X86ISelLowering.cpp revision 44c8265cf86ba3cfc317605726296474aa8d7fa6
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86CodeEmitter.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86TargetMachine.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Function.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/ADT/VectorExtras.h"
28#include "llvm/Analysis/ScalarEvolutionExpressions.h"
29#include "llvm/CodeGen/CallingConvLower.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/SelectionDAG.h"
34#include "llvm/CodeGen/SSARegMap.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/ADT/StringExtras.h"
38#include "llvm/ParameterAttributes.h"
39using namespace llvm;
40
41X86TargetLowering::X86TargetLowering(TargetMachine &TM)
42  : TargetLowering(TM) {
43  Subtarget = &TM.getSubtarget<X86Subtarget>();
44  X86ScalarSSE = Subtarget->hasSSE2();
45  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
46
47  RegInfo = TM.getRegisterInfo();
48
49  // Set up the TargetLowering object.
50
51  // X86 is weird, it always uses i8 for shift amounts and setcc results.
52  setShiftAmountType(MVT::i8);
53  setSetCCResultType(MVT::i8);
54  setSetCCResultContents(ZeroOrOneSetCCResult);
55  setSchedulingPreference(SchedulingForRegPressure);
56  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
57  setStackPointerRegisterToSaveRestore(X86StackPtr);
58
59  if (Subtarget->isTargetDarwin()) {
60    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
61    setUseUnderscoreSetJmp(false);
62    setUseUnderscoreLongJmp(false);
63  } else if (Subtarget->isTargetMingw()) {
64    // MS runtime is weird: it exports _setjmp, but longjmp!
65    setUseUnderscoreSetJmp(true);
66    setUseUnderscoreLongJmp(false);
67  } else {
68    setUseUnderscoreSetJmp(true);
69    setUseUnderscoreLongJmp(true);
70  }
71
72  // Set up the register classes.
73  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
74  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
75  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
76  if (Subtarget->is64Bit())
77    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
78
79  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
80
81  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
82  // operation.
83  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
84  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
85  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
86
87  if (Subtarget->is64Bit()) {
88    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
89    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
90  } else {
91    if (X86ScalarSSE)
92      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
93      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
94    else
95      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
96  }
97
98  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
99  // this operation.
100  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
101  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
102  // SSE has no i16 to fp conversion, only i32
103  if (X86ScalarSSE)
104    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
105  else {
106    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
107    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
108  }
109
110  if (!Subtarget->is64Bit()) {
111    // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode.
112    setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
113    setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
114  }
115
116  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
117  // this operation.
118  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
119  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
120
121  if (X86ScalarSSE) {
122    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
123  } else {
124    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
125    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
126  }
127
128  // Handle FP_TO_UINT by promoting the destination to a larger signed
129  // conversion.
130  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
131  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
132  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
133
134  if (Subtarget->is64Bit()) {
135    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
136    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
137  } else {
138    if (X86ScalarSSE && !Subtarget->hasSSE3())
139      // Expand FP_TO_UINT into a select.
140      // FIXME: We would like to use a Custom expander here eventually to do
141      // the optimal thing for SSE vs. the default expansion in the legalizer.
142      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
143    else
144      // With SSE3 we can use fisttpll to convert to a signed i64.
145      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
146  }
147
148  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
149  if (!X86ScalarSSE) {
150    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
151    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
152  }
153
154  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
155  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
156  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
157  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
158  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
159  if (Subtarget->is64Bit())
160    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
161  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
162  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
163  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
164  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
165  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
166
167  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
168  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
169  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
170  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
171  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
172  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
173  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
174  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
175  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
176  if (Subtarget->is64Bit()) {
177    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
178    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
179    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
180  }
181
182  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
183  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
184
185  // These should be promoted to a larger select which is supported.
186  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
187  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
188  // X86 wants to expand cmov itself.
189  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
190  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
191  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
192  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
193  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
194  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
195  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
196  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
197  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
198  if (Subtarget->is64Bit()) {
199    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
200    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
201  }
202  // X86 ret instruction may pop stack.
203  setOperationAction(ISD::RET             , MVT::Other, Custom);
204  if (!Subtarget->is64Bit())
205    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
206
207  // Darwin ABI issue.
208  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
209  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
210  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
211  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
212  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
213  if (Subtarget->is64Bit()) {
214    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
215    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
216    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
217    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
218  }
219  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
220  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
221  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
222  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
223  // X86 wants to expand memset / memcpy itself.
224  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
225  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
226
227  // We don't have line number support yet.
