X86ISelLowering.cpp revision 448175fd020acd680c27e61a3aa09d23031a496d
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/ADT/StringExtras.h"
39#include "llvm/ParameterAttributes.h"
40using namespace llvm;
41
42X86TargetLowering::X86TargetLowering(TargetMachine &TM)
43  : TargetLowering(TM) {
44  Subtarget = &TM.getSubtarget<X86Subtarget>();
45  X86ScalarSSEf64 = Subtarget->hasSSE2();
46  X86ScalarSSEf32 = Subtarget->hasSSE1();
47  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
48
49
50  RegInfo = TM.getRegisterInfo();
51
52  // Set up the TargetLowering object.
53
54  // X86 is weird, it always uses i8 for shift amounts and setcc results.
55  setShiftAmountType(MVT::i8);
56  setSetCCResultType(MVT::i8);
57  setSetCCResultContents(ZeroOrOneSetCCResult);
58  setSchedulingPreference(SchedulingForRegPressure);
59  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
60  setStackPointerRegisterToSaveRestore(X86StackPtr);
61
62  if (Subtarget->isTargetDarwin()) {
63    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
64    setUseUnderscoreSetJmp(false);
65    setUseUnderscoreLongJmp(false);
66  } else if (Subtarget->isTargetMingw()) {
67    // MS runtime is weird: it exports _setjmp, but longjmp!
68    setUseUnderscoreSetJmp(true);
69    setUseUnderscoreLongJmp(false);
70  } else {
71    setUseUnderscoreSetJmp(true);
72    setUseUnderscoreLongJmp(true);
73  }
74
75  // Set up the register classes.
76  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
77  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
78  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
79  if (Subtarget->is64Bit())
80    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
81
82  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
83
84  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
85  // operation.
86  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
87  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
88  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
89
90  if (Subtarget->is64Bit()) {
91    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
92    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
93  } else {
94    if (X86ScalarSSEf64)
95      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
96      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
97    else
98      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
99  }
100
101  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
102  // this operation.
103  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
104  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
105  // SSE has no i16 to fp conversion, only i32
106  if (X86ScalarSSEf32) {
107    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
108    // f32 and f64 cases are Legal, f80 case is not
109    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
110  } else {
111    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
112    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
113  }
114
115  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
116  // are Legal, f80 is custom lowered.
117  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
118  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
119
120  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
121  // this operation.
122  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
123  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
124
125  if (X86ScalarSSEf32) {
126    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
127    // f32 and f64 cases are Legal, f80 case is not
128    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
129  } else {
130    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
131    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
132  }
133
134  // Handle FP_TO_UINT by promoting the destination to a larger signed
135  // conversion.
136  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
137  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
138  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
139
140  if (Subtarget->is64Bit()) {
141    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
142    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
143  } else {
144    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
145      // Expand FP_TO_UINT into a select.
146      // FIXME: We would like to use a Custom expander here eventually to do
147      // the optimal thing for SSE vs. the default expansion in the legalizer.
148      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
149    else
150      // With SSE3 we can use fisttpll to convert to a signed i64.
151      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
152  }
153
154  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
155  if (!X86ScalarSSEf64) {
156    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
157    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
158  }
159
160  // Scalar integer multiply, multiply-high, divide, and remainder are
161  // lowered to use operations that produce two results, to match the
162  // available instructions. This exposes the two-result form to trivial
163  // CSE, which is able to combine x/y and x%y into a single instruction,
164  // for example. The single-result multiply instructions are introduced
165  // in X86ISelDAGToDAG.cpp, after CSE, for uses where the the high part
166  // is not needed.
167  setOperationAction(ISD::MUL             , MVT::i8    , Expand);
168  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
169  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
170  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
171  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
172  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
173  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
174  setOperationAction(ISD::MUL             , MVT::i16   , Expand);
175  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
176  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
177  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
178  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
179  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
180  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
181  setOperationAction(ISD::MUL             , MVT::i32   , Expand);
182  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
183  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
184  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
185  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
186  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
187  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
188  setOperationAction(ISD::MUL             , MVT::i64   , Expand);
189  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
190  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
191  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
192  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
193  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
194  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
195
196  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
197  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
198  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
199  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
200  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
201  if (Subtarget->is64Bit())
202    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
203  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
204  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
205  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
206  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
207  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
208
209  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
210  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
211  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
212  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
213  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
214  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
215  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
216  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
217  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
218  if (Subtarget->is64Bit()) {
219    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
220    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
221    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
222  }
223
224  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
225  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
226
227  // These should be promoted to a larger select which is supported.
228  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
229  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
230  // X86 wants to expand cmov itself.
231  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
232  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
233  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
234  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
235  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
236  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
237  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
238  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
239  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
240  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
241  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
242  if (Subtarget->is64Bit()) {
243    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
244    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
245  }
246  // X86 ret instruction may pop stack.
247  setOperationAction(ISD::RET             , MVT::Other, Custom);
248  if (!Subtarget->is64Bit())
249    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
250
251  // Darwin ABI issue.
252  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
253  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
254  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
255  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
256  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
257  if (Subtarget->is64Bit()) {
258    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
259    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
260    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
261    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
262  }
263  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
264  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
265  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
266  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
267  // X86 wants to expand memset / memcpy itself.
268  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
269  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
270
271  // Use the default ISD::LOCATION expansion.
272  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
273  // FIXME - use subtarget debug flags
274  if (!Subtarget->isTargetDarwin() &&
275      !Subtarget->isTargetELF() &&
276      !Subtarget->isTargetCygMing())
277    setOperationAction(ISD::LABEL, MVT::Other, Expand);
278
279  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
280  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
281  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
282  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
283  if (Subtarget->is64Bit()) {
284    // FIXME: Verify
285    setExceptionPointerRegister(X86::RAX);
286    setExceptionSelectorRegister(X86::RDX);
287  } else {
288    setExceptionPointerRegister(X86::EAX);
289    setExceptionSelectorRegister(X86::EDX);
290  }
291  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
292
293  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
294
295  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
296  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
297  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
298  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
299  if (Subtarget->is64Bit())
300    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
301  else
302    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
303
304  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
305  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
306  if (Subtarget->is64Bit())
307    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
308  if (Subtarget->isTargetCygMing())
309    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
310  else
311    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
312
313  if (X86ScalarSSEf64) {
314    // f32 and f64 use SSE.
315    // Set up the FP register classes.
316    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
317    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
318
319    // Use ANDPD to simulate FABS.
320    setOperationAction(ISD::FABS , MVT::f64, Custom);
321    setOperationAction(ISD::FABS , MVT::f32, Custom);
322
323    // Use XORP to simulate FNEG.
324    setOperationAction(ISD::FNEG , MVT::f64, Custom);
325    setOperationAction(ISD::FNEG , MVT::f32, Custom);
326
327    // Use ANDPD and ORPD to simulate FCOPYSIGN.
328    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
329    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
330
331    // We don't support sin/cos/fmod
332    setOperationAction(ISD::FSIN , MVT::f64, Expand);
333    setOperationAction(ISD::FCOS , MVT::f64, Expand);
334    setOperationAction(ISD::FREM , MVT::f64, Expand);
335    setOperationAction(ISD::FSIN , MVT::f32, Expand);
336    setOperationAction(ISD::FCOS , MVT::f32, Expand);
337    setOperationAction(ISD::FREM , MVT::f32, Expand);
338
339    // Expand FP immediates into loads from the stack, except for the special
340    // cases we handle.
341    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
342    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
343    addLegalFPImmediate(APFloat(+0.0)); // xorpd
344    addLegalFPImmediate(APFloat(+0.0f)); // xorps
345
346    // Conversions to long double (in X87) go through memory.
347    setConvertAction(MVT::f32, MVT::f80, Expand);
348    setConvertAction(MVT::f64, MVT::f80, Expand);
349
350    // Conversions from long double (in X87) go through memory.
351    setConvertAction(MVT::f80, MVT::f32, Expand);
352    setConvertAction(MVT::f80, MVT::f64, Expand);
353  } else if (X86ScalarSSEf32) {
354    // Use SSE for f32, x87 for f64.
355    // Set up the FP register classes.
356    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
357    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
358
359    // Use ANDPS to simulate FABS.
360    setOperationAction(ISD::FABS , MVT::f32, Custom);
361
362    // Use XORP to simulate FNEG.
363    setOperationAction(ISD::FNEG , MVT::f32, Custom);
364
365    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
366
367    // Use ANDPS and ORPS to simulate FCOPYSIGN.
368    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
369    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
370
371    // We don't support sin/cos/fmod
372    setOperationAction(ISD::FSIN , MVT::f32, Expand);
373    setOperationAction(ISD::FCOS , MVT::f32, Expand);
374    setOperationAction(ISD::FREM , MVT::f32, Expand);
375
376    // Expand FP immediates into loads from the stack, except for the special
377    // cases we handle.
378    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
379    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
380    addLegalFPImmediate(APFloat(+0.0f)); // xorps
381    addLegalFPImmediate(APFloat(+0.0)); // FLD0
382    addLegalFPImmediate(APFloat(+1.0)); // FLD1
383    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
384    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
385
386    // SSE->x87 conversions go through memory.
387    setConvertAction(MVT::f32, MVT::f64, Expand);
388    setConvertAction(MVT::f32, MVT::f80, Expand);
389
390    // x87->SSE truncations need to go through memory.
391    setConvertAction(MVT::f80, MVT::f32, Expand);
392    setConvertAction(MVT::f64, MVT::f32, Expand);
393    // And x87->x87 truncations also.
394    setConvertAction(MVT::f80, MVT::f64, Expand);
395
396    if (!UnsafeFPMath) {
397      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
398      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
399    }
400  } else {
401    // f32 and f64 in x87.
402    // Set up the FP register classes.
403    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
404    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
405
406    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
407    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
408    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
409    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
410
411    // Floating truncations need to go through memory.
412    setConvertAction(MVT::f80, MVT::f32, Expand);
413    setConvertAction(MVT::f64, MVT::f32, Expand);
414    setConvertAction(MVT::f80, MVT::f64, Expand);
415
416    if (!UnsafeFPMath) {
417      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
418      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
419    }
420
421    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
422    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
423    addLegalFPImmediate(APFloat(+0.0)); // FLD0
424    addLegalFPImmediate(APFloat(+1.0)); // FLD1
425    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
426    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
427    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
428    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
429    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
430    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
431  }
432
433  // Long double always uses X87.
434  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
435  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
436  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
437  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
438  if (!UnsafeFPMath) {
439    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
440    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
441  }
442
443  // Always use a library call for pow.
444  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
445  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
446  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
447
448  // First set operation action for all vector types to expand. Then we
449  // will selectively turn on ones that can be effectively codegen'd.
450  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
451       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
452    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
453    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
454    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
455    setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
456    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
457    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
458    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
459    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
460    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
461    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
462    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
463    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
464    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
465    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
466    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
467    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
468    setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
469    setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
470    setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
471    setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
472    setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
473    setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
474    setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
475    setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
476    setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
477    setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
478    setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
479    setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
480    setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
481    setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
482    setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
483  }
484
485  if (Subtarget->hasMMX()) {
486    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
487    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
488    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
489    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
490
491    // FIXME: add MMX packed arithmetics
492
493    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
494    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
495    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
496    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
497
498    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
499    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
500    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
501
502    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
503    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
504
505    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
506    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
507    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
508    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
509    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
510    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
511    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
512
513    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
514    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
515    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
516    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
517    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
518    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
519    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
520
521    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
522    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
523    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
524    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
525    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
526    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
527    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
528
529    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
530    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
531    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
532    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
533    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
534    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
535    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
536
537    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
538    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
539    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
540    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
541
542    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
543    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
544    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
545    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
546
547    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
548    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
549    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Custom);
550    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
551  }
552
553  if (Subtarget->hasSSE1()) {
554    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
555
556    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
557    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
558    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
559    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
560    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
561    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
562    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
563    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
564    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
565    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
566    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
567  }
568
569  if (Subtarget->hasSSE2()) {
570    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
571    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
572    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
573    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
574    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
575
576    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
577    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
578    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
579    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
580    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
581    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
582    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
583    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
584    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
585    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
586    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
587    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
588    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
589    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
590    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
591
592    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
593    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
594    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
595    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
596    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
597    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
598
599    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
600    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
601      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
602      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
603      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
604    }
605    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
606    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
607    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
608    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
609    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
610    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
611
612    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
613    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
614      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
615      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
616      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
617      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
618      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
619      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
620      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
621      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
622      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
623      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
624    }
625
626    // Custom lower v2i64 and v2f64 selects.
627    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
628    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
629    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
630    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
631  }
632
633  // We want to custom lower some of our intrinsics.
634  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
635
636  // We have target-specific dag combine patterns for the following nodes:
637  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
638  setTargetDAGCombine(ISD::SELECT);
639
640  computeRegisterProperties();
641
642  // FIXME: These should be based on subtarget info. Plus, the values should
643  // be smaller when we are in optimizing for size mode.
644  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
645  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
646  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
647  allowUnalignedMemoryAccesses = true; // x86 supports it!
648}
649
650
651//===----------------------------------------------------------------------===//
652//               Return Value Calling Convention Implementation
653//===----------------------------------------------------------------------===//
654
655#include "X86GenCallingConv.inc"
656
657/// GetPossiblePreceedingTailCall - Get preceeding X86ISD::TAILCALL node if it
658/// exists skip possible ISD:TokenFactor.
659static SDOperand GetPossiblePreceedingTailCall(SDOperand Chain) {
660  if (Chain.getOpcode()==X86ISD::TAILCALL) {
661    return Chain;
662  } else if (Chain.getOpcode()==ISD::TokenFactor) {
663    if (Chain.getNumOperands() &&
664        Chain.getOperand(0).getOpcode()==X86ISD::TAILCALL)
665      return Chain.getOperand(0);
666  }
667  return Chain;
668}
669
670/// LowerRET - Lower an ISD::RET node.
671SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
672  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
673
674  SmallVector<CCValAssign, 16> RVLocs;
675  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
676  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
677  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
678  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
679
680  // If this is the first return lowered for this function, add the regs to the
681  // liveout set for the function.
682  if (DAG.getMachineFunction().liveout_empty()) {
683    for (unsigned i = 0; i != RVLocs.size(); ++i)
684      if (RVLocs[i].isRegLoc())
685        DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
686  }
687  SDOperand Chain = Op.getOperand(0);
688
689  // Handle tail call return.
690  Chain = GetPossiblePreceedingTailCall(Chain);
691  if (Chain.getOpcode() == X86ISD::TAILCALL) {
692    SDOperand TailCall = Chain;
693    SDOperand TargetAddress = TailCall.getOperand(1);
694    SDOperand StackAdjustment = TailCall.getOperand(2);
695    assert ( ((TargetAddress.getOpcode() == ISD::Register &&
696               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
697                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
698              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
699              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
700             "Expecting an global address, external symbol, or register");
701    assert( StackAdjustment.getOpcode() == ISD::Constant &&
702            "Expecting a const value");
703
704    SmallVector<SDOperand,8> Operands;
705    Operands.push_back(Chain.getOperand(0));
706    Operands.push_back(TargetAddress);
707    Operands.push_back(StackAdjustment);
708    // Copy registers used by the call. Last operand is a flag so it is not
709    // copied.
710    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
711      Operands.push_back(Chain.getOperand(i));
712    }
713    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
714                       Operands.size());
715  }
716
717  // Regular return.
718  SDOperand Flag;
719
720  // Copy the result values into the output registers.
721  if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
722      RVLocs[0].getLocReg() != X86::ST0) {
723    for (unsigned i = 0; i != RVLocs.size(); ++i) {
724      CCValAssign &VA = RVLocs[i];
725      assert(VA.isRegLoc() && "Can only return in registers!");
726      Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
727                               Flag);
728      Flag = Chain.getValue(1);
729    }
730  } else {
731    // We need to handle a destination of ST0 specially, because it isn't really
732    // a register.
733    SDOperand Value = Op.getOperand(1);
734
735    // If this is an FP return with ScalarSSE, we need to move the value from
736    // an XMM register onto the fp-stack.
737    if ((X86ScalarSSEf32 && RVLocs[0].getValVT()==MVT::f32) ||
738        (X86ScalarSSEf64 && RVLocs[0].getValVT()==MVT::f64)) {
739      SDOperand MemLoc;
740
741      // If this is a load into a scalarsse value, don't store the loaded value
742      // back to the stack, only to reload it: just replace the scalar-sse load.
743      if (ISD::isNON_EXTLoad(Value.Val) &&
744          (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
745        Chain  = Value.getOperand(0);
746        MemLoc = Value.getOperand(1);
747      } else {
748        // Spill the value to memory and reload it into top of stack.
749        unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
750        MachineFunction &MF = DAG.getMachineFunction();
751        int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
752        MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
753        Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
754      }
755      SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
756      SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
757      Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
758      Chain = Value.getValue(1);
759    }
760
761    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
762    SDOperand Ops[] = { Chain, Value };
763    Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
764    Flag = Chain.getValue(1);
765  }
766
767  SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
768  if (Flag.Val)
769    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
770  else
771    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
772}
773
774
775/// LowerCallResult - Lower the result values of an ISD::CALL into the
776/// appropriate copies out of appropriate physical registers.  This assumes that
777/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
778/// being lowered.  The returns a SDNode with the same number of values as the
779/// ISD::CALL.
780SDNode *X86TargetLowering::
781LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
782                unsigned CallingConv, SelectionDAG &DAG) {
783
784  // Assign locations to each value returned by this call.
785  SmallVector<CCValAssign, 16> RVLocs;
786  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
787  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
788  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
789
790
791  SmallVector<SDOperand, 8> ResultVals;
792
793  // Copy all of the result registers out of their specified physreg.
794  if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
795    for (unsigned i = 0; i != RVLocs.size(); ++i) {
796      Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
797                                 RVLocs[i].getValVT(), InFlag).getValue(1);
798      InFlag = Chain.getValue(2);
799      ResultVals.push_back(Chain.getValue(0));
800    }
801  } else {
802    // Copies from the FP stack are special, as ST0 isn't a valid register
803    // before the fp stackifier runs.
804
805    // Copy ST0 into an RFP register with FP_GET_RESULT.
806    SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
807    SDOperand GROps[] = { Chain, InFlag };
808    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
809    Chain  = RetVal.getValue(1);
810    InFlag = RetVal.getValue(2);
811
812    // If we are using ScalarSSE, store ST(0) to the stack and reload it into
813    // an XMM register.
814    if ((X86ScalarSSEf32 && RVLocs[0].getValVT() == MVT::f32) ||
815        (X86ScalarSSEf64 && RVLocs[0].getValVT() == MVT::f64)) {
816      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
817      // shouldn't be necessary except that RFP cannot be live across
818      // multiple blocks. When stackifier is fixed, they can be uncoupled.
819      MachineFunction &MF = DAG.getMachineFunction();
820      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
821      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
822      SDOperand Ops[] = {
823        Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
824      };
825      Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
826      RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
827      Chain = RetVal.getValue(1);
828    }
829    ResultVals.push_back(RetVal);
830  }
831
832  // Merge everything together with a MERGE_VALUES node.
833  ResultVals.push_back(Chain);
834  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
835                     &ResultVals[0], ResultVals.size()).Val;
836}
837
838
839//===----------------------------------------------------------------------===//
840//                C & StdCall & Fast Calling Convention implementation
841//===----------------------------------------------------------------------===//
842//  StdCall calling convention seems to be standard for many Windows' API
843//  routines and around. It differs from C calling convention just a little:
844//  callee should clean up the stack, not caller. Symbols should be also
845//  decorated in some fancy way :) It doesn't support any vector arguments.
846//  For info on fast calling convention see Fast Calling Convention (tail call)
847//  implementation LowerX86_32FastCCCallTo.
848
849/// AddLiveIn - This helper function adds the specified physical register to the
850/// MachineFunction as a live in value.  It also creates a corresponding virtual
851/// register for it.
852static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
853                          const TargetRegisterClass *RC) {
854  assert(RC->contains(PReg) && "Not the correct regclass!");
855  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
856  MF.addLiveIn(PReg, VReg);
857  return VReg;
858}
859
860// align stack arguments according to platform alignment needed for tail calls
861unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG& DAG);
862
863SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
864                                              const CCValAssign &VA,
865                                              MachineFrameInfo *MFI,
866                                              SDOperand Root, unsigned i) {
867  // Create the nodes corresponding to a load from this parameter slot.
868  int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
869                                  VA.getLocMemOffset());
870  SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
871
872  unsigned Flags =  cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
873
874  if (Flags & ISD::ParamFlags::ByVal)
875    return FIN;
876  else
877    return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
878}
879
880SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
881                                               bool isStdCall) {
882  unsigned NumArgs = Op.Val->getNumValues() - 1;
883  MachineFunction &MF = DAG.getMachineFunction();
884  MachineFrameInfo *MFI = MF.getFrameInfo();
885  SDOperand Root = Op.getOperand(0);
886  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
887  unsigned CC = MF.getFunction()->getCallingConv();
888  // Assign locations to all of the incoming arguments.
889  SmallVector<CCValAssign, 16> ArgLocs;
890  CCState CCInfo(CC, isVarArg,
891                 getTargetMachine(), ArgLocs);
892  // Check for possible tail call calling convention.
893  if (CC == CallingConv::Fast && PerformTailCallOpt)
894    CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_TailCall);
895  else
896    CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
897
898  SmallVector<SDOperand, 8> ArgValues;
899  unsigned LastVal = ~0U;
900  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
901    CCValAssign &VA = ArgLocs[i];
902    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
903    // places.
