3147  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3148  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3149  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3150  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3151}
3152
3153/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3154/// vector of zero or undef vector.  This produces a shuffle where the low
3155/// element of V2 is swizzled into the zero/undef vector, landing at element
3156/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3157static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3158                                             bool isZero, bool HasSSE2,
3159                                             SelectionDAG &DAG) {
3160  EVT VT = V2.getValueType();
3161  SDValue V1 = isZero
3162    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3163  unsigned NumElems = VT.getVectorNumElements();
3164  SmallVector<int, 16> MaskVec;
3165  for (unsigned i = 0; i != NumElems; ++i)
3166    // If this is the insertion idx, put the low elt of V2 here.
3167    MaskVec.push_back(i == Idx ? NumElems : i);
3168  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3169}
3170
3171/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3172/// a shuffle that is zero.
3173static
3174unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3175                                  bool Low, SelectionDAG &DAG) {
3176  unsigned NumZeros = 0;
3177  for (int i = 0; i < NumElems; ++i) {
3178    unsigned Index = Low ? i : NumElems-i-1;
3179    int Idx = SVOp->getMaskElt(Index);
3180    if (Idx < 0) {
3181      ++NumZeros;
3182      continue;
3183    }
3184    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3185    if (Elt.getNode() && X86::isZeroNode(Elt))
3186      ++NumZeros;
3187    else
3188      break;
3189  }
3190  return NumZeros;
3191}
3192
3193/// isVectorShift - Returns true if the shuffle can be implemented as a
3194/// logical left or right shift of a vector.
3195/// FIXME: split into pslldqi, psrldqi, palignr variants.
3196static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3197                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3198  int NumElems = SVOp->getValueType(0).getVectorNumElements();
3199
3200  isLeft = true;
3201  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3202  if (!NumZeros) {
3203    isLeft = false;
3204    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3205    if (!NumZeros)
3206      return false;
3207  }
3208  bool SeenV1 = false;
3209  bool SeenV2 = false;
3210  for (int i = NumZeros; i < NumElems; ++i) {
3211    int Val = isLeft ? (i - NumZeros) : i;
3212    int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3213    if (Idx < 0)
3214      continue;
3215    if (Idx < NumElems)
3216      SeenV1 = true;
3217    else {
3218      Idx -= NumElems;
3219      SeenV2 = true;
3220    }
3221    if (Idx != Val)
3222      return false;
3223  }
3224  if (SeenV1 && SeenV2)
3225    return false;
3226
3227  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3228  ShAmt = NumZeros;
3229  return true;
3230}
3231
3232
3233/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3234///
3235static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3236                                       unsigned NumNonZero, unsigned NumZero,
3237                                       SelectionDAG &DAG, TargetLowering &TLI) {
3238  if (NumNonZero > 8)
3239    return SDValue();
3240
3241  DebugLoc dl = Op.getDebugLoc();
3242  SDValue V(0, 0);
3243  bool First = true;
3244  for (unsigned i = 0; i < 16; ++i) {
3245    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3246    if (ThisIsNonZero && First) {
3247      if (NumZero)
3248        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3249      else
3250        V = DAG.getUNDEF(MVT::v8i16);
3251      First = false;
3252    }
3253
3254    if ((i & 1) != 0) {
3255      SDValue ThisElt(0, 0), LastElt(0, 0);
3256      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3257      if (LastIsNonZero) {
3258        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3259                              MVT::i16, Op.getOperand(i-1));
3260      }
3261      if (ThisIsNonZero) {
3262        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3263        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3264                              ThisElt, DAG.getConstant(8, MVT::i8));
3265        if (LastIsNonZero)
3266          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3267      } else
3268        ThisElt = LastElt;
3269
3270      if (ThisElt.getNode())
3271        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3272                        DAG.getIntPtrConstant(i/2));
3273    }
3274  }
3275
3276  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3277}
3278
3279/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3280///
3281static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3282                                       unsigned NumNonZero, unsigned NumZero,
3283                                       SelectionDAG &DAG, TargetLowering &TLI) {
3284  if (NumNonZero > 4)
3285    return SDValue();
3286
3287  DebugLoc dl = Op.getDebugLoc();
3288  SDValue V(0, 0);
3289  bool First = true;
3290  for (unsigned i = 0; i < 8; ++i) {
3291    bool isNonZero = (NonZeros & (1 << i)) != 0;
3292    if (isNonZero) {
3293      if (First) {
3294        if (NumZero)
3295          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3296        else
3297          V = DAG.getUNDEF(MVT::v8i16);
3298        First = false;
3299      }
3300      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3301                      MVT::v8i16, V, Op.getOperand(i),
3302                      DAG.getIntPtrConstant(i));
3303    }
3304  }
3305
3306  return V;
3307}
3308
3309/// getVShift - Return a vector logical shift node.
3310///
3311static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3312                         unsigned NumBits, SelectionDAG &DAG,
3313                         const TargetLowering &TLI, DebugLoc dl) {
3314  bool isMMX = VT.getSizeInBits() == 64;
3315  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3316  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3317  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3318  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3319                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3320                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3321}
3322
3323SDValue
3324X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3325  DebugLoc dl = Op.getDebugLoc();
3326  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3327  if (ISD::isBuildVectorAllZeros(Op.getNode())
3328      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3329    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3330    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3331    // eliminated on x86-32 hosts.
3332    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3333      return Op;
3334
3335    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3336      return getOnesVector(Op.getValueType(), DAG, dl);
3337    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3338  }
3339
3340  EVT VT = Op.getValueType();
3341  EVT ExtVT = VT.getVectorElementType();
3342  unsigned EVTBits = ExtVT.getSizeInBits();
3343
3344  unsigned NumElems = Op.getNumOperands();
3345  unsigned NumZero  = 0;
3346  unsigned NumNonZero = 0;
3347  unsigned NonZeros = 0;
3348  bool IsAllConstants = true;
3349  SmallSet<SDValue, 8> Values;
3350  for (unsigned i = 0; i < NumElems; ++i) {
3351    SDValue Elt = Op.getOperand(i);
3352    if (Elt.getOpcode() == ISD::UNDEF)
3353      continue;
3354    Values.insert(Elt);
3355    if (Elt.getOpcode() != ISD::Constant &&
3356        Elt.getOpcode() != ISD::ConstantFP)
3357      IsAllConstants = false;
3358    if (X86::isZeroNode(Elt))
3359      NumZero++;
3360    else {
3361      NonZeros |= (1 << i);
3362      NumNonZero++;
3363    }
3364  }
3365
3366  if (NumNonZero == 0) {
3367    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3368    return DAG.getUNDEF(VT);
3369  }
3370
3371  // Special case for single non-zero, non-undef, element.
3372  if (NumNonZero == 1) {
3373    unsigned Idx = CountTrailingZeros_32(NonZeros);
3374    SDValue Item = Op.getOperand(Idx);
3375
3376    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3377    // the value are obviously zero, truncate the value to i32 and do the
3378    // insertion that way.  Only do this if the value is non-constant or if the
3379    // value is a constant being inserted into element 0.  It is cheaper to do
3380    // a constant pool load than it is to do a movd + shuffle.
3381    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3382        (!IsAllConstants || Idx == 0)) {
3383      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3384        // Handle MMX and SSE both.
3385        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3386        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3387
3388        // Truncate the value (which may itself be a constant) to i32, and
3389        // convert it to a vector with movd (S2V+shuffle to zero extend).
3390        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3391        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3392        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3393                                           Subtarget->hasSSE2(), DAG);
3394
3395        // Now we have our 32-bit value zero extended in the low element of
3396        // a vector.  If Idx != 0, swizzle it into place.
3397        if (Idx != 0) {
3398          SmallVector<int, 4> Mask;
3399          Mask.push_back(Idx);
3400          for (unsigned i = 1; i != VecElts; ++i)
3401            Mask.push_back(i);
3402          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3403                                      DAG.getUNDEF(Item.getValueType()),
3404                                      &Mask[0]);
3405        }
3406        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3407      }
3408    }
3409
3410    // If we have a constant or non-constant insertion into the low element of
3411    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3412    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3413    // depending on what the source datatype is.
3414    if (Idx == 0) {
3415      if (NumZero == 0) {
3416        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3417      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3418          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3419        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3420        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3421        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3422                                           DAG);
3423      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3424        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3425        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3426        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3427        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3428                                           Subtarget->hasSSE2(), DAG);
3429        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3430      }
3431    }
3432
3433    // Is it a vector logical left shift?
3434    if (NumElems == 2 && Idx == 1 &&
3435        X86::isZeroNode(Op.getOperand(0)) &&
3436        !X86::isZeroNode(Op.getOperand(1))) {
3437      unsigned NumBits = VT.getSizeInBits();
3438      return getVShift(true, VT,
3439                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3440                                   VT, Op.getOperand(1)),
3441                       NumBits/2, DAG, *this, dl);
3442    }
3443
3444    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3445      return SDValue();
3446
3447    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3448    // is a non-constant being inserted into an element other than the low one,
3449    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3450    // movd/movss) to move this into the low element, then shuffle it into
3451    // place.
3452    if (EVTBits == 32) {
3453      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3454
3455      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3456      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3457                                         Subtarget->hasSSE2(), DAG);
3458      SmallVector<int, 8> MaskVec;
3459      for (unsigned i = 0; i < NumElems; i++)
3460        MaskVec.push_back(i == Idx ? 0 : 1);
3461      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3462    }
3463  }
3464
3465  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3466  if (Values.size() == 1)
3467    return SDValue();
3468
3469  // A vector full of immediates; various special cases are already
3470  // handled, so this is best done with a single constant-pool load.
3471  if (IsAllConstants)
3472    return SDValue();
3473
3474  // Let legalizer expand 2-wide build_vectors.
3475  if (EVTBits == 64) {
3476    if (NumNonZero == 1) {
3477      // One half is zero or undef.
3478      unsigned Idx = CountTrailingZeros_32(NonZeros);
3479      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3480                                 Op.getOperand(Idx));
3481      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3482                                         Subtarget->hasSSE2(), DAG);
3483    }
3484    return SDValue();
3485  }
3486
3487  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3488  if (EVTBits == 8 && NumElems == 16) {
3489    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3490                                        *this);
3491    if (V.getNode()) return V;
3492  }
3493
3494  if (EVTBits == 16 && NumElems == 8) {
3495    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3496                                        *this);
3497    if (V.getNode()) return V;
3498  }
3499
3500  // If element VT is == 32 bits, turn it into a number of shuffles.
3501  SmallVector<SDValue, 8> V;
3502  V.resize(NumElems);
3503  if (NumElems == 4 && NumZero > 0) {
3504    for (unsigned i = 0; i < 4; ++i) {
3505      bool isZero = !(NonZeros & (1 << i));
3506      if (isZero)
3507        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3508      else
3509        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3510    }
3511
3512    for (unsigned i = 0; i < 2; ++i) {
3513      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3514        default: break;
3515        case 0:
3516          V[i] = V[i*2];  // Must be a zero vector.
3517          break;
3518        case 1:
3519          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3520          break;
3521        case 2:
3522          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3523          break;
3524        case 3:
3525          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3526          break;
3527      }
3528    }
3529
3530    SmallVector<int, 8> MaskVec;
3531    bool Reverse = (NonZeros & 0x3) == 2;
3532    for (unsigned i = 0; i < 2; ++i)
3533      MaskVec.push_back(Reverse ? 1-i : i);
3534    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3535    for (unsigned i = 0; i < 2; ++i)
3536      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3537    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3538  }
3539
3540  if (Values.size() > 2) {
3541    // If we have SSE 4.1, Expand into a number of inserts unless the number of
3542    // values to be inserted is equal to the number of elements, in which case
3543    // use the unpack code below in the hopes of matching the consecutive elts
3544    // load merge pattern for shuffles.
3545    // FIXME: We could probably just check that here directly.
3546    if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
3547        getSubtarget()->hasSSE41()) {
3548      V[0] = DAG.getUNDEF(VT);
3549      for (unsigned i = 0; i < NumElems; ++i)
3550        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3551          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3552                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3553      return V[0];
3554    }
3555    // Expand into a number of unpckl*.
3556    // e.g. for v4f32
3557    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3558    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3559    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3560    for (unsigned i = 0; i < NumElems; ++i)
3561      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3562    NumElems >>= 1;
3563    while (NumElems != 0) {
3564      for (unsigned i = 0; i < NumElems; ++i)
3565        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3566      NumElems >>= 1;
3567    }
3568    return V[0];
3569  }
3570
3571  return SDValue();
3572}
3573
3574// v8i16 shuffles - Prefer shuffles in the following order:
3575// 1. [all]   pshuflw, pshufhw, optional move
3576// 2. [ssse3] 1 x pshufb
3577// 3. [ssse3] 2 x pshufb + 1 x por
3578// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3579static
3580SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3581                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3582  SDValue V1 = SVOp->getOperand(0);
3583  SDValue V2 = SVOp->getOperand(1);
3584  DebugLoc dl = SVOp->getDebugLoc();
3585  SmallVector<int, 8> MaskVals;
3586
3587  // Determine if more than 1 of the words in each of the low and high quadwords
3588  // of the result come from the same quadword of one of the two inputs.  Undef
3589  // mask values count as coming from any quadword, for better codegen.
3590  SmallVector<unsigned, 4> LoQuad(4);
3591  SmallVector<unsigned, 4> HiQuad(4);
3592  BitVector InputQuads(4);
3593  for (unsigned i = 0; i < 8; ++i) {
3594    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3595    int EltIdx = SVOp->getMaskElt(i);
3596    MaskVals.push_back(EltIdx);
3597    if (EltIdx < 0) {
3598      ++Quad[0];
3599      ++Quad[1];
3600      ++Quad[2];
3601      ++Quad[3];
3602      continue;
3603    }
3604    ++Quad[EltIdx / 4];
3605    InputQuads.set(EltIdx / 4);
3606  }
3607
3608  int BestLoQuad = -1;
3609  unsigned MaxQuad = 1;
3610  for (unsigned i = 0; i < 4; ++i) {
3611    if (LoQuad[i] > MaxQuad) {
3612      BestLoQuad = i;
3613      MaxQuad = LoQuad[i];
3614    }
3615  }
3616
3617  int BestHiQuad = -1;
3618  MaxQuad = 1;
3619  for (unsigned i = 0; i < 4; ++i) {
3620    if (HiQuad[i] > MaxQuad) {
3621      BestHiQuad = i;
3622      MaxQuad = HiQuad[i];
3623    }
3624  }
3625
3626  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3627  // of the two input vectors, shuffle them into one input vector so only a
3628  // single pshufb instruction is necessary. If There are more than 2 input
3629  // quads, disable the next transformation since it does not help SSSE3.
3630  bool V1Used = InputQuads[0] || InputQuads[1];
3631  bool V2Used = InputQuads[2] || InputQuads[3];
3632  if (TLI.getSubtarget()->hasSSSE3()) {
3633    if (InputQuads.count() == 2 && V1Used && V2Used) {
3634      BestLoQuad = InputQuads.find_first();
3635      BestHiQuad = InputQuads.find_next(BestLoQuad);
3636    }
3637    if (InputQuads.count() > 2) {
3638      BestLoQuad = -1;
3639      BestHiQuad = -1;
3640    }
3641  }
3642
3643  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3644  // the shuffle mask.  If a quad is scored as -1, that means that it contains
3645  // words from all 4 input quadwords.
3646  SDValue NewV;
3647  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3648    SmallVector<int, 8> MaskV;
3649    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
3650    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
3651    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
3652                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3653                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
3654    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3655
3656    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3657    // source words for the shuffle, to aid later transformations.
3658    bool AllWordsInNewV = true;
3659    bool InOrder[2] = { true, true };
3660    for (unsigned i = 0; i != 8; ++i) {
3661      int idx = MaskVals[i];
3662      if (idx != (int)i)
3663        InOrder[i/4] = false;
3664      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3665        continue;
3666      AllWordsInNewV = false;
3667      break;
3668    }
3669
3670    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3671    if (AllWordsInNewV) {
3672      for (int i = 0; i != 8; ++i) {
3673        int idx = MaskVals[i];
3674        if (idx < 0)
3675          continue;
3676        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3677        if ((idx != i) && idx < 4)
3678          pshufhw = false;
3679        if ((idx != i) && idx > 3)
3680          pshuflw = false;
3681      }
3682      V1 = NewV;
3683      V2Used = false;
3684      BestLoQuad = 0;
3685      BestHiQuad = 1;
3686    }
3687
3688    // If we've eliminated the use of V2, and the new mask is a pshuflw or
3689    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
3690    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3691      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
3692                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
3693    }
3694  }
3695
3696  // If we have SSSE3, and all words of the result are from 1 input vector,
3697  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
3698  // is present, fall back to case 4.
3699  if (TLI.getSubtarget()->hasSSSE3()) {
3700    SmallVector<SDValue,16> pshufbMask;
3701
3702    // If we have elements from both input vectors, set the high bit of the
3703    // shuffle mask element to zero out elements that come from V2 in the V1
3704    // mask, and elements that come from V1 in the V2 mask, so that the two
3705    // results can be OR'd together.
3706    bool TwoInputs = V1Used && V2Used;
3707    for (unsigned i = 0; i != 8; ++i) {
3708      int EltIdx = MaskVals[i] * 2;
3709      if (TwoInputs && (EltIdx >= 16)) {
3710        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3711        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3712        continue;
3713      }
3714      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
3715      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
3716    }
3717    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
3718    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3719                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3720                                 MVT::v16i8, &pshufbMask[0], 16));
3721    if (!TwoInputs)
3722      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3723
3724    // Calculate the shuffle mask for the second input, shuffle it, and
3725    // OR it with the first shuffled input.
3726    pshufbMask.clear();
3727    for (unsigned i = 0; i != 8; ++i) {
3728      int EltIdx = MaskVals[i] * 2;
3729      if (EltIdx < 16) {
3730        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3731        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3732        continue;
3733      }
3734      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3735      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
3736    }
3737    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
3738    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3739                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3740                                 MVT::v16i8, &pshufbMask[0], 16));
3741    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3742    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3743  }
3744
3745  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3746  // and update MaskVals with new element order.
3747  BitVector InOrder(8);
3748  if (BestLoQuad >= 0) {
3749    SmallVector<int, 8> MaskV;
3750    for (int i = 0; i != 4; ++i) {
3751      int idx = MaskVals[i];
3752      if (idx < 0) {
3753        MaskV.push_back(-1);
3754        InOrder.set(i);
3755      } else if ((idx / 4) == BestLoQuad) {
3756        MaskV.push_back(idx & 3);
3757        InOrder.set(i);
3758      } else {
3759        MaskV.push_back(-1);
3760      }
3761    }
3762    for (unsigned i = 4; i != 8; ++i)
3763      MaskV.push_back(i);
3764    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3765                                &MaskV[0]);
3766  }
3767
3768  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3769  // and update MaskVals with the new element order.
3770  if (BestHiQuad >= 0) {
3771    SmallVector<int, 8> MaskV;
3772    for (unsigned i = 0; i != 4; ++i)
3773      MaskV.push_back(i);
3774    for (unsigned i = 4; i != 8; ++i) {
3775      int idx = MaskVals[i];
3776      if (idx < 0) {
3777        MaskV.push_back(-1);
3778        InOrder.set(i);
3779      } else if ((idx / 4) == BestHiQuad) {
3780        MaskV.push_back((idx & 3) + 4);
3781        InOrder.set(i);
3782      } else {
3783        MaskV.push_back(-1);
3784      }
3785    }
3786    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3787                                &MaskV[0]);
3788  }
3789
3790  // In case BestHi & BestLo were both -1, which means each quadword has a word
3791  // from each of the four input quadwords, calculate the InOrder bitvector now
3792  // before falling through to the insert/extract cleanup.
3793  if (BestLoQuad == -1 && BestHiQuad == -1) {
3794    NewV = V1;
3795    for (int i = 0; i != 8; ++i)
3796      if (MaskVals[i] < 0 || MaskVals[i] == i)
3797        InOrder.set(i);
3798  }
3799
3800  // The other elements are put in the right place using pextrw and pinsrw.
3801  for (unsigned i = 0; i != 8; ++i) {
3802    if (InOrder[i])
3803      continue;
3804    int EltIdx = MaskVals[i];
3805    if (EltIdx < 0)
3806      continue;
3807    SDValue ExtOp = (EltIdx < 8)
3808    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
3809                  DAG.getIntPtrConstant(EltIdx))
3810    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
3811                  DAG.getIntPtrConstant(EltIdx - 8));
3812    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
3813                       DAG.getIntPtrConstant(i));
3814  }
3815  return NewV;
3816}
3817
3818// v16i8 shuffles - Prefer shuffles in the following order:
3819// 1. [ssse3] 1 x pshufb
3820// 2. [ssse3] 2 x pshufb + 1 x por
3821// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
3822static
3823SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
3824                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3825  SDValue V1 = SVOp->getOperand(0);
3826  SDValue V2 = SVOp->getOperand(1);
3827  DebugLoc dl = SVOp->getDebugLoc();
3828  SmallVector<int, 16> MaskVals;
3829  SVOp->getMask(MaskVals);
3830
3831  // If we have SSSE3, case 1 is generated when all result bytes come from
3832  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
3833  // present, fall back to case 3.
3834  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3835  bool V1Only = true;
3836  bool V2Only = true;
3837  for (unsigned i = 0; i < 16; ++i) {
3838    int EltIdx = MaskVals[i];
3839    if (EltIdx < 0)
3840      continue;
3841    if (EltIdx < 16)
3842      V2Only = false;
3843    else
3844      V1Only = false;
3845  }
3846
3847  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3848  if (TLI.getSubtarget()->hasSSSE3()) {
3849    SmallVector<SDValue,16> pshufbMask;
3850
3851    // If all result elements are from one input vector, then only translate
3852    // undef mask values to 0x80 (zero out result) in the pshufb mask.
3853    //
3854    // Otherwise, we have elements from both input vectors, and must zero out
3855    // elements that come from V2 in the first mask, and V1 in the second mask
3856    // so that we can OR them together.
3857    bool TwoInputs = !(V1Only || V2Only);
3858    for (unsigned i = 0; i != 16; ++i) {
3859      int EltIdx = MaskVals[i];
3860      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
3861        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3862        continue;
3863      }
3864      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3865    }
3866    // If all the elements are from V2, assign it to V1 and return after
3867    // building the first pshufb.
3868    if (V2Only)
3869      V1 = V2;
3870    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3871                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3872                                 MVT::v16i8, &pshufbMask[0], 16));
3873    if (!TwoInputs)
3874      return V1;
3875
3876    // Calculate the shuffle mask for the second input, shuffle it, and
3877    // OR it with the first shuffled input.
3878    pshufbMask.clear();
3879    for (unsigned i = 0; i != 16; ++i) {
3880      int EltIdx = MaskVals[i];
3881      if (EltIdx < 16) {
3882        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3883        continue;
3884      }
3885      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3886    }
3887    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3888                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3889                                 MVT::v16i8, &pshufbMask[0], 16));
3890    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3891  }
3892
3893  // No SSSE3 - Calculate in place words and then fix all out of place words
3894  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
3895  // the 16 different words that comprise the two doublequadword input vectors.
3896  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3897  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
3898  SDValue NewV = V2Only ? V2 : V1;
3899  for (int i = 0; i != 8; ++i) {
3900    int Elt0 = MaskVals[i*2];
3901    int Elt1 = MaskVals[i*2+1];
3902
3903    // This word of the result is all undef, skip it.
3904    if (Elt0 < 0 && Elt1 < 0)
3905      continue;
3906
3907    // This word of the result is already in the correct place, skip it.
3908    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
3909      continue;
3910    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
3911      continue;
3912
3913    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
3914    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
3915    SDValue InsElt;
3916
3917    // If Elt0 and Elt1 are defined, are consecutive, and can be load
3918    // using a single extract together, load it and store it.
3919    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
3920      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3921                           DAG.getIntPtrConstant(Elt1 / 2));
3922      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3923                        DAG.getIntPtrConstant(i));
3924      continue;
3925    }
3926
3927    // If Elt1 is defined, extract it from the appropriate source.  If the
3928    // source byte is not also odd, shift the extracted word left 8 bits
3929    // otherwise clear the bottom 8 bits if we need to do an or.
3930    if (Elt1 >= 0) {
3931      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3932                           DAG.getIntPtrConstant(Elt1 / 2));
3933      if ((Elt1 & 1) == 0)
3934        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
3935                             DAG.getConstant(8, TLI.getShiftAmountTy()));
3936      else if (Elt0 >= 0)
3937        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
3938                             DAG.getConstant(0xFF00, MVT::i16));
3939    }
3940    // If Elt0 is defined, extract it from the appropriate source.  If the
3941    // source byte is not also even, shift the extracted word right 8 bits. If
3942    // Elt1 was also defined, OR the extracted values together before
3943    // inserting them in the result.
3944    if (Elt0 >= 0) {
3945      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
3946                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
3947      if ((Elt0 & 1) != 0)
3948        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
3949                              DAG.getConstant(8, TLI.getShiftAmountTy()));
3950      else if (Elt1 >= 0)
3951        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
3952                             DAG.getConstant(0x00FF, MVT::i16));
3953      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
3954                         : InsElt0;
3955    }
3956    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3957                       DAG.getIntPtrConstant(i));
3958  }
3959  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
3960}
3961
3962/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3963/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3964/// done when every pair / quad of shuffle mask elements point to elements in
3965/// the right sequence. e.g.
3966/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3967static
3968SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
3969                                 SelectionDAG &DAG,
3970                                 TargetLowering &TLI, DebugLoc dl) {
3971  EVT VT = SVOp->getValueType(0);
3972  SDValue V1 = SVOp->getOperand(0);
3973  SDValue V2 = SVOp->getOperand(1);
3974  unsigned NumElems = VT.getVectorNumElements();
3975  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3976  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3977  EVT MaskEltVT = MaskVT.getVectorElementType();
3978  EVT NewVT = MaskVT;
3979  switch (VT.getSimpleVT().SimpleTy) {
3980  default: assert(false && "Unexpected!");
3981  case MVT::v4f32: NewVT = MVT::v2f64; break;
3982  case MVT::v4i32: NewVT = MVT::v2i64; break;
3983  case MVT::v8i16: NewVT = MVT::v4i32; break;
3984  case MVT::v16i8: NewVT = MVT::v4i32; break;
3985  }
3986
3987  if (NewWidth == 2) {
3988    if (VT.isInteger())
3989      NewVT = MVT::v2i64;
3990    else
3991      NewVT = MVT::v2f64;
3992  }
3993  int Scale = NumElems / NewWidth;
3994  SmallVector<int, 8> MaskVec;
3995  for (unsigned i = 0; i < NumElems; i += Scale) {
3996    int StartIdx = -1;
3997    for (int j = 0; j < Scale; ++j) {
3998      int EltIdx = SVOp->getMaskElt(i+j);
3999      if (EltIdx < 0)
4000        continue;
4001      if (StartIdx == -1)
4002        StartIdx = EltIdx - (EltIdx % Scale);
4003      if (EltIdx != StartIdx + j)
4004        return SDValue();
4005    }
4006    if (StartIdx == -1)
4007      MaskVec.push_back(-1);
4008    else
4009      MaskVec.push_back(StartIdx / Scale);
4010  }
4011
4012  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4013  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4014  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4015}
4016
4017/// getVZextMovL - Return a zero-extending vector move low node.