228  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
229  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
230  // FIXME - use subtarget debug flags
231  if (!Subtarget->isTargetDarwin() &&
232      !Subtarget->isTargetELF() &&
233      !Subtarget->isTargetCygMing())
234    setOperationAction(ISD::LABEL, MVT::Other, Expand);
235
236  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
237  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
238  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
239  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
240  if (Subtarget->is64Bit()) {
241    // FIXME: Verify
242    setExceptionPointerRegister(X86::RAX);
243    setExceptionSelectorRegister(X86::RDX);
244  } else {
245    setExceptionPointerRegister(X86::EAX);
246    setExceptionSelectorRegister(X86::EDX);
247  }
248
249  setOperationAction(ISD::ADJUST_TRAMP, MVT::i32,   Expand);
250  setOperationAction(ISD::ADJUST_TRAMP, MVT::i64,   Expand);
251  setOperationAction(ISD::TRAMPOLINE,   MVT::Other, Custom);
252
253  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
254  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
255  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
256  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
257  if (Subtarget->is64Bit())
258    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
259  else
260    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
261
262  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
263  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
264  if (Subtarget->is64Bit())
265    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
266  if (Subtarget->isTargetCygMing())
267    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
268  else
269    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
270
271  if (X86ScalarSSE) {
272    // Set up the FP register classes.
273    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
274    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
275
276    // Use ANDPD to simulate FABS.
277    setOperationAction(ISD::FABS , MVT::f64, Custom);
278    setOperationAction(ISD::FABS , MVT::f32, Custom);
279
280    // Use XORP to simulate FNEG.
281    setOperationAction(ISD::FNEG , MVT::f64, Custom);
282    setOperationAction(ISD::FNEG , MVT::f32, Custom);
283
284    // Use ANDPD and ORPD to simulate FCOPYSIGN.
285    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
286    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
287
288    // We don't support sin/cos/fmod
289    setOperationAction(ISD::FSIN , MVT::f64, Expand);
290    setOperationAction(ISD::FCOS , MVT::f64, Expand);
291    setOperationAction(ISD::FREM , MVT::f64, Expand);
292    setOperationAction(ISD::FSIN , MVT::f32, Expand);
293    setOperationAction(ISD::FCOS , MVT::f32, Expand);
294    setOperationAction(ISD::FREM , MVT::f32, Expand);
295
296    // Expand FP immediates into loads from the stack, except for the special
297    // cases we handle.
298    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
299    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
300    addLegalFPImmediate(+0.0); // xorps / xorpd
301
302    // Conversions to long double (in X87) go through memory.
303    setConvertAction(MVT::f32, MVT::f80, Expand);
304    setConvertAction(MVT::f64, MVT::f80, Expand);
305
306    // Conversions from long double (in X87) go through memory.
307    setConvertAction(MVT::f80, MVT::f32, Expand);
308    setConvertAction(MVT::f80, MVT::f64, Expand);
309  } else {
310    // Set up the FP register classes.
311    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
312    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
313
314    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
315    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
316    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
317    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
318
319    // Floating truncations need to go through memory.
320    setConvertAction(MVT::f80, MVT::f32, Expand);
321    setConvertAction(MVT::f64, MVT::f32, Expand);
322    setConvertAction(MVT::f80, MVT::f64, Expand);
323
324    if (!UnsafeFPMath) {
325      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
326      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
327    }
328
329    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
330    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
331    addLegalFPImmediate(+0.0); // FLD0
332    addLegalFPImmediate(+1.0); // FLD1
333    addLegalFPImmediate(-0.0); // FLD0/FCHS
334    addLegalFPImmediate(-1.0); // FLD1/FCHS
335  }
336
337  // Long double always uses X87.
338  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
339
340  // First set operation action for all vector types to expand. Then we
341  // will selectively turn on ones that can be effectively codegen'd.
342  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
343       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
344    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
345    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
346    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
347    setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
348    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
349    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
350    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
351    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
352    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
353    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
354    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
355    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
356    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
357    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
358    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
359    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
360    setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
361    setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
362    setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
363    setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
364    setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
365    setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
366    setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
367  }
368
369  if (Subtarget->hasMMX()) {
370    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
371    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
372    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
373    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
374
375    // FIXME: add MMX packed arithmetics
376
377    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
378    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
379    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
380    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
381
382    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
383    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
384    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
385
386    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
387    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
388
389    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
390    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
391    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
392    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
393    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
394    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
395    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
396
397    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
398    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
399    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
400    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
401    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
402    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
403    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
404
405    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
406    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
407    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
408    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
409    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
410    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
411    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
412
413    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
414    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
415    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
416    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
417    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
418    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
419    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
420
421    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
422    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
423    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
424    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
425
426    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
427    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
428    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
429    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
430
431    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
432    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
433    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Custom);
434    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
435  }
436
437  if (Subtarget->hasSSE1()) {
438    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
439
440    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
441    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
442    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
443    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
444    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
445    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
446    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
447    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
448    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
449    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
450    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
451  }
452
453  if (Subtarget->hasSSE2()) {
454    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
455    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
456    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
457    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
458    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
459
460    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
461    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
462    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
463    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
464    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
465    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
466    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
467    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
468    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
469    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
470    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
471    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
472    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
473    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
474    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
475
476    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
477    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
478    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
479    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
480    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
481    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
482
483    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
484    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
485      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
486      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
487      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
488    }
489    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
490    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
491    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
492    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
493    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
494    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
495
496    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
497    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
498      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
499      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
500      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
501      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
502      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
503      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
504      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
505      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
506      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
507      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
508    }
509
510    // Custom lower v2i64 and v2f64 selects.
511    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
512    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
513    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
514    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
515  }
516
517  // We want to custom lower some of our intrinsics.