904    assert(VA.getValNo() != LastVal &&
905           "Don't support value assigned to multiple locs yet");
906    LastVal = VA.getValNo();
907
908    if (VA.isRegLoc()) {
909      MVT::ValueType RegVT = VA.getLocVT();
910      TargetRegisterClass *RC;
911      if (RegVT == MVT::i32)
912        RC = X86::GR32RegisterClass;
913      else {
914        assert(MVT::isVector(RegVT));
915        RC = X86::VR128RegisterClass;
916      }
917
918      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
919      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
920
921      // If this is an 8 or 16-bit value, it is really passed promoted to 32
922      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
923      // right size.
924      if (VA.getLocInfo() == CCValAssign::SExt)
925        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
926                               DAG.getValueType(VA.getValVT()));
927      else if (VA.getLocInfo() == CCValAssign::ZExt)
928        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
929                               DAG.getValueType(VA.getValVT()));
930
931      if (VA.getLocInfo() != CCValAssign::Full)
932        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
933
934      ArgValues.push_back(ArgValue);
935    } else {
936      assert(VA.isMemLoc());
937      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
938    }
939  }
940
941  unsigned StackSize = CCInfo.getNextStackOffset();
942  // align stack specially for tail calls
943  if (CC==CallingConv::Fast)
944    StackSize = GetAlignedArgumentStackSize(StackSize,DAG);
945
946  ArgValues.push_back(Root);
947
948  // If the function takes variable number of arguments, make a frame index for
949  // the start of the first vararg value... for expansion of llvm.va_start.
950  if (isVarArg)
951    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
952
953  // Tail call calling convention (CallingConv::Fast) does not support varargs.
954  assert( !(isVarArg && CC == CallingConv::Fast) &&
955         "CallingConv::Fast does not support varargs.");
956
957  if (isStdCall && !isVarArg &&
958      (CC==CallingConv::Fast && PerformTailCallOpt || CC!=CallingConv::Fast)) {
959    BytesToPopOnReturn  = StackSize;    // Callee pops everything..
960    BytesCallerReserves = 0;
961  } else {
962    BytesToPopOnReturn  = 0; // Callee pops nothing.
963
964    // If this is an sret function, the return should pop the hidden pointer.
965    if (NumArgs &&
966        (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
967         ISD::ParamFlags::StructReturn))
968      BytesToPopOnReturn = 4;
969
970    BytesCallerReserves = StackSize;
971  }
972
973  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
974
975  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
976  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
977
978  // Return the new list of results.
979  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
980                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
981}
982
983SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
984                                            unsigned CC) {
985  SDOperand Chain     = Op.getOperand(0);
986  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
987  SDOperand Callee    = Op.getOperand(4);
988  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
989
990  // Analyze operands of the call, assigning locations to each operand.
991  SmallVector<CCValAssign, 16> ArgLocs;
992  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
993  if(CC==CallingConv::Fast && PerformTailCallOpt)
994    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_TailCall);
995  else
996    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
997
998  // Get a count of how many bytes are to be pushed on the stack.
999  unsigned NumBytes = CCInfo.getNextStackOffset();
1000  if (CC==CallingConv::Fast)
1001    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1002
1003  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1004
1005  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1006  SmallVector<SDOperand, 8> MemOpChains;
1007
1008  SDOperand StackPtr;
1009
1010  // Walk the register/memloc assignments, inserting copies/loads.
1011  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1012    CCValAssign &VA = ArgLocs[i];
1013    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1014
1015    // Promote the value if needed.
1016    switch (VA.getLocInfo()) {
1017    default: assert(0 && "Unknown loc info!");
1018    case CCValAssign::Full: break;
1019    case CCValAssign::SExt:
1020      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1021      break;
1022    case CCValAssign::ZExt:
1023      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1024      break;
1025    case CCValAssign::AExt:
1026      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1027      break;
1028    }
1029
1030    if (VA.isRegLoc()) {
1031      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1032    } else {
1033      assert(VA.isMemLoc());
1034      if (StackPtr.Val == 0)
1035        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1036
1037      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1038                                             Arg));
1039    }
1040  }
1041
1042  // If the first argument is an sret pointer, remember it.
1043  bool isSRet = NumOps &&
1044    (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
1045     ISD::ParamFlags::StructReturn);
1046
1047  if (!MemOpChains.empty())
1048    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1049                        &MemOpChains[0], MemOpChains.size());
1050
1051  // Build a sequence of copy-to-reg nodes chained together with token chain
1052  // and flag operands which copy the outgoing args into registers.
1053  SDOperand InFlag;
1054  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1055    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1056                             InFlag);
1057    InFlag = Chain.getValue(1);
1058  }
1059
1060  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1061  // GOT pointer.
1062  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1063      Subtarget->isPICStyleGOT()) {
1064    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1065                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1066                             InFlag);
1067    InFlag = Chain.getValue(1);
1068  }
1069
1070  // If the callee is a GlobalAddress node (quite common, every direct call is)
1071  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1072  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1073    // We should use extra load for direct calls to dllimported functions in
1074    // non-JIT mode.
1075    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1076                                        getTargetMachine(), true))
1077      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1078  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1079    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1080
1081  // Returns a chain & a flag for retval copy to use.
1082  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1083  SmallVector<SDOperand, 8> Ops;
1084  Ops.push_back(Chain);
1085  Ops.push_back(Callee);
1086
1087  // Add argument registers to the end of the list so that they are known live
1088  // into the call.
1089  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1090    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1091                                  RegsToPass[i].second.getValueType()));
1092
1093  // Add an implicit use GOT pointer in EBX.
1094  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1095      Subtarget->isPICStyleGOT())
1096    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1097
1098  if (InFlag.Val)
1099    Ops.push_back(InFlag);
1100
1101  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1102  InFlag = Chain.getValue(1);
1103
1104  // Create the CALLSEQ_END node.
1105  unsigned NumBytesForCalleeToPush = 0;
1106
1107  if (CC == CallingConv::X86_StdCall ||
1108      (CC == CallingConv::Fast && PerformTailCallOpt)) {
1109    if (isVarArg)
1110      NumBytesForCalleeToPush = isSRet ? 4 : 0;
1111    else
1112      NumBytesForCalleeToPush = NumBytes;
1113    assert(!(isVarArg && CC==CallingConv::Fast) &&
1114            "CallingConv::Fast does not support varargs.");
1115  } else {
1116    // If this is is a call to a struct-return function, the callee
1117    // pops the hidden struct pointer, so we have to push it back.
1118    // This is common for Darwin/X86, Linux & Mingw32 targets.
1119    NumBytesForCalleeToPush = isSRet ? 4 : 0;
1120  }
1121
1122  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1123  Ops.clear();
1124  Ops.push_back(Chain);
1125  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1126  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
1127  Ops.push_back(InFlag);
1128  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1129  InFlag = Chain.getValue(1);
1130
1131  // Handle result values, copying them out of physregs into vregs that we
1132  // return.
1133  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1134}
1135
1136
1137//===----------------------------------------------------------------------===//
1138//                   FastCall Calling Convention implementation
1139//===----------------------------------------------------------------------===//
1140//
1141// The X86 'fastcall' calling convention passes up to two integer arguments in
1142// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
1143// and requires that the callee pop its arguments off the stack (allowing proper
1144// tail calls), and has the same return value conventions as C calling convs.
1145//
1146// This calling convention always arranges for the callee pop value to be 8n+4
1147// bytes, which is needed for tail recursion elimination and stack alignment
1148// reasons.
1149SDOperand
1150X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
1151  MachineFunction &MF = DAG.getMachineFunction();
1152  MachineFrameInfo *MFI = MF.getFrameInfo();
1153  SDOperand Root = Op.getOperand(0);
1154  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1155
1156  // Assign locations to all of the incoming arguments.
1157  SmallVector<CCValAssign, 16> ArgLocs;
1158  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1159                 getTargetMachine(), ArgLocs);
1160  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
1161
1162  SmallVector<SDOperand, 8> ArgValues;
1163  unsigned LastVal = ~0U;
1164  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1165    CCValAssign &VA = ArgLocs[i];
1166    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1167    // places.
1168    assert(VA.getValNo() != LastVal &&
1169           "Don't support value assigned to multiple locs yet");
1170    LastVal = VA.getValNo();
1171
1172    if (VA.isRegLoc()) {
1173      MVT::ValueType RegVT = VA.getLocVT();
1174      TargetRegisterClass *RC;
1175      if (RegVT == MVT::i32)
1176        RC = X86::GR32RegisterClass;
1177      else {
1178        assert(MVT::isVector(RegVT));
1179        RC = X86::VR128RegisterClass;
1180      }
1181
1182      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1183      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1184
1185      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1186      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1187      // right size.
1188      if (VA.getLocInfo() == CCValAssign::SExt)
1189        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1190                               DAG.getValueType(VA.getValVT()));
1191      else if (VA.getLocInfo() == CCValAssign::ZExt)
1192        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1193                               DAG.getValueType(VA.getValVT()));
1194
1195      if (VA.getLocInfo() != CCValAssign::Full)
1196        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1197
1198      ArgValues.push_back(ArgValue);
1199    } else {
1200      assert(VA.isMemLoc());
1201      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
1202    }
1203  }
1204
1205  ArgValues.push_back(Root);
1206
1207  unsigned StackSize = CCInfo.getNextStackOffset();
1208
1209  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1210    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1211    // arguments and the arguments after the retaddr has been pushed are
1212    // aligned.
1213    if ((StackSize & 7) == 0)
1214      StackSize += 4;
1215  }
1216
1217  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1218  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
1219  BytesToPopOnReturn = StackSize;  // Callee pops all stack arguments.
1220  BytesCallerReserves = 0;
1221
1222  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1223  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1224
1225  // Return the new list of results.
1226  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1227                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1228}
1229
1230SDOperand
1231X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1232                                    const SDOperand &StackPtr,
1233                                    const CCValAssign &VA,
1234                                    SDOperand Chain,
1235                                    SDOperand Arg) {
1236  SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1237  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1238  SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1239  unsigned Flags    = cast<ConstantSDNode>(FlagsOp)->getValue();
1240  if (Flags & ISD::ParamFlags::ByVal) {
1241    unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1242                           ISD::ParamFlags::ByValAlignOffs);
1243
1244    unsigned  Size = (Flags & ISD::ParamFlags::ByValSize) >>
1245        ISD::ParamFlags::ByValSizeOffs;
1246
1247    SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1248    SDOperand  SizeNode = DAG.getConstant(Size, MVT::i32);
1249
1250    return DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, PtrOff, Arg, SizeNode,
1251                       AlignNode);
1252  } else {
1253    return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1254  }
1255}
1256
1257SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1258                                               unsigned CC) {
1259  SDOperand Chain     = Op.getOperand(0);
1260  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1261  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1262  SDOperand Callee    = Op.getOperand(4);
1263
1264  // Analyze operands of the call, assigning locations to each operand.
1265  SmallVector<CCValAssign, 16> ArgLocs;
1266  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1267  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1268
1269  // Get a count of how many bytes are to be pushed on the stack.
1270  unsigned NumBytes = CCInfo.getNextStackOffset();
1271
1272  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1273    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1274    // arguments and the arguments after the retaddr has been pushed are
1275    // aligned.
1276    if ((NumBytes & 7) == 0)
1277      NumBytes += 4;
1278  }
1279
1280  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1281
1282  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1283  SmallVector<SDOperand, 8> MemOpChains;
1284
1285  SDOperand StackPtr;
1286
1287  // Walk the register/memloc assignments, inserting copies/loads.
1288  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1289    CCValAssign &VA = ArgLocs[i];
1290    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1291
1292    // Promote the value if needed.
1293    switch (VA.getLocInfo()) {
1294      default: assert(0 && "Unknown loc info!");
1295      case CCValAssign::Full: break;
1296      case CCValAssign::SExt:
1297        Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1298        break;
1299      case CCValAssign::ZExt:
1300        Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1301        break;
1302      case CCValAssign::AExt:
1303        Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1304        break;
1305    }
1306
1307    if (VA.isRegLoc()) {
1308      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1309    } else {
1310      assert(VA.isMemLoc());
1311      if (StackPtr.Val == 0)
1312        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1313
1314      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1315                                             Arg));
1316    }
1317  }
1318
1319  if (!MemOpChains.empty())
1320    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1321                        &MemOpChains[0], MemOpChains.size());
1322
1323  // Build a sequence of copy-to-reg nodes chained together with token chain
1324  // and flag operands which copy the outgoing args into registers.
1325  SDOperand InFlag;
1326  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1327    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1328                             InFlag);
1329    InFlag = Chain.getValue(1);
1330  }
1331
1332  // If the callee is a GlobalAddress node (quite common, every direct call is)
1333  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1334  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1335    // We should use extra load for direct calls to dllimported functions in
1336    // non-JIT mode.
1337    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1338                                        getTargetMachine(), true))
1339      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1340  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1341    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1342
1343  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1344  // GOT pointer.
1345  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1346      Subtarget->isPICStyleGOT()) {
1347    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1348                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1349                             InFlag);
1350    InFlag = Chain.getValue(1);
1351  }
1352
1353  // Returns a chain & a flag for retval copy to use.
1354  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1355  SmallVector<SDOperand, 8> Ops;
1356  Ops.push_back(Chain);
1357  Ops.push_back(Callee);
1358
1359  // Add argument registers to the end of the list so that they are known live
1360  // into the call.
1361  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1362    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1363                                  RegsToPass[i].second.getValueType()));
1364
1365  // Add an implicit use GOT pointer in EBX.
1366  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1367      Subtarget->isPICStyleGOT())
1368    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1369
1370  if (InFlag.Val)
1371    Ops.push_back(InFlag);
1372
1373  assert(isTailCall==false && "no tail call here");
1374  Chain = DAG.getNode(X86ISD::CALL,
1375                      NodeTys, &Ops[0], Ops.size());
1376  InFlag = Chain.getValue(1);
1377
1378  // Returns a flag for retval copy to use.
1379  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1380  Ops.clear();
1381  Ops.push_back(Chain);
1382  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1383  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1384  Ops.push_back(InFlag);
1385  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1386  InFlag = Chain.getValue(1);
1387
1388  // Handle result values, copying them out of physregs into vregs that we
1389  // return.
1390  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1391}
1392
1393//===----------------------------------------------------------------------===//
1394//                Fast Calling Convention (tail call) implementation
1395//===----------------------------------------------------------------------===//
1396
1397//  Like std call, callee cleans arguments, convention except that ECX is
1398//  reserved for storing the tail called function address. Only 2 registers are
1399//  free for argument passing (inreg). Tail call optimization is performed
1400//  provided:
1401//                * tailcallopt is enabled
1402//                * caller/callee are fastcc
1403//                * elf/pic is disabled OR
1404//                * elf/pic enabled + callee is in module + callee has
1405//                  visibility protected or hidden
1406//  To keep the stack aligned according to platform abi the function
1407//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1408//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1409//  If a tail called function callee has more arguments than the caller the
1410//  caller needs to make sure that there is room to move the RETADDR to. This is
1411//  achieved by reserving an area the size of the argument delta right after the
1412//  original REtADDR, but before the saved framepointer or the spilled registers
1413//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1414//  stack layout:
1415//    arg1
1416//    arg2
1417//    RETADDR
1418//    [ new RETADDR
1419//      move area ]
1420//    (possible EBP)
1421//    ESI
1422//    EDI
1423//    local1 ..
1424
1425/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1426/// for a 16 byte align requirement.
1427unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1428                                                        SelectionDAG& DAG) {
1429  if (PerformTailCallOpt) {
1430    MachineFunction &MF = DAG.getMachineFunction();
1431    const TargetMachine &TM = MF.getTarget();
1432    const TargetFrameInfo &TFI = *TM.getFrameInfo();
1433    unsigned StackAlignment = TFI.getStackAlignment();
1434    uint64_t AlignMask = StackAlignment - 1;
1435    int64_t Offset = StackSize;
1436    unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
1437    if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1438      // Number smaller than 12 so just add the difference.
1439      Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1440    } else {
1441      // Mask out lower bits, add stackalignment once plus the 12 bytes.
1442      Offset = ((~AlignMask) & Offset) + StackAlignment +
1443        (StackAlignment-SlotSize);
1444    }
1445    StackSize = Offset;
1446  }
1447  return StackSize;
1448}
1449
1450/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1451// following the call is a return. A function is eligible if caller/callee
1452// calling conventions match, currently only fastcc supports tail calls, and the
1453// function CALL is immediatly followed by a RET.
1454bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call,
1455                                                      SDOperand Ret,
1456                                                      SelectionDAG& DAG) const {
1457  bool IsEligible = false;
1458
1459  // Check whether CALL node immediatly preceeds the RET node and whether the
1460  // return uses the result of the node or is a void return.
1461  if ((Ret.getNumOperands() == 1 &&
1462       (Ret.getOperand(0)== SDOperand(Call.Val,1) ||
1463        Ret.getOperand(0)== SDOperand(Call.Val,0))) ||
1464      (Ret.getOperand(0)== SDOperand(Call.Val,Call.Val->getNumValues()-1) &&
1465       Ret.getOperand(1)== SDOperand(Call.Val,0))) {
1466    MachineFunction &MF = DAG.getMachineFunction();
1467    unsigned CallerCC = MF.getFunction()->getCallingConv();
1468    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1469    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1470      SDOperand Callee = Call.getOperand(4);
1471      // On elf/pic %ebx needs to be livein.
1472      if(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1473         Subtarget->isPICStyleGOT()) {
1474        // Can only do local tail calls with PIC.
1475        GlobalValue * GV = 0;
1476        GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1477        if(G != 0 &&
1478           (GV = G->getGlobal()) &&
1479           (GV->hasHiddenVisibility() || GV->hasProtectedVisibility()))
1480          IsEligible=true;
1481      } else {
1482        IsEligible=true;
1483      }
1484    }
1485  }
1486  return IsEligible;
1487}
1488
1489SDOperand X86TargetLowering::LowerX86_TailCallTo(SDOperand Op,
1490                                                     SelectionDAG &DAG,
1491                                                     unsigned CC) {
1492  SDOperand Chain     = Op.getOperand(0);
1493  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1494  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1495  SDOperand Callee    = Op.getOperand(4);
1496  bool is64Bit        = Subtarget->is64Bit();
1497
1498  assert(isTailCall && PerformTailCallOpt && "Should only emit tail calls.");
1499
1500  // Analyze operands of the call, assigning locations to each operand.
1501  SmallVector<CCValAssign, 16> ArgLocs;
1502  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1503  if (is64Bit)
1504    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_TailCall);
1505  else
1506    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_TailCall);
1507
1508
1509  // Lower arguments at fp - stackoffset + fpdiff.
1510  MachineFunction &MF = DAG.getMachineFunction();
1511
1512  unsigned NumBytesToBePushed =
1513    GetAlignedArgumentStackSize(CCInfo.getNextStackOffset(), DAG);
1514
1515  unsigned NumBytesCallerPushed =
1516    MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1517  int FPDiff = NumBytesCallerPushed - NumBytesToBePushed;
1518
1519  // Set the delta of movement of the returnaddr stackslot.
1520  // But only set if delta is greater than previous delta.
1521  if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1522    MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1523
1524  Chain = DAG.
1525   getCALLSEQ_START(Chain, DAG.getConstant(NumBytesToBePushed, getPointerTy()));
1526
1527  // Adjust the Return address stack slot.
1528  SDOperand RetAddrFrIdx, NewRetAddrFrIdx;
1529  if (FPDiff) {
1530    MVT::ValueType VT = is64Bit ? MVT::i64 : MVT::i32;
1531    RetAddrFrIdx = getReturnAddressFrameIndex(DAG);
1532    // Load the "old" Return address.
1533    RetAddrFrIdx =
1534      DAG.getLoad(VT, Chain,RetAddrFrIdx, NULL, 0);
1535    // Calculate the new stack slot for the return address.
1536    int SlotSize = is64Bit ? 8 : 4;
1537    int NewReturnAddrFI =
1538      MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1539    NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1540    Chain = SDOperand(RetAddrFrIdx.Val, 1);
1541  }
1542
1543  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1544  SmallVector<SDOperand, 8> MemOpChains;
1545  SmallVector<SDOperand, 8> MemOpChains2;
1546  SDOperand FramePtr, StackPtr;
1547  SDOperand PtrOff;
1548  SDOperand FIN;
1549  int FI = 0;
1550
1551  // Walk the register/memloc assignments, inserting copies/loads.  Lower
1552  // arguments first to the stack slot where they would normally - in case of a
1553  // normal function call - be.
1554  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1555    CCValAssign &VA = ArgLocs[i];
1556    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1557
1558    // Promote the value if needed.
1559    switch (VA.getLocInfo()) {
1560    default: assert(0 && "Unknown loc info!");
1561    case CCValAssign::Full: break;
1562    case CCValAssign::SExt:
1563      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1564      break;
1565    case CCValAssign::ZExt:
1566      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1567      break;
1568    case CCValAssign::AExt:
1569      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1570      break;
1571    }
1572
1573    if (VA.isRegLoc()) {
1574      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1575    } else {
1576      assert(VA.isMemLoc());
1577      if (StackPtr.Val == 0)
1578        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1579
1580      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1581                                             Arg));
1582    }
1583  }
1584
1585  if (!MemOpChains.empty())
1586    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1587                        &MemOpChains[0], MemOpChains.size());
1588
1589  // Build a sequence of copy-to-reg nodes chained together with token chain
1590  // and flag operands which copy the outgoing args into registers.
1591  SDOperand InFlag;
1592  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1593    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1594                             InFlag);
1595    InFlag = Chain.getValue(1);
1596  }
1597  InFlag = SDOperand();
1598
1599  // Copy from stack slots to stack slot of a tail called function. This needs
1600  // to be done because if we would lower the arguments directly to their real
1601  // stack slot we might end up overwriting each other.