4018///
4019static SDValue getVZextMovL(EVT VT, EVT OpVT,
4020                            SDValue SrcOp, SelectionDAG &DAG,
4021                            const X86Subtarget *Subtarget, DebugLoc dl) {
4022  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4023    LoadSDNode *LD = NULL;
4024    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4025      LD = dyn_cast<LoadSDNode>(SrcOp);
4026    if (!LD) {
4027      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4028      // instead.
4029      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4030      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4031          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4032          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4033          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4034        // PR2108
4035        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4036        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4037                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4038                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4039                                                   OpVT,
4040                                                   SrcOp.getOperand(0)
4041                                                          .getOperand(0))));
4042      }
4043    }
4044  }
4045
4046  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4047                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4048                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4049                                             OpVT, SrcOp)));
4050}
4051
4052/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4053/// shuffles.
4054static SDValue
4055LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4056  SDValue V1 = SVOp->getOperand(0);
4057  SDValue V2 = SVOp->getOperand(1);
4058  DebugLoc dl = SVOp->getDebugLoc();
4059  EVT VT = SVOp->getValueType(0);
4060
4061  SmallVector<std::pair<int, int>, 8> Locs;
4062  Locs.resize(4);
4063  SmallVector<int, 8> Mask1(4U, -1);
4064  SmallVector<int, 8> PermMask;
4065  SVOp->getMask(PermMask);
4066
4067  unsigned NumHi = 0;
4068  unsigned NumLo = 0;
4069  for (unsigned i = 0; i != 4; ++i) {
4070    int Idx = PermMask[i];
4071    if (Idx < 0) {
4072      Locs[i] = std::make_pair(-1, -1);
4073    } else {
4074      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4075      if (Idx < 4) {
4076        Locs[i] = std::make_pair(0, NumLo);
4077        Mask1[NumLo] = Idx;
4078        NumLo++;
4079      } else {
4080        Locs[i] = std::make_pair(1, NumHi);
4081        if (2+NumHi < 4)
4082          Mask1[2+NumHi] = Idx;
4083        NumHi++;
4084      }
4085    }
4086  }
4087
4088  if (NumLo <= 2 && NumHi <= 2) {
4089    // If no more than two elements come from either vector. This can be
4090    // implemented with two shuffles. First shuffle gather the elements.
4091    // The second shuffle, which takes the first shuffle as both of its
4092    // vector operands, put the elements into the right order.
4093    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4094
4095    SmallVector<int, 8> Mask2(4U, -1);
4096
4097    for (unsigned i = 0; i != 4; ++i) {
4098      if (Locs[i].first == -1)
4099        continue;
4100      else {
4101        unsigned Idx = (i < 2) ? 0 : 4;
4102        Idx += Locs[i].first * 2 + Locs[i].second;
4103        Mask2[i] = Idx;
4104      }
4105    }
4106
4107    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4108  } else if (NumLo == 3 || NumHi == 3) {
4109    // Otherwise, we must have three elements from one vector, call it X, and
4110    // one element from the other, call it Y.  First, use a shufps to build an
4111    // intermediate vector with the one element from Y and the element from X
4112    // that will be in the same half in the final destination (the indexes don't
4113    // matter). Then, use a shufps to build the final vector, taking the half
4114    // containing the element from Y from the intermediate, and the other half
4115    // from X.
4116    if (NumHi == 3) {
4117      // Normalize it so the 3 elements come from V1.
4118      CommuteVectorShuffleMask(PermMask, VT);
4119      std::swap(V1, V2);
4120    }
4121
4122    // Find the element from V2.
4123    unsigned HiIndex;
4124    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4125      int Val = PermMask[HiIndex];
4126      if (Val < 0)
4127        continue;
4128      if (Val >= 4)
4129        break;
4130    }
4131
4132    Mask1[0] = PermMask[HiIndex];
4133    Mask1[1] = -1;
4134    Mask1[2] = PermMask[HiIndex^1];
4135    Mask1[3] = -1;
4136    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4137
4138    if (HiIndex >= 2) {
4139      Mask1[0] = PermMask[0];
4140      Mask1[1] = PermMask[1];
4141      Mask1[2] = HiIndex & 1 ? 6 : 4;
4142      Mask1[3] = HiIndex & 1 ? 4 : 6;
4143      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4144    } else {
4145      Mask1[0] = HiIndex & 1 ? 2 : 0;
4146      Mask1[1] = HiIndex & 1 ? 0 : 2;
4147      Mask1[2] = PermMask[2];
4148      Mask1[3] = PermMask[3];
4149      if (Mask1[2] >= 0)
4150        Mask1[2] += 4;
4151      if (Mask1[3] >= 0)
4152        Mask1[3] += 4;
4153      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4154    }
4155  }
4156
4157  // Break it into (shuffle shuffle_hi, shuffle_lo).
4158  Locs.clear();
4159  SmallVector<int,8> LoMask(4U, -1);
4160  SmallVector<int,8> HiMask(4U, -1);
4161
4162  SmallVector<int,8> *MaskPtr = &LoMask;
4163  unsigned MaskIdx = 0;
4164  unsigned LoIdx = 0;
4165  unsigned HiIdx = 2;
4166  for (unsigned i = 0; i != 4; ++i) {
4167    if (i == 2) {
4168      MaskPtr = &HiMask;
4169      MaskIdx = 1;
4170      LoIdx = 0;
4171      HiIdx = 2;
4172    }
4173    int Idx = PermMask[i];
4174    if (Idx < 0) {
4175      Locs[i] = std::make_pair(-1, -1);
4176    } else if (Idx < 4) {
4177      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4178      (*MaskPtr)[LoIdx] = Idx;
4179      LoIdx++;
4180    } else {
4181      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4182      (*MaskPtr)[HiIdx] = Idx;
4183      HiIdx++;
4184    }
4185  }
4186
4187  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4188  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4189  SmallVector<int, 8> MaskOps;
4190  for (unsigned i = 0; i != 4; ++i) {
4191    if (Locs[i].first == -1) {
4192      MaskOps.push_back(-1);
4193    } else {
4194      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4195      MaskOps.push_back(Idx);
4196    }
4197  }
4198  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4199}
4200
4201SDValue
4202X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4203  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4204  SDValue V1 = Op.getOperand(0);
4205  SDValue V2 = Op.getOperand(1);
4206  EVT VT = Op.getValueType();
4207  DebugLoc dl = Op.getDebugLoc();
4208  unsigned NumElems = VT.getVectorNumElements();
4209  bool isMMX = VT.getSizeInBits() == 64;
4210  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4211  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4212  bool V1IsSplat = false;
4213  bool V2IsSplat = false;
4214
4215  if (isZeroShuffle(SVOp))
4216    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4217
4218  // Promote splats to v4f32.
4219  if (SVOp->isSplat()) {
4220    if (isMMX || NumElems < 4)
4221      return Op;
4222    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4223  }
4224
4225  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4226  // do it!
4227  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4228    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4229    if (NewOp.getNode())
4230      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4231                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4232  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4233    // FIXME: Figure out a cleaner way to do this.
4234    // Try to make use of movq to zero out the top part.
4235    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4236      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4237      if (NewOp.getNode()) {
4238        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4239          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4240                              DAG, Subtarget, dl);
4241      }
4242    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4243      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4244      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4245        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4246                            DAG, Subtarget, dl);
4247    }
4248  }
4249
4250  if (X86::isPSHUFDMask(SVOp))
4251    return Op;
4252
4253  // Check if this can be converted into a logical shift.
4254  bool isLeft = false;
4255  unsigned ShAmt = 0;
4256  SDValue ShVal;
4257  bool isShift = getSubtarget()->hasSSE2() &&
4258  isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4259  if (isShift && ShVal.hasOneUse()) {
4260    // If the shifted value has multiple uses, it may be cheaper to use
4261    // v_set0 + movlhps or movhlps, etc.
4262    EVT EltVT = VT.getVectorElementType();
4263    ShAmt *= EltVT.getSizeInBits();
4264    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4265  }
4266
4267  if (X86::isMOVLMask(SVOp)) {
4268    if (V1IsUndef)
4269      return V2;
4270    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4271      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4272    if (!isMMX)
4273      return Op;
4274  }
4275
4276  // FIXME: fold these into legal mask.
4277  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4278                 X86::isMOVSLDUPMask(SVOp) ||
4279                 X86::isMOVHLPSMask(SVOp) ||
4280                 X86::isMOVLHPSMask(SVOp) ||
4281                 X86::isMOVLPMask(SVOp)))
4282    return Op;
4283
4284  if (ShouldXformToMOVHLPS(SVOp) ||
4285      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4286    return CommuteVectorShuffle(SVOp, DAG);
4287
4288  if (isShift) {
4289    // No better options. Use a vshl / vsrl.
4290    EVT EltVT = VT.getVectorElementType();
4291    ShAmt *= EltVT.getSizeInBits();
4292    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4293  }
4294
4295  bool Commuted = false;
4296  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4297  // 1,1,1,1 -> v8i16 though.
4298  V1IsSplat = isSplatVector(V1.getNode());
4299  V2IsSplat = isSplatVector(V2.getNode());
4300
4301  // Canonicalize the splat or undef, if present, to be on the RHS.
4302  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4303    Op = CommuteVectorShuffle(SVOp, DAG);
4304    SVOp = cast<ShuffleVectorSDNode>(Op);
4305    V1 = SVOp->getOperand(0);
4306    V2 = SVOp->getOperand(1);
4307    std::swap(V1IsSplat, V2IsSplat);
4308    std::swap(V1IsUndef, V2IsUndef);
4309    Commuted = true;
4310  }
4311
4312  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4313    // Shuffling low element of v1 into undef, just return v1.
4314    if (V2IsUndef)
4315      return V1;
4316    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4317    // the instruction selector will not match, so get a canonical MOVL with
4318    // swapped operands to undo the commute.
4319    return getMOVL(DAG, dl, VT, V2, V1);
4320  }
4321
4322  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4323      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4324      X86::isUNPCKLMask(SVOp) ||
4325      X86::isUNPCKHMask(SVOp))
4326    return Op;
4327
4328  if (V2IsSplat) {
4329    // Normalize mask so all entries that point to V2 points to its first
4330    // element then try to match unpck{h|l} again. If match, return a
4331    // new vector_shuffle with the corrected mask.
4332    SDValue NewMask = NormalizeMask(SVOp, DAG);
4333    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4334    if (NSVOp != SVOp) {
4335      if (X86::isUNPCKLMask(NSVOp, true)) {
4336        return NewMask;
4337      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4338        return NewMask;
4339      }
4340    }
4341  }
4342
4343  if (Commuted) {
4344    // Commute is back and try unpck* again.
4345    // FIXME: this seems wrong.
4346    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4347    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4348    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4349        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4350        X86::isUNPCKLMask(NewSVOp) ||
4351        X86::isUNPCKHMask(NewSVOp))
4352      return NewOp;
4353  }
4354
4355  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4356
4357  // Normalize the node to match x86 shuffle ops if needed
4358  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4359    return CommuteVectorShuffle(SVOp, DAG);
4360
4361  // Check for legal shuffle and return?
4362  SmallVector<int, 16> PermMask;
4363  SVOp->getMask(PermMask);
4364  if (isShuffleMaskLegal(PermMask, VT))
4365    return Op;
4366
4367  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4368  if (VT == MVT::v8i16) {
4369    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4370    if (NewOp.getNode())
4371      return NewOp;
4372  }
4373
4374  if (VT == MVT::v16i8) {
4375    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4376    if (NewOp.getNode())
4377      return NewOp;
4378  }
4379
4380  // Handle all 4 wide cases with a number of shuffles except for MMX.
4381  if (NumElems == 4 && !isMMX)
4382    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4383
4384  return SDValue();
4385}
4386
4387SDValue
4388X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4389                                                SelectionDAG &DAG) {
4390  EVT VT = Op.getValueType();
4391  DebugLoc dl = Op.getDebugLoc();
4392  if (VT.getSizeInBits() == 8) {
4393    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4394                                    Op.getOperand(0), Op.getOperand(1));
4395    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4396                                    DAG.getValueType(VT));
4397    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4398  } else if (VT.getSizeInBits() == 16) {
4399    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4400    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4401    if (Idx == 0)
4402      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4403                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4404                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4405                                                 MVT::v4i32,
4406                                                 Op.getOperand(0)),
4407                                     Op.getOperand(1)));
4408    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4409                                    Op.getOperand(0), Op.getOperand(1));
4410    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4411                                    DAG.getValueType(VT));
4412    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4413  } else if (VT == MVT::f32) {
4414    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4415    // the result back to FR32 register. It's only worth matching if the
4416    // result has a single use which is a store or a bitcast to i32.  And in
4417    // the case of a store, it's not worth it if the index is a constant 0,
4418    // because a MOVSSmr can be used instead, which is smaller and faster.
4419    if (!Op.hasOneUse())
4420      return SDValue();
4421    SDNode *User = *Op.getNode()->use_begin();
4422    if ((User->getOpcode() != ISD::STORE ||
4423         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4424          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4425        (User->getOpcode() != ISD::BIT_CONVERT ||
4426         User->getValueType(0) != MVT::i32))
4427      return SDValue();
4428    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4429                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4430                                              Op.getOperand(0)),
4431                                              Op.getOperand(1));
4432    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4433  } else if (VT == MVT::i32) {
4434    // ExtractPS works with constant index.
4435    if (isa<ConstantSDNode>(Op.getOperand(1)))
4436      return Op;
4437  }
4438  return SDValue();
4439}
4440
4441
4442SDValue
4443X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4444  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4445    return SDValue();
4446
4447  if (Subtarget->hasSSE41()) {
4448    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4449    if (Res.getNode())
4450      return Res;
4451  }
4452
4453  EVT VT = Op.getValueType();
4454  DebugLoc dl = Op.getDebugLoc();
4455  // TODO: handle v16i8.
4456  if (VT.getSizeInBits() == 16) {
4457    SDValue Vec = Op.getOperand(0);
4458    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4459    if (Idx == 0)
4460      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4461                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4462                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4463                                                 MVT::v4i32, Vec),
4464                                     Op.getOperand(1)));
4465    // Transform it so it match pextrw which produces a 32-bit result.
4466    EVT EltVT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy+1);
4467    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
4468                                    Op.getOperand(0), Op.getOperand(1));
4469    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
4470                                    DAG.getValueType(VT));
4471    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4472  } else if (VT.getSizeInBits() == 32) {
4473    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4474    if (Idx == 0)
4475      return Op;
4476
4477    // SHUFPS the element to the lowest double word, then movss.
4478    int Mask[4] = { Idx, -1, -1, -1 };
4479    EVT VVT = Op.getOperand(0).getValueType();
4480    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4481                                       DAG.getUNDEF(VVT), Mask);
4482    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4483                       DAG.getIntPtrConstant(0));
4484  } else if (VT.getSizeInBits() == 64) {
4485    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4486    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4487    //        to match extract_elt for f64.
4488    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4489    if (Idx == 0)
4490      return Op;
4491
4492    // UNPCKHPD the element to the lowest double word, then movsd.
4493    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4494    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4495    int Mask[2] = { 1, -1 };
4496    EVT VVT = Op.getOperand(0).getValueType();
4497    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4498                                       DAG.getUNDEF(VVT), Mask);
4499    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4500                       DAG.getIntPtrConstant(0));
4501  }
4502
4503  return SDValue();
4504}
4505
4506SDValue
4507X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4508  EVT VT = Op.getValueType();
4509  EVT EltVT = VT.getVectorElementType();
4510  DebugLoc dl = Op.getDebugLoc();
4511
4512  SDValue N0 = Op.getOperand(0);
4513  SDValue N1 = Op.getOperand(1);
4514  SDValue N2 = Op.getOperand(2);
4515
4516  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
4517      isa<ConstantSDNode>(N2)) {
4518    unsigned Opc = (EltVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4519                                                : X86ISD::PINSRW;
4520    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4521    // argument.
4522    if (N1.getValueType() != MVT::i32)
4523      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4524    if (N2.getValueType() != MVT::i32)
4525      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4526    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4527  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4528    // Bits [7:6] of the constant are the source select.  This will always be
4529    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4530    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4531    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4532    // Bits [5:4] of the constant are the destination select.  This is the
4533    //  value of the incoming immediate.
4534    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4535    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4536    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4537    // Create this as a scalar to vector..
4538    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
4539    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4540  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
4541    // PINSR* works with constant index.
4542    return Op;
4543  }
4544  return SDValue();
4545}
4546
4547SDValue
4548X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4549  EVT VT = Op.getValueType();
4550  EVT EltVT = VT.getVectorElementType();
4551
4552  if (Subtarget->hasSSE41())
4553    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4554
4555  if (EltVT == MVT::i8)
4556    return SDValue();
4557
4558  DebugLoc dl = Op.getDebugLoc();
4559  SDValue N0 = Op.getOperand(0);
4560  SDValue N1 = Op.getOperand(1);
4561  SDValue N2 = Op.getOperand(2);
4562
4563  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4564    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4565    // as its second argument.
4566    if (N1.getValueType() != MVT::i32)
4567      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4568    if (N2.getValueType() != MVT::i32)
4569      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4570    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4571  }
4572  return SDValue();
4573}
4574
4575SDValue
4576X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4577  DebugLoc dl = Op.getDebugLoc();
4578  if (Op.getValueType() == MVT::v2f32)
4579    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4580                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4581                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4582                                               Op.getOperand(0))));
4583
4584  if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
4585    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
4586
4587  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4588  EVT VT = MVT::v2i32;
4589  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4590  default: break;
4591  case MVT::v16i8:
4592  case MVT::v8i16:
4593    VT = MVT::v4i32;
4594    break;
4595  }
4596  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4597                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4598}
4599
4600// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4601// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4602// one of the above mentioned nodes. It has to be wrapped because otherwise
4603// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4604// be used to form addressing mode. These wrapped nodes will be selected
4605// into MOV32ri.
4606SDValue
4607X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4608  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4609
4610  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4611  // global base reg.
4612  unsigned char OpFlag = 0;
4613  unsigned WrapperKind = X86ISD::Wrapper;
4614  CodeModel::Model M = getTargetMachine().getCodeModel();
4615
4616  if (Subtarget->isPICStyleRIPRel() &&
4617      (M == CodeModel::Small || M == CodeModel::Kernel))
4618    WrapperKind = X86ISD::WrapperRIP;
4619  else if (Subtarget->isPICStyleGOT())
4620    OpFlag = X86II::MO_GOTOFF;
4621  else if (Subtarget->isPICStyleStubPIC())
4622    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4623
4624  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4625                                             CP->getAlignment(),
4626                                             CP->getOffset(), OpFlag);
4627  DebugLoc DL = CP->getDebugLoc();
4628  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4629  // With PIC, the address is actually $g + Offset.
4630  if (OpFlag) {
4631    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4632                         DAG.getNode(X86ISD::GlobalBaseReg,
4633                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4634                         Result);
4635  }
4636
4637  return Result;
4638}
4639
4640SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4641  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4642
4643  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4644  // global base reg.
4645  unsigned char OpFlag = 0;
4646  unsigned WrapperKind = X86ISD::Wrapper;
4647  CodeModel::Model M = getTargetMachine().getCodeModel();
4648
4649  if (Subtarget->isPICStyleRIPRel() &&
4650      (M == CodeModel::Small || M == CodeModel::Kernel))
4651    WrapperKind = X86ISD::WrapperRIP;
4652  else if (Subtarget->isPICStyleGOT())
4653    OpFlag = X86II::MO_GOTOFF;
4654  else if (Subtarget->isPICStyleStubPIC())
4655    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4656
4657  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
4658                                          OpFlag);
4659  DebugLoc DL = JT->getDebugLoc();
4660  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4661
4662  // With PIC, the address is actually $g + Offset.
4663  if (OpFlag) {
4664    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4665                         DAG.getNode(X86ISD::GlobalBaseReg,
4666                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4667                         Result);
4668  }
4669
4670  return Result;
4671}
4672
4673SDValue
4674X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4675  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4676
4677  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4678  // global base reg.
4679  unsigned char OpFlag = 0;
4680  unsigned WrapperKind = X86ISD::Wrapper;
4681  CodeModel::Model M = getTargetMachine().getCodeModel();
4682
4683  if (Subtarget->isPICStyleRIPRel() &&
4684      (M == CodeModel::Small || M == CodeModel::Kernel))
4685    WrapperKind = X86ISD::WrapperRIP;
4686  else if (Subtarget->isPICStyleGOT())
4687    OpFlag = X86II::MO_GOTOFF;
4688  else if (Subtarget->isPICStyleStubPIC())
4689    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4690
4691  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
4692
4693  DebugLoc DL = Op.getDebugLoc();
4694  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4695
4696
4697  // With PIC, the address is actually $g + Offset.
4698  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4699      !Subtarget->is64Bit()) {
4700    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4701                         DAG.getNode(X86ISD::GlobalBaseReg,
4702                                     DebugLoc::getUnknownLoc(),
4703                                     getPointerTy()),
4704                         Result);
4705  }
4706
4707  return Result;
4708}
4709
4710SDValue
4711X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
4712  unsigned WrapperKind = X86ISD::Wrapper;
4713  CodeModel::Model M = getTargetMachine().getCodeModel();
4714  if (Subtarget->isPICStyleRIPRel() &&
4715      (M == CodeModel::Small || M == CodeModel::Kernel))
4716    WrapperKind = X86ISD::WrapperRIP;
4717
4718  DebugLoc DL = Op.getDebugLoc();
4719
4720  BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
4721  SDValue Result = DAG.getBlockAddress(BA, DL, /*isTarget=*/true);
4722
4723  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4724
4725  return Result;
4726}
4727
4728SDValue
4729X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
4730                                      int64_t Offset,
4731                                      SelectionDAG &DAG) const {
4732  // Create the TargetGlobalAddress node, folding in the constant
4733  // offset if it is legal.
4734  unsigned char OpFlags =
4735    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
4736  CodeModel::Model M = getTargetMachine().getCodeModel();
4737  SDValue Result;
4738  if (OpFlags == X86II::MO_NO_FLAG &&
4739      X86::isOffsetSuitableForCodeModel(Offset, M)) {
4740    // A direct static reference to a global.
4741    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4742    Offset = 0;
4743  } else {
4744    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
4745  }
4746
4747  if (Subtarget->isPICStyleRIPRel() &&
4748      (M == CodeModel::Small || M == CodeModel::Kernel))
4749    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
4750  else
4751    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4752
4753  // With PIC, the address is actually $g + Offset.
4754  if (isGlobalRelativeToPICBase(OpFlags)) {
4755    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4756                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
4757                         Result);
4758  }
4759
4760  // For globals that require a load from a stub to get the address, emit the
4761  // load.
4762  if (isGlobalStubReference(OpFlags))
4763    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
4764                         PseudoSourceValue::getGOT(), 0);
4765
4766  // If there was a non-zero offset that we didn't fold, create an explicit
4767  // addition for it.
4768  if (Offset != 0)
4769    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
4770                         DAG.getConstant(Offset, getPointerTy()));
4771
4772  return Result;
4773}
4774
4775SDValue
4776X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4777  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4778  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4779  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
4780}
4781
4782static SDValue
4783GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
4784           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
4785           unsigned char OperandFlags) {
4786  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4787  DebugLoc dl = GA->getDebugLoc();
4788  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4789                                           GA->getValueType(0),
4790                                           GA->getOffset(),
4791                                           OperandFlags);
4792  if (InFlag) {
4793    SDValue Ops[] = { Chain,  TGA, *InFlag };
4794    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
4795  } else {
4796    SDValue Ops[]  = { Chain, TGA };
4797    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
4798  }
4799  SDValue Flag = Chain.getValue(1);
4800  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
4801}
4802
4803// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4804static SDValue
4805LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4806                                const EVT PtrVT) {
4807  SDValue InFlag;
4808  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
4809  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
4810                                     DAG.getNode(X86ISD::GlobalBaseReg,
4811                                                 DebugLoc::getUnknownLoc(),
4812                                                 PtrVT), InFlag);
4813  InFlag = Chain.getValue(1);
4814
4815  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
4816}
4817
4818// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4819static SDValue
4820LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4821                                const EVT PtrVT) {
4822  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
4823                    X86::RAX, X86II::MO_TLSGD);
4824}
4825
4826// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4827// "local exec" model.
4828static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4829                                   const EVT PtrVT, TLSModel::Model model,
4830                                   bool is64Bit) {
4831  DebugLoc dl = GA->getDebugLoc();
4832  // Get the Thread Pointer
4833  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
4834                             DebugLoc::getUnknownLoc(), PtrVT,
4835                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
4836                                             MVT::i32));
4837
4838  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
4839                                      NULL, 0);
4840
4841  unsigned char OperandFlags = 0;
4842  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
4843  // initialexec.
4844  unsigned WrapperKind = X86ISD::Wrapper;
4845  if (model == TLSModel::LocalExec) {
4846    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
4847  } else if (is64Bit) {
4848    assert(model == TLSModel::InitialExec);
4849    OperandFlags = X86II::MO_GOTTPOFF;
4850    WrapperKind = X86ISD::WrapperRIP;
4851  } else {
4852    assert(model == TLSModel::InitialExec);
4853    OperandFlags = X86II::MO_INDNTPOFF;
4854  }
4855
4856  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4857  // exec)
4858  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
4859                                           GA->getOffset(), OperandFlags);
4860  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
4861
4862  if (model == TLSModel::InitialExec)
4863    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
4864                         PseudoSourceValue::getGOT(), 0);
4865
4866  // The address of the thread local variable is the add of the thread
4867  // pointer with the offset of the variable.
