X86ISelLowering.cpp revision 41621a27008cde333e5281dc4bd4a5a08d0827b5
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86TargetMachine.h"
19#include "llvm/CallingConv.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Function.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/ADT/BitVector.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/PseudoSourceValue.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/ADT/SmallSet.h"
37#include "llvm/ADT/StringExtras.h"
38#include "llvm/Support/CommandLine.h"
39using namespace llvm;
40
41static cl::opt<bool>
42DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
43
44// Forward declarations.
45static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
46                       SDValue V2);
47
48X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
49  : TargetLowering(TM) {
50  Subtarget = &TM.getSubtarget<X86Subtarget>();
51  X86ScalarSSEf64 = Subtarget->hasSSE2();
52  X86ScalarSSEf32 = Subtarget->hasSSE1();
53  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
54
55  RegInfo = TM.getRegisterInfo();
56  TD = getTargetData();
57
58  // Set up the TargetLowering object.
59
60  // X86 is weird, it always uses i8 for shift amounts and setcc results.
61  setShiftAmountType(MVT::i8);
62  setBooleanContents(ZeroOrOneBooleanContent);
63  setSchedulingPreference(SchedulingForRegPressure);
64  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
65  setStackPointerRegisterToSaveRestore(X86StackPtr);
66
67  if (Subtarget->isTargetDarwin()) {
68    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
69    setUseUnderscoreSetJmp(false);
70    setUseUnderscoreLongJmp(false);
71  } else if (Subtarget->isTargetMingw()) {
72    // MS runtime is weird: it exports _setjmp, but longjmp!
73    setUseUnderscoreSetJmp(true);
74    setUseUnderscoreLongJmp(false);
75  } else {
76    setUseUnderscoreSetJmp(true);
77    setUseUnderscoreLongJmp(true);
78  }
79
80  // Set up the register classes.
81  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
82  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
83  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
84  if (Subtarget->is64Bit())
85    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
86
87  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
88
89  // We don't accept any truncstore of integer registers.
90  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
91  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
92  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
93  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
94  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
95  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
96
97  // SETOEQ and SETUNE require checking two conditions.
98  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
99  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
100  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
101  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
102  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
103  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
104
105  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
106  // operation.
107  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
108  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
109  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
110
111  if (Subtarget->is64Bit()) {
112    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
113    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
114  } else if (!UseSoftFloat) {
115    if (X86ScalarSSEf64) {
116      // We have an impenetrably clever algorithm for ui64->double only.
117      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
118    }
119    // We have an algorithm for SSE2, and we turn this into a 64-bit
120    // FILD for other targets.
121    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
122  }
123
124  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
125  // this operation.
126  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
127  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
128
129  if (!UseSoftFloat) {
130    // SSE has no i16 to fp conversion, only i32
131    if (X86ScalarSSEf32) {
132      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
133      // f32 and f64 cases are Legal, f80 case is not
134      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
135    } else {
136      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
137      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
138    }
139  } else {
140    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
141    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
142  }
143
144  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
145  // are Legal, f80 is custom lowered.
146  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
147  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
148
149  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
150  // this operation.
151  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
152  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
153
154  if (X86ScalarSSEf32) {
155    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
156    // f32 and f64 cases are Legal, f80 case is not
157    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
158  } else {
159    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
160    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
161  }
162
163  // Handle FP_TO_UINT by promoting the destination to a larger signed
164  // conversion.
165  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
166  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
167  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
168
169  if (Subtarget->is64Bit()) {
170    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
171    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
172  } else if (!UseSoftFloat) {
173    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
174      // Expand FP_TO_UINT into a select.
175      // FIXME: We would like to use a Custom expander here eventually to do
176      // the optimal thing for SSE vs. the default expansion in the legalizer.
177      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
178    else
179      // With SSE3 we can use fisttpll to convert to a signed i64; without
180      // SSE, we're stuck with a fistpll.
181      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
182  }
183
184  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
185  if (!X86ScalarSSEf64) {
186    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
187    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
188  }
189
190  // Scalar integer divide and remainder are lowered to use operations that
191  // produce two results, to match the available instructions. This exposes
192  // the two-result form to trivial CSE, which is able to combine x/y and x%y
193  // into a single instruction.
194  //
195  // Scalar integer multiply-high is also lowered to use two-result
196  // operations, to match the available instructions. However, plain multiply
197  // (low) operations are left as Legal, as there are single-result
198  // instructions for this in x86. Using the two-result multiply instructions
199  // when both high and low results are needed must be arranged by dagcombine.
200  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
201  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
202  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
203  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
204  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
205  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
206  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
207  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
208  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
209  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
210  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
211  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
212  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
213  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
214  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
215  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
216  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
217  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
218  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
219  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
220  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
221  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
222  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
223  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
224
225  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
226  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
227  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
228  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
229  if (Subtarget->is64Bit())
230    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
231  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
232  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
233  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
234  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
235  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
236  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
237  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
238  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
239
240  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
241  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
242  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
243  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
244  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
245  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
246  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
247  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
248  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
249  if (Subtarget->is64Bit()) {
250    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
251    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
252    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
253  }
254
255  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
256  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
257
258  // These should be promoted to a larger select which is supported.
259  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
260  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
261  // X86 wants to expand cmov itself.
262  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
263  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
264  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
265  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
266  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
267  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
268  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
269  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
270  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
271  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
272  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
273  if (Subtarget->is64Bit()) {
274    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
275    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
276  }
277  // X86 ret instruction may pop stack.
278  setOperationAction(ISD::RET             , MVT::Other, Custom);
279  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
280
281  // Darwin ABI issue.
282  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
283  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
284  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
285  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
286  if (Subtarget->is64Bit())
287    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
288  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
289  if (Subtarget->is64Bit()) {
290    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
291    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
292    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
293    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
294  }
295  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
296  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
297  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
298  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
299  if (Subtarget->is64Bit()) {
300    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
301    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
302    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
303  }
304
305  if (Subtarget->hasSSE1())
306    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
307
308  if (!Subtarget->hasSSE2())
309    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
310
311  // Expand certain atomics
312  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
313  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
314  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
315  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
316
317  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
318  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
319  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
320  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
321
322  if (!Subtarget->is64Bit()) {
323    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
324    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
325    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
326    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
327    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
328    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
329    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
330  }
331
332  // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
333  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
334  // FIXME - use subtarget debug flags
335  if (!Subtarget->isTargetDarwin() &&
336      !Subtarget->isTargetELF() &&
337      !Subtarget->isTargetCygMing()) {
338    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
339    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
340  }
341
342  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
343  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
344  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
345  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
346  if (Subtarget->is64Bit()) {
347    setExceptionPointerRegister(X86::RAX);
348    setExceptionSelectorRegister(X86::RDX);
349  } else {
350    setExceptionPointerRegister(X86::EAX);
351    setExceptionSelectorRegister(X86::EDX);
352  }
353  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
354  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
355
356  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
357
358  setOperationAction(ISD::TRAP, MVT::Other, Legal);
359
360  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
361  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
362  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
363  if (Subtarget->is64Bit()) {
364    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
365    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
366  } else {
367    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
368    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
369  }
370
371  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
372  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
373  if (Subtarget->is64Bit())
374    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
375  if (Subtarget->isTargetCygMing())
376    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
377  else
378    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
379
380  if (!UseSoftFloat && X86ScalarSSEf64) {
381    // f32 and f64 use SSE.
382    // Set up the FP register classes.
383    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
384    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
385
386    // Use ANDPD to simulate FABS.
387    setOperationAction(ISD::FABS , MVT::f64, Custom);
388    setOperationAction(ISD::FABS , MVT::f32, Custom);
389
390    // Use XORP to simulate FNEG.
391    setOperationAction(ISD::FNEG , MVT::f64, Custom);
392    setOperationAction(ISD::FNEG , MVT::f32, Custom);
393
394    // Use ANDPD and ORPD to simulate FCOPYSIGN.
395    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
396    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
397
398    // We don't support sin/cos/fmod
399    setOperationAction(ISD::FSIN , MVT::f64, Expand);
400    setOperationAction(ISD::FCOS , MVT::f64, Expand);
401    setOperationAction(ISD::FSIN , MVT::f32, Expand);
402    setOperationAction(ISD::FCOS , MVT::f32, Expand);
403
404    // Expand FP immediates into loads from the stack, except for the special
405    // cases we handle.
406    addLegalFPImmediate(APFloat(+0.0)); // xorpd
407    addLegalFPImmediate(APFloat(+0.0f)); // xorps
408  } else if (!UseSoftFloat && X86ScalarSSEf32) {
409    // Use SSE for f32, x87 for f64.
410    // Set up the FP register classes.
411    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
412    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
413
414    // Use ANDPS to simulate FABS.
415    setOperationAction(ISD::FABS , MVT::f32, Custom);
416
417    // Use XORP to simulate FNEG.
418    setOperationAction(ISD::FNEG , MVT::f32, Custom);
419
420    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
421
422    // Use ANDPS and ORPS to simulate FCOPYSIGN.
423    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
424    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
425
426    // We don't support sin/cos/fmod
427    setOperationAction(ISD::FSIN , MVT::f32, Expand);
428    setOperationAction(ISD::FCOS , MVT::f32, Expand);
429
430    // Special cases we handle for FP constants.
431    addLegalFPImmediate(APFloat(+0.0f)); // xorps
432    addLegalFPImmediate(APFloat(+0.0)); // FLD0
433    addLegalFPImmediate(APFloat(+1.0)); // FLD1
434    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
435    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
436
437    if (!UnsafeFPMath) {
438      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
439      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
440    }
441  } else if (!UseSoftFloat) {
442    // f32 and f64 in x87.
443    // Set up the FP register classes.
444    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
445    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
446
447    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
448    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
449    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
450    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
451
452    if (!UnsafeFPMath) {
453      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
454      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
455    }
456    addLegalFPImmediate(APFloat(+0.0)); // FLD0
457    addLegalFPImmediate(APFloat(+1.0)); // FLD1
458    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
459    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
460    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
461    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
462    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
463    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
464  }
465
466  // Long double always uses X87.
467  if (!UseSoftFloat) {
468    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
469    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
470    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
471    {
472      bool ignored;
473      APFloat TmpFlt(+0.0);
474      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
475                     &ignored);
476      addLegalFPImmediate(TmpFlt);  // FLD0
477      TmpFlt.changeSign();
478      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
479      APFloat TmpFlt2(+1.0);
480      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
481                      &ignored);
482      addLegalFPImmediate(TmpFlt2);  // FLD1
483      TmpFlt2.changeSign();
484      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
485    }
486
487    if (!UnsafeFPMath) {
488      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
489      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
490    }
491  }
492
493  // Always use a library call for pow.
494  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
495  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
496  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
497
498  setOperationAction(ISD::FLOG, MVT::f80, Expand);
499  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
500  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
501  setOperationAction(ISD::FEXP, MVT::f80, Expand);
502  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
503
504  // First set operation action for all vector types to either promote
505  // (for widening) or expand (for scalarization). Then we will selectively
506  // turn on ones that can be effectively codegen'd.
507  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
508       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
509    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
510    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
511    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
512    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
513    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
514    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
515    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
516    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
517    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
518    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
519    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
520    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
521    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
522    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
523    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
524    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
525    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
526    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
527    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
528    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
529    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
530    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
531    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
532    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
533    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
534    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
535    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
536    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
537    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
538    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
539    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
540    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
541    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
542    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
543    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
544    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
545    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
546    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
547    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
548    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
549    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
550    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
551    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
557  }
558
559  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
560  // with -msoft-float, disable use of MMX as well.
561  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
562    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
563    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
564    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
565    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
566    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
567
568    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
569    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
570    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
571    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
572
573    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
574    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
575    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
576    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
577
578    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
579    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
580
581    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
582    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
583    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
584    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
585    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
586    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
587    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
588
589    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
590    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
591    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
592    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
593    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
594    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
595    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
596
597    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
598    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
599    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
600    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
601    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
602    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
603    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
604
605    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
606    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
607    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
608    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
609    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
610    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
611    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
612    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
613    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
614
615    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
616    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
617    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
618    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
619    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
620
621    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
622    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
623    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
624    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
625
626    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
627    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
628    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
629    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
630
631    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
632
633    setTruncStoreAction(MVT::v8i16,             MVT::v8i8, Expand);
634    setOperationAction(ISD::TRUNCATE,           MVT::v8i8, Expand);
635    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
636    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
637    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
638    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
639  }
640
641  if (!UseSoftFloat && Subtarget->hasSSE1()) {
642    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
643
644    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
645    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
646    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
647    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
648    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
649    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
650    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
651    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
652    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
653    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
654    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
655    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
656  }
657
658  if (!UseSoftFloat && Subtarget->hasSSE2()) {
659    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
660
661    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
662    // registers cannot be used even for integer operations.
663    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
664    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
665    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
666    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
667
668    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
669    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
670    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
671    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
672    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
673    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
674    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
675    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
676    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
677    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
678    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
679    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
680    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
681    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
682    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
683    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
684
685    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
686    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
687    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
688    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
689
690    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
691    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
692    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
693    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
694    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
695
696    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
697    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
698      MVT VT = (MVT::SimpleValueType)i;
699      // Do not attempt to custom lower non-power-of-2 vectors
700      if (!isPowerOf2_32(VT.getVectorNumElements()))
701        continue;
702      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
703      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
704      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
705    }
706
707    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
708    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
709    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
710    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
711    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
712    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
713
714    if (Subtarget->is64Bit()) {
715      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
716      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
717    }
718
719    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
720    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
721      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
722      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v2i64);
723      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
724      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v2i64);
725      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
726      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v2i64);
727      setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
728      AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v2i64);
729      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
730      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64);
731    }
732
733    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
734
735    // Custom lower v2i64 and v2f64 selects.
736    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
737    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
738    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
739    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
740
741    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
742    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
743    if (!DisableMMX && Subtarget->hasMMX()) {
744      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
745      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
746    }
747  }
748
749  if (Subtarget->hasSSE41()) {
750    // FIXME: Do we need to handle scalar-to-vector here?
751    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
752
753    // i8 and i16 vectors are custom , because the source register and source
754    // source memory operand types are not the same width.  f32 vectors are
755    // custom since the immediate controlling the insert encodes additional
756    // information.
757    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
758    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
759    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
760    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
761
762    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
763    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
764    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
765    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
766
767    if (Subtarget->is64Bit()) {
768      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
769      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
770    }
771  }
772
773  if (Subtarget->hasSSE42()) {
774    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
775  }
776
777  // We want to custom lower some of our intrinsics.
778  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
779
780  // Add/Sub/Mul with overflow operations are custom lowered.
781  setOperationAction(ISD::SADDO, MVT::i32, Custom);
782  setOperationAction(ISD::SADDO, MVT::i64, Custom);
783  setOperationAction(ISD::UADDO, MVT::i32, Custom);
784  setOperationAction(ISD::UADDO, MVT::i64, Custom);
785  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
786  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
787  setOperationAction(ISD::USUBO, MVT::i32, Custom);
788  setOperationAction(ISD::USUBO, MVT::i64, Custom);
789  setOperationAction(ISD::SMULO, MVT::i32, Custom);
790  setOperationAction(ISD::SMULO, MVT::i64, Custom);
791
792  if (!Subtarget->is64Bit()) {
793    // These libcalls are not available in 32-bit.
794    setLibcallName(RTLIB::SHL_I128, 0);
795    setLibcallName(RTLIB::SRL_I128, 0);
796    setLibcallName(RTLIB::SRA_I128, 0);
797  }
798
799  // We have target-specific dag combine patterns for the following nodes:
800  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
801  setTargetDAGCombine(ISD::BUILD_VECTOR);
802  setTargetDAGCombine(ISD::SELECT);
803  setTargetDAGCombine(ISD::SHL);
804  setTargetDAGCombine(ISD::SRA);
805  setTargetDAGCombine(ISD::SRL);
806  setTargetDAGCombine(ISD::STORE);
807  if (Subtarget->is64Bit())
808    setTargetDAGCombine(ISD::MUL);
809
810  computeRegisterProperties();
811
812  // FIXME: These should be based on subtarget info. Plus, the values should
813  // be smaller when we are in optimizing for size mode.
814  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
815  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
816  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
817  allowUnalignedMemoryAccesses = true; // x86 supports it!
818  setPrefLoopAlignment(16);
819  benefitFromCodePlacementOpt = true;
820}
821
822
823MVT X86TargetLowering::getSetCCResultType(MVT VT) const {
824  return MVT::i8;
825}
826
827
828/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
829/// the desired ByVal argument alignment.
830static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
831  if (MaxAlign == 16)
832    return;
833  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
834    if (VTy->getBitWidth() == 128)
835      MaxAlign = 16;
836  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
837    unsigned EltAlign = 0;
838    getMaxByValAlign(ATy->getElementType(), EltAlign);
839    if (EltAlign > MaxAlign)
840      MaxAlign = EltAlign;
841  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
842    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
843      unsigned EltAlign = 0;
844      getMaxByValAlign(STy->getElementType(i), EltAlign);
845      if (EltAlign > MaxAlign)
846        MaxAlign = EltAlign;
847      if (MaxAlign == 16)
848        break;
849    }
850  }
851  return;
852}
853
854/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
855/// function arguments in the caller parameter area. For X86, aggregates
856/// that contain SSE vectors are placed at 16-byte boundaries while the rest
857/// are at 4-byte boundaries.
858unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
859  if (Subtarget->is64Bit()) {
860    // Max of 8 and alignment of type.
861    unsigned TyAlign = TD->getABITypeAlignment(Ty);
862    if (TyAlign > 8)
863      return TyAlign;
864    return 8;
865  }
866
867  unsigned Align = 4;
868  if (Subtarget->hasSSE1())
869    getMaxByValAlign(Ty, Align);
870  return Align;
871}
872
873/// getOptimalMemOpType - Returns the target specific optimal type for load
874/// and store operations as a result of memset, memcpy, and memmove
875/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
876/// determining it.
877MVT
878X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
879                                       bool isSrcConst, bool isSrcStr,
880                                       SelectionDAG &DAG) const {
881  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
882  // linux.  This is because the stack realignment code can't handle certain
883  // cases like PR2962.  This should be removed when PR2962 is fixed.
884  const Function *F = DAG.getMachineFunction().getFunction();
885  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
886  if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) {
887    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
888      return MVT::v4i32;
889    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
890      return MVT::v4f32;
891  }
892  if (Subtarget->is64Bit() && Size >= 8)
893    return MVT::i64;
894  return MVT::i32;
895}
896
897/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
898/// jumptable.
899SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
900                                                      SelectionDAG &DAG) const {
901  if (usesGlobalOffsetTable())
902    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
903  if (!Subtarget->isPICStyleRIPRel())
904    // This doesn't have DebugLoc associated with it, but is not really the
905    // same as a Register.
906    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
907                       getPointerTy());
908  return Table;
909}
910
911//===----------------------------------------------------------------------===//
912//               Return Value Calling Convention Implementation
913//===----------------------------------------------------------------------===//
914
915#include "X86GenCallingConv.inc"
916
917/// LowerRET - Lower an ISD::RET node.
918SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
919  DebugLoc dl = Op.getDebugLoc();
920  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
921
922  SmallVector<CCValAssign, 16> RVLocs;
923  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
924  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
925  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
926  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86);
927
928  // If this is the first return lowered for this function, add the regs to the
929  // liveout set for the function.
930  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
931    for (unsigned i = 0; i != RVLocs.size(); ++i)
932      if (RVLocs[i].isRegLoc())
933        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
934  }
935  SDValue Chain = Op.getOperand(0);
936
937  // Handle tail call return.
938  Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
939  if (Chain.getOpcode() == X86ISD::TAILCALL) {
940    SDValue TailCall = Chain;
941    SDValue TargetAddress = TailCall.getOperand(1);
942    SDValue StackAdjustment = TailCall.getOperand(2);
943    assert(((TargetAddress.getOpcode() == ISD::Register &&
944               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX ||
945                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R11)) ||
946              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
947              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
948             "Expecting an global address, external symbol, or register");
949    assert(StackAdjustment.getOpcode() == ISD::Constant &&
950           "Expecting a const value");
951
952    SmallVector<SDValue,8> Operands;
953    Operands.push_back(Chain.getOperand(0));
954    Operands.push_back(TargetAddress);
955    Operands.push_back(StackAdjustment);
956    // Copy registers used by the call. Last operand is a flag so it is not
957    // copied.
958    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
959      Operands.push_back(Chain.getOperand(i));
960    }
961    return DAG.getNode(X86ISD::TC_RETURN, dl, MVT::Other, &Operands[0],
962                       Operands.size());
963  }
964
965  // Regular return.
966  SDValue Flag;
967
968  SmallVector<SDValue, 6> RetOps;
969  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
970  // Operand #1 = Bytes To Pop
971  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
972
973  // Copy the result values into the output registers.
974  for (unsigned i = 0; i != RVLocs.size(); ++i) {
975    CCValAssign &VA = RVLocs[i];
976    assert(VA.isRegLoc() && "Can only return in registers!");
977    SDValue ValToCopy = Op.getOperand(i*2+1);
978
979    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
980    // the RET instruction and handled by the FP Stackifier.
981    if (VA.getLocReg() == X86::ST0 ||
982        VA.getLocReg() == X86::ST1) {
983      // If this is a copy from an xmm register to ST(0), use an FPExtend to
984      // change the value to the FP stack register class.
985      if (isScalarFPTypeInSSEReg(VA.getValVT()))
986        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
987      RetOps.push_back(ValToCopy);
988      // Don't emit a copytoreg.
989      continue;
990    }
991
992    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
993    // which is returned in RAX / RDX.
994    if (Subtarget->is64Bit()) {
995      MVT ValVT = ValToCopy.getValueType();
996      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
997        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
998        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
999          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1000      }
1001    }
1002
1003    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1004    Flag = Chain.getValue(1);
1005  }
1006
1007  // The x86-64 ABI for returning structs by value requires that we copy
1008  // the sret argument into %rax for the return. We saved the argument into
1009  // a virtual register in the entry block, so now we copy the value out
1010  // and into %rax.
1011  if (Subtarget->is64Bit() &&
1012      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1013    MachineFunction &MF = DAG.getMachineFunction();
1014    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1015    unsigned Reg = FuncInfo->getSRetReturnReg();
1016    if (!Reg) {
1017      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1018      FuncInfo->setSRetReturnReg(Reg);
1019    }
1020    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1021
1022    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1023    Flag = Chain.getValue(1);
1024  }
1025
1026  RetOps[0] = Chain;  // Update chain.
1027
1028  // Add the flag if we have it.
1029  if (Flag.getNode())
1030    RetOps.push_back(Flag);
1031
1032  return DAG.getNode(X86ISD::RET_FLAG, dl,
1033                     MVT::Other, &RetOps[0], RetOps.size());
1034}
1035
1036
1037/// LowerCallResult - Lower the result values of an ISD::CALL into the
1038/// appropriate copies out of appropriate physical registers.  This assumes that
1039/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
1040/// being lowered.  The returns a SDNode with the same number of values as the
1041/// ISD::CALL.
1042SDNode *X86TargetLowering::
1043LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
1044                unsigned CallingConv, SelectionDAG &DAG) {
1045
1046  DebugLoc dl = TheCall->getDebugLoc();
1047  // Assign locations to each value returned by this call.
1048  SmallVector<CCValAssign, 16> RVLocs;
1049  bool isVarArg = TheCall->isVarArg();
1050  bool Is64Bit = Subtarget->is64Bit();
1051  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
1052  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
1053
1054  SmallVector<SDValue, 8> ResultVals;
1055
1056  // Copy all of the result registers out of their specified physreg.
1057  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1058    CCValAssign &VA = RVLocs[i];
1059    MVT CopyVT = VA.getValVT();
1060
1061    // If this is x86-64, and we disabled SSE, we can't return FP values
1062    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1063        ((Is64Bit || TheCall->isInreg()) && !Subtarget->hasSSE1())) {
1064      cerr << "SSE register return with SSE disabled\n";
1065      exit(1);
1066    }
1067
1068    // If this is a call to a function that returns an fp value on the floating
1069    // point stack, but where we prefer to use the value in xmm registers, copy
1070    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1071    if ((VA.getLocReg() == X86::ST0 ||
1072         VA.getLocReg() == X86::ST1) &&
1073        isScalarFPTypeInSSEReg(VA.getValVT())) {
1074      CopyVT = MVT::f80;
1075    }
1076
1077    SDValue Val;
1078    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1079      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1080      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1081        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1082                                   MVT::v2i64, InFlag).getValue(1);
1083        Val = Chain.getValue(0);
1084        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1085                          Val, DAG.getConstant(0, MVT::i64));
1086      } else {
1087        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1088                                   MVT::i64, InFlag).getValue(1);
1089        Val = Chain.getValue(0);
1090      }
1091      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1092    } else {
1093      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1094                                 CopyVT, InFlag).getValue(1);
1095      Val = Chain.getValue(0);
1096    }
1097    InFlag = Chain.getValue(2);
1098
1099    if (CopyVT != VA.getValVT()) {
1100      // Round the F80 the right size, which also moves to the appropriate xmm
1101      // register.
1102      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1103                        // This truncation won't change the value.
1104                        DAG.getIntPtrConstant(1));
1105    }
1106
1107    ResultVals.push_back(Val);
1108  }
1109
1110  // Merge everything together with a MERGE_VALUES node.
1111  ResultVals.push_back(Chain);
1112  return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
1113                     &ResultVals[0], ResultVals.size()).getNode();
1114}
1115
1116
1117//===----------------------------------------------------------------------===//
1118//                C & StdCall & Fast Calling Convention implementation
1119//===----------------------------------------------------------------------===//
1120//  StdCall calling convention seems to be standard for many Windows' API
1121//  routines and around. It differs from C calling convention just a little:
1122//  callee should clean up the stack, not caller. Symbols should be also
1123//  decorated in some fancy way :) It doesn't support any vector arguments.
1124//  For info on fast calling convention see Fast Calling Convention (tail call)
1125//  implementation LowerX86_32FastCCCallTo.
1126
1127/// CallIsStructReturn - Determines whether a CALL node uses struct return
1128/// semantics.
1129static bool CallIsStructReturn(CallSDNode *TheCall) {
1130  unsigned NumOps = TheCall->getNumArgs();
1131  if (!NumOps)
1132    return false;
1133
1134  return TheCall->getArgFlags(0).isSRet();
1135}
1136
1137/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1138/// return semantics.
1139static bool ArgsAreStructReturn(SDValue Op) {
1140  unsigned NumArgs = Op.getNode()->getNumValues() - 1;
1141  if (!NumArgs)
1142    return false;
1143
1144  return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
1145}
1146
1147/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1148/// the callee to pop its own arguments. Callee pop is necessary to support tail
1149/// calls.
1150bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
1151  if (IsVarArg)
1152    return false;
1153
1154  switch (CallingConv) {
1155  default:
1156    return false;
1157  case CallingConv::X86_StdCall:
1158    return !Subtarget->is64Bit();
1159  case CallingConv::X86_FastCall:
1160    return !Subtarget->is64Bit();
1161  case CallingConv::Fast:
1162    return PerformTailCallOpt;
1163  }
1164}
1165
1166/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1167/// given CallingConvention value.
1168CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
1169  if (Subtarget->is64Bit()) {
1170    if (Subtarget->isTargetWin64())
1171      return CC_X86_Win64_C;
1172    else
1173      return CC_X86_64_C;
1174  }
1175
1176  if (CC == CallingConv::X86_FastCall)
1177    return CC_X86_32_FastCall;
1178  else if (CC == CallingConv::Fast)
1179    return CC_X86_32_FastCC;
1180  else
1181    return CC_X86_32_C;
1182}
1183
1184/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1185/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1186NameDecorationStyle
1187X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) {
1188  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1189  if (CC == CallingConv::X86_FastCall)
1190    return FastCall;
1191  else if (CC == CallingConv::X86_StdCall)
1192    return StdCall;
1193  return None;
1194}
1195
1196
1197/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1198/// in a register before calling.
1199bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1200  return !IsTailCall && !Is64Bit &&
1201    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1202    Subtarget->isPICStyleGOT();
1203}
1204
1205/// CallRequiresFnAddressInReg - Check whether the call requires the function
1206/// address to be loaded in a register.
1207bool
1208X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1209  return !Is64Bit && IsTailCall &&
1210    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1211    Subtarget->isPICStyleGOT();
1212}
1213
1214/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1215/// by "Src" to address "Dst" with size and alignment information specified by
1216/// the specific parameter attribute. The copy will be passed as a byval
1217/// function parameter.
1218static SDValue
1219CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1220                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1221                          DebugLoc dl) {
1222  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1223  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1224                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1225}
1226
1227SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG,
1228                                              const CCValAssign &VA,
1229                                              MachineFrameInfo *MFI,
1230                                              unsigned CC,
1231                                              SDValue Root, unsigned i) {
1232  // Create the nodes corresponding to a load from this parameter slot.
1233  ISD::ArgFlagsTy Flags =
1234    cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1235  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1236  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1237
1238  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1239  // changed with more analysis.
1240  // In case of tail call optimization mark all arguments mutable. Since they
1241  // could be overwritten by lowering of arguments in case of a tail call.
1242  int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1243                                  VA.getLocMemOffset(), isImmutable);
1244  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1245  if (Flags.isByVal())
1246    return FIN;
1247  return DAG.getLoad(VA.getValVT(), Op.getDebugLoc(), Root, FIN,
1248                     PseudoSourceValue::getFixedStack(FI), 0);
1249}
1250
1251SDValue
1252X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1253  MachineFunction &MF = DAG.getMachineFunction();
1254  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1255  DebugLoc dl = Op.getDebugLoc();
1256
1257  const Function* Fn = MF.getFunction();
1258  if (Fn->hasExternalLinkage() &&
1259      Subtarget->isTargetCygMing() &&
1260      Fn->getName() == "main")
1261    FuncInfo->setForceFramePointer(true);
1262
1263  // Decorate the function name.
1264  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1265
1266  MachineFrameInfo *MFI = MF.getFrameInfo();
1267  SDValue Root = Op.getOperand(0);
1268  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1269  unsigned CC = MF.getFunction()->getCallingConv();
1270  bool Is64Bit = Subtarget->is64Bit();
1271  bool IsWin64 = Subtarget->isTargetWin64();
1272
1273  assert(!(isVarArg && CC == CallingConv::Fast) &&
1274         "Var args not supported with calling convention fastcc");
1275
1276  // Assign locations to all of the incoming arguments.
1277  SmallVector<CCValAssign, 16> ArgLocs;
1278  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1279  CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC));
1280
1281  SmallVector<SDValue, 8> ArgValues;
1282  unsigned LastVal = ~0U;
1283  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1284    CCValAssign &VA = ArgLocs[i];
1285    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1286    // places.
1287    assert(VA.getValNo() != LastVal &&
1288           "Don't support value assigned to multiple locs yet");
1289    LastVal = VA.getValNo();
1290
1291    if (VA.isRegLoc()) {
1292      MVT RegVT = VA.getLocVT();
1293      TargetRegisterClass *RC = NULL;
1294      if (RegVT == MVT::i32)
1295        RC = X86::GR32RegisterClass;
1296      else if (Is64Bit && RegVT == MVT::i64)
1297        RC = X86::GR64RegisterClass;
1298      else if (RegVT == MVT::f32)
1299        RC = X86::FR32RegisterClass;
1300      else if (RegVT == MVT::f64)
1301        RC = X86::FR64RegisterClass;
1302      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1303        RC = X86::VR128RegisterClass;
1304      else if (RegVT.isVector()) {
1305        assert(RegVT.getSizeInBits() == 64);
1306        if (!Is64Bit)
1307          RC = X86::VR64RegisterClass;     // MMX values are passed in MMXs.
1308        else {
1309          // Darwin calling convention passes MMX values in either GPRs or
1310          // XMMs in x86-64. Other targets pass them in memory.
1311          if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
1312            RC = X86::VR128RegisterClass;  // MMX values are passed in XMMs.
1313            RegVT = MVT::v2i64;
1314          } else {
1315            RC = X86::GR64RegisterClass;   // v1i64 values are passed in GPRs.
1316            RegVT = MVT::i64;
1317          }
1318        }
1319      } else {
1320        assert(0 && "Unknown argument type!");
1321      }
1322
1323      unsigned Reg = DAG.getMachineFunction().addLiveIn(VA.getLocReg(), RC);
1324      SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT);
1325
1326      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1327      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1328      // right size.
1329      if (VA.getLocInfo() == CCValAssign::SExt)
1330        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1331                               DAG.getValueType(VA.getValVT()));
1332      else if (VA.getLocInfo() == CCValAssign::ZExt)
1333        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1334                               DAG.getValueType(VA.getValVT()));
1335
1336      if (VA.getLocInfo() != CCValAssign::Full)
1337        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1338
1339      // Handle MMX values passed in GPRs.
1340      if (Is64Bit && RegVT != VA.getLocVT()) {
1341        if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
1342          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue);
1343        else if (RC == X86::VR128RegisterClass) {
1344          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1345                                 ArgValue, DAG.getConstant(0, MVT::i64));
1346          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue);
1347        }
1348      }
1349
1350      ArgValues.push_back(ArgValue);
1351    } else {
1352      assert(VA.isMemLoc());
1353      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1354    }
1355  }
1356
1357  // The x86-64 ABI for returning structs by value requires that we copy
1358  // the sret argument into %rax for the return. Save the argument into
1359  // a virtual register so that we can access it from the return points.