1602  // TODO: To make this more efficient (sometimes saving a store/load) we could
1603  // analyse the arguments and emit this store/load/store sequence only for
1604  // arguments which would be overwritten otherwise.
1605  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1606    CCValAssign &VA = ArgLocs[i];
1607    if (!VA.isRegLoc()) {
1608      SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1609      unsigned Flags    = cast<ConstantSDNode>(FlagsOp)->getValue();
1610
1611      // Get source stack slot.
1612      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1613      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1614      // Create frame index.
1615      int32_t Offset = VA.getLocMemOffset()+FPDiff;
1616      uint32_t OpSize = (MVT::getSizeInBits(VA.getLocVT())+7)/8;
1617      FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1618      FIN = DAG.getFrameIndex(FI, MVT::i32);
1619      if (Flags & ISD::ParamFlags::ByVal) {
1620        // Copy relative to framepointer.
1621        unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1622                               ISD::ParamFlags::ByValAlignOffs);
1623
1624        unsigned  Size = (Flags & ISD::ParamFlags::ByValSize) >>
1625          ISD::ParamFlags::ByValSizeOffs;
1626
1627        SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1628        SDOperand  SizeNode = DAG.getConstant(Size, MVT::i32);
1629        // Copy relative to framepointer.
1630        MemOpChains2.push_back(DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, FIN,
1631                                           PtrOff, SizeNode, AlignNode));
1632      } else {
1633        SDOperand LoadedArg = DAG.getLoad(VA.getValVT(), Chain, PtrOff, NULL,0);
1634        // Store relative to framepointer.
1635        MemOpChains2.push_back(DAG.getStore(Chain, LoadedArg, FIN, NULL, 0));
1636      }
1637    }
1638  }
1639
1640  if (!MemOpChains2.empty())
1641    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1642                        &MemOpChains2[0], MemOpChains.size());
1643
1644  // Store the return address to the appropriate stack slot.
1645  if (FPDiff)
1646    Chain = DAG.getStore(Chain,RetAddrFrIdx, NewRetAddrFrIdx, NULL, 0);
1647
1648  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1649  // GOT pointer.
1650  // Does not work with tail call since ebx is not restored correctly by
1651  // tailcaller. TODO: at least for x86 - verify for x86-64
1652
1653  // If the callee is a GlobalAddress node (quite common, every direct call is)
1654  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1655  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1656    // We should use extra load for direct calls to dllimported functions in
1657    // non-JIT mode.
1658    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1659                                        getTargetMachine(), true))
1660      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1661  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1662    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1663  else {
1664    assert(Callee.getOpcode() == ISD::LOAD &&
1665           "Function destination must be loaded into virtual register");
1666    unsigned Opc = is64Bit ? X86::R9 : X86::ECX;
1667
1668    Chain = DAG.getCopyToReg(Chain,
1669                             DAG.getRegister(Opc, getPointerTy()) ,
1670                             Callee,InFlag);
1671    Callee = DAG.getRegister(Opc, getPointerTy());
1672    // Add register as live out.
1673    DAG.getMachineFunction().addLiveOut(Opc);
1674  }
1675
1676  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1677  SmallVector<SDOperand, 8> Ops;
1678
1679  Ops.push_back(Chain);
1680  Ops.push_back(DAG.getConstant(NumBytesToBePushed, getPointerTy()));
1681  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1682  if (InFlag.Val)
1683    Ops.push_back(InFlag);
1684  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1685  InFlag = Chain.getValue(1);
1686
1687  // Returns a chain & a flag for retval copy to use.
1688  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1689  Ops.clear();
1690  Ops.push_back(Chain);
1691  Ops.push_back(Callee);
1692  Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1693  // Add argument registers to the end of the list so that they are known live
1694  // into the call.
1695  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1696    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1697                                  RegsToPass[i].second.getValueType()));
1698  if (InFlag.Val)
1699    Ops.push_back(InFlag);
1700  assert(InFlag.Val &&
1701         "Flag must be set. Depend on flag being set in LowerRET");
1702  Chain = DAG.getNode(X86ISD::TAILCALL,
1703                      Op.Val->getVTList(), &Ops[0], Ops.size());
1704
1705  return SDOperand(Chain.Val, Op.ResNo);
1706}
1707
1708//===----------------------------------------------------------------------===//
1709//                 X86-64 C Calling Convention implementation
1710//===----------------------------------------------------------------------===//
1711
1712SDOperand
1713X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1714  MachineFunction &MF = DAG.getMachineFunction();
1715  MachineFrameInfo *MFI = MF.getFrameInfo();
1716  SDOperand Root = Op.getOperand(0);
1717  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1718  unsigned CC= MF.getFunction()->getCallingConv();
1719
1720  static const unsigned GPR64ArgRegs[] = {
1721    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1722  };
1723  static const unsigned XMMArgRegs[] = {
1724    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1725    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1726  };
1727
1728
1729  // Assign locations to all of the incoming arguments.
1730  SmallVector<CCValAssign, 16> ArgLocs;
1731  CCState CCInfo(CC, isVarArg,
1732                 getTargetMachine(), ArgLocs);
1733  if (CC == CallingConv::Fast && PerformTailCallOpt)
1734    CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_TailCall);
1735  else
1736    CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1737
1738  SmallVector<SDOperand, 8> ArgValues;
1739  unsigned LastVal = ~0U;
1740  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1741    CCValAssign &VA = ArgLocs[i];
1742    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1743    // places.
1744    assert(VA.getValNo() != LastVal &&
1745           "Don't support value assigned to multiple locs yet");
1746    LastVal = VA.getValNo();
1747
1748    if (VA.isRegLoc()) {
1749      MVT::ValueType RegVT = VA.getLocVT();
1750      TargetRegisterClass *RC;
1751      if (RegVT == MVT::i32)
1752        RC = X86::GR32RegisterClass;
1753      else if (RegVT == MVT::i64)
1754        RC = X86::GR64RegisterClass;
1755      else if (RegVT == MVT::f32)
1756        RC = X86::FR32RegisterClass;
1757      else if (RegVT == MVT::f64)
1758        RC = X86::FR64RegisterClass;
1759      else {
1760        assert(MVT::isVector(RegVT));
1761        if (MVT::getSizeInBits(RegVT) == 64) {
1762          RC = X86::GR64RegisterClass;       // MMX values are passed in GPRs.
1763          RegVT = MVT::i64;
1764        } else
1765          RC = X86::VR128RegisterClass;
1766      }
1767
1768      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1769      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1770
1771      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1772      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1773      // right size.
1774      if (VA.getLocInfo() == CCValAssign::SExt)
1775        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1776                               DAG.getValueType(VA.getValVT()));
1777      else if (VA.getLocInfo() == CCValAssign::ZExt)
1778        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1779                               DAG.getValueType(VA.getValVT()));
1780
1781      if (VA.getLocInfo() != CCValAssign::Full)
1782        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1783
1784      // Handle MMX values passed in GPRs.
1785      if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1786          MVT::getSizeInBits(RegVT) == 64)
1787        ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1788
1789      ArgValues.push_back(ArgValue);
1790    } else {
1791      assert(VA.isMemLoc());
1792      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
1793    }
1794  }
1795
1796  unsigned StackSize = CCInfo.getNextStackOffset();
1797  if (CC==CallingConv::Fast)
1798    StackSize =GetAlignedArgumentStackSize(StackSize, DAG);
1799
1800  // If the function takes variable number of arguments, make a frame index for
1801  // the start of the first vararg value... for expansion of llvm.va_start.
1802  if (isVarArg) {
1803    assert(CC!=CallingConv::Fast
1804           && "Var arg not supported with calling convention fastcc");
1805    unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1806    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1807
1808    // For X86-64, if there are vararg parameters that are passed via
1809    // registers, then we must store them to their spots on the stack so they
1810    // may be loaded by deferencing the result of va_next.
1811    VarArgsGPOffset = NumIntRegs * 8;
1812    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1813    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1814    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1815
1816    // Store the integer parameter registers.
1817    SmallVector<SDOperand, 8> MemOps;
1818    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1819    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1820                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1821    for (; NumIntRegs != 6; ++NumIntRegs) {
1822      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1823                                X86::GR64RegisterClass);
1824      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1825      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1826      MemOps.push_back(Store);
1827      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1828                        DAG.getConstant(8, getPointerTy()));
1829    }
1830
1831    // Now store the XMM (fp + vector) parameter registers.
1832    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1833                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1834    for (; NumXMMRegs != 8; ++NumXMMRegs) {
1835      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1836                                X86::VR128RegisterClass);
1837      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1838      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1839      MemOps.push_back(Store);
1840      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1841                        DAG.getConstant(16, getPointerTy()));
1842    }
1843    if (!MemOps.empty())
1844        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1845                           &MemOps[0], MemOps.size());
1846  }
1847
1848  ArgValues.push_back(Root);
1849  // Tail call convention (fastcc) needs callee pop.
1850  if (CC == CallingConv::Fast && PerformTailCallOpt) {
1851    BytesToPopOnReturn = StackSize;  // Callee pops everything.
1852    BytesCallerReserves = 0;
1853  } else {
1854    BytesToPopOnReturn = 0;  // Callee pops nothing.
1855    BytesCallerReserves = StackSize;
1856  }
1857  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1858  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1859
1860  // Return the new list of results.
1861  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1862                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1863}
1864
1865SDOperand
1866X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1867                                        unsigned CC) {
1868  SDOperand Chain     = Op.getOperand(0);
1869  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1870  SDOperand Callee    = Op.getOperand(4);
1871
1872  // Analyze operands of the call, assigning locations to each operand.
1873  SmallVector<CCValAssign, 16> ArgLocs;
1874  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1875  if (CC==CallingConv::Fast && PerformTailCallOpt)
1876    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_TailCall);
1877  else
1878    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1879
1880  // Get a count of how many bytes are to be pushed on the stack.
1881  unsigned NumBytes = CCInfo.getNextStackOffset();
1882  if (CC == CallingConv::Fast)
1883    NumBytes = GetAlignedArgumentStackSize(NumBytes,DAG);
1884
1885  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1886
1887  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1888  SmallVector<SDOperand, 8> MemOpChains;
1889
1890  SDOperand StackPtr;
1891
1892  // Walk the register/memloc assignments, inserting copies/loads.
1893  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1894    CCValAssign &VA = ArgLocs[i];
1895    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1896
1897    // Promote the value if needed.
1898    switch (VA.getLocInfo()) {
1899    default: assert(0 && "Unknown loc info!");
1900    case CCValAssign::Full: break;
1901    case CCValAssign::SExt:
1902      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1903      break;
1904    case CCValAssign::ZExt:
1905      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1906      break;
1907    case CCValAssign::AExt:
1908      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1909      break;
1910    }
1911
1912    if (VA.isRegLoc()) {
1913      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1914    } else {
1915      assert(VA.isMemLoc());
1916      if (StackPtr.Val == 0)
1917        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1918
1919      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1920                                             Arg));
1921    }
1922  }
1923
1924  if (!MemOpChains.empty())
1925    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1926                        &MemOpChains[0], MemOpChains.size());
1927
1928  // Build a sequence of copy-to-reg nodes chained together with token chain
1929  // and flag operands which copy the outgoing args into registers.
1930  SDOperand InFlag;
1931  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1932    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1933                             InFlag);
1934    InFlag = Chain.getValue(1);
1935  }
1936
1937  if (isVarArg) {
1938    assert ( CallingConv::Fast != CC &&
1939             "Var args not supported with calling convention fastcc");
1940
1941    // From AMD64 ABI document:
1942    // For calls that may call functions that use varargs or stdargs
1943    // (prototype-less calls or calls to functions containing ellipsis (...) in
1944    // the declaration) %al is used as hidden argument to specify the number
1945    // of SSE registers used. The contents of %al do not need to match exactly
1946    // the number of registers, but must be an ubound on the number of SSE
1947    // registers used and is in the range 0 - 8 inclusive.
1948
1949    // Count the number of XMM registers allocated.
1950    static const unsigned XMMArgRegs[] = {
1951      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1952      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1953    };
1954    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1955
1956    Chain = DAG.getCopyToReg(Chain, X86::AL,
1957                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1958    InFlag = Chain.getValue(1);
1959  }
1960
1961  // If the callee is a GlobalAddress node (quite common, every direct call is)
1962  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1963  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1964    // We should use extra load for direct calls to dllimported functions in
1965    // non-JIT mode.
1966    if (getTargetMachine().getCodeModel() != CodeModel::Large
1967        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1968                                           getTargetMachine(), true))
1969      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1970  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1971    if (getTargetMachine().getCodeModel() != CodeModel::Large)
1972      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1973
1974  // Returns a chain & a flag for retval copy to use.
1975  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1976  SmallVector<SDOperand, 8> Ops;
1977  Ops.push_back(Chain);
1978  Ops.push_back(Callee);
1979
1980  // Add argument registers to the end of the list so that they are known live
1981  // into the call.
1982  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1983    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1984                                  RegsToPass[i].second.getValueType()));
1985
1986  if (InFlag.Val)
1987    Ops.push_back(InFlag);
1988
1989  Chain = DAG.getNode(X86ISD::CALL,
1990                      NodeTys, &Ops[0], Ops.size());
1991  InFlag = Chain.getValue(1);
1992  int NumBytesForCalleeToPush = 0;
1993   if (CC==CallingConv::Fast && PerformTailCallOpt) {
1994    NumBytesForCalleeToPush = NumBytes;  // Callee pops everything
1995  } else {
1996    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1997  }
1998  // Returns a flag for retval copy to use.
1999  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2000  Ops.clear();
2001  Ops.push_back(Chain);
2002  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
2003  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
2004  Ops.push_back(InFlag);
2005  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
2006  InFlag = Chain.getValue(1);
2007
2008  // Handle result values, copying them out of physregs into vregs that we
2009  // return.
2010  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
2011}
2012
2013
2014//===----------------------------------------------------------------------===//
2015//                           Other Lowering Hooks
2016//===----------------------------------------------------------------------===//
2017
2018
2019SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2020  MachineFunction &MF = DAG.getMachineFunction();
2021  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2022  int ReturnAddrIndex = FuncInfo->getRAIndex();
2023
2024  if (ReturnAddrIndex == 0) {
2025    // Set up a frame object for the return address.
2026    if (Subtarget->is64Bit())
2027      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
2028    else
2029      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
2030
2031    FuncInfo->setRAIndex(ReturnAddrIndex);
2032  }
2033
2034  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2035}
2036
2037
2038
2039/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
2040/// specific condition code. It returns a false if it cannot do a direct
2041/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
2042/// needed.
2043static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2044                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
2045                           SelectionDAG &DAG) {
2046  X86CC = X86::COND_INVALID;
2047  if (!isFP) {
2048    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2049      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2050        // X > -1   -> X == 0, jump !sign.
2051        RHS = DAG.getConstant(0, RHS.getValueType());
2052        X86CC = X86::COND_NS;
2053        return true;
2054      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2055        // X < 0   -> X == 0, jump on sign.
2056        X86CC = X86::COND_S;
2057        return true;
2058      } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
2059        // X < 1   -> X <= 0
2060        RHS = DAG.getConstant(0, RHS.getValueType());
2061        X86CC = X86::COND_LE;
2062        return true;
2063      }
2064    }
2065
2066    switch (SetCCOpcode) {
2067    default: break;
2068    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
2069    case ISD::SETGT:  X86CC = X86::COND_G;  break;
2070    case ISD::SETGE:  X86CC = X86::COND_GE; break;
2071    case ISD::SETLT:  X86CC = X86::COND_L;  break;
2072    case ISD::SETLE:  X86CC = X86::COND_LE; break;
2073    case ISD::SETNE:  X86CC = X86::COND_NE; break;
2074    case ISD::SETULT: X86CC = X86::COND_B;  break;
2075    case ISD::SETUGT: X86CC = X86::COND_A;  break;
2076    case ISD::SETULE: X86CC = X86::COND_BE; break;
2077    case ISD::SETUGE: X86CC = X86::COND_AE; break;
2078    }
2079  } else {
2080    // On a floating point condition, the flags are set as follows:
2081    // ZF  PF  CF   op
2082    //  0 | 0 | 0 | X > Y
2083    //  0 | 0 | 1 | X < Y
2084    //  1 | 0 | 0 | X == Y
2085    //  1 | 1 | 1 | unordered
2086    bool Flip = false;
2087    switch (SetCCOpcode) {
2088    default: break;
2089    case ISD::SETUEQ:
2090    case ISD::SETEQ: X86CC = X86::COND_E;  break;
2091    case ISD::SETOLT: Flip = true; // Fallthrough
2092    case ISD::SETOGT:
2093    case ISD::SETGT: X86CC = X86::COND_A;  break;
2094    case ISD::SETOLE: Flip = true; // Fallthrough
2095    case ISD::SETOGE:
2096    case ISD::SETGE: X86CC = X86::COND_AE; break;
2097    case ISD::SETUGT: Flip = true; // Fallthrough
2098    case ISD::SETULT:
2099    case ISD::SETLT: X86CC = X86::COND_B;  break;
2100    case ISD::SETUGE: Flip = true; // Fallthrough
2101    case ISD::SETULE:
2102    case ISD::SETLE: X86CC = X86::COND_BE; break;
2103    case ISD::SETONE:
2104    case ISD::SETNE: X86CC = X86::COND_NE; break;
2105    case ISD::SETUO: X86CC = X86::COND_P;  break;
2106    case ISD::SETO:  X86CC = X86::COND_NP; break;
2107    }
2108    if (Flip)
2109      std::swap(LHS, RHS);
2110  }
2111
2112  return X86CC != X86::COND_INVALID;
2113}
2114
2115/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2116/// code. Current x86 isa includes the following FP cmov instructions:
2117/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2118static bool hasFPCMov(unsigned X86CC) {
2119  switch (X86CC) {
2120  default:
2121    return false;
2122  case X86::COND_B:
2123  case X86::COND_BE:
2124  case X86::COND_E:
2125  case X86::COND_P:
2126  case X86::COND_A:
2127  case X86::COND_AE:
2128  case X86::COND_NE:
2129  case X86::COND_NP:
2130    return true;
2131  }
2132}
2133
2134/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2135/// true if Op is undef or if its value falls within the specified range (L, H].
2136static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
2137  if (Op.getOpcode() == ISD::UNDEF)
2138    return true;
2139
2140  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
2141  return (Val >= Low && Val < Hi);
2142}
2143
2144/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2145/// true if Op is undef or if its value equal to the specified value.
2146static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
2147  if (Op.getOpcode() == ISD::UNDEF)
2148    return true;
2149  return cast<ConstantSDNode>(Op)->getValue() == Val;
2150}
2151
2152/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2153/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2154bool X86::isPSHUFDMask(SDNode *N) {
2155  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2156
2157  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
2158    return false;
2159
2160  // Check if the value doesn't reference the second vector.
2161  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2162    SDOperand Arg = N->getOperand(i);
2163    if (Arg.getOpcode() == ISD::UNDEF) continue;
2164    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2165    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
2166      return false;
2167  }
2168
2169  return true;
2170}
2171
2172/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2173/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2174bool X86::isPSHUFHWMask(SDNode *N) {
2175  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2176
2177  if (N->getNumOperands() != 8)
2178    return false;
2179
2180  // Lower quadword copied in order.
2181  for (unsigned i = 0; i != 4; ++i) {
2182    SDOperand Arg = N->getOperand(i);
2183    if (Arg.getOpcode() == ISD::UNDEF) continue;
2184    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2185    if (cast<ConstantSDNode>(Arg)->getValue() != i)
2186      return false;
2187  }
2188
2189  // Upper quadword shuffled.
2190  for (unsigned i = 4; i != 8; ++i) {
2191    SDOperand Arg = N->getOperand(i);
2192    if (Arg.getOpcode() == ISD::UNDEF) continue;
2193    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2194    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2195    if (Val < 4 || Val > 7)
2196      return false;
2197  }
2198
2199  return true;
2200}
2201
2202/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2203/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2204bool X86::isPSHUFLWMask(SDNode *N) {
2205  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2206
2207  if (N->getNumOperands() != 8)
2208    return false;
2209
2210  // Upper quadword copied in order.
2211  for (unsigned i = 4; i != 8; ++i)
2212    if (!isUndefOrEqual(N->getOperand(i), i))
2213      return false;
2214
2215  // Lower quadword shuffled.
2216  for (unsigned i = 0; i != 4; ++i)
2217    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2218      return false;
2219
2220  return true;
2221}
2222
2223/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2224/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2225static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
2226  if (NumElems != 2 && NumElems != 4) return false;
2227
2228  unsigned Half = NumElems / 2;
2229  for (unsigned i = 0; i < Half; ++i)
2230    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2231      return false;
2232  for (unsigned i = Half; i < NumElems; ++i)
2233    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2234      return false;
2235
2236  return true;
2237}
2238
2239bool X86::isSHUFPMask(SDNode *N) {
2240  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2241  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2242}
2243
2244/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2245/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2246/// half elements to come from vector 1 (which would equal the dest.) and
2247/// the upper half to come from vector 2.