518  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
519
520  // We have target-specific dag combine patterns for the following nodes:
521  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
522  setTargetDAGCombine(ISD::SELECT);
523
524  computeRegisterProperties();
525
526  // FIXME: These should be based on subtarget info. Plus, the values should
527  // be smaller when we are in optimizing for size mode.
528  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
529  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
530  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
531  allowUnalignedMemoryAccesses = true; // x86 supports it!
532}
533
534
535//===----------------------------------------------------------------------===//
536//               Return Value Calling Convention Implementation
537//===----------------------------------------------------------------------===//
538
539#include "X86GenCallingConv.inc"
540
541/// LowerRET - Lower an ISD::RET node.
542SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
543  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
544
545  SmallVector<CCValAssign, 16> RVLocs;
546  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
547  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
548  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
549  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
550
551
552  // If this is the first return lowered for this function, add the regs to the
553  // liveout set for the function.
554  if (DAG.getMachineFunction().liveout_empty()) {
555    for (unsigned i = 0; i != RVLocs.size(); ++i)
556      if (RVLocs[i].isRegLoc())
557        DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
558  }
559
560  SDOperand Chain = Op.getOperand(0);
561  SDOperand Flag;
562
563  // Copy the result values into the output registers.
564  if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
565      RVLocs[0].getLocReg() != X86::ST0) {
566    for (unsigned i = 0; i != RVLocs.size(); ++i) {
567      CCValAssign &VA = RVLocs[i];
568      assert(VA.isRegLoc() && "Can only return in registers!");
569      Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
570                               Flag);
571      Flag = Chain.getValue(1);
572    }
573  } else {
574    // We need to handle a destination of ST0 specially, because it isn't really
575    // a register.
576    SDOperand Value = Op.getOperand(1);
577
578    // If this is an FP return with ScalarSSE, we need to move the value from
579    // an XMM register onto the fp-stack.
580    if (X86ScalarSSE) {
581      SDOperand MemLoc;
582
583      // If this is a load into a scalarsse value, don't store the loaded value
584      // back to the stack, only to reload it: just replace the scalar-sse load.
585      if (ISD::isNON_EXTLoad(Value.Val) &&
586          (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
587        Chain  = Value.getOperand(0);
588        MemLoc = Value.getOperand(1);
589      } else {
590        // Spill the value to memory and reload it into top of stack.
591        unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
592        MachineFunction &MF = DAG.getMachineFunction();
593        int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
594        MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
595        Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
596      }
597      SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
598      SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
599      Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
600      Chain = Value.getValue(1);
601    }
602
603    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
604    SDOperand Ops[] = { Chain, Value };
605    Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
606    Flag = Chain.getValue(1);
607  }
608
609  SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
610  if (Flag.Val)
611    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
612  else
613    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
614}
615
616
617/// LowerCallResult - Lower the result values of an ISD::CALL into the
618/// appropriate copies out of appropriate physical registers.  This assumes that
619/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
620/// being lowered.  The returns a SDNode with the same number of values as the
621/// ISD::CALL.
622SDNode *X86TargetLowering::
623LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
624                unsigned CallingConv, SelectionDAG &DAG) {
625
626  // Assign locations to each value returned by this call.
627  SmallVector<CCValAssign, 16> RVLocs;
628  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
629  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
630  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
631
632
633  SmallVector<SDOperand, 8> ResultVals;
634
635  // Copy all of the result registers out of their specified physreg.
636  if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
637    for (unsigned i = 0; i != RVLocs.size(); ++i) {
638      Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
639                                 RVLocs[i].getValVT(), InFlag).getValue(1);
640      InFlag = Chain.getValue(2);
641      ResultVals.push_back(Chain.getValue(0));
642    }
643  } else {
644    // Copies from the FP stack are special, as ST0 isn't a valid register
645    // before the fp stackifier runs.
646
647    // Copy ST0 into an RFP register with FP_GET_RESULT.
648    SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
649    SDOperand GROps[] = { Chain, InFlag };
650    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
651    Chain  = RetVal.getValue(1);
652    InFlag = RetVal.getValue(2);
653
654    // If we are using ScalarSSE, store ST(0) to the stack and reload it into
655    // an XMM register.
656    if (X86ScalarSSE) {
657      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
658      // shouldn't be necessary except that RFP cannot be live across
659      // multiple blocks. When stackifier is fixed, they can be uncoupled.
660      MachineFunction &MF = DAG.getMachineFunction();
661      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
662      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
663      SDOperand Ops[] = {
664        Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
665      };
666      Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
667      RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
668      Chain = RetVal.getValue(1);
669    }
670    ResultVals.push_back(RetVal);
671  }
672
673  // Merge everything together with a MERGE_VALUES node.
674  ResultVals.push_back(Chain);
675  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
676                     &ResultVals[0], ResultVals.size()).Val;
677}
678
679
680//===----------------------------------------------------------------------===//
681//                C & StdCall Calling Convention implementation
682//===----------------------------------------------------------------------===//
683//  StdCall calling convention seems to be standard for many Windows' API
684//  routines and around. It differs from C calling convention just a little:
685//  callee should clean up the stack, not caller. Symbols should be also
686//  decorated in some fancy way :) It doesn't support any vector arguments.