1360  if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1361    MachineFunction &MF = DAG.getMachineFunction();
1362    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1363    unsigned Reg = FuncInfo->getSRetReturnReg();
1364    if (!Reg) {
1365      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1366      FuncInfo->setSRetReturnReg(Reg);
1367    }
1368    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, ArgValues[0]);
1369    Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Root);
1370  }
1371
1372  unsigned StackSize = CCInfo.getNextStackOffset();
1373  // align stack specially for tail calls
1374  if (PerformTailCallOpt && CC == CallingConv::Fast)
1375    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1376
1377  // If the function takes variable number of arguments, make a frame index for
1378  // the start of the first vararg value... for expansion of llvm.va_start.
1379  if (isVarArg) {
1380    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1381      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1382    }
1383    if (Is64Bit) {
1384      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1385
1386      // FIXME: We should really autogenerate these arrays
1387      static const unsigned GPR64ArgRegsWin64[] = {
1388        X86::RCX, X86::RDX, X86::R8,  X86::R9
1389      };
1390      static const unsigned XMMArgRegsWin64[] = {
1391        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1392      };
1393      static const unsigned GPR64ArgRegs64Bit[] = {
1394        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1395      };
1396      static const unsigned XMMArgRegs64Bit[] = {
1397        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1398        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1399      };
1400      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1401
1402      if (IsWin64) {
1403        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1404        GPR64ArgRegs = GPR64ArgRegsWin64;
1405        XMMArgRegs = XMMArgRegsWin64;
1406      } else {
1407        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1408        GPR64ArgRegs = GPR64ArgRegs64Bit;
1409        XMMArgRegs = XMMArgRegs64Bit;
1410      }
1411      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1412                                                       TotalNumIntRegs);
1413      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1414                                                       TotalNumXMMRegs);
1415
1416      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1417      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1418             "SSE register cannot be used when SSE is disabled!");
1419      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1420             "SSE register cannot be used when SSE is disabled!");
1421      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1422        // Kernel mode asks for SSE to be disabled, so don't push them
1423        // on the stack.
1424        TotalNumXMMRegs = 0;
1425
1426      // For X86-64, if there are vararg parameters that are passed via
1427      // registers, then we must store them to their spots on the stack so they
1428      // may be loaded by deferencing the result of va_next.
1429      VarArgsGPOffset = NumIntRegs * 8;
1430      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1431      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1432                                                 TotalNumXMMRegs * 16, 16);
1433
1434      // Store the integer parameter registers.
1435      SmallVector<SDValue, 8> MemOps;
1436      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1437      SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1438                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1439      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1440        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1441                                     X86::GR64RegisterClass);
1442        SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::i64);
1443        SDValue Store =
1444          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1445                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1446        MemOps.push_back(Store);
1447        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1448                          DAG.getIntPtrConstant(8));
1449      }
1450
1451      // Now store the XMM (fp + vector) parameter registers.
1452      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1453                        DAG.getIntPtrConstant(VarArgsFPOffset));
1454      for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1455        unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1456                                     X86::VR128RegisterClass);
1457        SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::v4f32);
1458        SDValue Store =
1459          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1460                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1461        MemOps.push_back(Store);
1462        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1463                          DAG.getIntPtrConstant(16));
1464      }
1465      if (!MemOps.empty())
1466          Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1467                             &MemOps[0], MemOps.size());
1468    }
1469  }
1470
1471  ArgValues.push_back(Root);
1472
1473  // Some CCs need callee pop.
1474  if (IsCalleePop(isVarArg, CC)) {
1475    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1476    BytesCallerReserves = 0;
1477  } else {
1478    BytesToPopOnReturn  = 0; // Callee pops nothing.
1479    // If this is an sret function, the return should pop the hidden pointer.
1480    if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op))
1481      BytesToPopOnReturn = 4;
1482    BytesCallerReserves = StackSize;
1483  }
1484
1485  if (!Is64Bit) {
1486    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1487    if (CC == CallingConv::X86_FastCall)
1488      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1489  }
1490
1491  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1492
1493  // Return the new list of results.
1494  return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
1495                     &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
1496}
1497
1498SDValue
1499X86TargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
1500                                    const SDValue &StackPtr,
1501                                    const CCValAssign &VA,
1502                                    SDValue Chain,
1503                                    SDValue Arg, ISD::ArgFlagsTy Flags) {
1504  DebugLoc dl = TheCall->getDebugLoc();
1505  unsigned LocMemOffset = VA.getLocMemOffset();
1506  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1507  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1508  if (Flags.isByVal()) {
1509    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1510  }
1511  return DAG.getStore(Chain, dl, Arg, PtrOff,
1512                      PseudoSourceValue::getStack(), LocMemOffset);
1513}
1514
1515/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1516/// optimization is performed and it is required.
1517SDValue
1518X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1519                                           SDValue &OutRetAddr,
1520                                           SDValue Chain,
1521                                           bool IsTailCall,
1522                                           bool Is64Bit,
1523                                           int FPDiff,
1524                                           DebugLoc dl) {
1525  if (!IsTailCall || FPDiff==0) return Chain;
1526
1527  // Adjust the Return address stack slot.
1528  MVT VT = getPointerTy();
1529  OutRetAddr = getReturnAddressFrameIndex(DAG);
1530
1531  // Load the "old" Return address.
1532  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0);
1533  return SDValue(OutRetAddr.getNode(), 1);
1534}
1535
1536/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1537/// optimization is performed and it is required (FPDiff!=0).
1538static SDValue
1539EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1540                         SDValue Chain, SDValue RetAddrFrIdx,
1541                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1542  // Store the return address to the appropriate stack slot.
1543  if (!FPDiff) return Chain;
1544  // Calculate the new stack slot for the return address.
1545  int SlotSize = Is64Bit ? 8 : 4;
1546  int NewReturnAddrFI =
1547    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1548  MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1549  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1550  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1551                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1552  return Chain;
1553}
1554
1555SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
1556  MachineFunction &MF = DAG.getMachineFunction();
1557  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
1558  SDValue Chain       = TheCall->getChain();
1559  unsigned CC         = TheCall->getCallingConv();
1560  bool isVarArg       = TheCall->isVarArg();
1561  bool IsTailCall     = TheCall->isTailCall() &&
1562                        CC == CallingConv::Fast && PerformTailCallOpt;
1563  SDValue Callee      = TheCall->getCallee();
1564  bool Is64Bit        = Subtarget->is64Bit();
1565  bool IsStructRet    = CallIsStructReturn(TheCall);
1566  DebugLoc dl         = TheCall->getDebugLoc();
1567
1568  assert(!(isVarArg && CC == CallingConv::Fast) &&
1569         "Var args not supported with calling convention fastcc");
1570
1571  // Analyze operands of the call, assigning locations to each operand.
1572  SmallVector<CCValAssign, 16> ArgLocs;
1573  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1574  CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC));
1575
1576  // Get a count of how many bytes are to be pushed on the stack.
1577  unsigned NumBytes = CCInfo.getNextStackOffset();
1578  if (PerformTailCallOpt && CC == CallingConv::Fast)
1579    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1580
1581  int FPDiff = 0;
1582  if (IsTailCall) {
1583    // Lower arguments at fp - stackoffset + fpdiff.
1584    unsigned NumBytesCallerPushed =
1585      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1586    FPDiff = NumBytesCallerPushed - NumBytes;
1587
1588    // Set the delta of movement of the returnaddr stackslot.
1589    // But only set if delta is greater than previous delta.
1590    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1591      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1592  }
1593
1594  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1595
1596  SDValue RetAddrFrIdx;
1597  // Load return adress for tail calls.
1598  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1599                                  FPDiff, dl);
1600
1601  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1602  SmallVector<SDValue, 8> MemOpChains;
1603  SDValue StackPtr;
1604
1605  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1606  // of tail call optimization arguments are handle later.
1607  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1608    CCValAssign &VA = ArgLocs[i];
1609    SDValue Arg = TheCall->getArg(i);
1610    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1611    bool isByVal = Flags.isByVal();
1612
1613    // Promote the value if needed.
1614    switch (VA.getLocInfo()) {
1615    default: assert(0 && "Unknown loc info!");
1616    case CCValAssign::Full: break;
1617    case CCValAssign::SExt:
1618      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1619      break;
1620    case CCValAssign::ZExt:
1621      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1622      break;
1623    case CCValAssign::AExt:
1624      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1625      break;
1626    }
1627
1628    if (VA.isRegLoc()) {
1629      if (Is64Bit) {
1630        MVT RegVT = VA.getLocVT();
1631        if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1632          switch (VA.getLocReg()) {
1633          default:
1634            break;
1635          case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
1636          case X86::R8: {
1637            // Special case: passing MMX values in GPR registers.
1638            Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1639            break;
1640          }
1641          case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
1642          case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
1643            // Special case: passing MMX values in XMM registers.
1644            Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1645            Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1646            Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1647            break;
1648          }
1649          }
1650      }
1651      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1652    } else {
1653      if (!IsTailCall || (IsTailCall && isByVal)) {
1654        assert(VA.isMemLoc());
1655        if (StackPtr.getNode() == 0)
1656          StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1657
1658        MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
1659                                               Chain, Arg, Flags));
1660      }
1661    }
1662  }
1663
1664  if (!MemOpChains.empty())
1665    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1666                        &MemOpChains[0], MemOpChains.size());
1667
1668  // Build a sequence of copy-to-reg nodes chained together with token chain
1669  // and flag operands which copy the outgoing args into registers.
1670  SDValue InFlag;
1671  // Tail call byval lowering might overwrite argument registers so in case of
1672  // tail call optimization the copies to registers are lowered later.
1673  if (!IsTailCall)
1674    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1675      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1676                               RegsToPass[i].second, InFlag);
1677      InFlag = Chain.getValue(1);
1678    }
1679
1680  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1681  // GOT pointer.
1682  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1683    Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1684                             DAG.getNode(X86ISD::GlobalBaseReg,
1685                                         DebugLoc::getUnknownLoc(),
1686                                         getPointerTy()),
1687                             InFlag);
1688    InFlag = Chain.getValue(1);
1689  }
1690  // If we are tail calling and generating PIC/GOT style code load the address
1691  // of the callee into ecx. The value in ecx is used as target of the tail
1692  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1693  // calls on PIC/GOT architectures. Normally we would just put the address of
1694  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1695  // restored (since ebx is callee saved) before jumping to the target@PLT.
1696  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1697    // Note: The actual moving to ecx is done further down.
1698    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1699    if (G && !G->getGlobal()->hasHiddenVisibility() &&
1700        !G->getGlobal()->hasProtectedVisibility())
1701      Callee =  LowerGlobalAddress(Callee, DAG);
1702    else if (isa<ExternalSymbolSDNode>(Callee))
1703      Callee = LowerExternalSymbol(Callee,DAG);
1704  }
1705
1706  if (Is64Bit && isVarArg) {
1707    // From AMD64 ABI document:
1708    // For calls that may call functions that use varargs or stdargs
1709    // (prototype-less calls or calls to functions containing ellipsis (...) in
1710    // the declaration) %al is used as hidden argument to specify the number
1711    // of SSE registers used. The contents of %al do not need to match exactly
1712    // the number of registers, but must be an ubound on the number of SSE
1713    // registers used and is in the range 0 - 8 inclusive.
1714
1715    // FIXME: Verify this on Win64
1716    // Count the number of XMM registers allocated.
1717    static const unsigned XMMArgRegs[] = {
1718      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1719      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1720    };
1721    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1722    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1723           && "SSE registers cannot be used when SSE is disabled");
1724
1725    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1726                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1727    InFlag = Chain.getValue(1);
1728  }
1729
1730
1731  // For tail calls lower the arguments to the 'real' stack slot.
1732  if (IsTailCall) {
1733    SmallVector<SDValue, 8> MemOpChains2;
1734    SDValue FIN;
1735    int FI = 0;
1736    // Do not flag preceeding copytoreg stuff together with the following stuff.
1737    InFlag = SDValue();
1738    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1739      CCValAssign &VA = ArgLocs[i];
1740      if (!VA.isRegLoc()) {
1741        assert(VA.isMemLoc());
1742        SDValue Arg = TheCall->getArg(i);
1743        ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1744        // Create frame index.
1745        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1746        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1747        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1748        FIN = DAG.getFrameIndex(FI, getPointerTy());
1749
1750        if (Flags.isByVal()) {
1751          // Copy relative to framepointer.
1752          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1753          if (StackPtr.getNode() == 0)
1754            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1755                                          getPointerTy());
1756          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1757
1758          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1759                                                           Flags, DAG, dl));
1760        } else {
1761          // Store relative to framepointer.
1762          MemOpChains2.push_back(
1763            DAG.getStore(Chain, dl, Arg, FIN,
1764                         PseudoSourceValue::getFixedStack(FI), 0));
1765        }
1766      }
1767    }
1768
1769    if (!MemOpChains2.empty())
1770      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1771                          &MemOpChains2[0], MemOpChains2.size());
1772
1773    // Copy arguments to their registers.
1774    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1775      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1776                               RegsToPass[i].second, InFlag);
1777      InFlag = Chain.getValue(1);
1778    }
1779    InFlag =SDValue();
1780
1781    // Store the return address to the appropriate stack slot.
1782    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1783                                     FPDiff, dl);
1784  }
1785
1786  // If the callee is a GlobalAddress node (quite common, every direct call is)
1787  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1788  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1789    // We should use extra load for direct calls to dllimported functions in
1790    // non-JIT mode.
1791    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1792                                        getTargetMachine(), true))
1793      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy(),
1794                                          G->getOffset());
1795  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1796    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1797  } else if (IsTailCall) {
1798    unsigned Opc = Is64Bit ? X86::R11 : X86::EAX;
1799
1800    Chain = DAG.getCopyToReg(Chain,  dl,
1801                             DAG.getRegister(Opc, getPointerTy()),
1802                             Callee,InFlag);
1803    Callee = DAG.getRegister(Opc, getPointerTy());
1804    // Add register as live out.
1805    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1806  }
1807
1808  // Returns a chain & a flag for retval copy to use.
1809  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1810  SmallVector<SDValue, 8> Ops;
1811
1812  if (IsTailCall) {
1813    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1814                           DAG.getIntPtrConstant(0, true), InFlag);
1815    InFlag = Chain.getValue(1);
1816
1817    // Returns a chain & a flag for retval copy to use.
1818    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1819    Ops.clear();
1820  }
1821
1822  Ops.push_back(Chain);
1823  Ops.push_back(Callee);
1824
1825  if (IsTailCall)
1826    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1827
1828  // Add argument registers to the end of the list so that they are known live
1829  // into the call.
1830  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1831    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1832                                  RegsToPass[i].second.getValueType()));
1833
1834  // Add an implicit use GOT pointer in EBX.
1835  if (!IsTailCall && !Is64Bit &&
1836      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1837      Subtarget->isPICStyleGOT())
1838    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1839
1840  // Add an implicit use of AL for x86 vararg functions.
1841  if (Is64Bit && isVarArg)
1842    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1843
1844  if (InFlag.getNode())
1845    Ops.push_back(InFlag);
1846
1847  if (IsTailCall) {
1848    assert(InFlag.getNode() &&
1849           "Flag must be set. Depend on flag being set in LowerRET");
1850    Chain = DAG.getNode(X86ISD::TAILCALL, dl,
1851                        TheCall->getVTList(), &Ops[0], Ops.size());
1852
1853    return SDValue(Chain.getNode(), Op.getResNo());
1854  }
1855
1856  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
1857  InFlag = Chain.getValue(1);
1858
1859  // Create the CALLSEQ_END node.
1860  unsigned NumBytesForCalleeToPush;
1861  if (IsCalleePop(isVarArg, CC))
1862    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1863  else if (!Is64Bit && CC != CallingConv::Fast && IsStructRet)
1864    // If this is is a call to a struct-return function, the callee
1865    // pops the hidden struct pointer, so we have to push it back.
1866    // This is common for Darwin/X86, Linux & Mingw32 targets.
1867    NumBytesForCalleeToPush = 4;
1868  else
1869    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1870
1871  // Returns a flag for retval copy to use.
1872  Chain = DAG.getCALLSEQ_END(Chain,
1873                             DAG.getIntPtrConstant(NumBytes, true),
1874                             DAG.getIntPtrConstant(NumBytesForCalleeToPush,
1875                                                   true),
1876                             InFlag);
1877  InFlag = Chain.getValue(1);
1878
1879  // Handle result values, copying them out of physregs into vregs that we
1880  // return.
1881  return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
1882                 Op.getResNo());
1883}
1884
1885
1886//===----------------------------------------------------------------------===//
1887//                Fast Calling Convention (tail call) implementation
1888//===----------------------------------------------------------------------===//
1889
1890//  Like std call, callee cleans arguments, convention except that ECX is
1891//  reserved for storing the tail called function address. Only 2 registers are
1892//  free for argument passing (inreg). Tail call optimization is performed
1893//  provided:
1894//                * tailcallopt is enabled
1895//                * caller/callee are fastcc
1896//  On X86_64 architecture with GOT-style position independent code only local
1897//  (within module) calls are supported at the moment.
1898//  To keep the stack aligned according to platform abi the function
1899//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1900//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1901//  If a tail called function callee has more arguments than the caller the
1902//  caller needs to make sure that there is room to move the RETADDR to. This is
1903//  achieved by reserving an area the size of the argument delta right after the
1904//  original REtADDR, but before the saved framepointer or the spilled registers
1905//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1906//  stack layout:
1907//    arg1
1908//    arg2
1909//    RETADDR
1910//    [ new RETADDR
1911//      move area ]
1912//    (possible EBP)
1913//    ESI
1914//    EDI
1915//    local1 ..
1916
1917/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1918/// for a 16 byte align requirement.
1919unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1920                                                        SelectionDAG& DAG) {
1921  MachineFunction &MF = DAG.getMachineFunction();
1922  const TargetMachine &TM = MF.getTarget();
1923  const TargetFrameInfo &TFI = *TM.getFrameInfo();
1924  unsigned StackAlignment = TFI.getStackAlignment();
1925  uint64_t AlignMask = StackAlignment - 1;
1926  int64_t Offset = StackSize;
1927  uint64_t SlotSize = TD->getPointerSize();
1928  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1929    // Number smaller than 12 so just add the difference.
1930    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1931  } else {
1932    // Mask out lower bits, add stackalignment once plus the 12 bytes.
1933    Offset = ((~AlignMask) & Offset) + StackAlignment +
1934      (StackAlignment-SlotSize);
1935  }
1936  return Offset;
1937}
1938
1939/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1940/// following the call is a return. A function is eligible if caller/callee
1941/// calling conventions match, currently only fastcc supports tail calls, and
1942/// the function CALL is immediatly followed by a RET.
1943bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
1944                                                      SDValue Ret,
1945                                                      SelectionDAG& DAG) const {
1946  if (!PerformTailCallOpt)
1947    return false;
1948
1949  if (CheckTailCallReturnConstraints(TheCall, Ret)) {
1950    MachineFunction &MF = DAG.getMachineFunction();
1951    unsigned CallerCC = MF.getFunction()->getCallingConv();
1952    unsigned CalleeCC= TheCall->getCallingConv();
1953    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1954      SDValue Callee = TheCall->getCallee();
1955      // On x86/32Bit PIC/GOT  tail calls are supported.
1956      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1957          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1958        return true;
1959
1960      // Can only do local tail calls (in same module, hidden or protected) on
1961      // x86_64 PIC/GOT at the moment.
1962      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1963        return G->getGlobal()->hasHiddenVisibility()
1964            || G->getGlobal()->hasProtectedVisibility();
1965    }
1966  }
1967
1968  return false;
1969}
1970
1971FastISel *
1972X86TargetLowering::createFastISel(MachineFunction &mf,
1973                                  MachineModuleInfo *mmo,
1974                                  DwarfWriter *dw,
1975                                  DenseMap<const Value *, unsigned> &vm,
1976                                  DenseMap<const BasicBlock *,
1977                                           MachineBasicBlock *> &bm,
1978                                  DenseMap<const AllocaInst *, int> &am
1979#ifndef NDEBUG
1980                                  , SmallSet<Instruction*, 8> &cil
1981#endif
1982                                  ) {
1983  return X86::createFastISel(mf, mmo, dw, vm, bm, am
1984#ifndef NDEBUG
1985                             , cil
1986#endif
1987                             );
1988}
1989
1990
1991//===----------------------------------------------------------------------===//
1992//                           Other Lowering Hooks
1993//===----------------------------------------------------------------------===//
1994
1995
1996SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1997  MachineFunction &MF = DAG.getMachineFunction();
1998  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1999  int ReturnAddrIndex = FuncInfo->getRAIndex();
2000
2001  if (ReturnAddrIndex == 0) {
2002    // Set up a frame object for the return address.
2003    uint64_t SlotSize = TD->getPointerSize();
2004    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
2005    FuncInfo->setRAIndex(ReturnAddrIndex);
2006  }
2007
2008  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2009}
2010
2011
2012/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2013/// specific condition code, returning the condition code and the LHS/RHS of the
2014/// comparison to make.
2015static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2016                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2017  if (!isFP) {
2018    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2019      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2020        // X > -1   -> X == 0, jump !sign.
2021        RHS = DAG.getConstant(0, RHS.getValueType());
2022        return X86::COND_NS;
2023      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2024        // X < 0   -> X == 0, jump on sign.
2025        return X86::COND_S;
2026      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2027        // X < 1   -> X <= 0
2028        RHS = DAG.getConstant(0, RHS.getValueType());
2029        return X86::COND_LE;
2030      }
2031    }
2032
2033    switch (SetCCOpcode) {
2034    default: assert(0 && "Invalid integer condition!");
2035    case ISD::SETEQ:  return X86::COND_E;
2036    case ISD::SETGT:  return X86::COND_G;
2037    case ISD::SETGE:  return X86::COND_GE;
2038    case ISD::SETLT:  return X86::COND_L;
2039    case ISD::SETLE:  return X86::COND_LE;
2040    case ISD::SETNE:  return X86::COND_NE;
2041    case ISD::SETULT: return X86::COND_B;
2042    case ISD::SETUGT: return X86::COND_A;
2043    case ISD::SETULE: return X86::COND_BE;
2044    case ISD::SETUGE: return X86::COND_AE;
2045    }
2046  }
2047
2048  // First determine if it is required or is profitable to flip the operands.
2049
2050  // If LHS is a foldable load, but RHS is not, flip the condition.
2051  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2052      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2053    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2054    std::swap(LHS, RHS);
2055  }
2056
2057  switch (SetCCOpcode) {
2058  default: break;
2059  case ISD::SETOLT:
2060  case ISD::SETOLE:
2061  case ISD::SETUGT:
2062  case ISD::SETUGE:
2063    std::swap(LHS, RHS);
2064    break;
2065  }
2066
2067  // On a floating point condition, the flags are set as follows:
2068  // ZF  PF  CF   op
2069  //  0 | 0 | 0 | X > Y
2070  //  0 | 0 | 1 | X < Y
2071  //  1 | 0 | 0 | X == Y
2072  //  1 | 1 | 1 | unordered
2073  switch (SetCCOpcode) {
2074  default: assert(0 && "Condcode should be pre-legalized away");
2075  case ISD::SETUEQ:
2076  case ISD::SETEQ:   return X86::COND_E;
2077  case ISD::SETOLT:              // flipped
2078  case ISD::SETOGT:
2079  case ISD::SETGT:   return X86::COND_A;
2080  case ISD::SETOLE:              // flipped
2081  case ISD::SETOGE:
2082  case ISD::SETGE:   return X86::COND_AE;
2083  case ISD::SETUGT:              // flipped
2084  case ISD::SETULT:
2085  case ISD::SETLT:   return X86::COND_B;
2086  case ISD::SETUGE:              // flipped
2087  case ISD::SETULE:
2088  case ISD::SETLE:   return X86::COND_BE;
2089  case ISD::SETONE:
2090  case ISD::SETNE:   return X86::COND_NE;
2091  case ISD::SETUO:   return X86::COND_P;
2092  case ISD::SETO:    return X86::COND_NP;
2093  }
2094}
2095
2096/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2097/// code. Current x86 isa includes the following FP cmov instructions:
2098/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2099static bool hasFPCMov(unsigned X86CC) {
2100  switch (X86CC) {
2101  default:
2102    return false;
2103  case X86::COND_B:
2104  case X86::COND_BE:
2105  case X86::COND_E:
2106  case X86::COND_P:
2107  case X86::COND_A:
2108  case X86::COND_AE:
2109  case X86::COND_NE:
2110  case X86::COND_NP:
2111    return true;
2112  }
2113}
2114
2115/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2116/// the specified range (L, H].
2117static bool isUndefOrInRange(int Val, int Low, int Hi) {
2118  return (Val < 0) || (Val >= Low && Val < Hi);
2119}
2120
2121/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2122/// specified value.
2123static bool isUndefOrEqual(int Val, int CmpVal) {
2124  if (Val < 0 || Val == CmpVal)
2125    return true;
2126  return false;
2127}
2128
2129/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2130/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2131/// the second operand.
2132static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2133  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2134    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2135  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2136    return (Mask[0] < 2 && Mask[1] < 2);
2137  return false;
2138}
2139
2140bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2141  SmallVector<int, 8> M;
2142  N->getMask(M);
2143  return ::isPSHUFDMask(M, N->getValueType(0));
2144}
2145
2146/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2147/// is suitable for input to PSHUFHW.
2148static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2149  if (VT != MVT::v8i16)
2150    return false;
2151
2152  // Lower quadword copied in order or undef.
2153  for (int i = 0; i != 4; ++i)
2154    if (Mask[i] >= 0 && Mask[i] != i)
2155      return false;
2156
2157  // Upper quadword shuffled.
2158  for (int i = 4; i != 8; ++i)
2159    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2160      return false;
2161
2162  return true;
2163}
2164
2165bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2166  SmallVector<int, 8> M;
2167  N->getMask(M);
2168  return ::isPSHUFHWMask(M, N->getValueType(0));
2169}
2170
2171/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2172/// is suitable for input to PSHUFLW.
2173static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2174  if (VT != MVT::v8i16)
2175    return false;
2176
2177  // Upper quadword copied in order.
2178  for (int i = 4; i != 8; ++i)
2179    if (Mask[i] >= 0 && Mask[i] != i)
2180      return false;
2181
2182  // Lower quadword shuffled.
2183  for (int i = 0; i != 4; ++i)
2184    if (Mask[i] >= 4)
2185      return false;
2186
2187  return true;
2188}
2189
2190bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2191  SmallVector<int, 8> M;
2192  N->getMask(M);
2193  return ::isPSHUFLWMask(M, N->getValueType(0));
2194}
2195
2196/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2197/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2198static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2199  int NumElems = VT.getVectorNumElements();
2200  if (NumElems != 2 && NumElems != 4)
2201    return false;
2202
2203  int Half = NumElems / 2;
2204  for (int i = 0; i < Half; ++i)
2205    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2206      return false;
2207  for (int i = Half; i < NumElems; ++i)
2208    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2209      return false;
2210
2211  return true;
2212}
2213
2214bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2215  SmallVector<int, 8> M;
2216  N->getMask(M);
2217  return ::isSHUFPMask(M, N->getValueType(0));
2218}
2219
2220/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2221/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2222/// half elements to come from vector 1 (which would equal the dest.) and
2223/// the upper half to come from vector 2.
2224static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2225  int NumElems = VT.getVectorNumElements();
2226
2227  if (NumElems != 2 && NumElems != 4)
2228    return false;
2229
2230  int Half = NumElems / 2;
2231  for (int i = 0; i < Half; ++i)
2232    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2233      return false;
2234  for (int i = Half; i < NumElems; ++i)
2235    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2236      return false;
2237  return true;
2238}
2239
2240static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2241  SmallVector<int, 8> M;
2242  N->getMask(M);
2243  return isCommutedSHUFPMask(M, N->getValueType(0));
2244}
2245
2246/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2247/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2248bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2249  if (N->getValueType(0).getVectorNumElements() != 4)
2250    return false;
2251
2252  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2253  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2254         isUndefOrEqual(N->getMaskElt(1), 7) &&
2255         isUndefOrEqual(N->getMaskElt(2), 2) &&
2256         isUndefOrEqual(N->getMaskElt(3), 3);
2257}
2258
2259/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2260/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2261bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2262  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2263
2264  if (NumElems != 2 && NumElems != 4)
2265    return false;
2266
2267  for (unsigned i = 0; i < NumElems/2; ++i)
2268    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2269      return false;
2270
2271  for (unsigned i = NumElems/2; i < NumElems; ++i)
2272    if (!isUndefOrEqual(N->getMaskElt(i), i))
2273      return false;
2274
2275  return true;
2276}
2277
2278/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2279/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2280/// and MOVLHPS.
2281bool X86::isMOVHPMask(ShuffleVectorSDNode *N) {
2282  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2283
2284  if (NumElems != 2 && NumElems != 4)
2285    return false;
2286
2287  for (unsigned i = 0; i < NumElems/2; ++i)
2288    if (!isUndefOrEqual(N->getMaskElt(i), i))
2289      return false;
2290
2291  for (unsigned i = 0; i < NumElems/2; ++i)
2292    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2293      return false;
2294
2295  return true;
2296}
2297
2298/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2299/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2300/// <2, 3, 2, 3>
2301bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2302  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2303
2304  if (NumElems != 4)
2305    return false;
2306
2307  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2308         isUndefOrEqual(N->getMaskElt(1), 3) &&
2309         isUndefOrEqual(N->getMaskElt(2), 2) &&
2310         isUndefOrEqual(N->getMaskElt(3), 3);
2311}
2312
2313/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2314/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2315static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, MVT VT,
2316                         bool V2IsSplat = false) {
2317  int NumElts = VT.getVectorNumElements();
2318  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2319    return false;
2320
2321  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2322    int BitI  = Mask[i];
2323    int BitI1 = Mask[i+1];
2324    if (!isUndefOrEqual(BitI, j))
2325      return false;
2326    if (V2IsSplat) {
2327      if (!isUndefOrEqual(BitI1, NumElts))
2328        return false;
2329    } else {
2330      if (!isUndefOrEqual(BitI1, j + NumElts))
2331        return false;
2332    }
2333  }
2334  return true;
2335}
2336
2337bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2338  SmallVector<int, 8> M;
2339  N->getMask(M);
2340  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2341}
2342
2343/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2344/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2345static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, MVT VT,
2346                         bool V2IsSplat = false) {
2347  int NumElts = VT.getVectorNumElements();
2348  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2349    return false;
2350
2351  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2352    int BitI  = Mask[i];
2353    int BitI1 = Mask[i+1];
2354    if (!isUndefOrEqual(BitI, j + NumElts/2))
2355      return false;
2356    if (V2IsSplat) {
2357      if (isUndefOrEqual(BitI1, NumElts))
2358        return false;
2359    } else {
2360      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2361        return false;
2362    }
2363  }
2364  return true;
2365}
2366
2367bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2368  SmallVector<int, 8> M;
2369  N->getMask(M);
2370  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2371}
2372
2373/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2374/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2375/// <0, 0, 1, 1>
2376static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, MVT VT) {
2377  int NumElems = VT.getVectorNumElements();
2378  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2379    return false;
2380
2381  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2382    int BitI  = Mask[i];
2383    int BitI1 = Mask[i+1];
2384    if (!isUndefOrEqual(BitI, j))
2385      return false;
2386    if (!isUndefOrEqual(BitI1, j))
2387      return false;
2388  }
2389  return true;
2390}
2391
2392bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2393  SmallVector<int, 8> M;
2394  N->getMask(M);
2395  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2396}
2397
2398/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2399/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2400/// <2, 2, 3, 3>
2401static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, MVT VT) {
2402  int NumElems = VT.getVectorNumElements();
2403  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2404    return false;
2405
2406  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2407    int BitI  = Mask[i];
2408    int BitI1 = Mask[i+1];
2409    if (!isUndefOrEqual(BitI, j))
2410      return false;
2411    if (!isUndefOrEqual(BitI1, j))
2412      return false;
2413  }
2414  return true;
2415}
2416
2417bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2418  SmallVector<int, 8> M;
2419  N->getMask(M);
2420  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2421}
2422
2423/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2424/// specifies a shuffle of elements that is suitable for input to MOVSS,
2425/// MOVSD, and MOVD, i.e. setting the lowest element.
2426static bool isMOVLMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2427  if (VT.getVectorElementType().getSizeInBits() < 32)
2428    return false;
2429
2430  int NumElts = VT.getVectorNumElements();
2431
2432  if (!isUndefOrEqual(Mask[0], NumElts))
2433    return false;
2434
2435  for (int i = 1; i < NumElts; ++i)
2436    if (!isUndefOrEqual(Mask[i], i))
2437      return false;
2438
2439  return true;
2440}
2441
2442bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2443  SmallVector<int, 8> M;
2444  N->getMask(M);
2445  return ::isMOVLMask(M, N->getValueType(0));
2446}
2447
2448/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2449/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2450/// element of vector 2 and the other elements to come from vector 1 in order.
2451static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, MVT VT,
2452                               bool V2IsSplat = false, bool V2IsUndef = false) {
2453  int NumOps = VT.getVectorNumElements();
2454  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2455    return false;
2456
2457  if (!isUndefOrEqual(Mask[0], 0))
2458    return false;
2459
2460  for (int i = 1; i < NumOps; ++i)
2461    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2462          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2463          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2464      return false;
2465
2466  return true;
2467}
2468
2469static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2470                           bool V2IsUndef = false) {
2471  SmallVector<int, 8> M;
2472  N->getMask(M);
2473  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2474}
2475
2476/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2477/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2478bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2479  if (N->getValueType(0).getVectorNumElements() != 4)
2480    return false;
2481
2482  // Expect 1, 1, 3, 3
2483  for (unsigned i = 0; i < 2; ++i) {
2484    int Elt = N->getMaskElt(i);
2485    if (Elt >= 0 && Elt != 1)
2486      return false;
2487  }
2488
2489  bool HasHi = false;
2490  for (unsigned i = 2; i < 4; ++i) {
2491    int Elt = N->getMaskElt(i);
2492    if (Elt >= 0 && Elt != 3)
2493      return false;
2494    if (Elt == 3)
2495      HasHi = true;
2496  }
2497  // Don't use movshdup if it can be done with a shufps.