2248static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
2249  if (NumOps != 2 && NumOps != 4) return false;
2250
2251  unsigned Half = NumOps / 2;
2252  for (unsigned i = 0; i < Half; ++i)
2253    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2254      return false;
2255  for (unsigned i = Half; i < NumOps; ++i)
2256    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2257      return false;
2258  return true;
2259}
2260
2261static bool isCommutedSHUFP(SDNode *N) {
2262  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2263  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2264}
2265
2266/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2267/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2268bool X86::isMOVHLPSMask(SDNode *N) {
2269  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2270
2271  if (N->getNumOperands() != 4)
2272    return false;
2273
2274  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2275  return isUndefOrEqual(N->getOperand(0), 6) &&
2276         isUndefOrEqual(N->getOperand(1), 7) &&
2277         isUndefOrEqual(N->getOperand(2), 2) &&
2278         isUndefOrEqual(N->getOperand(3), 3);
2279}
2280
2281/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2282/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2283/// <2, 3, 2, 3>
2284bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2285  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2286
2287  if (N->getNumOperands() != 4)
2288    return false;
2289
2290  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2291  return isUndefOrEqual(N->getOperand(0), 2) &&
2292         isUndefOrEqual(N->getOperand(1), 3) &&
2293         isUndefOrEqual(N->getOperand(2), 2) &&
2294         isUndefOrEqual(N->getOperand(3), 3);
2295}
2296
2297/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2298/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2299bool X86::isMOVLPMask(SDNode *N) {
2300  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2301
2302  unsigned NumElems = N->getNumOperands();
2303  if (NumElems != 2 && NumElems != 4)
2304    return false;
2305
2306  for (unsigned i = 0; i < NumElems/2; ++i)
2307    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2308      return false;
2309
2310  for (unsigned i = NumElems/2; i < NumElems; ++i)
2311    if (!isUndefOrEqual(N->getOperand(i), i))
2312      return false;
2313
2314  return true;
2315}
2316
2317/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2318/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2319/// and MOVLHPS.
2320bool X86::isMOVHPMask(SDNode *N) {
2321  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2322
2323  unsigned NumElems = N->getNumOperands();
2324  if (NumElems != 2 && NumElems != 4)
2325    return false;
2326
2327  for (unsigned i = 0; i < NumElems/2; ++i)
2328    if (!isUndefOrEqual(N->getOperand(i), i))
2329      return false;
2330
2331  for (unsigned i = 0; i < NumElems/2; ++i) {
2332    SDOperand Arg = N->getOperand(i + NumElems/2);
2333    if (!isUndefOrEqual(Arg, i + NumElems))
2334      return false;
2335  }
2336
2337  return true;
2338}
2339
2340/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2341/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2342bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
2343                         bool V2IsSplat = false) {
2344  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2345    return false;
2346
2347  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2348    SDOperand BitI  = Elts[i];
2349    SDOperand BitI1 = Elts[i+1];
2350    if (!isUndefOrEqual(BitI, j))
2351      return false;
2352    if (V2IsSplat) {
2353      if (isUndefOrEqual(BitI1, NumElts))
2354        return false;
2355    } else {
2356      if (!isUndefOrEqual(BitI1, j + NumElts))
2357        return false;
2358    }
2359  }
2360
2361  return true;
2362}
2363
2364bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2365  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2366  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2367}
2368
2369/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2370/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2371bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
2372                         bool V2IsSplat = false) {
2373  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2374    return false;
2375
2376  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2377    SDOperand BitI  = Elts[i];
2378    SDOperand BitI1 = Elts[i+1];
2379    if (!isUndefOrEqual(BitI, j + NumElts/2))
2380      return false;
2381    if (V2IsSplat) {
2382      if (isUndefOrEqual(BitI1, NumElts))
2383        return false;
2384    } else {
2385      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2386        return false;
2387    }
2388  }
2389
2390  return true;
2391}
2392
2393bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2394  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2395  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2396}
2397
2398/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2399/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2400/// <0, 0, 1, 1>
2401bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2402  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2403
2404  unsigned NumElems = N->getNumOperands();
2405  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2406    return false;
2407
2408  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2409    SDOperand BitI  = N->getOperand(i);
2410    SDOperand BitI1 = N->getOperand(i+1);
2411
2412    if (!isUndefOrEqual(BitI, j))
2413      return false;
2414    if (!isUndefOrEqual(BitI1, j))
2415      return false;
2416  }
2417
2418  return true;
2419}
2420
2421/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2422/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2423/// <2, 2, 3, 3>
2424bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2425  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2426
2427  unsigned NumElems = N->getNumOperands();
2428  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2429    return false;
2430
2431  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2432    SDOperand BitI  = N->getOperand(i);
2433    SDOperand BitI1 = N->getOperand(i + 1);
2434
2435    if (!isUndefOrEqual(BitI, j))
2436      return false;
2437    if (!isUndefOrEqual(BitI1, j))
2438      return false;
2439  }
2440
2441  return true;
2442}
2443
2444/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2445/// specifies a shuffle of elements that is suitable for input to MOVSS,
2446/// MOVSD, and MOVD, i.e. setting the lowest element.
2447static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
2448  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2449    return false;
2450
2451  if (!isUndefOrEqual(Elts[0], NumElts))
2452    return false;
2453
2454  for (unsigned i = 1; i < NumElts; ++i) {
2455    if (!isUndefOrEqual(Elts[i], i))
2456      return false;
2457  }
2458
2459  return true;
2460}
2461
2462bool X86::isMOVLMask(SDNode *N) {
2463  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2464  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2465}
2466
2467/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2468/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2469/// element of vector 2 and the other elements to come from vector 1 in order.
2470static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2471                           bool V2IsSplat = false,
2472                           bool V2IsUndef = false) {
2473  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2474    return false;
2475
2476  if (!isUndefOrEqual(Ops[0], 0))
2477    return false;
2478
2479  for (unsigned i = 1; i < NumOps; ++i) {
2480    SDOperand Arg = Ops[i];
2481    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2482          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2483          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2484      return false;
2485  }
2486
2487  return true;
2488}
2489
2490static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2491                           bool V2IsUndef = false) {
2492  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2493  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2494                        V2IsSplat, V2IsUndef);
2495}
2496
2497/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2498/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2499bool X86::isMOVSHDUPMask(SDNode *N) {
2500  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2501
2502  if (N->getNumOperands() != 4)
2503    return false;
2504
2505  // Expect 1, 1, 3, 3
2506  for (unsigned i = 0; i < 2; ++i) {
2507    SDOperand Arg = N->getOperand(i);
2508    if (Arg.getOpcode() == ISD::UNDEF) continue;
2509    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2510    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2511    if (Val != 1) return false;
2512  }
2513
2514  bool HasHi = false;
2515  for (unsigned i = 2; i < 4; ++i) {
2516    SDOperand Arg = N->getOperand(i);
2517    if (Arg.getOpcode() == ISD::UNDEF) continue;
2518    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2519    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2520    if (Val != 3) return false;
2521    HasHi = true;
2522  }
2523
2524  // Don't use movshdup if it can be done with a shufps.
2525  return HasHi;
2526}
2527
2528/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2529/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2530bool X86::isMOVSLDUPMask(SDNode *N) {
2531  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2532
2533  if (N->getNumOperands() != 4)
2534    return false;
2535
2536  // Expect 0, 0, 2, 2
2537  for (unsigned i = 0; i < 2; ++i) {
2538    SDOperand Arg = N->getOperand(i);
2539    if (Arg.getOpcode() == ISD::UNDEF) continue;
2540    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2541    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2542    if (Val != 0) return false;
2543  }
2544
2545  bool HasHi = false;
2546  for (unsigned i = 2; i < 4; ++i) {
2547    SDOperand Arg = N->getOperand(i);
2548    if (Arg.getOpcode() == ISD::UNDEF) continue;
2549    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2550    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2551    if (Val != 2) return false;
2552    HasHi = true;
2553  }
2554
2555  // Don't use movshdup if it can be done with a shufps.
2556  return HasHi;
2557}
2558
2559/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2560/// specifies a identity operation on the LHS or RHS.
2561static bool isIdentityMask(SDNode *N, bool RHS = false) {
2562  unsigned NumElems = N->getNumOperands();
2563  for (unsigned i = 0; i < NumElems; ++i)
2564    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2565      return false;
2566  return true;
2567}
2568
2569/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2570/// a splat of a single element.
2571static bool isSplatMask(SDNode *N) {
2572  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2573
2574  // This is a splat operation if each element of the permute is the same, and
2575  // if the value doesn't reference the second vector.
2576  unsigned NumElems = N->getNumOperands();
2577  SDOperand ElementBase;
2578  unsigned i = 0;
2579  for (; i != NumElems; ++i) {
2580    SDOperand Elt = N->getOperand(i);
2581    if (isa<ConstantSDNode>(Elt)) {
2582      ElementBase = Elt;
2583      break;
2584    }
2585  }
2586
2587  if (!ElementBase.Val)
2588    return false;
2589
2590  for (; i != NumElems; ++i) {
2591    SDOperand Arg = N->getOperand(i);
2592    if (Arg.getOpcode() == ISD::UNDEF) continue;
2593    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2594    if (Arg != ElementBase) return false;
2595  }
2596
2597  // Make sure it is a splat of the first vector operand.
2598  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2599}
2600
2601/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2602/// a splat of a single element and it's a 2 or 4 element mask.
2603bool X86::isSplatMask(SDNode *N) {
2604  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2605
2606  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2607  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2608    return false;
2609  return ::isSplatMask(N);
2610}
2611
2612/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2613/// specifies a splat of zero element.
2614bool X86::isSplatLoMask(SDNode *N) {
2615  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2616
2617  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2618    if (!isUndefOrEqual(N->getOperand(i), 0))
2619      return false;
2620  return true;
2621}
2622
2623/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2624/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2625/// instructions.
2626unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2627  unsigned NumOperands = N->getNumOperands();
2628  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2629  unsigned Mask = 0;
2630  for (unsigned i = 0; i < NumOperands; ++i) {
2631    unsigned Val = 0;
2632    SDOperand Arg = N->getOperand(NumOperands-i-1);
2633    if (Arg.getOpcode() != ISD::UNDEF)
2634      Val = cast<ConstantSDNode>(Arg)->getValue();
2635    if (Val >= NumOperands) Val -= NumOperands;
2636    Mask |= Val;
2637    if (i != NumOperands - 1)
2638      Mask <<= Shift;
2639  }
2640
2641  return Mask;
2642}
2643
2644/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2645/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2646/// instructions.
2647unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2648  unsigned Mask = 0;
2649  // 8 nodes, but we only care about the last 4.
2650  for (unsigned i = 7; i >= 4; --i) {
2651    unsigned Val = 0;
2652    SDOperand Arg = N->getOperand(i);
2653    if (Arg.getOpcode() != ISD::UNDEF)
2654      Val = cast<ConstantSDNode>(Arg)->getValue();
2655    Mask |= (Val - 4);
2656    if (i != 4)
2657      Mask <<= 2;
2658  }
2659
2660  return Mask;
2661}
2662
2663/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2664/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2665/// instructions.
2666unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2667  unsigned Mask = 0;
2668  // 8 nodes, but we only care about the first 4.
2669  for (int i = 3; i >= 0; --i) {
2670    unsigned Val = 0;
2671    SDOperand Arg = N->getOperand(i);
2672    if (Arg.getOpcode() != ISD::UNDEF)
2673      Val = cast<ConstantSDNode>(Arg)->getValue();
2674    Mask |= Val;
2675    if (i != 0)
2676      Mask <<= 2;
2677  }
2678
2679  return Mask;
2680}
2681
2682/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2683/// specifies a 8 element shuffle that can be broken into a pair of
2684/// PSHUFHW and PSHUFLW.
2685static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2686  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2687
2688  if (N->getNumOperands() != 8)
2689    return false;
2690
2691  // Lower quadword shuffled.
2692  for (unsigned i = 0; i != 4; ++i) {
2693    SDOperand Arg = N->getOperand(i);
2694    if (Arg.getOpcode() == ISD::UNDEF) continue;
2695    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2696    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2697    if (Val > 4)
2698      return false;
2699  }
2700
2701  // Upper quadword shuffled.
2702  for (unsigned i = 4; i != 8; ++i) {
2703    SDOperand Arg = N->getOperand(i);
2704    if (Arg.getOpcode() == ISD::UNDEF) continue;
2705    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2706    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2707    if (Val < 4 || Val > 7)
2708      return false;
2709  }
2710
2711  return true;
2712}
2713
2714/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2715/// values in ther permute mask.
2716static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2717                                      SDOperand &V2, SDOperand &Mask,
2718                                      SelectionDAG &DAG) {
2719  MVT::ValueType VT = Op.getValueType();
2720  MVT::ValueType MaskVT = Mask.getValueType();
2721  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2722  unsigned NumElems = Mask.getNumOperands();
2723  SmallVector<SDOperand, 8> MaskVec;
2724
2725  for (unsigned i = 0; i != NumElems; ++i) {
2726    SDOperand Arg = Mask.getOperand(i);
2727    if (Arg.getOpcode() == ISD::UNDEF) {
2728      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2729      continue;
2730    }
2731    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2732    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2733    if (Val < NumElems)
2734      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2735    else
2736      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2737  }
2738
2739  std::swap(V1, V2);
2740  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2741  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2742}
2743
2744/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2745/// match movhlps. The lower half elements should come from upper half of
2746/// V1 (and in order), and the upper half elements should come from the upper
2747/// half of V2 (and in order).
2748static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2749  unsigned NumElems = Mask->getNumOperands();
2750  if (NumElems != 4)
2751    return false;
2752  for (unsigned i = 0, e = 2; i != e; ++i)
2753    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2754      return false;
2755  for (unsigned i = 2; i != 4; ++i)
2756    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2757      return false;
2758  return true;
2759}
2760
2761/// isScalarLoadToVector - Returns true if the node is a scalar load that
2762/// is promoted to a vector.
2763static inline bool isScalarLoadToVector(SDNode *N) {
2764  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2765    N = N->getOperand(0).Val;
2766    return ISD::isNON_EXTLoad(N);
2767  }
2768  return false;
2769}
2770
2771/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2772/// match movlp{s|d}. The lower half elements should come from lower half of
2773/// V1 (and in order), and the upper half elements should come from the upper
2774/// half of V2 (and in order). And since V1 will become the source of the
2775/// MOVLP, it must be either a vector load or a scalar load to vector.
2776static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2777  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2778    return false;
2779  // Is V2 is a vector load, don't do this transformation. We will try to use
2780  // load folding shufps op.
2781  if (ISD::isNON_EXTLoad(V2))
2782    return false;
2783
2784  unsigned NumElems = Mask->getNumOperands();
2785  if (NumElems != 2 && NumElems != 4)
2786    return false;
2787  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2788    if (!isUndefOrEqual(Mask->getOperand(i), i))
2789      return false;
2790  for (unsigned i = NumElems/2; i != NumElems; ++i)
2791    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2792      return false;
2793  return true;
2794}
2795
2796/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2797/// all the same.
2798static bool isSplatVector(SDNode *N) {
2799  if (N->getOpcode() != ISD::BUILD_VECTOR)
2800    return false;
2801
2802  SDOperand SplatValue = N->getOperand(0);
2803  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2804    if (N->getOperand(i) != SplatValue)
2805      return false;
2806  return true;
2807}
2808
2809/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2810/// to an undef.
2811static bool isUndefShuffle(SDNode *N) {
2812  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2813    return false;
2814
2815  SDOperand V1 = N->getOperand(0);
2816  SDOperand V2 = N->getOperand(1);
2817  SDOperand Mask = N->getOperand(2);
2818  unsigned NumElems = Mask.getNumOperands();
2819  for (unsigned i = 0; i != NumElems; ++i) {
2820    SDOperand Arg = Mask.getOperand(i);
2821    if (Arg.getOpcode() != ISD::UNDEF) {
2822      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2823      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2824        return false;
2825      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2826        return false;
2827    }
2828  }
2829  return true;
2830}
2831
2832/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2833/// constant +0.0.
2834static inline bool isZeroNode(SDOperand Elt) {
2835  return ((isa<ConstantSDNode>(Elt) &&
2836           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2837          (isa<ConstantFPSDNode>(Elt) &&
2838           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2839}
2840
2841/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2842/// to an zero vector.
2843static bool isZeroShuffle(SDNode *N) {
2844  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2845    return false;
2846
2847  SDOperand V1 = N->getOperand(0);
2848  SDOperand V2 = N->getOperand(1);
2849  SDOperand Mask = N->getOperand(2);
2850  unsigned NumElems = Mask.getNumOperands();
2851  for (unsigned i = 0; i != NumElems; ++i) {
2852    SDOperand Arg = Mask.getOperand(i);
2853    if (Arg.getOpcode() != ISD::UNDEF) {
2854      unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2855      if (Idx < NumElems) {
2856        unsigned Opc = V1.Val->getOpcode();
2857        if (Opc == ISD::UNDEF)
2858          continue;
2859        if (Opc != ISD::BUILD_VECTOR ||
2860            !isZeroNode(V1.Val->getOperand(Idx)))
2861          return false;
2862      } else if (Idx >= NumElems) {
2863        unsigned Opc = V2.Val->getOpcode();
2864        if (Opc == ISD::UNDEF)
2865          continue;
2866        if (Opc != ISD::BUILD_VECTOR ||
2867            !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2868          return false;
2869      }
2870    }
2871  }
2872  return true;
2873}
2874
2875/// getZeroVector - Returns a vector of specified type with all zero elements.
2876///
2877static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2878  assert(MVT::isVector(VT) && "Expected a vector type");
2879  unsigned NumElems = MVT::getVectorNumElements(VT);
2880  MVT::ValueType EVT = MVT::getVectorElementType(VT);
2881  bool isFP = MVT::isFloatingPoint(EVT);
2882  SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2883  SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2884  return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2885}
2886
2887/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2888/// that point to V2 points to its first element.
2889static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2890  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2891
2892  bool Changed = false;
2893  SmallVector<SDOperand, 8> MaskVec;
2894  unsigned NumElems = Mask.getNumOperands();
2895  for (unsigned i = 0; i != NumElems; ++i) {
2896    SDOperand Arg = Mask.getOperand(i);
2897    if (Arg.getOpcode() != ISD::UNDEF) {
2898      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2899      if (Val > NumElems) {
2900        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2901        Changed = true;
2902      }
2903    }
2904    MaskVec.push_back(Arg);
2905  }
2906
2907  if (Changed)
2908    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2909                       &MaskVec[0], MaskVec.size());
2910  return Mask;
2911}
2912
2913/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2914/// operation of specified width.
2915static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2916  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2917  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2918
2919  SmallVector<SDOperand, 8> MaskVec;
2920  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2921  for (unsigned i = 1; i != NumElems; ++i)
2922    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2923  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2924}
2925
2926/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2927/// of specified width.
2928static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2929  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2930  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2931  SmallVector<SDOperand, 8> MaskVec;
2932  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2933    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2934    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2935  }
2936  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2937}
2938
2939/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2940/// of specified width.
2941static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2942  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2943  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2944  unsigned Half = NumElems/2;
2945  SmallVector<SDOperand, 8> MaskVec;
2946  for (unsigned i = 0; i != Half; ++i) {
2947    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2948    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2949  }
2950  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2951}
2952
2953/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2954///
2955static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2956  SDOperand V1 = Op.getOperand(0);
2957  SDOperand Mask = Op.getOperand(2);
2958  MVT::ValueType VT = Op.getValueType();
2959  unsigned NumElems = Mask.getNumOperands();
2960  Mask = getUnpacklMask(NumElems, DAG);
2961  while (NumElems != 4) {
2962    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2963    NumElems >>= 1;
2964  }
2965  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2966
2967  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2968  Mask = getZeroVector(MaskVT, DAG);
2969  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2970                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2971  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2972}
2973
2974/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2975/// vector of zero or undef vector.
2976static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2977                                             unsigned NumElems, unsigned Idx,
2978                                             bool isZero, SelectionDAG &DAG) {
2979  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2980  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2981  MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2982  SDOperand Zero = DAG.getConstant(0, EVT);
2983  SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2984  MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2985  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2986                               &MaskVec[0], MaskVec.size());
2987  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2988}
2989
2990/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2991///
2992static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2993                                       unsigned NumNonZero, unsigned NumZero,
2994                                       SelectionDAG &DAG, TargetLowering &TLI) {
2995  if (NumNonZero > 8)
2996    return SDOperand();
2997
2998  SDOperand V(0, 0);
2999  bool First = true;
3000  for (unsigned i = 0; i < 16; ++i) {
3001    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3002    if (ThisIsNonZero && First) {
3003      if (NumZero)
3004        V = getZeroVector(MVT::v8i16, DAG);
3005      else
3006        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3007      First = false;
3008    }
3009
3010    if ((i & 1) != 0) {
3011      SDOperand ThisElt(0, 0), LastElt(0, 0);
3012      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3013      if (LastIsNonZero) {
3014        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3015      }
3016      if (ThisIsNonZero) {
3017        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3018        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3019                              ThisElt, DAG.getConstant(8, MVT::i8));
3020        if (LastIsNonZero)
3021          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3022      } else
3023        ThisElt = LastElt;
3024
3025      if (ThisElt.Val)
3026        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3027                        DAG.getConstant(i/2, TLI.getPointerTy()));
3028    }
3029  }
3030
3031  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3032}
3033
3034/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3035///
3036static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
3037                                       unsigned NumNonZero, unsigned NumZero,
3038                                       SelectionDAG &DAG, TargetLowering &TLI) {
3039  if (NumNonZero > 4)
3040    return SDOperand();
3041
3042  SDOperand V(0, 0);
3043  bool First = true;
3044  for (unsigned i = 0; i < 8; ++i) {
3045    bool isNonZero = (NonZeros & (1 << i)) != 0;
3046    if (isNonZero) {
3047      if (First) {
3048        if (NumZero)
3049          V = getZeroVector(MVT::v8i16, DAG);
3050        else
3051          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3052        First = false;
3053      }
3054      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3055                      DAG.getConstant(i, TLI.getPointerTy()));
3056    }
3057  }
3058
3059  return V;
3060}
3061
3062SDOperand
3063X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3064  // All zero's are handled with pxor.