4868  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
4869}
4870
4871SDValue
4872X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4873  // TODO: implement the "local dynamic" model
4874  // TODO: implement the "initial exec"model for pic executables
4875  assert(Subtarget->isTargetELF() &&
4876         "TLS not implemented for non-ELF targets");
4877  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4878  const GlobalValue *GV = GA->getGlobal();
4879
4880  // If GV is an alias then use the aliasee for determining
4881  // thread-localness.
4882  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
4883    GV = GA->resolveAliasedGlobal(false);
4884
4885  TLSModel::Model model = getTLSModel(GV,
4886                                      getTargetMachine().getRelocationModel());
4887
4888  switch (model) {
4889  case TLSModel::GeneralDynamic:
4890  case TLSModel::LocalDynamic: // not implemented
4891    if (Subtarget->is64Bit())
4892      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4893    return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4894
4895  case TLSModel::InitialExec:
4896  case TLSModel::LocalExec:
4897    return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
4898                               Subtarget->is64Bit());
4899  }
4900
4901  llvm_unreachable("Unreachable");
4902  return SDValue();
4903}
4904
4905
4906/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4907/// take a 2 x i32 value to shift plus a shift amount.
4908SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4909  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4910  EVT VT = Op.getValueType();
4911  unsigned VTBits = VT.getSizeInBits();
4912  DebugLoc dl = Op.getDebugLoc();
4913  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4914  SDValue ShOpLo = Op.getOperand(0);
4915  SDValue ShOpHi = Op.getOperand(1);
4916  SDValue ShAmt  = Op.getOperand(2);
4917  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
4918                                     DAG.getConstant(VTBits - 1, MVT::i8))
4919                       : DAG.getConstant(0, VT);
4920
4921  SDValue Tmp2, Tmp3;
4922  if (Op.getOpcode() == ISD::SHL_PARTS) {
4923    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
4924    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4925  } else {
4926    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
4927    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
4928  }
4929
4930  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
4931                                DAG.getConstant(VTBits, MVT::i8));
4932  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
4933                             AndNode, DAG.getConstant(0, MVT::i8));
4934
4935  SDValue Hi, Lo;
4936  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4937  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4938  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4939
4940  if (Op.getOpcode() == ISD::SHL_PARTS) {
4941    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4942    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4943  } else {
4944    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4945    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4946  }
4947
4948  SDValue Ops[2] = { Lo, Hi };
4949  return DAG.getMergeValues(Ops, 2, dl);
4950}
4951
4952SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4953  EVT SrcVT = Op.getOperand(0).getValueType();
4954
4955  if (SrcVT.isVector()) {
4956    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
4957      return Op;
4958    }
4959    return SDValue();
4960  }
4961
4962  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4963         "Unknown SINT_TO_FP to lower!");
4964
4965  // These are really Legal; return the operand so the caller accepts it as
4966  // Legal.
4967  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4968    return Op;
4969  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
4970      Subtarget->is64Bit()) {
4971    return Op;
4972  }
4973
4974  DebugLoc dl = Op.getDebugLoc();
4975  unsigned Size = SrcVT.getSizeInBits()/8;
4976  MachineFunction &MF = DAG.getMachineFunction();
4977  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
4978  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4979  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
4980                               StackSlot,
4981                               PseudoSourceValue::getFixedStack(SSFI), 0);
4982  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
4983}
4984
4985SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
4986                                     SDValue StackSlot,
4987                                     SelectionDAG &DAG) {
4988  // Build the FILD
4989  DebugLoc dl = Op.getDebugLoc();
4990  SDVTList Tys;
4991  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4992  if (useSSE)
4993    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4994  else
4995    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4996  SmallVector<SDValue, 8> Ops;
4997  Ops.push_back(Chain);
4998  Ops.push_back(StackSlot);
4999  Ops.push_back(DAG.getValueType(SrcVT));
5000  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5001                                 Tys, &Ops[0], Ops.size());
5002
5003  if (useSSE) {
5004    Chain = Result.getValue(1);
5005    SDValue InFlag = Result.getValue(2);
5006
5007    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5008    // shouldn't be necessary except that RFP cannot be live across
5009    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5010    MachineFunction &MF = DAG.getMachineFunction();
5011    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5012    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5013    Tys = DAG.getVTList(MVT::Other);
5014    SmallVector<SDValue, 8> Ops;
5015    Ops.push_back(Chain);
5016    Ops.push_back(Result);
5017    Ops.push_back(StackSlot);
5018    Ops.push_back(DAG.getValueType(Op.getValueType()));
5019    Ops.push_back(InFlag);
5020    Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size());
5021    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5022                         PseudoSourceValue::getFixedStack(SSFI), 0);
5023  }
5024
5025  return Result;
5026}
5027
5028// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5029SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
5030  // This algorithm is not obvious. Here it is in C code, more or less:
5031  /*
5032    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5033      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5034      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5035
5036      // Copy ints to xmm registers.
5037      __m128i xh = _mm_cvtsi32_si128( hi );
5038      __m128i xl = _mm_cvtsi32_si128( lo );
5039
5040      // Combine into low half of a single xmm register.
5041      __m128i x = _mm_unpacklo_epi32( xh, xl );
5042      __m128d d;
5043      double sd;
5044
5045      // Merge in appropriate exponents to give the integer bits the right
5046      // magnitude.
5047      x = _mm_unpacklo_epi32( x, exp );
5048
5049      // Subtract away the biases to deal with the IEEE-754 double precision
5050      // implicit 1.
5051      d = _mm_sub_pd( (__m128d) x, bias );
5052
5053      // All conversions up to here are exact. The correctly rounded result is
5054      // calculated using the current rounding mode using the following
5055      // horizontal add.
5056      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5057      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5058                                // store doesn't really need to be here (except
5059                                // maybe to zero the other double)
5060      return sd;
5061    }
5062  */
5063
5064  DebugLoc dl = Op.getDebugLoc();
5065  LLVMContext *Context = DAG.getContext();
5066
5067  // Build some magic constants.
5068  std::vector<Constant*> CV0;
5069  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5070  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5071  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5072  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5073  Constant *C0 = ConstantVector::get(CV0);
5074  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5075
5076  std::vector<Constant*> CV1;
5077  CV1.push_back(
5078    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5079  CV1.push_back(
5080    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5081  Constant *C1 = ConstantVector::get(CV1);
5082  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5083
5084  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5085                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5086                                        Op.getOperand(0),
5087                                        DAG.getIntPtrConstant(1)));
5088  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5089                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5090                                        Op.getOperand(0),
5091                                        DAG.getIntPtrConstant(0)));
5092  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5093  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5094                              PseudoSourceValue::getConstantPool(), 0,
5095                              false, 16);
5096  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5097  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5098  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5099                              PseudoSourceValue::getConstantPool(), 0,
5100                              false, 16);
5101  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5102
5103  // Add the halves; easiest way is to swap them into another reg first.
5104  int ShufMask[2] = { 1, -1 };
5105  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5106                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5107  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5108  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5109                     DAG.getIntPtrConstant(0));
5110}
5111
5112// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5113SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
5114  DebugLoc dl = Op.getDebugLoc();
5115  // FP constant to bias correct the final result.
5116  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5117                                   MVT::f64);
5118
5119  // Load the 32-bit value into an XMM register.
5120  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5121                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5122                                         Op.getOperand(0),
5123                                         DAG.getIntPtrConstant(0)));
5124
5125  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5126                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5127                     DAG.getIntPtrConstant(0));
5128
5129  // Or the load with the bias.
5130  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5131                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5132                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5133                                                   MVT::v2f64, Load)),
5134                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5135                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5136                                                   MVT::v2f64, Bias)));
5137  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5138                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5139                   DAG.getIntPtrConstant(0));
5140
5141  // Subtract the bias.
5142  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5143
5144  // Handle final rounding.
5145  EVT DestVT = Op.getValueType();
5146
5147  if (DestVT.bitsLT(MVT::f64)) {
5148    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5149                       DAG.getIntPtrConstant(0));
5150  } else if (DestVT.bitsGT(MVT::f64)) {
5151    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5152  }
5153
5154  // Handle final rounding.
5155  return Sub;
5156}
5157
5158SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5159  SDValue N0 = Op.getOperand(0);
5160  DebugLoc dl = Op.getDebugLoc();
5161
5162  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5163  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5164  // the optimization here.
5165  if (DAG.SignBitIsZero(N0))
5166    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5167
5168  EVT SrcVT = N0.getValueType();
5169  if (SrcVT == MVT::i64) {
5170    // We only handle SSE2 f64 target here; caller can expand the rest.
5171    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5172      return SDValue();
5173
5174    return LowerUINT_TO_FP_i64(Op, DAG);
5175  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
5176    return LowerUINT_TO_FP_i32(Op, DAG);
5177  }
5178
5179  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5180
5181  // Make a 64-bit buffer, and use it to build an FILD.
5182  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5183  SDValue WordOff = DAG.getConstant(4, getPointerTy());
5184  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5185                                   getPointerTy(), StackSlot, WordOff);
5186  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5187                                StackSlot, NULL, 0);
5188  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5189                                OffsetSlot, NULL, 0);
5190  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5191}
5192
5193std::pair<SDValue,SDValue> X86TargetLowering::
5194FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5195  DebugLoc dl = Op.getDebugLoc();
5196
5197  EVT DstTy = Op.getValueType();
5198
5199  if (!IsSigned) {
5200    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5201    DstTy = MVT::i64;
5202  }
5203
5204  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5205         DstTy.getSimpleVT() >= MVT::i16 &&
5206         "Unknown FP_TO_SINT to lower!");
5207
5208  // These are really Legal.
5209  if (DstTy == MVT::i32 &&
5210      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5211    return std::make_pair(SDValue(), SDValue());
5212  if (Subtarget->is64Bit() &&
5213      DstTy == MVT::i64 &&
5214      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5215    return std::make_pair(SDValue(), SDValue());
5216
5217  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5218  // stack slot.
5219  MachineFunction &MF = DAG.getMachineFunction();
5220  unsigned MemSize = DstTy.getSizeInBits()/8;
5221  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5222  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5223
5224  unsigned Opc;
5225  switch (DstTy.getSimpleVT().SimpleTy) {
5226  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5227  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5228  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5229  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5230  }
5231
5232  SDValue Chain = DAG.getEntryNode();
5233  SDValue Value = Op.getOperand(0);
5234  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5235    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5236    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5237                         PseudoSourceValue::getFixedStack(SSFI), 0);
5238    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5239    SDValue Ops[] = {
5240      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5241    };
5242    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5243    Chain = Value.getValue(1);
5244    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5245    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5246  }
5247
5248  // Build the FP_TO_INT*_IN_MEM
5249  SDValue Ops[] = { Chain, Value, StackSlot };
5250  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5251
5252  return std::make_pair(FIST, StackSlot);
5253}
5254
5255SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5256  if (Op.getValueType().isVector()) {
5257    if (Op.getValueType() == MVT::v2i32 &&
5258        Op.getOperand(0).getValueType() == MVT::v2f64) {
5259      return Op;
5260    }
5261    return SDValue();
5262  }
5263
5264  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5265  SDValue FIST = Vals.first, StackSlot = Vals.second;
5266  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5267  if (FIST.getNode() == 0) return Op;
5268
5269  // Load the result.
5270  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5271                     FIST, StackSlot, NULL, 0);
5272}
5273
5274SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5275  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5276  SDValue FIST = Vals.first, StackSlot = Vals.second;
5277  assert(FIST.getNode() && "Unexpected failure");
5278
5279  // Load the result.
5280  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5281                     FIST, StackSlot, NULL, 0);
5282}
5283
5284SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5285  LLVMContext *Context = DAG.getContext();
5286  DebugLoc dl = Op.getDebugLoc();
5287  EVT VT = Op.getValueType();
5288  EVT EltVT = VT;
5289  if (VT.isVector())
5290    EltVT = VT.getVectorElementType();
5291  std::vector<Constant*> CV;
5292  if (EltVT == MVT::f64) {
5293    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5294    CV.push_back(C);
5295    CV.push_back(C);
5296  } else {
5297    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5298    CV.push_back(C);
5299    CV.push_back(C);
5300    CV.push_back(C);
5301    CV.push_back(C);
5302  }
5303  Constant *C = ConstantVector::get(CV);
5304  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5305  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5306                               PseudoSourceValue::getConstantPool(), 0,
5307                               false, 16);
5308  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5309}
5310
5311SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5312  LLVMContext *Context = DAG.getContext();
5313  DebugLoc dl = Op.getDebugLoc();
5314  EVT VT = Op.getValueType();
5315  EVT EltVT = VT;
5316  if (VT.isVector())
5317    EltVT = VT.getVectorElementType();
5318  std::vector<Constant*> CV;
5319  if (EltVT == MVT::f64) {
5320    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5321    CV.push_back(C);
5322    CV.push_back(C);
5323  } else {
5324    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5325    CV.push_back(C);
5326    CV.push_back(C);
5327    CV.push_back(C);
5328    CV.push_back(C);
5329  }
5330  Constant *C = ConstantVector::get(CV);
5331  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5332  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5333                               PseudoSourceValue::getConstantPool(), 0,
5334                               false, 16);
5335  if (VT.isVector()) {
5336    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5337                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5338                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5339                                Op.getOperand(0)),
5340                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5341  } else {
5342    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5343  }
5344}
5345
5346SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5347  LLVMContext *Context = DAG.getContext();
5348  SDValue Op0 = Op.getOperand(0);
5349  SDValue Op1 = Op.getOperand(1);
5350  DebugLoc dl = Op.getDebugLoc();
5351  EVT VT = Op.getValueType();
5352  EVT SrcVT = Op1.getValueType();
5353
5354  // If second operand is smaller, extend it first.
5355  if (SrcVT.bitsLT(VT)) {
5356    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5357    SrcVT = VT;
5358  }
5359  // And if it is bigger, shrink it first.
5360  if (SrcVT.bitsGT(VT)) {
5361    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5362    SrcVT = VT;
5363  }
5364
5365  // At this point the operands and the result should have the same
5366  // type, and that won't be f80 since that is not custom lowered.
5367
5368  // First get the sign bit of second operand.
5369  std::vector<Constant*> CV;
5370  if (SrcVT == MVT::f64) {
5371    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5372    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5373  } else {
5374    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5375    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5376    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5377    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5378  }
5379  Constant *C = ConstantVector::get(CV);
5380  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5381  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5382                                PseudoSourceValue::getConstantPool(), 0,
5383                                false, 16);
5384  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5385
5386  // Shift sign bit right or left if the two operands have different types.
5387  if (SrcVT.bitsGT(VT)) {
5388    // Op0 is MVT::f32, Op1 is MVT::f64.
5389    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5390    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5391                          DAG.getConstant(32, MVT::i32));
5392    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5393    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5394                          DAG.getIntPtrConstant(0));
5395  }
5396
5397  // Clear first operand sign bit.
5398  CV.clear();
5399  if (VT == MVT::f64) {
5400    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5401    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5402  } else {
5403    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5404    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5405    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5406    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5407  }
5408  C = ConstantVector::get(CV);
5409  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5410  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5411                                PseudoSourceValue::getConstantPool(), 0,
5412                                false, 16);
5413  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5414
5415  // Or the value with the sign bit.
5416  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5417}
5418
5419/// Emit nodes that will be selected as "test Op0,Op0", or something
5420/// equivalent.
5421SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5422                                    SelectionDAG &DAG) {
5423  DebugLoc dl = Op.getDebugLoc();
5424
5425  // CF and OF aren't always set the way we want. Determine which
5426  // of these we need.
5427  bool NeedCF = false;
5428  bool NeedOF = false;
5429  switch (X86CC) {
5430  case X86::COND_A: case X86::COND_AE:
5431  case X86::COND_B: case X86::COND_BE:
5432    NeedCF = true;
5433    break;
5434  case X86::COND_G: case X86::COND_GE:
5435  case X86::COND_L: case X86::COND_LE:
5436  case X86::COND_O: case X86::COND_NO:
5437    NeedOF = true;
5438    break;
5439  default: break;
5440  }
5441
5442  // See if we can use the EFLAGS value from the operand instead of
5443  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5444  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5445  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5446    unsigned Opcode = 0;
5447    unsigned NumOperands = 0;
5448    switch (Op.getNode()->getOpcode()) {
5449    case ISD::ADD:
5450      // Due to an isel shortcoming, be conservative if this add is likely to
5451      // be selected as part of a load-modify-store instruction. When the root
5452      // node in a match is a store, isel doesn't know how to remap non-chain
5453      // non-flag uses of other nodes in the match, such as the ADD in this
5454      // case. This leads to the ADD being left around and reselected, with
5455      // the result being two adds in the output.
5456      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5457           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5458        if (UI->getOpcode() == ISD::STORE)
5459          goto default_case;
5460      if (ConstantSDNode *C =
5461            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5462        // An add of one will be selected as an INC.
5463        if (C->getAPIntValue() == 1) {
5464          Opcode = X86ISD::INC;
5465          NumOperands = 1;
5466          break;
5467        }
5468        // An add of negative one (subtract of one) will be selected as a DEC.
5469        if (C->getAPIntValue().isAllOnesValue()) {
5470          Opcode = X86ISD::DEC;
5471          NumOperands = 1;
5472          break;
5473        }
5474      }
5475      // Otherwise use a regular EFLAGS-setting add.
5476      Opcode = X86ISD::ADD;
5477      NumOperands = 2;
5478      break;
5479    case ISD::AND: {
5480      // If the primary and result isn't used, don't bother using X86ISD::AND,
5481      // because a TEST instruction will be better.
5482      bool NonFlagUse = false;
5483      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5484           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5485        if (UI->getOpcode() != ISD::BRCOND &&
5486            UI->getOpcode() != ISD::SELECT &&
5487            UI->getOpcode() != ISD::SETCC) {
5488          NonFlagUse = true;
5489          break;
5490        }
5491      if (!NonFlagUse)
5492        break;
5493    }
5494    // FALL THROUGH
5495    case ISD::SUB:
5496    case ISD::OR:
5497    case ISD::XOR:
5498      // Due to the ISEL shortcoming noted above, be conservative if this op is
5499      // likely to be selected as part of a load-modify-store instruction.
5500      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5501           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5502        if (UI->getOpcode() == ISD::STORE)
5503          goto default_case;
5504      // Otherwise use a regular EFLAGS-setting instruction.
5505      switch (Op.getNode()->getOpcode()) {
5506      case ISD::SUB: Opcode = X86ISD::SUB; break;
5507      case ISD::OR:  Opcode = X86ISD::OR;  break;
5508      case ISD::XOR: Opcode = X86ISD::XOR; break;
5509      case ISD::AND: Opcode = X86ISD::AND; break;
5510      default: llvm_unreachable("unexpected operator!");
5511      }
5512      NumOperands = 2;
5513      break;
5514    case X86ISD::ADD:
5515    case X86ISD::SUB:
5516    case X86ISD::INC:
5517    case X86ISD::DEC:
5518    case X86ISD::OR:
5519    case X86ISD::XOR:
5520    case X86ISD::AND:
5521      return SDValue(Op.getNode(), 1);
5522    default:
5523    default_case:
5524      break;
5525    }
5526    if (Opcode != 0) {
5527      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5528      SmallVector<SDValue, 4> Ops;
5529      for (unsigned i = 0; i != NumOperands; ++i)
5530        Ops.push_back(Op.getOperand(i));
5531      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5532      DAG.ReplaceAllUsesWith(Op, New);
5533      return SDValue(New.getNode(), 1);
5534    }
5535  }
5536
5537  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5538  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5539                     DAG.getConstant(0, Op.getValueType()));
5540}
5541
5542/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5543/// equivalent.
5544SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5545                                   SelectionDAG &DAG) {
5546  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5547    if (C->getAPIntValue() == 0)
5548      return EmitTest(Op0, X86CC, DAG);
5549
5550  DebugLoc dl = Op0.getDebugLoc();
5551  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5552}
5553
5554SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5555  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5556  SDValue Op0 = Op.getOperand(0);
5557  SDValue Op1 = Op.getOperand(1);
5558  DebugLoc dl = Op.getDebugLoc();
5559  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5560
5561  // Lower (X & (1 << N)) == 0 to BT(X, N).
5562  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5563  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5564  if (Op0.getOpcode() == ISD::AND &&
5565      Op0.hasOneUse() &&
5566      Op1.getOpcode() == ISD::Constant &&
5567      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5568      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5569    SDValue LHS, RHS;
5570    if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5571      if (ConstantSDNode *Op010C =
5572            dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5573        if (Op010C->getZExtValue() == 1) {
5574          LHS = Op0.getOperand(0);
5575          RHS = Op0.getOperand(1).getOperand(1);
5576        }
5577    } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5578      if (ConstantSDNode *Op000C =
5579            dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5580        if (Op000C->getZExtValue() == 1) {
5581          LHS = Op0.getOperand(1);
5582          RHS = Op0.getOperand(0).getOperand(1);
5583        }
5584    } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5585      ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5586      SDValue AndLHS = Op0.getOperand(0);
5587      if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5588        LHS = AndLHS.getOperand(0);
5589        RHS = AndLHS.getOperand(1);
5590      }
5591    }
5592
5593    if (LHS.getNode()) {
5594      // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5595      // instruction.  Since the shift amount is in-range-or-undefined, we know
5596      // that doing a bittest on the i16 value is ok.  We extend to i32 because
5597      // the encoding for the i16 version is larger than the i32 version.
5598      if (LHS.getValueType() == MVT::i8)
5599        LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5600
5601      // If the operand types disagree, extend the shift amount to match.  Since
5602      // BT ignores high bits (like shifts) we can use anyextend.
5603      if (LHS.getValueType() != RHS.getValueType())
5604        RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5605
5606      SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5607      unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5608      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5609                         DAG.getConstant(Cond, MVT::i8), BT);
5610    }
5611  }
5612
5613  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5614  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5615  if (X86CC == X86::COND_INVALID)
5616    return SDValue();
5617
5618  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5619  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5620                     DAG.getConstant(X86CC, MVT::i8), Cond);
5621}
5622
5623SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5624  SDValue Cond;
5625  SDValue Op0 = Op.getOperand(0);
5626  SDValue Op1 = Op.getOperand(1);
5627  SDValue CC = Op.getOperand(2);
5628  EVT VT = Op.getValueType();
5629  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5630  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5631  DebugLoc dl = Op.getDebugLoc();
5632
5633  if (isFP) {
5634    unsigned SSECC = 8;
5635    EVT VT0 = Op0.getValueType();
5636    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5637    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5638    bool Swap = false;
5639
5640    switch (SetCCOpcode) {
5641    default: break;
5642    case ISD::SETOEQ:
5643    case ISD::SETEQ:  SSECC = 0; break;
5644    case ISD::SETOGT:
5645    case ISD::SETGT: Swap = true; // Fallthrough
5646    case ISD::SETLT:
5647    case ISD::SETOLT: SSECC = 1; break;
5648    case ISD::SETOGE:
5649    case ISD::SETGE: Swap = true; // Fallthrough
5650    case ISD::SETLE:
5651    case ISD::SETOLE: SSECC = 2; break;
5652    case ISD::SETUO:  SSECC = 3; break;
5653    case ISD::SETUNE:
5654    case ISD::SETNE:  SSECC = 4; break;
5655    case ISD::SETULE: Swap = true;
5656    case ISD::SETUGE: SSECC = 5; break;
5657    case ISD::SETULT: Swap = true;
5658    case ISD::SETUGT: SSECC = 6; break;
5659    case ISD::SETO:   SSECC = 7; break;
5660    }
5661    if (Swap)
5662      std::swap(Op0, Op1);
5663
5664    // In the two special cases we can't handle, emit two comparisons.
5665    if (SSECC == 8) {
5666      if (SetCCOpcode == ISD::SETUEQ) {
5667        SDValue UNORD, EQ;
5668        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5669        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5670        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
5671      }
5672      else if (SetCCOpcode == ISD::SETONE) {
5673        SDValue ORD, NEQ;
5674        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5675        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5676        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
5677      }
5678      llvm_unreachable("Illegal FP comparison");
5679    }
5680    // Handle all other FP comparisons here.
5681    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5682  }
5683
5684  // We are handling one of the integer comparisons here.  Since SSE only has
5685  // GT and EQ comparisons for integer, swapping operands and multiple
5686  // operations may be required for some comparisons.
5687  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5688  bool Swap = false, Invert = false, FlipSigns = false;
5689
5690  switch (VT.getSimpleVT().SimpleTy) {
5691  default: break;
5692  case MVT::v8i8:
5693  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5694  case MVT::v4i16:
5695  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5696  case MVT::v2i32:
5697  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5698  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5699  }
5700
5701  switch (SetCCOpcode) {
5702  default: break;
5703  case ISD::SETNE:  Invert = true;
5704  case ISD::SETEQ:  Opc = EQOpc; break;
5705  case ISD::SETLT:  Swap = true;
5706  case ISD::SETGT:  Opc = GTOpc; break;
5707  case ISD::SETGE:  Swap = true;
5708  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
5709  case ISD::SETULT: Swap = true;
5710  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5711  case ISD::SETUGE: Swap = true;
5712  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5713  }
5714  if (Swap)
5715    std::swap(Op0, Op1);
5716
5717  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
5718  // bits of the inputs before performing those operations.
5719  if (FlipSigns) {
5720    EVT EltVT = VT.getVectorElementType();
5721    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
5722                                      EltVT);
5723    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5724    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
5725                                    SignBits.size());
5726    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
5727    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
5728  }
5729
5730  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
5731
5732  // If the logical-not of the result is required, perform that now.
5733  if (Invert)
5734    Result = DAG.getNOT(dl, Result, VT);
5735
5736  return Result;
5737}
5738
5739// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5740static bool isX86LogicalCmp(SDValue Op) {
5741  unsigned Opc = Op.getNode()->getOpcode();
5742  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
5743    return true;
5744  if (Op.getResNo() == 1 &&
5745      (Opc == X86ISD::ADD ||
5746       Opc == X86ISD::SUB ||
5747       Opc == X86ISD::SMUL ||
5748       Opc == X86ISD::UMUL ||
5749       Opc == X86ISD::INC ||
5750       Opc == X86ISD::DEC ||
5751       Opc == X86ISD::OR ||
5752       Opc == X86ISD::XOR ||
5753       Opc == X86ISD::AND))
5754    return true;
5755
5756  return false;
5757}
5758
5759SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5760  bool addTest = true;
5761  SDValue Cond  = Op.getOperand(0);
5762  DebugLoc dl = Op.getDebugLoc();
5763  SDValue CC;
5764
5765  if (Cond.getOpcode() == ISD::SETCC) {
5766    SDValue NewCond = LowerSETCC(Cond, DAG);
5767    if (NewCond.getNode())
5768      Cond = NewCond;
5769  }
5770
5771  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5772  // setting operand in place of the X86ISD::SETCC.