2498  // FIXME: verify that matching u, u, 3, 3 is what we want.
2499  return HasHi;
2500}
2501
2502/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2503/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2504bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
2505  if (N->getValueType(0).getVectorNumElements() != 4)
2506    return false;
2507
2508  // Expect 0, 0, 2, 2
2509  for (unsigned i = 0; i < 2; ++i)
2510    if (N->getMaskElt(i) > 0)
2511      return false;
2512
2513  bool HasHi = false;
2514  for (unsigned i = 2; i < 4; ++i) {
2515    int Elt = N->getMaskElt(i);
2516    if (Elt >= 0 && Elt != 2)
2517      return false;
2518    if (Elt == 2)
2519      HasHi = true;
2520  }
2521  // Don't use movsldup if it can be done with a shufps.
2522  return HasHi;
2523}
2524
2525/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2526/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2527bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
2528  int e = N->getValueType(0).getVectorNumElements() / 2;
2529
2530  for (int i = 0; i < e; ++i)
2531    if (!isUndefOrEqual(N->getMaskElt(i), i))
2532      return false;
2533  for (int i = 0; i < e; ++i)
2534    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
2535      return false;
2536  return true;
2537}
2538
2539/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2540/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2541/// instructions.
2542unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2543  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2544  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
2545
2546  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2547  unsigned Mask = 0;
2548  for (int i = 0; i < NumOperands; ++i) {
2549    int Val = SVOp->getMaskElt(NumOperands-i-1);
2550    if (Val < 0) Val = 0;
2551    if (Val >= NumOperands) Val -= NumOperands;
2552    Mask |= Val;
2553    if (i != NumOperands - 1)
2554      Mask <<= Shift;
2555  }
2556  return Mask;
2557}
2558
2559/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2560/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2561/// instructions.
2562unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2563  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2564  unsigned Mask = 0;
2565  // 8 nodes, but we only care about the last 4.
2566  for (unsigned i = 7; i >= 4; --i) {
2567    int Val = SVOp->getMaskElt(i);
2568    if (Val >= 0)
2569      Mask |= (Val - 4);
2570    if (i != 4)
2571      Mask <<= 2;
2572  }
2573  return Mask;
2574}
2575
2576/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2577/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2578/// instructions.
2579unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2580  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2581  unsigned Mask = 0;
2582  // 8 nodes, but we only care about the first 4.
2583  for (int i = 3; i >= 0; --i) {
2584    int Val = SVOp->getMaskElt(i);
2585    if (Val >= 0)
2586      Mask |= Val;
2587    if (i != 0)
2588      Mask <<= 2;
2589  }
2590  return Mask;
2591}
2592
2593/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
2594/// their permute mask.
2595static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
2596                                    SelectionDAG &DAG) {
2597  MVT VT = SVOp->getValueType(0);
2598  unsigned NumElems = VT.getVectorNumElements();
2599  SmallVector<int, 8> MaskVec;
2600
2601  for (unsigned i = 0; i != NumElems; ++i) {
2602    int idx = SVOp->getMaskElt(i);
2603    if (idx < 0)
2604      MaskVec.push_back(idx);
2605    else if (idx < (int)NumElems)
2606      MaskVec.push_back(idx + NumElems);
2607    else
2608      MaskVec.push_back(idx - NumElems);
2609  }
2610  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
2611                              SVOp->getOperand(0), &MaskVec[0]);
2612}
2613
2614/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2615/// the two vector operands have swapped position.
2616static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, MVT VT) {
2617  unsigned NumElems = VT.getVectorNumElements();
2618  for (unsigned i = 0; i != NumElems; ++i) {
2619    int idx = Mask[i];
2620    if (idx < 0)
2621      continue;
2622    else if (idx < (int)NumElems)
2623      Mask[i] = idx + NumElems;
2624    else
2625      Mask[i] = idx - NumElems;
2626  }
2627}
2628
2629/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2630/// match movhlps. The lower half elements should come from upper half of
2631/// V1 (and in order), and the upper half elements should come from the upper
2632/// half of V2 (and in order).
2633static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
2634  if (Op->getValueType(0).getVectorNumElements() != 4)
2635    return false;
2636  for (unsigned i = 0, e = 2; i != e; ++i)
2637    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
2638      return false;
2639  for (unsigned i = 2; i != 4; ++i)
2640    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
2641      return false;
2642  return true;
2643}
2644
2645/// isScalarLoadToVector - Returns true if the node is a scalar load that
2646/// is promoted to a vector. It also returns the LoadSDNode by reference if
2647/// required.
2648static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2649  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2650    return false;
2651  N = N->getOperand(0).getNode();
2652  if (!ISD::isNON_EXTLoad(N))
2653    return false;
2654  if (LD)
2655    *LD = cast<LoadSDNode>(N);
2656  return true;
2657}
2658
2659/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2660/// match movlp{s|d}. The lower half elements should come from lower half of
2661/// V1 (and in order), and the upper half elements should come from the upper
2662/// half of V2 (and in order). And since V1 will become the source of the
2663/// MOVLP, it must be either a vector load or a scalar load to vector.
2664static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
2665                               ShuffleVectorSDNode *Op) {
2666  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2667    return false;
2668  // Is V2 is a vector load, don't do this transformation. We will try to use
2669  // load folding shufps op.
2670  if (ISD::isNON_EXTLoad(V2))
2671    return false;
2672
2673  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
2674
2675  if (NumElems != 2 && NumElems != 4)
2676    return false;
2677  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2678    if (!isUndefOrEqual(Op->getMaskElt(i), i))
2679      return false;
2680  for (unsigned i = NumElems/2; i != NumElems; ++i)
2681    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
2682      return false;
2683  return true;
2684}
2685
2686/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2687/// all the same.
2688static bool isSplatVector(SDNode *N) {
2689  if (N->getOpcode() != ISD::BUILD_VECTOR)
2690    return false;
2691
2692  SDValue SplatValue = N->getOperand(0);
2693  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2694    if (N->getOperand(i) != SplatValue)
2695      return false;
2696  return true;
2697}
2698
2699/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2700/// constant +0.0.
2701static inline bool isZeroNode(SDValue Elt) {
2702  return ((isa<ConstantSDNode>(Elt) &&
2703           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2704          (isa<ConstantFPSDNode>(Elt) &&
2705           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2706}
2707
2708/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2709/// to an zero vector.
2710/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
2711static bool isZeroShuffle(ShuffleVectorSDNode *N) {
2712  SDValue V1 = N->getOperand(0);
2713  SDValue V2 = N->getOperand(1);
2714  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2715  for (unsigned i = 0; i != NumElems; ++i) {
2716    int Idx = N->getMaskElt(i);
2717    if (Idx >= (int)NumElems) {
2718      unsigned Opc = V2.getOpcode();
2719      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2720        continue;
2721      if (Opc != ISD::BUILD_VECTOR || !isZeroNode(V2.getOperand(Idx-NumElems)))
2722        return false;
2723    } else if (Idx >= 0) {
2724      unsigned Opc = V1.getOpcode();
2725      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
2726        continue;
2727      if (Opc != ISD::BUILD_VECTOR || !isZeroNode(V1.getOperand(Idx)))
2728        return false;
2729    }
2730  }
2731  return true;
2732}
2733
2734/// getZeroVector - Returns a vector of specified type with all zero elements.
2735///
2736static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG,
2737                             DebugLoc dl) {
2738  assert(VT.isVector() && "Expected a vector type");
2739
2740  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2741  // type.  This ensures they get CSE'd.
2742  SDValue Vec;
2743  if (VT.getSizeInBits() == 64) { // MMX
2744    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2745    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2746  } else if (HasSSE2) {  // SSE2
2747    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2748    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2749  } else { // SSE1
2750    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2751    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
2752  }
2753  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2754}
2755
2756/// getOnesVector - Returns a vector of specified type with all bits set.
2757///
2758static SDValue getOnesVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
2759  assert(VT.isVector() && "Expected a vector type");
2760
2761  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2762  // type.  This ensures they get CSE'd.
2763  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2764  SDValue Vec;
2765  if (VT.getSizeInBits() == 64)  // MMX
2766    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2767  else                                              // SSE
2768    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2769  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2770}
2771
2772
2773/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2774/// that point to V2 points to its first element.
2775static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
2776  MVT VT = SVOp->getValueType(0);
2777  unsigned NumElems = VT.getVectorNumElements();
2778
2779  bool Changed = false;
2780  SmallVector<int, 8> MaskVec;
2781  SVOp->getMask(MaskVec);
2782
2783  for (unsigned i = 0; i != NumElems; ++i) {
2784    if (MaskVec[i] > (int)NumElems) {
2785      MaskVec[i] = NumElems;
2786      Changed = true;
2787    }
2788  }
2789  if (Changed)
2790    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
2791                                SVOp->getOperand(1), &MaskVec[0]);
2792  return SDValue(SVOp, 0);
2793}
2794
2795/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2796/// operation of specified width.
2797static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
2798                       SDValue V2) {
2799  unsigned NumElems = VT.getVectorNumElements();
2800  SmallVector<int, 8> Mask;
2801  Mask.push_back(NumElems);
2802  for (unsigned i = 1; i != NumElems; ++i)
2803    Mask.push_back(i);
2804  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2805}
2806
2807/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
2808static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
2809                          SDValue V2) {
2810  unsigned NumElems = VT.getVectorNumElements();
2811  SmallVector<int, 8> Mask;
2812  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2813    Mask.push_back(i);
2814    Mask.push_back(i + NumElems);
2815  }
2816  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2817}
2818
2819/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
2820static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
2821                          SDValue V2) {
2822  unsigned NumElems = VT.getVectorNumElements();
2823  unsigned Half = NumElems/2;
2824  SmallVector<int, 8> Mask;
2825  for (unsigned i = 0; i != Half; ++i) {
2826    Mask.push_back(i + Half);
2827    Mask.push_back(i + NumElems + Half);
2828  }
2829  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2830}
2831
2832/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2833static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
2834                            bool HasSSE2) {
2835  if (SV->getValueType(0).getVectorNumElements() <= 4)
2836    return SDValue(SV, 0);
2837
2838  MVT PVT = MVT::v4f32;
2839  MVT VT = SV->getValueType(0);
2840  DebugLoc dl = SV->getDebugLoc();
2841  SDValue V1 = SV->getOperand(0);
2842  int NumElems = VT.getVectorNumElements();
2843  int EltNo = SV->getSplatIndex();
2844
2845  // unpack elements to the correct location
2846  while (NumElems > 4) {
2847    if (EltNo < NumElems/2) {
2848      V1 = getUnpackl(DAG, dl, VT, V1, V1);
2849    } else {
2850      V1 = getUnpackh(DAG, dl, VT, V1, V1);
2851      EltNo -= NumElems/2;
2852    }
2853    NumElems >>= 1;
2854  }
2855
2856  // Perform the splat.
2857  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
2858  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
2859  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
2860  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
2861}
2862
2863/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2864/// vector of zero or undef vector.  This produces a shuffle where the low
2865/// element of V2 is swizzled into the zero/undef vector, landing at element
2866/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
2867static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
2868                                             bool isZero, bool HasSSE2,
2869                                             SelectionDAG &DAG) {
2870  MVT VT = V2.getValueType();
2871  SDValue V1 = isZero
2872    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
2873  unsigned NumElems = VT.getVectorNumElements();
2874  SmallVector<int, 16> MaskVec;
2875  for (unsigned i = 0; i != NumElems; ++i)
2876    // If this is the insertion idx, put the low elt of V2 here.
2877    MaskVec.push_back(i == Idx ? NumElems : i);
2878  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
2879}
2880
2881/// getNumOfConsecutiveZeros - Return the number of elements in a result of
2882/// a shuffle that is zero.
2883static
2884unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
2885                                  bool Low, SelectionDAG &DAG) {
2886  unsigned NumZeros = 0;
2887  for (int i = 0; i < NumElems; ++i) {
2888    unsigned Index = Low ? i : NumElems-i-1;
2889    int Idx = SVOp->getMaskElt(Index);
2890    if (Idx < 0) {
2891      ++NumZeros;
2892      continue;
2893    }
2894    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
2895    if (Elt.getNode() && isZeroNode(Elt))
2896      ++NumZeros;
2897    else
2898      break;
2899  }
2900  return NumZeros;
2901}
2902
2903/// isVectorShift - Returns true if the shuffle can be implemented as a
2904/// logical left or right shift of a vector.
2905/// FIXME: split into pslldqi, psrldqi, palignr variants.
2906static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
2907                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
2908  int NumElems = SVOp->getValueType(0).getVectorNumElements();
2909
2910  isLeft = true;
2911  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
2912  if (!NumZeros) {
2913    isLeft = false;
2914    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
2915    if (!NumZeros)
2916      return false;
2917  }
2918  bool SeenV1 = false;
2919  bool SeenV2 = false;
2920  for (int i = NumZeros; i < NumElems; ++i) {
2921    int Val = isLeft ? (i - NumZeros) : i;
2922    int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
2923    if (Idx < 0)
2924      continue;
2925    if (Idx < NumElems)
2926      SeenV1 = true;
2927    else {
2928      Idx -= NumElems;
2929      SeenV2 = true;
2930    }
2931    if (Idx != Val)
2932      return false;
2933  }
2934  if (SeenV1 && SeenV2)
2935    return false;
2936
2937  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
2938  ShAmt = NumZeros;
2939  return true;
2940}
2941
2942
2943/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2944///
2945static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
2946                                       unsigned NumNonZero, unsigned NumZero,
2947                                       SelectionDAG &DAG, TargetLowering &TLI) {
2948  if (NumNonZero > 8)
2949    return SDValue();
2950
2951  DebugLoc dl = Op.getDebugLoc();
2952  SDValue V(0, 0);
2953  bool First = true;
2954  for (unsigned i = 0; i < 16; ++i) {
2955    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2956    if (ThisIsNonZero && First) {
2957      if (NumZero)
2958        V = getZeroVector(MVT::v8i16, true, DAG, dl);
2959      else
2960        V = DAG.getUNDEF(MVT::v8i16);
2961      First = false;
2962    }
2963
2964    if ((i & 1) != 0) {
2965      SDValue ThisElt(0, 0), LastElt(0, 0);
2966      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2967      if (LastIsNonZero) {
2968        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
2969                              MVT::i16, Op.getOperand(i-1));
2970      }
2971      if (ThisIsNonZero) {
2972        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
2973        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
2974                              ThisElt, DAG.getConstant(8, MVT::i8));
2975        if (LastIsNonZero)
2976          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
2977      } else
2978        ThisElt = LastElt;
2979
2980      if (ThisElt.getNode())
2981        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
2982                        DAG.getIntPtrConstant(i/2));
2983    }
2984  }
2985
2986  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
2987}
2988
2989/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2990///
2991static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
2992                                       unsigned NumNonZero, unsigned NumZero,
2993                                       SelectionDAG &DAG, TargetLowering &TLI) {
2994  if (NumNonZero > 4)
2995    return SDValue();
2996
2997  DebugLoc dl = Op.getDebugLoc();
2998  SDValue V(0, 0);
2999  bool First = true;
3000  for (unsigned i = 0; i < 8; ++i) {
3001    bool isNonZero = (NonZeros & (1 << i)) != 0;
3002    if (isNonZero) {
3003      if (First) {
3004        if (NumZero)
3005          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3006        else
3007          V = DAG.getUNDEF(MVT::v8i16);
3008        First = false;
3009      }
3010      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3011                      MVT::v8i16, V, Op.getOperand(i),
3012                      DAG.getIntPtrConstant(i));
3013    }
3014  }
3015
3016  return V;
3017}
3018
3019/// getVShift - Return a vector logical shift node.
3020///
3021static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp,
3022                         unsigned NumBits, SelectionDAG &DAG,
3023                         const TargetLowering &TLI, DebugLoc dl) {
3024  bool isMMX = VT.getSizeInBits() == 64;
3025  MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3026  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3027  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3028  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3029                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3030                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3031}
3032
3033SDValue
3034X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3035  DebugLoc dl = Op.getDebugLoc();
3036  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3037  if (ISD::isBuildVectorAllZeros(Op.getNode())
3038      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3039    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3040    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3041    // eliminated on x86-32 hosts.
3042    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3043      return Op;
3044
3045    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3046      return getOnesVector(Op.getValueType(), DAG, dl);
3047    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3048  }
3049
3050  MVT VT = Op.getValueType();
3051  MVT EVT = VT.getVectorElementType();
3052  unsigned EVTBits = EVT.getSizeInBits();
3053
3054  unsigned NumElems = Op.getNumOperands();
3055  unsigned NumZero  = 0;
3056  unsigned NumNonZero = 0;
3057  unsigned NonZeros = 0;
3058  bool IsAllConstants = true;
3059  SmallSet<SDValue, 8> Values;
3060  for (unsigned i = 0; i < NumElems; ++i) {
3061    SDValue Elt = Op.getOperand(i);
3062    if (Elt.getOpcode() == ISD::UNDEF)
3063      continue;
3064    Values.insert(Elt);
3065    if (Elt.getOpcode() != ISD::Constant &&
3066        Elt.getOpcode() != ISD::ConstantFP)
3067      IsAllConstants = false;
3068    if (isZeroNode(Elt))
3069      NumZero++;
3070    else {
3071      NonZeros |= (1 << i);
3072      NumNonZero++;
3073    }
3074  }
3075
3076  if (NumNonZero == 0) {
3077    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3078    return DAG.getUNDEF(VT);
3079  }
3080
3081  // Special case for single non-zero, non-undef, element.
3082  if (NumNonZero == 1) {
3083    unsigned Idx = CountTrailingZeros_32(NonZeros);
3084    SDValue Item = Op.getOperand(Idx);
3085
3086    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3087    // the value are obviously zero, truncate the value to i32 and do the
3088    // insertion that way.  Only do this if the value is non-constant or if the
3089    // value is a constant being inserted into element 0.  It is cheaper to do
3090    // a constant pool load than it is to do a movd + shuffle.
3091    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3092        (!IsAllConstants || Idx == 0)) {
3093      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3094        // Handle MMX and SSE both.
3095        MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3096        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3097
3098        // Truncate the value (which may itself be a constant) to i32, and
3099        // convert it to a vector with movd (S2V+shuffle to zero extend).
3100        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3101        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3102        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3103                                           Subtarget->hasSSE2(), DAG);
3104
3105        // Now we have our 32-bit value zero extended in the low element of
3106        // a vector.  If Idx != 0, swizzle it into place.
3107        if (Idx != 0) {
3108          SmallVector<int, 4> Mask;
3109          Mask.push_back(Idx);
3110          for (unsigned i = 1; i != VecElts; ++i)
3111            Mask.push_back(i);
3112          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3113                                      DAG.getUNDEF(Item.getValueType()),
3114                                      &Mask[0]);
3115        }
3116        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3117      }
3118    }
3119
3120    // If we have a constant or non-constant insertion into the low element of
3121    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3122    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3123    // depending on what the source datatype is.
3124    if (Idx == 0) {
3125      if (NumZero == 0) {
3126        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3127      } else if (EVT == MVT::i32 || EVT == MVT::f32 || EVT == MVT::f64 ||
3128          (EVT == MVT::i64 && Subtarget->is64Bit())) {
3129        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3130        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3131        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3132                                           DAG);
3133      } else if (EVT == MVT::i16 || EVT == MVT::i8) {
3134        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3135        MVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3136        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3137        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3138                                           Subtarget->hasSSE2(), DAG);
3139        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3140      }
3141    }
3142
3143    // Is it a vector logical left shift?
3144    if (NumElems == 2 && Idx == 1 &&
3145        isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
3146      unsigned NumBits = VT.getSizeInBits();
3147      return getVShift(true, VT,
3148                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3149                                   VT, Op.getOperand(1)),
3150                       NumBits/2, DAG, *this, dl);
3151    }
3152
3153    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3154      return SDValue();
3155
3156    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3157    // is a non-constant being inserted into an element other than the low one,
3158    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3159    // movd/movss) to move this into the low element, then shuffle it into
3160    // place.
3161    if (EVTBits == 32) {
3162      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3163
3164      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3165      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3166                                         Subtarget->hasSSE2(), DAG);
3167      SmallVector<int, 8> MaskVec;
3168      for (unsigned i = 0; i < NumElems; i++)
3169        MaskVec.push_back(i == Idx ? 0 : 1);
3170      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3171    }
3172  }
3173
3174  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3175  if (Values.size() == 1)
3176    return SDValue();
3177
3178  // A vector full of immediates; various special cases are already
3179  // handled, so this is best done with a single constant-pool load.
3180  if (IsAllConstants)
3181    return SDValue();
3182
3183  // Let legalizer expand 2-wide build_vectors.
3184  if (EVTBits == 64) {
3185    if (NumNonZero == 1) {
3186      // One half is zero or undef.
3187      unsigned Idx = CountTrailingZeros_32(NonZeros);
3188      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3189                                 Op.getOperand(Idx));
3190      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3191                                         Subtarget->hasSSE2(), DAG);
3192    }
3193    return SDValue();
3194  }
3195
3196  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3197  if (EVTBits == 8 && NumElems == 16) {
3198    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3199                                        *this);
3200    if (V.getNode()) return V;
3201  }
3202
3203  if (EVTBits == 16 && NumElems == 8) {
3204    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3205                                        *this);
3206    if (V.getNode()) return V;
3207  }
3208
3209  // If element VT is == 32 bits, turn it into a number of shuffles.
3210  SmallVector<SDValue, 8> V;
3211  V.resize(NumElems);
3212  if (NumElems == 4 && NumZero > 0) {
3213    for (unsigned i = 0; i < 4; ++i) {
3214      bool isZero = !(NonZeros & (1 << i));
3215      if (isZero)
3216        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3217      else
3218        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3219    }
3220
3221    for (unsigned i = 0; i < 2; ++i) {
3222      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3223        default: break;
3224        case 0:
3225          V[i] = V[i*2];  // Must be a zero vector.
3226          break;
3227        case 1:
3228          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3229          break;
3230        case 2:
3231          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3232          break;
3233        case 3:
3234          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3235          break;
3236      }
3237    }
3238
3239    SmallVector<int, 8> MaskVec;
3240    bool Reverse = (NonZeros & 0x3) == 2;
3241    for (unsigned i = 0; i < 2; ++i)
3242      MaskVec.push_back(Reverse ? 1-i : i);
3243    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3244    for (unsigned i = 0; i < 2; ++i)
3245      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3246    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3247  }
3248
3249  if (Values.size() > 2) {
3250    // If we have SSE 4.1, Expand into a number of inserts unless the number of
3251    // values to be inserted is equal to the number of elements, in which case
3252    // use the unpack code below in the hopes of matching the consecutive elts
3253    // load merge pattern for shuffles.
3254    // FIXME: We could probably just check that here directly.
3255    if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
3256        getSubtarget()->hasSSE41()) {
3257      V[0] = DAG.getUNDEF(VT);
3258      for (unsigned i = 0; i < NumElems; ++i)
3259        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3260          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3261                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3262      return V[0];
3263    }
3264    // Expand into a number of unpckl*.
3265    // e.g. for v4f32
3266    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3267    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3268    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3269    for (unsigned i = 0; i < NumElems; ++i)
3270      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3271    NumElems >>= 1;
3272    while (NumElems != 0) {
3273      for (unsigned i = 0; i < NumElems; ++i)
3274        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3275      NumElems >>= 1;
3276    }
3277    return V[0];
3278  }
3279
3280  return SDValue();
3281}
3282
3283// v8i16 shuffles - Prefer shuffles in the following order:
3284// 1. [all]   pshuflw, pshufhw, optional move
3285// 2. [ssse3] 1 x pshufb
3286// 3. [ssse3] 2 x pshufb + 1 x por
3287// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3288static
3289SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3290                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3291  SDValue V1 = SVOp->getOperand(0);
3292  SDValue V2 = SVOp->getOperand(1);
3293  DebugLoc dl = SVOp->getDebugLoc();
3294  SmallVector<int, 8> MaskVals;
3295
3296  // Determine if more than 1 of the words in each of the low and high quadwords
3297  // of the result come from the same quadword of one of the two inputs.  Undef
3298  // mask values count as coming from any quadword, for better codegen.
3299  SmallVector<unsigned, 4> LoQuad(4);
3300  SmallVector<unsigned, 4> HiQuad(4);
3301  BitVector InputQuads(4);
3302  for (unsigned i = 0; i < 8; ++i) {
3303    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3304    int EltIdx = SVOp->getMaskElt(i);
3305    MaskVals.push_back(EltIdx);
3306    if (EltIdx < 0) {
3307      ++Quad[0];
3308      ++Quad[1];
3309      ++Quad[2];
3310      ++Quad[3];
3311      continue;
3312    }
3313    ++Quad[EltIdx / 4];
3314    InputQuads.set(EltIdx / 4);
3315  }
3316
3317  int BestLoQuad = -1;
3318  unsigned MaxQuad = 1;
3319  for (unsigned i = 0; i < 4; ++i) {
3320    if (LoQuad[i] > MaxQuad) {
3321      BestLoQuad = i;
3322      MaxQuad = LoQuad[i];
3323    }
3324  }
3325
3326  int BestHiQuad = -1;
3327  MaxQuad = 1;
3328  for (unsigned i = 0; i < 4; ++i) {
3329    if (HiQuad[i] > MaxQuad) {
3330      BestHiQuad = i;
3331      MaxQuad = HiQuad[i];
3332    }
3333  }
3334
3335  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3336  // of the two input vectors, shuffle them into one input vector so only a
3337  // single pshufb instruction is necessary. If There are more than 2 input
3338  // quads, disable the next transformation since it does not help SSSE3.
3339  bool V1Used = InputQuads[0] || InputQuads[1];
3340  bool V2Used = InputQuads[2] || InputQuads[3];
3341  if (TLI.getSubtarget()->hasSSSE3()) {
3342    if (InputQuads.count() == 2 && V1Used && V2Used) {
3343      BestLoQuad = InputQuads.find_first();
3344      BestHiQuad = InputQuads.find_next(BestLoQuad);
3345    }
3346    if (InputQuads.count() > 2) {
3347      BestLoQuad = -1;
3348      BestHiQuad = -1;
3349    }
3350  }
3351
3352  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3353  // the shuffle mask.  If a quad is scored as -1, that means that it contains
3354  // words from all 4 input quadwords.
3355  SDValue NewV;
3356  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3357    SmallVector<int, 8> MaskV;
3358    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
3359    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
3360    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
3361                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3362                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
3363    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3364
3365    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3366    // source words for the shuffle, to aid later transformations.
3367    bool AllWordsInNewV = true;
3368    bool InOrder[2] = { true, true };
3369    for (unsigned i = 0; i != 8; ++i) {
3370      int idx = MaskVals[i];
3371      if (idx != (int)i)
3372        InOrder[i/4] = false;
3373      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3374        continue;
3375      AllWordsInNewV = false;
3376      break;
3377    }
3378
3379    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3380    if (AllWordsInNewV) {
3381      for (int i = 0; i != 8; ++i) {
3382        int idx = MaskVals[i];
3383        if (idx < 0)
3384          continue;
3385        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3386        if ((idx != i) && idx < 4)
3387          pshufhw = false;
3388        if ((idx != i) && idx > 3)
3389          pshuflw = false;
3390      }
3391      V1 = NewV;
3392      V2Used = false;
3393      BestLoQuad = 0;
3394      BestHiQuad = 1;
3395    }
3396
3397    // If we've eliminated the use of V2, and the new mask is a pshuflw or
3398    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
3399    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3400      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
3401                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
3402    }
3403  }
3404
3405  // If we have SSSE3, and all words of the result are from 1 input vector,
3406  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
3407  // is present, fall back to case 4.
3408  if (TLI.getSubtarget()->hasSSSE3()) {
3409    SmallVector<SDValue,16> pshufbMask;
3410
3411    // If we have elements from both input vectors, set the high bit of the
3412    // shuffle mask element to zero out elements that come from V2 in the V1
3413    // mask, and elements that come from V1 in the V2 mask, so that the two
3414    // results can be OR'd together.
3415    bool TwoInputs = V1Used && V2Used;
3416    for (unsigned i = 0; i != 8; ++i) {
3417      int EltIdx = MaskVals[i] * 2;
3418      if (TwoInputs && (EltIdx >= 16)) {
3419        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3420        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3421        continue;
3422      }
3423      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
3424      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
3425    }
3426    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
3427    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3428                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3429                                 MVT::v16i8, &pshufbMask[0], 16));
3430    if (!TwoInputs)
3431      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3432
3433    // Calculate the shuffle mask for the second input, shuffle it, and
3434    // OR it with the first shuffled input.
3435    pshufbMask.clear();
3436    for (unsigned i = 0; i != 8; ++i) {
3437      int EltIdx = MaskVals[i] * 2;
3438      if (EltIdx < 16) {
3439        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3440        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3441        continue;
3442      }
3443      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3444      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
3445    }
3446    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
3447    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3448                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3449                                 MVT::v16i8, &pshufbMask[0], 16));
3450    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3451    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3452  }
3453
3454  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3455  // and update MaskVals with new element order.
3456  BitVector InOrder(8);
3457  if (BestLoQuad >= 0) {
3458    SmallVector<int, 8> MaskV;
3459    for (int i = 0; i != 4; ++i) {
3460      int idx = MaskVals[i];
3461      if (idx < 0) {
3462        MaskV.push_back(-1);
3463        InOrder.set(i);
3464      } else if ((idx / 4) == BestLoQuad) {
3465        MaskV.push_back(idx & 3);
3466        InOrder.set(i);
3467      } else {
3468        MaskV.push_back(-1);
3469      }
3470    }
3471    for (unsigned i = 4; i != 8; ++i)
3472      MaskV.push_back(i);
3473    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3474                                &MaskV[0]);
3475  }
3476
3477  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3478  // and update MaskVals with the new element order.
3479  if (BestHiQuad >= 0) {
3480    SmallVector<int, 8> MaskV;
3481    for (unsigned i = 0; i != 4; ++i)
3482      MaskV.push_back(i);
3483    for (unsigned i = 4; i != 8; ++i) {
3484      int idx = MaskVals[i];
3485      if (idx < 0) {
3486        MaskV.push_back(-1);
3487        InOrder.set(i);
3488      } else if ((idx / 4) == BestHiQuad) {
3489        MaskV.push_back((idx & 3) + 4);
3490        InOrder.set(i);
3491      } else {
3492        MaskV.push_back(-1);
3493      }
3494    }
3495    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3496                                &MaskV[0]);
3497  }
3498
3499  // In case BestHi & BestLo were both -1, which means each quadword has a word
3500  // from each of the four input quadwords, calculate the InOrder bitvector now
3501  // before falling through to the insert/extract cleanup.
3502  if (BestLoQuad == -1 && BestHiQuad == -1) {
3503    NewV = V1;
3504    for (int i = 0; i != 8; ++i)
3505      if (MaskVals[i] < 0 || MaskVals[i] == i)
3506        InOrder.set(i);
3507  }
3508
3509  // The other elements are put in the right place using pextrw and pinsrw.
3510  for (unsigned i = 0; i != 8; ++i) {
3511    if (InOrder[i])
3512      continue;
3513    int EltIdx = MaskVals[i];
3514    if (EltIdx < 0)
3515      continue;
3516    SDValue ExtOp = (EltIdx < 8)
3517    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
3518                  DAG.getIntPtrConstant(EltIdx))
3519    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
3520                  DAG.getIntPtrConstant(EltIdx - 8));
3521    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
3522                       DAG.getIntPtrConstant(i));
3523  }
3524  return NewV;
3525}
3526
3527// v16i8 shuffles - Prefer shuffles in the following order:
3528// 1. [ssse3] 1 x pshufb
3529// 2. [ssse3] 2 x pshufb + 1 x por
3530// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
3531static
3532SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
3533                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3534  SDValue V1 = SVOp->getOperand(0);
3535  SDValue V2 = SVOp->getOperand(1);
3536  DebugLoc dl = SVOp->getDebugLoc();
3537  SmallVector<int, 16> MaskVals;
3538  SVOp->getMask(MaskVals);
3539
3540  // If we have SSSE3, case 1 is generated when all result bytes come from
3541  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
3542  // present, fall back to case 3.
3543  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3544  bool V1Only = true;
3545  bool V2Only = true;
3546  for (unsigned i = 0; i < 16; ++i) {
3547    int EltIdx = MaskVals[i];
3548    if (EltIdx < 0)
3549      continue;
3550    if (EltIdx < 16)
3551      V2Only = false;
3552    else
3553      V1Only = false;
3554  }
3555
3556  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3557  if (TLI.getSubtarget()->hasSSSE3()) {
3558    SmallVector<SDValue,16> pshufbMask;
3559
3560    // If all result elements are from one input vector, then only translate
3561    // undef mask values to 0x80 (zero out result) in the pshufb mask.
3562    //
3563    // Otherwise, we have elements from both input vectors, and must zero out
3564    // elements that come from V2 in the first mask, and V1 in the second mask
3565    // so that we can OR them together.
3566    bool TwoInputs = !(V1Only || V2Only);
3567    for (unsigned i = 0; i != 16; ++i) {
3568      int EltIdx = MaskVals[i];
3569      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
3570        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3571        continue;
3572      }
3573      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3574    }
3575    // If all the elements are from V2, assign it to V1 and return after
3576    // building the first pshufb.
3577    if (V2Only)
3578      V1 = V2;
3579    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3580                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3581                                 MVT::v16i8, &pshufbMask[0], 16));
3582    if (!TwoInputs)
3583      return V1;
3584
3585    // Calculate the shuffle mask for the second input, shuffle it, and
3586    // OR it with the first shuffled input.