3065  if (ISD::isBuildVectorAllZeros(Op.Val))
3066    return Op;
3067
3068  // All one's are handled with pcmpeqd.
3069  if (ISD::isBuildVectorAllOnes(Op.Val))
3070    return Op;
3071
3072  MVT::ValueType VT = Op.getValueType();
3073  MVT::ValueType EVT = MVT::getVectorElementType(VT);
3074  unsigned EVTBits = MVT::getSizeInBits(EVT);
3075
3076  unsigned NumElems = Op.getNumOperands();
3077  unsigned NumZero  = 0;
3078  unsigned NumNonZero = 0;
3079  unsigned NonZeros = 0;
3080  unsigned NumNonZeroImms = 0;
3081  std::set<SDOperand> Values;
3082  for (unsigned i = 0; i < NumElems; ++i) {
3083    SDOperand Elt = Op.getOperand(i);
3084    if (Elt.getOpcode() != ISD::UNDEF) {
3085      Values.insert(Elt);
3086      if (isZeroNode(Elt))
3087        NumZero++;
3088      else {
3089        NonZeros |= (1 << i);
3090        NumNonZero++;
3091        if (Elt.getOpcode() == ISD::Constant ||
3092            Elt.getOpcode() == ISD::ConstantFP)
3093          NumNonZeroImms++;
3094      }
3095    }
3096  }
3097
3098  if (NumNonZero == 0) {
3099    if (NumZero == 0)
3100      // All undef vector. Return an UNDEF.
3101      return DAG.getNode(ISD::UNDEF, VT);
3102    else
3103      // A mix of zero and undef. Return a zero vector.
3104      return getZeroVector(VT, DAG);
3105  }
3106
3107  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3108  if (Values.size() == 1)
3109    return SDOperand();
3110
3111  // Special case for single non-zero element.
3112  if (NumNonZero == 1) {
3113    unsigned Idx = CountTrailingZeros_32(NonZeros);
3114    SDOperand Item = Op.getOperand(Idx);
3115    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3116    if (Idx == 0)
3117      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3118      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
3119                                         NumZero > 0, DAG);
3120
3121    if (EVTBits == 32) {
3122      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3123      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
3124                                         DAG);
3125      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3126      MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3127      SmallVector<SDOperand, 8> MaskVec;
3128      for (unsigned i = 0; i < NumElems; i++)
3129        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3130      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3131                                   &MaskVec[0], MaskVec.size());
3132      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3133                         DAG.getNode(ISD::UNDEF, VT), Mask);
3134    }
3135  }
3136
3137  // A vector full of immediates; various special cases are already
3138  // handled, so this is best done with a single constant-pool load.
3139  if (NumNonZero == NumNonZeroImms)
3140    return SDOperand();
3141
3142  // Let legalizer expand 2-wide build_vectors.
3143  if (EVTBits == 64)
3144    return SDOperand();
3145
3146  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3147  if (EVTBits == 8 && NumElems == 16) {
3148    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3149                                        *this);
3150    if (V.Val) return V;
3151  }
3152
3153  if (EVTBits == 16 && NumElems == 8) {
3154    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3155                                        *this);
3156    if (V.Val) return V;
3157  }
3158
3159  // If element VT is == 32 bits, turn it into a number of shuffles.
3160  SmallVector<SDOperand, 8> V;
3161  V.resize(NumElems);
3162  if (NumElems == 4 && NumZero > 0) {
3163    for (unsigned i = 0; i < 4; ++i) {
3164      bool isZero = !(NonZeros & (1 << i));
3165      if (isZero)
3166        V[i] = getZeroVector(VT, DAG);
3167      else
3168        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3169    }
3170
3171    for (unsigned i = 0; i < 2; ++i) {
3172      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3173        default: break;
3174        case 0:
3175          V[i] = V[i*2];  // Must be a zero vector.
3176          break;
3177        case 1:
3178          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3179                             getMOVLMask(NumElems, DAG));
3180          break;
3181        case 2:
3182          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3183                             getMOVLMask(NumElems, DAG));
3184          break;
3185        case 3:
3186          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3187                             getUnpacklMask(NumElems, DAG));
3188          break;
3189      }
3190    }
3191
3192    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
3193    // clears the upper bits.
3194    // FIXME: we can do the same for v4f32 case when we know both parts of
3195    // the lower half come from scalar_to_vector (loadf32). We should do
3196    // that in post legalizer dag combiner with target specific hooks.
3197    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
3198      return V[0];
3199    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3200    MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
3201    SmallVector<SDOperand, 8> MaskVec;
3202    bool Reverse = (NonZeros & 0x3) == 2;
3203    for (unsigned i = 0; i < 2; ++i)
3204      if (Reverse)
3205        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3206      else
3207        MaskVec.push_back(DAG.getConstant(i, EVT));
3208    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3209    for (unsigned i = 0; i < 2; ++i)
3210      if (Reverse)
3211        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3212      else
3213        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3214    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3215                                     &MaskVec[0], MaskVec.size());
3216    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3217  }
3218
3219  if (Values.size() > 2) {
3220    // Expand into a number of unpckl*.
3221    // e.g. for v4f32
3222    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3223    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3224    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3225    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3226    for (unsigned i = 0; i < NumElems; ++i)
3227      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3228    NumElems >>= 1;
3229    while (NumElems != 0) {
3230      for (unsigned i = 0; i < NumElems; ++i)
3231        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3232                           UnpckMask);
3233      NumElems >>= 1;
3234    }
3235    return V[0];
3236  }
3237
3238  return SDOperand();
3239}
3240
3241SDOperand
3242X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3243  SDOperand V1 = Op.getOperand(0);
3244  SDOperand V2 = Op.getOperand(1);
3245  SDOperand PermMask = Op.getOperand(2);
3246  MVT::ValueType VT = Op.getValueType();
3247  unsigned NumElems = PermMask.getNumOperands();
3248  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3249  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3250  bool V1IsSplat = false;
3251  bool V2IsSplat = false;
3252
3253  if (isUndefShuffle(Op.Val))
3254    return DAG.getNode(ISD::UNDEF, VT);
3255
3256  if (isZeroShuffle(Op.Val))
3257    return getZeroVector(VT, DAG);
3258
3259  if (isIdentityMask(PermMask.Val))
3260    return V1;
3261  else if (isIdentityMask(PermMask.Val, true))
3262    return V2;
3263
3264  if (isSplatMask(PermMask.Val)) {
3265    if (NumElems <= 4) return Op;
3266    // Promote it to a v4i32 splat.
3267    return PromoteSplat(Op, DAG);
3268  }
3269
3270  if (X86::isMOVLMask(PermMask.Val))
3271    return (V1IsUndef) ? V2 : Op;
3272
3273  if (X86::isMOVSHDUPMask(PermMask.Val) ||
3274      X86::isMOVSLDUPMask(PermMask.Val) ||
3275      X86::isMOVHLPSMask(PermMask.Val) ||
3276      X86::isMOVHPMask(PermMask.Val) ||
3277      X86::isMOVLPMask(PermMask.Val))
3278    return Op;
3279
3280  if (ShouldXformToMOVHLPS(PermMask.Val) ||
3281      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3282    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3283
3284  bool Commuted = false;
3285  V1IsSplat = isSplatVector(V1.Val);
3286  V2IsSplat = isSplatVector(V2.Val);
3287  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3288    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3289    std::swap(V1IsSplat, V2IsSplat);
3290    std::swap(V1IsUndef, V2IsUndef);
3291    Commuted = true;
3292  }
3293
3294  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3295    if (V2IsUndef) return V1;
3296    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3297    if (V2IsSplat) {
3298      // V2 is a splat, so the mask may be malformed. That is, it may point
3299      // to any V2 element. The instruction selectior won't like this. Get
3300      // a corrected mask and commute to form a proper MOVS{S|D}.
3301      SDOperand NewMask = getMOVLMask(NumElems, DAG);
3302      if (NewMask.Val != PermMask.Val)
3303        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3304    }
3305    return Op;
3306  }
3307
3308  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3309      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3310      X86::isUNPCKLMask(PermMask.Val) ||
3311      X86::isUNPCKHMask(PermMask.Val))
3312    return Op;
3313
3314  if (V2IsSplat) {
3315    // Normalize mask so all entries that point to V2 points to its first
3316    // element then try to match unpck{h|l} again. If match, return a
3317    // new vector_shuffle with the corrected mask.
3318    SDOperand NewMask = NormalizeMask(PermMask, DAG);
3319    if (NewMask.Val != PermMask.Val) {
3320      if (X86::isUNPCKLMask(PermMask.Val, true)) {
3321        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3322        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3323      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3324        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3325        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3326      }
3327    }
3328  }
3329
3330  // Normalize the node to match x86 shuffle ops if needed
3331  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3332      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3333
3334  if (Commuted) {
3335    // Commute is back and try unpck* again.
3336    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3337    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3338        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3339        X86::isUNPCKLMask(PermMask.Val) ||
3340        X86::isUNPCKHMask(PermMask.Val))
3341      return Op;
3342  }
3343
3344  // If VT is integer, try PSHUF* first, then SHUFP*.
3345  if (MVT::isInteger(VT)) {
3346    // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
3347    // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
3348    if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
3349         X86::isPSHUFDMask(PermMask.Val)) ||
3350        X86::isPSHUFHWMask(PermMask.Val) ||
3351        X86::isPSHUFLWMask(PermMask.Val)) {
3352      if (V2.getOpcode() != ISD::UNDEF)
3353        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3354                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3355      return Op;
3356    }
3357
3358    if (X86::isSHUFPMask(PermMask.Val) &&
3359        MVT::getSizeInBits(VT) != 64)    // Don't do this for MMX.
3360      return Op;
3361
3362    // Handle v8i16 shuffle high / low shuffle node pair.
3363    if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
3364      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3365      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3366      SmallVector<SDOperand, 8> MaskVec;
3367      for (unsigned i = 0; i != 4; ++i)
3368        MaskVec.push_back(PermMask.getOperand(i));
3369      for (unsigned i = 4; i != 8; ++i)
3370        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3371      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3372                                   &MaskVec[0], MaskVec.size());
3373      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3374      MaskVec.clear();
3375      for (unsigned i = 0; i != 4; ++i)
3376        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3377      for (unsigned i = 4; i != 8; ++i)
3378        MaskVec.push_back(PermMask.getOperand(i));
3379      Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
3380      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3381    }
3382  } else {
3383    // Floating point cases in the other order.
3384    if (X86::isSHUFPMask(PermMask.Val))
3385      return Op;
3386    if (X86::isPSHUFDMask(PermMask.Val) ||
3387        X86::isPSHUFHWMask(PermMask.Val) ||
3388        X86::isPSHUFLWMask(PermMask.Val)) {
3389      if (V2.getOpcode() != ISD::UNDEF)
3390        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3391                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3392      return Op;
3393    }
3394  }
3395
3396  if (NumElems == 4 &&
3397      // Don't do this for MMX.
3398      MVT::getSizeInBits(VT) != 64) {
3399    MVT::ValueType MaskVT = PermMask.getValueType();
3400    MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3401    SmallVector<std::pair<int, int>, 8> Locs;
3402    Locs.reserve(NumElems);
3403    SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3404    SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3405    unsigned NumHi = 0;
3406    unsigned NumLo = 0;
3407    // If no more than two elements come from either vector. This can be
3408    // implemented with two shuffles. First shuffle gather the elements.
3409    // The second shuffle, which takes the first shuffle as both of its
3410    // vector operands, put the elements into the right order.
3411    for (unsigned i = 0; i != NumElems; ++i) {
3412      SDOperand Elt = PermMask.getOperand(i);
3413      if (Elt.getOpcode() == ISD::UNDEF) {
3414        Locs[i] = std::make_pair(-1, -1);
3415      } else {
3416        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3417        if (Val < NumElems) {
3418          Locs[i] = std::make_pair(0, NumLo);
3419          Mask1[NumLo] = Elt;
3420          NumLo++;
3421        } else {
3422          Locs[i] = std::make_pair(1, NumHi);
3423          if (2+NumHi < NumElems)
3424            Mask1[2+NumHi] = Elt;
3425          NumHi++;
3426        }
3427      }
3428    }
3429    if (NumLo <= 2 && NumHi <= 2) {
3430      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3431                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3432                                   &Mask1[0], Mask1.size()));
3433      for (unsigned i = 0; i != NumElems; ++i) {
3434        if (Locs[i].first == -1)
3435          continue;
3436        else {
3437          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3438          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3439          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3440        }
3441      }
3442
3443      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3444                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3445                                     &Mask2[0], Mask2.size()));
3446    }
3447
3448    // Break it into (shuffle shuffle_hi, shuffle_lo).
3449    Locs.clear();
3450    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3451    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3452    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3453    unsigned MaskIdx = 0;
3454    unsigned LoIdx = 0;
3455    unsigned HiIdx = NumElems/2;
3456    for (unsigned i = 0; i != NumElems; ++i) {
3457      if (i == NumElems/2) {
3458        MaskPtr = &HiMask;
3459        MaskIdx = 1;
3460        LoIdx = 0;
3461        HiIdx = NumElems/2;
3462      }
3463      SDOperand Elt = PermMask.getOperand(i);
3464      if (Elt.getOpcode() == ISD::UNDEF) {
3465        Locs[i] = std::make_pair(-1, -1);
3466      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3467        Locs[i] = std::make_pair(MaskIdx, LoIdx);
3468        (*MaskPtr)[LoIdx] = Elt;
3469        LoIdx++;
3470      } else {
3471        Locs[i] = std::make_pair(MaskIdx, HiIdx);
3472        (*MaskPtr)[HiIdx] = Elt;
3473        HiIdx++;
3474      }
3475    }
3476
3477    SDOperand LoShuffle =
3478      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3479                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3480                              &LoMask[0], LoMask.size()));
3481    SDOperand HiShuffle =
3482      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3483                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3484                              &HiMask[0], HiMask.size()));
3485    SmallVector<SDOperand, 8> MaskOps;
3486    for (unsigned i = 0; i != NumElems; ++i) {
3487      if (Locs[i].first == -1) {
3488        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3489      } else {
3490        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3491        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3492      }
3493    }
3494    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3495                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3496                                   &MaskOps[0], MaskOps.size()));
3497  }
3498
3499  return SDOperand();
3500}
3501
3502SDOperand
3503X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3504  if (!isa<ConstantSDNode>(Op.getOperand(1)))
3505    return SDOperand();
3506
3507  MVT::ValueType VT = Op.getValueType();
3508  // TODO: handle v16i8.
3509  if (MVT::getSizeInBits(VT) == 16) {
3510    // Transform it so it match pextrw which produces a 32-bit result.
3511    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3512    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3513                                    Op.getOperand(0), Op.getOperand(1));
3514    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3515                                    DAG.getValueType(VT));
3516    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3517  } else if (MVT::getSizeInBits(VT) == 32) {
3518    SDOperand Vec = Op.getOperand(0);
3519    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3520    if (Idx == 0)
3521      return Op;
3522    // SHUFPS the element to the lowest double word, then movss.
3523    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3524    SmallVector<SDOperand, 8> IdxVec;
3525    IdxVec.
3526      push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3527    IdxVec.
3528      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3529    IdxVec.
3530      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3531    IdxVec.
3532      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3533    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3534                                 &IdxVec[0], IdxVec.size());
3535    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3536                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3537    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3538                       DAG.getConstant(0, getPointerTy()));
3539  } else if (MVT::getSizeInBits(VT) == 64) {
3540    SDOperand Vec = Op.getOperand(0);
3541    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3542    if (Idx == 0)
3543      return Op;
3544
3545    // UNPCKHPD the element to the lowest double word, then movsd.
3546    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3547    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3548    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3549    SmallVector<SDOperand, 8> IdxVec;
3550    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3551    IdxVec.
3552      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3553    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3554                                 &IdxVec[0], IdxVec.size());
3555    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3556                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3557    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3558                       DAG.getConstant(0, getPointerTy()));
3559  }
3560
3561  return SDOperand();
3562}
3563
3564SDOperand
3565X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3566  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3567  // as its second argument.
3568  MVT::ValueType VT = Op.getValueType();
3569  MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
3570  SDOperand N0 = Op.getOperand(0);
3571  SDOperand N1 = Op.getOperand(1);
3572  SDOperand N2 = Op.getOperand(2);
3573  if (MVT::getSizeInBits(BaseVT) == 16) {
3574    if (N1.getValueType() != MVT::i32)
3575      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3576    if (N2.getValueType() != MVT::i32)
3577      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3578    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3579  } else if (MVT::getSizeInBits(BaseVT) == 32) {
3580    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3581    if (Idx == 0) {
3582      // Use a movss.
3583      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3584      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3585      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3586      SmallVector<SDOperand, 8> MaskVec;
3587      MaskVec.push_back(DAG.getConstant(4, BaseVT));
3588      for (unsigned i = 1; i <= 3; ++i)
3589        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3590      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3591                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3592                                     &MaskVec[0], MaskVec.size()));
3593    } else {
3594      // Use two pinsrw instructions to insert a 32 bit value.
3595      Idx <<= 1;
3596      if (MVT::isFloatingPoint(N1.getValueType())) {
3597        N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3598        N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3599        N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3600                         DAG.getConstant(0, getPointerTy()));
3601      }
3602      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3603      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3604                       DAG.getConstant(Idx, getPointerTy()));
3605      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3606      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3607                       DAG.getConstant(Idx+1, getPointerTy()));
3608      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3609    }
3610  }
3611
3612  return SDOperand();
3613}
3614
3615SDOperand
3616X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3617  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3618  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3619}
3620
3621// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3622// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3623// one of the above mentioned nodes. It has to be wrapped because otherwise
3624// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3625// be used to form addressing mode. These wrapped nodes will be selected
3626// into MOV32ri.
3627SDOperand
3628X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3629  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3630  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3631                                               getPointerTy(),
3632                                               CP->getAlignment());
3633  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3634  // With PIC, the address is actually $g + Offset.
3635  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3636      !Subtarget->isPICStyleRIPRel()) {
3637    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3638                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3639                         Result);
3640  }
3641
3642  return Result;
3643}
3644
3645SDOperand
3646X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3647  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3648  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3649  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3650  // With PIC, the address is actually $g + Offset.
3651  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3652      !Subtarget->isPICStyleRIPRel()) {
3653    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3654                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3655                         Result);
3656  }
3657
3658  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3659  // load the value at address GV, not the value of GV itself. This means that
3660  // the GlobalAddress must be in the base or index register of the address, not
3661  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3662  // The same applies for external symbols during PIC codegen
3663  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3664    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3665
3666  return Result;
3667}
3668
3669// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3670static SDOperand
3671LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3672                              const MVT::ValueType PtrVT) {
3673  SDOperand InFlag;
3674  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3675                                     DAG.getNode(X86ISD::GlobalBaseReg,
3676                                                 PtrVT), InFlag);
3677  InFlag = Chain.getValue(1);
3678
3679  // emit leal symbol@TLSGD(,%ebx,1), %eax
3680  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3681  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3682                                             GA->getValueType(0),
3683                                             GA->getOffset());
3684  SDOperand Ops[] = { Chain,  TGA, InFlag };
3685  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3686  InFlag = Result.getValue(2);
3687  Chain = Result.getValue(1);
3688
3689  // call ___tls_get_addr. This function receives its argument in
3690  // the register EAX.
3691  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3692  InFlag = Chain.getValue(1);
3693
3694  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3695  SDOperand Ops1[] = { Chain,
3696                      DAG.getTargetExternalSymbol("___tls_get_addr",
3697                                                  PtrVT),
3698                      DAG.getRegister(X86::EAX, PtrVT),
3699                      DAG.getRegister(X86::EBX, PtrVT),
3700                      InFlag };
3701  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3702  InFlag = Chain.getValue(1);
3703
3704  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3705}
3706
3707// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3708// "local exec" model.
3709static SDOperand
3710LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3711                         const MVT::ValueType PtrVT) {
3712  // Get the Thread Pointer
3713  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3714  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3715  // exec)
3716  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3717                                             GA->getValueType(0),
3718                                             GA->getOffset());
3719  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3720
3721  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3722    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3723
3724  // The address of the thread local variable is the add of the thread
3725  // pointer with the offset of the variable.
3726  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3727}
3728
3729SDOperand
3730X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3731  // TODO: implement the "local dynamic" model
3732  // TODO: implement the "initial exec"model for pic executables
3733  assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3734         "TLS not implemented for non-ELF and 64-bit targets");
3735  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3736  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3737  // otherwise use the "Local Exec"TLS Model
3738  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3739    return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3740  else
3741    return LowerToTLSExecModel(GA, DAG, getPointerTy());
3742}
3743
3744SDOperand
3745X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3746  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3747  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3748  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3749  // With PIC, the address is actually $g + Offset.
3750  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3751      !Subtarget->isPICStyleRIPRel()) {
3752    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3753                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3754                         Result);
3755  }
3756
3757  return Result;
3758}
3759
3760SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3761  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3762  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3763  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3764  // With PIC, the address is actually $g + Offset.