5773  if (Cond.getOpcode() == X86ISD::SETCC) {
5774    CC = Cond.getOperand(0);
5775
5776    SDValue Cmp = Cond.getOperand(1);
5777    unsigned Opc = Cmp.getOpcode();
5778    EVT VT = Op.getValueType();
5779
5780    bool IllegalFPCMov = false;
5781    if (VT.isFloatingPoint() && !VT.isVector() &&
5782        !isScalarFPTypeInSSEReg(VT))  // FPStack?
5783      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5784
5785    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
5786        Opc == X86ISD::BT) { // FIXME
5787      Cond = Cmp;
5788      addTest = false;
5789    }
5790  }
5791
5792  if (addTest) {
5793    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5794    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5795  }
5796
5797  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
5798  SmallVector<SDValue, 4> Ops;
5799  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5800  // condition is true.
5801  Ops.push_back(Op.getOperand(2));
5802  Ops.push_back(Op.getOperand(1));
5803  Ops.push_back(CC);
5804  Ops.push_back(Cond);
5805  return DAG.getNode(X86ISD::CMOV, dl, VTs, &Ops[0], Ops.size());
5806}
5807
5808// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5809// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5810// from the AND / OR.
5811static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5812  Opc = Op.getOpcode();
5813  if (Opc != ISD::OR && Opc != ISD::AND)
5814    return false;
5815  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5816          Op.getOperand(0).hasOneUse() &&
5817          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5818          Op.getOperand(1).hasOneUse());
5819}
5820
5821// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5822// 1 and that the SETCC node has a single use.
5823static bool isXor1OfSetCC(SDValue Op) {
5824  if (Op.getOpcode() != ISD::XOR)
5825    return false;
5826  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5827  if (N1C && N1C->getAPIntValue() == 1) {
5828    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5829      Op.getOperand(0).hasOneUse();
5830  }
5831  return false;
5832}
5833
5834SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5835  bool addTest = true;
5836  SDValue Chain = Op.getOperand(0);
5837  SDValue Cond  = Op.getOperand(1);
5838  SDValue Dest  = Op.getOperand(2);
5839  DebugLoc dl = Op.getDebugLoc();
5840  SDValue CC;
5841
5842  if (Cond.getOpcode() == ISD::SETCC) {
5843    SDValue NewCond = LowerSETCC(Cond, DAG);
5844    if (NewCond.getNode())
5845      Cond = NewCond;
5846  }
5847#if 0
5848  // FIXME: LowerXALUO doesn't handle these!!
5849  else if (Cond.getOpcode() == X86ISD::ADD  ||
5850           Cond.getOpcode() == X86ISD::SUB  ||
5851           Cond.getOpcode() == X86ISD::SMUL ||
5852           Cond.getOpcode() == X86ISD::UMUL)
5853    Cond = LowerXALUO(Cond, DAG);
5854#endif
5855
5856  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5857  // setting operand in place of the X86ISD::SETCC.
5858  if (Cond.getOpcode() == X86ISD::SETCC) {
5859    CC = Cond.getOperand(0);
5860
5861    SDValue Cmp = Cond.getOperand(1);
5862    unsigned Opc = Cmp.getOpcode();
5863    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5864    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
5865      Cond = Cmp;
5866      addTest = false;
5867    } else {
5868      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5869      default: break;
5870      case X86::COND_O:
5871      case X86::COND_B:
5872        // These can only come from an arithmetic instruction with overflow,
5873        // e.g. SADDO, UADDO.
5874        Cond = Cond.getNode()->getOperand(1);
5875        addTest = false;
5876        break;
5877      }
5878    }
5879  } else {
5880    unsigned CondOpc;
5881    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5882      SDValue Cmp = Cond.getOperand(0).getOperand(1);
5883      if (CondOpc == ISD::OR) {
5884        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5885        // two branches instead of an explicit OR instruction with a
5886        // separate test.
5887        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5888            isX86LogicalCmp(Cmp)) {
5889          CC = Cond.getOperand(0).getOperand(0);
5890          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5891                              Chain, Dest, CC, Cmp);
5892          CC = Cond.getOperand(1).getOperand(0);
5893          Cond = Cmp;
5894          addTest = false;
5895        }
5896      } else { // ISD::AND
5897        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5898        // two branches instead of an explicit AND instruction with a
5899        // separate test. However, we only do this if this block doesn't
5900        // have a fall-through edge, because this requires an explicit
5901        // jmp when the condition is false.
5902        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5903            isX86LogicalCmp(Cmp) &&
5904            Op.getNode()->hasOneUse()) {
5905          X86::CondCode CCode =
5906            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5907          CCode = X86::GetOppositeBranchCondition(CCode);
5908          CC = DAG.getConstant(CCode, MVT::i8);
5909          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5910          // Look for an unconditional branch following this conditional branch.
5911          // We need this because we need to reverse the successors in order
5912          // to implement FCMP_OEQ.
5913          if (User.getOpcode() == ISD::BR) {
5914            SDValue FalseBB = User.getOperand(1);
5915            SDValue NewBR =
5916              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5917            assert(NewBR == User);
5918            Dest = FalseBB;
5919
5920            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5921                                Chain, Dest, CC, Cmp);
5922            X86::CondCode CCode =
5923              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5924            CCode = X86::GetOppositeBranchCondition(CCode);
5925            CC = DAG.getConstant(CCode, MVT::i8);
5926            Cond = Cmp;
5927            addTest = false;
5928          }
5929        }
5930      }
5931    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
5932      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5933      // It should be transformed during dag combiner except when the condition
5934      // is set by a arithmetics with overflow node.
5935      X86::CondCode CCode =
5936        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5937      CCode = X86::GetOppositeBranchCondition(CCode);
5938      CC = DAG.getConstant(CCode, MVT::i8);
5939      Cond = Cond.getOperand(0).getOperand(1);
5940      addTest = false;
5941    }
5942  }
5943
5944  if (addTest) {
5945    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5946    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5947  }
5948  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5949                     Chain, Dest, CC, Cond);
5950}
5951
5952
5953// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5954// Calls to _alloca is needed to probe the stack when allocating more than 4k
5955// bytes in one go. Touching the stack at 4K increments is necessary to ensure
5956// that the guard pages used by the OS virtual memory manager are allocated in
5957// correct sequence.
5958SDValue
5959X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5960                                           SelectionDAG &DAG) {
5961  assert(Subtarget->isTargetCygMing() &&
5962         "This should be used only on Cygwin/Mingw targets");
5963  DebugLoc dl = Op.getDebugLoc();
5964
5965  // Get the inputs.
5966  SDValue Chain = Op.getOperand(0);
5967  SDValue Size  = Op.getOperand(1);
5968  // FIXME: Ensure alignment here
5969
5970  SDValue Flag;
5971
5972  EVT IntPtr = getPointerTy();
5973  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5974
5975  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5976
5977  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
5978  Flag = Chain.getValue(1);
5979
5980  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5981  SDValue Ops[] = { Chain,
5982                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
5983                      DAG.getRegister(X86::EAX, IntPtr),
5984                      DAG.getRegister(X86StackPtr, SPTy),
5985                      Flag };
5986  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
5987  Flag = Chain.getValue(1);
5988
5989  Chain = DAG.getCALLSEQ_END(Chain,
5990                             DAG.getIntPtrConstant(0, true),
5991                             DAG.getIntPtrConstant(0, true),
5992                             Flag);
5993
5994  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
5995
5996  SDValue Ops1[2] = { Chain.getValue(0), Chain };
5997  return DAG.getMergeValues(Ops1, 2, dl);
5998}
5999
6000SDValue
6001X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
6002                                           SDValue Chain,
6003                                           SDValue Dst, SDValue Src,
6004                                           SDValue Size, unsigned Align,
6005                                           const Value *DstSV,
6006                                           uint64_t DstSVOff) {
6007  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6008
6009  // If not DWORD aligned or size is more than the threshold, call the library.
6010  // The libc version is likely to be faster for these cases. It can use the
6011  // address value and run time information about the CPU.
6012  if ((Align & 3) != 0 ||
6013      !ConstantSize ||
6014      ConstantSize->getZExtValue() >
6015        getSubtarget()->getMaxInlineSizeThreshold()) {
6016    SDValue InFlag(0, 0);
6017
6018    // Check to see if there is a specialized entry-point for memory zeroing.
6019    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
6020
6021    if (const char *bzeroEntry =  V &&
6022        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
6023      EVT IntPtr = getPointerTy();
6024      const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext());
6025      TargetLowering::ArgListTy Args;
6026      TargetLowering::ArgListEntry Entry;
6027      Entry.Node = Dst;
6028      Entry.Ty = IntPtrTy;
6029      Args.push_back(Entry);
6030      Entry.Node = Size;
6031      Args.push_back(Entry);
6032      std::pair<SDValue,SDValue> CallResult =
6033        LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
6034                    false, false, false, false,
6035                    0, CallingConv::C, false, /*isReturnValueUsed=*/false,
6036                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
6037      return CallResult.second;
6038    }
6039
6040    // Otherwise have the target-independent code call memset.
6041    return SDValue();
6042  }
6043
6044  uint64_t SizeVal = ConstantSize->getZExtValue();
6045  SDValue InFlag(0, 0);
6046  EVT AVT;
6047  SDValue Count;
6048  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
6049  unsigned BytesLeft = 0;
6050  bool TwoRepStos = false;
6051  if (ValC) {
6052    unsigned ValReg;
6053    uint64_t Val = ValC->getZExtValue() & 255;
6054
6055    // If the value is a constant, then we can potentially use larger sets.
6056    switch (Align & 3) {
6057    case 2:   // WORD aligned
6058      AVT = MVT::i16;
6059      ValReg = X86::AX;
6060      Val = (Val << 8) | Val;
6061      break;
6062    case 0:  // DWORD aligned
6063      AVT = MVT::i32;
6064      ValReg = X86::EAX;
6065      Val = (Val << 8)  | Val;
6066      Val = (Val << 16) | Val;
6067      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
6068        AVT = MVT::i64;
6069        ValReg = X86::RAX;
6070        Val = (Val << 32) | Val;
6071      }
6072      break;
6073    default:  // Byte aligned
6074      AVT = MVT::i8;
6075      ValReg = X86::AL;
6076      Count = DAG.getIntPtrConstant(SizeVal);
6077      break;
6078    }
6079
6080    if (AVT.bitsGT(MVT::i8)) {
6081      unsigned UBytes = AVT.getSizeInBits() / 8;
6082      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
6083      BytesLeft = SizeVal % UBytes;
6084    }
6085
6086    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
6087                              InFlag);
6088    InFlag = Chain.getValue(1);
6089  } else {
6090    AVT = MVT::i8;
6091    Count  = DAG.getIntPtrConstant(SizeVal);
6092    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
6093    InFlag = Chain.getValue(1);
6094  }
6095
6096  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6097                                                              X86::ECX,
6098                            Count, InFlag);
6099  InFlag = Chain.getValue(1);
6100  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6101                                                              X86::EDI,
6102                            Dst, InFlag);
6103  InFlag = Chain.getValue(1);
6104
6105  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6106  SmallVector<SDValue, 8> Ops;
6107  Ops.push_back(Chain);
6108  Ops.push_back(DAG.getValueType(AVT));
6109  Ops.push_back(InFlag);
6110  Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
6111
6112  if (TwoRepStos) {
6113    InFlag = Chain.getValue(1);
6114    Count  = Size;
6115    EVT CVT = Count.getValueType();
6116    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
6117                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
6118    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
6119                                                             X86::ECX,
6120                              Left, InFlag);
6121    InFlag = Chain.getValue(1);
6122    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6123    Ops.clear();
6124    Ops.push_back(Chain);
6125    Ops.push_back(DAG.getValueType(MVT::i8));
6126    Ops.push_back(InFlag);
6127    Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
6128  } else if (BytesLeft) {
6129    // Handle the last 1 - 7 bytes.
6130    unsigned Offset = SizeVal - BytesLeft;
6131    EVT AddrVT = Dst.getValueType();
6132    EVT SizeVT = Size.getValueType();
6133
6134    Chain = DAG.getMemset(Chain, dl,
6135                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
6136                                      DAG.getConstant(Offset, AddrVT)),
6137                          Src,
6138                          DAG.getConstant(BytesLeft, SizeVT),
6139                          Align, DstSV, DstSVOff + Offset);
6140  }
6141
6142  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
6143  return Chain;
6144}
6145
6146SDValue
6147X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
6148                                      SDValue Chain, SDValue Dst, SDValue Src,
6149                                      SDValue Size, unsigned Align,
6150                                      bool AlwaysInline,
6151                                      const Value *DstSV, uint64_t DstSVOff,
6152                                      const Value *SrcSV, uint64_t SrcSVOff) {
6153  // This requires the copy size to be a constant, preferrably
6154  // within a subtarget-specific limit.
6155  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6156  if (!ConstantSize)
6157    return SDValue();
6158  uint64_t SizeVal = ConstantSize->getZExtValue();
6159  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
6160    return SDValue();
6161
6162  /// If not DWORD aligned, call the library.
6163  if ((Align & 3) != 0)
6164    return SDValue();
6165
6166  // DWORD aligned
6167  EVT AVT = MVT::i32;
6168  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
6169    AVT = MVT::i64;
6170
6171  unsigned UBytes = AVT.getSizeInBits() / 8;
6172  unsigned CountVal = SizeVal / UBytes;
6173  SDValue Count = DAG.getIntPtrConstant(CountVal);
6174  unsigned BytesLeft = SizeVal % UBytes;
6175
6176  SDValue InFlag(0, 0);
6177  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6178                                                              X86::ECX,
6179                            Count, InFlag);
6180  InFlag = Chain.getValue(1);
6181  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6182                                                             X86::EDI,
6183                            Dst, InFlag);
6184  InFlag = Chain.getValue(1);
6185  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6186                                                              X86::ESI,
6187                            Src, InFlag);
6188  InFlag = Chain.getValue(1);
6189
6190  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6191  SmallVector<SDValue, 8> Ops;
6192  Ops.push_back(Chain);
6193  Ops.push_back(DAG.getValueType(AVT));
6194  Ops.push_back(InFlag);
6195  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, &Ops[0], Ops.size());
6196
6197  SmallVector<SDValue, 4> Results;
6198  Results.push_back(RepMovs);
6199  if (BytesLeft) {
6200    // Handle the last 1 - 7 bytes.
6201    unsigned Offset = SizeVal - BytesLeft;
6202    EVT DstVT = Dst.getValueType();
6203    EVT SrcVT = Src.getValueType();
6204    EVT SizeVT = Size.getValueType();
6205    Results.push_back(DAG.getMemcpy(Chain, dl,
6206                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6207                                                DAG.getConstant(Offset, DstVT)),
6208                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6209                                                DAG.getConstant(Offset, SrcVT)),
6210                                    DAG.getConstant(BytesLeft, SizeVT),
6211                                    Align, AlwaysInline,
6212                                    DstSV, DstSVOff + Offset,
6213                                    SrcSV, SrcSVOff + Offset));
6214  }
6215
6216  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6217                     &Results[0], Results.size());
6218}
6219
6220SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6221  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6222  DebugLoc dl = Op.getDebugLoc();
6223
6224  if (!Subtarget->is64Bit()) {
6225    // vastart just stores the address of the VarArgsFrameIndex slot into the
6226    // memory location argument.
6227    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6228    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
6229  }
6230
6231  // __va_list_tag:
6232  //   gp_offset         (0 - 6 * 8)
6233  //   fp_offset         (48 - 48 + 8 * 16)
6234  //   overflow_arg_area (point to parameters coming in memory).
6235  //   reg_save_area
6236  SmallVector<SDValue, 8> MemOps;
6237  SDValue FIN = Op.getOperand(1);
6238  // Store gp_offset
6239  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6240                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
6241                                 FIN, SV, 0);
6242  MemOps.push_back(Store);
6243
6244  // Store fp_offset
6245  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6246                    FIN, DAG.getIntPtrConstant(4));
6247  Store = DAG.getStore(Op.getOperand(0), dl,
6248                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
6249                       FIN, SV, 0);
6250  MemOps.push_back(Store);
6251
6252  // Store ptr to overflow_arg_area
6253  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6254                    FIN, DAG.getIntPtrConstant(4));
6255  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6256  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0);
6257  MemOps.push_back(Store);
6258
6259  // Store ptr to reg_save_area.
6260  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6261                    FIN, DAG.getIntPtrConstant(8));
6262  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6263  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0);
6264  MemOps.push_back(Store);
6265  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6266                     &MemOps[0], MemOps.size());
6267}
6268
6269SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6270  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6271  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6272  SDValue Chain = Op.getOperand(0);
6273  SDValue SrcPtr = Op.getOperand(1);
6274  SDValue SrcSV = Op.getOperand(2);
6275
6276  llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6277  return SDValue();
6278}
6279
6280SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6281  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6282  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6283  SDValue Chain = Op.getOperand(0);
6284  SDValue DstPtr = Op.getOperand(1);
6285  SDValue SrcPtr = Op.getOperand(2);
6286  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6287  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6288  DebugLoc dl = Op.getDebugLoc();
6289
6290  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6291                       DAG.getIntPtrConstant(24), 8, false,
6292                       DstSV, 0, SrcSV, 0);
6293}
6294
6295SDValue
6296X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6297  DebugLoc dl = Op.getDebugLoc();
6298  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6299  switch (IntNo) {
6300  default: return SDValue();    // Don't custom lower most intrinsics.
6301  // Comparison intrinsics.
6302  case Intrinsic::x86_sse_comieq_ss:
6303  case Intrinsic::x86_sse_comilt_ss:
6304  case Intrinsic::x86_sse_comile_ss:
6305  case Intrinsic::x86_sse_comigt_ss:
6306  case Intrinsic::x86_sse_comige_ss:
6307  case Intrinsic::x86_sse_comineq_ss:
6308  case Intrinsic::x86_sse_ucomieq_ss:
6309  case Intrinsic::x86_sse_ucomilt_ss:
6310  case Intrinsic::x86_sse_ucomile_ss:
6311  case Intrinsic::x86_sse_ucomigt_ss:
6312  case Intrinsic::x86_sse_ucomige_ss:
6313  case Intrinsic::x86_sse_ucomineq_ss:
6314  case Intrinsic::x86_sse2_comieq_sd:
6315  case Intrinsic::x86_sse2_comilt_sd:
6316  case Intrinsic::x86_sse2_comile_sd:
6317  case Intrinsic::x86_sse2_comigt_sd:
6318  case Intrinsic::x86_sse2_comige_sd:
6319  case Intrinsic::x86_sse2_comineq_sd:
6320  case Intrinsic::x86_sse2_ucomieq_sd:
6321  case Intrinsic::x86_sse2_ucomilt_sd:
6322  case Intrinsic::x86_sse2_ucomile_sd:
6323  case Intrinsic::x86_sse2_ucomigt_sd:
6324  case Intrinsic::x86_sse2_ucomige_sd:
6325  case Intrinsic::x86_sse2_ucomineq_sd: {
6326    unsigned Opc = 0;
6327    ISD::CondCode CC = ISD::SETCC_INVALID;
6328    switch (IntNo) {
6329    default: break;
6330    case Intrinsic::x86_sse_comieq_ss:
6331    case Intrinsic::x86_sse2_comieq_sd:
6332      Opc = X86ISD::COMI;
6333      CC = ISD::SETEQ;
6334      break;
6335    case Intrinsic::x86_sse_comilt_ss:
6336    case Intrinsic::x86_sse2_comilt_sd:
6337      Opc = X86ISD::COMI;
6338      CC = ISD::SETLT;
6339      break;
6340    case Intrinsic::x86_sse_comile_ss:
6341    case Intrinsic::x86_sse2_comile_sd:
6342      Opc = X86ISD::COMI;
6343      CC = ISD::SETLE;
6344      break;
6345    case Intrinsic::x86_sse_comigt_ss:
6346    case Intrinsic::x86_sse2_comigt_sd:
6347      Opc = X86ISD::COMI;
6348      CC = ISD::SETGT;
6349      break;
6350    case Intrinsic::x86_sse_comige_ss:
6351    case Intrinsic::x86_sse2_comige_sd:
6352      Opc = X86ISD::COMI;
6353      CC = ISD::SETGE;
6354      break;
6355    case Intrinsic::x86_sse_comineq_ss:
6356    case Intrinsic::x86_sse2_comineq_sd:
6357      Opc = X86ISD::COMI;
6358      CC = ISD::SETNE;
6359      break;
6360    case Intrinsic::x86_sse_ucomieq_ss:
6361    case Intrinsic::x86_sse2_ucomieq_sd:
6362      Opc = X86ISD::UCOMI;
6363      CC = ISD::SETEQ;
6364      break;
6365    case Intrinsic::x86_sse_ucomilt_ss:
6366    case Intrinsic::x86_sse2_ucomilt_sd:
6367      Opc = X86ISD::UCOMI;
6368      CC = ISD::SETLT;
6369      break;
6370    case Intrinsic::x86_sse_ucomile_ss:
6371    case Intrinsic::x86_sse2_ucomile_sd:
6372      Opc = X86ISD::UCOMI;
6373      CC = ISD::SETLE;
6374      break;
6375    case Intrinsic::x86_sse_ucomigt_ss:
6376    case Intrinsic::x86_sse2_ucomigt_sd:
6377      Opc = X86ISD::UCOMI;
6378      CC = ISD::SETGT;
6379      break;
6380    case Intrinsic::x86_sse_ucomige_ss:
6381    case Intrinsic::x86_sse2_ucomige_sd:
6382      Opc = X86ISD::UCOMI;
6383      CC = ISD::SETGE;
6384      break;
6385    case Intrinsic::x86_sse_ucomineq_ss:
6386    case Intrinsic::x86_sse2_ucomineq_sd:
6387      Opc = X86ISD::UCOMI;
6388      CC = ISD::SETNE;
6389      break;
6390    }
6391
6392    SDValue LHS = Op.getOperand(1);
6393    SDValue RHS = Op.getOperand(2);
6394    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6395    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
6396    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6397    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6398                                DAG.getConstant(X86CC, MVT::i8), Cond);
6399    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6400  }
6401  // ptest intrinsics. The intrinsic these come from are designed to return
6402  // an integer value, not just an instruction so lower it to the ptest
6403  // pattern and a setcc for the result.
6404  case Intrinsic::x86_sse41_ptestz:
6405  case Intrinsic::x86_sse41_ptestc:
6406  case Intrinsic::x86_sse41_ptestnzc:{
6407    unsigned X86CC = 0;
6408    switch (IntNo) {
6409    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6410    case Intrinsic::x86_sse41_ptestz:
6411      // ZF = 1
6412      X86CC = X86::COND_E;
6413      break;
6414    case Intrinsic::x86_sse41_ptestc:
6415      // CF = 1
6416      X86CC = X86::COND_B;
6417      break;
6418    case Intrinsic::x86_sse41_ptestnzc:
6419      // ZF and CF = 0
6420      X86CC = X86::COND_A;
6421      break;
6422    }
6423
6424    SDValue LHS = Op.getOperand(1);
6425    SDValue RHS = Op.getOperand(2);
6426    SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
6427    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
6428    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
6429    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6430  }
6431
6432  // Fix vector shift instructions where the last operand is a non-immediate
6433  // i32 value.
6434  case Intrinsic::x86_sse2_pslli_w:
6435  case Intrinsic::x86_sse2_pslli_d:
6436  case Intrinsic::x86_sse2_pslli_q:
6437  case Intrinsic::x86_sse2_psrli_w:
6438  case Intrinsic::x86_sse2_psrli_d:
6439  case Intrinsic::x86_sse2_psrli_q:
6440  case Intrinsic::x86_sse2_psrai_w:
6441  case Intrinsic::x86_sse2_psrai_d:
6442  case Intrinsic::x86_mmx_pslli_w:
6443  case Intrinsic::x86_mmx_pslli_d:
6444  case Intrinsic::x86_mmx_pslli_q:
6445  case Intrinsic::x86_mmx_psrli_w:
6446  case Intrinsic::x86_mmx_psrli_d:
6447  case Intrinsic::x86_mmx_psrli_q:
6448  case Intrinsic::x86_mmx_psrai_w:
6449  case Intrinsic::x86_mmx_psrai_d: {
6450    SDValue ShAmt = Op.getOperand(2);
6451    if (isa<ConstantSDNode>(ShAmt))
6452      return SDValue();
6453
6454    unsigned NewIntNo = 0;
6455    EVT ShAmtVT = MVT::v4i32;
6456    switch (IntNo) {
6457    case Intrinsic::x86_sse2_pslli_w:
6458      NewIntNo = Intrinsic::x86_sse2_psll_w;
6459      break;
6460    case Intrinsic::x86_sse2_pslli_d:
6461      NewIntNo = Intrinsic::x86_sse2_psll_d;
6462      break;
6463    case Intrinsic::x86_sse2_pslli_q:
6464      NewIntNo = Intrinsic::x86_sse2_psll_q;
6465      break;
6466    case Intrinsic::x86_sse2_psrli_w:
6467      NewIntNo = Intrinsic::x86_sse2_psrl_w;
6468      break;
6469    case Intrinsic::x86_sse2_psrli_d:
6470      NewIntNo = Intrinsic::x86_sse2_psrl_d;
6471      break;
6472    case Intrinsic::x86_sse2_psrli_q:
6473      NewIntNo = Intrinsic::x86_sse2_psrl_q;
6474      break;
6475    case Intrinsic::x86_sse2_psrai_w:
6476      NewIntNo = Intrinsic::x86_sse2_psra_w;
6477      break;
6478    case Intrinsic::x86_sse2_psrai_d:
6479      NewIntNo = Intrinsic::x86_sse2_psra_d;
6480      break;
6481    default: {
6482      ShAmtVT = MVT::v2i32;
6483      switch (IntNo) {
6484      case Intrinsic::x86_mmx_pslli_w:
6485        NewIntNo = Intrinsic::x86_mmx_psll_w;
6486        break;
6487      case Intrinsic::x86_mmx_pslli_d:
6488        NewIntNo = Intrinsic::x86_mmx_psll_d;
6489        break;
6490      case Intrinsic::x86_mmx_pslli_q:
6491        NewIntNo = Intrinsic::x86_mmx_psll_q;
6492        break;
6493      case Intrinsic::x86_mmx_psrli_w:
6494        NewIntNo = Intrinsic::x86_mmx_psrl_w;
6495        break;
6496      case Intrinsic::x86_mmx_psrli_d:
6497        NewIntNo = Intrinsic::x86_mmx_psrl_d;
6498        break;
6499      case Intrinsic::x86_mmx_psrli_q:
6500        NewIntNo = Intrinsic::x86_mmx_psrl_q;
6501        break;
6502      case Intrinsic::x86_mmx_psrai_w:
6503        NewIntNo = Intrinsic::x86_mmx_psra_w;
6504        break;
6505      case Intrinsic::x86_mmx_psrai_d:
6506        NewIntNo = Intrinsic::x86_mmx_psra_d;
6507        break;
6508      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6509      }
6510      break;
6511    }
6512    }
6513
6514    // The vector shift intrinsics with scalars uses 32b shift amounts but
6515    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
6516    // to be zero.