3587    pshufbMask.clear();
3588    for (unsigned i = 0; i != 16; ++i) {
3589      int EltIdx = MaskVals[i];
3590      if (EltIdx < 16) {
3591        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3592        continue;
3593      }
3594      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3595    }
3596    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3597                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3598                                 MVT::v16i8, &pshufbMask[0], 16));
3599    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3600  }
3601
3602  // No SSSE3 - Calculate in place words and then fix all out of place words
3603  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
3604  // the 16 different words that comprise the two doublequadword input vectors.
3605  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3606  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
3607  SDValue NewV = V2Only ? V2 : V1;
3608  for (int i = 0; i != 8; ++i) {
3609    int Elt0 = MaskVals[i*2];
3610    int Elt1 = MaskVals[i*2+1];
3611
3612    // This word of the result is all undef, skip it.
3613    if (Elt0 < 0 && Elt1 < 0)
3614      continue;
3615
3616    // This word of the result is already in the correct place, skip it.
3617    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
3618      continue;
3619    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
3620      continue;
3621
3622    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
3623    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
3624    SDValue InsElt;
3625
3626    // If Elt0 and Elt1 are defined, are consecutive, and can be load
3627    // using a single extract together, load it and store it.
3628    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
3629      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3630                           DAG.getIntPtrConstant(Elt1 / 2));
3631      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3632                        DAG.getIntPtrConstant(i));
3633      continue;
3634    }
3635
3636    // If Elt1 is defined, extract it from the appropriate source.  If the
3637    // source byte is not also odd, shift the extracted word left 8 bits
3638    // otherwise clear the bottom 8 bits if we need to do an or.
3639    if (Elt1 >= 0) {
3640      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3641                           DAG.getIntPtrConstant(Elt1 / 2));
3642      if ((Elt1 & 1) == 0)
3643        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
3644                             DAG.getConstant(8, TLI.getShiftAmountTy()));
3645      else if (Elt0 >= 0)
3646        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
3647                             DAG.getConstant(0xFF00, MVT::i16));
3648    }
3649    // If Elt0 is defined, extract it from the appropriate source.  If the
3650    // source byte is not also even, shift the extracted word right 8 bits. If
3651    // Elt1 was also defined, OR the extracted values together before
3652    // inserting them in the result.
3653    if (Elt0 >= 0) {
3654      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
3655                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
3656      if ((Elt0 & 1) != 0)
3657        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
3658                              DAG.getConstant(8, TLI.getShiftAmountTy()));
3659      else if (Elt1 >= 0)
3660        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
3661                             DAG.getConstant(0x00FF, MVT::i16));
3662      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
3663                         : InsElt0;
3664    }
3665    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3666                       DAG.getIntPtrConstant(i));
3667  }
3668  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
3669}
3670
3671/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3672/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3673/// done when every pair / quad of shuffle mask elements point to elements in
3674/// the right sequence. e.g.
3675/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3676static
3677SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
3678                                 SelectionDAG &DAG,
3679                                 TargetLowering &TLI, DebugLoc dl) {
3680  MVT VT = SVOp->getValueType(0);
3681  SDValue V1 = SVOp->getOperand(0);
3682  SDValue V2 = SVOp->getOperand(1);
3683  unsigned NumElems = VT.getVectorNumElements();
3684  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3685  MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3686  MVT MaskEltVT = MaskVT.getVectorElementType();
3687  MVT NewVT = MaskVT;
3688  switch (VT.getSimpleVT()) {
3689  default: assert(false && "Unexpected!");
3690  case MVT::v4f32: NewVT = MVT::v2f64; break;
3691  case MVT::v4i32: NewVT = MVT::v2i64; break;
3692  case MVT::v8i16: NewVT = MVT::v4i32; break;
3693  case MVT::v16i8: NewVT = MVT::v4i32; break;
3694  }
3695
3696  if (NewWidth == 2) {
3697    if (VT.isInteger())
3698      NewVT = MVT::v2i64;
3699    else
3700      NewVT = MVT::v2f64;
3701  }
3702  int Scale = NumElems / NewWidth;
3703  SmallVector<int, 8> MaskVec;
3704  for (unsigned i = 0; i < NumElems; i += Scale) {
3705    int StartIdx = -1;
3706    for (int j = 0; j < Scale; ++j) {
3707      int EltIdx = SVOp->getMaskElt(i+j);
3708      if (EltIdx < 0)
3709        continue;
3710      if (StartIdx == -1)
3711        StartIdx = EltIdx - (EltIdx % Scale);
3712      if (EltIdx != StartIdx + j)
3713        return SDValue();
3714    }
3715    if (StartIdx == -1)
3716      MaskVec.push_back(-1);
3717    else
3718      MaskVec.push_back(StartIdx / Scale);
3719  }
3720
3721  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
3722  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
3723  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
3724}
3725
3726/// getVZextMovL - Return a zero-extending vector move low node.
3727///
3728static SDValue getVZextMovL(MVT VT, MVT OpVT,
3729                            SDValue SrcOp, SelectionDAG &DAG,
3730                            const X86Subtarget *Subtarget, DebugLoc dl) {
3731  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3732    LoadSDNode *LD = NULL;
3733    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
3734      LD = dyn_cast<LoadSDNode>(SrcOp);
3735    if (!LD) {
3736      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3737      // instead.
3738      MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3739      if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
3740          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3741          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3742          SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
3743        // PR2108
3744        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3745        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3746                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3747                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3748                                                   OpVT,
3749                                                   SrcOp.getOperand(0)
3750                                                          .getOperand(0))));
3751      }
3752    }
3753  }
3754
3755  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3756                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3757                                 DAG.getNode(ISD::BIT_CONVERT, dl,
3758                                             OpVT, SrcOp)));
3759}
3760
3761/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3762/// shuffles.
3763static SDValue
3764LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3765  SDValue V1 = SVOp->getOperand(0);
3766  SDValue V2 = SVOp->getOperand(1);
3767  DebugLoc dl = SVOp->getDebugLoc();
3768  MVT VT = SVOp->getValueType(0);
3769
3770  SmallVector<std::pair<int, int>, 8> Locs;
3771  Locs.resize(4);
3772  SmallVector<int, 8> Mask1(4U, -1);
3773  SmallVector<int, 8> PermMask;
3774  SVOp->getMask(PermMask);
3775
3776  unsigned NumHi = 0;
3777  unsigned NumLo = 0;
3778  for (unsigned i = 0; i != 4; ++i) {
3779    int Idx = PermMask[i];
3780    if (Idx < 0) {
3781      Locs[i] = std::make_pair(-1, -1);
3782    } else {
3783      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
3784      if (Idx < 4) {
3785        Locs[i] = std::make_pair(0, NumLo);
3786        Mask1[NumLo] = Idx;
3787        NumLo++;
3788      } else {
3789        Locs[i] = std::make_pair(1, NumHi);
3790        if (2+NumHi < 4)
3791          Mask1[2+NumHi] = Idx;
3792        NumHi++;
3793      }
3794    }
3795  }
3796
3797  if (NumLo <= 2 && NumHi <= 2) {
3798    // If no more than two elements come from either vector. This can be
3799    // implemented with two shuffles. First shuffle gather the elements.
3800    // The second shuffle, which takes the first shuffle as both of its
3801    // vector operands, put the elements into the right order.
3802    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3803
3804    SmallVector<int, 8> Mask2(4U, -1);
3805
3806    for (unsigned i = 0; i != 4; ++i) {
3807      if (Locs[i].first == -1)
3808        continue;
3809      else {
3810        unsigned Idx = (i < 2) ? 0 : 4;
3811        Idx += Locs[i].first * 2 + Locs[i].second;
3812        Mask2[i] = Idx;
3813      }
3814    }
3815
3816    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
3817  } else if (NumLo == 3 || NumHi == 3) {
3818    // Otherwise, we must have three elements from one vector, call it X, and
3819    // one element from the other, call it Y.  First, use a shufps to build an
3820    // intermediate vector with the one element from Y and the element from X
3821    // that will be in the same half in the final destination (the indexes don't
3822    // matter). Then, use a shufps to build the final vector, taking the half
3823    // containing the element from Y from the intermediate, and the other half
3824    // from X.
3825    if (NumHi == 3) {
3826      // Normalize it so the 3 elements come from V1.
3827      CommuteVectorShuffleMask(PermMask, VT);
3828      std::swap(V1, V2);
3829    }
3830
3831    // Find the element from V2.
3832    unsigned HiIndex;
3833    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
3834      int Val = PermMask[HiIndex];
3835      if (Val < 0)
3836        continue;
3837      if (Val >= 4)
3838        break;
3839    }
3840
3841    Mask1[0] = PermMask[HiIndex];
3842    Mask1[1] = -1;
3843    Mask1[2] = PermMask[HiIndex^1];
3844    Mask1[3] = -1;
3845    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3846
3847    if (HiIndex >= 2) {
3848      Mask1[0] = PermMask[0];
3849      Mask1[1] = PermMask[1];
3850      Mask1[2] = HiIndex & 1 ? 6 : 4;
3851      Mask1[3] = HiIndex & 1 ? 4 : 6;
3852      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3853    } else {
3854      Mask1[0] = HiIndex & 1 ? 2 : 0;
3855      Mask1[1] = HiIndex & 1 ? 0 : 2;
3856      Mask1[2] = PermMask[2];
3857      Mask1[3] = PermMask[3];
3858      if (Mask1[2] >= 0)
3859        Mask1[2] += 4;
3860      if (Mask1[3] >= 0)
3861        Mask1[3] += 4;
3862      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
3863    }
3864  }
3865
3866  // Break it into (shuffle shuffle_hi, shuffle_lo).
3867  Locs.clear();
3868  SmallVector<int,8> LoMask(4U, -1);
3869  SmallVector<int,8> HiMask(4U, -1);
3870
3871  SmallVector<int,8> *MaskPtr = &LoMask;
3872  unsigned MaskIdx = 0;
3873  unsigned LoIdx = 0;
3874  unsigned HiIdx = 2;
3875  for (unsigned i = 0; i != 4; ++i) {
3876    if (i == 2) {
3877      MaskPtr = &HiMask;
3878      MaskIdx = 1;
3879      LoIdx = 0;
3880      HiIdx = 2;
3881    }
3882    int Idx = PermMask[i];
3883    if (Idx < 0) {
3884      Locs[i] = std::make_pair(-1, -1);
3885    } else if (Idx < 4) {
3886      Locs[i] = std::make_pair(MaskIdx, LoIdx);
3887      (*MaskPtr)[LoIdx] = Idx;
3888      LoIdx++;
3889    } else {
3890      Locs[i] = std::make_pair(MaskIdx, HiIdx);
3891      (*MaskPtr)[HiIdx] = Idx;
3892      HiIdx++;
3893    }
3894  }
3895
3896  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
3897  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
3898  SmallVector<int, 8> MaskOps;
3899  for (unsigned i = 0; i != 4; ++i) {
3900    if (Locs[i].first == -1) {
3901      MaskOps.push_back(-1);
3902    } else {
3903      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
3904      MaskOps.push_back(Idx);
3905    }
3906  }
3907  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
3908}
3909
3910SDValue
3911X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3912  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
3913  SDValue V1 = Op.getOperand(0);
3914  SDValue V2 = Op.getOperand(1);
3915  MVT VT = Op.getValueType();
3916  DebugLoc dl = Op.getDebugLoc();
3917  unsigned NumElems = VT.getVectorNumElements();
3918  bool isMMX = VT.getSizeInBits() == 64;
3919  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3920  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3921  bool V1IsSplat = false;
3922  bool V2IsSplat = false;
3923
3924  if (isZeroShuffle(SVOp))
3925    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3926
3927  // Promote splats to v4f32.
3928  if (SVOp->isSplat()) {
3929    if (isMMX || NumElems < 4)
3930      return Op;
3931    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
3932  }
3933
3934  // If the shuffle can be profitably rewritten as a narrower shuffle, then
3935  // do it!
3936  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
3937    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
3938    if (NewOp.getNode())
3939      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3940                         LowerVECTOR_SHUFFLE(NewOp, DAG));
3941  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
3942    // FIXME: Figure out a cleaner way to do this.
3943    // Try to make use of movq to zero out the top part.
3944    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
3945      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
3946      if (NewOp.getNode()) {
3947        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
3948          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
3949                              DAG, Subtarget, dl);
3950      }
3951    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
3952      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
3953      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
3954        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
3955                            DAG, Subtarget, dl);
3956    }
3957  }
3958
3959  if (X86::isPSHUFDMask(SVOp))
3960    return Op;
3961
3962  // Check if this can be converted into a logical shift.
3963  bool isLeft = false;
3964  unsigned ShAmt = 0;
3965  SDValue ShVal;
3966  bool isShift = getSubtarget()->hasSSE2() &&
3967  isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
3968  if (isShift && ShVal.hasOneUse()) {
3969    // If the shifted value has multiple uses, it may be cheaper to use
3970    // v_set0 + movlhps or movhlps, etc.
3971    MVT EVT = VT.getVectorElementType();
3972    ShAmt *= EVT.getSizeInBits();
3973    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
3974  }
3975
3976  if (X86::isMOVLMask(SVOp)) {
3977    if (V1IsUndef)
3978      return V2;
3979    if (ISD::isBuildVectorAllZeros(V1.getNode()))
3980      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
3981    if (!isMMX)
3982      return Op;
3983  }
3984
3985  // FIXME: fold these into legal mask.
3986  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
3987                 X86::isMOVSLDUPMask(SVOp) ||
3988                 X86::isMOVHLPSMask(SVOp) ||
3989                 X86::isMOVHPMask(SVOp) ||
3990                 X86::isMOVLPMask(SVOp)))
3991    return Op;
3992
3993  if (ShouldXformToMOVHLPS(SVOp) ||
3994      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
3995    return CommuteVectorShuffle(SVOp, DAG);
3996
3997  if (isShift) {
3998    // No better options. Use a vshl / vsrl.
3999    MVT EVT = VT.getVectorElementType();
4000    ShAmt *= EVT.getSizeInBits();
4001    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4002  }
4003
4004  bool Commuted = false;
4005  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4006  // 1,1,1,1 -> v8i16 though.
4007  V1IsSplat = isSplatVector(V1.getNode());
4008  V2IsSplat = isSplatVector(V2.getNode());
4009
4010  // Canonicalize the splat or undef, if present, to be on the RHS.
4011  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4012    Op = CommuteVectorShuffle(SVOp, DAG);
4013    SVOp = cast<ShuffleVectorSDNode>(Op);
4014    V1 = SVOp->getOperand(0);
4015    V2 = SVOp->getOperand(1);
4016    std::swap(V1IsSplat, V2IsSplat);
4017    std::swap(V1IsUndef, V2IsUndef);
4018    Commuted = true;
4019  }
4020
4021  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4022    // Shuffling low element of v1 into undef, just return v1.
4023    if (V2IsUndef)
4024      return V1;
4025    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4026    // the instruction selector will not match, so get a canonical MOVL with
4027    // swapped operands to undo the commute.
4028    return getMOVL(DAG, dl, VT, V2, V1);
4029  }
4030
4031  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4032      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4033      X86::isUNPCKLMask(SVOp) ||
4034      X86::isUNPCKHMask(SVOp))
4035    return Op;
4036
4037  if (V2IsSplat) {
4038    // Normalize mask so all entries that point to V2 points to its first
4039    // element then try to match unpck{h|l} again. If match, return a
4040    // new vector_shuffle with the corrected mask.
4041    SDValue NewMask = NormalizeMask(SVOp, DAG);
4042    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4043    if (NSVOp != SVOp) {
4044      if (X86::isUNPCKLMask(NSVOp, true)) {
4045        return NewMask;
4046      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4047        return NewMask;
4048      }
4049    }
4050  }
4051
4052  if (Commuted) {
4053    // Commute is back and try unpck* again.
4054    // FIXME: this seems wrong.
4055    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4056    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4057    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4058        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4059        X86::isUNPCKLMask(NewSVOp) ||
4060        X86::isUNPCKHMask(NewSVOp))
4061      return NewOp;
4062  }
4063
4064  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4065
4066  // Normalize the node to match x86 shuffle ops if needed
4067  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4068    return CommuteVectorShuffle(SVOp, DAG);
4069
4070  // Check for legal shuffle and return?
4071  SmallVector<int, 16> PermMask;
4072  SVOp->getMask(PermMask);
4073  if (isShuffleMaskLegal(PermMask, VT))
4074    return Op;
4075
4076  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4077  if (VT == MVT::v8i16) {
4078    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4079    if (NewOp.getNode())
4080      return NewOp;
4081  }
4082
4083  if (VT == MVT::v16i8) {
4084    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4085    if (NewOp.getNode())
4086      return NewOp;
4087  }
4088
4089  // Handle all 4 wide cases with a number of shuffles except for MMX.
4090  if (NumElems == 4 && !isMMX)
4091    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4092
4093  return SDValue();
4094}
4095
4096SDValue
4097X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4098                                                SelectionDAG &DAG) {
4099  MVT VT = Op.getValueType();
4100  DebugLoc dl = Op.getDebugLoc();
4101  if (VT.getSizeInBits() == 8) {
4102    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4103                                    Op.getOperand(0), Op.getOperand(1));
4104    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4105                                    DAG.getValueType(VT));
4106    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4107  } else if (VT.getSizeInBits() == 16) {
4108    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4109    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4110    if (Idx == 0)
4111      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4112                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4113                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4114                                                 MVT::v4i32,
4115                                                 Op.getOperand(0)),
4116                                     Op.getOperand(1)));
4117    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4118                                    Op.getOperand(0), Op.getOperand(1));
4119    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4120                                    DAG.getValueType(VT));
4121    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4122  } else if (VT == MVT::f32) {
4123    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4124    // the result back to FR32 register. It's only worth matching if the
4125    // result has a single use which is a store or a bitcast to i32.  And in
4126    // the case of a store, it's not worth it if the index is a constant 0,
4127    // because a MOVSSmr can be used instead, which is smaller and faster.
4128    if (!Op.hasOneUse())
4129      return SDValue();
4130    SDNode *User = *Op.getNode()->use_begin();
4131    if ((User->getOpcode() != ISD::STORE ||
4132         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4133          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4134        (User->getOpcode() != ISD::BIT_CONVERT ||
4135         User->getValueType(0) != MVT::i32))
4136      return SDValue();
4137    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4138                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4139                                              Op.getOperand(0)),
4140                                              Op.getOperand(1));
4141    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4142  } else if (VT == MVT::i32) {
4143    // ExtractPS works with constant index.
4144    if (isa<ConstantSDNode>(Op.getOperand(1)))
4145      return Op;
4146  }
4147  return SDValue();
4148}
4149
4150
4151SDValue
4152X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4153  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4154    return SDValue();
4155
4156  if (Subtarget->hasSSE41()) {
4157    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4158    if (Res.getNode())
4159      return Res;
4160  }
4161
4162  MVT VT = Op.getValueType();
4163  DebugLoc dl = Op.getDebugLoc();
4164  // TODO: handle v16i8.
4165  if (VT.getSizeInBits() == 16) {
4166    SDValue Vec = Op.getOperand(0);
4167    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4168    if (Idx == 0)
4169      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4170                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4171                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4172                                                 MVT::v4i32, Vec),
4173                                     Op.getOperand(1)));
4174    // Transform it so it match pextrw which produces a 32-bit result.
4175    MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
4176    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EVT,
4177                                    Op.getOperand(0), Op.getOperand(1));
4178    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EVT, Extract,
4179                                    DAG.getValueType(VT));
4180    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4181  } else if (VT.getSizeInBits() == 32) {
4182    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4183    if (Idx == 0)
4184      return Op;
4185
4186    // SHUFPS the element to the lowest double word, then movss.
4187    int Mask[4] = { Idx, -1, -1, -1 };
4188    MVT VVT = Op.getOperand(0).getValueType();
4189    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4190                                       DAG.getUNDEF(VVT), Mask);
4191    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4192                       DAG.getIntPtrConstant(0));
4193  } else if (VT.getSizeInBits() == 64) {
4194    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4195    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4196    //        to match extract_elt for f64.
4197    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4198    if (Idx == 0)
4199      return Op;
4200
4201    // UNPCKHPD the element to the lowest double word, then movsd.
4202    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4203    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4204    int Mask[2] = { 1, -1 };
4205    MVT VVT = Op.getOperand(0).getValueType();
4206    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4207                                       DAG.getUNDEF(VVT), Mask);
4208    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4209                       DAG.getIntPtrConstant(0));
4210  }
4211
4212  return SDValue();
4213}
4214
4215SDValue
4216X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4217  MVT VT = Op.getValueType();
4218  MVT EVT = VT.getVectorElementType();
4219  DebugLoc dl = Op.getDebugLoc();
4220
4221  SDValue N0 = Op.getOperand(0);
4222  SDValue N1 = Op.getOperand(1);
4223  SDValue N2 = Op.getOperand(2);
4224
4225  if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4226      isa<ConstantSDNode>(N2)) {
4227    unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4228                                              : X86ISD::PINSRW;
4229    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4230    // argument.
4231    if (N1.getValueType() != MVT::i32)
4232      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4233    if (N2.getValueType() != MVT::i32)
4234      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4235    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4236  } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4237    // Bits [7:6] of the constant are the source select.  This will always be
4238    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4239    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4240    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4241    // Bits [5:4] of the constant are the destination select.  This is the
4242    //  value of the incoming immediate.
4243    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4244    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4245    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4246    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4247  } else if (EVT == MVT::i32) {
4248    // InsertPS works with constant index.
4249    if (isa<ConstantSDNode>(N2))
4250      return Op;
4251  }
4252  return SDValue();
4253}
4254
4255SDValue
4256X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4257  MVT VT = Op.getValueType();
4258  MVT EVT = VT.getVectorElementType();
4259
4260  if (Subtarget->hasSSE41())
4261    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4262
4263  if (EVT == MVT::i8)
4264    return SDValue();
4265
4266  DebugLoc dl = Op.getDebugLoc();
4267  SDValue N0 = Op.getOperand(0);
4268  SDValue N1 = Op.getOperand(1);
4269  SDValue N2 = Op.getOperand(2);
4270
4271  if (EVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4272    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4273    // as its second argument.
4274    if (N1.getValueType() != MVT::i32)
4275      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4276    if (N2.getValueType() != MVT::i32)
4277      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4278    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4279  }
4280  return SDValue();
4281}
4282
4283SDValue
4284X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4285  DebugLoc dl = Op.getDebugLoc();
4286  if (Op.getValueType() == MVT::v2f32)
4287    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4288                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4289                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4290                                               Op.getOperand(0))));
4291
4292  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4293  MVT VT = MVT::v2i32;
4294  switch (Op.getValueType().getSimpleVT()) {
4295  default: break;
4296  case MVT::v16i8:
4297  case MVT::v8i16:
4298    VT = MVT::v4i32;
4299    break;
4300  }
4301  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4302                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4303}
4304
4305// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4306// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4307// one of the above mentioned nodes. It has to be wrapped because otherwise
4308// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4309// be used to form addressing mode. These wrapped nodes will be selected
4310// into MOV32ri.
4311SDValue
4312X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4313  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4314
4315  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4316  // global base reg.
4317  unsigned char OpFlag = 0;
4318  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
4319    if (Subtarget->isPICStyleStub())
4320      OpFlag = X86II::MO_PIC_BASE_OFFSET;
4321    else if (Subtarget->isPICStyleGOT())
4322      OpFlag = X86II::MO_GOTOFF;
4323  }
4324
4325  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4326                                             CP->getAlignment(),
4327                                             CP->getOffset(), OpFlag);
4328  DebugLoc DL = CP->getDebugLoc();
4329  Result = DAG.getNode(X86ISD::Wrapper, DL, getPointerTy(), Result);
4330  // With PIC, the address is actually $g + Offset.
4331  if (OpFlag) {
4332    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4333                         DAG.getNode(X86ISD::GlobalBaseReg,
4334                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4335                         Result);
4336  }
4337
4338  return Result;
4339}
4340
4341SDValue
4342X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
4343                                      int64_t Offset,
4344                                      SelectionDAG &DAG) const {
4345  bool IsPic = getTargetMachine().getRelocationModel() == Reloc::PIC_;
4346  bool ExtraLoadRequired =
4347    Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false);
4348
4349  // Create the TargetGlobalAddress node, folding in the constant
4350  // offset if it is legal.
4351  SDValue Result;
4352  if (!IsPic && !ExtraLoadRequired && isInt32(Offset)) {
4353    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4354    Offset = 0;
4355  } else
4356    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0);
4357  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4358
4359  // With PIC, the address is actually $g + Offset.
4360  if (IsPic && !Subtarget->isPICStyleRIPRel()) {
4361    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4362                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
4363                         Result);
4364  }
4365
4366  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4367  // load the value at address GV, not the value of GV itself. This means that
4368  // the GlobalAddress must be in the base or index register of the address, not
4369  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4370  // The same applies for external symbols during PIC codegen
4371  if (ExtraLoadRequired)
4372    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
4373                         PseudoSourceValue::getGOT(), 0);
4374
4375  // If there was a non-zero offset that we didn't fold, create an explicit
4376  // addition for it.
4377  if (Offset != 0)
4378    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
4379                         DAG.getConstant(Offset, getPointerTy()));
4380
4381  return Result;
4382}
4383
4384SDValue
4385X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4386  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4387  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4388  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
4389}
4390
4391static SDValue
4392GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
4393           SDValue *InFlag, const MVT PtrVT, unsigned ReturnReg) {
4394  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4395  DebugLoc dl = GA->getDebugLoc();
4396  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4397                                           GA->getValueType(0),
4398                                           GA->getOffset());
4399  if (InFlag) {
4400    SDValue Ops[] = { Chain,  TGA, *InFlag };
4401    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
4402  } else {
4403    SDValue Ops[]  = { Chain, TGA };
4404    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
4405  }
4406  SDValue Flag = Chain.getValue(1);
4407  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
4408}
4409
4410// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4411static SDValue
4412LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4413                                const MVT PtrVT) {
4414  SDValue InFlag;
4415  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
4416  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
4417                                     DAG.getNode(X86ISD::GlobalBaseReg,
4418                                                 DebugLoc::getUnknownLoc(),
4419                                                 PtrVT), InFlag);
4420  InFlag = Chain.getValue(1);
4421
4422  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX);
4423}
4424
4425// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4426static SDValue
4427LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4428                                const MVT PtrVT) {
4429  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX);
4430}
4431
4432// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4433// "local exec" model.
4434static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4435                                   const MVT PtrVT, TLSModel::Model model,
4436                                   bool is64Bit) {
4437  DebugLoc dl = GA->getDebugLoc();
4438  // Get the Thread Pointer
4439  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
4440                             DebugLoc::getUnknownLoc(), PtrVT,
4441                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
4442                                             MVT::i32));
4443
4444  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
4445                                      NULL, 0);
4446
4447  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4448  // exec)
4449  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
4450                                           GA->getOffset());
4451  SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, TGA);
4452
4453  if (model == TLSModel::InitialExec)
4454    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
4455                         PseudoSourceValue::getGOT(), 0);
4456
4457  // The address of the thread local variable is the add of the thread
4458  // pointer with the offset of the variable.
4459  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
4460}
4461
4462SDValue
4463X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4464  // TODO: implement the "local dynamic" model
4465  // TODO: implement the "initial exec"model for pic executables
4466  assert(Subtarget->isTargetELF() &&
4467         "TLS not implemented for non-ELF targets");
4468  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4469  GlobalValue *GV = GA->getGlobal();
4470  TLSModel::Model model =
4471    getTLSModel (GV, getTargetMachine().getRelocationModel());
4472  if (Subtarget->is64Bit()) {
4473    switch (model) {
4474    case TLSModel::GeneralDynamic:
4475    case TLSModel::LocalDynamic: // not implemented
4476      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4477
4478    case TLSModel::InitialExec:
4479    case TLSModel::LocalExec:
4480      return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, true);
4481    }
4482  } else {
4483    switch (model) {
4484    case TLSModel::GeneralDynamic:
4485    case TLSModel::LocalDynamic: // not implemented
4486      return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4487
4488    case TLSModel::InitialExec:
4489    case TLSModel::LocalExec:
4490      return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, false);
4491    }
4492  }
4493  assert(0 && "Unreachable");
4494  return SDValue();
4495}
4496
4497SDValue
4498X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4499  // FIXME there isn't really any debug info here
4500  DebugLoc dl = Op.getDebugLoc();
4501  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4502  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4503  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4504  // With PIC, the address is actually $g + Offset.
4505  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4506      !Subtarget->isPICStyleRIPRel()) {
4507    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4508                         DAG.getNode(X86ISD::GlobalBaseReg,
4509                                     DebugLoc::getUnknownLoc(),
4510                                     getPointerTy()),
4511                         Result);
4512  }
4513
4514  return Result;
4515}
4516
4517SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4518  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4519
4520  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4521  // global base reg.
4522  unsigned char OpFlag = 0;
4523  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
4524    if (Subtarget->isPICStyleStub())
4525      OpFlag = X86II::MO_PIC_BASE_OFFSET;
4526    else if (Subtarget->isPICStyleGOT())
4527      OpFlag = X86II::MO_GOTOFF;
4528  }
4529
4530  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
4531                                          OpFlag);
4532  DebugLoc DL = JT->getDebugLoc();
4533  Result = DAG.getNode(X86ISD::Wrapper, DL, getPointerTy(), Result);
4534
4535  // With PIC, the address is actually $g + Offset.
4536  if (OpFlag) {
4537    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4538                         DAG.getNode(X86ISD::GlobalBaseReg,
4539                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4540                         Result);
4541  }
4542
4543  return Result;
4544}
4545
4546/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4547/// take a 2 x i32 value to shift plus a shift amount.
4548SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4549  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4550  MVT VT = Op.getValueType();
4551  unsigned VTBits = VT.getSizeInBits();
4552  DebugLoc dl = Op.getDebugLoc();
4553  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4554  SDValue ShOpLo = Op.getOperand(0);
4555  SDValue ShOpHi = Op.getOperand(1);
4556  SDValue ShAmt  = Op.getOperand(2);
4557  SDValue Tmp1 = isSRA ?
4558    DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
4559                DAG.getConstant(VTBits - 1, MVT::i8)) :
4560    DAG.getConstant(0, VT);
4561
4562  SDValue Tmp2, Tmp3;
4563  if (Op.getOpcode() == ISD::SHL_PARTS) {
4564    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
4565    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4566  } else {
4567    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
4568    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
4569  }
4570
4571  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
4572                                  DAG.getConstant(VTBits, MVT::i8));
4573  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
4574                               AndNode, DAG.getConstant(0, MVT::i8));
4575
4576  SDValue Hi, Lo;
4577  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4578  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4579  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4580
4581  if (Op.getOpcode() == ISD::SHL_PARTS) {
4582    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4583    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4584  } else {
4585    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4586    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4587  }
4588
4589  SDValue Ops[2] = { Lo, Hi };
4590  return DAG.getMergeValues(Ops, 2, dl);
4591}
4592
4593SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4594  MVT SrcVT = Op.getOperand(0).getValueType();
4595
4596  if (SrcVT.isVector()) {
4597    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
4598      return Op;
4599    }
4600    return SDValue();
4601  }
4602
4603  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4604         "Unknown SINT_TO_FP to lower!");
4605
4606  // These are really Legal; return the operand so the caller accepts it as
4607  // Legal.
4608  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4609    return Op;
4610  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
4611      Subtarget->is64Bit()) {
4612    return Op;
4613  }
4614
4615  DebugLoc dl = Op.getDebugLoc();
4616  unsigned Size = SrcVT.getSizeInBits()/8;
4617  MachineFunction &MF = DAG.getMachineFunction();
4618  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4619  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4620  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
4621                               StackSlot,
4622                               PseudoSourceValue::getFixedStack(SSFI), 0);
4623  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
4624}
4625
4626SDValue X86TargetLowering::BuildFILD(SDValue Op, MVT SrcVT, SDValue Chain,
4627                                     SDValue StackSlot,
4628                                     SelectionDAG &DAG) {
4629  // Build the FILD
4630  DebugLoc dl = Op.getDebugLoc();
4631  SDVTList Tys;
4632  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4633  if (useSSE)
4634    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4635  else
4636    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4637  SmallVector<SDValue, 8> Ops;
4638  Ops.push_back(Chain);
4639  Ops.push_back(StackSlot);
4640  Ops.push_back(DAG.getValueType(SrcVT));
4641  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
4642                                 Tys, &Ops[0], Ops.size());
4643
4644  if (useSSE) {
4645    Chain = Result.getValue(1);
4646    SDValue InFlag = Result.getValue(2);
4647
4648    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4649    // shouldn't be necessary except that RFP cannot be live across
4650    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4651    MachineFunction &MF = DAG.getMachineFunction();
4652    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4653    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4654    Tys = DAG.getVTList(MVT::Other);
4655    SmallVector<SDValue, 8> Ops;
4656    Ops.push_back(Chain);
4657    Ops.push_back(Result);
4658    Ops.push_back(StackSlot);
4659    Ops.push_back(DAG.getValueType(Op.getValueType()));
4660    Ops.push_back(InFlag);
4661    Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size());
4662    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
4663                         PseudoSourceValue::getFixedStack(SSFI), 0);
4664  }
4665
4666  return Result;
4667}
4668
4669// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
4670SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
4671  // This algorithm is not obvious. Here it is in C code, more or less:
4672  /*
4673    double uint64_to_double( uint32_t hi, uint32_t lo ) {
4674      static const __m128i exp = { 0x4330000045300000ULL, 0 };
4675      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4676
4677      // Copy ints to xmm registers.
4678      __m128i xh = _mm_cvtsi32_si128( hi );
4679      __m128i xl = _mm_cvtsi32_si128( lo );
4680
4681      // Combine into low half of a single xmm register.