3765  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3766      !Subtarget->isPICStyleRIPRel()) {
3767    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3768                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3769                         Result);
3770  }
3771
3772  return Result;
3773}
3774
3775SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3776    assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3777           "Not an i64 shift!");
3778    bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3779    SDOperand ShOpLo = Op.getOperand(0);
3780    SDOperand ShOpHi = Op.getOperand(1);
3781    SDOperand ShAmt  = Op.getOperand(2);
3782    SDOperand Tmp1 = isSRA ?
3783      DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3784      DAG.getConstant(0, MVT::i32);
3785
3786    SDOperand Tmp2, Tmp3;
3787    if (Op.getOpcode() == ISD::SHL_PARTS) {
3788      Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3789      Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3790    } else {
3791      Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3792      Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3793    }
3794
3795    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3796    SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3797                                    DAG.getConstant(32, MVT::i8));
3798    SDOperand Cond = DAG.getNode(X86ISD::CMP, MVT::i32,
3799                                 AndNode, DAG.getConstant(0, MVT::i8));
3800
3801    SDOperand Hi, Lo;
3802    SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3803    unsigned Opc = X86ISD::CMOV;
3804    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3805    SmallVector<SDOperand, 4> Ops;
3806    if (Op.getOpcode() == ISD::SHL_PARTS) {
3807      Ops.push_back(Tmp2);
3808      Ops.push_back(Tmp3);
3809      Ops.push_back(CC);
3810      Ops.push_back(Cond);
3811      Hi = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
3812
3813      Ops.clear();
3814      Ops.push_back(Tmp3);
3815      Ops.push_back(Tmp1);
3816      Ops.push_back(CC);
3817      Ops.push_back(Cond);
3818      Lo = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
3819    } else {
3820      Ops.push_back(Tmp2);
3821      Ops.push_back(Tmp3);
3822      Ops.push_back(CC);
3823      Ops.push_back(Cond);
3824      Lo = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
3825
3826      Ops.clear();
3827      Ops.push_back(Tmp3);
3828      Ops.push_back(Tmp1);
3829      Ops.push_back(CC);
3830      Ops.push_back(Cond);
3831      Hi = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
3832    }
3833
3834    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3835    Ops.clear();
3836    Ops.push_back(Lo);
3837    Ops.push_back(Hi);
3838    return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3839}
3840
3841SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3842  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3843         Op.getOperand(0).getValueType() >= MVT::i16 &&
3844         "Unknown SINT_TO_FP to lower!");
3845
3846  SDOperand Result;
3847  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3848  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3849  MachineFunction &MF = DAG.getMachineFunction();
3850  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3851  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3852  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3853                                 StackSlot, NULL, 0);
3854
3855  // These are really Legal; caller falls through into that case.
3856  if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f32 && X86ScalarSSEf32)
3857    return Result;
3858  if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f64 && X86ScalarSSEf64)
3859    return Result;
3860  if (SrcVT==MVT::i64 && Op.getValueType() != MVT::f80 &&
3861      Subtarget->is64Bit())
3862    return Result;
3863
3864  // Build the FILD
3865  SDVTList Tys;
3866  bool useSSE = (X86ScalarSSEf32 && Op.getValueType() == MVT::f32) ||
3867                (X86ScalarSSEf64 && Op.getValueType() == MVT::f64);
3868  if (useSSE)
3869    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3870  else
3871    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3872  SmallVector<SDOperand, 8> Ops;
3873  Ops.push_back(Chain);
3874  Ops.push_back(StackSlot);
3875  Ops.push_back(DAG.getValueType(SrcVT));
3876  Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
3877                       Tys, &Ops[0], Ops.size());
3878
3879  if (useSSE) {
3880    Chain = Result.getValue(1);
3881    SDOperand InFlag = Result.getValue(2);
3882
3883    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3884    // shouldn't be necessary except that RFP cannot be live across
3885    // multiple blocks. When stackifier is fixed, they can be uncoupled.
3886    MachineFunction &MF = DAG.getMachineFunction();
3887    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3888    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3889    Tys = DAG.getVTList(MVT::Other);
3890    SmallVector<SDOperand, 8> Ops;
3891    Ops.push_back(Chain);
3892    Ops.push_back(Result);
3893    Ops.push_back(StackSlot);
3894    Ops.push_back(DAG.getValueType(Op.getValueType()));
3895    Ops.push_back(InFlag);
3896    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3897    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3898  }
3899
3900  return Result;
3901}
3902
3903SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3904  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3905         "Unknown FP_TO_SINT to lower!");
3906  SDOperand Result;
3907
3908  // These are really Legal.
3909  if (Op.getValueType() == MVT::i32 &&
3910      X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32)
3911    return Result;
3912  if (Op.getValueType() == MVT::i32 &&
3913      X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)
3914    return Result;
3915  if (Subtarget->is64Bit() &&
3916      Op.getValueType() == MVT::i64 &&
3917      Op.getOperand(0).getValueType() != MVT::f80)
3918    return Result;
3919
3920  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3921  // stack slot.
3922  MachineFunction &MF = DAG.getMachineFunction();
3923  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3924  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3925  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3926  unsigned Opc;
3927  switch (Op.getValueType()) {
3928    default: assert(0 && "Invalid FP_TO_SINT to lower!");
3929    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3930    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3931    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3932  }
3933
3934  SDOperand Chain = DAG.getEntryNode();
3935  SDOperand Value = Op.getOperand(0);
3936  if ((X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32) ||
3937      (X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)) {
3938    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3939    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3940    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3941    SDOperand Ops[] = {
3942      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3943    };
3944    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3945    Chain = Value.getValue(1);
3946    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3947    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3948  }
3949
3950  // Build the FP_TO_INT*_IN_MEM
3951  SDOperand Ops[] = { Chain, Value, StackSlot };
3952  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3953
3954  // Load the result.
3955  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3956}
3957
3958SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3959  MVT::ValueType VT = Op.getValueType();
3960  MVT::ValueType EltVT = VT;
3961  if (MVT::isVector(VT))
3962    EltVT = MVT::getVectorElementType(VT);
3963  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
3964  std::vector<Constant*> CV;
3965  if (EltVT == MVT::f64) {
3966    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
3967    CV.push_back(C);
3968    CV.push_back(C);
3969  } else {
3970    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
3971    CV.push_back(C);
3972    CV.push_back(C);
3973    CV.push_back(C);
3974    CV.push_back(C);
3975  }
3976  Constant *C = ConstantVector::get(CV);
3977  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3978  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3979                               false, 16);
3980  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3981}
3982
3983SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3984  MVT::ValueType VT = Op.getValueType();
3985  MVT::ValueType EltVT = VT;
3986  unsigned EltNum = 1;
3987  if (MVT::isVector(VT)) {
3988    EltVT = MVT::getVectorElementType(VT);
3989    EltNum = MVT::getVectorNumElements(VT);
3990  }
3991  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
3992  std::vector<Constant*> CV;
3993  if (EltVT == MVT::f64) {
3994    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
3995    CV.push_back(C);
3996    CV.push_back(C);
3997  } else {
3998    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
3999    CV.push_back(C);
4000    CV.push_back(C);
4001    CV.push_back(C);
4002    CV.push_back(C);
4003  }
4004  Constant *C = ConstantVector::get(CV);
4005  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4006  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4007                               false, 16);
4008  if (MVT::isVector(VT)) {
4009    return DAG.getNode(ISD::BIT_CONVERT, VT,
4010                       DAG.getNode(ISD::XOR, MVT::v2i64,
4011                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4012                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4013  } else {
4014    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4015  }
4016}
4017
4018SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
4019  SDOperand Op0 = Op.getOperand(0);
4020  SDOperand Op1 = Op.getOperand(1);
4021  MVT::ValueType VT = Op.getValueType();
4022  MVT::ValueType SrcVT = Op1.getValueType();
4023  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
4024
4025  // If second operand is smaller, extend it first.
4026  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
4027    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4028    SrcVT = VT;
4029    SrcTy = MVT::getTypeForValueType(SrcVT);
4030  }
4031
4032  // First get the sign bit of second operand.
4033  std::vector<Constant*> CV;
4034  if (SrcVT == MVT::f64) {
4035    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
4036    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
4037  } else {
4038    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
4039    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4040    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4041    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4042  }
4043  Constant *C = ConstantVector::get(CV);
4044  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4045  SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
4046                                false, 16);
4047  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4048
4049  // Shift sign bit right or left if the two operands have different types.
4050  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4051    // Op0 is MVT::f32, Op1 is MVT::f64.
4052    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4053    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4054                          DAG.getConstant(32, MVT::i32));
4055    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4056    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4057                          DAG.getConstant(0, getPointerTy()));
4058  }
4059
4060  // Clear first operand sign bit.
4061  CV.clear();
4062  if (VT == MVT::f64) {
4063    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
4064    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
4065  } else {
4066    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
4067    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4068    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4069    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4070  }
4071  C = ConstantVector::get(CV);
4072  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4073  SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4074                                false, 16);
4075  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4076
4077  // Or the value with the sign bit.
4078  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4079}
4080
4081SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
4082  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
4083  SDOperand Cond;
4084  SDOperand Op0 = Op.getOperand(0);
4085  SDOperand Op1 = Op.getOperand(1);
4086  SDOperand CC = Op.getOperand(2);
4087  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4088  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
4089  unsigned X86CC;
4090
4091  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
4092                     Op0, Op1, DAG)) {
4093    Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4094    return DAG.getNode(X86ISD::SETCC, MVT::i8,
4095                       DAG.getConstant(X86CC, MVT::i8), Cond);
4096  }
4097
4098  assert(isFP && "Illegal integer SetCC!");
4099
4100  Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4101  switch (SetCCOpcode) {
4102  default: assert(false && "Illegal floating point SetCC!");
4103  case ISD::SETOEQ: {  // !PF & ZF
4104    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4105                                 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
4106    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4107                                 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4108    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4109  }
4110  case ISD::SETUNE: {  // PF | !ZF
4111    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4112                                 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
4113    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4114                                 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4115    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4116  }
4117  }
4118}
4119
4120
4121SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4122  bool addTest = true;
4123  SDOperand Cond  = Op.getOperand(0);
4124  SDOperand CC;
4125
4126  if (Cond.getOpcode() == ISD::SETCC)
4127    Cond = LowerSETCC(Cond, DAG);
4128
4129  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4130  // setting operand in place of the X86ISD::SETCC.
4131  if (Cond.getOpcode() == X86ISD::SETCC) {
4132    CC = Cond.getOperand(0);
4133
4134    SDOperand Cmp = Cond.getOperand(1);
4135    unsigned Opc = Cmp.getOpcode();
4136    MVT::ValueType VT = Op.getValueType();
4137    bool IllegalFPCMov = false;
4138    if (VT == MVT::f32 && !X86ScalarSSEf32)
4139      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4140    else if (VT == MVT::f64 && !X86ScalarSSEf64)
4141      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4142    if ((Opc == X86ISD::CMP ||
4143         Opc == X86ISD::COMI ||
4144         Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
4145      Cond = Cmp;
4146      addTest = false;
4147    }
4148  }
4149
4150  if (addTest) {
4151    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4152    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4153  }
4154
4155  const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4156                                                    MVT::Flag);
4157  SmallVector<SDOperand, 4> Ops;
4158  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4159  // condition is true.
4160  Ops.push_back(Op.getOperand(2));
4161  Ops.push_back(Op.getOperand(1));
4162  Ops.push_back(CC);
4163  Ops.push_back(Cond);
4164  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
4165}
4166
4167SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4168  bool addTest = true;
4169  SDOperand Chain = Op.getOperand(0);
4170  SDOperand Cond  = Op.getOperand(1);
4171  SDOperand Dest  = Op.getOperand(2);
4172  SDOperand CC;
4173
4174  if (Cond.getOpcode() == ISD::SETCC)
4175    Cond = LowerSETCC(Cond, DAG);
4176
4177  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4178  // setting operand in place of the X86ISD::SETCC.
4179  if (Cond.getOpcode() == X86ISD::SETCC) {
4180    CC = Cond.getOperand(0);
4181
4182    SDOperand Cmp = Cond.getOperand(1);
4183    unsigned Opc = Cmp.getOpcode();
4184    if (Opc == X86ISD::CMP ||
4185        Opc == X86ISD::COMI ||
4186        Opc == X86ISD::UCOMI) {
4187      Cond = Cmp;
4188      addTest = false;
4189    }
4190  }
4191
4192  if (addTest) {
4193    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4194    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4195  }
4196  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
4197                     Chain, Op.getOperand(2), CC, Cond);
4198}
4199
4200SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
4201  unsigned CallingConv = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4202  bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
4203
4204   if (Subtarget->is64Bit())
4205     if(CallingConv==CallingConv::Fast && isTailCall && PerformTailCallOpt)
4206       return LowerX86_TailCallTo(Op, DAG, CallingConv);
4207     else
4208       return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
4209  else
4210    switch (CallingConv) {
4211    default:
4212      assert(0 && "Unsupported calling convention");
4213    case CallingConv::Fast:
4214      if (isTailCall && PerformTailCallOpt)
4215        return LowerX86_TailCallTo(Op, DAG, CallingConv);
4216      else
4217        return LowerCCCCallTo(Op,DAG, CallingConv);
4218    case CallingConv::C:
4219    case CallingConv::X86_StdCall:
4220      return LowerCCCCallTo(Op, DAG, CallingConv);
4221    case CallingConv::X86_FastCall:
4222      return LowerFastCCCallTo(Op, DAG, CallingConv);
4223    }
4224}
4225
4226
4227// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
4228// Calls to _alloca is needed to probe the stack when allocating more than 4k
4229// bytes in one go. Touching the stack at 4K increments is necessary to ensure
4230// that the guard pages used by the OS virtual memory manager are allocated in
4231// correct sequence.
4232SDOperand
4233X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
4234                                           SelectionDAG &DAG) {
4235  assert(Subtarget->isTargetCygMing() &&
4236         "This should be used only on Cygwin/Mingw targets");
4237
4238  // Get the inputs.
4239  SDOperand Chain = Op.getOperand(0);
4240  SDOperand Size  = Op.getOperand(1);
4241  // FIXME: Ensure alignment here
4242
4243  SDOperand Flag;
4244
4245  MVT::ValueType IntPtr = getPointerTy();
4246  MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
4247
4248  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
4249  Flag = Chain.getValue(1);
4250
4251  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4252  SDOperand Ops[] = { Chain,
4253                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
4254                      DAG.getRegister(X86::EAX, IntPtr),
4255                      Flag };
4256  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
4257  Flag = Chain.getValue(1);
4258
4259  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
4260
4261  std::vector<MVT::ValueType> Tys;
4262  Tys.push_back(SPTy);
4263  Tys.push_back(MVT::Other);
4264  SDOperand Ops1[2] = { Chain.getValue(0), Chain };
4265  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
4266}
4267
4268SDOperand
4269X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
4270  MachineFunction &MF = DAG.getMachineFunction();
4271  const Function* Fn = MF.getFunction();
4272  if (Fn->hasExternalLinkage() &&
4273      Subtarget->isTargetCygMing() &&
4274      Fn->getName() == "main")
4275    MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
4276
4277  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4278  if (Subtarget->is64Bit())
4279    return LowerX86_64CCCArguments(Op, DAG);
4280  else
4281    switch(CC) {
4282    default:
4283      assert(0 && "Unsupported calling convention");
4284    case CallingConv::Fast:
4285      return LowerCCCArguments(Op,DAG, true);
4286      // Falls through
4287    case CallingConv::C:
4288      return LowerCCCArguments(Op, DAG);
4289    case CallingConv::X86_StdCall:
4290      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
4291      return LowerCCCArguments(Op, DAG, true);
4292    case CallingConv::X86_FastCall:
4293      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
4294      return LowerFastCCArguments(Op, DAG);
4295    }
4296}
4297
4298SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4299  SDOperand InFlag(0, 0);
4300  SDOperand Chain = Op.getOperand(0);
4301  unsigned Align =
4302    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4303  if (Align == 0) Align = 1;
4304
4305  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4306  // If not DWORD aligned or size is more than the threshold, call memset.
4307  // The libc version is likely to be faster for these cases. It can use the
4308  // address value and run time information about the CPU.
4309  if ((Align & 3) != 0 ||
4310      (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
4311    MVT::ValueType IntPtr = getPointerTy();
4312    const Type *IntPtrTy = getTargetData()->getIntPtrType();
4313    TargetLowering::ArgListTy Args;
4314    TargetLowering::ArgListEntry Entry;
4315    Entry.Node = Op.getOperand(1);
4316    Entry.Ty = IntPtrTy;
4317    Args.push_back(Entry);
4318    // Extend the unsigned i8 argument to be an int value for the call.
4319    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4320    Entry.Ty = IntPtrTy;
4321    Args.push_back(Entry);
4322    Entry.Node = Op.getOperand(3);
4323    Args.push_back(Entry);
4324    std::pair<SDOperand,SDOperand> CallResult =
4325      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4326                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4327    return CallResult.second;
4328  }
4329
4330  MVT::ValueType AVT;
4331  SDOperand Count;
4332  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4333  unsigned BytesLeft = 0;
4334  bool TwoRepStos = false;
4335  if (ValC) {
4336    unsigned ValReg;
4337    uint64_t Val = ValC->getValue() & 255;
4338
4339    // If the value is a constant, then we can potentially use larger sets.
4340    switch (Align & 3) {
4341      case 2:   // WORD aligned
4342        AVT = MVT::i16;
4343        ValReg = X86::AX;
4344        Val = (Val << 8) | Val;
4345        break;
4346      case 0:  // DWORD aligned
4347        AVT = MVT::i32;
4348        ValReg = X86::EAX;
4349        Val = (Val << 8)  | Val;
4350        Val = (Val << 16) | Val;
4351        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
4352          AVT = MVT::i64;
4353          ValReg = X86::RAX;
4354          Val = (Val << 32) | Val;
4355        }
4356        break;
4357      default:  // Byte aligned
4358        AVT = MVT::i8;
4359        ValReg = X86::AL;
4360        Count = Op.getOperand(3);
4361        break;
4362    }
4363
4364    if (AVT > MVT::i8) {
4365      if (I) {
4366        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4367        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4368        BytesLeft = I->getValue() % UBytes;
4369      } else {
4370        assert(AVT >= MVT::i32 &&
4371               "Do not use rep;stos if not at least DWORD aligned");
4372        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4373                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4374        TwoRepStos = true;
4375      }
4376    }
4377
4378    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4379                              InFlag);
4380    InFlag = Chain.getValue(1);
4381  } else {
4382    AVT = MVT::i8;
4383    Count  = Op.getOperand(3);
4384    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4385    InFlag = Chain.getValue(1);
4386  }
4387
4388  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4389                            Count, InFlag);
4390  InFlag = Chain.getValue(1);
4391  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4392                            Op.getOperand(1), InFlag);
4393  InFlag = Chain.getValue(1);
4394
4395  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4396  SmallVector<SDOperand, 8> Ops;
4397  Ops.push_back(Chain);
4398  Ops.push_back(DAG.getValueType(AVT));
4399  Ops.push_back(InFlag);
4400  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4401
4402  if (TwoRepStos) {
4403    InFlag = Chain.getValue(1);
4404    Count = Op.getOperand(3);
4405    MVT::ValueType CVT = Count.getValueType();
4406    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4407                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4408    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4409                              Left, InFlag);
4410    InFlag = Chain.getValue(1);
4411    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4412    Ops.clear();
4413    Ops.push_back(Chain);
4414    Ops.push_back(DAG.getValueType(MVT::i8));
4415    Ops.push_back(InFlag);
4416    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4417  } else if (BytesLeft) {
4418    // Issue stores for the last 1 - 7 bytes.
4419    SDOperand Value;
4420    unsigned Val = ValC->getValue() & 255;
4421    unsigned Offset = I->getValue() - BytesLeft;
4422    SDOperand DstAddr = Op.getOperand(1);
4423    MVT::ValueType AddrVT = DstAddr.getValueType();
4424    if (BytesLeft >= 4) {
4425      Val = (Val << 8)  | Val;
4426      Val = (Val << 16) | Val;
4427      Value = DAG.getConstant(Val, MVT::i32);
4428      Chain = DAG.getStore(Chain, Value,
4429                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4430                                       DAG.getConstant(Offset, AddrVT)),
4431                           NULL, 0);
4432      BytesLeft -= 4;
4433      Offset += 4;
4434    }
4435    if (BytesLeft >= 2) {
4436      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4437      Chain = DAG.getStore(Chain, Value,
4438                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4439                                       DAG.getConstant(Offset, AddrVT)),
4440                           NULL, 0);
4441      BytesLeft -= 2;
4442      Offset += 2;
4443    }
4444    if (BytesLeft == 1) {
4445      Value = DAG.getConstant(Val, MVT::i8);
4446      Chain = DAG.getStore(Chain, Value,
4447                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4448                                       DAG.getConstant(Offset, AddrVT)),
4449                           NULL, 0);
4450    }
4451  }
4452
4453  return Chain;
4454}
4455
4456SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
4457  SDOperand ChainOp = Op.getOperand(0);
4458  SDOperand DestOp = Op.getOperand(1);
4459  SDOperand SourceOp = Op.getOperand(2);
4460  SDOperand CountOp = Op.getOperand(3);
4461  SDOperand AlignOp = Op.getOperand(4);
4462  unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
4463  if (Align == 0) Align = 1;
4464
4465  // The libc version is likely to be faster for the following cases. It can
4466  // use the address value and run time information about the CPU.
4467  // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
4468
4469  // If not DWORD aligned, call memcpy.
4470  if ((Align & 3) != 0)
4471    return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4472
4473  // If size is unknown, call memcpy.
4474  ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
4475  if (!I)
4476    return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4477
4478  // If size is more than the threshold, call memcpy.