6517    SDValue ShOps[4];
6518    ShOps[0] = ShAmt;
6519    ShOps[1] = DAG.getConstant(0, MVT::i32);
6520    if (ShAmtVT == MVT::v4i32) {
6521      ShOps[2] = DAG.getUNDEF(MVT::i32);
6522      ShOps[3] = DAG.getUNDEF(MVT::i32);
6523      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
6524    } else {
6525      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
6526    }
6527
6528    EVT VT = Op.getValueType();
6529    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
6530    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6531                       DAG.getConstant(NewIntNo, MVT::i32),
6532                       Op.getOperand(1), ShAmt);
6533  }
6534  }
6535}
6536
6537SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6538  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6539  DebugLoc dl = Op.getDebugLoc();
6540
6541  if (Depth > 0) {
6542    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6543    SDValue Offset =
6544      DAG.getConstant(TD->getPointerSize(),
6545                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6546    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6547                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6548                                   FrameAddr, Offset),
6549                       NULL, 0);
6550  }
6551
6552  // Just load the return address.
6553  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6554  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6555                     RetAddrFI, NULL, 0);
6556}
6557
6558SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6559  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6560  MFI->setFrameAddressIsTaken(true);
6561  EVT VT = Op.getValueType();
6562  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
6563  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6564  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6565  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6566  while (Depth--)
6567    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
6568  return FrameAddr;
6569}
6570
6571SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6572                                                     SelectionDAG &DAG) {
6573  return DAG.getIntPtrConstant(2*TD->getPointerSize());
6574}
6575
6576SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6577{
6578  MachineFunction &MF = DAG.getMachineFunction();
6579  SDValue Chain     = Op.getOperand(0);
6580  SDValue Offset    = Op.getOperand(1);
6581  SDValue Handler   = Op.getOperand(2);
6582  DebugLoc dl       = Op.getDebugLoc();
6583
6584  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6585                                  getPointerTy());
6586  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6587
6588  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6589                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
6590  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
6591  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0);
6592  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
6593  MF.getRegInfo().addLiveOut(StoreAddrReg);
6594
6595  return DAG.getNode(X86ISD::EH_RETURN, dl,
6596                     MVT::Other,
6597                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
6598}
6599
6600SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
6601                                             SelectionDAG &DAG) {
6602  SDValue Root = Op.getOperand(0);
6603  SDValue Trmp = Op.getOperand(1); // trampoline
6604  SDValue FPtr = Op.getOperand(2); // nested function
6605  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
6606  DebugLoc dl  = Op.getDebugLoc();
6607
6608  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6609
6610  const X86InstrInfo *TII =
6611    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
6612
6613  if (Subtarget->is64Bit()) {
6614    SDValue OutChains[6];
6615
6616    // Large code-model.
6617
6618    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
6619    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
6620
6621    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
6622    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
6623
6624    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
6625
6626    // Load the pointer to the nested function into R11.
6627    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
6628    SDValue Addr = Trmp;
6629    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6630                                Addr, TrmpAddr, 0);
6631
6632    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6633                       DAG.getConstant(2, MVT::i64));
6634    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2);
6635
6636    // Load the 'nest' parameter value into R10.
6637    // R10 is specified in X86CallingConv.td
6638    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
6639    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6640                       DAG.getConstant(10, MVT::i64));
6641    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6642                                Addr, TrmpAddr, 10);
6643
6644    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6645                       DAG.getConstant(12, MVT::i64));
6646    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2);
6647
6648    // Jump to the nested function.
6649    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
6650    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6651                       DAG.getConstant(20, MVT::i64));
6652    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6653                                Addr, TrmpAddr, 20);
6654
6655    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
6656    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6657                       DAG.getConstant(22, MVT::i64));
6658    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
6659                                TrmpAddr, 22);
6660
6661    SDValue Ops[] =
6662      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
6663    return DAG.getMergeValues(Ops, 2, dl);
6664  } else {
6665    const Function *Func =
6666      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
6667    CallingConv::ID CC = Func->getCallingConv();
6668    unsigned NestReg;
6669
6670    switch (CC) {
6671    default:
6672      llvm_unreachable("Unsupported calling convention");
6673    case CallingConv::C:
6674    case CallingConv::X86_StdCall: {
6675      // Pass 'nest' parameter in ECX.
6676      // Must be kept in sync with X86CallingConv.td
6677      NestReg = X86::ECX;
6678
6679      // Check that ECX wasn't needed by an 'inreg' parameter.
6680      const FunctionType *FTy = Func->getFunctionType();
6681      const AttrListPtr &Attrs = Func->getAttributes();
6682
6683      if (!Attrs.isEmpty() && !Func->isVarArg()) {
6684        unsigned InRegCount = 0;
6685        unsigned Idx = 1;
6686
6687        for (FunctionType::param_iterator I = FTy->param_begin(),
6688             E = FTy->param_end(); I != E; ++I, ++Idx)
6689          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
6690            // FIXME: should only count parameters that are lowered to integers.
6691            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
6692
6693        if (InRegCount > 2) {
6694          llvm_report_error("Nest register in use - reduce number of inreg parameters!");
6695        }
6696      }
6697      break;
6698    }
6699    case CallingConv::X86_FastCall:
6700    case CallingConv::Fast:
6701      // Pass 'nest' parameter in EAX.
6702      // Must be kept in sync with X86CallingConv.td
6703      NestReg = X86::EAX;
6704      break;
6705    }
6706
6707    SDValue OutChains[4];
6708    SDValue Addr, Disp;
6709
6710    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6711                       DAG.getConstant(10, MVT::i32));
6712    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
6713
6714    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
6715    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
6716    OutChains[0] = DAG.getStore(Root, dl,
6717                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6718                                Trmp, TrmpAddr, 0);
6719
6720    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6721                       DAG.getConstant(1, MVT::i32));
6722    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1);
6723
6724    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6725    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6726                       DAG.getConstant(5, MVT::i32));
6727    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
6728                                TrmpAddr, 5, false, 1);
6729
6730    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6731                       DAG.getConstant(6, MVT::i32));
6732    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1);
6733
6734    SDValue Ops[] =
6735      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
6736    return DAG.getMergeValues(Ops, 2, dl);
6737  }
6738}
6739
6740SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6741  /*
6742   The rounding mode is in bits 11:10 of FPSR, and has the following
6743   settings:
6744     00 Round to nearest
6745     01 Round to -inf
6746     10 Round to +inf
6747     11 Round to 0
6748
6749  FLT_ROUNDS, on the other hand, expects the following:
6750    -1 Undefined
6751     0 Round to 0
6752     1 Round to nearest
6753     2 Round to +inf
6754     3 Round to -inf
6755
6756  To perform the conversion, we do:
6757    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6758  */
6759
6760  MachineFunction &MF = DAG.getMachineFunction();
6761  const TargetMachine &TM = MF.getTarget();
6762  const TargetFrameInfo &TFI = *TM.getFrameInfo();
6763  unsigned StackAlignment = TFI.getStackAlignment();
6764  EVT VT = Op.getValueType();
6765  DebugLoc dl = Op.getDebugLoc();
6766
6767  // Save FP Control Word to stack slot
6768  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
6769  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6770
6771  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
6772                              DAG.getEntryNode(), StackSlot);
6773
6774  // Load FP Control Word from stack slot
6775  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0);
6776
6777  // Transform as necessary
6778  SDValue CWD1 =
6779    DAG.getNode(ISD::SRL, dl, MVT::i16,
6780                DAG.getNode(ISD::AND, dl, MVT::i16,
6781                            CWD, DAG.getConstant(0x800, MVT::i16)),
6782                DAG.getConstant(11, MVT::i8));
6783  SDValue CWD2 =
6784    DAG.getNode(ISD::SRL, dl, MVT::i16,
6785                DAG.getNode(ISD::AND, dl, MVT::i16,
6786                            CWD, DAG.getConstant(0x400, MVT::i16)),
6787                DAG.getConstant(9, MVT::i8));
6788
6789  SDValue RetVal =
6790    DAG.getNode(ISD::AND, dl, MVT::i16,
6791                DAG.getNode(ISD::ADD, dl, MVT::i16,
6792                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
6793                            DAG.getConstant(1, MVT::i16)),
6794                DAG.getConstant(3, MVT::i16));
6795
6796
6797  return DAG.getNode((VT.getSizeInBits() < 16 ?
6798                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6799}
6800
6801SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6802  EVT VT = Op.getValueType();
6803  EVT OpVT = VT;
6804  unsigned NumBits = VT.getSizeInBits();
6805  DebugLoc dl = Op.getDebugLoc();
6806
6807  Op = Op.getOperand(0);
6808  if (VT == MVT::i8) {
6809    // Zero extend to i32 since there is not an i8 bsr.
6810    OpVT = MVT::i32;
6811    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6812  }
6813
6814  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6815  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6816  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
6817
6818  // If src is zero (i.e. bsr sets ZF), returns NumBits.
6819  SmallVector<SDValue, 4> Ops;
6820  Ops.push_back(Op);
6821  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6822  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6823  Ops.push_back(Op.getValue(1));
6824  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6825
6826  // Finally xor with NumBits-1.
6827  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6828
6829  if (VT == MVT::i8)
6830    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6831  return Op;
6832}
6833
6834SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6835  EVT VT = Op.getValueType();
6836  EVT OpVT = VT;
6837  unsigned NumBits = VT.getSizeInBits();
6838  DebugLoc dl = Op.getDebugLoc();
6839
6840  Op = Op.getOperand(0);
6841  if (VT == MVT::i8) {
6842    OpVT = MVT::i32;
6843    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6844  }
6845
6846  // Issue a bsf (scan bits forward) which also sets EFLAGS.
6847  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6848  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
6849
6850  // If src is zero (i.e. bsf sets ZF), returns NumBits.
6851  SmallVector<SDValue, 4> Ops;
6852  Ops.push_back(Op);
6853  Ops.push_back(DAG.getConstant(NumBits, OpVT));
6854  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6855  Ops.push_back(Op.getValue(1));
6856  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6857
6858  if (VT == MVT::i8)
6859    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6860  return Op;
6861}
6862
6863SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6864  EVT VT = Op.getValueType();
6865  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6866  DebugLoc dl = Op.getDebugLoc();
6867
6868  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6869  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6870  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6871  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6872  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6873  //
6874  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6875  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6876  //  return AloBlo + AloBhi + AhiBlo;
6877
6878  SDValue A = Op.getOperand(0);
6879  SDValue B = Op.getOperand(1);
6880
6881  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6882                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6883                       A, DAG.getConstant(32, MVT::i32));
6884  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6885                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6886                       B, DAG.getConstant(32, MVT::i32));
6887  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6888                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6889                       A, B);
6890  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6891                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6892                       A, Bhi);
6893  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6894                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6895                       Ahi, B);
6896  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6897                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6898                       AloBhi, DAG.getConstant(32, MVT::i32));
6899  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6900                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6901                       AhiBlo, DAG.getConstant(32, MVT::i32));
6902  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
6903  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
6904  return Res;
6905}
6906
6907
6908SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6909  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6910  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6911  // looks for this combo and may remove the "setcc" instruction if the "setcc"
6912  // has only one use.
6913  SDNode *N = Op.getNode();
6914  SDValue LHS = N->getOperand(0);
6915  SDValue RHS = N->getOperand(1);
6916  unsigned BaseOp = 0;
6917  unsigned Cond = 0;
6918  DebugLoc dl = Op.getDebugLoc();
6919
6920  switch (Op.getOpcode()) {
6921  default: llvm_unreachable("Unknown ovf instruction!");
6922  case ISD::SADDO:
6923    // A subtract of one will be selected as a INC. Note that INC doesn't
6924    // set CF, so we can't do this for UADDO.
6925    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6926      if (C->getAPIntValue() == 1) {
6927        BaseOp = X86ISD::INC;
6928        Cond = X86::COND_O;
6929        break;
6930      }
6931    BaseOp = X86ISD::ADD;
6932    Cond = X86::COND_O;
6933    break;
6934  case ISD::UADDO:
6935    BaseOp = X86ISD::ADD;
6936    Cond = X86::COND_B;
6937    break;
6938  case ISD::SSUBO:
6939    // A subtract of one will be selected as a DEC. Note that DEC doesn't
6940    // set CF, so we can't do this for USUBO.
6941    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6942      if (C->getAPIntValue() == 1) {
6943        BaseOp = X86ISD::DEC;
6944        Cond = X86::COND_O;
6945        break;
6946      }
6947    BaseOp = X86ISD::SUB;
6948    Cond = X86::COND_O;
6949    break;
6950  case ISD::USUBO:
6951    BaseOp = X86ISD::SUB;
6952    Cond = X86::COND_B;
6953    break;
6954  case ISD::SMULO:
6955    BaseOp = X86ISD::SMUL;
6956    Cond = X86::COND_O;
6957    break;
6958  case ISD::UMULO:
6959    BaseOp = X86ISD::UMUL;
6960    Cond = X86::COND_B;
6961    break;
6962  }
6963
6964  // Also sets EFLAGS.
6965  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6966  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
6967
6968  SDValue SetCC =
6969    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
6970                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
6971
6972  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
6973  return Sum;
6974}
6975
6976SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6977  EVT T = Op.getValueType();
6978  DebugLoc dl = Op.getDebugLoc();
6979  unsigned Reg = 0;
6980  unsigned size = 0;
6981  switch(T.getSimpleVT().SimpleTy) {
6982  default:
6983    assert(false && "Invalid value type!");
6984  case MVT::i8:  Reg = X86::AL;  size = 1; break;
6985  case MVT::i16: Reg = X86::AX;  size = 2; break;
6986  case MVT::i32: Reg = X86::EAX; size = 4; break;
6987  case MVT::i64:
6988    assert(Subtarget->is64Bit() && "Node not type legal!");
6989    Reg = X86::RAX; size = 8;
6990    break;
6991  }
6992  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
6993                                    Op.getOperand(2), SDValue());
6994  SDValue Ops[] = { cpIn.getValue(0),
6995                    Op.getOperand(1),
6996                    Op.getOperand(3),
6997                    DAG.getTargetConstant(size, MVT::i8),
6998                    cpIn.getValue(1) };
6999  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7000  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7001  SDValue cpOut =
7002    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7003  return cpOut;
7004}
7005
7006SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7007                                                 SelectionDAG &DAG) {
7008  assert(Subtarget->is64Bit() && "Result not type legalized?");
7009  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7010  SDValue TheChain = Op.getOperand(0);
7011  DebugLoc dl = Op.getDebugLoc();
7012  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7013  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7014  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7015                                   rax.getValue(2));
7016  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7017                            DAG.getConstant(32, MVT::i8));
7018  SDValue Ops[] = {
7019    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7020    rdx.getValue(1)
7021  };
7022  return DAG.getMergeValues(Ops, 2, dl);
7023}
7024
7025SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
7026  SDNode *Node = Op.getNode();
7027  DebugLoc dl = Node->getDebugLoc();
7028  EVT T = Node->getValueType(0);
7029  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7030                              DAG.getConstant(0, T), Node->getOperand(2));
7031  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7032                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7033                       Node->getOperand(0),
7034                       Node->getOperand(1), negOp,
7035                       cast<AtomicSDNode>(Node)->getSrcValue(),
7036                       cast<AtomicSDNode>(Node)->getAlignment());
7037}
7038
7039/// LowerOperation - Provide custom lowering hooks for some operations.
7040///
7041SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
7042  switch (Op.getOpcode()) {
7043  default: llvm_unreachable("Should not custom lower this!");
7044  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7045  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7046  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7047  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7048  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7049  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7050  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7051  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7052  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7053  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7054  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7055  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7056  case ISD::SHL_PARTS:
7057  case ISD::SRA_PARTS:
7058  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7059  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7060  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7061  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7062  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7063  case ISD::FABS:               return LowerFABS(Op, DAG);
7064  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7065  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7066  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7067  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7068  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7069  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7070  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7071  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7072  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7073  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7074  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7075  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7076  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7077  case ISD::FRAME_TO_ARGS_OFFSET:
7078                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7079  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7080  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7081  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7082  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7083  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7084  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7085  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7086  case ISD::SADDO:
7087  case ISD::UADDO:
7088  case ISD::SSUBO:
7089  case ISD::USUBO:
7090  case ISD::SMULO:
7091  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7092  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7093  }
7094}
7095
7096void X86TargetLowering::
7097ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7098                        SelectionDAG &DAG, unsigned NewOp) {
7099  EVT T = Node->getValueType(0);
7100  DebugLoc dl = Node->getDebugLoc();
7101  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7102
7103  SDValue Chain = Node->getOperand(0);
7104  SDValue In1 = Node->getOperand(1);
7105  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7106                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7107  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7108                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7109  SDValue Ops[] = { Chain, In1, In2L, In2H };
7110  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7111  SDValue Result =
7112    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7113                            cast<MemSDNode>(Node)->getMemOperand());
7114  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7115  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7116  Results.push_back(Result.getValue(2));
7117}
7118
7119/// ReplaceNodeResults - Replace a node with an illegal result type
7120/// with a new node built out of custom code.
7121void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7122                                           SmallVectorImpl<SDValue>&Results,
7123                                           SelectionDAG &DAG) {
7124  DebugLoc dl = N->getDebugLoc();
7125  switch (N->getOpcode()) {
7126  default:
7127    assert(false && "Do not know how to custom type legalize this operation!");
7128    return;
7129  case ISD::FP_TO_SINT: {
7130    std::pair<SDValue,SDValue> Vals =
7131        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7132    SDValue FIST = Vals.first, StackSlot = Vals.second;
7133    if (FIST.getNode() != 0) {
7134      EVT VT = N->getValueType(0);
7135      // Return a load from the stack slot.
7136      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0));
7137    }
7138    return;
7139  }
7140  case ISD::READCYCLECOUNTER: {
7141    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7142    SDValue TheChain = N->getOperand(0);
7143    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7144    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7145                                     rd.getValue(1));
7146    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7147                                     eax.getValue(2));
7148    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7149    SDValue Ops[] = { eax, edx };
7150    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7151    Results.push_back(edx.getValue(1));
7152    return;
7153  }
7154  case ISD::ATOMIC_CMP_SWAP: {
7155    EVT T = N->getValueType(0);
7156    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7157    SDValue cpInL, cpInH;
7158    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7159                        DAG.getConstant(0, MVT::i32));
7160    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7161                        DAG.getConstant(1, MVT::i32));
7162    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7163    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7164                             cpInL.getValue(1));
7165    SDValue swapInL, swapInH;
7166    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7167                          DAG.getConstant(0, MVT::i32));
7168    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7169                          DAG.getConstant(1, MVT::i32));
7170    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7171                               cpInH.getValue(1));
7172    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7173                               swapInL.getValue(1));
7174    SDValue Ops[] = { swapInH.getValue(0),
7175                      N->getOperand(1),
7176                      swapInH.getValue(1) };
7177    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7178    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7179    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7180                                        MVT::i32, Result.getValue(1));
7181    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7182                                        MVT::i32, cpOutL.getValue(2));
7183    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7184    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7185    Results.push_back(cpOutH.getValue(1));
7186    return;
7187  }
7188  case ISD::ATOMIC_LOAD_ADD:
7189    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7190    return;
7191  case ISD::ATOMIC_LOAD_AND:
7192    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7193    return;
7194  case ISD::ATOMIC_LOAD_NAND:
7195    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7196    return;
7197  case ISD::ATOMIC_LOAD_OR:
7198    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7199    return;
7200  case ISD::ATOMIC_LOAD_SUB:
7201    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7202    return;
7203  case ISD::ATOMIC_LOAD_XOR:
7204    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7205    return;
7206  case ISD::ATOMIC_SWAP:
7207    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7208    return;
7209  }
7210}
7211
7212const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7213  switch (Opcode) {
7214  default: return NULL;
7215  case X86ISD::BSF:                return "X86ISD::BSF";
7216  case X86ISD::BSR:                return "X86ISD::BSR";
7217  case X86ISD::SHLD:               return "X86ISD::SHLD";
7218  case X86ISD::SHRD:               return "X86ISD::SHRD";
7219  case X86ISD::FAND:               return "X86ISD::FAND";
7220  case X86ISD::FOR:                return "X86ISD::FOR";
7221  case X86ISD::FXOR:               return "X86ISD::FXOR";
7222  case X86ISD::FSRL:               return "X86ISD::FSRL";
7223  case X86ISD::FILD:               return "X86ISD::FILD";
7224  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7225  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7226  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7227  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7228  case X86ISD::FLD:                return "X86ISD::FLD";
7229  case X86ISD::FST:                return "X86ISD::FST";
7230  case X86ISD::CALL:               return "X86ISD::CALL";
7231  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7232  case X86ISD::BT:                 return "X86ISD::BT";
7233  case X86ISD::CMP:                return "X86ISD::CMP";
7234  case X86ISD::COMI:               return "X86ISD::COMI";
7235  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7236  case X86ISD::SETCC:              return "X86ISD::SETCC";
7237  case X86ISD::CMOV:               return "X86ISD::CMOV";
7238  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7239  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7240  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7241  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7242  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7243  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7244  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
7245  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7246  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7247  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7248  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7249  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7250  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7251  case X86ISD::FMAX:               return "X86ISD::FMAX";
7252  case X86ISD::FMIN:               return "X86ISD::FMIN";
7253  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7254  case X86ISD::FRCP:               return "X86ISD::FRCP";
7255  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7256  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7257  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7258  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7259  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7260  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7261  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7262  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7263  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7264  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7265  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7266  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7267  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7268  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7269  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7270  case X86ISD::VSHL:               return "X86ISD::VSHL";
7271  case X86ISD::VSRL:               return "X86ISD::VSRL";
7272  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7273  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7274  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7275  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7276  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7277  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7278  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7279  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7280  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7281  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7282  case X86ISD::ADD:                return "X86ISD::ADD";
7283  case X86ISD::SUB:                return "X86ISD::SUB";
7284  case X86ISD::SMUL:               return "X86ISD::SMUL";
7285  case X86ISD::UMUL:               return "X86ISD::UMUL";
7286  case X86ISD::INC:                return "X86ISD::INC";
7287  case X86ISD::DEC:                return "X86ISD::DEC";
7288  case X86ISD::OR:                 return "X86ISD::OR";
7289  case X86ISD::XOR:                return "X86ISD::XOR";
7290  case X86ISD::AND:                return "X86ISD::AND";
7291  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
7292  case X86ISD::PTEST:              return "X86ISD::PTEST";
7293  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7294  }
7295}
7296
7297// isLegalAddressingMode - Return true if the addressing mode represented
7298// by AM is legal for this target, for a load/store of the specified type.
7299bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7300                                              const Type *Ty) const {
7301  // X86 supports extremely general addressing modes.
7302  CodeModel::Model M = getTargetMachine().getCodeModel();
7303
7304  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7305  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7306    return false;
7307
7308  if (AM.BaseGV) {
7309    unsigned GVFlags =
7310      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7311
7312    // If a reference to this global requires an extra load, we can't fold it.
7313    if (isGlobalStubReference(GVFlags))
7314      return false;
7315
7316    // If BaseGV requires a register for the PIC base, we cannot also have a
7317    // BaseReg specified.
7318    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7319      return false;
7320
7321    // If lower 4G is not available, then we must use rip-relative addressing.
7322    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7323      return false;
7324  }
7325
7326  switch (AM.Scale) {
7327  case 0:
7328  case 1:
7329  case 2:
7330  case 4:
7331  case 8:
7332    // These scales always work.
7333    break;
7334  case 3:
7335  case 5:
7336  case 9:
7337    // These scales are formed with basereg+scalereg.  Only accept if there is
7338    // no basereg yet.
7339    if (AM.HasBaseReg)
7340      return false;
7341    break;
7342  default:  // Other stuff never works.
7343    return false;
7344  }
7345
7346  return true;
7347}
7348
7349
7350bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7351  if (!Ty1->isInteger() || !Ty2->isInteger())
7352    return false;
7353  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7354  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7355  if (NumBits1 <= NumBits2)
7356    return false;
7357  return Subtarget->is64Bit() || NumBits1 < 64;
7358}
7359
7360bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7361  if (!VT1.isInteger() || !VT2.isInteger())
7362    return false;
7363  unsigned NumBits1 = VT1.getSizeInBits();
7364  unsigned NumBits2 = VT2.getSizeInBits();
7365  if (NumBits1 <= NumBits2)
7366    return false;
7367  return Subtarget->is64Bit() || NumBits1 < 64;
7368}
7369
7370bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7371  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7372  return Ty1 == Type::getInt32Ty(Ty1->getContext()) &&
7373         Ty2 == Type::getInt64Ty(Ty1->getContext()) && Subtarget->is64Bit();
7374}
7375
7376bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7377  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7378  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7379}
7380
7381bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
7382  // i16 instructions are longer (0x66 prefix) and potentially slower.
7383  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7384}
7385
7386/// isShuffleMaskLegal - Targets can use this to indicate that they only
7387/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7388/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7389/// are assumed to be legal.
7390bool
7391X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7392                                      EVT VT) const {
7393  // Only do shuffles on 128-bit vector types for now.
7394  if (VT.getSizeInBits() == 64)
7395    return false;
7396
7397  // FIXME: pshufb, blends, shifts.
7398  return (VT.getVectorNumElements() == 2 ||
7399          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7400          isMOVLMask(M, VT) ||
7401          isSHUFPMask(M, VT) ||
7402          isPSHUFDMask(M, VT) ||
7403          isPSHUFHWMask(M, VT) ||
7404          isPSHUFLWMask(M, VT) ||
7405          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
7406          isUNPCKLMask(M, VT) ||
7407          isUNPCKHMask(M, VT) ||
7408          isUNPCKL_v_undef_Mask(M, VT) ||
7409          isUNPCKH_v_undef_Mask(M, VT));
7410}
7411
7412bool
7413X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7414                                          EVT VT) const {
7415  unsigned NumElts = VT.getVectorNumElements();
7416  // FIXME: This collection of masks seems suspect.