4682      __m128i x = _mm_unpacklo_epi32( xh, xl );
4683      __m128d d;
4684      double sd;
4685
4686      // Merge in appropriate exponents to give the integer bits the right
4687      // magnitude.
4688      x = _mm_unpacklo_epi32( x, exp );
4689
4690      // Subtract away the biases to deal with the IEEE-754 double precision
4691      // implicit 1.
4692      d = _mm_sub_pd( (__m128d) x, bias );
4693
4694      // All conversions up to here are exact. The correctly rounded result is
4695      // calculated using the current rounding mode using the following
4696      // horizontal add.
4697      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4698      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
4699                                // store doesn't really need to be here (except
4700                                // maybe to zero the other double)
4701      return sd;
4702    }
4703  */
4704
4705  DebugLoc dl = Op.getDebugLoc();
4706
4707  // Build some magic constants.
4708  std::vector<Constant*> CV0;
4709  CV0.push_back(ConstantInt::get(APInt(32, 0x45300000)));
4710  CV0.push_back(ConstantInt::get(APInt(32, 0x43300000)));
4711  CV0.push_back(ConstantInt::get(APInt(32, 0)));
4712  CV0.push_back(ConstantInt::get(APInt(32, 0)));
4713  Constant *C0 = ConstantVector::get(CV0);
4714  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
4715
4716  std::vector<Constant*> CV1;
4717  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4530000000000000ULL))));
4718  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4330000000000000ULL))));
4719  Constant *C1 = ConstantVector::get(CV1);
4720  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
4721
4722  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4723                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4724                                        Op.getOperand(0),
4725                                        DAG.getIntPtrConstant(1)));
4726  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4727                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4728                                        Op.getOperand(0),
4729                                        DAG.getIntPtrConstant(0)));
4730  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
4731  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
4732                              PseudoSourceValue::getConstantPool(), 0,
4733                              false, 16);
4734  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
4735  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
4736  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
4737                              PseudoSourceValue::getConstantPool(), 0,
4738                              false, 16);
4739  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
4740
4741  // Add the halves; easiest way is to swap them into another reg first.
4742  int ShufMask[2] = { 1, -1 };
4743  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
4744                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
4745  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
4746  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
4747                     DAG.getIntPtrConstant(0));
4748}
4749
4750// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
4751SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
4752  DebugLoc dl = Op.getDebugLoc();
4753  // FP constant to bias correct the final result.
4754  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
4755                                   MVT::f64);
4756
4757  // Load the 32-bit value into an XMM register.
4758  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4759                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4760                                         Op.getOperand(0),
4761                                         DAG.getIntPtrConstant(0)));
4762
4763  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
4764                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
4765                     DAG.getIntPtrConstant(0));
4766
4767  // Or the load with the bias.
4768  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
4769                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
4770                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4771                                                   MVT::v2f64, Load)),
4772                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
4773                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4774                                                   MVT::v2f64, Bias)));
4775  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
4776                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
4777                   DAG.getIntPtrConstant(0));
4778
4779  // Subtract the bias.
4780  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
4781
4782  // Handle final rounding.
4783  MVT DestVT = Op.getValueType();
4784
4785  if (DestVT.bitsLT(MVT::f64)) {
4786    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
4787                       DAG.getIntPtrConstant(0));
4788  } else if (DestVT.bitsGT(MVT::f64)) {
4789    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
4790  }
4791
4792  // Handle final rounding.
4793  return Sub;
4794}
4795
4796SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4797  SDValue N0 = Op.getOperand(0);
4798  DebugLoc dl = Op.getDebugLoc();
4799
4800  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
4801  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
4802  // the optimization here.
4803  if (DAG.SignBitIsZero(N0))
4804    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
4805
4806  MVT SrcVT = N0.getValueType();
4807  if (SrcVT == MVT::i64) {
4808    // We only handle SSE2 f64 target here; caller can expand the rest.
4809    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
4810      return SDValue();
4811
4812    return LowerUINT_TO_FP_i64(Op, DAG);
4813  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
4814    return LowerUINT_TO_FP_i32(Op, DAG);
4815  }
4816
4817  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
4818
4819  // Make a 64-bit buffer, and use it to build an FILD.
4820  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
4821  SDValue WordOff = DAG.getConstant(4, getPointerTy());
4822  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
4823                                   getPointerTy(), StackSlot, WordOff);
4824  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
4825                                StackSlot, NULL, 0);
4826  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
4827                                OffsetSlot, NULL, 0);
4828  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
4829}
4830
4831std::pair<SDValue,SDValue> X86TargetLowering::
4832FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
4833  DebugLoc dl = Op.getDebugLoc();
4834
4835  MVT DstTy = Op.getValueType();
4836
4837  if (!IsSigned) {
4838    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
4839    DstTy = MVT::i64;
4840  }
4841
4842  assert(DstTy.getSimpleVT() <= MVT::i64 &&
4843         DstTy.getSimpleVT() >= MVT::i16 &&
4844         "Unknown FP_TO_SINT to lower!");
4845
4846  // These are really Legal.
4847  if (DstTy == MVT::i32 &&
4848      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4849    return std::make_pair(SDValue(), SDValue());
4850  if (Subtarget->is64Bit() &&
4851      DstTy == MVT::i64 &&
4852      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4853    return std::make_pair(SDValue(), SDValue());
4854
4855  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4856  // stack slot.
4857  MachineFunction &MF = DAG.getMachineFunction();
4858  unsigned MemSize = DstTy.getSizeInBits()/8;
4859  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4860  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4861
4862  unsigned Opc;
4863  switch (DstTy.getSimpleVT()) {
4864  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4865  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4866  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4867  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4868  }
4869
4870  SDValue Chain = DAG.getEntryNode();
4871  SDValue Value = Op.getOperand(0);
4872  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
4873    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4874    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
4875                         PseudoSourceValue::getFixedStack(SSFI), 0);
4876    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4877    SDValue Ops[] = {
4878      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4879    };
4880    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
4881    Chain = Value.getValue(1);
4882    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4883    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4884  }
4885
4886  // Build the FP_TO_INT*_IN_MEM
4887  SDValue Ops[] = { Chain, Value, StackSlot };
4888  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
4889
4890  return std::make_pair(FIST, StackSlot);
4891}
4892
4893SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
4894  if (Op.getValueType().isVector()) {
4895    if (Op.getValueType() == MVT::v2i32 &&
4896        Op.getOperand(0).getValueType() == MVT::v2f64) {
4897      return Op;
4898    }
4899    return SDValue();
4900  }
4901
4902  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
4903  SDValue FIST = Vals.first, StackSlot = Vals.second;
4904  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
4905  if (FIST.getNode() == 0) return Op;
4906
4907  // Load the result.
4908  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
4909                     FIST, StackSlot, NULL, 0);
4910}
4911
4912SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
4913  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
4914  SDValue FIST = Vals.first, StackSlot = Vals.second;
4915  assert(FIST.getNode() && "Unexpected failure");
4916
4917  // Load the result.
4918  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
4919                     FIST, StackSlot, NULL, 0);
4920}
4921
4922SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
4923  DebugLoc dl = Op.getDebugLoc();
4924  MVT VT = Op.getValueType();
4925  MVT EltVT = VT;
4926  if (VT.isVector())
4927    EltVT = VT.getVectorElementType();
4928  std::vector<Constant*> CV;
4929  if (EltVT == MVT::f64) {
4930    Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
4931    CV.push_back(C);
4932    CV.push_back(C);
4933  } else {
4934    Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
4935    CV.push_back(C);
4936    CV.push_back(C);
4937    CV.push_back(C);
4938    CV.push_back(C);
4939  }
4940  Constant *C = ConstantVector::get(CV);
4941  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
4942  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
4943                               PseudoSourceValue::getConstantPool(), 0,
4944                               false, 16);
4945  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
4946}
4947
4948SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
4949  DebugLoc dl = Op.getDebugLoc();
4950  MVT VT = Op.getValueType();
4951  MVT EltVT = VT;
4952  unsigned EltNum = 1;
4953  if (VT.isVector()) {
4954    EltVT = VT.getVectorElementType();
4955    EltNum = VT.getVectorNumElements();
4956  }
4957  std::vector<Constant*> CV;
4958  if (EltVT == MVT::f64) {
4959    Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
4960    CV.push_back(C);
4961    CV.push_back(C);
4962  } else {
4963    Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
4964    CV.push_back(C);
4965    CV.push_back(C);
4966    CV.push_back(C);
4967    CV.push_back(C);
4968  }
4969  Constant *C = ConstantVector::get(CV);
4970  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
4971  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
4972                               PseudoSourceValue::getConstantPool(), 0,
4973                               false, 16);
4974  if (VT.isVector()) {
4975    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4976                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
4977                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
4978                                Op.getOperand(0)),
4979                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
4980  } else {
4981    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
4982  }
4983}
4984
4985SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
4986  SDValue Op0 = Op.getOperand(0);
4987  SDValue Op1 = Op.getOperand(1);
4988  DebugLoc dl = Op.getDebugLoc();
4989  MVT VT = Op.getValueType();
4990  MVT SrcVT = Op1.getValueType();
4991
4992  // If second operand is smaller, extend it first.
4993  if (SrcVT.bitsLT(VT)) {
4994    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
4995    SrcVT = VT;
4996  }
4997  // And if it is bigger, shrink it first.
4998  if (SrcVT.bitsGT(VT)) {
4999    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5000    SrcVT = VT;
5001  }
5002
5003  // At this point the operands and the result should have the same
5004  // type, and that won't be f80 since that is not custom lowered.
5005
5006  // First get the sign bit of second operand.
5007  std::vector<Constant*> CV;
5008  if (SrcVT == MVT::f64) {
5009    CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
5010    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
5011  } else {
5012    CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
5013    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5014    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5015    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5016  }
5017  Constant *C = ConstantVector::get(CV);
5018  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5019  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5020                                PseudoSourceValue::getConstantPool(), 0,
5021                                false, 16);
5022  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5023
5024  // Shift sign bit right or left if the two operands have different types.
5025  if (SrcVT.bitsGT(VT)) {
5026    // Op0 is MVT::f32, Op1 is MVT::f64.
5027    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5028    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5029                          DAG.getConstant(32, MVT::i32));
5030    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5031    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5032                          DAG.getIntPtrConstant(0));
5033  }
5034
5035  // Clear first operand sign bit.
5036  CV.clear();
5037  if (VT == MVT::f64) {
5038    CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
5039    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
5040  } else {
5041    CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
5042    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5043    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5044    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5045  }
5046  C = ConstantVector::get(CV);
5047  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5048  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5049                                PseudoSourceValue::getConstantPool(), 0,
5050                                false, 16);
5051  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5052
5053  // Or the value with the sign bit.
5054  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5055}
5056
5057/// Emit nodes that will be selected as "test Op0,Op0", or something
5058/// equivalent.
5059SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5060                                    SelectionDAG &DAG) {
5061  DebugLoc dl = Op.getDebugLoc();
5062
5063  // CF and OF aren't always set the way we want. Determine which
5064  // of these we need.
5065  bool NeedCF = false;
5066  bool NeedOF = false;
5067  switch (X86CC) {
5068  case X86::COND_A: case X86::COND_AE:
5069  case X86::COND_B: case X86::COND_BE:
5070    NeedCF = true;
5071    break;
5072  case X86::COND_G: case X86::COND_GE:
5073  case X86::COND_L: case X86::COND_LE:
5074  case X86::COND_O: case X86::COND_NO:
5075    NeedOF = true;
5076    break;
5077  default: break;
5078  }
5079
5080  // See if we can use the EFLAGS value from the operand instead of
5081  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5082  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5083  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5084    unsigned Opcode = 0;
5085    unsigned NumOperands = 0;
5086    switch (Op.getNode()->getOpcode()) {
5087    case ISD::ADD:
5088      // Due to an isel shortcoming, be conservative if this add is likely to
5089      // be selected as part of a load-modify-store instruction. When the root
5090      // node in a match is a store, isel doesn't know how to remap non-chain
5091      // non-flag uses of other nodes in the match, such as the ADD in this
5092      // case. This leads to the ADD being left around and reselected, with
5093      // the result being two adds in the output.
5094      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5095           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5096        if (UI->getOpcode() == ISD::STORE)
5097          goto default_case;
5098      if (ConstantSDNode *C =
5099            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5100        // An add of one will be selected as an INC.
5101        if (C->getAPIntValue() == 1) {
5102          Opcode = X86ISD::INC;
5103          NumOperands = 1;
5104          break;
5105        }
5106        // An add of negative one (subtract of one) will be selected as a DEC.
5107        if (C->getAPIntValue().isAllOnesValue()) {
5108          Opcode = X86ISD::DEC;
5109          NumOperands = 1;
5110          break;
5111        }
5112      }
5113      // Otherwise use a regular EFLAGS-setting add.
5114      Opcode = X86ISD::ADD;
5115      NumOperands = 2;
5116      break;
5117    case ISD::SUB:
5118      // Due to the ISEL shortcoming noted above, be conservative if this sub is
5119      // likely to be selected as part of a load-modify-store instruction.
5120      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5121           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5122        if (UI->getOpcode() == ISD::STORE)
5123          goto default_case;
5124      // Otherwise use a regular EFLAGS-setting sub.
5125      Opcode = X86ISD::SUB;
5126      NumOperands = 2;
5127      break;
5128    case X86ISD::ADD:
5129    case X86ISD::SUB:
5130    case X86ISD::INC:
5131    case X86ISD::DEC:
5132      return SDValue(Op.getNode(), 1);
5133    default:
5134    default_case:
5135      break;
5136    }
5137    if (Opcode != 0) {
5138      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5139      SmallVector<SDValue, 4> Ops;
5140      for (unsigned i = 0; i != NumOperands; ++i)
5141        Ops.push_back(Op.getOperand(i));
5142      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5143      DAG.ReplaceAllUsesWith(Op, New);
5144      return SDValue(New.getNode(), 1);
5145    }
5146  }
5147
5148  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5149  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5150                     DAG.getConstant(0, Op.getValueType()));
5151}
5152
5153/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5154/// equivalent.
5155SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5156                                   SelectionDAG &DAG) {
5157  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5158    if (C->getAPIntValue() == 0)
5159      return EmitTest(Op0, X86CC, DAG);
5160
5161  DebugLoc dl = Op0.getDebugLoc();
5162  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5163}
5164
5165SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5166  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5167  SDValue Op0 = Op.getOperand(0);
5168  SDValue Op1 = Op.getOperand(1);
5169  DebugLoc dl = Op.getDebugLoc();
5170  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5171
5172  // Lower (X & (1 << N)) == 0 to BT(X, N).
5173  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5174  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5175  if (Op0.getOpcode() == ISD::AND &&
5176      Op0.hasOneUse() &&
5177      Op1.getOpcode() == ISD::Constant &&
5178      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5179      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5180    SDValue LHS, RHS;
5181    if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5182      if (ConstantSDNode *Op010C =
5183            dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5184        if (Op010C->getZExtValue() == 1) {
5185          LHS = Op0.getOperand(0);
5186          RHS = Op0.getOperand(1).getOperand(1);
5187        }
5188    } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5189      if (ConstantSDNode *Op000C =
5190            dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5191        if (Op000C->getZExtValue() == 1) {
5192          LHS = Op0.getOperand(1);
5193          RHS = Op0.getOperand(0).getOperand(1);
5194        }
5195    } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5196      ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5197      SDValue AndLHS = Op0.getOperand(0);
5198      if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5199        LHS = AndLHS.getOperand(0);
5200        RHS = AndLHS.getOperand(1);
5201      }
5202    }
5203
5204    if (LHS.getNode()) {
5205      // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5206      // instruction.  Since the shift amount is in-range-or-undefined, we know
5207      // that doing a bittest on the i16 value is ok.  We extend to i32 because
5208      // the encoding for the i16 version is larger than the i32 version.
5209      if (LHS.getValueType() == MVT::i8)
5210        LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5211
5212      // If the operand types disagree, extend the shift amount to match.  Since
5213      // BT ignores high bits (like shifts) we can use anyextend.
5214      if (LHS.getValueType() != RHS.getValueType())
5215        RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5216
5217      SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5218      unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5219      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5220                         DAG.getConstant(Cond, MVT::i8), BT);
5221    }
5222  }
5223
5224  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5225  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5226
5227  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5228  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5229                     DAG.getConstant(X86CC, MVT::i8), Cond);
5230}
5231
5232SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5233  SDValue Cond;
5234  SDValue Op0 = Op.getOperand(0);
5235  SDValue Op1 = Op.getOperand(1);
5236  SDValue CC = Op.getOperand(2);
5237  MVT VT = Op.getValueType();
5238  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5239  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5240  DebugLoc dl = Op.getDebugLoc();
5241
5242  if (isFP) {
5243    unsigned SSECC = 8;
5244    MVT VT0 = Op0.getValueType();
5245    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5246    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5247    bool Swap = false;
5248
5249    switch (SetCCOpcode) {
5250    default: break;
5251    case ISD::SETOEQ:
5252    case ISD::SETEQ:  SSECC = 0; break;
5253    case ISD::SETOGT:
5254    case ISD::SETGT: Swap = true; // Fallthrough
5255    case ISD::SETLT:
5256    case ISD::SETOLT: SSECC = 1; break;
5257    case ISD::SETOGE:
5258    case ISD::SETGE: Swap = true; // Fallthrough
5259    case ISD::SETLE:
5260    case ISD::SETOLE: SSECC = 2; break;
5261    case ISD::SETUO:  SSECC = 3; break;
5262    case ISD::SETUNE:
5263    case ISD::SETNE:  SSECC = 4; break;
5264    case ISD::SETULE: Swap = true;
5265    case ISD::SETUGE: SSECC = 5; break;
5266    case ISD::SETULT: Swap = true;
5267    case ISD::SETUGT: SSECC = 6; break;
5268    case ISD::SETO:   SSECC = 7; break;
5269    }
5270    if (Swap)
5271      std::swap(Op0, Op1);
5272
5273    // In the two special cases we can't handle, emit two comparisons.
5274    if (SSECC == 8) {
5275      if (SetCCOpcode == ISD::SETUEQ) {
5276        SDValue UNORD, EQ;
5277        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5278        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5279        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
5280      }
5281      else if (SetCCOpcode == ISD::SETONE) {
5282        SDValue ORD, NEQ;
5283        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5284        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5285        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
5286      }
5287      assert(0 && "Illegal FP comparison");
5288    }
5289    // Handle all other FP comparisons here.
5290    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5291  }
5292
5293  // We are handling one of the integer comparisons here.  Since SSE only has
5294  // GT and EQ comparisons for integer, swapping operands and multiple
5295  // operations may be required for some comparisons.
5296  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5297  bool Swap = false, Invert = false, FlipSigns = false;
5298
5299  switch (VT.getSimpleVT()) {
5300  default: break;
5301  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5302  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5303  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5304  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5305  }
5306
5307  switch (SetCCOpcode) {
5308  default: break;
5309  case ISD::SETNE:  Invert = true;
5310  case ISD::SETEQ:  Opc = EQOpc; break;
5311  case ISD::SETLT:  Swap = true;
5312  case ISD::SETGT:  Opc = GTOpc; break;
5313  case ISD::SETGE:  Swap = true;
5314  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
5315  case ISD::SETULT: Swap = true;
5316  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5317  case ISD::SETUGE: Swap = true;
5318  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5319  }
5320  if (Swap)
5321    std::swap(Op0, Op1);
5322
5323  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
5324  // bits of the inputs before performing those operations.
5325  if (FlipSigns) {
5326    MVT EltVT = VT.getVectorElementType();
5327    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
5328                                      EltVT);
5329    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5330    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
5331                                    SignBits.size());
5332    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
5333    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
5334  }
5335
5336  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
5337
5338  // If the logical-not of the result is required, perform that now.
5339  if (Invert)
5340    Result = DAG.getNOT(dl, Result, VT);
5341
5342  return Result;
5343}
5344
5345// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5346static bool isX86LogicalCmp(SDValue Op) {
5347  unsigned Opc = Op.getNode()->getOpcode();
5348  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
5349    return true;
5350  if (Op.getResNo() == 1 &&
5351      (Opc == X86ISD::ADD ||
5352       Opc == X86ISD::SUB ||
5353       Opc == X86ISD::SMUL ||
5354       Opc == X86ISD::UMUL ||
5355       Opc == X86ISD::INC ||
5356       Opc == X86ISD::DEC))
5357    return true;
5358
5359  return false;
5360}
5361
5362SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5363  bool addTest = true;
5364  SDValue Cond  = Op.getOperand(0);
5365  DebugLoc dl = Op.getDebugLoc();
5366  SDValue CC;
5367
5368  if (Cond.getOpcode() == ISD::SETCC)
5369    Cond = LowerSETCC(Cond, DAG);
5370
5371  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5372  // setting operand in place of the X86ISD::SETCC.
5373  if (Cond.getOpcode() == X86ISD::SETCC) {
5374    CC = Cond.getOperand(0);
5375
5376    SDValue Cmp = Cond.getOperand(1);
5377    unsigned Opc = Cmp.getOpcode();
5378    MVT VT = Op.getValueType();
5379
5380    bool IllegalFPCMov = false;
5381    if (VT.isFloatingPoint() && !VT.isVector() &&
5382        !isScalarFPTypeInSSEReg(VT))  // FPStack?
5383      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5384
5385    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
5386        Opc == X86ISD::BT) { // FIXME
5387      Cond = Cmp;
5388      addTest = false;
5389    }
5390  }
5391
5392  if (addTest) {
5393    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5394    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5395  }
5396
5397  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
5398  SmallVector<SDValue, 4> Ops;
5399  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5400  // condition is true.
5401  Ops.push_back(Op.getOperand(2));
5402  Ops.push_back(Op.getOperand(1));
5403  Ops.push_back(CC);
5404  Ops.push_back(Cond);
5405  return DAG.getNode(X86ISD::CMOV, dl, VTs, &Ops[0], Ops.size());
5406}
5407
5408// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5409// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5410// from the AND / OR.
5411static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5412  Opc = Op.getOpcode();
5413  if (Opc != ISD::OR && Opc != ISD::AND)
5414    return false;
5415  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5416          Op.getOperand(0).hasOneUse() &&
5417          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5418          Op.getOperand(1).hasOneUse());
5419}
5420
5421// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5422// 1 and that the SETCC node has a single use.
5423static bool isXor1OfSetCC(SDValue Op) {
5424  if (Op.getOpcode() != ISD::XOR)
5425    return false;
5426  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5427  if (N1C && N1C->getAPIntValue() == 1) {
5428    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5429      Op.getOperand(0).hasOneUse();
5430  }
5431  return false;
5432}
5433
5434SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5435  bool addTest = true;
5436  SDValue Chain = Op.getOperand(0);
5437  SDValue Cond  = Op.getOperand(1);
5438  SDValue Dest  = Op.getOperand(2);
5439  DebugLoc dl = Op.getDebugLoc();
5440  SDValue CC;
5441
5442  if (Cond.getOpcode() == ISD::SETCC)
5443    Cond = LowerSETCC(Cond, DAG);
5444#if 0
5445  // FIXME: LowerXALUO doesn't handle these!!
5446  else if (Cond.getOpcode() == X86ISD::ADD  ||
5447           Cond.getOpcode() == X86ISD::SUB  ||
5448           Cond.getOpcode() == X86ISD::SMUL ||
5449           Cond.getOpcode() == X86ISD::UMUL)
5450    Cond = LowerXALUO(Cond, DAG);
5451#endif
5452
5453  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5454  // setting operand in place of the X86ISD::SETCC.
5455  if (Cond.getOpcode() == X86ISD::SETCC) {
5456    CC = Cond.getOperand(0);
5457
5458    SDValue Cmp = Cond.getOperand(1);
5459    unsigned Opc = Cmp.getOpcode();
5460    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5461    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
5462      Cond = Cmp;
5463      addTest = false;
5464    } else {
5465      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5466      default: break;
5467      case X86::COND_O:
5468      case X86::COND_B:
5469        // These can only come from an arithmetic instruction with overflow,
5470        // e.g. SADDO, UADDO.
5471        Cond = Cond.getNode()->getOperand(1);
5472        addTest = false;
5473        break;
5474      }
5475    }
5476  } else {
5477    unsigned CondOpc;
5478    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5479      SDValue Cmp = Cond.getOperand(0).getOperand(1);
5480      if (CondOpc == ISD::OR) {
5481        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5482        // two branches instead of an explicit OR instruction with a
5483        // separate test.
5484        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5485            isX86LogicalCmp(Cmp)) {
5486          CC = Cond.getOperand(0).getOperand(0);
5487          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5488                              Chain, Dest, CC, Cmp);
5489          CC = Cond.getOperand(1).getOperand(0);
5490          Cond = Cmp;
5491          addTest = false;
5492        }
5493      } else { // ISD::AND
5494        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5495        // two branches instead of an explicit AND instruction with a
5496        // separate test. However, we only do this if this block doesn't
5497        // have a fall-through edge, because this requires an explicit
5498        // jmp when the condition is false.
5499        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5500            isX86LogicalCmp(Cmp) &&
5501            Op.getNode()->hasOneUse()) {
5502          X86::CondCode CCode =
5503            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5504          CCode = X86::GetOppositeBranchCondition(CCode);
5505          CC = DAG.getConstant(CCode, MVT::i8);
5506          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5507          // Look for an unconditional branch following this conditional branch.
5508          // We need this because we need to reverse the successors in order
5509          // to implement FCMP_OEQ.
5510          if (User.getOpcode() == ISD::BR) {
5511            SDValue FalseBB = User.getOperand(1);
5512            SDValue NewBR =
5513              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5514            assert(NewBR == User);
5515            Dest = FalseBB;
5516
5517            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5518                                Chain, Dest, CC, Cmp);
5519            X86::CondCode CCode =
5520              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5521            CCode = X86::GetOppositeBranchCondition(CCode);
5522            CC = DAG.getConstant(CCode, MVT::i8);
5523            Cond = Cmp;
5524            addTest = false;
5525          }
5526        }
5527      }
5528    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
5529      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5530      // It should be transformed during dag combiner except when the condition
5531      // is set by a arithmetics with overflow node.
5532      X86::CondCode CCode =
5533        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5534      CCode = X86::GetOppositeBranchCondition(CCode);
5535      CC = DAG.getConstant(CCode, MVT::i8);
5536      Cond = Cond.getOperand(0).getOperand(1);
5537      addTest = false;
5538    }
5539  }
5540
5541  if (addTest) {
5542    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5543    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5544  }
5545  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5546                     Chain, Dest, CC, Cond);
5547}
5548
5549
5550// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5551// Calls to _alloca is needed to probe the stack when allocating more than 4k
5552// bytes in one go. Touching the stack at 4K increments is necessary to ensure
5553// that the guard pages used by the OS virtual memory manager are allocated in
5554// correct sequence.
5555SDValue
5556X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5557                                           SelectionDAG &DAG) {
5558  assert(Subtarget->isTargetCygMing() &&
5559         "This should be used only on Cygwin/Mingw targets");
5560  DebugLoc dl = Op.getDebugLoc();
5561
5562  // Get the inputs.
5563  SDValue Chain = Op.getOperand(0);
5564  SDValue Size  = Op.getOperand(1);
5565  // FIXME: Ensure alignment here
5566
5567  SDValue Flag;
5568
5569  MVT IntPtr = getPointerTy();
5570  MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5571
5572  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5573
5574  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
5575  Flag = Chain.getValue(1);
5576
5577  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5578  SDValue Ops[] = { Chain,
5579                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
5580                      DAG.getRegister(X86::EAX, IntPtr),
5581                      DAG.getRegister(X86StackPtr, SPTy),
5582                      Flag };
5583  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
5584  Flag = Chain.getValue(1);
5585
5586  Chain = DAG.getCALLSEQ_END(Chain,
5587                             DAG.getIntPtrConstant(0, true),
5588                             DAG.getIntPtrConstant(0, true),
5589                             Flag);
5590
5591  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
5592
5593  SDValue Ops1[2] = { Chain.getValue(0), Chain };
5594  return DAG.getMergeValues(Ops1, 2, dl);
5595}
5596
5597SDValue
5598X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
5599                                           SDValue Chain,
5600                                           SDValue Dst, SDValue Src,
5601                                           SDValue Size, unsigned Align,
5602                                           const Value *DstSV,
5603                                           uint64_t DstSVOff) {
5604  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5605
5606  // If not DWORD aligned or size is more than the threshold, call the library.
5607  // The libc version is likely to be faster for these cases. It can use the
5608  // address value and run time information about the CPU.
5609  if ((Align & 3) != 0 ||
5610      !ConstantSize ||
5611      ConstantSize->getZExtValue() >
5612        getSubtarget()->getMaxInlineSizeThreshold()) {
5613    SDValue InFlag(0, 0);
5614
5615    // Check to see if there is a specialized entry-point for memory zeroing.
5616    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5617
5618    if (const char *bzeroEntry =  V &&
5619        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5620      MVT IntPtr = getPointerTy();
5621      const Type *IntPtrTy = TD->getIntPtrType();
5622      TargetLowering::ArgListTy Args;
5623      TargetLowering::ArgListEntry Entry;
5624      Entry.Node = Dst;
5625      Entry.Ty = IntPtrTy;
5626      Args.push_back(Entry);
5627      Entry.Node = Size;
5628      Args.push_back(Entry);
5629      std::pair<SDValue,SDValue> CallResult =
5630        LowerCallTo(Chain, Type::VoidTy, false, false, false, false,
5631                    CallingConv::C, false,
5632                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
5633      return CallResult.second;
5634    }
5635
5636    // Otherwise have the target-independent code call memset.
5637    return SDValue();
5638  }
5639
5640  uint64_t SizeVal = ConstantSize->getZExtValue();
5641  SDValue InFlag(0, 0);
5642  MVT AVT;
5643  SDValue Count;
5644  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5645  unsigned BytesLeft = 0;
5646  bool TwoRepStos = false;
5647  if (ValC) {
5648    unsigned ValReg;
5649    uint64_t Val = ValC->getZExtValue() & 255;
5650
5651    // If the value is a constant, then we can potentially use larger sets.
5652    switch (Align & 3) {
5653    case 2:   // WORD aligned
5654      AVT = MVT::i16;
5655      ValReg = X86::AX;
5656      Val = (Val << 8) | Val;
5657      break;
5658    case 0:  // DWORD aligned
5659      AVT = MVT::i32;
5660      ValReg = X86::EAX;
5661      Val = (Val << 8)  | Val;
5662      Val = (Val << 16) | Val;
5663      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
5664        AVT = MVT::i64;
5665        ValReg = X86::RAX;
5666        Val = (Val << 32) | Val;
5667      }
5668      break;
5669    default:  // Byte aligned
5670      AVT = MVT::i8;
5671      ValReg = X86::AL;
5672      Count = DAG.getIntPtrConstant(SizeVal);
5673      break;
5674    }
5675
5676    if (AVT.bitsGT(MVT::i8)) {
5677      unsigned UBytes = AVT.getSizeInBits() / 8;
5678      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5679      BytesLeft = SizeVal % UBytes;
5680    }
5681
5682    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
5683                              InFlag);
5684    InFlag = Chain.getValue(1);
5685  } else {
5686    AVT = MVT::i8;
5687    Count  = DAG.getIntPtrConstant(SizeVal);
5688    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
5689    InFlag = Chain.getValue(1);
5690  }
5691
5692  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
5693                                                              X86::ECX,
5694                            Count, InFlag);
5695  InFlag = Chain.getValue(1);
5696  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
5697                                                              X86::EDI,
5698                            Dst, InFlag);
5699  InFlag = Chain.getValue(1);
5700
5701  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5702  SmallVector<SDValue, 8> Ops;
5703  Ops.push_back(Chain);
5704  Ops.push_back(DAG.getValueType(AVT));
5705  Ops.push_back(InFlag);
5706  Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5707
5708  if (TwoRepStos) {
5709    InFlag = Chain.getValue(1);
5710    Count  = Size;
5711    MVT CVT = Count.getValueType();
5712    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
5713                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
5714    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
5715                                                             X86::ECX,
5716                              Left, InFlag);
5717    InFlag = Chain.getValue(1);
5718    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5719    Ops.clear();
5720    Ops.push_back(Chain);
5721    Ops.push_back(DAG.getValueType(MVT::i8));
5722    Ops.push_back(InFlag);
5723    Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5724  } else if (BytesLeft) {
5725    // Handle the last 1 - 7 bytes.
5726    unsigned Offset = SizeVal - BytesLeft;
5727    MVT AddrVT = Dst.getValueType();
5728    MVT SizeVT = Size.getValueType();
5729
5730    Chain = DAG.getMemset(Chain, dl,
5731                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
5732                                      DAG.getConstant(Offset, AddrVT)),
5733                          Src,
5734                          DAG.getConstant(BytesLeft, SizeVT),
5735                          Align, DstSV, DstSVOff + Offset);
5736  }
5737
5738  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5739  return Chain;
5740}
5741
5742SDValue
5743X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
5744                                      SDValue Chain, SDValue Dst, SDValue Src,
5745                                      SDValue Size, unsigned Align,
5746                                      bool AlwaysInline,
5747                                      const Value *DstSV, uint64_t DstSVOff,
5748                                      const Value *SrcSV, uint64_t SrcSVOff) {
5749  // This requires the copy size to be a constant, preferrably
5750  // within a subtarget-specific limit.
5751  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5752  if (!ConstantSize)
5753    return SDValue();
5754  uint64_t SizeVal = ConstantSize->getZExtValue();
5755  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
5756    return SDValue();
5757
5758  /// If not DWORD aligned, call the library.