4479  unsigned Size = I->getValue();
4480  if (Size > Subtarget->getMinRepStrSizeThreshold())
4481    return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4482
4483  return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
4484}
4485
4486SDOperand X86TargetLowering::LowerMEMCPYCall(SDOperand Chain,
4487                                             SDOperand Dest,
4488                                             SDOperand Source,
4489                                             SDOperand Count,
4490                                             SelectionDAG &DAG) {
4491  MVT::ValueType IntPtr = getPointerTy();
4492  TargetLowering::ArgListTy Args;
4493  TargetLowering::ArgListEntry Entry;
4494  Entry.Ty = getTargetData()->getIntPtrType();
4495  Entry.Node = Dest; Args.push_back(Entry);
4496  Entry.Node = Source; Args.push_back(Entry);
4497  Entry.Node = Count; Args.push_back(Entry);
4498  std::pair<SDOperand,SDOperand> CallResult =
4499      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4500                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
4501  return CallResult.second;
4502}
4503
4504SDOperand X86TargetLowering::LowerMEMCPYInline(SDOperand Chain,
4505                                               SDOperand Dest,
4506                                               SDOperand Source,
4507                                               unsigned Size,
4508                                               unsigned Align,
4509                                               SelectionDAG &DAG) {
4510  MVT::ValueType AVT;
4511  unsigned BytesLeft = 0;
4512  switch (Align & 3) {
4513    case 2:   // WORD aligned
4514      AVT = MVT::i16;
4515      break;
4516    case 0:  // DWORD aligned
4517      AVT = MVT::i32;
4518      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
4519        AVT = MVT::i64;
4520      break;
4521    default:  // Byte aligned
4522      AVT = MVT::i8;
4523      break;
4524  }
4525
4526  unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4527  SDOperand Count = DAG.getConstant(Size / UBytes, getPointerTy());
4528  BytesLeft = Size % UBytes;
4529
4530  SDOperand InFlag(0, 0);
4531  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4532                            Count, InFlag);
4533  InFlag = Chain.getValue(1);
4534  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4535                            Dest, InFlag);
4536  InFlag = Chain.getValue(1);
4537  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4538                            Source, InFlag);
4539  InFlag = Chain.getValue(1);
4540
4541  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4542  SmallVector<SDOperand, 8> Ops;
4543  Ops.push_back(Chain);
4544  Ops.push_back(DAG.getValueType(AVT));
4545  Ops.push_back(InFlag);
4546  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4547
4548  if (BytesLeft) {
4549    // Issue loads and stores for the last 1 - 7 bytes.
4550    unsigned Offset = Size - BytesLeft;
4551    SDOperand DstAddr = Dest;
4552    MVT::ValueType DstVT = DstAddr.getValueType();
4553    SDOperand SrcAddr = Source;
4554    MVT::ValueType SrcVT = SrcAddr.getValueType();
4555    SDOperand Value;
4556    if (BytesLeft >= 4) {
4557      Value = DAG.getLoad(MVT::i32, Chain,
4558                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4559                                      DAG.getConstant(Offset, SrcVT)),
4560                          NULL, 0);
4561      Chain = Value.getValue(1);
4562      Chain = DAG.getStore(Chain, Value,
4563                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4564                                       DAG.getConstant(Offset, DstVT)),
4565                           NULL, 0);
4566      BytesLeft -= 4;
4567      Offset += 4;
4568    }
4569    if (BytesLeft >= 2) {
4570      Value = DAG.getLoad(MVT::i16, Chain,
4571                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4572                                      DAG.getConstant(Offset, SrcVT)),
4573                          NULL, 0);
4574      Chain = Value.getValue(1);
4575      Chain = DAG.getStore(Chain, Value,
4576                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4577                                       DAG.getConstant(Offset, DstVT)),
4578                           NULL, 0);
4579      BytesLeft -= 2;
4580      Offset += 2;
4581    }
4582
4583    if (BytesLeft == 1) {
4584      Value = DAG.getLoad(MVT::i8, Chain,
4585                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4586                                      DAG.getConstant(Offset, SrcVT)),
4587                          NULL, 0);
4588      Chain = Value.getValue(1);
4589      Chain = DAG.getStore(Chain, Value,
4590                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4591                                       DAG.getConstant(Offset, DstVT)),
4592                           NULL, 0);
4593    }
4594  }
4595
4596  return Chain;
4597}
4598
4599SDOperand
4600X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4601  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4602  SDOperand TheOp = Op.getOperand(0);
4603  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4604  if (Subtarget->is64Bit()) {
4605    SDOperand Copy1 =
4606      DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4607    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4608                                         MVT::i64, Copy1.getValue(2));
4609    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4610                                DAG.getConstant(32, MVT::i8));
4611    SDOperand Ops[] = {
4612      DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4613    };
4614
4615    Tys = DAG.getVTList(MVT::i64, MVT::Other);
4616    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4617  }
4618
4619  SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4620  SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4621                                       MVT::i32, Copy1.getValue(2));
4622  SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4623  Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4624  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4625}
4626
4627SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4628  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4629
4630  if (!Subtarget->is64Bit()) {
4631    // vastart just stores the address of the VarArgsFrameIndex slot into the
4632    // memory location argument.
4633    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4634    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4635                        SV->getOffset());
4636  }
4637
4638  // __va_list_tag:
4639  //   gp_offset         (0 - 6 * 8)
4640  //   fp_offset         (48 - 48 + 8 * 16)
4641  //   overflow_arg_area (point to parameters coming in memory).
4642  //   reg_save_area
4643  SmallVector<SDOperand, 8> MemOps;
4644  SDOperand FIN = Op.getOperand(1);
4645  // Store gp_offset
4646  SDOperand Store = DAG.getStore(Op.getOperand(0),
4647                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4648                                 FIN, SV->getValue(), SV->getOffset());
4649  MemOps.push_back(Store);
4650
4651  // Store fp_offset
4652  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4653                    DAG.getConstant(4, getPointerTy()));
4654  Store = DAG.getStore(Op.getOperand(0),
4655                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4656                       FIN, SV->getValue(), SV->getOffset());
4657  MemOps.push_back(Store);
4658
4659  // Store ptr to overflow_arg_area
4660  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4661                    DAG.getConstant(4, getPointerTy()));
4662  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4663  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4664                       SV->getOffset());
4665  MemOps.push_back(Store);
4666
4667  // Store ptr to reg_save_area.
4668  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4669                    DAG.getConstant(8, getPointerTy()));
4670  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4671  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4672                       SV->getOffset());
4673  MemOps.push_back(Store);
4674  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4675}
4676
4677SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4678  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4679  SDOperand Chain = Op.getOperand(0);
4680  SDOperand DstPtr = Op.getOperand(1);
4681  SDOperand SrcPtr = Op.getOperand(2);
4682  SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4683  SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4684
4685  SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4686                       SrcSV->getValue(), SrcSV->getOffset());
4687  Chain = SrcPtr.getValue(1);
4688  for (unsigned i = 0; i < 3; ++i) {
4689    SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4690                                SrcSV->getValue(), SrcSV->getOffset());
4691    Chain = Val.getValue(1);
4692    Chain = DAG.getStore(Chain, Val, DstPtr,
4693                         DstSV->getValue(), DstSV->getOffset());
4694    if (i == 2)
4695      break;
4696    SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4697                         DAG.getConstant(8, getPointerTy()));
4698    DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4699                         DAG.getConstant(8, getPointerTy()));
4700  }
4701  return Chain;
4702}
4703
4704SDOperand
4705X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4706  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4707  switch (IntNo) {
4708  default: return SDOperand();    // Don't custom lower most intrinsics.
4709    // Comparison intrinsics.
4710  case Intrinsic::x86_sse_comieq_ss:
4711  case Intrinsic::x86_sse_comilt_ss:
4712  case Intrinsic::x86_sse_comile_ss:
4713  case Intrinsic::x86_sse_comigt_ss:
4714  case Intrinsic::x86_sse_comige_ss:
4715  case Intrinsic::x86_sse_comineq_ss:
4716  case Intrinsic::x86_sse_ucomieq_ss:
4717  case Intrinsic::x86_sse_ucomilt_ss:
4718  case Intrinsic::x86_sse_ucomile_ss:
4719  case Intrinsic::x86_sse_ucomigt_ss:
4720  case Intrinsic::x86_sse_ucomige_ss:
4721  case Intrinsic::x86_sse_ucomineq_ss:
4722  case Intrinsic::x86_sse2_comieq_sd:
4723  case Intrinsic::x86_sse2_comilt_sd:
4724  case Intrinsic::x86_sse2_comile_sd:
4725  case Intrinsic::x86_sse2_comigt_sd:
4726  case Intrinsic::x86_sse2_comige_sd:
4727  case Intrinsic::x86_sse2_comineq_sd:
4728  case Intrinsic::x86_sse2_ucomieq_sd:
4729  case Intrinsic::x86_sse2_ucomilt_sd:
4730  case Intrinsic::x86_sse2_ucomile_sd:
4731  case Intrinsic::x86_sse2_ucomigt_sd:
4732  case Intrinsic::x86_sse2_ucomige_sd:
4733  case Intrinsic::x86_sse2_ucomineq_sd: {
4734    unsigned Opc = 0;
4735    ISD::CondCode CC = ISD::SETCC_INVALID;
4736    switch (IntNo) {
4737    default: break;
4738    case Intrinsic::x86_sse_comieq_ss:
4739    case Intrinsic::x86_sse2_comieq_sd:
4740      Opc = X86ISD::COMI;
4741      CC = ISD::SETEQ;
4742      break;
4743    case Intrinsic::x86_sse_comilt_ss:
4744    case Intrinsic::x86_sse2_comilt_sd:
4745      Opc = X86ISD::COMI;
4746      CC = ISD::SETLT;
4747      break;
4748    case Intrinsic::x86_sse_comile_ss:
4749    case Intrinsic::x86_sse2_comile_sd:
4750      Opc = X86ISD::COMI;
4751      CC = ISD::SETLE;
4752      break;
4753    case Intrinsic::x86_sse_comigt_ss:
4754    case Intrinsic::x86_sse2_comigt_sd:
4755      Opc = X86ISD::COMI;
4756      CC = ISD::SETGT;
4757      break;
4758    case Intrinsic::x86_sse_comige_ss:
4759    case Intrinsic::x86_sse2_comige_sd:
4760      Opc = X86ISD::COMI;
4761      CC = ISD::SETGE;
4762      break;
4763    case Intrinsic::x86_sse_comineq_ss:
4764    case Intrinsic::x86_sse2_comineq_sd:
4765      Opc = X86ISD::COMI;
4766      CC = ISD::SETNE;
4767      break;
4768    case Intrinsic::x86_sse_ucomieq_ss:
4769    case Intrinsic::x86_sse2_ucomieq_sd:
4770      Opc = X86ISD::UCOMI;
4771      CC = ISD::SETEQ;
4772      break;
4773    case Intrinsic::x86_sse_ucomilt_ss:
4774    case Intrinsic::x86_sse2_ucomilt_sd:
4775      Opc = X86ISD::UCOMI;
4776      CC = ISD::SETLT;
4777      break;
4778    case Intrinsic::x86_sse_ucomile_ss:
4779    case Intrinsic::x86_sse2_ucomile_sd:
4780      Opc = X86ISD::UCOMI;
4781      CC = ISD::SETLE;
4782      break;
4783    case Intrinsic::x86_sse_ucomigt_ss:
4784    case Intrinsic::x86_sse2_ucomigt_sd:
4785      Opc = X86ISD::UCOMI;
4786      CC = ISD::SETGT;
4787      break;
4788    case Intrinsic::x86_sse_ucomige_ss:
4789    case Intrinsic::x86_sse2_ucomige_sd:
4790      Opc = X86ISD::UCOMI;
4791      CC = ISD::SETGE;
4792      break;
4793    case Intrinsic::x86_sse_ucomineq_ss:
4794    case Intrinsic::x86_sse2_ucomineq_sd:
4795      Opc = X86ISD::UCOMI;
4796      CC = ISD::SETNE;
4797      break;
4798    }
4799
4800    unsigned X86CC;
4801    SDOperand LHS = Op.getOperand(1);
4802    SDOperand RHS = Op.getOperand(2);
4803    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4804
4805    SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
4806    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
4807                                  DAG.getConstant(X86CC, MVT::i8), Cond);
4808    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4809  }
4810  }
4811}
4812
4813SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4814  // Depths > 0 not supported yet!
4815  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4816    return SDOperand();
4817
4818  // Just load the return address
4819  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4820  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4821}
4822
4823SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4824  // Depths > 0 not supported yet!
4825  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4826    return SDOperand();
4827
4828  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4829  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4830                     DAG.getConstant(4, getPointerTy()));
4831}
4832
4833SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4834                                                       SelectionDAG &DAG) {
4835  // Is not yet supported on x86-64
4836  if (Subtarget->is64Bit())
4837    return SDOperand();
4838
4839  return DAG.getConstant(8, getPointerTy());
4840}
4841
4842SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4843{
4844  assert(!Subtarget->is64Bit() &&
4845         "Lowering of eh_return builtin is not supported yet on x86-64");
4846
4847  MachineFunction &MF = DAG.getMachineFunction();
4848  SDOperand Chain     = Op.getOperand(0);
4849  SDOperand Offset    = Op.getOperand(1);
4850  SDOperand Handler   = Op.getOperand(2);
4851
4852  SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4853                                    getPointerTy());
4854
4855  SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4856                                    DAG.getConstant(-4UL, getPointerTy()));
4857  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4858  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4859  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4860  MF.addLiveOut(X86::ECX);
4861
4862  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4863                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4864}
4865
4866SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4867                                             SelectionDAG &DAG) {
4868  SDOperand Root = Op.getOperand(0);
4869  SDOperand Trmp = Op.getOperand(1); // trampoline
4870  SDOperand FPtr = Op.getOperand(2); // nested function
4871  SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4872
4873  SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4874
4875  if (Subtarget->is64Bit()) {
4876    return SDOperand(); // not yet supported
4877  } else {
4878    Function *Func = (Function *)
4879      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4880    unsigned CC = Func->getCallingConv();
4881    unsigned NestReg;
4882
4883    switch (CC) {
4884    default:
4885      assert(0 && "Unsupported calling convention");
4886    case CallingConv::C:
4887    case CallingConv::X86_StdCall: {
4888      // Pass 'nest' parameter in ECX.
4889      // Must be kept in sync with X86CallingConv.td
4890      NestReg = X86::ECX;
4891
4892      // Check that ECX wasn't needed by an 'inreg' parameter.
4893      const FunctionType *FTy = Func->getFunctionType();
4894      const ParamAttrsList *Attrs = FTy->getParamAttrs();
4895
4896      if (Attrs && !Func->isVarArg()) {
4897        unsigned InRegCount = 0;
4898        unsigned Idx = 1;
4899
4900        for (FunctionType::param_iterator I = FTy->param_begin(),
4901             E = FTy->param_end(); I != E; ++I, ++Idx)
4902          if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
4903            // FIXME: should only count parameters that are lowered to integers.
4904            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
4905
4906        if (InRegCount > 2) {
4907          cerr << "Nest register in use - reduce number of inreg parameters!\n";
4908          abort();
4909        }
4910      }
4911      break;
4912    }
4913    case CallingConv::X86_FastCall:
4914      // Pass 'nest' parameter in EAX.
4915      // Must be kept in sync with X86CallingConv.td
4916      NestReg = X86::EAX;
4917      break;
4918    }
4919
4920    const X86InstrInfo *TII =
4921      ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
4922
4923    SDOperand OutChains[4];
4924    SDOperand Addr, Disp;
4925
4926    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
4927    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
4928
4929    unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
4930    unsigned char N86Reg  = ((X86RegisterInfo&)RegInfo).getX86RegNum(NestReg);
4931    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
4932                                Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
4933
4934    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
4935    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4936                                TrmpSV->getOffset() + 1, false, 1);
4937
4938    unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
4939    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
4940    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
4941                                TrmpSV->getValue() + 5, TrmpSV->getOffset());
4942
4943    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
4944    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
4945                                TrmpSV->getOffset() + 6, false, 1);
4946
4947    SDOperand Ops[] =
4948      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
4949    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
4950  }
4951}
4952
4953/// LowerOperation - Provide custom lowering hooks for some operations.
4954///
4955SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4956  switch (Op.getOpcode()) {
4957  default: assert(0 && "Should not custom lower this!");
4958  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4959  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4960  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4961  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
4962  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4963  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4964  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4965  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4966  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
4967  case ISD::SHL_PARTS:
4968  case ISD::SRA_PARTS:
4969  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
4970  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4971  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
4972  case ISD::FABS:               return LowerFABS(Op, DAG);
4973  case ISD::FNEG:               return LowerFNEG(Op, DAG);
4974  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
4975  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4976  case ISD::SELECT:             return LowerSELECT(Op, DAG);
4977  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
4978  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4979  case ISD::CALL:               return LowerCALL(Op, DAG);
4980  case ISD::RET:                return LowerRET(Op, DAG);
4981  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
4982  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
4983  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
4984  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
4985  case ISD::VASTART:            return LowerVASTART(Op, DAG);
4986  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
4987  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4988  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4989  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4990  case ISD::FRAME_TO_ARGS_OFFSET:
4991                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
4992  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
4993  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
4994  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4995  }
4996  return SDOperand();
4997}
4998
4999const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
5000  switch (Opcode) {
5001  default: return NULL;
5002  case X86ISD::SHLD:               return "X86ISD::SHLD";
5003  case X86ISD::SHRD:               return "X86ISD::SHRD";
5004  case X86ISD::FAND:               return "X86ISD::FAND";
5005  case X86ISD::FOR:                return "X86ISD::FOR";
5006  case X86ISD::FXOR:               return "X86ISD::FXOR";
5007  case X86ISD::FSRL:               return "X86ISD::FSRL";
5008  case X86ISD::FILD:               return "X86ISD::FILD";
5009  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
5010  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
5011  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
5012  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
5013  case X86ISD::FLD:                return "X86ISD::FLD";
5014  case X86ISD::FST:                return "X86ISD::FST";
5015  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
5016  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
5017  case X86ISD::CALL:               return "X86ISD::CALL";
5018  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
5019  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
5020  case X86ISD::CMP:                return "X86ISD::CMP";
5021  case X86ISD::COMI:               return "X86ISD::COMI";
5022  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
5023  case X86ISD::SETCC:              return "X86ISD::SETCC";
5024  case X86ISD::CMOV:               return "X86ISD::CMOV";
5025  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
5026  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
5027  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
5028  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
5029  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
5030  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
5031  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
5032  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
5033  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
5034  case X86ISD::FMAX:               return "X86ISD::FMAX";
5035  case X86ISD::FMIN:               return "X86ISD::FMIN";
5036  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
5037  case X86ISD::FRCP:               return "X86ISD::FRCP";
5038  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
5039  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
5040  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
5041  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
5042  }
5043}
5044
5045// isLegalAddressingMode - Return true if the addressing mode represented
5046// by AM is legal for this target, for a load/store of the specified type.
5047bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
5048                                              const Type *Ty) const {
5049  // X86 supports extremely general addressing modes.
5050
5051  // X86 allows a sign-extended 32-bit immediate field as a displacement.
5052  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
5053    return false;
5054
5055  if (AM.BaseGV) {
5056    // We can only fold this if we don't need an extra load.
5057    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
5058      return false;
5059
5060    // X86-64 only supports addr of globals in small code model.
5061    if (Subtarget->is64Bit()) {
5062      if (getTargetMachine().getCodeModel() != CodeModel::Small)
5063        return false;
5064      // If lower 4G is not available, then we must use rip-relative addressing.
5065      if (AM.BaseOffs || AM.Scale > 1)
5066        return false;
5067    }
5068  }
5069
5070  switch (AM.Scale) {
5071  case 0:
5072  case 1:
5073  case 2:
5074  case 4:
5075  case 8:
5076    // These scales always work.
5077    break;
5078  case 3:
5079  case 5:
5080  case 9:
5081    // These scales are formed with basereg+scalereg.  Only accept if there is
5082    // no basereg yet.
5083    if (AM.HasBaseReg)
5084      return false;
5085    break;
5086  default:  // Other stuff never works.
5087    return false;
5088  }
5089
5090  return true;
5091}
5092
5093
5094/// isShuffleMaskLegal - Targets can use this to indicate that they only
5095/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5096/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5097/// are assumed to be legal.
5098bool
5099X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
5100  // Only do shuffles on 128-bit vector types for now.
5101  if (MVT::getSizeInBits(VT) == 64) return false;
5102  return (Mask.Val->getNumOperands() <= 4 ||
5103          isIdentityMask(Mask.Val) ||
5104          isIdentityMask(Mask.Val, true) ||
5105          isSplatMask(Mask.Val)  ||
5106          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
5107          X86::isUNPCKLMask(Mask.Val) ||
5108          X86::isUNPCKHMask(Mask.Val) ||
5109          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
5110          X86::isUNPCKH_v_undef_Mask(Mask.Val));
5111}
5112
5113bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
5114                                               MVT::ValueType EVT,
5115                                               SelectionDAG &DAG) const {
5116  unsigned NumElts = BVOps.size();
5117  // Only do shuffles on 128-bit vector types for now.
5118  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
5119  if (NumElts == 2) return true;
5120  if (NumElts == 4) {
5121    return (isMOVLMask(&BVOps[0], 4)  ||
5122            isCommutedMOVL(&BVOps[0], 4, true) ||
5123            isSHUFPMask(&BVOps[0], 4) ||
5124            isCommutedSHUFP(&BVOps[0], 4));
5125  }
5126  return false;
5127}
5128
5129//===----------------------------------------------------------------------===//
5130//                           X86 Scheduler Hooks
5131//===----------------------------------------------------------------------===//
5132
5133MachineBasicBlock *
5134X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
5135                                           MachineBasicBlock *BB) {
5136  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5137  switch (MI->getOpcode()) {
5138  default: assert(false && "Unexpected instr type to insert");
5139  case X86::CMOV_FR32:
5140  case X86::CMOV_FR64:
5141  case X86::CMOV_V4F32:
5142  case X86::CMOV_V2F64:
5143  case X86::CMOV_V2I64: {
5144    // To "insert" a SELECT_CC instruction, we actually have to insert the
5145    // diamond control-flow pattern.  The incoming instruction knows the
5146    // destination vreg to set, the condition code register to branch on, the
5147    // true/false values to select between, and a branch opcode to use.