7417  if (NumElts == 2)
7418    return true;
7419  if (NumElts == 4 && VT.getSizeInBits() == 128) {
7420    return (isMOVLMask(Mask, VT)  ||
7421            isCommutedMOVLMask(Mask, VT, true) ||
7422            isSHUFPMask(Mask, VT) ||
7423            isCommutedSHUFPMask(Mask, VT));
7424  }
7425  return false;
7426}
7427
7428//===----------------------------------------------------------------------===//
7429//                           X86 Scheduler Hooks
7430//===----------------------------------------------------------------------===//
7431
7432// private utility function
7433MachineBasicBlock *
7434X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7435                                                       MachineBasicBlock *MBB,
7436                                                       unsigned regOpc,
7437                                                       unsigned immOpc,
7438                                                       unsigned LoadOpc,
7439                                                       unsigned CXchgOpc,
7440                                                       unsigned copyOpc,
7441                                                       unsigned notOpc,
7442                                                       unsigned EAXreg,
7443                                                       TargetRegisterClass *RC,
7444                                                       bool invSrc) const {
7445  // For the atomic bitwise operator, we generate
7446  //   thisMBB:
7447  //   newMBB:
7448  //     ld  t1 = [bitinstr.addr]
7449  //     op  t2 = t1, [bitinstr.val]
7450  //     mov EAX = t1
7451  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7452  //     bz  newMBB
7453  //     fallthrough -->nextMBB
7454  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7455  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7456  MachineFunction::iterator MBBIter = MBB;
7457  ++MBBIter;
7458
7459  /// First build the CFG
7460  MachineFunction *F = MBB->getParent();
7461  MachineBasicBlock *thisMBB = MBB;
7462  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7463  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7464  F->insert(MBBIter, newMBB);
7465  F->insert(MBBIter, nextMBB);
7466
7467  // Move all successors to thisMBB to nextMBB
7468  nextMBB->transferSuccessors(thisMBB);
7469
7470  // Update thisMBB to fall through to newMBB
7471  thisMBB->addSuccessor(newMBB);
7472
7473  // newMBB jumps to itself and fall through to nextMBB
7474  newMBB->addSuccessor(nextMBB);
7475  newMBB->addSuccessor(newMBB);
7476
7477  // Insert instructions into newMBB based on incoming instruction
7478  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7479         "unexpected number of operands");
7480  DebugLoc dl = bInstr->getDebugLoc();
7481  MachineOperand& destOper = bInstr->getOperand(0);
7482  MachineOperand* argOpers[2 + X86AddrNumOperands];
7483  int numArgs = bInstr->getNumOperands() - 1;
7484  for (int i=0; i < numArgs; ++i)
7485    argOpers[i] = &bInstr->getOperand(i+1);
7486
7487  // x86 address has 4 operands: base, index, scale, and displacement
7488  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7489  int valArgIndx = lastAddrIndx + 1;
7490
7491  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7492  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7493  for (int i=0; i <= lastAddrIndx; ++i)
7494    (*MIB).addOperand(*argOpers[i]);
7495
7496  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7497  if (invSrc) {
7498    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7499  }
7500  else
7501    tt = t1;
7502
7503  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7504  assert((argOpers[valArgIndx]->isReg() ||
7505          argOpers[valArgIndx]->isImm()) &&
7506         "invalid operand");
7507  if (argOpers[valArgIndx]->isReg())
7508    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7509  else
7510    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7511  MIB.addReg(tt);
7512  (*MIB).addOperand(*argOpers[valArgIndx]);
7513
7514  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7515  MIB.addReg(t1);
7516
7517  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7518  for (int i=0; i <= lastAddrIndx; ++i)
7519    (*MIB).addOperand(*argOpers[i]);
7520  MIB.addReg(t2);
7521  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7522  (*MIB).setMemRefs(bInstr->memoperands_begin(),
7523                    bInstr->memoperands_end());
7524
7525  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7526  MIB.addReg(EAXreg);
7527
7528  // insert branch
7529  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7530
7531  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7532  return nextMBB;
7533}
7534
7535// private utility function:  64 bit atomics on 32 bit host.
7536MachineBasicBlock *
7537X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7538                                                       MachineBasicBlock *MBB,
7539                                                       unsigned regOpcL,
7540                                                       unsigned regOpcH,
7541                                                       unsigned immOpcL,
7542                                                       unsigned immOpcH,
7543                                                       bool invSrc) const {
7544  // For the atomic bitwise operator, we generate
7545  //   thisMBB (instructions are in pairs, except cmpxchg8b)
7546  //     ld t1,t2 = [bitinstr.addr]
7547  //   newMBB:
7548  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7549  //     op  t5, t6 <- out1, out2, [bitinstr.val]
7550  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
7551  //     mov ECX, EBX <- t5, t6
7552  //     mov EAX, EDX <- t1, t2
7553  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
7554  //     mov t3, t4 <- EAX, EDX
7555  //     bz  newMBB
7556  //     result in out1, out2
7557  //     fallthrough -->nextMBB
7558
7559  const TargetRegisterClass *RC = X86::GR32RegisterClass;
7560  const unsigned LoadOpc = X86::MOV32rm;
7561  const unsigned copyOpc = X86::MOV32rr;
7562  const unsigned NotOpc = X86::NOT32r;
7563  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7564  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7565  MachineFunction::iterator MBBIter = MBB;
7566  ++MBBIter;
7567
7568  /// First build the CFG
7569  MachineFunction *F = MBB->getParent();
7570  MachineBasicBlock *thisMBB = MBB;
7571  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7572  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7573  F->insert(MBBIter, newMBB);
7574  F->insert(MBBIter, nextMBB);
7575
7576  // Move all successors to thisMBB to nextMBB
7577  nextMBB->transferSuccessors(thisMBB);
7578
7579  // Update thisMBB to fall through to newMBB
7580  thisMBB->addSuccessor(newMBB);
7581
7582  // newMBB jumps to itself and fall through to nextMBB
7583  newMBB->addSuccessor(nextMBB);
7584  newMBB->addSuccessor(newMBB);
7585
7586  DebugLoc dl = bInstr->getDebugLoc();
7587  // Insert instructions into newMBB based on incoming instruction
7588  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7589  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
7590         "unexpected number of operands");
7591  MachineOperand& dest1Oper = bInstr->getOperand(0);
7592  MachineOperand& dest2Oper = bInstr->getOperand(1);
7593  MachineOperand* argOpers[2 + X86AddrNumOperands];
7594  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
7595    argOpers[i] = &bInstr->getOperand(i+2);
7596
7597  // x86 address has 4 operands: base, index, scale, and displacement
7598  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7599
7600  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7601  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
7602  for (int i=0; i <= lastAddrIndx; ++i)
7603    (*MIB).addOperand(*argOpers[i]);
7604  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7605  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
7606  // add 4 to displacement.
7607  for (int i=0; i <= lastAddrIndx-2; ++i)
7608    (*MIB).addOperand(*argOpers[i]);
7609  MachineOperand newOp3 = *(argOpers[3]);
7610  if (newOp3.isImm())
7611    newOp3.setImm(newOp3.getImm()+4);
7612  else
7613    newOp3.setOffset(newOp3.getOffset()+4);
7614  (*MIB).addOperand(newOp3);
7615  (*MIB).addOperand(*argOpers[lastAddrIndx]);
7616
7617  // t3/4 are defined later, at the bottom of the loop
7618  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
7619  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
7620  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
7621    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
7622  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
7623    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
7624
7625  unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
7626  unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
7627  if (invSrc) {
7628    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1);
7629    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2);
7630  } else {
7631    tt1 = t1;
7632    tt2 = t2;
7633  }
7634
7635  int valArgIndx = lastAddrIndx + 1;
7636  assert((argOpers[valArgIndx]->isReg() ||
7637          argOpers[valArgIndx]->isImm()) &&
7638         "invalid operand");
7639  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
7640  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
7641  if (argOpers[valArgIndx]->isReg())
7642    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
7643  else
7644    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
7645  if (regOpcL != X86::MOV32rr)
7646    MIB.addReg(tt1);
7647  (*MIB).addOperand(*argOpers[valArgIndx]);
7648  assert(argOpers[valArgIndx + 1]->isReg() ==
7649         argOpers[valArgIndx]->isReg());
7650  assert(argOpers[valArgIndx + 1]->isImm() ==
7651         argOpers[valArgIndx]->isImm());
7652  if (argOpers[valArgIndx + 1]->isReg())
7653    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
7654  else
7655    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
7656  if (regOpcH != X86::MOV32rr)
7657    MIB.addReg(tt2);
7658  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
7659
7660  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
7661  MIB.addReg(t1);
7662  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
7663  MIB.addReg(t2);
7664
7665  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
7666  MIB.addReg(t5);
7667  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
7668  MIB.addReg(t6);
7669
7670  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
7671  for (int i=0; i <= lastAddrIndx; ++i)
7672    (*MIB).addOperand(*argOpers[i]);
7673
7674  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7675  (*MIB).setMemRefs(bInstr->memoperands_begin(),
7676                    bInstr->memoperands_end());
7677
7678  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
7679  MIB.addReg(X86::EAX);
7680  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
7681  MIB.addReg(X86::EDX);
7682
7683  // insert branch
7684  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7685
7686  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7687  return nextMBB;
7688}
7689
7690// private utility function
7691MachineBasicBlock *
7692X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
7693                                                      MachineBasicBlock *MBB,
7694                                                      unsigned cmovOpc) const {
7695  // For the atomic min/max operator, we generate
7696  //   thisMBB:
7697  //   newMBB:
7698  //     ld t1 = [min/max.addr]
7699  //     mov t2 = [min/max.val]
7700  //     cmp  t1, t2
7701  //     cmov[cond] t2 = t1
7702  //     mov EAX = t1
7703  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7704  //     bz   newMBB
7705  //     fallthrough -->nextMBB
7706  //
7707  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7708  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7709  MachineFunction::iterator MBBIter = MBB;
7710  ++MBBIter;
7711
7712  /// First build the CFG
7713  MachineFunction *F = MBB->getParent();
7714  MachineBasicBlock *thisMBB = MBB;
7715  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7716  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7717  F->insert(MBBIter, newMBB);
7718  F->insert(MBBIter, nextMBB);
7719
7720  // Move all successors of thisMBB to nextMBB
7721  nextMBB->transferSuccessors(thisMBB);
7722
7723  // Update thisMBB to fall through to newMBB
7724  thisMBB->addSuccessor(newMBB);
7725
7726  // newMBB jumps to newMBB and fall through to nextMBB
7727  newMBB->addSuccessor(nextMBB);
7728  newMBB->addSuccessor(newMBB);
7729
7730  DebugLoc dl = mInstr->getDebugLoc();
7731  // Insert instructions into newMBB based on incoming instruction
7732  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7733         "unexpected number of operands");
7734  MachineOperand& destOper = mInstr->getOperand(0);
7735  MachineOperand* argOpers[2 + X86AddrNumOperands];
7736  int numArgs = mInstr->getNumOperands() - 1;
7737  for (int i=0; i < numArgs; ++i)
7738    argOpers[i] = &mInstr->getOperand(i+1);
7739
7740  // x86 address has 4 operands: base, index, scale, and displacement
7741  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7742  int valArgIndx = lastAddrIndx + 1;
7743
7744  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7745  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
7746  for (int i=0; i <= lastAddrIndx; ++i)
7747    (*MIB).addOperand(*argOpers[i]);
7748
7749  // We only support register and immediate values
7750  assert((argOpers[valArgIndx]->isReg() ||
7751          argOpers[valArgIndx]->isImm()) &&
7752         "invalid operand");
7753
7754  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7755  if (argOpers[valArgIndx]->isReg())
7756    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7757  else
7758    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7759  (*MIB).addOperand(*argOpers[valArgIndx]);
7760
7761  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
7762  MIB.addReg(t1);
7763
7764  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
7765  MIB.addReg(t1);
7766  MIB.addReg(t2);
7767
7768  // Generate movc
7769  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7770  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
7771  MIB.addReg(t2);
7772  MIB.addReg(t1);
7773
7774  // Cmp and exchange if none has modified the memory location
7775  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
7776  for (int i=0; i <= lastAddrIndx; ++i)
7777    (*MIB).addOperand(*argOpers[i]);
7778  MIB.addReg(t3);
7779  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7780  (*MIB).setMemRefs(mInstr->memoperands_begin(),
7781                    mInstr->memoperands_end());
7782
7783  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
7784  MIB.addReg(X86::EAX);
7785
7786  // insert branch
7787  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7788
7789  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
7790  return nextMBB;
7791}
7792
7793// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
7794// all of this code can be replaced with that in the .td file.
7795MachineBasicBlock *
7796X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
7797                            unsigned numArgs, bool memArg) const {
7798
7799  MachineFunction *F = BB->getParent();
7800  DebugLoc dl = MI->getDebugLoc();
7801  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7802
7803  unsigned Opc;
7804  if (memArg)
7805    Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
7806  else
7807    Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
7808
7809  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
7810
7811  for (unsigned i = 0; i < numArgs; ++i) {
7812    MachineOperand &Op = MI->getOperand(i+1);
7813
7814    if (!(Op.isReg() && Op.isImplicit()))
7815      MIB.addOperand(Op);
7816  }
7817
7818  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
7819    .addReg(X86::XMM0);
7820
7821  F->DeleteMachineInstr(MI);
7822
7823  return BB;
7824}
7825
7826MachineBasicBlock *
7827X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
7828                                                 MachineInstr *MI,
7829                                                 MachineBasicBlock *MBB) const {
7830  // Emit code to save XMM registers to the stack. The ABI says that the
7831  // number of registers to save is given in %al, so it's theoretically
7832  // possible to do an indirect jump trick to avoid saving all of them,
7833  // however this code takes a simpler approach and just executes all
7834  // of the stores if %al is non-zero. It's less code, and it's probably
7835  // easier on the hardware branch predictor, and stores aren't all that
7836  // expensive anyway.
7837
7838  // Create the new basic blocks. One block contains all the XMM stores,
7839  // and one block is the final destination regardless of whether any
7840  // stores were performed.
7841  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7842  MachineFunction *F = MBB->getParent();
7843  MachineFunction::iterator MBBIter = MBB;
7844  ++MBBIter;
7845  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
7846  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
7847  F->insert(MBBIter, XMMSaveMBB);
7848  F->insert(MBBIter, EndMBB);
7849
7850  // Set up the CFG.
7851  // Move any original successors of MBB to the end block.
7852  EndMBB->transferSuccessors(MBB);
7853  // The original block will now fall through to the XMM save block.
7854  MBB->addSuccessor(XMMSaveMBB);
7855  // The XMMSaveMBB will fall through to the end block.
7856  XMMSaveMBB->addSuccessor(EndMBB);
7857
7858  // Now add the instructions.
7859  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7860  DebugLoc DL = MI->getDebugLoc();
7861
7862  unsigned CountReg = MI->getOperand(0).getReg();
7863  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
7864  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
7865
7866  if (!Subtarget->isTargetWin64()) {
7867    // If %al is 0, branch around the XMM save block.
7868    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
7869    BuildMI(MBB, DL, TII->get(X86::JE)).addMBB(EndMBB);
7870    MBB->addSuccessor(EndMBB);
7871  }
7872
7873  // In the XMM save block, save all the XMM argument registers.
7874  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
7875    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
7876    MachineMemOperand *MMO =
7877      F->getMachineMemOperand(
7878        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
7879        MachineMemOperand::MOStore, Offset,
7880        /*Size=*/16, /*Align=*/16);
7881    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
7882      .addFrameIndex(RegSaveFrameIndex)
7883      .addImm(/*Scale=*/1)
7884      .addReg(/*IndexReg=*/0)
7885      .addImm(/*Disp=*/Offset)
7886      .addReg(/*Segment=*/0)
7887      .addReg(MI->getOperand(i).getReg())
7888      .addMemOperand(MMO);
7889  }
7890
7891  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7892
7893  return EndMBB;
7894}
7895
7896MachineBasicBlock *
7897X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
7898                                     MachineBasicBlock *BB,
7899                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
7900  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7901  DebugLoc DL = MI->getDebugLoc();
7902
7903  // To "insert" a SELECT_CC instruction, we actually have to insert the
7904  // diamond control-flow pattern.  The incoming instruction knows the
7905  // destination vreg to set, the condition code register to branch on, the
7906  // true/false values to select between, and a branch opcode to use.
7907  const BasicBlock *LLVM_BB = BB->getBasicBlock();
7908  MachineFunction::iterator It = BB;
7909  ++It;
7910
7911  //  thisMBB:
7912  //  ...
7913  //   TrueVal = ...
7914  //   cmpTY ccX, r1, r2
7915  //   bCC copy1MBB
7916  //   fallthrough --> copy0MBB
7917  MachineBasicBlock *thisMBB = BB;
7918  MachineFunction *F = BB->getParent();
7919  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7920  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7921  unsigned Opc =
7922    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7923  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
7924  F->insert(It, copy0MBB);
7925  F->insert(It, sinkMBB);
7926  // Update machine-CFG edges by first adding all successors of the current
7927  // block to the new block which will contain the Phi node for the select.
7928  // Also inform sdisel of the edge changes.
7929  for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
7930         E = BB->succ_end(); I != E; ++I) {
7931    EM->insert(std::make_pair(*I, sinkMBB));
7932    sinkMBB->addSuccessor(*I);
7933  }
7934  // Next, remove all successors of the current block, and add the true
7935  // and fallthrough blocks as its successors.
7936  while (!BB->succ_empty())
7937    BB->removeSuccessor(BB->succ_begin());
7938  // Add the true and fallthrough blocks as its successors.
7939  BB->addSuccessor(copy0MBB);
7940  BB->addSuccessor(sinkMBB);
7941
7942  //  copy0MBB:
7943  //   %FalseValue = ...
7944  //   # fallthrough to sinkMBB
7945  BB = copy0MBB;
7946
7947  // Update machine-CFG edges
7948  BB->addSuccessor(sinkMBB);
7949
7950  //  sinkMBB:
7951  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7952  //  ...
7953  BB = sinkMBB;
7954  BuildMI(BB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg())
7955    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7956    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7957
7958  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7959  return BB;
7960}
7961
7962
7963MachineBasicBlock *
7964X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7965                                               MachineBasicBlock *BB,
7966                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
7967  switch (MI->getOpcode()) {
7968  default: assert(false && "Unexpected instr type to insert");
7969  case X86::CMOV_GR8:
7970  case X86::CMOV_V1I64:
7971  case X86::CMOV_FR32:
7972  case X86::CMOV_FR64:
7973  case X86::CMOV_V4F32:
7974  case X86::CMOV_V2F64:
7975  case X86::CMOV_V2I64:
7976    return EmitLoweredSelect(MI, BB, EM);
7977
7978  case X86::FP32_TO_INT16_IN_MEM:
7979  case X86::FP32_TO_INT32_IN_MEM:
7980  case X86::FP32_TO_INT64_IN_MEM:
7981  case X86::FP64_TO_INT16_IN_MEM:
7982  case X86::FP64_TO_INT32_IN_MEM:
7983  case X86::FP64_TO_INT64_IN_MEM:
7984  case X86::FP80_TO_INT16_IN_MEM:
7985  case X86::FP80_TO_INT32_IN_MEM:
7986  case X86::FP80_TO_INT64_IN_MEM: {
7987    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7988    DebugLoc DL = MI->getDebugLoc();
7989
7990    // Change the floating point control register to use "round towards zero"
7991    // mode when truncating to an integer value.
7992    MachineFunction *F = BB->getParent();
7993    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
7994    addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx);
7995
7996    // Load the old value of the high byte of the control word...
7997    unsigned OldCW =
7998      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
7999    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW),
8000                      CWFrameIdx);
8001
8002    // Set the high part to be round to zero...
8003    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
8004      .addImm(0xC7F);
8005
8006    // Reload the modified control word now...
8007    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8008
8009    // Restore the memory image of control word to original value
8010    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
8011      .addReg(OldCW);
8012
8013    // Get the X86 opcode to use.
8014    unsigned Opc;
8015    switch (MI->getOpcode()) {
8016    default: llvm_unreachable("illegal opcode!");
8017    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
8018    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
8019    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
8020    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
8021    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
8022    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
8023    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
8024    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
8025    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
8026    }
8027
8028    X86AddressMode AM;
8029    MachineOperand &Op = MI->getOperand(0);
8030    if (Op.isReg()) {
8031      AM.BaseType = X86AddressMode::RegBase;
8032      AM.Base.Reg = Op.getReg();
8033    } else {
8034      AM.BaseType = X86AddressMode::FrameIndexBase;
8035      AM.Base.FrameIndex = Op.getIndex();
8036    }
8037    Op = MI->getOperand(1);
8038    if (Op.isImm())
8039      AM.Scale = Op.getImm();
8040    Op = MI->getOperand(2);
8041    if (Op.isImm())
8042      AM.IndexReg = Op.getImm();
8043    Op = MI->getOperand(3);
8044    if (Op.isGlobal()) {
8045      AM.GV = Op.getGlobal();
8046    } else {
8047      AM.Disp = Op.getImm();
8048    }
8049    addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM)
8050                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
8051
8052    // Reload the original control word now.
8053    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8054
8055    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8056    return BB;
8057  }
8058    // String/text processing lowering.
8059  case X86::PCMPISTRM128REG:
8060    return EmitPCMP(MI, BB, 3, false /* in-mem */);
8061  case X86::PCMPISTRM128MEM:
8062    return EmitPCMP(MI, BB, 3, true /* in-mem */);
8063  case X86::PCMPESTRM128REG:
8064    return EmitPCMP(MI, BB, 5, false /* in mem */);
8065  case X86::PCMPESTRM128MEM:
8066    return EmitPCMP(MI, BB, 5, true /* in mem */);
8067
8068    // Atomic Lowering.
8069  case X86::ATOMAND32:
8070    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8071                                               X86::AND32ri, X86::MOV32rm,
8072                                               X86::LCMPXCHG32, X86::MOV32rr,
8073                                               X86::NOT32r, X86::EAX,
8074                                               X86::GR32RegisterClass);
8075  case X86::ATOMOR32:
8076    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
8077                                               X86::OR32ri, X86::MOV32rm,
8078                                               X86::LCMPXCHG32, X86::MOV32rr,
8079                                               X86::NOT32r, X86::EAX,
8080                                               X86::GR32RegisterClass);
8081  case X86::ATOMXOR32:
8082    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
8083                                               X86::XOR32ri, X86::MOV32rm,
8084                                               X86::LCMPXCHG32, X86::MOV32rr,
8085                                               X86::NOT32r, X86::EAX,
8086                                               X86::GR32RegisterClass);
8087  case X86::ATOMNAND32:
8088    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8089                                               X86::AND32ri, X86::MOV32rm,
8090                                               X86::LCMPXCHG32, X86::MOV32rr,
8091                                               X86::NOT32r, X86::EAX,
8092                                               X86::GR32RegisterClass, true);
8093  case X86::ATOMMIN32:
8094    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
8095  case X86::ATOMMAX32:
8096    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
8097  case X86::ATOMUMIN32:
8098    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
8099  case X86::ATOMUMAX32:
8100    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
8101
8102  case X86::ATOMAND16:
8103    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8104                                               X86::AND16ri, X86::MOV16rm,
8105                                               X86::LCMPXCHG16, X86::MOV16rr,
8106                                               X86::NOT16r, X86::AX,
8107                                               X86::GR16RegisterClass);
8108  case X86::ATOMOR16:
8109    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
8110                                               X86::OR16ri, X86::MOV16rm,
8111                                               X86::LCMPXCHG16, X86::MOV16rr,
8112                                               X86::NOT16r, X86::AX,
8113                                               X86::GR16RegisterClass);
8114  case X86::ATOMXOR16:
8115    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
8116                                               X86::XOR16ri, X86::MOV16rm,
8117                                               X86::LCMPXCHG16, X86::MOV16rr,
8118                                               X86::NOT16r, X86::AX,
8119                                               X86::GR16RegisterClass);
8120  case X86::ATOMNAND16:
8121    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8122                                               X86::AND16ri, X86::MOV16rm,
8123                                               X86::LCMPXCHG16, X86::MOV16rr,
8124                                               X86::NOT16r, X86::AX,
8125                                               X86::GR16RegisterClass, true);
8126  case X86::ATOMMIN16:
8127    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
8128  case X86::ATOMMAX16:
8129    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
8130  case X86::ATOMUMIN16:
8131    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
8132  case X86::ATOMUMAX16:
8133    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
8134
8135  case X86::ATOMAND8:
8136    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8137                                               X86::AND8ri, X86::MOV8rm,
8138                                               X86::LCMPXCHG8, X86::MOV8rr,
8139                                               X86::NOT8r, X86::AL,
8140                                               X86::GR8RegisterClass);
8141  case X86::ATOMOR8:
8142    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
8143                                               X86::OR8ri, X86::MOV8rm,
8144                                               X86::LCMPXCHG8, X86::MOV8rr,
8145                                               X86::NOT8r, X86::AL,
8146                                               X86::GR8RegisterClass);
8147  case X86::ATOMXOR8:
8148    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
8149                                               X86::XOR8ri, X86::MOV8rm,
8150                                               X86::LCMPXCHG8, X86::MOV8rr,
8151                                               X86::NOT8r, X86::AL,
8152                                               X86::GR8RegisterClass);
8153  case X86::ATOMNAND8:
8154    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8155                                               X86::AND8ri, X86::MOV8rm,
8156                                               X86::LCMPXCHG8, X86::MOV8rr,
8157                                               X86::NOT8r, X86::AL,
8158                                               X86::GR8RegisterClass, true);
8159  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
8160  // This group is for 64-bit host.