5759  if ((Align & 3) != 0)
5760    return SDValue();
5761
5762  // DWORD aligned
5763  MVT AVT = MVT::i32;
5764  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
5765    AVT = MVT::i64;
5766
5767  unsigned UBytes = AVT.getSizeInBits() / 8;
5768  unsigned CountVal = SizeVal / UBytes;
5769  SDValue Count = DAG.getIntPtrConstant(CountVal);
5770  unsigned BytesLeft = SizeVal % UBytes;
5771
5772  SDValue InFlag(0, 0);
5773  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
5774                                                              X86::ECX,
5775                            Count, InFlag);
5776  InFlag = Chain.getValue(1);
5777  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
5778                                                             X86::EDI,
5779                            Dst, InFlag);
5780  InFlag = Chain.getValue(1);
5781  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
5782                                                              X86::ESI,
5783                            Src, InFlag);
5784  InFlag = Chain.getValue(1);
5785
5786  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5787  SmallVector<SDValue, 8> Ops;
5788  Ops.push_back(Chain);
5789  Ops.push_back(DAG.getValueType(AVT));
5790  Ops.push_back(InFlag);
5791  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, &Ops[0], Ops.size());
5792
5793  SmallVector<SDValue, 4> Results;
5794  Results.push_back(RepMovs);
5795  if (BytesLeft) {
5796    // Handle the last 1 - 7 bytes.
5797    unsigned Offset = SizeVal - BytesLeft;
5798    MVT DstVT = Dst.getValueType();
5799    MVT SrcVT = Src.getValueType();
5800    MVT SizeVT = Size.getValueType();
5801    Results.push_back(DAG.getMemcpy(Chain, dl,
5802                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
5803                                                DAG.getConstant(Offset, DstVT)),
5804                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
5805                                                DAG.getConstant(Offset, SrcVT)),
5806                                    DAG.getConstant(BytesLeft, SizeVT),
5807                                    Align, AlwaysInline,
5808                                    DstSV, DstSVOff + Offset,
5809                                    SrcSV, SrcSVOff + Offset));
5810  }
5811
5812  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5813                     &Results[0], Results.size());
5814}
5815
5816SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
5817  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5818  DebugLoc dl = Op.getDebugLoc();
5819
5820  if (!Subtarget->is64Bit()) {
5821    // vastart just stores the address of the VarArgsFrameIndex slot into the
5822    // memory location argument.
5823    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5824    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
5825  }
5826
5827  // __va_list_tag:
5828  //   gp_offset         (0 - 6 * 8)
5829  //   fp_offset         (48 - 48 + 8 * 16)
5830  //   overflow_arg_area (point to parameters coming in memory).
5831  //   reg_save_area
5832  SmallVector<SDValue, 8> MemOps;
5833  SDValue FIN = Op.getOperand(1);
5834  // Store gp_offset
5835  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
5836                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
5837                                 FIN, SV, 0);
5838  MemOps.push_back(Store);
5839
5840  // Store fp_offset
5841  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5842                    FIN, DAG.getIntPtrConstant(4));
5843  Store = DAG.getStore(Op.getOperand(0), dl,
5844                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
5845                       FIN, SV, 0);
5846  MemOps.push_back(Store);
5847
5848  // Store ptr to overflow_arg_area
5849  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5850                    FIN, DAG.getIntPtrConstant(4));
5851  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5852  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0);
5853  MemOps.push_back(Store);
5854
5855  // Store ptr to reg_save_area.
5856  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5857                    FIN, DAG.getIntPtrConstant(8));
5858  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
5859  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0);
5860  MemOps.push_back(Store);
5861  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5862                     &MemOps[0], MemOps.size());
5863}
5864
5865SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
5866  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5867  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
5868  SDValue Chain = Op.getOperand(0);
5869  SDValue SrcPtr = Op.getOperand(1);
5870  SDValue SrcSV = Op.getOperand(2);
5871
5872  assert(0 && "VAArgInst is not yet implemented for x86-64!");
5873  abort();
5874  return SDValue();
5875}
5876
5877SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
5878  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5879  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
5880  SDValue Chain = Op.getOperand(0);
5881  SDValue DstPtr = Op.getOperand(1);
5882  SDValue SrcPtr = Op.getOperand(2);
5883  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
5884  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5885  DebugLoc dl = Op.getDebugLoc();
5886
5887  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
5888                       DAG.getIntPtrConstant(24), 8, false,
5889                       DstSV, 0, SrcSV, 0);
5890}
5891
5892SDValue
5893X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
5894  DebugLoc dl = Op.getDebugLoc();
5895  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5896  switch (IntNo) {
5897  default: return SDValue();    // Don't custom lower most intrinsics.
5898  // Comparison intrinsics.
5899  case Intrinsic::x86_sse_comieq_ss:
5900  case Intrinsic::x86_sse_comilt_ss:
5901  case Intrinsic::x86_sse_comile_ss:
5902  case Intrinsic::x86_sse_comigt_ss:
5903  case Intrinsic::x86_sse_comige_ss:
5904  case Intrinsic::x86_sse_comineq_ss:
5905  case Intrinsic::x86_sse_ucomieq_ss:
5906  case Intrinsic::x86_sse_ucomilt_ss:
5907  case Intrinsic::x86_sse_ucomile_ss:
5908  case Intrinsic::x86_sse_ucomigt_ss:
5909  case Intrinsic::x86_sse_ucomige_ss:
5910  case Intrinsic::x86_sse_ucomineq_ss:
5911  case Intrinsic::x86_sse2_comieq_sd:
5912  case Intrinsic::x86_sse2_comilt_sd:
5913  case Intrinsic::x86_sse2_comile_sd:
5914  case Intrinsic::x86_sse2_comigt_sd:
5915  case Intrinsic::x86_sse2_comige_sd:
5916  case Intrinsic::x86_sse2_comineq_sd:
5917  case Intrinsic::x86_sse2_ucomieq_sd:
5918  case Intrinsic::x86_sse2_ucomilt_sd:
5919  case Intrinsic::x86_sse2_ucomile_sd:
5920  case Intrinsic::x86_sse2_ucomigt_sd:
5921  case Intrinsic::x86_sse2_ucomige_sd:
5922  case Intrinsic::x86_sse2_ucomineq_sd: {
5923    unsigned Opc = 0;
5924    ISD::CondCode CC = ISD::SETCC_INVALID;
5925    switch (IntNo) {
5926    default: break;
5927    case Intrinsic::x86_sse_comieq_ss:
5928    case Intrinsic::x86_sse2_comieq_sd:
5929      Opc = X86ISD::COMI;
5930      CC = ISD::SETEQ;
5931      break;
5932    case Intrinsic::x86_sse_comilt_ss:
5933    case Intrinsic::x86_sse2_comilt_sd:
5934      Opc = X86ISD::COMI;
5935      CC = ISD::SETLT;
5936      break;
5937    case Intrinsic::x86_sse_comile_ss:
5938    case Intrinsic::x86_sse2_comile_sd:
5939      Opc = X86ISD::COMI;
5940      CC = ISD::SETLE;
5941      break;
5942    case Intrinsic::x86_sse_comigt_ss:
5943    case Intrinsic::x86_sse2_comigt_sd:
5944      Opc = X86ISD::COMI;
5945      CC = ISD::SETGT;
5946      break;
5947    case Intrinsic::x86_sse_comige_ss:
5948    case Intrinsic::x86_sse2_comige_sd:
5949      Opc = X86ISD::COMI;
5950      CC = ISD::SETGE;
5951      break;
5952    case Intrinsic::x86_sse_comineq_ss:
5953    case Intrinsic::x86_sse2_comineq_sd:
5954      Opc = X86ISD::COMI;
5955      CC = ISD::SETNE;
5956      break;
5957    case Intrinsic::x86_sse_ucomieq_ss:
5958    case Intrinsic::x86_sse2_ucomieq_sd:
5959      Opc = X86ISD::UCOMI;
5960      CC = ISD::SETEQ;
5961      break;
5962    case Intrinsic::x86_sse_ucomilt_ss:
5963    case Intrinsic::x86_sse2_ucomilt_sd:
5964      Opc = X86ISD::UCOMI;
5965      CC = ISD::SETLT;
5966      break;
5967    case Intrinsic::x86_sse_ucomile_ss:
5968    case Intrinsic::x86_sse2_ucomile_sd:
5969      Opc = X86ISD::UCOMI;
5970      CC = ISD::SETLE;
5971      break;
5972    case Intrinsic::x86_sse_ucomigt_ss:
5973    case Intrinsic::x86_sse2_ucomigt_sd:
5974      Opc = X86ISD::UCOMI;
5975      CC = ISD::SETGT;
5976      break;
5977    case Intrinsic::x86_sse_ucomige_ss:
5978    case Intrinsic::x86_sse2_ucomige_sd:
5979      Opc = X86ISD::UCOMI;
5980      CC = ISD::SETGE;
5981      break;
5982    case Intrinsic::x86_sse_ucomineq_ss:
5983    case Intrinsic::x86_sse2_ucomineq_sd:
5984      Opc = X86ISD::UCOMI;
5985      CC = ISD::SETNE;
5986      break;
5987    }
5988
5989    SDValue LHS = Op.getOperand(1);
5990    SDValue RHS = Op.getOperand(2);
5991    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
5992    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
5993    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5994                                DAG.getConstant(X86CC, MVT::i8), Cond);
5995    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
5996  }
5997
5998  // Fix vector shift instructions where the last operand is a non-immediate
5999  // i32 value.
6000  case Intrinsic::x86_sse2_pslli_w:
6001  case Intrinsic::x86_sse2_pslli_d:
6002  case Intrinsic::x86_sse2_pslli_q:
6003  case Intrinsic::x86_sse2_psrli_w:
6004  case Intrinsic::x86_sse2_psrli_d:
6005  case Intrinsic::x86_sse2_psrli_q:
6006  case Intrinsic::x86_sse2_psrai_w:
6007  case Intrinsic::x86_sse2_psrai_d:
6008  case Intrinsic::x86_mmx_pslli_w:
6009  case Intrinsic::x86_mmx_pslli_d:
6010  case Intrinsic::x86_mmx_pslli_q:
6011  case Intrinsic::x86_mmx_psrli_w:
6012  case Intrinsic::x86_mmx_psrli_d:
6013  case Intrinsic::x86_mmx_psrli_q:
6014  case Intrinsic::x86_mmx_psrai_w:
6015  case Intrinsic::x86_mmx_psrai_d: {
6016    SDValue ShAmt = Op.getOperand(2);
6017    if (isa<ConstantSDNode>(ShAmt))
6018      return SDValue();
6019
6020    unsigned NewIntNo = 0;
6021    MVT ShAmtVT = MVT::v4i32;
6022    switch (IntNo) {
6023    case Intrinsic::x86_sse2_pslli_w:
6024      NewIntNo = Intrinsic::x86_sse2_psll_w;
6025      break;
6026    case Intrinsic::x86_sse2_pslli_d:
6027      NewIntNo = Intrinsic::x86_sse2_psll_d;
6028      break;
6029    case Intrinsic::x86_sse2_pslli_q:
6030      NewIntNo = Intrinsic::x86_sse2_psll_q;
6031      break;
6032    case Intrinsic::x86_sse2_psrli_w:
6033      NewIntNo = Intrinsic::x86_sse2_psrl_w;
6034      break;
6035    case Intrinsic::x86_sse2_psrli_d:
6036      NewIntNo = Intrinsic::x86_sse2_psrl_d;
6037      break;
6038    case Intrinsic::x86_sse2_psrli_q:
6039      NewIntNo = Intrinsic::x86_sse2_psrl_q;
6040      break;
6041    case Intrinsic::x86_sse2_psrai_w:
6042      NewIntNo = Intrinsic::x86_sse2_psra_w;
6043      break;
6044    case Intrinsic::x86_sse2_psrai_d:
6045      NewIntNo = Intrinsic::x86_sse2_psra_d;
6046      break;
6047    default: {
6048      ShAmtVT = MVT::v2i32;
6049      switch (IntNo) {
6050      case Intrinsic::x86_mmx_pslli_w:
6051        NewIntNo = Intrinsic::x86_mmx_psll_w;
6052        break;
6053      case Intrinsic::x86_mmx_pslli_d:
6054        NewIntNo = Intrinsic::x86_mmx_psll_d;
6055        break;
6056      case Intrinsic::x86_mmx_pslli_q:
6057        NewIntNo = Intrinsic::x86_mmx_psll_q;
6058        break;
6059      case Intrinsic::x86_mmx_psrli_w:
6060        NewIntNo = Intrinsic::x86_mmx_psrl_w;
6061        break;
6062      case Intrinsic::x86_mmx_psrli_d:
6063        NewIntNo = Intrinsic::x86_mmx_psrl_d;
6064        break;
6065      case Intrinsic::x86_mmx_psrli_q:
6066        NewIntNo = Intrinsic::x86_mmx_psrl_q;
6067        break;
6068      case Intrinsic::x86_mmx_psrai_w:
6069        NewIntNo = Intrinsic::x86_mmx_psra_w;
6070        break;
6071      case Intrinsic::x86_mmx_psrai_d:
6072        NewIntNo = Intrinsic::x86_mmx_psra_d;
6073        break;
6074      default: abort();  // Can't reach here.
6075      }
6076      break;
6077    }
6078    }
6079    MVT VT = Op.getValueType();
6080    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6081                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShAmtVT, ShAmt));
6082    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6083                       DAG.getConstant(NewIntNo, MVT::i32),
6084                       Op.getOperand(1), ShAmt);
6085  }
6086  }
6087}
6088
6089SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6090  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6091  DebugLoc dl = Op.getDebugLoc();
6092
6093  if (Depth > 0) {
6094    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6095    SDValue Offset =
6096      DAG.getConstant(TD->getPointerSize(),
6097                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6098    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6099                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6100                                   FrameAddr, Offset),
6101                       NULL, 0);
6102  }
6103
6104  // Just load the return address.
6105  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6106  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6107                     RetAddrFI, NULL, 0);
6108}
6109
6110SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6111  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6112  MFI->setFrameAddressIsTaken(true);
6113  MVT VT = Op.getValueType();
6114  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
6115  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6116  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6117  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6118  while (Depth--)
6119    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
6120  return FrameAddr;
6121}
6122
6123SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6124                                                     SelectionDAG &DAG) {
6125  return DAG.getIntPtrConstant(2*TD->getPointerSize());
6126}
6127
6128SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6129{
6130  MachineFunction &MF = DAG.getMachineFunction();
6131  SDValue Chain     = Op.getOperand(0);
6132  SDValue Offset    = Op.getOperand(1);
6133  SDValue Handler   = Op.getOperand(2);
6134  DebugLoc dl       = Op.getDebugLoc();
6135
6136  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6137                                  getPointerTy());
6138  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6139
6140  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6141                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
6142  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
6143  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0);
6144  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
6145  MF.getRegInfo().addLiveOut(StoreAddrReg);
6146
6147  return DAG.getNode(X86ISD::EH_RETURN, dl,
6148                     MVT::Other,
6149                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
6150}
6151
6152SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
6153                                             SelectionDAG &DAG) {
6154  SDValue Root = Op.getOperand(0);
6155  SDValue Trmp = Op.getOperand(1); // trampoline
6156  SDValue FPtr = Op.getOperand(2); // nested function
6157  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
6158  DebugLoc dl  = Op.getDebugLoc();
6159
6160  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6161
6162  const X86InstrInfo *TII =
6163    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
6164
6165  if (Subtarget->is64Bit()) {
6166    SDValue OutChains[6];
6167
6168    // Large code-model.
6169
6170    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
6171    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
6172
6173    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
6174    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
6175
6176    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
6177
6178    // Load the pointer to the nested function into R11.
6179    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
6180    SDValue Addr = Trmp;
6181    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6182                                Addr, TrmpAddr, 0);
6183
6184    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6185                       DAG.getConstant(2, MVT::i64));
6186    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2);
6187
6188    // Load the 'nest' parameter value into R10.
6189    // R10 is specified in X86CallingConv.td
6190    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
6191    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6192                       DAG.getConstant(10, MVT::i64));
6193    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6194                                Addr, TrmpAddr, 10);
6195
6196    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6197                       DAG.getConstant(12, MVT::i64));
6198    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2);
6199
6200    // Jump to the nested function.
6201    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
6202    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6203                       DAG.getConstant(20, MVT::i64));
6204    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6205                                Addr, TrmpAddr, 20);
6206
6207    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
6208    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6209                       DAG.getConstant(22, MVT::i64));
6210    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
6211                                TrmpAddr, 22);
6212
6213    SDValue Ops[] =
6214      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
6215    return DAG.getMergeValues(Ops, 2, dl);
6216  } else {
6217    const Function *Func =
6218      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
6219    unsigned CC = Func->getCallingConv();
6220    unsigned NestReg;
6221
6222    switch (CC) {
6223    default:
6224      assert(0 && "Unsupported calling convention");
6225    case CallingConv::C:
6226    case CallingConv::X86_StdCall: {
6227      // Pass 'nest' parameter in ECX.
6228      // Must be kept in sync with X86CallingConv.td
6229      NestReg = X86::ECX;
6230
6231      // Check that ECX wasn't needed by an 'inreg' parameter.
6232      const FunctionType *FTy = Func->getFunctionType();
6233      const AttrListPtr &Attrs = Func->getAttributes();
6234
6235      if (!Attrs.isEmpty() && !Func->isVarArg()) {
6236        unsigned InRegCount = 0;
6237        unsigned Idx = 1;
6238
6239        for (FunctionType::param_iterator I = FTy->param_begin(),
6240             E = FTy->param_end(); I != E; ++I, ++Idx)
6241          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
6242            // FIXME: should only count parameters that are lowered to integers.
6243            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
6244
6245        if (InRegCount > 2) {
6246          cerr << "Nest register in use - reduce number of inreg parameters!\n";
6247          abort();
6248        }
6249      }
6250      break;
6251    }
6252    case CallingConv::X86_FastCall:
6253    case CallingConv::Fast:
6254      // Pass 'nest' parameter in EAX.
6255      // Must be kept in sync with X86CallingConv.td
6256      NestReg = X86::EAX;
6257      break;
6258    }
6259
6260    SDValue OutChains[4];
6261    SDValue Addr, Disp;
6262
6263    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6264                       DAG.getConstant(10, MVT::i32));
6265    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
6266
6267    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
6268    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
6269    OutChains[0] = DAG.getStore(Root, dl,
6270                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6271                                Trmp, TrmpAddr, 0);
6272
6273    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6274                       DAG.getConstant(1, MVT::i32));
6275    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1);
6276
6277    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6278    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6279                       DAG.getConstant(5, MVT::i32));
6280    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
6281                                TrmpAddr, 5, false, 1);
6282
6283    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6284                       DAG.getConstant(6, MVT::i32));
6285    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1);
6286
6287    SDValue Ops[] =
6288      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
6289    return DAG.getMergeValues(Ops, 2, dl);
6290  }
6291}
6292
6293SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6294  /*
6295   The rounding mode is in bits 11:10 of FPSR, and has the following
6296   settings:
6297     00 Round to nearest
6298     01 Round to -inf
6299     10 Round to +inf
6300     11 Round to 0
6301
6302  FLT_ROUNDS, on the other hand, expects the following:
6303    -1 Undefined
6304     0 Round to 0
6305     1 Round to nearest
6306     2 Round to +inf
6307     3 Round to -inf
6308
6309  To perform the conversion, we do:
6310    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6311  */
6312
6313  MachineFunction &MF = DAG.getMachineFunction();
6314  const TargetMachine &TM = MF.getTarget();
6315  const TargetFrameInfo &TFI = *TM.getFrameInfo();
6316  unsigned StackAlignment = TFI.getStackAlignment();
6317  MVT VT = Op.getValueType();
6318  DebugLoc dl = Op.getDebugLoc();
6319
6320  // Save FP Control Word to stack slot
6321  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
6322  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6323
6324  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
6325                              DAG.getEntryNode(), StackSlot);
6326
6327  // Load FP Control Word from stack slot
6328  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0);
6329
6330  // Transform as necessary
6331  SDValue CWD1 =
6332    DAG.getNode(ISD::SRL, dl, MVT::i16,
6333                DAG.getNode(ISD::AND, dl, MVT::i16,
6334                            CWD, DAG.getConstant(0x800, MVT::i16)),
6335                DAG.getConstant(11, MVT::i8));
6336  SDValue CWD2 =
6337    DAG.getNode(ISD::SRL, dl, MVT::i16,
6338                DAG.getNode(ISD::AND, dl, MVT::i16,
6339                            CWD, DAG.getConstant(0x400, MVT::i16)),
6340                DAG.getConstant(9, MVT::i8));
6341
6342  SDValue RetVal =
6343    DAG.getNode(ISD::AND, dl, MVT::i16,
6344                DAG.getNode(ISD::ADD, dl, MVT::i16,
6345                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
6346                            DAG.getConstant(1, MVT::i16)),
6347                DAG.getConstant(3, MVT::i16));
6348
6349
6350  return DAG.getNode((VT.getSizeInBits() < 16 ?
6351                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6352}
6353
6354SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6355  MVT VT = Op.getValueType();
6356  MVT OpVT = VT;
6357  unsigned NumBits = VT.getSizeInBits();
6358  DebugLoc dl = Op.getDebugLoc();
6359
6360  Op = Op.getOperand(0);
6361  if (VT == MVT::i8) {
6362    // Zero extend to i32 since there is not an i8 bsr.
6363    OpVT = MVT::i32;
6364    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6365  }
6366
6367  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6368  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6369  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
6370
6371  // If src is zero (i.e. bsr sets ZF), returns NumBits.
6372  SmallVector<SDValue, 4> Ops;
6373  Ops.push_back(Op);
6374  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6375  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6376  Ops.push_back(Op.getValue(1));
6377  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6378
6379  // Finally xor with NumBits-1.
6380  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6381
6382  if (VT == MVT::i8)
6383    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6384  return Op;
6385}
6386
6387SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6388  MVT VT = Op.getValueType();
6389  MVT OpVT = VT;
6390  unsigned NumBits = VT.getSizeInBits();
6391  DebugLoc dl = Op.getDebugLoc();
6392
6393  Op = Op.getOperand(0);
6394  if (VT == MVT::i8) {
6395    OpVT = MVT::i32;
6396    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6397  }
6398
6399  // Issue a bsf (scan bits forward) which also sets EFLAGS.
6400  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6401  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
6402
6403  // If src is zero (i.e. bsf sets ZF), returns NumBits.
6404  SmallVector<SDValue, 4> Ops;
6405  Ops.push_back(Op);
6406  Ops.push_back(DAG.getConstant(NumBits, OpVT));
6407  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6408  Ops.push_back(Op.getValue(1));
6409  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6410
6411  if (VT == MVT::i8)
6412    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6413  return Op;
6414}
6415
6416SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6417  MVT VT = Op.getValueType();
6418  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6419  DebugLoc dl = Op.getDebugLoc();
6420
6421  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6422  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6423  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6424  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6425  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6426  //
6427  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6428  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6429  //  return AloBlo + AloBhi + AhiBlo;
6430
6431  SDValue A = Op.getOperand(0);
6432  SDValue B = Op.getOperand(1);
6433
6434  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6435                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6436                       A, DAG.getConstant(32, MVT::i32));
6437  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6438                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6439                       B, DAG.getConstant(32, MVT::i32));
6440  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6441                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6442                       A, B);
6443  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6444                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6445                       A, Bhi);
6446  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6447                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6448                       Ahi, B);
6449  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6450                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6451                       AloBhi, DAG.getConstant(32, MVT::i32));
6452  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6453                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6454                       AhiBlo, DAG.getConstant(32, MVT::i32));
6455  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
6456  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
6457  return Res;
6458}
6459
6460
6461SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6462  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6463  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6464  // looks for this combo and may remove the "setcc" instruction if the "setcc"
6465  // has only one use.
6466  SDNode *N = Op.getNode();
6467  SDValue LHS = N->getOperand(0);
6468  SDValue RHS = N->getOperand(1);
6469  unsigned BaseOp = 0;
6470  unsigned Cond = 0;
6471  DebugLoc dl = Op.getDebugLoc();
6472
6473  switch (Op.getOpcode()) {
6474  default: assert(0 && "Unknown ovf instruction!");
6475  case ISD::SADDO:
6476    // A subtract of one will be selected as a INC. Note that INC doesn't
6477    // set CF, so we can't do this for UADDO.
6478    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6479      if (C->getAPIntValue() == 1) {
6480        BaseOp = X86ISD::INC;
6481        Cond = X86::COND_O;
6482        break;
6483      }
6484    BaseOp = X86ISD::ADD;
6485    Cond = X86::COND_O;
6486    break;
6487  case ISD::UADDO:
6488    BaseOp = X86ISD::ADD;
6489    Cond = X86::COND_B;
6490    break;
6491  case ISD::SSUBO:
6492    // A subtract of one will be selected as a DEC. Note that DEC doesn't
6493    // set CF, so we can't do this for USUBO.
6494    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6495      if (C->getAPIntValue() == 1) {
6496        BaseOp = X86ISD::DEC;
6497        Cond = X86::COND_O;
6498        break;
6499      }
6500    BaseOp = X86ISD::SUB;
6501    Cond = X86::COND_O;
6502    break;
6503  case ISD::USUBO:
6504    BaseOp = X86ISD::SUB;
6505    Cond = X86::COND_B;
6506    break;
6507  case ISD::SMULO:
6508    BaseOp = X86ISD::SMUL;
6509    Cond = X86::COND_O;
6510    break;
6511  case ISD::UMULO:
6512    BaseOp = X86ISD::UMUL;
6513    Cond = X86::COND_B;
6514    break;
6515  }
6516
6517  // Also sets EFLAGS.
6518  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6519  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
6520
6521  SDValue SetCC =
6522    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
6523                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
6524
6525  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
6526  return Sum;
6527}
6528
6529SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6530  MVT T = Op.getValueType();
6531  DebugLoc dl = Op.getDebugLoc();
6532  unsigned Reg = 0;
6533  unsigned size = 0;
6534  switch(T.getSimpleVT()) {
6535  default:
6536    assert(false && "Invalid value type!");
6537  case MVT::i8:  Reg = X86::AL;  size = 1; break;
6538  case MVT::i16: Reg = X86::AX;  size = 2; break;
6539  case MVT::i32: Reg = X86::EAX; size = 4; break;
6540  case MVT::i64:
6541    assert(Subtarget->is64Bit() && "Node not type legal!");
6542    Reg = X86::RAX; size = 8;
6543    break;
6544  }
6545  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
6546                                    Op.getOperand(2), SDValue());
6547  SDValue Ops[] = { cpIn.getValue(0),
6548                    Op.getOperand(1),
6549                    Op.getOperand(3),
6550                    DAG.getTargetConstant(size, MVT::i8),
6551                    cpIn.getValue(1) };
6552  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6553  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
6554  SDValue cpOut =
6555    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
6556  return cpOut;
6557}
6558
6559SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
6560                                                 SelectionDAG &DAG) {
6561  assert(Subtarget->is64Bit() && "Result not type legalized?");
6562  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6563  SDValue TheChain = Op.getOperand(0);
6564  DebugLoc dl = Op.getDebugLoc();
6565  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6566  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
6567  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
6568                                   rax.getValue(2));
6569  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
6570                            DAG.getConstant(32, MVT::i8));
6571  SDValue Ops[] = {
6572    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
6573    rdx.getValue(1)
6574  };
6575  return DAG.getMergeValues(Ops, 2, dl);
6576}
6577
6578SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
6579  SDNode *Node = Op.getNode();
6580  DebugLoc dl = Node->getDebugLoc();
6581  MVT T = Node->getValueType(0);
6582  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
6583                              DAG.getConstant(0, T), Node->getOperand(2));
6584  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
6585                       cast<AtomicSDNode>(Node)->getMemoryVT(),
6586                       Node->getOperand(0),
6587                       Node->getOperand(1), negOp,
6588                       cast<AtomicSDNode>(Node)->getSrcValue(),
6589                       cast<AtomicSDNode>(Node)->getAlignment());
6590}
6591
6592/// LowerOperation - Provide custom lowering hooks for some operations.
6593///
6594SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6595  switch (Op.getOpcode()) {
6596  default: assert(0 && "Should not custom lower this!");
6597  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
6598  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
6599  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
6600  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
6601  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6602  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
6603  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
6604  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
6605  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
6606  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
6607  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
6608  case ISD::SHL_PARTS:
6609  case ISD::SRA_PARTS:
6610  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
6611  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
6612  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
6613  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
6614  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
6615  case ISD::FABS:               return LowerFABS(Op, DAG);
6616  case ISD::FNEG:               return LowerFNEG(Op, DAG);
6617  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
6618  case ISD::SETCC:              return LowerSETCC(Op, DAG);
6619  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
6620  case ISD::SELECT:             return LowerSELECT(Op, DAG);
6621  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
6622  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
6623  case ISD::CALL:               return LowerCALL(Op, DAG);
6624  case ISD::RET:                return LowerRET(Op, DAG);
6625  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
6626  case ISD::VASTART:            return LowerVASTART(Op, DAG);
6627  case ISD::VAARG:              return LowerVAARG(Op, DAG);
6628  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
6629  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6630  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
6631  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
6632  case ISD::FRAME_TO_ARGS_OFFSET:
6633                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
6634  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
6635  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
6636  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
6637  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
6638  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
6639  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
6640  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
6641  case ISD::SADDO:
6642  case ISD::UADDO:
6643  case ISD::SSUBO:
6644  case ISD::USUBO:
6645  case ISD::SMULO:
6646  case ISD::UMULO:              return LowerXALUO(Op, DAG);
6647  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
6648  }
6649}
6650
6651void X86TargetLowering::
6652ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
6653                        SelectionDAG &DAG, unsigned NewOp) {
6654  MVT T = Node->getValueType(0);
6655  DebugLoc dl = Node->getDebugLoc();
6656  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
6657
6658  SDValue Chain = Node->getOperand(0);
6659  SDValue In1 = Node->getOperand(1);
6660  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6661                             Node->getOperand(2), DAG.getIntPtrConstant(0));
6662  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6663                             Node->getOperand(2), DAG.getIntPtrConstant(1));
6664  // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6665  // have a MemOperand.  Pass the info through as a normal operand.
6666  SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
6667  SDValue Ops[] = { Chain, In1, In2L, In2H, LSI };
6668  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6669  SDValue Result = DAG.getNode(NewOp, dl, Tys, Ops, 5);
6670  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
6671  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6672  Results.push_back(Result.getValue(2));
6673}
6674
6675/// ReplaceNodeResults - Replace a node with an illegal result type
6676/// with a new node built out of custom code.
6677void X86TargetLowering::ReplaceNodeResults(SDNode *N,
6678                                           SmallVectorImpl<SDValue>&Results,
6679                                           SelectionDAG &DAG) {
6680  DebugLoc dl = N->getDebugLoc();
6681  switch (N->getOpcode()) {
6682  default:
6683    assert(false && "Do not know how to custom type legalize this operation!");
6684    return;
6685  case ISD::FP_TO_SINT: {
6686    std::pair<SDValue,SDValue> Vals =
6687        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
6688    SDValue FIST = Vals.first, StackSlot = Vals.second;
6689    if (FIST.getNode() != 0) {
6690      MVT VT = N->getValueType(0);
6691      // Return a load from the stack slot.
6692      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0));
6693    }
6694    return;
6695  }
6696  case ISD::READCYCLECOUNTER: {
6697    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6698    SDValue TheChain = N->getOperand(0);
6699    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6700    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
6701                                     rd.getValue(1));
6702    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
6703                                     eax.getValue(2));
6704    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
6705    SDValue Ops[] = { eax, edx };
6706    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
6707    Results.push_back(edx.getValue(1));
6708    return;
6709  }
6710  case ISD::ATOMIC_CMP_SWAP: {
6711    MVT T = N->getValueType(0);
6712    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
6713    SDValue cpInL, cpInH;
6714    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
6715                        DAG.getConstant(0, MVT::i32));
6716    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
6717                        DAG.getConstant(1, MVT::i32));
6718    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
6719    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
6720                             cpInL.getValue(1));
6721    SDValue swapInL, swapInH;
6722    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
6723                          DAG.getConstant(0, MVT::i32));
6724    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
6725                          DAG.getConstant(1, MVT::i32));
6726    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
6727                               cpInH.getValue(1));
6728    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
6729                               swapInL.getValue(1));
6730    SDValue Ops[] = { swapInH.getValue(0),
6731                      N->getOperand(1),
6732                      swapInH.getValue(1) };
6733    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6734    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
6735    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
6736                                        MVT::i32, Result.getValue(1));
6737    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
6738                                        MVT::i32, cpOutL.getValue(2));
6739    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
6740    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6741    Results.push_back(cpOutH.getValue(1));
6742    return;
6743  }
6744  case ISD::ATOMIC_LOAD_ADD:
6745    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
6746    return;
6747  case ISD::ATOMIC_LOAD_AND:
6748    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
6749    return;
6750  case ISD::ATOMIC_LOAD_NAND:
6751    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
6752    return;
6753  case ISD::ATOMIC_LOAD_OR:
6754    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
6755    return;
6756  case ISD::ATOMIC_LOAD_SUB:
6757    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
6758    return;
6759  case ISD::ATOMIC_LOAD_XOR:
6760    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
6761    return;
6762  case ISD::ATOMIC_SWAP:
6763    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
6764    return;
6765  }
6766}
6767
6768const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
6769  switch (Opcode) {
6770  default: return NULL;
6771  case X86ISD::BSF:                return "X86ISD::BSF";
6772  case X86ISD::BSR:                return "X86ISD::BSR";
6773  case X86ISD::SHLD:               return "X86ISD::SHLD";
6774  case X86ISD::SHRD:               return "X86ISD::SHRD";
6775  case X86ISD::FAND:               return "X86ISD::FAND";
6776  case X86ISD::FOR:                return "X86ISD::FOR";
6777  case X86ISD::FXOR:               return "X86ISD::FXOR";
6778  case X86ISD::FSRL:               return "X86ISD::FSRL";
6779  case X86ISD::FILD:               return "X86ISD::FILD";
6780  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
6781  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
6782  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
6783  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
6784  case X86ISD::FLD:                return "X86ISD::FLD";
6785  case X86ISD::FST:                return "X86ISD::FST";
6786  case X86ISD::CALL:               return "X86ISD::CALL";
6787  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
6788  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
6789  case X86ISD::BT:                 return "X86ISD::BT";
6790  case X86ISD::CMP:                return "X86ISD::CMP";
6791  case X86ISD::COMI:               return "X86ISD::COMI";
6792  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
6793  case X86ISD::SETCC:              return "X86ISD::SETCC";
6794  case X86ISD::CMOV:               return "X86ISD::CMOV";
6795  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
6796  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
6797  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
6798  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
6799  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
6800  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
6801  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
6802  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
6803  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
6804  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
6805  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
6806  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
6807  case X86ISD::FMAX:               return "X86ISD::FMAX";
6808  case X86ISD::FMIN:               return "X86ISD::FMIN";
6809  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
6810  case X86ISD::FRCP:               return "X86ISD::FRCP";
6811  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
6812  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
6813  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
6814  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
6815  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
6816  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
6817  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
6818  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
6819  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
6820  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
6821  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
6822  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
6823  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
6824  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
6825  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
6826  case X86ISD::VSHL:               return "X86ISD::VSHL";
6827  case X86ISD::VSRL:               return "X86ISD::VSRL";
6828  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
6829  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
6830  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
6831  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
6832  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
6833  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
6834  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
6835  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
6836  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
6837  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
6838  case X86ISD::ADD:                return "X86ISD::ADD";
6839  case X86ISD::SUB:                return "X86ISD::SUB";
6840  case X86ISD::SMUL:               return "X86ISD::SMUL";
6841  case X86ISD::UMUL:               return "X86ISD::UMUL";
6842  case X86ISD::INC:                return "X86ISD::INC";
6843  case X86ISD::DEC:                return "X86ISD::DEC";
6844  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
6845  }
6846}
6847
6848// isLegalAddressingMode - Return true if the addressing mode represented
6849// by AM is legal for this target, for a load/store of the specified type.