687
688/// AddLiveIn - This helper function adds the specified physical register to the
689/// MachineFunction as a live in value.  It also creates a corresponding virtual
690/// register for it.
691static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
692                          const TargetRegisterClass *RC) {
693  assert(RC->contains(PReg) && "Not the correct regclass!");
694  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
695  MF.addLiveIn(PReg, VReg);
696  return VReg;
697}
698
699SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
700                                               bool isStdCall) {
701  unsigned NumArgs = Op.Val->getNumValues() - 1;
702  MachineFunction &MF = DAG.getMachineFunction();
703  MachineFrameInfo *MFI = MF.getFrameInfo();
704  SDOperand Root = Op.getOperand(0);
705  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
706
707  // Assign locations to all of the incoming arguments.
708  SmallVector<CCValAssign, 16> ArgLocs;
709  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
710                 getTargetMachine(), ArgLocs);
711  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
712
713  SmallVector<SDOperand, 8> ArgValues;
714  unsigned LastVal = ~0U;
715  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
716    CCValAssign &VA = ArgLocs[i];
717    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
718    // places.
719    assert(VA.getValNo() != LastVal &&
720           "Don't support value assigned to multiple locs yet");
721    LastVal = VA.getValNo();
722
723    if (VA.isRegLoc()) {
724      MVT::ValueType RegVT = VA.getLocVT();
725      TargetRegisterClass *RC;
726      if (RegVT == MVT::i32)
727        RC = X86::GR32RegisterClass;
728      else {
729        assert(MVT::isVector(RegVT));
730        RC = X86::VR128RegisterClass;
731      }
732
733      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
734      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
735
736      // If this is an 8 or 16-bit value, it is really passed promoted to 32
737      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
738      // right size.
739      if (VA.getLocInfo() == CCValAssign::SExt)
740        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
741                               DAG.getValueType(VA.getValVT()));
742      else if (VA.getLocInfo() == CCValAssign::ZExt)
743        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
744                               DAG.getValueType(VA.getValVT()));
745
746      if (VA.getLocInfo() != CCValAssign::Full)
747        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
748
749      ArgValues.push_back(ArgValue);
750    } else {
751      assert(VA.isMemLoc());
752
753      // Create the nodes corresponding to a load from this parameter slot.
754      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
755                                      VA.getLocMemOffset());
756      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
757      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
758    }
759  }
760
761  unsigned StackSize = CCInfo.getNextStackOffset();
762
763  ArgValues.push_back(Root);
764
765  // If the function takes variable number of arguments, make a frame index for
766  // the start of the first vararg value... for expansion of llvm.va_start.
767  if (isVarArg)
768    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
769
770  if (isStdCall && !isVarArg) {
771    BytesToPopOnReturn  = StackSize;    // Callee pops everything..
772    BytesCallerReserves = 0;
773  } else {
774    BytesToPopOnReturn  = 0; // Callee pops nothing.
775
776    // If this is an sret function, the return should pop the hidden pointer.
777    if (NumArgs &&
778        (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
779         ISD::ParamFlags::StructReturn))
780      BytesToPopOnReturn = 4;
781
782    BytesCallerReserves = StackSize;
783  }
784
785  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
786
787  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
788  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
789
790  // Return the new list of results.
791  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
792                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
793}
794
795SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
796                                            unsigned CC) {
797  SDOperand Chain     = Op.getOperand(0);
798  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
799  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
800  SDOperand Callee    = Op.getOperand(4);
801  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
802
803  // Analyze operands of the call, assigning locations to each operand.
804  SmallVector<CCValAssign, 16> ArgLocs;
805  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
806  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
807
808  // Get a count of how many bytes are to be pushed on the stack.
809  unsigned NumBytes = CCInfo.getNextStackOffset();
810
811  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
812
813  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
814  SmallVector<SDOperand, 8> MemOpChains;
815
816  SDOperand StackPtr;
817
818  // Walk the register/memloc assignments, inserting copies/loads.
819  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
820    CCValAssign &VA = ArgLocs[i];
821    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
822
823    // Promote the value if needed.
824    switch (VA.getLocInfo()) {
825    default: assert(0 && "Unknown loc info!");
826    case CCValAssign::Full: break;
827    case CCValAssign::SExt:
828      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
829      break;
830    case CCValAssign::ZExt:
831      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
832      break;
833    case CCValAssign::AExt:
834      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
835      break;
836    }
837
838    if (VA.isRegLoc()) {
839      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
840    } else {
841      assert(VA.isMemLoc());
842      if (StackPtr.Val == 0)
843        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
844      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
845      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
846      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
847    }
848  }
849
850  // If the first argument is an sret pointer, remember it.
851  bool isSRet = NumOps &&
852    (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
853     ISD::ParamFlags::StructReturn);
854
855  if (!MemOpChains.empty())
856    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
857                        &MemOpChains[0], MemOpChains.size());
858
859  // Build a sequence of copy-to-reg nodes chained together with token chain
860  // and flag operands which copy the outgoing args into registers.