8161  case X86::ATOMAND64:
8162    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8163                                               X86::AND64ri32, X86::MOV64rm,
8164                                               X86::LCMPXCHG64, X86::MOV64rr,
8165                                               X86::NOT64r, X86::RAX,
8166                                               X86::GR64RegisterClass);
8167  case X86::ATOMOR64:
8168    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
8169                                               X86::OR64ri32, X86::MOV64rm,
8170                                               X86::LCMPXCHG64, X86::MOV64rr,
8171                                               X86::NOT64r, X86::RAX,
8172                                               X86::GR64RegisterClass);
8173  case X86::ATOMXOR64:
8174    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
8175                                               X86::XOR64ri32, X86::MOV64rm,
8176                                               X86::LCMPXCHG64, X86::MOV64rr,
8177                                               X86::NOT64r, X86::RAX,
8178                                               X86::GR64RegisterClass);
8179  case X86::ATOMNAND64:
8180    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8181                                               X86::AND64ri32, X86::MOV64rm,
8182                                               X86::LCMPXCHG64, X86::MOV64rr,
8183                                               X86::NOT64r, X86::RAX,
8184                                               X86::GR64RegisterClass, true);
8185  case X86::ATOMMIN64:
8186    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
8187  case X86::ATOMMAX64:
8188    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
8189  case X86::ATOMUMIN64:
8190    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
8191  case X86::ATOMUMAX64:
8192    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
8193
8194  // This group does 64-bit operations on a 32-bit host.
8195  case X86::ATOMAND6432:
8196    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8197                                               X86::AND32rr, X86::AND32rr,
8198                                               X86::AND32ri, X86::AND32ri,
8199                                               false);
8200  case X86::ATOMOR6432:
8201    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8202                                               X86::OR32rr, X86::OR32rr,
8203                                               X86::OR32ri, X86::OR32ri,
8204                                               false);
8205  case X86::ATOMXOR6432:
8206    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8207                                               X86::XOR32rr, X86::XOR32rr,
8208                                               X86::XOR32ri, X86::XOR32ri,
8209                                               false);
8210  case X86::ATOMNAND6432:
8211    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8212                                               X86::AND32rr, X86::AND32rr,
8213                                               X86::AND32ri, X86::AND32ri,
8214                                               true);
8215  case X86::ATOMADD6432:
8216    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8217                                               X86::ADD32rr, X86::ADC32rr,
8218                                               X86::ADD32ri, X86::ADC32ri,
8219                                               false);
8220  case X86::ATOMSUB6432:
8221    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8222                                               X86::SUB32rr, X86::SBB32rr,
8223                                               X86::SUB32ri, X86::SBB32ri,
8224                                               false);
8225  case X86::ATOMSWAP6432:
8226    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8227                                               X86::MOV32rr, X86::MOV32rr,
8228                                               X86::MOV32ri, X86::MOV32ri,
8229                                               false);
8230  case X86::VASTART_SAVE_XMM_REGS:
8231    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
8232  }
8233}
8234
8235//===----------------------------------------------------------------------===//
8236//                           X86 Optimization Hooks
8237//===----------------------------------------------------------------------===//
8238
8239void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8240                                                       const APInt &Mask,
8241                                                       APInt &KnownZero,
8242                                                       APInt &KnownOne,
8243                                                       const SelectionDAG &DAG,
8244                                                       unsigned Depth) const {
8245  unsigned Opc = Op.getOpcode();
8246  assert((Opc >= ISD::BUILTIN_OP_END ||
8247          Opc == ISD::INTRINSIC_WO_CHAIN ||
8248          Opc == ISD::INTRINSIC_W_CHAIN ||
8249          Opc == ISD::INTRINSIC_VOID) &&
8250         "Should use MaskedValueIsZero if you don't know whether Op"
8251         " is a target node!");
8252
8253  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
8254  switch (Opc) {
8255  default: break;
8256  case X86ISD::ADD:
8257  case X86ISD::SUB:
8258  case X86ISD::SMUL:
8259  case X86ISD::UMUL:
8260  case X86ISD::INC:
8261  case X86ISD::DEC:
8262  case X86ISD::OR:
8263  case X86ISD::XOR:
8264  case X86ISD::AND:
8265    // These nodes' second result is a boolean.
8266    if (Op.getResNo() == 0)
8267      break;
8268    // Fallthrough
8269  case X86ISD::SETCC:
8270    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8271                                       Mask.getBitWidth() - 1);
8272    break;
8273  }
8274}
8275
8276/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8277/// node is a GlobalAddress + offset.
8278bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8279                                       GlobalValue* &GA, int64_t &Offset) const{
8280  if (N->getOpcode() == X86ISD::Wrapper) {
8281    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8282      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8283      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8284      return true;
8285    }
8286  }
8287  return TargetLowering::isGAPlusOffset(N, GA, Offset);
8288}
8289
8290static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
8291                               const TargetLowering &TLI) {
8292  GlobalValue *GV;
8293  int64_t Offset = 0;
8294  if (TLI.isGAPlusOffset(Base, GV, Offset))
8295    return (GV->getAlignment() >= N && (Offset % N) == 0);
8296  // DAG combine handles the stack object case.
8297  return false;
8298}
8299
8300static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
8301                                     EVT EltVT, LoadSDNode *&LDBase,
8302                                     unsigned &LastLoadedElt,
8303                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
8304                                     const TargetLowering &TLI) {
8305  LDBase = NULL;
8306  LastLoadedElt = -1U;
8307  for (unsigned i = 0; i < NumElems; ++i) {
8308    if (N->getMaskElt(i) < 0) {
8309      if (!LDBase)
8310        return false;
8311      continue;
8312    }
8313
8314    SDValue Elt = DAG.getShuffleScalarElt(N, i);
8315    if (!Elt.getNode() ||
8316        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
8317      return false;
8318    if (!LDBase) {
8319      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
8320        return false;
8321      LDBase = cast<LoadSDNode>(Elt.getNode());
8322      LastLoadedElt = i;
8323      continue;
8324    }
8325    if (Elt.getOpcode() == ISD::UNDEF)
8326      continue;
8327
8328    LoadSDNode *LD = cast<LoadSDNode>(Elt);
8329    if (!TLI.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i, MFI))
8330      return false;
8331    LastLoadedElt = i;
8332  }
8333  return true;
8334}
8335
8336/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8337/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8338/// if the load addresses are consecutive, non-overlapping, and in the right
8339/// order.  In the case of v2i64, it will see if it can rewrite the
8340/// shuffle to be an appropriate build vector so it can take advantage of
8341// performBuildVectorCombine.
8342static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8343                                     const TargetLowering &TLI) {
8344  DebugLoc dl = N->getDebugLoc();
8345  EVT VT = N->getValueType(0);
8346  EVT EltVT = VT.getVectorElementType();
8347  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8348  unsigned NumElems = VT.getVectorNumElements();
8349
8350  if (VT.getSizeInBits() != 128)
8351    return SDValue();
8352
8353  // Try to combine a vector_shuffle into a 128-bit load.
8354  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8355  LoadSDNode *LD = NULL;
8356  unsigned LastLoadedElt;
8357  if (!EltsFromConsecutiveLoads(SVN, NumElems, EltVT, LD, LastLoadedElt, DAG,
8358                                MFI, TLI))
8359    return SDValue();
8360
8361  if (LastLoadedElt == NumElems - 1) {
8362    if (isBaseAlignmentOfN(16, LD->getBasePtr().getNode(), TLI))
8363      return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8364                         LD->getSrcValue(), LD->getSrcValueOffset(),
8365                         LD->isVolatile());
8366    return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8367                       LD->getSrcValue(), LD->getSrcValueOffset(),
8368                       LD->isVolatile(), LD->getAlignment());
8369  } else if (NumElems == 4 && LastLoadedElt == 1) {
8370    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
8371    SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
8372    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
8373    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
8374  }
8375  return SDValue();
8376}
8377
8378/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8379static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
8380                                    const X86Subtarget *Subtarget) {
8381  DebugLoc DL = N->getDebugLoc();
8382  SDValue Cond = N->getOperand(0);
8383  // Get the LHS/RHS of the select.
8384  SDValue LHS = N->getOperand(1);
8385  SDValue RHS = N->getOperand(2);
8386
8387  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
8388  // instructions have the peculiarity that if either operand is a NaN,
8389  // they chose what we call the RHS operand (and as such are not symmetric).
8390  // It happens that this matches the semantics of the common C idiom
8391  // x<y?x:y and related forms, so we can recognize these cases.
8392  if (Subtarget->hasSSE2() &&
8393      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
8394      Cond.getOpcode() == ISD::SETCC) {
8395    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
8396
8397    unsigned Opcode = 0;
8398    // Check for x CC y ? x : y.
8399    if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
8400      switch (CC) {
8401      default: break;
8402      case ISD::SETULT:
8403        // This can be a min if we can prove that at least one of the operands
8404        // is not a nan.
8405        if (!FiniteOnlyFPMath()) {
8406          if (DAG.isKnownNeverNaN(RHS)) {
8407            // Put the potential NaN in the RHS so that SSE will preserve it.
8408            std::swap(LHS, RHS);
8409          } else if (!DAG.isKnownNeverNaN(LHS))
8410            break;
8411        }
8412        Opcode = X86ISD::FMIN;
8413        break;
8414      case ISD::SETOLE:
8415        // This can be a min if we can prove that at least one of the operands
8416        // is not a nan.
8417        if (!FiniteOnlyFPMath()) {
8418          if (DAG.isKnownNeverNaN(LHS)) {
8419            // Put the potential NaN in the RHS so that SSE will preserve it.
8420            std::swap(LHS, RHS);
8421          } else if (!DAG.isKnownNeverNaN(RHS))
8422            break;
8423        }
8424        Opcode = X86ISD::FMIN;
8425        break;
8426      case ISD::SETULE:
8427        // This can be a min, but if either operand is a NaN we need it to
8428        // preserve the original LHS.
8429        std::swap(LHS, RHS);
8430      case ISD::SETOLT:
8431      case ISD::SETLT:
8432      case ISD::SETLE:
8433        Opcode = X86ISD::FMIN;
8434        break;
8435
8436      case ISD::SETOGE:
8437        // This can be a max if we can prove that at least one of the operands
8438        // is not a nan.
8439        if (!FiniteOnlyFPMath()) {
8440          if (DAG.isKnownNeverNaN(LHS)) {
8441            // Put the potential NaN in the RHS so that SSE will preserve it.
8442            std::swap(LHS, RHS);
8443          } else if (!DAG.isKnownNeverNaN(RHS))
8444            break;
8445        }
8446        Opcode = X86ISD::FMAX;
8447        break;
8448      case ISD::SETUGT:
8449        // This can be a max if we can prove that at least one of the operands
8450        // is not a nan.
8451        if (!FiniteOnlyFPMath()) {
8452          if (DAG.isKnownNeverNaN(RHS)) {
8453            // Put the potential NaN in the RHS so that SSE will preserve it.
8454            std::swap(LHS, RHS);
8455          } else if (!DAG.isKnownNeverNaN(LHS))
8456            break;
8457        }
8458        Opcode = X86ISD::FMAX;
8459        break;
8460      case ISD::SETUGE:
8461        // This can be a max, but if either operand is a NaN we need it to
8462        // preserve the original LHS.
8463        std::swap(LHS, RHS);
8464      case ISD::SETOGT:
8465      case ISD::SETGT:
8466      case ISD::SETGE:
8467        Opcode = X86ISD::FMAX;
8468        break;
8469      }
8470    // Check for x CC y ? y : x -- a min/max with reversed arms.
8471    } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
8472      switch (CC) {
8473      default: break;
8474      case ISD::SETOGE:
8475        // This can be a min if we can prove that at least one of the operands
8476        // is not a nan.
8477        if (!FiniteOnlyFPMath()) {
8478          if (DAG.isKnownNeverNaN(RHS)) {
8479            // Put the potential NaN in the RHS so that SSE will preserve it.
8480            std::swap(LHS, RHS);
8481          } else if (!DAG.isKnownNeverNaN(LHS))
8482            break;
8483        }
8484        Opcode = X86ISD::FMIN;
8485        break;
8486      case ISD::SETUGT:
8487        // This can be a min if we can prove that at least one of the operands
8488        // is not a nan.
8489        if (!FiniteOnlyFPMath()) {
8490          if (DAG.isKnownNeverNaN(LHS)) {
8491            // Put the potential NaN in the RHS so that SSE will preserve it.
8492            std::swap(LHS, RHS);
8493          } else if (!DAG.isKnownNeverNaN(RHS))
8494            break;
8495        }
8496        Opcode = X86ISD::FMIN;
8497        break;
8498      case ISD::SETUGE:
8499        // This can be a min, but if either operand is a NaN we need it to
8500        // preserve the original LHS.
8501        std::swap(LHS, RHS);
8502      case ISD::SETOGT:
8503      case ISD::SETGT:
8504      case ISD::SETGE:
8505        Opcode = X86ISD::FMIN;
8506        break;
8507
8508      case ISD::SETULT:
8509        // This can be a max if we can prove that at least one of the operands
8510        // is not a nan.
8511        if (!FiniteOnlyFPMath()) {
8512          if (DAG.isKnownNeverNaN(LHS)) {
8513            // Put the potential NaN in the RHS so that SSE will preserve it.
8514            std::swap(LHS, RHS);
8515          } else if (!DAG.isKnownNeverNaN(RHS))
8516            break;
8517        }
8518        Opcode = X86ISD::FMAX;
8519        break;
8520      case ISD::SETOLE:
8521        // This can be a max if we can prove that at least one of the operands
8522        // is not a nan.
8523        if (!FiniteOnlyFPMath()) {
8524          if (DAG.isKnownNeverNaN(RHS)) {
8525            // Put the potential NaN in the RHS so that SSE will preserve it.
8526            std::swap(LHS, RHS);
8527          } else if (!DAG.isKnownNeverNaN(LHS))
8528            break;
8529        }
8530        Opcode = X86ISD::FMAX;
8531        break;
8532      case ISD::SETULE:
8533        // This can be a max, but if either operand is a NaN we need it to
8534        // preserve the original LHS.
8535        std::swap(LHS, RHS);
8536      case ISD::SETOLT:
8537      case ISD::SETLT:
8538      case ISD::SETLE:
8539        Opcode = X86ISD::FMAX;
8540        break;
8541      }
8542    }
8543
8544    if (Opcode)
8545      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
8546  }
8547
8548  // If this is a select between two integer constants, try to do some
8549  // optimizations.
8550  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
8551    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
8552      // Don't do this for crazy integer types.
8553      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
8554        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
8555        // so that TrueC (the true value) is larger than FalseC.
8556        bool NeedsCondInvert = false;
8557
8558        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
8559            // Efficiently invertible.
8560            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
8561             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
8562              isa<ConstantSDNode>(Cond.getOperand(1))))) {
8563          NeedsCondInvert = true;
8564          std::swap(TrueC, FalseC);
8565        }
8566
8567        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
8568        if (FalseC->getAPIntValue() == 0 &&
8569            TrueC->getAPIntValue().isPowerOf2()) {
8570          if (NeedsCondInvert) // Invert the condition if needed.
8571            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8572                               DAG.getConstant(1, Cond.getValueType()));
8573
8574          // Zero extend the condition if needed.
8575          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
8576
8577          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8578          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
8579                             DAG.getConstant(ShAmt, MVT::i8));
8580        }
8581
8582        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
8583        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8584          if (NeedsCondInvert) // Invert the condition if needed.
8585            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8586                               DAG.getConstant(1, Cond.getValueType()));
8587
8588          // Zero extend the condition if needed.
8589          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8590                             FalseC->getValueType(0), Cond);
8591          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8592                             SDValue(FalseC, 0));
8593        }
8594
8595        // Optimize cases that will turn into an LEA instruction.  This requires
8596        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8597        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8598          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8599          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8600
8601          bool isFastMultiplier = false;
8602          if (Diff < 10) {
8603            switch ((unsigned char)Diff) {
8604              default: break;
8605              case 1:  // result = add base, cond
8606              case 2:  // result = lea base(    , cond*2)
8607              case 3:  // result = lea base(cond, cond*2)
8608              case 4:  // result = lea base(    , cond*4)
8609              case 5:  // result = lea base(cond, cond*4)
8610              case 8:  // result = lea base(    , cond*8)
8611              case 9:  // result = lea base(cond, cond*8)
8612                isFastMultiplier = true;
8613                break;
8614            }
8615          }
8616
8617          if (isFastMultiplier) {
8618            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8619            if (NeedsCondInvert) // Invert the condition if needed.
8620              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8621                                 DAG.getConstant(1, Cond.getValueType()));
8622
8623            // Zero extend the condition if needed.
8624            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8625                               Cond);
8626            // Scale the condition by the difference.
8627            if (Diff != 1)
8628              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8629                                 DAG.getConstant(Diff, Cond.getValueType()));
8630
8631            // Add the base if non-zero.
8632            if (FalseC->getAPIntValue() != 0)
8633              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8634                                 SDValue(FalseC, 0));
8635            return Cond;
8636          }
8637        }
8638      }
8639  }
8640
8641  return SDValue();
8642}
8643
8644/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
8645static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
8646                                  TargetLowering::DAGCombinerInfo &DCI) {
8647  DebugLoc DL = N->getDebugLoc();
8648
8649  // If the flag operand isn't dead, don't touch this CMOV.
8650  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
8651    return SDValue();
8652
8653  // If this is a select between two integer constants, try to do some
8654  // optimizations.  Note that the operands are ordered the opposite of SELECT
8655  // operands.
8656  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
8657    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
8658      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
8659      // larger than FalseC (the false value).
8660      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
8661
8662      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
8663        CC = X86::GetOppositeBranchCondition(CC);
8664        std::swap(TrueC, FalseC);
8665      }
8666
8667      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
8668      // This is efficient for any integer data type (including i8/i16) and
8669      // shift amount.
8670      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
8671        SDValue Cond = N->getOperand(3);
8672        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8673                           DAG.getConstant(CC, MVT::i8), Cond);
8674
8675        // Zero extend the condition if needed.
8676        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
8677
8678        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8679        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
8680                           DAG.getConstant(ShAmt, MVT::i8));
8681        if (N->getNumValues() == 2)  // Dead flag value?
8682          return DCI.CombineTo(N, Cond, SDValue());
8683        return Cond;
8684      }
8685
8686      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
8687      // for any integer data type, including i8/i16.
8688      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8689        SDValue Cond = N->getOperand(3);
8690        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8691                           DAG.getConstant(CC, MVT::i8), Cond);
8692
8693        // Zero extend the condition if needed.
8694        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8695                           FalseC->getValueType(0), Cond);
8696        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8697                           SDValue(FalseC, 0));
8698
8699        if (N->getNumValues() == 2)  // Dead flag value?
8700          return DCI.CombineTo(N, Cond, SDValue());
8701        return Cond;
8702      }
8703
8704      // Optimize cases that will turn into an LEA instruction.  This requires
8705      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8706      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8707        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8708        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8709
8710        bool isFastMultiplier = false;
8711        if (Diff < 10) {
8712          switch ((unsigned char)Diff) {
8713          default: break;
8714          case 1:  // result = add base, cond
8715          case 2:  // result = lea base(    , cond*2)
8716          case 3:  // result = lea base(cond, cond*2)
8717          case 4:  // result = lea base(    , cond*4)
8718          case 5:  // result = lea base(cond, cond*4)
8719          case 8:  // result = lea base(    , cond*8)
8720          case 9:  // result = lea base(cond, cond*8)
8721            isFastMultiplier = true;
8722            break;
8723          }
8724        }
8725
8726        if (isFastMultiplier) {
8727          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8728          SDValue Cond = N->getOperand(3);
8729          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8730                             DAG.getConstant(CC, MVT::i8), Cond);
8731          // Zero extend the condition if needed.
8732          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8733                             Cond);
8734          // Scale the condition by the difference.
8735          if (Diff != 1)
8736            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8737                               DAG.getConstant(Diff, Cond.getValueType()));
8738
8739          // Add the base if non-zero.
8740          if (FalseC->getAPIntValue() != 0)
8741            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8742                               SDValue(FalseC, 0));
8743          if (N->getNumValues() == 2)  // Dead flag value?
8744            return DCI.CombineTo(N, Cond, SDValue());
8745          return Cond;
8746        }
8747      }
8748    }
8749  }
8750  return SDValue();
8751}
8752
8753
8754/// PerformMulCombine - Optimize a single multiply with constant into two
8755/// in order to implement it with two cheaper instructions, e.g.
8756/// LEA + SHL, LEA + LEA.
8757static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
8758                                 TargetLowering::DAGCombinerInfo &DCI) {
8759  if (DAG.getMachineFunction().
8760      getFunction()->hasFnAttr(Attribute::OptimizeForSize))
8761    return SDValue();
8762
8763  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8764    return SDValue();
8765
8766  EVT VT = N->getValueType(0);
8767  if (VT != MVT::i64)
8768    return SDValue();
8769
8770  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8771  if (!C)
8772    return SDValue();
8773  uint64_t MulAmt = C->getZExtValue();
8774  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
8775    return SDValue();
8776
8777  uint64_t MulAmt1 = 0;
8778  uint64_t MulAmt2 = 0;
8779  if ((MulAmt % 9) == 0) {
8780    MulAmt1 = 9;
8781    MulAmt2 = MulAmt / 9;
8782  } else if ((MulAmt % 5) == 0) {
8783    MulAmt1 = 5;
8784    MulAmt2 = MulAmt / 5;
8785  } else if ((MulAmt % 3) == 0) {
8786    MulAmt1 = 3;
8787    MulAmt2 = MulAmt / 3;
8788  }
8789  if (MulAmt2 &&
8790      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
8791    DebugLoc DL = N->getDebugLoc();
8792
8793    if (isPowerOf2_64(MulAmt2) &&
8794        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
8795      // If second multiplifer is pow2, issue it first. We want the multiply by
8796      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
8797      // is an add.
8798      std::swap(MulAmt1, MulAmt2);
8799
8800    SDValue NewMul;
8801    if (isPowerOf2_64(MulAmt1))
8802      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
8803                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
8804    else
8805      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
8806                           DAG.getConstant(MulAmt1, VT));
8807
8808    if (isPowerOf2_64(MulAmt2))
8809      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
8810                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
8811    else
8812      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
8813                           DAG.getConstant(MulAmt2, VT));
8814
8815    // Do not add new nodes to DAG combiner worklist.
8816    DCI.CombineTo(N, NewMul, false);
8817  }
8818  return SDValue();
8819}
8820
8821
8822/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8823///                       when possible.
8824static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
8825                                   const X86Subtarget *Subtarget) {
8826  // On X86 with SSE2 support, we can transform this to a vector shift if
8827  // all elements are shifted by the same amount.  We can't do this in legalize
8828  // because the a constant vector is typically transformed to a constant pool
8829  // so we have no knowledge of the shift amount.
8830  if (!Subtarget->hasSSE2())
8831    return SDValue();
8832
8833  EVT VT = N->getValueType(0);
8834  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
8835    return SDValue();
8836
8837  SDValue ShAmtOp = N->getOperand(1);
8838  EVT EltVT = VT.getVectorElementType();
8839  DebugLoc DL = N->getDebugLoc();
8840  SDValue BaseShAmt = SDValue();
8841  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
8842    unsigned NumElts = VT.getVectorNumElements();
8843    unsigned i = 0;
8844    for (; i != NumElts; ++i) {
8845      SDValue Arg = ShAmtOp.getOperand(i);
8846      if (Arg.getOpcode() == ISD::UNDEF) continue;
8847      BaseShAmt = Arg;
8848      break;
8849    }
8850    for (; i != NumElts; ++i) {
8851      SDValue Arg = ShAmtOp.getOperand(i);
8852      if (Arg.getOpcode() == ISD::UNDEF) continue;
8853      if (Arg != BaseShAmt) {
8854        return SDValue();
8855      }
8856    }
8857  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
8858             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
8859    SDValue InVec = ShAmtOp.getOperand(0);
8860    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
8861      unsigned NumElts = InVec.getValueType().getVectorNumElements();
8862      unsigned i = 0;
8863      for (; i != NumElts; ++i) {
8864        SDValue Arg = InVec.getOperand(i);
8865        if (Arg.getOpcode() == ISD::UNDEF) continue;
8866        BaseShAmt = Arg;
8867        break;
8868      }
8869    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
8870       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
8871         unsigned SplatIdx = cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
8872         if (C->getZExtValue() == SplatIdx)
8873           BaseShAmt = InVec.getOperand(1);
8874       }
8875    }
8876    if (BaseShAmt.getNode() == 0)
8877      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
8878                              DAG.getIntPtrConstant(0));
8879  } else
8880    return SDValue();
8881
8882  // The shift amount is an i32.
8883  if (EltVT.bitsGT(MVT::i32))
8884    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
8885  else if (EltVT.bitsLT(MVT::i32))
8886    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
8887
8888  // The shift amount is identical so we can do a vector shift.
8889  SDValue  ValOp = N->getOperand(0);
8890  switch (N->getOpcode()) {
8891  default:
8892    llvm_unreachable("Unknown shift opcode!");
8893    break;
8894  case ISD::SHL:
8895    if (VT == MVT::v2i64)
8896      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8897                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8898                         ValOp, BaseShAmt);
8899    if (VT == MVT::v4i32)
8900      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8901                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8902                         ValOp, BaseShAmt);
8903    if (VT == MVT::v8i16)
8904      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8905                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8906                         ValOp, BaseShAmt);
8907    break;
8908  case ISD::SRA:
8909    if (VT == MVT::v4i32)
8910      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8911                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8912                         ValOp, BaseShAmt);
8913    if (VT == MVT::v8i16)
8914      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8915                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8916                         ValOp, BaseShAmt);
8917    break;
8918  case ISD::SRL:
8919    if (VT == MVT::v2i64)
8920      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8921                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8922                         ValOp, BaseShAmt);
8923    if (VT == MVT::v4i32)
8924      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8925                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8926                         ValOp, BaseShAmt);
8927    if (VT ==  MVT::v8i16)
8928      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8929                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8930                         ValOp, BaseShAmt);
8931    break;
8932  }
8933  return SDValue();
8934}
8935
8936/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8937static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
8938                                   const X86Subtarget *Subtarget) {
8939  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
8940  // the FP state in cases where an emms may be missing.
8941  // A preferable solution to the general problem is to figure out the right
8942  // places to insert EMMS.  This qualifies as a quick hack.
8943
8944  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8945  StoreSDNode *St = cast<StoreSDNode>(N);
8946  EVT VT = St->getValue().getValueType();
8947  if (VT.getSizeInBits() != 64)
8948    return SDValue();
8949
8950  const Function *F = DAG.getMachineFunction().getFunction();
8951  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
8952  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
8953    && Subtarget->hasSSE2();
8954  if ((VT.isVector() ||
8955       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
8956      isa<LoadSDNode>(St->getValue()) &&
8957      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
8958      St->getChain().hasOneUse() && !St->isVolatile()) {
8959    SDNode* LdVal = St->getValue().getNode();
8960    LoadSDNode *Ld = 0;
8961    int TokenFactorIndex = -1;
8962    SmallVector<SDValue, 8> Ops;
8963    SDNode* ChainVal = St->getChain().getNode();
8964    // Must be a store of a load.  We currently handle two cases:  the load
8965    // is a direct child, and it's under an intervening TokenFactor.  It is
8966    // possible to dig deeper under nested TokenFactors.