6850bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6851                                              const Type *Ty) const {
6852  // X86 supports extremely general addressing modes.
6853
6854  // X86 allows a sign-extended 32-bit immediate field as a displacement.
6855  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
6856    return false;
6857
6858  if (AM.BaseGV) {
6859    // We can only fold this if we don't need an extra load.
6860    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
6861      return false;
6862    // If BaseGV requires a register, we cannot also have a BaseReg.
6863    if (Subtarget->GVRequiresRegister(AM.BaseGV, getTargetMachine(), false) &&
6864        AM.HasBaseReg)
6865      return false;
6866
6867    // X86-64 only supports addr of globals in small code model.
6868    if (Subtarget->is64Bit()) {
6869      if (getTargetMachine().getCodeModel() != CodeModel::Small)
6870        return false;
6871      // If lower 4G is not available, then we must use rip-relative addressing.
6872      if (AM.BaseOffs || AM.Scale > 1)
6873        return false;
6874    }
6875  }
6876
6877  switch (AM.Scale) {
6878  case 0:
6879  case 1:
6880  case 2:
6881  case 4:
6882  case 8:
6883    // These scales always work.
6884    break;
6885  case 3:
6886  case 5:
6887  case 9:
6888    // These scales are formed with basereg+scalereg.  Only accept if there is
6889    // no basereg yet.
6890    if (AM.HasBaseReg)
6891      return false;
6892    break;
6893  default:  // Other stuff never works.
6894    return false;
6895  }
6896
6897  return true;
6898}
6899
6900
6901bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
6902  if (!Ty1->isInteger() || !Ty2->isInteger())
6903    return false;
6904  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6905  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6906  if (NumBits1 <= NumBits2)
6907    return false;
6908  return Subtarget->is64Bit() || NumBits1 < 64;
6909}
6910
6911bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
6912  if (!VT1.isInteger() || !VT2.isInteger())
6913    return false;
6914  unsigned NumBits1 = VT1.getSizeInBits();
6915  unsigned NumBits2 = VT2.getSizeInBits();
6916  if (NumBits1 <= NumBits2)
6917    return false;
6918  return Subtarget->is64Bit() || NumBits1 < 64;
6919}
6920
6921bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
6922  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
6923  return Ty1 == Type::Int32Ty && Ty2 == Type::Int64Ty && Subtarget->is64Bit();
6924}
6925
6926bool X86TargetLowering::isZExtFree(MVT VT1, MVT VT2) const {
6927  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
6928  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
6929}
6930
6931bool X86TargetLowering::isNarrowingProfitable(MVT VT1, MVT VT2) const {
6932  // i16 instructions are longer (0x66 prefix) and potentially slower.
6933  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
6934}
6935
6936/// isShuffleMaskLegal - Targets can use this to indicate that they only
6937/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6938/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6939/// are assumed to be legal.
6940bool
6941X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6942                                      MVT VT) const {
6943  // Only do shuffles on 128-bit vector types for now.
6944  if (VT.getSizeInBits() == 64)
6945    return false;
6946
6947  // FIXME: pshufb, blends, palignr, shifts.
6948  return (VT.getVectorNumElements() == 2 ||
6949          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
6950          isMOVLMask(M, VT) ||
6951          isSHUFPMask(M, VT) ||
6952          isPSHUFDMask(M, VT) ||
6953          isPSHUFHWMask(M, VT) ||
6954          isPSHUFLWMask(M, VT) ||
6955          isUNPCKLMask(M, VT) ||
6956          isUNPCKHMask(M, VT) ||
6957          isUNPCKL_v_undef_Mask(M, VT) ||
6958          isUNPCKH_v_undef_Mask(M, VT));
6959}
6960
6961bool
6962X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
6963                                          MVT VT) const {
6964  unsigned NumElts = VT.getVectorNumElements();
6965  // FIXME: This collection of masks seems suspect.
6966  if (NumElts == 2)
6967    return true;
6968  if (NumElts == 4 && VT.getSizeInBits() == 128) {
6969    return (isMOVLMask(Mask, VT)  ||
6970            isCommutedMOVLMask(Mask, VT, true) ||
6971            isSHUFPMask(Mask, VT) ||
6972            isCommutedSHUFPMask(Mask, VT));
6973  }
6974  return false;
6975}
6976
6977//===----------------------------------------------------------------------===//
6978//                           X86 Scheduler Hooks
6979//===----------------------------------------------------------------------===//
6980
6981// private utility function
6982MachineBasicBlock *
6983X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
6984                                                       MachineBasicBlock *MBB,
6985                                                       unsigned regOpc,
6986                                                       unsigned immOpc,
6987                                                       unsigned LoadOpc,
6988                                                       unsigned CXchgOpc,
6989                                                       unsigned copyOpc,
6990                                                       unsigned notOpc,
6991                                                       unsigned EAXreg,
6992                                                       TargetRegisterClass *RC,
6993                                                       bool invSrc) const {
6994  // For the atomic bitwise operator, we generate
6995  //   thisMBB:
6996  //   newMBB:
6997  //     ld  t1 = [bitinstr.addr]
6998  //     op  t2 = t1, [bitinstr.val]
6999  //     mov EAX = t1
7000  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7001  //     bz  newMBB
7002  //     fallthrough -->nextMBB
7003  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7004  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7005  MachineFunction::iterator MBBIter = MBB;
7006  ++MBBIter;
7007
7008  /// First build the CFG
7009  MachineFunction *F = MBB->getParent();
7010  MachineBasicBlock *thisMBB = MBB;
7011  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7012  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7013  F->insert(MBBIter, newMBB);
7014  F->insert(MBBIter, nextMBB);
7015
7016  // Move all successors to thisMBB to nextMBB
7017  nextMBB->transferSuccessors(thisMBB);
7018
7019  // Update thisMBB to fall through to newMBB
7020  thisMBB->addSuccessor(newMBB);
7021
7022  // newMBB jumps to itself and fall through to nextMBB
7023  newMBB->addSuccessor(nextMBB);
7024  newMBB->addSuccessor(newMBB);
7025
7026  // Insert instructions into newMBB based on incoming instruction
7027  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7028         "unexpected number of operands");
7029  DebugLoc dl = bInstr->getDebugLoc();
7030  MachineOperand& destOper = bInstr->getOperand(0);
7031  MachineOperand* argOpers[2 + X86AddrNumOperands];
7032  int numArgs = bInstr->getNumOperands() - 1;
7033  for (int i=0; i < numArgs; ++i)
7034    argOpers[i] = &bInstr->getOperand(i+1);
7035
7036  // x86 address has 4 operands: base, index, scale, and displacement
7037  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7038  int valArgIndx = lastAddrIndx + 1;
7039
7040  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7041  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7042  for (int i=0; i <= lastAddrIndx; ++i)
7043    (*MIB).addOperand(*argOpers[i]);
7044
7045  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7046  if (invSrc) {
7047    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7048  }
7049  else
7050    tt = t1;
7051
7052  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7053  assert((argOpers[valArgIndx]->isReg() ||
7054          argOpers[valArgIndx]->isImm()) &&
7055         "invalid operand");
7056  if (argOpers[valArgIndx]->isReg())
7057    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7058  else
7059    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7060  MIB.addReg(tt);
7061  (*MIB).addOperand(*argOpers[valArgIndx]);
7062
7063  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7064  MIB.addReg(t1);
7065
7066  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7067  for (int i=0; i <= lastAddrIndx; ++i)
7068    (*MIB).addOperand(*argOpers[i]);
7069  MIB.addReg(t2);
7070  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7071  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7072
7073  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7074  MIB.addReg(EAXreg);
7075
7076  // insert branch
7077  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7078
7079  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7080  return nextMBB;
7081}
7082
7083// private utility function:  64 bit atomics on 32 bit host.
7084MachineBasicBlock *
7085X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7086                                                       MachineBasicBlock *MBB,
7087                                                       unsigned regOpcL,
7088                                                       unsigned regOpcH,
7089                                                       unsigned immOpcL,
7090                                                       unsigned immOpcH,
7091                                                       bool invSrc) const {
7092  // For the atomic bitwise operator, we generate
7093  //   thisMBB (instructions are in pairs, except cmpxchg8b)
7094  //     ld t1,t2 = [bitinstr.addr]
7095  //   newMBB:
7096  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7097  //     op  t5, t6 <- out1, out2, [bitinstr.val]
7098  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
7099  //     mov ECX, EBX <- t5, t6
7100  //     mov EAX, EDX <- t1, t2
7101  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
7102  //     mov t3, t4 <- EAX, EDX
7103  //     bz  newMBB
7104  //     result in out1, out2
7105  //     fallthrough -->nextMBB
7106
7107  const TargetRegisterClass *RC = X86::GR32RegisterClass;
7108  const unsigned LoadOpc = X86::MOV32rm;
7109  const unsigned copyOpc = X86::MOV32rr;
7110  const unsigned NotOpc = X86::NOT32r;
7111  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7112  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7113  MachineFunction::iterator MBBIter = MBB;
7114  ++MBBIter;
7115
7116  /// First build the CFG
7117  MachineFunction *F = MBB->getParent();
7118  MachineBasicBlock *thisMBB = MBB;
7119  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7120  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7121  F->insert(MBBIter, newMBB);
7122  F->insert(MBBIter, nextMBB);
7123
7124  // Move all successors to thisMBB to nextMBB
7125  nextMBB->transferSuccessors(thisMBB);
7126
7127  // Update thisMBB to fall through to newMBB
7128  thisMBB->addSuccessor(newMBB);
7129
7130  // newMBB jumps to itself and fall through to nextMBB
7131  newMBB->addSuccessor(nextMBB);
7132  newMBB->addSuccessor(newMBB);
7133
7134  DebugLoc dl = bInstr->getDebugLoc();
7135  // Insert instructions into newMBB based on incoming instruction
7136  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7137  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
7138         "unexpected number of operands");
7139  MachineOperand& dest1Oper = bInstr->getOperand(0);
7140  MachineOperand& dest2Oper = bInstr->getOperand(1);
7141  MachineOperand* argOpers[2 + X86AddrNumOperands];
7142  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
7143    argOpers[i] = &bInstr->getOperand(i+2);
7144
7145  // x86 address has 4 operands: base, index, scale, and displacement
7146  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7147
7148  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7149  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
7150  for (int i=0; i <= lastAddrIndx; ++i)
7151    (*MIB).addOperand(*argOpers[i]);
7152  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7153  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
7154  // add 4 to displacement.
7155  for (int i=0; i <= lastAddrIndx-2; ++i)
7156    (*MIB).addOperand(*argOpers[i]);
7157  MachineOperand newOp3 = *(argOpers[3]);
7158  if (newOp3.isImm())
7159    newOp3.setImm(newOp3.getImm()+4);
7160  else
7161    newOp3.setOffset(newOp3.getOffset()+4);
7162  (*MIB).addOperand(newOp3);
7163  (*MIB).addOperand(*argOpers[lastAddrIndx]);
7164
7165  // t3/4 are defined later, at the bottom of the loop
7166  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
7167  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
7168  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
7169    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
7170  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
7171    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
7172
7173  unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
7174  unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
7175  if (invSrc) {
7176    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1);
7177    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2);
7178  } else {
7179    tt1 = t1;
7180    tt2 = t2;
7181  }
7182
7183  int valArgIndx = lastAddrIndx + 1;
7184  assert((argOpers[valArgIndx]->isReg() ||
7185          argOpers[valArgIndx]->isImm()) &&
7186         "invalid operand");
7187  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
7188  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
7189  if (argOpers[valArgIndx]->isReg())
7190    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
7191  else
7192    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
7193  if (regOpcL != X86::MOV32rr)
7194    MIB.addReg(tt1);
7195  (*MIB).addOperand(*argOpers[valArgIndx]);
7196  assert(argOpers[valArgIndx + 1]->isReg() ==
7197         argOpers[valArgIndx]->isReg());
7198  assert(argOpers[valArgIndx + 1]->isImm() ==
7199         argOpers[valArgIndx]->isImm());
7200  if (argOpers[valArgIndx + 1]->isReg())
7201    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
7202  else
7203    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
7204  if (regOpcH != X86::MOV32rr)
7205    MIB.addReg(tt2);
7206  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
7207
7208  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
7209  MIB.addReg(t1);
7210  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
7211  MIB.addReg(t2);
7212
7213  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
7214  MIB.addReg(t5);
7215  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
7216  MIB.addReg(t6);
7217
7218  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
7219  for (int i=0; i <= lastAddrIndx; ++i)
7220    (*MIB).addOperand(*argOpers[i]);
7221
7222  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7223  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7224
7225  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
7226  MIB.addReg(X86::EAX);
7227  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
7228  MIB.addReg(X86::EDX);
7229
7230  // insert branch
7231  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7232
7233  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7234  return nextMBB;
7235}
7236
7237// private utility function
7238MachineBasicBlock *
7239X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
7240                                                      MachineBasicBlock *MBB,
7241                                                      unsigned cmovOpc) const {
7242  // For the atomic min/max operator, we generate
7243  //   thisMBB:
7244  //   newMBB:
7245  //     ld t1 = [min/max.addr]
7246  //     mov t2 = [min/max.val]
7247  //     cmp  t1, t2
7248  //     cmov[cond] t2 = t1
7249  //     mov EAX = t1
7250  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7251  //     bz   newMBB
7252  //     fallthrough -->nextMBB
7253  //
7254  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7255  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7256  MachineFunction::iterator MBBIter = MBB;
7257  ++MBBIter;
7258
7259  /// First build the CFG
7260  MachineFunction *F = MBB->getParent();
7261  MachineBasicBlock *thisMBB = MBB;
7262  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7263  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7264  F->insert(MBBIter, newMBB);
7265  F->insert(MBBIter, nextMBB);
7266
7267  // Move all successors to thisMBB to nextMBB
7268  nextMBB->transferSuccessors(thisMBB);
7269
7270  // Update thisMBB to fall through to newMBB
7271  thisMBB->addSuccessor(newMBB);
7272
7273  // newMBB jumps to newMBB and fall through to nextMBB
7274  newMBB->addSuccessor(nextMBB);
7275  newMBB->addSuccessor(newMBB);
7276
7277  DebugLoc dl = mInstr->getDebugLoc();
7278  // Insert instructions into newMBB based on incoming instruction
7279  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7280         "unexpected number of operands");
7281  MachineOperand& destOper = mInstr->getOperand(0);
7282  MachineOperand* argOpers[2 + X86AddrNumOperands];
7283  int numArgs = mInstr->getNumOperands() - 1;
7284  for (int i=0; i < numArgs; ++i)
7285    argOpers[i] = &mInstr->getOperand(i+1);
7286
7287  // x86 address has 4 operands: base, index, scale, and displacement
7288  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7289  int valArgIndx = lastAddrIndx + 1;
7290
7291  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7292  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
7293  for (int i=0; i <= lastAddrIndx; ++i)
7294    (*MIB).addOperand(*argOpers[i]);
7295
7296  // We only support register and immediate values
7297  assert((argOpers[valArgIndx]->isReg() ||
7298          argOpers[valArgIndx]->isImm()) &&
7299         "invalid operand");
7300
7301  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7302  if (argOpers[valArgIndx]->isReg())
7303    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7304  else
7305    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7306  (*MIB).addOperand(*argOpers[valArgIndx]);
7307
7308  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
7309  MIB.addReg(t1);
7310
7311  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
7312  MIB.addReg(t1);
7313  MIB.addReg(t2);
7314
7315  // Generate movc
7316  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7317  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
7318  MIB.addReg(t2);
7319  MIB.addReg(t1);
7320
7321  // Cmp and exchange if none has modified the memory location
7322  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
7323  for (int i=0; i <= lastAddrIndx; ++i)
7324    (*MIB).addOperand(*argOpers[i]);
7325  MIB.addReg(t3);
7326  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7327  (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
7328
7329  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
7330  MIB.addReg(X86::EAX);
7331
7332  // insert branch
7333  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7334
7335  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
7336  return nextMBB;
7337}
7338
7339
7340MachineBasicBlock *
7341X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7342                                               MachineBasicBlock *BB) const {
7343  DebugLoc dl = MI->getDebugLoc();
7344  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7345  switch (MI->getOpcode()) {
7346  default: assert(false && "Unexpected instr type to insert");
7347  case X86::CMOV_V1I64:
7348  case X86::CMOV_FR32:
7349  case X86::CMOV_FR64:
7350  case X86::CMOV_V4F32:
7351  case X86::CMOV_V2F64:
7352  case X86::CMOV_V2I64: {
7353    // To "insert" a SELECT_CC instruction, we actually have to insert the
7354    // diamond control-flow pattern.  The incoming instruction knows the
7355    // destination vreg to set, the condition code register to branch on, the
7356    // true/false values to select between, and a branch opcode to use.
7357    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7358    MachineFunction::iterator It = BB;
7359    ++It;
7360
7361    //  thisMBB:
7362    //  ...
7363    //   TrueVal = ...
7364    //   cmpTY ccX, r1, r2
7365    //   bCC copy1MBB
7366    //   fallthrough --> copy0MBB
7367    MachineBasicBlock *thisMBB = BB;
7368    MachineFunction *F = BB->getParent();
7369    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7370    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7371    unsigned Opc =
7372      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7373    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
7374    F->insert(It, copy0MBB);
7375    F->insert(It, sinkMBB);
7376    // Update machine-CFG edges by transferring all successors of the current
7377    // block to the new block which will contain the Phi node for the select.
7378    sinkMBB->transferSuccessors(BB);
7379
7380    // Add the true and fallthrough blocks as its successors.
7381    BB->addSuccessor(copy0MBB);
7382    BB->addSuccessor(sinkMBB);
7383
7384    //  copy0MBB:
7385    //   %FalseValue = ...
7386    //   # fallthrough to sinkMBB
7387    BB = copy0MBB;
7388
7389    // Update machine-CFG edges
7390    BB->addSuccessor(sinkMBB);
7391
7392    //  sinkMBB:
7393    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7394    //  ...
7395    BB = sinkMBB;
7396    BuildMI(BB, dl, TII->get(X86::PHI), MI->getOperand(0).getReg())
7397      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7398      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7399
7400    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7401    return BB;
7402  }
7403
7404  case X86::FP32_TO_INT16_IN_MEM:
7405  case X86::FP32_TO_INT32_IN_MEM:
7406  case X86::FP32_TO_INT64_IN_MEM:
7407  case X86::FP64_TO_INT16_IN_MEM:
7408  case X86::FP64_TO_INT32_IN_MEM:
7409  case X86::FP64_TO_INT64_IN_MEM:
7410  case X86::FP80_TO_INT16_IN_MEM:
7411  case X86::FP80_TO_INT32_IN_MEM:
7412  case X86::FP80_TO_INT64_IN_MEM: {
7413    // Change the floating point control register to use "round towards zero"
7414    // mode when truncating to an integer value.
7415    MachineFunction *F = BB->getParent();
7416    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
7417    addFrameReference(BuildMI(BB, dl, TII->get(X86::FNSTCW16m)), CWFrameIdx);
7418
7419    // Load the old value of the high byte of the control word...
7420    unsigned OldCW =
7421      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
7422    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16rm), OldCW),
7423                      CWFrameIdx);
7424
7425    // Set the high part to be round to zero...
7426    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mi)), CWFrameIdx)
7427      .addImm(0xC7F);
7428
7429    // Reload the modified control word now...
7430    addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7431
7432    // Restore the memory image of control word to original value
7433    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mr)), CWFrameIdx)
7434      .addReg(OldCW);
7435
7436    // Get the X86 opcode to use.
7437    unsigned Opc;
7438    switch (MI->getOpcode()) {
7439    default: assert(0 && "illegal opcode!");
7440    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
7441    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
7442    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
7443    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
7444    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
7445    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
7446    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
7447    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
7448    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
7449    }
7450
7451    X86AddressMode AM;
7452    MachineOperand &Op = MI->getOperand(0);
7453    if (Op.isReg()) {
7454      AM.BaseType = X86AddressMode::RegBase;
7455      AM.Base.Reg = Op.getReg();
7456    } else {
7457      AM.BaseType = X86AddressMode::FrameIndexBase;
7458      AM.Base.FrameIndex = Op.getIndex();
7459    }
7460    Op = MI->getOperand(1);
7461    if (Op.isImm())
7462      AM.Scale = Op.getImm();
7463    Op = MI->getOperand(2);
7464    if (Op.isImm())
7465      AM.IndexReg = Op.getImm();
7466    Op = MI->getOperand(3);
7467    if (Op.isGlobal()) {
7468      AM.GV = Op.getGlobal();
7469    } else {
7470      AM.Disp = Op.getImm();
7471    }
7472    addFullAddress(BuildMI(BB, dl, TII->get(Opc)), AM)
7473                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
7474
7475    // Reload the original control word now.
7476    addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7477
7478    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7479    return BB;
7480  }
7481  case X86::ATOMAND32:
7482    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7483                                               X86::AND32ri, X86::MOV32rm,
7484                                               X86::LCMPXCHG32, X86::MOV32rr,
7485                                               X86::NOT32r, X86::EAX,
7486                                               X86::GR32RegisterClass);
7487  case X86::ATOMOR32:
7488    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
7489                                               X86::OR32ri, X86::MOV32rm,
7490                                               X86::LCMPXCHG32, X86::MOV32rr,
7491                                               X86::NOT32r, X86::EAX,
7492                                               X86::GR32RegisterClass);
7493  case X86::ATOMXOR32:
7494    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
7495                                               X86::XOR32ri, X86::MOV32rm,
7496                                               X86::LCMPXCHG32, X86::MOV32rr,
7497                                               X86::NOT32r, X86::EAX,
7498                                               X86::GR32RegisterClass);
7499  case X86::ATOMNAND32:
7500    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7501                                               X86::AND32ri, X86::MOV32rm,
7502                                               X86::LCMPXCHG32, X86::MOV32rr,
7503                                               X86::NOT32r, X86::EAX,
7504                                               X86::GR32RegisterClass, true);
7505  case X86::ATOMMIN32:
7506    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
7507  case X86::ATOMMAX32:
7508    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
7509  case X86::ATOMUMIN32:
7510    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
7511  case X86::ATOMUMAX32:
7512    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
7513
7514  case X86::ATOMAND16:
7515    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7516                                               X86::AND16ri, X86::MOV16rm,
7517                                               X86::LCMPXCHG16, X86::MOV16rr,
7518                                               X86::NOT16r, X86::AX,
7519                                               X86::GR16RegisterClass);
7520  case X86::ATOMOR16:
7521    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
7522                                               X86::OR16ri, X86::MOV16rm,
7523                                               X86::LCMPXCHG16, X86::MOV16rr,
7524                                               X86::NOT16r, X86::AX,
7525                                               X86::GR16RegisterClass);
7526  case X86::ATOMXOR16:
7527    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
7528                                               X86::XOR16ri, X86::MOV16rm,
7529                                               X86::LCMPXCHG16, X86::MOV16rr,
7530                                               X86::NOT16r, X86::AX,
7531                                               X86::GR16RegisterClass);
7532  case X86::ATOMNAND16:
7533    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7534                                               X86::AND16ri, X86::MOV16rm,
7535                                               X86::LCMPXCHG16, X86::MOV16rr,
7536                                               X86::NOT16r, X86::AX,
7537                                               X86::GR16RegisterClass, true);
7538  case X86::ATOMMIN16:
7539    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
7540  case X86::ATOMMAX16:
7541    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
7542  case X86::ATOMUMIN16:
7543    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
7544  case X86::ATOMUMAX16:
7545    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
7546
7547  case X86::ATOMAND8:
7548    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7549                                               X86::AND8ri, X86::MOV8rm,
7550                                               X86::LCMPXCHG8, X86::MOV8rr,
7551                                               X86::NOT8r, X86::AL,
7552                                               X86::GR8RegisterClass);
7553  case X86::ATOMOR8:
7554    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
7555                                               X86::OR8ri, X86::MOV8rm,
7556                                               X86::LCMPXCHG8, X86::MOV8rr,
7557                                               X86::NOT8r, X86::AL,
7558                                               X86::GR8RegisterClass);
7559  case X86::ATOMXOR8:
7560    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
7561                                               X86::XOR8ri, X86::MOV8rm,
7562                                               X86::LCMPXCHG8, X86::MOV8rr,
7563                                               X86::NOT8r, X86::AL,
7564                                               X86::GR8RegisterClass);
7565  case X86::ATOMNAND8:
7566    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7567                                               X86::AND8ri, X86::MOV8rm,
7568                                               X86::LCMPXCHG8, X86::MOV8rr,
7569                                               X86::NOT8r, X86::AL,
7570                                               X86::GR8RegisterClass, true);
7571  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7572  // This group is for 64-bit host.
7573  case X86::ATOMAND64:
7574    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7575                                               X86::AND64ri32, X86::MOV64rm,
7576                                               X86::LCMPXCHG64, X86::MOV64rr,
7577                                               X86::NOT64r, X86::RAX,
7578                                               X86::GR64RegisterClass);
7579  case X86::ATOMOR64:
7580    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
7581                                               X86::OR64ri32, X86::MOV64rm,
7582                                               X86::LCMPXCHG64, X86::MOV64rr,
7583                                               X86::NOT64r, X86::RAX,
7584                                               X86::GR64RegisterClass);
7585  case X86::ATOMXOR64:
7586    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
7587                                               X86::XOR64ri32, X86::MOV64rm,
7588                                               X86::LCMPXCHG64, X86::MOV64rr,
7589                                               X86::NOT64r, X86::RAX,
7590                                               X86::GR64RegisterClass);
7591  case X86::ATOMNAND64:
7592    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7593                                               X86::AND64ri32, X86::MOV64rm,
7594                                               X86::LCMPXCHG64, X86::MOV64rr,
7595                                               X86::NOT64r, X86::RAX,
7596                                               X86::GR64RegisterClass, true);
7597  case X86::ATOMMIN64:
7598    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
7599  case X86::ATOMMAX64:
7600    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
7601  case X86::ATOMUMIN64:
7602    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
7603  case X86::ATOMUMAX64:
7604    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
7605
7606  // This group does 64-bit operations on a 32-bit host.
7607  case X86::ATOMAND6432:
7608    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7609                                               X86::AND32rr, X86::AND32rr,
7610                                               X86::AND32ri, X86::AND32ri,
7611                                               false);
7612  case X86::ATOMOR6432:
7613    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7614                                               X86::OR32rr, X86::OR32rr,
7615                                               X86::OR32ri, X86::OR32ri,
7616                                               false);
7617  case X86::ATOMXOR6432:
7618    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7619                                               X86::XOR32rr, X86::XOR32rr,
7620                                               X86::XOR32ri, X86::XOR32ri,
7621                                               false);
7622  case X86::ATOMNAND6432:
7623    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7624                                               X86::AND32rr, X86::AND32rr,
7625                                               X86::AND32ri, X86::AND32ri,
7626                                               true);
7627  case X86::ATOMADD6432:
7628    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7629                                               X86::ADD32rr, X86::ADC32rr,
7630                                               X86::ADD32ri, X86::ADC32ri,
7631                                               false);
7632  case X86::ATOMSUB6432:
7633    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7634                                               X86::SUB32rr, X86::SBB32rr,
7635                                               X86::SUB32ri, X86::SBB32ri,
7636                                               false);
7637  case X86::ATOMSWAP6432:
7638    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7639                                               X86::MOV32rr, X86::MOV32rr,
7640                                               X86::MOV32ri, X86::MOV32ri,
7641                                               false);
7642  }
7643}
7644
7645//===----------------------------------------------------------------------===//
7646//                           X86 Optimization Hooks
7647//===----------------------------------------------------------------------===//
7648
7649void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7650                                                       const APInt &Mask,
7651                                                       APInt &KnownZero,
7652                                                       APInt &KnownOne,
7653                                                       const SelectionDAG &DAG,
7654                                                       unsigned Depth) const {
7655  unsigned Opc = Op.getOpcode();
7656  assert((Opc >= ISD::BUILTIN_OP_END ||
7657          Opc == ISD::INTRINSIC_WO_CHAIN ||
7658          Opc == ISD::INTRINSIC_W_CHAIN ||
7659          Opc == ISD::INTRINSIC_VOID) &&
7660         "Should use MaskedValueIsZero if you don't know whether Op"
7661         " is a target node!");
7662
7663  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
7664  switch (Opc) {
7665  default: break;
7666  case X86ISD::ADD:
7667  case X86ISD::SUB:
7668  case X86ISD::SMUL:
7669  case X86ISD::UMUL:
7670  case X86ISD::INC:
7671  case X86ISD::DEC:
7672    // These nodes' second result is a boolean.
7673    if (Op.getResNo() == 0)
7674      break;
7675    // Fallthrough
7676  case X86ISD::SETCC:
7677    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
7678                                       Mask.getBitWidth() - 1);
7679    break;
7680  }
7681}
7682
7683/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
7684/// node is a GlobalAddress + offset.
7685bool X86TargetLowering::isGAPlusOffset(SDNode *N,
7686                                       GlobalValue* &GA, int64_t &Offset) const{
7687  if (N->getOpcode() == X86ISD::Wrapper) {
7688    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
7689      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
7690      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
7691      return true;
7692    }
7693  }
7694  return TargetLowering::isGAPlusOffset(N, GA, Offset);
7695}
7696
7697static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
7698                               const TargetLowering &TLI) {
7699  GlobalValue *GV;
7700  int64_t Offset = 0;
7701  if (TLI.isGAPlusOffset(Base, GV, Offset))
7702    return (GV->getAlignment() >= N && (Offset % N) == 0);
7703  // DAG combine handles the stack object case.
7704  return false;
7705}
7706
7707static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
7708                                     MVT EVT, LoadSDNode *&LDBase,
7709                                     unsigned &LastLoadedElt,
7710                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
7711                                     const TargetLowering &TLI) {
7712  LDBase = NULL;
7713  LastLoadedElt = -1U;
7714  for (unsigned i = 0; i < NumElems; ++i) {
7715    if (N->getMaskElt(i) < 0) {
7716      if (!LDBase)
7717        return false;
7718      continue;
7719    }
7720
7721    SDValue Elt = DAG.getShuffleScalarElt(N, i);
7722    if (!Elt.getNode() ||
7723        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
7724      return false;
7725    if (!LDBase) {
7726      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
7727        return false;
7728      LDBase = cast<LoadSDNode>(Elt.getNode());
7729      LastLoadedElt = i;
7730      continue;
7731    }
7732    if (Elt.getOpcode() == ISD::UNDEF)
7733      continue;
7734
7735    LoadSDNode *LD = cast<LoadSDNode>(Elt);
7736    if (!TLI.isConsecutiveLoad(LD, LDBase, EVT.getSizeInBits()/8, i, MFI))
7737      return false;
7738    LastLoadedElt = i;
7739  }
7740  return true;
7741}
7742
7743/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
7744/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
7745/// if the load addresses are consecutive, non-overlapping, and in the right
7746/// order.  In the case of v2i64, it will see if it can rewrite the
7747/// shuffle to be an appropriate build vector so it can take advantage of
7748// performBuildVectorCombine.
7749static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
7750                                     const TargetLowering &TLI) {
7751  DebugLoc dl = N->getDebugLoc();
7752  MVT VT = N->getValueType(0);
7753  MVT EVT = VT.getVectorElementType();
7754  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7755  unsigned NumElems = VT.getVectorNumElements();
7756
7757  if (VT.getSizeInBits() != 128)
7758    return SDValue();
7759
7760  // Try to combine a vector_shuffle into a 128-bit load.