861  SDOperand InFlag;
862  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
863    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
864                             InFlag);
865    InFlag = Chain.getValue(1);
866  }
867
868  // ELF / PIC requires GOT in the EBX register before function calls via PLT
869  // GOT pointer.
870  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
871      Subtarget->isPICStyleGOT()) {
872    Chain = DAG.getCopyToReg(Chain, X86::EBX,
873                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
874                             InFlag);
875    InFlag = Chain.getValue(1);
876  }
877
878  // If the callee is a GlobalAddress node (quite common, every direct call is)
879  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
880  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
881    // We should use extra load for direct calls to dllimported functions in
882    // non-JIT mode.
883    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
884                                        getTargetMachine(), true))
885      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
886  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
887    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
888
889  // Returns a chain & a flag for retval copy to use.
890  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
891  SmallVector<SDOperand, 8> Ops;
892  Ops.push_back(Chain);
893  Ops.push_back(Callee);
894
895  // Add argument registers to the end of the list so that they are known live
896  // into the call.
897  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
898    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
899                                  RegsToPass[i].second.getValueType()));
900
901  // Add an implicit use GOT pointer in EBX.
902  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
903      Subtarget->isPICStyleGOT())
904    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
905
906  if (InFlag.Val)
907    Ops.push_back(InFlag);
908
909  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
910                      NodeTys, &Ops[0], Ops.size());
911  InFlag = Chain.getValue(1);
912
913  // Create the CALLSEQ_END node.
914  unsigned NumBytesForCalleeToPush = 0;
915
916  if (CC == CallingConv::X86_StdCall) {
917    if (isVarArg)
918      NumBytesForCalleeToPush = isSRet ? 4 : 0;
919    else
920      NumBytesForCalleeToPush = NumBytes;
921  } else {
922    // If this is is a call to a struct-return function, the callee
923    // pops the hidden struct pointer, so we have to push it back.
924    // This is common for Darwin/X86, Linux & Mingw32 targets.
925    NumBytesForCalleeToPush = isSRet ? 4 : 0;
926  }
927
928  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
929  Ops.clear();
930  Ops.push_back(Chain);
931  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
932  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
933  Ops.push_back(InFlag);
934  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
935  InFlag = Chain.getValue(1);
936
937  // Handle result values, copying them out of physregs into vregs that we
938  // return.
939  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
940}
941
942
943//===----------------------------------------------------------------------===//
944//                   FastCall Calling Convention implementation
945//===----------------------------------------------------------------------===//
946//
947// The X86 'fastcall' calling convention passes up to two integer arguments in
948// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
949// and requires that the callee pop its arguments off the stack (allowing proper
950// tail calls), and has the same return value conventions as C calling convs.
951//
952// This calling convention always arranges for the callee pop value to be 8n+4
953// bytes, which is needed for tail recursion elimination and stack alignment
954// reasons.
955SDOperand
956X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
957  MachineFunction &MF = DAG.getMachineFunction();
958  MachineFrameInfo *MFI = MF.getFrameInfo();
959  SDOperand Root = Op.getOperand(0);
960  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
961
962  // Assign locations to all of the incoming arguments.
963  SmallVector<CCValAssign, 16> ArgLocs;
964  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
965                 getTargetMachine(), ArgLocs);
966  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
967
968  SmallVector<SDOperand, 8> ArgValues;
969  unsigned LastVal = ~0U;
970  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
971    CCValAssign &VA = ArgLocs[i];
972    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
973    // places.
974    assert(VA.getValNo() != LastVal &&
975           "Don't support value assigned to multiple locs yet");
976    LastVal = VA.getValNo();
977
978    if (VA.isRegLoc()) {
979      MVT::ValueType RegVT = VA.getLocVT();
980      TargetRegisterClass *RC;
981      if (RegVT == MVT::i32)
982        RC = X86::GR32RegisterClass;
983      else {
984        assert(MVT::isVector(RegVT));
985        RC = X86::VR128RegisterClass;
986      }
987
988      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
989      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
990
991      // If this is an 8 or 16-bit value, it is really passed promoted to 32
992      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
993      // right size.
994      if (VA.getLocInfo() == CCValAssign::SExt)
995        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
996                               DAG.getValueType(VA.getValVT()));
997      else if (VA.getLocInfo() == CCValAssign::ZExt)
998        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
999                               DAG.getValueType(VA.getValVT()));
1000
1001      if (VA.getLocInfo() != CCValAssign::Full)
1002        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1003
1004      ArgValues.push_back(ArgValue);
1005    } else {
1006      assert(VA.isMemLoc());
1007
1008      // Create the nodes corresponding to a load from this parameter slot.
1009      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1010                                      VA.getLocMemOffset());
1011      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1012      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
1013    }
1014  }
1015
1016  ArgValues.push_back(Root);
1017
1018  unsigned StackSize = CCInfo.getNextStackOffset();
1019
1020  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1021    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1022    // arguments and the arguments after the retaddr has been pushed are aligned.