8967    if (ChainVal == LdVal)
8968      Ld = cast<LoadSDNode>(St->getChain());
8969    else if (St->getValue().hasOneUse() &&
8970             ChainVal->getOpcode() == ISD::TokenFactor) {
8971      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
8972        if (ChainVal->getOperand(i).getNode() == LdVal) {
8973          TokenFactorIndex = i;
8974          Ld = cast<LoadSDNode>(St->getValue());
8975        } else
8976          Ops.push_back(ChainVal->getOperand(i));
8977      }
8978    }
8979
8980    if (!Ld || !ISD::isNormalLoad(Ld))
8981      return SDValue();
8982
8983    // If this is not the MMX case, i.e. we are just turning i64 load/store
8984    // into f64 load/store, avoid the transformation if there are multiple
8985    // uses of the loaded value.
8986    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
8987      return SDValue();
8988
8989    DebugLoc LdDL = Ld->getDebugLoc();
8990    DebugLoc StDL = N->getDebugLoc();
8991    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8992    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
8993    // pair instead.
8994    if (Subtarget->is64Bit() || F64IsLegal) {
8995      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
8996      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
8997                                  Ld->getBasePtr(), Ld->getSrcValue(),
8998                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
8999                                  Ld->getAlignment());
9000      SDValue NewChain = NewLd.getValue(1);
9001      if (TokenFactorIndex != -1) {
9002        Ops.push_back(NewChain);
9003        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9004                               Ops.size());
9005      }
9006      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
9007                          St->getSrcValue(), St->getSrcValueOffset(),
9008                          St->isVolatile(), St->getAlignment());
9009    }
9010
9011    // Otherwise, lower to two pairs of 32-bit loads / stores.
9012    SDValue LoAddr = Ld->getBasePtr();
9013    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
9014                                 DAG.getConstant(4, MVT::i32));
9015
9016    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
9017                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
9018                               Ld->isVolatile(), Ld->getAlignment());
9019    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
9020                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
9021                               Ld->isVolatile(),
9022                               MinAlign(Ld->getAlignment(), 4));
9023
9024    SDValue NewChain = LoLd.getValue(1);
9025    if (TokenFactorIndex != -1) {
9026      Ops.push_back(LoLd);
9027      Ops.push_back(HiLd);
9028      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9029                             Ops.size());
9030    }
9031
9032    LoAddr = St->getBasePtr();
9033    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
9034                         DAG.getConstant(4, MVT::i32));
9035
9036    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
9037                                St->getSrcValue(), St->getSrcValueOffset(),
9038                                St->isVolatile(), St->getAlignment());
9039    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
9040                                St->getSrcValue(),
9041                                St->getSrcValueOffset() + 4,
9042                                St->isVolatile(),
9043                                MinAlign(St->getAlignment(), 4));
9044    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
9045  }
9046  return SDValue();
9047}
9048
9049/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
9050/// X86ISD::FXOR nodes.
9051static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
9052  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
9053  // F[X]OR(0.0, x) -> x
9054  // F[X]OR(x, 0.0) -> x
9055  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9056    if (C->getValueAPF().isPosZero())
9057      return N->getOperand(1);
9058  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9059    if (C->getValueAPF().isPosZero())
9060      return N->getOperand(0);
9061  return SDValue();
9062}
9063
9064/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
9065static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
9066  // FAND(0.0, x) -> 0.0
9067  // FAND(x, 0.0) -> 0.0
9068  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9069    if (C->getValueAPF().isPosZero())
9070      return N->getOperand(0);
9071  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9072    if (C->getValueAPF().isPosZero())
9073      return N->getOperand(1);
9074  return SDValue();
9075}
9076
9077static SDValue PerformBTCombine(SDNode *N,
9078                                SelectionDAG &DAG,
9079                                TargetLowering::DAGCombinerInfo &DCI) {
9080  // BT ignores high bits in the bit index operand.
9081  SDValue Op1 = N->getOperand(1);
9082  if (Op1.hasOneUse()) {
9083    unsigned BitWidth = Op1.getValueSizeInBits();
9084    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
9085    APInt KnownZero, KnownOne;
9086    TargetLowering::TargetLoweringOpt TLO(DAG);
9087    TargetLowering &TLI = DAG.getTargetLoweringInfo();
9088    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
9089        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
9090      DCI.CommitTargetLoweringOpt(TLO);
9091  }
9092  return SDValue();
9093}
9094
9095static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
9096  SDValue Op = N->getOperand(0);
9097  if (Op.getOpcode() == ISD::BIT_CONVERT)
9098    Op = Op.getOperand(0);
9099  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
9100  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
9101      VT.getVectorElementType().getSizeInBits() ==
9102      OpVT.getVectorElementType().getSizeInBits()) {
9103    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
9104  }
9105  return SDValue();
9106}
9107
9108// On X86 and X86-64, atomic operations are lowered to locked instructions.
9109// Locked instructions, in turn, have implicit fence semantics (all memory
9110// operations are flushed before issuing the locked instruction, and the
9111// are not buffered), so we can fold away the common pattern of
9112// fence-atomic-fence.
9113static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
9114  SDValue atomic = N->getOperand(0);
9115  switch (atomic.getOpcode()) {
9116    case ISD::ATOMIC_CMP_SWAP:
9117    case ISD::ATOMIC_SWAP:
9118    case ISD::ATOMIC_LOAD_ADD:
9119    case ISD::ATOMIC_LOAD_SUB:
9120    case ISD::ATOMIC_LOAD_AND:
9121    case ISD::ATOMIC_LOAD_OR:
9122    case ISD::ATOMIC_LOAD_XOR:
9123    case ISD::ATOMIC_LOAD_NAND:
9124    case ISD::ATOMIC_LOAD_MIN:
9125    case ISD::ATOMIC_LOAD_MAX:
9126    case ISD::ATOMIC_LOAD_UMIN:
9127    case ISD::ATOMIC_LOAD_UMAX:
9128      break;
9129    default:
9130      return SDValue();
9131  }
9132
9133  SDValue fence = atomic.getOperand(0);
9134  if (fence.getOpcode() != ISD::MEMBARRIER)
9135    return SDValue();
9136
9137  switch (atomic.getOpcode()) {
9138    case ISD::ATOMIC_CMP_SWAP:
9139      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9140                                    atomic.getOperand(1), atomic.getOperand(2),
9141                                    atomic.getOperand(3));
9142    case ISD::ATOMIC_SWAP:
9143    case ISD::ATOMIC_LOAD_ADD:
9144    case ISD::ATOMIC_LOAD_SUB:
9145    case ISD::ATOMIC_LOAD_AND:
9146    case ISD::ATOMIC_LOAD_OR:
9147    case ISD::ATOMIC_LOAD_XOR:
9148    case ISD::ATOMIC_LOAD_NAND:
9149    case ISD::ATOMIC_LOAD_MIN:
9150    case ISD::ATOMIC_LOAD_MAX:
9151    case ISD::ATOMIC_LOAD_UMIN:
9152    case ISD::ATOMIC_LOAD_UMAX:
9153      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9154                                    atomic.getOperand(1), atomic.getOperand(2));
9155    default:
9156      return SDValue();
9157  }
9158}
9159
9160SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
9161                                             DAGCombinerInfo &DCI) const {
9162  SelectionDAG &DAG = DCI.DAG;
9163  switch (N->getOpcode()) {
9164  default: break;
9165  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
9166  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
9167  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
9168  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
9169  case ISD::SHL:
9170  case ISD::SRA:
9171  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
9172  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
9173  case X86ISD::FXOR:
9174  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
9175  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
9176  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
9177  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
9178  case ISD::MEMBARRIER:     return PerformMEMBARRIERCombine(N, DAG);
9179  }
9180
9181  return SDValue();
9182}
9183
9184//===----------------------------------------------------------------------===//
9185//                           X86 Inline Assembly Support
9186//===----------------------------------------------------------------------===//
9187
9188static bool LowerToBSwap(CallInst *CI) {
9189  // FIXME: this should verify that we are targetting a 486 or better.  If not,
9190  // we will turn this bswap into something that will be lowered to logical ops
9191  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
9192  // so don't worry about this.
9193
9194  // Verify this is a simple bswap.
9195  if (CI->getNumOperands() != 2 ||
9196      CI->getType() != CI->getOperand(1)->getType() ||
9197      !CI->getType()->isInteger())
9198    return false;
9199
9200  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
9201  if (!Ty || Ty->getBitWidth() % 16 != 0)
9202    return false;
9203
9204  // Okay, we can do this xform, do so now.
9205  const Type *Tys[] = { Ty };
9206  Module *M = CI->getParent()->getParent()->getParent();
9207  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
9208
9209  Value *Op = CI->getOperand(1);
9210  Op = CallInst::Create(Int, Op, CI->getName(), CI);
9211
9212  CI->replaceAllUsesWith(Op);
9213  CI->eraseFromParent();
9214  return true;
9215}
9216
9217bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
9218  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
9219  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
9220
9221  std::string AsmStr = IA->getAsmString();
9222
9223  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
9224  std::vector<std::string> AsmPieces;
9225  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
9226
9227  switch (AsmPieces.size()) {
9228  default: return false;
9229  case 1:
9230    AsmStr = AsmPieces[0];
9231    AsmPieces.clear();
9232    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
9233
9234    // bswap $0
9235    if (AsmPieces.size() == 2 &&
9236        (AsmPieces[0] == "bswap" ||
9237         AsmPieces[0] == "bswapq" ||
9238         AsmPieces[0] == "bswapl") &&
9239        (AsmPieces[1] == "$0" ||
9240         AsmPieces[1] == "${0:q}")) {
9241      // No need to check constraints, nothing other than the equivalent of
9242      // "=r,0" would be valid here.
9243      return LowerToBSwap(CI);
9244    }
9245    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
9246    if (CI->getType() == Type::getInt16Ty(CI->getContext()) &&
9247        AsmPieces.size() == 3 &&
9248        AsmPieces[0] == "rorw" &&
9249        AsmPieces[1] == "$$8," &&
9250        AsmPieces[2] == "${0:w}" &&
9251        IA->getConstraintString() == "=r,0,~{dirflag},~{fpsr},~{flags},~{cc}") {
9252      return LowerToBSwap(CI);
9253    }
9254    break;
9255  case 3:
9256    if (CI->getType() == Type::getInt64Ty(CI->getContext()) &&
9257        Constraints.size() >= 2 &&
9258        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
9259        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
9260      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
9261      std::vector<std::string> Words;
9262      SplitString(AsmPieces[0], Words, " \t");
9263      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
9264        Words.clear();
9265        SplitString(AsmPieces[1], Words, " \t");
9266        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
9267          Words.clear();
9268          SplitString(AsmPieces[2], Words, " \t,");
9269          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
9270              Words[2] == "%edx") {
9271            return LowerToBSwap(CI);
9272          }
9273        }
9274      }
9275    }
9276    break;
9277  }
9278  return false;
9279}
9280
9281
9282
9283/// getConstraintType - Given a constraint letter, return the type of
9284/// constraint it is for this target.
9285X86TargetLowering::ConstraintType
9286X86TargetLowering::getConstraintType(const std::string &Constraint) const {
9287  if (Constraint.size() == 1) {
9288    switch (Constraint[0]) {
9289    case 'A':
9290      return C_Register;
9291    case 'f':
9292    case 'r':
9293    case 'R':
9294    case 'l':
9295    case 'q':
9296    case 'Q':
9297    case 'x':
9298    case 'y':
9299    case 'Y':
9300      return C_RegisterClass;
9301    case 'e':
9302    case 'Z':
9303      return C_Other;
9304    default:
9305      break;
9306    }
9307  }
9308  return TargetLowering::getConstraintType(Constraint);
9309}
9310
9311/// LowerXConstraint - try to replace an X constraint, which matches anything,
9312/// with another that has more specific requirements based on the type of the
9313/// corresponding operand.
9314const char *X86TargetLowering::
9315LowerXConstraint(EVT ConstraintVT) const {
9316  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
9317  // 'f' like normal targets.
9318  if (ConstraintVT.isFloatingPoint()) {
9319    if (Subtarget->hasSSE2())
9320      return "Y";
9321    if (Subtarget->hasSSE1())
9322      return "x";
9323  }
9324
9325  return TargetLowering::LowerXConstraint(ConstraintVT);
9326}
9327
9328/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
9329/// vector.  If it is invalid, don't add anything to Ops.
9330void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
9331                                                     char Constraint,
9332                                                     bool hasMemory,
9333                                                     std::vector<SDValue>&Ops,
9334                                                     SelectionDAG &DAG) const {
9335  SDValue Result(0, 0);
9336
9337  switch (Constraint) {
9338  default: break;
9339  case 'I':
9340    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9341      if (C->getZExtValue() <= 31) {
9342        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9343        break;
9344      }
9345    }
9346    return;
9347  case 'J':
9348    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9349      if (C->getZExtValue() <= 63) {
9350        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9351        break;
9352      }
9353    }
9354    return;
9355  case 'K':
9356    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9357      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
9358        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9359        break;
9360      }
9361    }
9362    return;
9363  case 'N':
9364    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9365      if (C->getZExtValue() <= 255) {
9366        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9367        break;
9368      }
9369    }
9370    return;
9371  case 'e': {
9372    // 32-bit signed value
9373    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9374      const ConstantInt *CI = C->getConstantIntValue();
9375      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9376                                  C->getSExtValue())) {
9377        // Widen to 64 bits here to get it sign extended.
9378        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
9379        break;
9380      }
9381    // FIXME gcc accepts some relocatable values here too, but only in certain
9382    // memory models; it's complicated.
9383    }
9384    return;
9385  }
9386  case 'Z': {
9387    // 32-bit unsigned value
9388    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9389      const ConstantInt *CI = C->getConstantIntValue();
9390      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9391                                  C->getZExtValue())) {
9392        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9393        break;
9394      }
9395    }
9396    // FIXME gcc accepts some relocatable values here too, but only in certain
9397    // memory models; it's complicated.
9398    return;
9399  }
9400  case 'i': {
9401    // Literal immediates are always ok.
9402    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
9403      // Widen to 64 bits here to get it sign extended.
9404      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
9405      break;
9406    }
9407
9408    // If we are in non-pic codegen mode, we allow the address of a global (with
9409    // an optional displacement) to be used with 'i'.
9410    GlobalAddressSDNode *GA = 0;
9411    int64_t Offset = 0;
9412
9413    // Match either (GA), (GA+C), (GA+C1+C2), etc.
9414    while (1) {
9415      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
9416        Offset += GA->getOffset();
9417        break;
9418      } else if (Op.getOpcode() == ISD::ADD) {
9419        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9420          Offset += C->getZExtValue();
9421          Op = Op.getOperand(0);
9422          continue;
9423        }
9424      } else if (Op.getOpcode() == ISD::SUB) {
9425        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9426          Offset += -C->getZExtValue();
9427          Op = Op.getOperand(0);
9428          continue;
9429        }
9430      }
9431
9432      // Otherwise, this isn't something we can handle, reject it.
9433      return;
9434    }
9435
9436    GlobalValue *GV = GA->getGlobal();
9437    // If we require an extra load to get this address, as in PIC mode, we
9438    // can't accept it.
9439    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
9440                                                        getTargetMachine())))
9441      return;
9442
9443    if (hasMemory)
9444      Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
9445    else
9446      Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
9447    Result = Op;
9448    break;
9449  }
9450  }
9451
9452  if (Result.getNode()) {
9453    Ops.push_back(Result);
9454    return;
9455  }
9456  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
9457                                                      Ops, DAG);
9458}
9459
9460std::vector<unsigned> X86TargetLowering::
9461getRegClassForInlineAsmConstraint(const std::string &Constraint,
9462                                  EVT VT) const {
9463  if (Constraint.size() == 1) {
9464    // FIXME: not handling fp-stack yet!
9465    switch (Constraint[0]) {      // GCC X86 Constraint Letters
9466    default: break;  // Unknown constraint letter
9467    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
9468      if (Subtarget->is64Bit()) {
9469        if (VT == MVT::i32)
9470          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
9471                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
9472                                       X86::R10D,X86::R11D,X86::R12D,
9473                                       X86::R13D,X86::R14D,X86::R15D,
9474                                       X86::EBP, X86::ESP, 0);
9475        else if (VT == MVT::i16)
9476          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
9477                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
9478                                       X86::R10W,X86::R11W,X86::R12W,
9479                                       X86::R13W,X86::R14W,X86::R15W,
9480                                       X86::BP,  X86::SP, 0);
9481        else if (VT == MVT::i8)
9482          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
9483                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
9484                                       X86::R10B,X86::R11B,X86::R12B,
9485                                       X86::R13B,X86::R14B,X86::R15B,
9486                                       X86::BPL, X86::SPL, 0);
9487
9488        else if (VT == MVT::i64)
9489          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
9490                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
9491                                       X86::R10, X86::R11, X86::R12,
9492                                       X86::R13, X86::R14, X86::R15,
9493                                       X86::RBP, X86::RSP, 0);
9494
9495        break;
9496      }
9497      // 32-bit fallthrough
9498    case 'Q':   // Q_REGS
9499      if (VT == MVT::i32)
9500        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
9501      else if (VT == MVT::i16)
9502        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
9503      else if (VT == MVT::i8)
9504        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
9505      else if (VT == MVT::i64)
9506        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
9507      break;
9508    }
9509  }
9510
9511  return std::vector<unsigned>();
9512}
9513
9514std::pair<unsigned, const TargetRegisterClass*>
9515X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
9516                                                EVT VT) const {
9517  // First, see if this is a constraint that directly corresponds to an LLVM
9518  // register class.
9519  if (Constraint.size() == 1) {
9520    // GCC Constraint Letters
9521    switch (Constraint[0]) {
9522    default: break;
9523    case 'r':   // GENERAL_REGS
9524    case 'l':   // INDEX_REGS
9525      if (VT == MVT::i8)
9526        return std::make_pair(0U, X86::GR8RegisterClass);
9527      if (VT == MVT::i16)
9528        return std::make_pair(0U, X86::GR16RegisterClass);
9529      if (VT == MVT::i32 || !Subtarget->is64Bit())
9530        return std::make_pair(0U, X86::GR32RegisterClass);
9531      return std::make_pair(0U, X86::GR64RegisterClass);
9532    case 'R':   // LEGACY_REGS
9533      if (VT == MVT::i8)
9534        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
9535      if (VT == MVT::i16)
9536        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
9537      if (VT == MVT::i32 || !Subtarget->is64Bit())
9538        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
9539      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
9540    case 'f':  // FP Stack registers.
9541      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
9542      // value to the correct fpstack register class.
9543      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
9544        return std::make_pair(0U, X86::RFP32RegisterClass);
9545      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
9546        return std::make_pair(0U, X86::RFP64RegisterClass);
9547      return std::make_pair(0U, X86::RFP80RegisterClass);
9548    case 'y':   // MMX_REGS if MMX allowed.
9549      if (!Subtarget->hasMMX()) break;
9550      return std::make_pair(0U, X86::VR64RegisterClass);
9551    case 'Y':   // SSE_REGS if SSE2 allowed
9552      if (!Subtarget->hasSSE2()) break;
9553      // FALL THROUGH.
9554    case 'x':   // SSE_REGS if SSE1 allowed
9555      if (!Subtarget->hasSSE1()) break;
9556
9557      switch (VT.getSimpleVT().SimpleTy) {
9558      default: break;
9559      // Scalar SSE types.
9560      case MVT::f32:
9561      case MVT::i32:
9562        return std::make_pair(0U, X86::FR32RegisterClass);
9563      case MVT::f64:
9564      case MVT::i64:
9565        return std::make_pair(0U, X86::FR64RegisterClass);
9566      // Vector types.
9567      case MVT::v16i8:
9568      case MVT::v8i16:
9569      case MVT::v4i32:
9570      case MVT::v2i64:
9571      case MVT::v4f32:
9572      case MVT::v2f64:
9573        return std::make_pair(0U, X86::VR128RegisterClass);
9574      }
9575      break;
9576    }
9577  }
9578
9579  // Use the default implementation in TargetLowering to convert the register
9580  // constraint into a member of a register class.
9581  std::pair<unsigned, const TargetRegisterClass*> Res;
9582  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
9583
9584  // Not found as a standard register?
9585  if (Res.second == 0) {
9586    // Map st(0) -> st(7) -> ST0
9587    if (Constraint.size() == 7 && Constraint[0] == '{' &&
9588        tolower(Constraint[1]) == 's' &&
9589        tolower(Constraint[2]) == 't' &&
9590        Constraint[3] == '(' &&
9591        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
9592        Constraint[5] == ')' &&
9593        Constraint[6] == '}') {
9594
9595      Res.first = X86::ST0+Constraint[4]-'0';
9596      Res.second = X86::RFP80RegisterClass;
9597      return Res;
9598    }
9599
9600    // GCC allows "st(0)" to be called just plain "st".
9601    if (StringRef("{st}").equals_lower(Constraint)) {
9602      Res.first = X86::ST0;
9603      Res.second = X86::RFP80RegisterClass;
9604      return Res;
9605    }
9606
9607    // flags -> EFLAGS
9608    if (StringRef("{flags}").equals_lower(Constraint)) {
9609      Res.first = X86::EFLAGS;
9610      Res.second = X86::CCRRegisterClass;
9611      return Res;
9612    }
9613
9614    // 'A' means EAX + EDX.
9615    if (Constraint == "A") {
9616      Res.first = X86::EAX;
9617      Res.second = X86::GR32_ADRegisterClass;
9618      return Res;
9619    }
9620    return Res;
9621  }
9622
9623  // Otherwise, check to see if this is a register class of the wrong value
9624  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
9625  // turn into {ax},{dx}.
9626  if (Res.second->hasType(VT))
9627    return Res;   // Correct type already, nothing to do.
9628
9629  // All of the single-register GCC register classes map their values onto
9630  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
9631  // really want an 8-bit or 32-bit register, map to the appropriate register
9632  // class and return the appropriate register.
9633  if (Res.second == X86::GR16RegisterClass) {
9634    if (VT == MVT::i8) {
9635      unsigned DestReg = 0;
9636      switch (Res.first) {
9637      default: break;
9638      case X86::AX: DestReg = X86::AL; break;
9639      case X86::DX: DestReg = X86::DL; break;
9640      case X86::CX: DestReg = X86::CL; break;
9641      case X86::BX: DestReg = X86::BL; break;
9642      }
9643      if (DestReg) {
9644        Res.first = DestReg;
9645        Res.second = X86::GR8RegisterClass;
9646      }
9647    } else if (VT == MVT::i32) {
9648      unsigned DestReg = 0;
9649      switch (Res.first) {
9650      default: break;
9651      case X86::AX: DestReg = X86::EAX; break;
9652      case X86::DX: DestReg = X86::EDX; break;
9653      case X86::CX: DestReg = X86::ECX; break;
9654      case X86::BX: DestReg = X86::EBX; break;
9655      case X86::SI: DestReg = X86::ESI; break;
9656      case X86::DI: DestReg = X86::EDI; break;
9657      case X86::BP: DestReg = X86::EBP; break;
9658      case X86::SP: DestReg = X86::ESP; break;
9659      }
9660      if (DestReg) {
9661        Res.first = DestReg;
9662        Res.second = X86::GR32RegisterClass;
9663      }
9664    } else if (VT == MVT::i64) {
9665      unsigned DestReg = 0;
9666      switch (Res.first) {
9667      default: break;
9668      case X86::AX: DestReg = X86::RAX; break;
9669      case X86::DX: DestReg = X86::RDX; break;
9670      case X86::CX: DestReg = X86::RCX; break;
9671      case X86::BX: DestReg = X86::RBX; break;
9672      case X86::SI: DestReg = X86::RSI; break;
9673      case X86::DI: DestReg = X86::RDI; break;
9674      case X86::BP: DestReg = X86::RBP; break;
9675      case X86::SP: DestReg = X86::RSP; break;
9676      }
9677      if (DestReg) {
9678        Res.first = DestReg;
9679        Res.second = X86::GR64RegisterClass;
9680      }
9681    }
9682  } else if (Res.second == X86::FR32RegisterClass ||
9683             Res.second == X86::FR64RegisterClass ||
9684             Res.second == X86::VR128RegisterClass) {
9685    // Handle references to XMM physical registers that got mapped into the
9686    // wrong class.  This can happen with constraints like {xmm0} where the
9687    // target independent register mapper will just pick the first match it can
9688    // find, ignoring the required type.
9689    if (VT == MVT::f32)
9690      Res.second = X86::FR32RegisterClass;
9691    else if (VT == MVT::f64)
9692      Res.second = X86::FR64RegisterClass;
9693    else if (X86::VR128RegisterClass->hasType(VT))
9694      Res.second = X86::VR128RegisterClass;
9695  }
9696
9697  return Res;
9698}
9699
9700//===----------------------------------------------------------------------===//
9701//                           X86 Widen vector type
9702//===----------------------------------------------------------------------===//
9703
9704/// getWidenVectorType: given a vector type, returns the type to widen
9705/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
9706/// If there is no vector type that we want to widen to, returns MVT::Other
9707/// When and where to widen is target dependent based on the cost of
9708/// scalarizing vs using the wider vector type.
9709
9710EVT X86TargetLowering::getWidenVectorType(EVT VT) const {
9711  assert(VT.isVector());
9712  if (isTypeLegal(VT))
9713    return VT;
9714
9715  // TODO: In computeRegisterProperty, we can compute the list of legal vector
9716  //       type based on element type.  This would speed up our search (though
9717  //       it may not be worth it since the size of the list is relatively
9718  //       small).
9719  EVT EltVT = VT.getVectorElementType();
9720  unsigned NElts = VT.getVectorNumElements();
9721
9722  // On X86, it make sense to widen any vector wider than 1
9723  if (NElts <= 1)
9724    return MVT::Other;
9725
9726  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
9727       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
9728    EVT SVT = (MVT::SimpleValueType)nVT;
9729
9730    if (isTypeLegal(SVT) &&
9731        SVT.getVectorElementType() == EltVT &&
9732        SVT.getVectorNumElements() > NElts)
9733      return SVT;
9734  }
9735  return MVT::Other;
9736}
9737