7761  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7762  LoadSDNode *LD = NULL;
7763  unsigned LastLoadedElt;
7764  if (!EltsFromConsecutiveLoads(SVN, NumElems, EVT, LD, LastLoadedElt, DAG,
7765                                MFI, TLI))
7766    return SDValue();
7767
7768  if (LastLoadedElt == NumElems - 1) {
7769    if (isBaseAlignmentOfN(16, LD->getBasePtr().getNode(), TLI))
7770      return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
7771                         LD->getSrcValue(), LD->getSrcValueOffset(),
7772                         LD->isVolatile());
7773    return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
7774                       LD->getSrcValue(), LD->getSrcValueOffset(),
7775                       LD->isVolatile(), LD->getAlignment());
7776  } else if (NumElems == 4 && LastLoadedElt == 1) {
7777    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
7778    SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
7779    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
7780    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
7781  }
7782  return SDValue();
7783}
7784
7785/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
7786static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
7787                                    const X86Subtarget *Subtarget) {
7788  DebugLoc DL = N->getDebugLoc();
7789  SDValue Cond = N->getOperand(0);
7790  // Get the LHS/RHS of the select.
7791  SDValue LHS = N->getOperand(1);
7792  SDValue RHS = N->getOperand(2);
7793
7794  // If we have SSE[12] support, try to form min/max nodes.
7795  if (Subtarget->hasSSE2() &&
7796      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
7797      Cond.getOpcode() == ISD::SETCC) {
7798    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
7799
7800    unsigned Opcode = 0;
7801    if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
7802      switch (CC) {
7803      default: break;
7804      case ISD::SETOLE: // (X <= Y) ? X : Y -> min
7805      case ISD::SETULE:
7806      case ISD::SETLE:
7807        if (!UnsafeFPMath) break;
7808        // FALL THROUGH.
7809      case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
7810      case ISD::SETLT:
7811        Opcode = X86ISD::FMIN;
7812        break;
7813
7814      case ISD::SETOGT: // (X > Y) ? X : Y -> max
7815      case ISD::SETUGT:
7816      case ISD::SETGT:
7817        if (!UnsafeFPMath) break;
7818        // FALL THROUGH.
7819      case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
7820      case ISD::SETGE:
7821        Opcode = X86ISD::FMAX;
7822        break;
7823      }
7824    } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
7825      switch (CC) {
7826      default: break;
7827      case ISD::SETOGT: // (X > Y) ? Y : X -> min
7828      case ISD::SETUGT:
7829      case ISD::SETGT:
7830        if (!UnsafeFPMath) break;
7831        // FALL THROUGH.
7832      case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
7833      case ISD::SETGE:
7834        Opcode = X86ISD::FMIN;
7835        break;
7836
7837      case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
7838      case ISD::SETULE:
7839      case ISD::SETLE:
7840        if (!UnsafeFPMath) break;
7841        // FALL THROUGH.
7842      case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
7843      case ISD::SETLT:
7844        Opcode = X86ISD::FMAX;
7845        break;
7846      }
7847    }
7848
7849    if (Opcode)
7850      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
7851  }
7852
7853  // If this is a select between two integer constants, try to do some
7854  // optimizations.
7855  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
7856    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
7857      // Don't do this for crazy integer types.
7858      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
7859        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
7860        // so that TrueC (the true value) is larger than FalseC.
7861        bool NeedsCondInvert = false;
7862
7863        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
7864            // Efficiently invertible.
7865            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
7866             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
7867              isa<ConstantSDNode>(Cond.getOperand(1))))) {
7868          NeedsCondInvert = true;
7869          std::swap(TrueC, FalseC);
7870        }
7871
7872        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
7873        if (FalseC->getAPIntValue() == 0 &&
7874            TrueC->getAPIntValue().isPowerOf2()) {
7875          if (NeedsCondInvert) // Invert the condition if needed.
7876            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
7877                               DAG.getConstant(1, Cond.getValueType()));
7878
7879          // Zero extend the condition if needed.
7880          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
7881
7882          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
7883          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
7884                             DAG.getConstant(ShAmt, MVT::i8));
7885        }
7886
7887        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
7888        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
7889          if (NeedsCondInvert) // Invert the condition if needed.
7890            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
7891                               DAG.getConstant(1, Cond.getValueType()));
7892
7893          // Zero extend the condition if needed.
7894          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
7895                             FalseC->getValueType(0), Cond);
7896          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
7897                             SDValue(FalseC, 0));
7898        }
7899
7900        // Optimize cases that will turn into an LEA instruction.  This requires
7901        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
7902        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
7903          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
7904          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
7905
7906          bool isFastMultiplier = false;
7907          if (Diff < 10) {
7908            switch ((unsigned char)Diff) {
7909              default: break;
7910              case 1:  // result = add base, cond
7911              case 2:  // result = lea base(    , cond*2)
7912              case 3:  // result = lea base(cond, cond*2)
7913              case 4:  // result = lea base(    , cond*4)
7914              case 5:  // result = lea base(cond, cond*4)
7915              case 8:  // result = lea base(    , cond*8)
7916              case 9:  // result = lea base(cond, cond*8)
7917                isFastMultiplier = true;
7918                break;
7919            }
7920          }
7921
7922          if (isFastMultiplier) {
7923            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
7924            if (NeedsCondInvert) // Invert the condition if needed.
7925              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
7926                                 DAG.getConstant(1, Cond.getValueType()));
7927
7928            // Zero extend the condition if needed.
7929            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
7930                               Cond);
7931            // Scale the condition by the difference.
7932            if (Diff != 1)
7933              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
7934                                 DAG.getConstant(Diff, Cond.getValueType()));
7935
7936            // Add the base if non-zero.
7937            if (FalseC->getAPIntValue() != 0)
7938              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
7939                                 SDValue(FalseC, 0));
7940            return Cond;
7941          }
7942        }
7943      }
7944  }
7945
7946  return SDValue();
7947}
7948
7949/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
7950static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
7951                                  TargetLowering::DAGCombinerInfo &DCI) {
7952  DebugLoc DL = N->getDebugLoc();
7953
7954  // If the flag operand isn't dead, don't touch this CMOV.
7955  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
7956    return SDValue();
7957
7958  // If this is a select between two integer constants, try to do some
7959  // optimizations.  Note that the operands are ordered the opposite of SELECT
7960  // operands.
7961  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
7962    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
7963      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
7964      // larger than FalseC (the false value).
7965      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
7966
7967      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
7968        CC = X86::GetOppositeBranchCondition(CC);
7969        std::swap(TrueC, FalseC);
7970      }
7971
7972      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
7973      // This is efficient for any integer data type (including i8/i16) and
7974      // shift amount.
7975      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
7976        SDValue Cond = N->getOperand(3);
7977        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
7978                           DAG.getConstant(CC, MVT::i8), Cond);
7979
7980        // Zero extend the condition if needed.
7981        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
7982
7983        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
7984        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
7985                           DAG.getConstant(ShAmt, MVT::i8));
7986        if (N->getNumValues() == 2)  // Dead flag value?
7987          return DCI.CombineTo(N, Cond, SDValue());
7988        return Cond;
7989      }
7990
7991      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
7992      // for any integer data type, including i8/i16.
7993      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
7994        SDValue Cond = N->getOperand(3);
7995        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
7996                           DAG.getConstant(CC, MVT::i8), Cond);
7997
7998        // Zero extend the condition if needed.
7999        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8000                           FalseC->getValueType(0), Cond);
8001        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8002                           SDValue(FalseC, 0));
8003
8004        if (N->getNumValues() == 2)  // Dead flag value?
8005          return DCI.CombineTo(N, Cond, SDValue());
8006        return Cond;
8007      }
8008
8009      // Optimize cases that will turn into an LEA instruction.  This requires
8010      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8011      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8012        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8013        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8014
8015        bool isFastMultiplier = false;
8016        if (Diff < 10) {
8017          switch ((unsigned char)Diff) {
8018          default: break;
8019          case 1:  // result = add base, cond
8020          case 2:  // result = lea base(    , cond*2)
8021          case 3:  // result = lea base(cond, cond*2)
8022          case 4:  // result = lea base(    , cond*4)
8023          case 5:  // result = lea base(cond, cond*4)
8024          case 8:  // result = lea base(    , cond*8)
8025          case 9:  // result = lea base(cond, cond*8)
8026            isFastMultiplier = true;
8027            break;
8028          }
8029        }
8030
8031        if (isFastMultiplier) {
8032          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8033          SDValue Cond = N->getOperand(3);
8034          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8035                             DAG.getConstant(CC, MVT::i8), Cond);
8036          // Zero extend the condition if needed.
8037          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8038                             Cond);
8039          // Scale the condition by the difference.
8040          if (Diff != 1)
8041            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8042                               DAG.getConstant(Diff, Cond.getValueType()));
8043
8044          // Add the base if non-zero.
8045          if (FalseC->getAPIntValue() != 0)
8046            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8047                               SDValue(FalseC, 0));
8048          if (N->getNumValues() == 2)  // Dead flag value?
8049            return DCI.CombineTo(N, Cond, SDValue());
8050          return Cond;
8051        }
8052      }
8053    }
8054  }
8055  return SDValue();
8056}
8057
8058
8059/// PerformMulCombine - Optimize a single multiply with constant into two
8060/// in order to implement it with two cheaper instructions, e.g.
8061/// LEA + SHL, LEA + LEA.
8062static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
8063                                 TargetLowering::DAGCombinerInfo &DCI) {
8064  if (DAG.getMachineFunction().
8065      getFunction()->hasFnAttr(Attribute::OptimizeForSize))
8066    return SDValue();
8067
8068  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8069    return SDValue();
8070
8071  MVT VT = N->getValueType(0);
8072  if (VT != MVT::i64)
8073    return SDValue();
8074
8075  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8076  if (!C)
8077    return SDValue();
8078  uint64_t MulAmt = C->getZExtValue();
8079  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
8080    return SDValue();
8081
8082  uint64_t MulAmt1 = 0;
8083  uint64_t MulAmt2 = 0;
8084  if ((MulAmt % 9) == 0) {
8085    MulAmt1 = 9;
8086    MulAmt2 = MulAmt / 9;
8087  } else if ((MulAmt % 5) == 0) {
8088    MulAmt1 = 5;
8089    MulAmt2 = MulAmt / 5;
8090  } else if ((MulAmt % 3) == 0) {
8091    MulAmt1 = 3;
8092    MulAmt2 = MulAmt / 3;
8093  }
8094  if (MulAmt2 &&
8095      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
8096    DebugLoc DL = N->getDebugLoc();
8097
8098    if (isPowerOf2_64(MulAmt2) &&
8099        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
8100      // If second multiplifer is pow2, issue it first. We want the multiply by
8101      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
8102      // is an add.
8103      std::swap(MulAmt1, MulAmt2);
8104
8105    SDValue NewMul;
8106    if (isPowerOf2_64(MulAmt1))
8107      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
8108                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
8109    else
8110      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
8111                           DAG.getConstant(MulAmt1, VT));
8112
8113    if (isPowerOf2_64(MulAmt2))
8114      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
8115                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
8116    else
8117      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
8118                           DAG.getConstant(MulAmt2, VT));
8119
8120    // Do not add new nodes to DAG combiner worklist.
8121    DCI.CombineTo(N, NewMul, false);
8122  }
8123  return SDValue();
8124}
8125
8126
8127/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8128///                       when possible.
8129static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
8130                                   const X86Subtarget *Subtarget) {
8131  // On X86 with SSE2 support, we can transform this to a vector shift if
8132  // all elements are shifted by the same amount.  We can't do this in legalize
8133  // because the a constant vector is typically transformed to a constant pool
8134  // so we have no knowledge of the shift amount.
8135  if (!Subtarget->hasSSE2())
8136    return SDValue();
8137
8138  MVT VT = N->getValueType(0);
8139  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
8140    return SDValue();
8141
8142  SDValue ShAmtOp = N->getOperand(1);
8143  MVT EltVT = VT.getVectorElementType();
8144  DebugLoc DL = N->getDebugLoc();
8145  SDValue BaseShAmt;
8146  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
8147    unsigned NumElts = VT.getVectorNumElements();
8148    unsigned i = 0;
8149    for (; i != NumElts; ++i) {
8150      SDValue Arg = ShAmtOp.getOperand(i);
8151      if (Arg.getOpcode() == ISD::UNDEF) continue;
8152      BaseShAmt = Arg;
8153      break;
8154    }
8155    for (; i != NumElts; ++i) {
8156      SDValue Arg = ShAmtOp.getOperand(i);
8157      if (Arg.getOpcode() == ISD::UNDEF) continue;
8158      if (Arg != BaseShAmt) {
8159        return SDValue();
8160      }
8161    }
8162  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
8163             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
8164    BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
8165                            DAG.getIntPtrConstant(0));
8166  } else
8167    return SDValue();
8168
8169  if (EltVT.bitsGT(MVT::i32))
8170    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
8171  else if (EltVT.bitsLT(MVT::i32))
8172    BaseShAmt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, BaseShAmt);
8173
8174  // The shift amount is identical so we can do a vector shift.
8175  SDValue  ValOp = N->getOperand(0);
8176  switch (N->getOpcode()) {
8177  default:
8178    assert(0 && "Unknown shift opcode!");
8179    break;
8180  case ISD::SHL:
8181    if (VT == MVT::v2i64)
8182      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8183                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8184                         ValOp, BaseShAmt);
8185    if (VT == MVT::v4i32)
8186      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8187                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8188                         ValOp, BaseShAmt);
8189    if (VT == MVT::v8i16)
8190      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8191                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8192                         ValOp, BaseShAmt);
8193    break;
8194  case ISD::SRA:
8195    if (VT == MVT::v4i32)
8196      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8197                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8198                         ValOp, BaseShAmt);
8199    if (VT == MVT::v8i16)
8200      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8201                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8202                         ValOp, BaseShAmt);
8203    break;
8204  case ISD::SRL:
8205    if (VT == MVT::v2i64)
8206      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8207                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8208                         ValOp, BaseShAmt);
8209    if (VT == MVT::v4i32)
8210      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8211                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8212                         ValOp, BaseShAmt);
8213    if (VT ==  MVT::v8i16)
8214      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8215                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8216                         ValOp, BaseShAmt);
8217    break;
8218  }
8219  return SDValue();
8220}
8221
8222/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8223static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
8224                                   const X86Subtarget *Subtarget) {
8225  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
8226  // the FP state in cases where an emms may be missing.
8227  // A preferable solution to the general problem is to figure out the right
8228  // places to insert EMMS.  This qualifies as a quick hack.
8229
8230  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8231  StoreSDNode *St = cast<StoreSDNode>(N);
8232  MVT VT = St->getValue().getValueType();
8233  if (VT.getSizeInBits() != 64)
8234    return SDValue();
8235
8236  const Function *F = DAG.getMachineFunction().getFunction();
8237  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
8238  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
8239    && Subtarget->hasSSE2();
8240  if ((VT.isVector() ||
8241       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
8242      isa<LoadSDNode>(St->getValue()) &&
8243      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
8244      St->getChain().hasOneUse() && !St->isVolatile()) {
8245    SDNode* LdVal = St->getValue().getNode();
8246    LoadSDNode *Ld = 0;
8247    int TokenFactorIndex = -1;
8248    SmallVector<SDValue, 8> Ops;
8249    SDNode* ChainVal = St->getChain().getNode();
8250    // Must be a store of a load.  We currently handle two cases:  the load
8251    // is a direct child, and it's under an intervening TokenFactor.  It is
8252    // possible to dig deeper under nested TokenFactors.
8253    if (ChainVal == LdVal)
8254      Ld = cast<LoadSDNode>(St->getChain());
8255    else if (St->getValue().hasOneUse() &&
8256             ChainVal->getOpcode() == ISD::TokenFactor) {
8257      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
8258        if (ChainVal->getOperand(i).getNode() == LdVal) {
8259          TokenFactorIndex = i;
8260          Ld = cast<LoadSDNode>(St->getValue());
8261        } else
8262          Ops.push_back(ChainVal->getOperand(i));
8263      }
8264    }
8265
8266    if (!Ld || !ISD::isNormalLoad(Ld))
8267      return SDValue();
8268
8269    // If this is not the MMX case, i.e. we are just turning i64 load/store
8270    // into f64 load/store, avoid the transformation if there are multiple
8271    // uses of the loaded value.
8272    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
8273      return SDValue();
8274
8275    DebugLoc LdDL = Ld->getDebugLoc();
8276    DebugLoc StDL = N->getDebugLoc();
8277    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8278    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
8279    // pair instead.
8280    if (Subtarget->is64Bit() || F64IsLegal) {
8281      MVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
8282      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
8283                                  Ld->getBasePtr(), Ld->getSrcValue(),
8284                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
8285                                  Ld->getAlignment());
8286      SDValue NewChain = NewLd.getValue(1);
8287      if (TokenFactorIndex != -1) {
8288        Ops.push_back(NewChain);
8289        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8290                               Ops.size());
8291      }
8292      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
8293                          St->getSrcValue(), St->getSrcValueOffset(),
8294                          St->isVolatile(), St->getAlignment());
8295    }
8296
8297    // Otherwise, lower to two pairs of 32-bit loads / stores.
8298    SDValue LoAddr = Ld->getBasePtr();
8299    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
8300                                 DAG.getConstant(4, MVT::i32));
8301
8302    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
8303                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
8304                               Ld->isVolatile(), Ld->getAlignment());
8305    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
8306                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
8307                               Ld->isVolatile(),
8308                               MinAlign(Ld->getAlignment(), 4));
8309
8310    SDValue NewChain = LoLd.getValue(1);
8311    if (TokenFactorIndex != -1) {
8312      Ops.push_back(LoLd);
8313      Ops.push_back(HiLd);
8314      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8315                             Ops.size());
8316    }
8317
8318    LoAddr = St->getBasePtr();
8319    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
8320                         DAG.getConstant(4, MVT::i32));
8321
8322    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
8323                                St->getSrcValue(), St->getSrcValueOffset(),
8324                                St->isVolatile(), St->getAlignment());
8325    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
8326                                St->getSrcValue(),
8327                                St->getSrcValueOffset() + 4,
8328                                St->isVolatile(),
8329                                MinAlign(St->getAlignment(), 4));
8330    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
8331  }
8332  return SDValue();
8333}
8334
8335/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
8336/// X86ISD::FXOR nodes.
8337static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
8338  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
8339  // F[X]OR(0.0, x) -> x
8340  // F[X]OR(x, 0.0) -> x
8341  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8342    if (C->getValueAPF().isPosZero())
8343      return N->getOperand(1);
8344  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8345    if (C->getValueAPF().isPosZero())
8346      return N->getOperand(0);
8347  return SDValue();
8348}
8349
8350/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
8351static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
8352  // FAND(0.0, x) -> 0.0
8353  // FAND(x, 0.0) -> 0.0
8354  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8355    if (C->getValueAPF().isPosZero())
8356      return N->getOperand(0);
8357  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8358    if (C->getValueAPF().isPosZero())
8359      return N->getOperand(1);
8360  return SDValue();
8361}
8362
8363static SDValue PerformBTCombine(SDNode *N,
8364                                SelectionDAG &DAG,
8365                                TargetLowering::DAGCombinerInfo &DCI) {
8366  // BT ignores high bits in the bit index operand.
8367  SDValue Op1 = N->getOperand(1);
8368  if (Op1.hasOneUse()) {
8369    unsigned BitWidth = Op1.getValueSizeInBits();
8370    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
8371    APInt KnownZero, KnownOne;
8372    TargetLowering::TargetLoweringOpt TLO(DAG);
8373    TargetLowering &TLI = DAG.getTargetLoweringInfo();
8374    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
8375        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
8376      DCI.CommitTargetLoweringOpt(TLO);
8377  }
8378  return SDValue();
8379}
8380
8381static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
8382  SDValue Op = N->getOperand(0);
8383  if (Op.getOpcode() == ISD::BIT_CONVERT)
8384    Op = Op.getOperand(0);
8385  MVT VT = N->getValueType(0), OpVT = Op.getValueType();
8386  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
8387      VT.getVectorElementType().getSizeInBits() ==
8388      OpVT.getVectorElementType().getSizeInBits()) {
8389    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
8390  }
8391  return SDValue();
8392}
8393
8394SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
8395                                             DAGCombinerInfo &DCI) const {
8396  SelectionDAG &DAG = DCI.DAG;
8397  switch (N->getOpcode()) {
8398  default: break;
8399  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
8400  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
8401  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
8402  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
8403  case ISD::SHL:
8404  case ISD::SRA:
8405  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
8406  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
8407  case X86ISD::FXOR:
8408  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
8409  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
8410  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
8411  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
8412  }
8413
8414  return SDValue();
8415}
8416
8417//===----------------------------------------------------------------------===//
8418//                           X86 Inline Assembly Support
8419//===----------------------------------------------------------------------===//
8420
8421/// getConstraintType - Given a constraint letter, return the type of
8422/// constraint it is for this target.
8423X86TargetLowering::ConstraintType
8424X86TargetLowering::getConstraintType(const std::string &Constraint) const {
8425  if (Constraint.size() == 1) {
8426    switch (Constraint[0]) {
8427    case 'A':
8428      return C_Register;
8429    case 'f':
8430    case 'r':
8431    case 'R':
8432    case 'l':
8433    case 'q':
8434    case 'Q':
8435    case 'x':
8436    case 'y':
8437    case 'Y':
8438      return C_RegisterClass;
8439    case 'e':
8440    case 'Z':
8441      return C_Other;
8442    default:
8443      break;
8444    }
8445  }
8446  return TargetLowering::getConstraintType(Constraint);
8447}
8448
8449/// LowerXConstraint - try to replace an X constraint, which matches anything,
8450/// with another that has more specific requirements based on the type of the
8451/// corresponding operand.
8452const char *X86TargetLowering::
8453LowerXConstraint(MVT ConstraintVT) const {
8454  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
8455  // 'f' like normal targets.
8456  if (ConstraintVT.isFloatingPoint()) {
8457    if (Subtarget->hasSSE2())
8458      return "Y";
8459    if (Subtarget->hasSSE1())
8460      return "x";
8461  }
8462
8463  return TargetLowering::LowerXConstraint(ConstraintVT);
8464}
8465
8466/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8467/// vector.  If it is invalid, don't add anything to Ops.
8468void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8469                                                     char Constraint,
8470                                                     bool hasMemory,
8471                                                     std::vector<SDValue>&Ops,
8472                                                     SelectionDAG &DAG) const {
8473  SDValue Result(0, 0);
8474
8475  switch (Constraint) {
8476  default: break;
8477  case 'I':
8478    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8479      if (C->getZExtValue() <= 31) {
8480        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8481        break;
8482      }
8483    }
8484    return;
8485  case 'J':
8486    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8487      if (C->getZExtValue() <= 63) {
8488        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8489        break;
8490      }
8491    }
8492    return;
8493  case 'K':
8494    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8495      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
8496        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8497        break;
8498      }
8499    }
8500    return;
8501  case 'N':
8502    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8503      if (C->getZExtValue() <= 255) {
8504        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8505        break;
8506      }
8507    }
8508    return;
8509  case 'e': {
8510    // 32-bit signed value
8511    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8512      const ConstantInt *CI = C->getConstantIntValue();
8513      if (CI->isValueValidForType(Type::Int32Ty, C->getSExtValue())) {
8514        // Widen to 64 bits here to get it sign extended.
8515        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
8516        break;
8517      }
8518    // FIXME gcc accepts some relocatable values here too, but only in certain
8519    // memory models; it's complicated.
8520    }
8521    return;
8522  }
8523  case 'Z': {
8524    // 32-bit unsigned value
8525    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8526      const ConstantInt *CI = C->getConstantIntValue();
8527      if (CI->isValueValidForType(Type::Int32Ty, C->getZExtValue())) {
8528        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8529        break;
8530      }
8531    }
8532    // FIXME gcc accepts some relocatable values here too, but only in certain
8533    // memory models; it's complicated.
8534    return;
8535  }
8536  case 'i': {
8537    // Literal immediates are always ok.
8538    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
8539      // Widen to 64 bits here to get it sign extended.
8540      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
8541      break;
8542    }
8543
8544    // If we are in non-pic codegen mode, we allow the address of a global (with
8545    // an optional displacement) to be used with 'i'.
8546    GlobalAddressSDNode *GA = 0;
8547    int64_t Offset = 0;
8548
8549    // Match either (GA), (GA+C), (GA+C1+C2), etc.
8550    while (1) {
8551      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
8552        Offset += GA->getOffset();
8553        break;
8554      } else if (Op.getOpcode() == ISD::ADD) {
8555        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8556          Offset += C->getZExtValue();
8557          Op = Op.getOperand(0);
8558          continue;
8559        }
8560      } else if (Op.getOpcode() == ISD::SUB) {
8561        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8562          Offset += -C->getZExtValue();
8563          Op = Op.getOperand(0);
8564          continue;
8565        }
8566      }
8567
8568      // Otherwise, this isn't something we can handle, reject it.
8569      return;
8570    }
8571
8572    if (hasMemory)
8573      Op = LowerGlobalAddress(GA->getGlobal(), Op.getDebugLoc(), Offset, DAG);
8574    else
8575      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
8576                                      Offset);
8577    Result = Op;
8578    break;
8579  }
8580  }
8581
8582  if (Result.getNode()) {
8583    Ops.push_back(Result);
8584    return;
8585  }
8586  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
8587                                                      Ops, DAG);
8588}
8589
8590std::vector<unsigned> X86TargetLowering::
8591getRegClassForInlineAsmConstraint(const std::string &Constraint,
8592                                  MVT VT) const {
8593  if (Constraint.size() == 1) {
8594    // FIXME: not handling fp-stack yet!
8595    switch (Constraint[0]) {      // GCC X86 Constraint Letters
8596    default: break;  // Unknown constraint letter
8597    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
8598    case 'Q':   // Q_REGS
8599      if (VT == MVT::i32)
8600        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
8601      else if (VT == MVT::i16)
8602        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
8603      else if (VT == MVT::i8)
8604        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
8605      else if (VT == MVT::i64)
8606        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
8607      break;
8608    }
8609  }
8610
8611  return std::vector<unsigned>();
8612}
8613
8614std::pair<unsigned, const TargetRegisterClass*>
8615X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
8616                                                MVT VT) const {
8617  // First, see if this is a constraint that directly corresponds to an LLVM
8618  // register class.
8619  if (Constraint.size() == 1) {
8620    // GCC Constraint Letters
8621    switch (Constraint[0]) {
8622    default: break;
8623    case 'r':   // GENERAL_REGS
8624    case 'R':   // LEGACY_REGS
8625    case 'l':   // INDEX_REGS
8626      if (VT == MVT::i8)
8627        return std::make_pair(0U, X86::GR8RegisterClass);
8628      if (VT == MVT::i16)
8629        return std::make_pair(0U, X86::GR16RegisterClass);
8630      if (VT == MVT::i32 || !Subtarget->is64Bit())
8631        return std::make_pair(0U, X86::GR32RegisterClass);
8632      return std::make_pair(0U, X86::GR64RegisterClass);
8633    case 'f':  // FP Stack registers.
8634      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
8635      // value to the correct fpstack register class.
8636      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
8637        return std::make_pair(0U, X86::RFP32RegisterClass);
8638      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
8639        return std::make_pair(0U, X86::RFP64RegisterClass);
8640      return std::make_pair(0U, X86::RFP80RegisterClass);
8641    case 'y':   // MMX_REGS if MMX allowed.
8642      if (!Subtarget->hasMMX()) break;
8643      return std::make_pair(0U, X86::VR64RegisterClass);
8644    case 'Y':   // SSE_REGS if SSE2 allowed
8645      if (!Subtarget->hasSSE2()) break;
8646      // FALL THROUGH.
8647    case 'x':   // SSE_REGS if SSE1 allowed
8648      if (!Subtarget->hasSSE1()) break;
8649
8650      switch (VT.getSimpleVT()) {
8651      default: break;
8652      // Scalar SSE types.
8653      case MVT::f32:
8654      case MVT::i32:
8655        return std::make_pair(0U, X86::FR32RegisterClass);
8656      case MVT::f64:
8657      case MVT::i64:
8658        return std::make_pair(0U, X86::FR64RegisterClass);
8659      // Vector types.
8660      case MVT::v16i8:
8661      case MVT::v8i16:
8662      case MVT::v4i32:
8663      case MVT::v2i64:
8664      case MVT::v4f32:
8665      case MVT::v2f64:
8666        return std::make_pair(0U, X86::VR128RegisterClass);
8667      }
8668      break;
8669    }
8670  }
8671
8672  // Use the default implementation in TargetLowering to convert the register
8673  // constraint into a member of a register class.
8674  std::pair<unsigned, const TargetRegisterClass*> Res;
8675  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8676
8677  // Not found as a standard register?
8678  if (Res.second == 0) {
8679    // GCC calls "st(0)" just plain "st".
8680    if (StringsEqualNoCase("{st}", Constraint)) {
8681      Res.first = X86::ST0;
8682      Res.second = X86::RFP80RegisterClass;
8683    }
8684    // 'A' means EAX + EDX.
8685    if (Constraint == "A") {
8686      Res.first = X86::EAX;
8687      Res.second = X86::GRADRegisterClass;
8688    }
8689    return Res;
8690  }
8691
8692  // Otherwise, check to see if this is a register class of the wrong value
8693  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
8694  // turn into {ax},{dx}.
8695  if (Res.second->hasType(VT))
8696    return Res;   // Correct type already, nothing to do.
8697
8698  // All of the single-register GCC register classes map their values onto
8699  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
8700  // really want an 8-bit or 32-bit register, map to the appropriate register
8701  // class and return the appropriate register.
8702  if (Res.second == X86::GR16RegisterClass) {
8703    if (VT == MVT::i8) {
8704      unsigned DestReg = 0;
8705      switch (Res.first) {
8706      default: break;
8707      case X86::AX: DestReg = X86::AL; break;
8708      case X86::DX: DestReg = X86::DL; break;
8709      case X86::CX: DestReg = X86::CL; break;
8710      case X86::BX: DestReg = X86::BL; break;
8711      }
8712      if (DestReg) {
8713        Res.first = DestReg;
8714        Res.second = X86::GR8RegisterClass;
8715      }
8716    } else if (VT == MVT::i32) {
8717      unsigned DestReg = 0;
8718      switch (Res.first) {
8719      default: break;
8720      case X86::AX: DestReg = X86::EAX; break;
8721      case X86::DX: DestReg = X86::EDX; break;
8722      case X86::CX: DestReg = X86::ECX; break;
8723      case X86::BX: DestReg = X86::EBX; break;
8724      case X86::SI: DestReg = X86::ESI; break;
8725      case X86::DI: DestReg = X86::EDI; break;
8726      case X86::BP: DestReg = X86::EBP; break;
8727      case X86::SP: DestReg = X86::ESP; break;
8728      }
8729      if (DestReg) {
8730        Res.first = DestReg;
8731        Res.second = X86::GR32RegisterClass;
8732      }
8733    } else if (VT == MVT::i64) {
8734      unsigned DestReg = 0;
8735      switch (Res.first) {
8736      default: break;
8737      case X86::AX: DestReg = X86::RAX; break;
8738      case X86::DX: DestReg = X86::RDX; break;
8739      case X86::CX: DestReg = X86::RCX; break;
8740      case X86::BX: DestReg = X86::RBX; break;
8741      case X86::SI: DestReg = X86::RSI; break;
8742      case X86::DI: DestReg = X86::RDI; break;
8743      case X86::BP: DestReg = X86::RBP; break;
8744      case X86::SP: DestReg = X86::RSP; break;
8745      }
8746      if (DestReg) {
8747        Res.first = DestReg;
8748        Res.second = X86::GR64RegisterClass;
8749      }
8750    }
8751  } else if (Res.second == X86::FR32RegisterClass ||
8752             Res.second == X86::FR64RegisterClass ||
8753             Res.second == X86::VR128RegisterClass) {
8754    // Handle references to XMM physical registers that got mapped into the
8755    // wrong class.  This can happen with constraints like {xmm0} where the
8756    // target independent register mapper will just pick the first match it can
8757    // find, ignoring the required type.
8758    if (VT == MVT::f32)
8759      Res.second = X86::FR32RegisterClass;
8760    else if (VT == MVT::f64)
8761      Res.second = X86::FR64RegisterClass;
8762    else if (X86::VR128RegisterClass->hasType(VT))
8763      Res.second = X86::VR128RegisterClass;
8764  }
8765
8766  return Res;
8767}
8768
8769//===----------------------------------------------------------------------===//
8770//                           X86 Widen vector type
8771//===----------------------------------------------------------------------===//
8772
8773/// getWidenVectorType: given a vector type, returns the type to widen
8774/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
8775/// If there is no vector type that we want to widen to, returns MVT::Other
8776/// When and where to widen is target dependent based on the cost of
8777/// scalarizing vs using the wider vector type.
8778
8779MVT X86TargetLowering::getWidenVectorType(MVT VT) const {
8780  assert(VT.isVector());
8781  if (isTypeLegal(VT))
8782    return VT;
8783
8784  // TODO: In computeRegisterProperty, we can compute the list of legal vector
8785  //       type based on element type.  This would speed up our search (though
8786  //       it may not be worth it since the size of the list is relatively
8787  //       small).
8788  MVT EltVT = VT.getVectorElementType();
8789  unsigned NElts = VT.getVectorNumElements();
8790
8791  // On X86, it make sense to widen any vector wider than 1
8792  if (NElts <= 1)
8793    return MVT::Other;
8794
8795  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
8796       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
8797    MVT SVT = (MVT::SimpleValueType)nVT;
8798
8799    if (isTypeLegal(SVT) &&
8800        SVT.getVectorElementType() == EltVT &&
8801        SVT.getVectorNumElements() > NElts)
8802      return SVT;
8803  }
8804  return MVT::Other;
8805}
8806