1023    if ((StackSize & 7) == 0)
1024      StackSize += 4;
1025  }
1026
1027  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1028  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
1029  BytesToPopOnReturn = StackSize;  // Callee pops all stack arguments.
1030  BytesCallerReserves = 0;
1031
1032  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1033  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1034
1035  // Return the new list of results.
1036  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1037                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1038}
1039
1040SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1041                                               unsigned CC) {
1042  SDOperand Chain     = Op.getOperand(0);
1043  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1044  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1045  SDOperand Callee    = Op.getOperand(4);
1046
1047  // Analyze operands of the call, assigning locations to each operand.
1048  SmallVector<CCValAssign, 16> ArgLocs;
1049  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1050  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1051
1052  // Get a count of how many bytes are to be pushed on the stack.
1053  unsigned NumBytes = CCInfo.getNextStackOffset();
1054
1055  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1056    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1057    // arguments and the arguments after the retaddr has been pushed are aligned.
1058    if ((NumBytes & 7) == 0)
1059      NumBytes += 4;
1060  }
1061
1062  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1063
1064  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1065  SmallVector<SDOperand, 8> MemOpChains;
1066
1067  SDOperand StackPtr;
1068
1069  // Walk the register/memloc assignments, inserting copies/loads.
1070  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1071    CCValAssign &VA = ArgLocs[i];
1072    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1073
1074    // Promote the value if needed.
1075    switch (VA.getLocInfo()) {
1076      default: assert(0 && "Unknown loc info!");
1077      case CCValAssign::Full: break;
1078      case CCValAssign::SExt:
1079        Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1080        break;
1081      case CCValAssign::ZExt:
1082        Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1083        break;
1084      case CCValAssign::AExt:
1085        Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1086        break;
1087    }
1088
1089    if (VA.isRegLoc()) {
1090      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1091    } else {
1092      assert(VA.isMemLoc());
1093      if (StackPtr.Val == 0)
1094        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1095      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1096      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1097      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1098    }
1099  }
1100
1101  if (!MemOpChains.empty())
1102    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1103                        &MemOpChains[0], MemOpChains.size());
1104
1105  // Build a sequence of copy-to-reg nodes chained together with token chain
1106  // and flag operands which copy the outgoing args into registers.
1107  SDOperand InFlag;
1108  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1109    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1110                             InFlag);
1111    InFlag = Chain.getValue(1);
1112  }
1113
1114  // If the callee is a GlobalAddress node (quite common, every direct call is)
1115  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1116  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1117    // We should use extra load for direct calls to dllimported functions in
1118    // non-JIT mode.
1119    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1120                                        getTargetMachine(), true))
1121      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1122  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1123    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1124
1125  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1126  // GOT pointer.
1127  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1128      Subtarget->isPICStyleGOT()) {
1129    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1130                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1131                             InFlag);
1132    InFlag = Chain.getValue(1);
1133  }
1134
1135  // Returns a chain & a flag for retval copy to use.
1136  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1137  SmallVector<SDOperand, 8> Ops;
1138  Ops.push_back(Chain);
1139  Ops.push_back(Callee);
1140
1141  // Add argument registers to the end of the list so that they are known live
1142  // into the call.
1143  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1144    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1145                                  RegsToPass[i].second.getValueType()));
1146
1147  // Add an implicit use GOT pointer in EBX.
1148  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1149      Subtarget->isPICStyleGOT())
1150    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1151
1152  if (InFlag.Val)
1153    Ops.push_back(InFlag);
1154
1155  // FIXME: Do not generate X86ISD::TAILCALL for now.
1156  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1157                      NodeTys, &Ops[0], Ops.size());
1158  InFlag = Chain.getValue(1);
1159
1160  // Returns a flag for retval copy to use.
1161  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1162  Ops.clear();
1163  Ops.push_back(Chain);
1164  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1165  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1166  Ops.push_back(InFlag);
1167  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1168  InFlag = Chain.getValue(1);
1169
1170  // Handle result values, copying them out of physregs into vregs that we
1171  // return.
1172  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1173}
1174
1175
1176//===----------------------------------------------------------------------===//
1177//                 X86-64 C Calling Convention implementation
1178//===----------------------------------------------------------------------===//
1179
1180SDOperand
1181X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1182  MachineFunction &MF = DAG.getMachineFunction();
1183  MachineFrameInfo *MFI = MF.getFrameInfo();
1184  SDOperand Root = Op.getOperand(0);
1185  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1186
1187  static const unsigned GPR64ArgRegs[] = {
1188    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1189  };
1190  static const unsigned XMMArgRegs[] = {
1191    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1192    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1193  };
1194
1195
1196  // Assign locations to all of the incoming arguments.
1197  SmallVector<CCValAssign, 16> ArgLocs;
1198  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1199                 getTargetMachine(), ArgLocs);
1200  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1201
1202  SmallVector<SDOperand, 8> ArgValues;
1203  unsigned LastVal = ~0U;
1204  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1205    CCValAssign &VA = ArgLocs[i];
1206    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1207    // places.