5148    const BasicBlock *LLVM_BB = BB->getBasicBlock();
5149    ilist<MachineBasicBlock>::iterator It = BB;
5150    ++It;
5151
5152    //  thisMBB:
5153    //  ...
5154    //   TrueVal = ...
5155    //   cmpTY ccX, r1, r2
5156    //   bCC copy1MBB
5157    //   fallthrough --> copy0MBB
5158    MachineBasicBlock *thisMBB = BB;
5159    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
5160    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
5161    unsigned Opc =
5162      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
5163    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
5164    MachineFunction *F = BB->getParent();
5165    F->getBasicBlockList().insert(It, copy0MBB);
5166    F->getBasicBlockList().insert(It, sinkMBB);
5167    // Update machine-CFG edges by first adding all successors of the current
5168    // block to the new block which will contain the Phi node for the select.
5169    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
5170        e = BB->succ_end(); i != e; ++i)
5171      sinkMBB->addSuccessor(*i);
5172    // Next, remove all successors of the current block, and add the true
5173    // and fallthrough blocks as its successors.
5174    while(!BB->succ_empty())
5175      BB->removeSuccessor(BB->succ_begin());
5176    BB->addSuccessor(copy0MBB);
5177    BB->addSuccessor(sinkMBB);
5178
5179    //  copy0MBB:
5180    //   %FalseValue = ...
5181    //   # fallthrough to sinkMBB
5182    BB = copy0MBB;
5183
5184    // Update machine-CFG edges
5185    BB->addSuccessor(sinkMBB);
5186
5187    //  sinkMBB:
5188    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5189    //  ...
5190    BB = sinkMBB;
5191    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
5192      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5193      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5194
5195    delete MI;   // The pseudo instruction is gone now.
5196    return BB;
5197  }
5198
5199  case X86::FP32_TO_INT16_IN_MEM:
5200  case X86::FP32_TO_INT32_IN_MEM:
5201  case X86::FP32_TO_INT64_IN_MEM:
5202  case X86::FP64_TO_INT16_IN_MEM:
5203  case X86::FP64_TO_INT32_IN_MEM:
5204  case X86::FP64_TO_INT64_IN_MEM:
5205  case X86::FP80_TO_INT16_IN_MEM:
5206  case X86::FP80_TO_INT32_IN_MEM:
5207  case X86::FP80_TO_INT64_IN_MEM: {
5208    // Change the floating point control register to use "round towards zero"
5209    // mode when truncating to an integer value.
5210    MachineFunction *F = BB->getParent();
5211    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
5212    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
5213
5214    // Load the old value of the high byte of the control word...
5215    unsigned OldCW =
5216      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
5217    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
5218
5219    // Set the high part to be round to zero...
5220    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
5221      .addImm(0xC7F);
5222
5223    // Reload the modified control word now...
5224    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5225
5226    // Restore the memory image of control word to original value
5227    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
5228      .addReg(OldCW);
5229
5230    // Get the X86 opcode to use.
5231    unsigned Opc;
5232    switch (MI->getOpcode()) {
5233    default: assert(0 && "illegal opcode!");
5234    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
5235    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
5236    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
5237    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
5238    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
5239    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
5240    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
5241    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
5242    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
5243    }
5244
5245    X86AddressMode AM;
5246    MachineOperand &Op = MI->getOperand(0);
5247    if (Op.isRegister()) {
5248      AM.BaseType = X86AddressMode::RegBase;
5249      AM.Base.Reg = Op.getReg();
5250    } else {
5251      AM.BaseType = X86AddressMode::FrameIndexBase;
5252      AM.Base.FrameIndex = Op.getFrameIndex();
5253    }
5254    Op = MI->getOperand(1);
5255    if (Op.isImmediate())
5256      AM.Scale = Op.getImm();
5257    Op = MI->getOperand(2);
5258    if (Op.isImmediate())
5259      AM.IndexReg = Op.getImm();
5260    Op = MI->getOperand(3);
5261    if (Op.isGlobalAddress()) {
5262      AM.GV = Op.getGlobal();
5263    } else {
5264      AM.Disp = Op.getImm();
5265    }
5266    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
5267                      .addReg(MI->getOperand(4).getReg());
5268
5269    // Reload the original control word now.
5270    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5271
5272    delete MI;   // The pseudo instruction is gone now.
5273    return BB;
5274  }
5275  }
5276}
5277
5278//===----------------------------------------------------------------------===//
5279//                           X86 Optimization Hooks
5280//===----------------------------------------------------------------------===//
5281
5282void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
5283                                                       uint64_t Mask,
5284                                                       uint64_t &KnownZero,
5285                                                       uint64_t &KnownOne,
5286                                                       const SelectionDAG &DAG,
5287                                                       unsigned Depth) const {
5288  unsigned Opc = Op.getOpcode();
5289  assert((Opc >= ISD::BUILTIN_OP_END ||
5290          Opc == ISD::INTRINSIC_WO_CHAIN ||
5291          Opc == ISD::INTRINSIC_W_CHAIN ||
5292          Opc == ISD::INTRINSIC_VOID) &&
5293         "Should use MaskedValueIsZero if you don't know whether Op"
5294         " is a target node!");
5295
5296  KnownZero = KnownOne = 0;   // Don't know anything.
5297  switch (Opc) {
5298  default: break;
5299  case X86ISD::SETCC:
5300    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
5301    break;
5302  }
5303}
5304
5305/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5306/// element of the result of the vector shuffle.
5307static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
5308  MVT::ValueType VT = N->getValueType(0);
5309  SDOperand PermMask = N->getOperand(2);
5310  unsigned NumElems = PermMask.getNumOperands();
5311  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
5312  i %= NumElems;
5313  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5314    return (i == 0)
5315     ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5316  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
5317    SDOperand Idx = PermMask.getOperand(i);
5318    if (Idx.getOpcode() == ISD::UNDEF)
5319      return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5320    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
5321  }
5322  return SDOperand();
5323}
5324
5325/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
5326/// node is a GlobalAddress + an offset.
5327static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
5328  unsigned Opc = N->getOpcode();
5329  if (Opc == X86ISD::Wrapper) {
5330    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
5331      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
5332      return true;
5333    }
5334  } else if (Opc == ISD::ADD) {
5335    SDOperand N1 = N->getOperand(0);
5336    SDOperand N2 = N->getOperand(1);
5337    if (isGAPlusOffset(N1.Val, GA, Offset)) {
5338      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
5339      if (V) {
5340        Offset += V->getSignExtended();
5341        return true;
5342      }
5343    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
5344      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
5345      if (V) {
5346        Offset += V->getSignExtended();
5347        return true;
5348      }
5349    }
5350  }
5351  return false;
5352}
5353
5354/// isConsecutiveLoad - Returns true if N is loading from an address of Base
5355/// + Dist * Size.
5356static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
5357                              MachineFrameInfo *MFI) {
5358  if (N->getOperand(0).Val != Base->getOperand(0).Val)
5359    return false;
5360
5361  SDOperand Loc = N->getOperand(1);
5362  SDOperand BaseLoc = Base->getOperand(1);
5363  if (Loc.getOpcode() == ISD::FrameIndex) {
5364    if (BaseLoc.getOpcode() != ISD::FrameIndex)
5365      return false;
5366    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
5367    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
5368    int FS  = MFI->getObjectSize(FI);
5369    int BFS = MFI->getObjectSize(BFI);
5370    if (FS != BFS || FS != Size) return false;
5371    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
5372  } else {
5373    GlobalValue *GV1 = NULL;
5374    GlobalValue *GV2 = NULL;
5375    int64_t Offset1 = 0;
5376    int64_t Offset2 = 0;
5377    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
5378    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
5379    if (isGA1 && isGA2 && GV1 == GV2)
5380      return Offset1 == (Offset2 + Dist*Size);
5381  }
5382
5383  return false;
5384}
5385
5386static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
5387                              const X86Subtarget *Subtarget) {
5388  GlobalValue *GV;
5389  int64_t Offset;
5390  if (isGAPlusOffset(Base, GV, Offset))
5391    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
5392  else {
5393    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
5394    int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
5395    if (BFI < 0)
5396      // Fixed objects do not specify alignment, however the offsets are known.
5397      return ((Subtarget->getStackAlignment() % 16) == 0 &&
5398              (MFI->getObjectOffset(BFI) % 16) == 0);
5399    else
5400      return MFI->getObjectAlignment(BFI) >= 16;
5401  }
5402  return false;
5403}
5404
5405
5406/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5407/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5408/// if the load addresses are consecutive, non-overlapping, and in the right
5409/// order.
5410static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
5411                                       const X86Subtarget *Subtarget) {
5412  MachineFunction &MF = DAG.getMachineFunction();
5413  MachineFrameInfo *MFI = MF.getFrameInfo();
5414  MVT::ValueType VT = N->getValueType(0);
5415  MVT::ValueType EVT = MVT::getVectorElementType(VT);
5416  SDOperand PermMask = N->getOperand(2);
5417  int NumElems = (int)PermMask.getNumOperands();
5418  SDNode *Base = NULL;
5419  for (int i = 0; i < NumElems; ++i) {
5420    SDOperand Idx = PermMask.getOperand(i);
5421    if (Idx.getOpcode() == ISD::UNDEF) {
5422      if (!Base) return SDOperand();
5423    } else {
5424      SDOperand Arg =
5425        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
5426      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
5427        return SDOperand();
5428      if (!Base)
5429        Base = Arg.Val;
5430      else if (!isConsecutiveLoad(Arg.Val, Base,
5431                                  i, MVT::getSizeInBits(EVT)/8,MFI))
5432        return SDOperand();
5433    }
5434  }
5435
5436  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
5437  LoadSDNode *LD = cast<LoadSDNode>(Base);
5438  if (isAlign16) {
5439    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5440                       LD->getSrcValueOffset(), LD->isVolatile());
5441  } else {
5442    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5443                       LD->getSrcValueOffset(), LD->isVolatile(),
5444                       LD->getAlignment());
5445  }
5446}
5447
5448/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5449static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5450                                      const X86Subtarget *Subtarget) {
5451  SDOperand Cond = N->getOperand(0);
5452
5453  // If we have SSE[12] support, try to form min/max nodes.
5454  if (Subtarget->hasSSE2() &&
5455      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5456    if (Cond.getOpcode() == ISD::SETCC) {
5457      // Get the LHS/RHS of the select.
5458      SDOperand LHS = N->getOperand(1);
5459      SDOperand RHS = N->getOperand(2);
5460      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5461
5462      unsigned Opcode = 0;
5463      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5464        switch (CC) {
5465        default: break;
5466        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
5467        case ISD::SETULE:
5468        case ISD::SETLE:
5469          if (!UnsafeFPMath) break;
5470          // FALL THROUGH.
5471        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
5472        case ISD::SETLT:
5473          Opcode = X86ISD::FMIN;
5474          break;
5475
5476        case ISD::SETOGT: // (X > Y) ? X : Y -> max
5477        case ISD::SETUGT:
5478        case ISD::SETGT:
5479          if (!UnsafeFPMath) break;
5480          // FALL THROUGH.
5481        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
5482        case ISD::SETGE:
5483          Opcode = X86ISD::FMAX;
5484          break;
5485        }
5486      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5487        switch (CC) {
5488        default: break;
5489        case ISD::SETOGT: // (X > Y) ? Y : X -> min
5490        case ISD::SETUGT:
5491        case ISD::SETGT:
5492          if (!UnsafeFPMath) break;
5493          // FALL THROUGH.
5494        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
5495        case ISD::SETGE:
5496          Opcode = X86ISD::FMIN;
5497          break;
5498
5499        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
5500        case ISD::SETULE:
5501        case ISD::SETLE:
5502          if (!UnsafeFPMath) break;
5503          // FALL THROUGH.
5504        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
5505        case ISD::SETLT:
5506          Opcode = X86ISD::FMAX;
5507          break;
5508        }
5509      }
5510
5511      if (Opcode)
5512        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5513    }
5514
5515  }
5516
5517  return SDOperand();
5518}
5519
5520
5521SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5522                                               DAGCombinerInfo &DCI) const {
5523  SelectionDAG &DAG = DCI.DAG;
5524  switch (N->getOpcode()) {
5525  default: break;
5526  case ISD::VECTOR_SHUFFLE:
5527    return PerformShuffleCombine(N, DAG, Subtarget);
5528  case ISD::SELECT:
5529    return PerformSELECTCombine(N, DAG, Subtarget);
5530  }
5531
5532  return SDOperand();
5533}
5534
5535//===----------------------------------------------------------------------===//
5536//                           X86 Inline Assembly Support
5537//===----------------------------------------------------------------------===//
5538
5539/// getConstraintType - Given a constraint letter, return the type of
5540/// constraint it is for this target.
5541X86TargetLowering::ConstraintType
5542X86TargetLowering::getConstraintType(const std::string &Constraint) const {
5543  if (Constraint.size() == 1) {
5544    switch (Constraint[0]) {
5545    case 'A':
5546    case 'r':
5547    case 'R':
5548    case 'l':
5549    case 'q':
5550    case 'Q':
5551    case 'x':
5552    case 'Y':
5553      return C_RegisterClass;
5554    default:
5555      break;
5556    }
5557  }
5558  return TargetLowering::getConstraintType(Constraint);
5559}
5560
5561/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5562/// vector.  If it is invalid, don't add anything to Ops.
5563void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5564                                                     char Constraint,
5565                                                     std::vector<SDOperand>&Ops,
5566                                                     SelectionDAG &DAG) {
5567  SDOperand Result(0, 0);
5568
5569  switch (Constraint) {
5570  default: break;
5571  case 'I':
5572    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5573      if (C->getValue() <= 31) {
5574        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5575        break;
5576      }
5577    }
5578    return;
5579  case 'N':
5580    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5581      if (C->getValue() <= 255) {
5582        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5583        break;
5584      }
5585    }
5586    return;
5587  case 'i': {
5588    // Literal immediates are always ok.
5589    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5590      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5591      break;
5592    }
5593
5594    // If we are in non-pic codegen mode, we allow the address of a global (with
5595    // an optional displacement) to be used with 'i'.
5596    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5597    int64_t Offset = 0;
5598
5599    // Match either (GA) or (GA+C)
5600    if (GA) {
5601      Offset = GA->getOffset();
5602    } else if (Op.getOpcode() == ISD::ADD) {
5603      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5604      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5605      if (C && GA) {
5606        Offset = GA->getOffset()+C->getValue();
5607      } else {
5608        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5609        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5610        if (C && GA)
5611          Offset = GA->getOffset()+C->getValue();
5612        else
5613          C = 0, GA = 0;
5614      }
5615    }
5616
5617    if (GA) {
5618      // If addressing this global requires a load (e.g. in PIC mode), we can't
5619      // match.
5620      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5621                                         false))
5622        return;
5623
5624      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5625                                      Offset);
5626      Result = Op;
5627      break;
5628    }
5629
5630    // Otherwise, not valid for this mode.
5631    return;
5632  }
5633  }
5634
5635  if (Result.Val) {
5636    Ops.push_back(Result);
5637    return;
5638  }
5639  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5640}
5641
5642std::vector<unsigned> X86TargetLowering::
5643getRegClassForInlineAsmConstraint(const std::string &Constraint,
5644                                  MVT::ValueType VT) const {
5645  if (Constraint.size() == 1) {
5646    // FIXME: not handling fp-stack yet!
5647    switch (Constraint[0]) {      // GCC X86 Constraint Letters
5648    default: break;  // Unknown constraint letter
5649    case 'A':   // EAX/EDX
5650      if (VT == MVT::i32 || VT == MVT::i64)
5651        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5652      break;
5653    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
5654    case 'Q':   // Q_REGS
5655      if (VT == MVT::i32)
5656        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5657      else if (VT == MVT::i16)
5658        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5659      else if (VT == MVT::i8)
5660        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
5661        break;
5662    }
5663  }
5664
5665  return std::vector<unsigned>();
5666}
5667
5668std::pair<unsigned, const TargetRegisterClass*>
5669X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5670                                                MVT::ValueType VT) const {
5671  // First, see if this is a constraint that directly corresponds to an LLVM
5672  // register class.
5673  if (Constraint.size() == 1) {
5674    // GCC Constraint Letters
5675    switch (Constraint[0]) {
5676    default: break;
5677    case 'r':   // GENERAL_REGS
5678    case 'R':   // LEGACY_REGS
5679    case 'l':   // INDEX_REGS
5680      if (VT == MVT::i64 && Subtarget->is64Bit())
5681        return std::make_pair(0U, X86::GR64RegisterClass);
5682      if (VT == MVT::i32)
5683        return std::make_pair(0U, X86::GR32RegisterClass);
5684      else if (VT == MVT::i16)
5685        return std::make_pair(0U, X86::GR16RegisterClass);
5686      else if (VT == MVT::i8)
5687        return std::make_pair(0U, X86::GR8RegisterClass);
5688      break;
5689    case 'y':   // MMX_REGS if MMX allowed.
5690      if (!Subtarget->hasMMX()) break;
5691      return std::make_pair(0U, X86::VR64RegisterClass);
5692      break;
5693    case 'Y':   // SSE_REGS if SSE2 allowed
5694      if (!Subtarget->hasSSE2()) break;
5695      // FALL THROUGH.
5696    case 'x':   // SSE_REGS if SSE1 allowed
5697      if (!Subtarget->hasSSE1()) break;
5698
5699      switch (VT) {
5700      default: break;
5701      // Scalar SSE types.
5702      case MVT::f32:
5703      case MVT::i32:
5704        return std::make_pair(0U, X86::FR32RegisterClass);
5705      case MVT::f64:
5706      case MVT::i64:
5707        return std::make_pair(0U, X86::FR64RegisterClass);
5708      // Vector types.
5709      case MVT::v16i8:
5710      case MVT::v8i16:
5711      case MVT::v4i32:
5712      case MVT::v2i64:
5713      case MVT::v4f32:
5714      case MVT::v2f64:
5715        return std::make_pair(0U, X86::VR128RegisterClass);
5716      }
5717      break;
5718    }
5719  }
5720
5721  // Use the default implementation in TargetLowering to convert the register
5722  // constraint into a member of a register class.
5723  std::pair<unsigned, const TargetRegisterClass*> Res;
5724  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5725
5726  // Not found as a standard register?
5727  if (Res.second == 0) {
5728    // GCC calls "st(0)" just plain "st".
5729    if (StringsEqualNoCase("{st}", Constraint)) {
5730      Res.first = X86::ST0;
5731      Res.second = X86::RFP80RegisterClass;
5732    }
5733
5734    return Res;
5735  }
5736
5737  // Otherwise, check to see if this is a register class of the wrong value
5738  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5739  // turn into {ax},{dx}.
5740  if (Res.second->hasType(VT))
5741    return Res;   // Correct type already, nothing to do.
5742
5743  // All of the single-register GCC register classes map their values onto
5744  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
5745  // really want an 8-bit or 32-bit register, map to the appropriate register
5746  // class and return the appropriate register.
5747  if (Res.second != X86::GR16RegisterClass)
5748    return Res;
5749
5750  if (VT == MVT::i8) {
5751    unsigned DestReg = 0;
5752    switch (Res.first) {
5753    default: break;
5754    case X86::AX: DestReg = X86::AL; break;
5755    case X86::DX: DestReg = X86::DL; break;
5756    case X86::CX: DestReg = X86::CL; break;
5757    case X86::BX: DestReg = X86::BL; break;
5758    }
5759    if (DestReg) {
5760      Res.first = DestReg;
5761      Res.second = Res.second = X86::GR8RegisterClass;
5762    }
5763  } else if (VT == MVT::i32) {
5764    unsigned DestReg = 0;
5765    switch (Res.first) {
5766    default: break;
5767    case X86::AX: DestReg = X86::EAX; break;
5768    case X86::DX: DestReg = X86::EDX; break;
5769    case X86::CX: DestReg = X86::ECX; break;
5770    case X86::BX: DestReg = X86::EBX; break;
5771    case X86::SI: DestReg = X86::ESI; break;
5772    case X86::DI: DestReg = X86::EDI; break;
5773    case X86::BP: DestReg = X86::EBP; break;
5774    case X86::SP: DestReg = X86::ESP; break;
5775    }
5776    if (DestReg) {
5777      Res.first = DestReg;
5778      Res.second = Res.second = X86::GR32RegisterClass;
5779    }
5780  } else if (VT == MVT::i64) {
5781    unsigned DestReg = 0;
5782    switch (Res.first) {
5783    default: break;
5784    case X86::AX: DestReg = X86::RAX; break;
5785    case X86::DX: DestReg = X86::RDX; break;
5786    case X86::CX: DestReg = X86::RCX; break;
5787    case X86::BX: DestReg = X86::RBX; break;
5788    case X86::SI: DestReg = X86::RSI; break;
5789    case X86::DI: DestReg = X86::RDI; break;
5790    case X86::BP: DestReg = X86::RBP; break;
5791    case X86::SP: DestReg = X86::RSP; break;
5792    }
5793    if (DestReg) {
5794      Res.first = DestReg;
5795      Res.second = Res.second = X86::GR64RegisterClass;
5796    }
5797  }
5798
5799  return Res;
5800}
5801