1208    assert(VA.getValNo() != LastVal &&
1209           "Don't support value assigned to multiple locs yet");
1210    LastVal = VA.getValNo();
1211
1212    if (VA.isRegLoc()) {
1213      MVT::ValueType RegVT = VA.getLocVT();
1214      TargetRegisterClass *RC;
1215      if (RegVT == MVT::i32)
1216        RC = X86::GR32RegisterClass;
1217      else if (RegVT == MVT::i64)
1218        RC = X86::GR64RegisterClass;
1219      else if (RegVT == MVT::f32)
1220        RC = X86::FR32RegisterClass;
1221      else if (RegVT == MVT::f64)
1222        RC = X86::FR64RegisterClass;
1223      else {
1224        assert(MVT::isVector(RegVT));
1225        if (MVT::getSizeInBits(RegVT) == 64) {
1226          RC = X86::GR64RegisterClass;       // MMX values are passed in GPRs.
1227          RegVT = MVT::i64;
1228        } else
1229          RC = X86::VR128RegisterClass;
1230      }
1231
1232      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1233      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1234
1235      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1236      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1237      // right size.
1238      if (VA.getLocInfo() == CCValAssign::SExt)
1239        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1240                               DAG.getValueType(VA.getValVT()));
1241      else if (VA.getLocInfo() == CCValAssign::ZExt)
1242        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1243                               DAG.getValueType(VA.getValVT()));
1244
1245      if (VA.getLocInfo() != CCValAssign::Full)
1246        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1247
1248      // Handle MMX values passed in GPRs.
1249      if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1250          MVT::getSizeInBits(RegVT) == 64)
1251        ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1252
1253      ArgValues.push_back(ArgValue);
1254    } else {
1255      assert(VA.isMemLoc());
1256
1257      // Create the nodes corresponding to a load from this parameter slot.
1258      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1259                                      VA.getLocMemOffset());
1260      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1261
1262      unsigned Flags =  cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
1263      if (Flags & ISD::ParamFlags::ByVal)
1264        ArgValues.push_back(FIN);
1265      else
1266        ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
1267    }
1268  }
1269
1270  unsigned StackSize = CCInfo.getNextStackOffset();
1271
1272  // If the function takes variable number of arguments, make a frame index for
1273  // the start of the first vararg value... for expansion of llvm.va_start.
1274  if (isVarArg) {
1275    unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1276    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1277
1278    // For X86-64, if there are vararg parameters that are passed via
1279    // registers, then we must store them to their spots on the stack so they
1280    // may be loaded by deferencing the result of va_next.
1281    VarArgsGPOffset = NumIntRegs * 8;
1282    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1283    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1284    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1285
1286    // Store the integer parameter registers.
1287    SmallVector<SDOperand, 8> MemOps;
1288    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1289    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1290                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1291    for (; NumIntRegs != 6; ++NumIntRegs) {
1292      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1293                                X86::GR64RegisterClass);
1294      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1295      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1296      MemOps.push_back(Store);
1297      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1298                        DAG.getConstant(8, getPointerTy()));
1299    }
1300
1301    // Now store the XMM (fp + vector) parameter registers.
1302    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1303                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1304    for (; NumXMMRegs != 8; ++NumXMMRegs) {
1305      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1306                                X86::VR128RegisterClass);
1307      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1308      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1309      MemOps.push_back(Store);
1310      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1311                        DAG.getConstant(16, getPointerTy()));
1312    }
1313    if (!MemOps.empty())
1314        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1315                           &MemOps[0], MemOps.size());
1316  }
1317
1318  ArgValues.push_back(Root);
1319
1320  BytesToPopOnReturn = 0;  // Callee pops nothing.
1321  BytesCallerReserves = StackSize;
1322
1323  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1324  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1325
1326  // Return the new list of results.
1327  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1328                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1329}
1330
1331SDOperand
1332X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1333                                        unsigned CC) {
1334  SDOperand Chain     = Op.getOperand(0);
1335  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1336  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1337  SDOperand Callee    = Op.getOperand(4);
1338
1339  // Analyze operands of the call, assigning locations to each operand.
1340  SmallVector<CCValAssign, 16> ArgLocs;
1341  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1342  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1343
1344  // Get a count of how many bytes are to be pushed on the stack.
1345  unsigned NumBytes = CCInfo.getNextStackOffset();
1346  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1347
1348  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1349  SmallVector<SDOperand, 8> MemOpChains;
1350
1351  SDOperand StackPtr;
1352
1353  // Walk the register/memloc assignments, inserting copies/loads.
1354  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1355    CCValAssign &VA = ArgLocs[i];
1356    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1357
1358    // Promote the value if needed.
1359    switch (VA.getLocInfo()) {
1360    default: assert(0 && "Unknown loc info!");
1361    case CCValAssign::Full: break;
1362    case CCValAssign::SExt:
1363      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1364      break;
1365    case CCValAssign::ZExt:
1366      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1367      break;
1368    case CCValAssign::AExt:
1369      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1370      break;
1371    }
1372
1373    if (VA.isRegLoc()) {
1374      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1375    } else {
1376      assert(VA.isMemLoc());
1377      if (StackPtr.Val == 0)
1378        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1379      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1380      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1381
1382      SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1383      unsigned Flags    = cast<ConstantSDNode>(FlagsOp)->getValue();
1384      if (Flags & ISD::ParamFlags::ByVal) {
1385        unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1386                               ISD::ParamFlags::ByValAlignOffs);
1387        unsigned  Size = (Flags & ISD::ParamFlags::ByValSize) >>
1388            ISD::ParamFlags::ByValSizeOffs;
1389
1390        SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1391        SDOperand  SizeNode = DAG.getConstant(Size, MVT::i32);
1392
1393        assert(0 && "Not Implemented");
1394
1395        SDOperand Copy = DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, PtrOff,
1396                                     Arg, SizeNode, AlignNode);
1397        MemOpChains.push_back(Copy);
1398      }
1399      else {
1400        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1401      }
1402    }
1403  }
1404
1405  if (!MemOpChains.empty())
1406    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1407                        &MemOpChains[0], MemOpChains.size());
1408
1409  // Build a sequence of copy-to-reg nodes chained together with token chain
1410  // and flag operands which copy the outgoing args into registers.
1411  SDOperand InFlag;
1412  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1413    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1414                             InFlag);
1415    InFlag = Chain.getValue(1);
1416  }
1417
1418  if (isVarArg) {
1419    // From AMD64 ABI document:
1420    // For calls that may call functions that use varargs or stdargs
1421    // (prototype-less calls or calls to functions containing ellipsis (...) in
1422    // the declaration) %al is used as hidden argument to specify the number
1423    // of SSE registers used. The contents of %al do not need to match exactly
1424    // the number of registers, but must be an ubound on the number of SSE
1425    // registers used and is in the range 0 - 8 inclusive.
1426
1427    // Count the number of XMM registers allocated.
1428    static const unsigned XMMArgRegs[] = {
1429      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1430      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1431    };
1432    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1433
1434    Chain = DAG.getCopyToReg(Chain, X86::AL,
1435                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1436    InFlag = Chain.getValue(1);
1437  }
1438
1439  // If the callee is a GlobalAddress node (quite common, every direct call is)
1440  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1441  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1442    // We should use extra load for direct calls to dllimported functions in
1443    // non-JIT mode.
1444    if (getTargetMachine().getCodeModel() != CodeModel::Large
1445        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1446                                           getTargetMachine(), true))
1447      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1448  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1449    if (getTargetMachine().getCodeModel() != CodeModel::Large)
1450      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1451
1452  // Returns a chain & a flag for retval copy to use.
1453  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1454  SmallVector<SDOperand, 8> Ops;
1455  Ops.push_back(Chain);
1456  Ops.push_back(Callee);
1457
1458  // Add argument registers to the end of the list so that they are known live
1459  // into the call.
1460  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1461    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1462                                  RegsToPass[i].second.getValueType()));
1463
1464  if (InFlag.Val)
1465    Ops.push_back(InFlag);
1466
1467  // FIXME: Do not generate X86ISD::TAILCALL for now.
1468  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1469                      NodeTys, &Ops[0], Ops.size());
1470  InFlag = Chain.getValue(1);
1471
1472  // Returns a flag for retval copy to use.
1473  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1474  Ops.clear();
1475  Ops.push_back(Chain);
1476  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1477  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1478  Ops.push_back(InFlag);
1479  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1480  InFlag = Chain.getValue(1);
1481
1482  // Handle result values, copying them out of physregs into vregs that we
1483  // return.
1484  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1485}
1486
1487
1488//===----------------------------------------------------------------------===//
1489//                           Other Lowering Hooks
1490//===----------------------------------------------------------------------===//
1491
1492
1493SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1494  MachineFunction &MF = DAG.getMachineFunction();
1495  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1496  int ReturnAddrIndex = FuncInfo->getRAIndex();
1497
1498  if (ReturnAddrIndex == 0) {
1499    // Set up a frame object for the return address.
1500    if (Subtarget->is64Bit())
1501      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1502    else
1503      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1504
1505    FuncInfo->setRAIndex(ReturnAddrIndex);
1506  }
1507
1508  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1509}
1510
1511
1512
1513/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1514/// specific condition code. It returns a false if it cannot do a direct
1515/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1516/// needed.
1517static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1518                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1519                           SelectionDAG &DAG) {
1520  X86CC = X86::COND_INVALID;
1521  if (!isFP) {
1522    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1523      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1524        // X > -1   -> X == 0, jump !sign.
1525        RHS = DAG.getConstant(0, RHS.getValueType());
1526        X86CC = X86::COND_NS;
1527        return true;
1528      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1529        // X < 0   -> X == 0, jump on sign.
1530        X86CC = X86::COND_S;
1531        return true;
1532      }
1533    }
1534
1535    switch (SetCCOpcode) {
1536    default: break;
1537    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1538    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1539    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1540    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1541    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1542    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1543    case ISD::SETULT: X86CC = X86::COND_B;  break;
1544    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1545    case ISD::SETULE: X86CC = X86::COND_BE; break;
1546    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1547    }
1548  } else {
1549    // On a floating point condition, the flags are set as follows:
1550    // ZF  PF  CF   op
1551    //  0 | 0 | 0 | X > Y
1552    //  0 | 0 | 1 | X < Y
1553    //  1 | 0 | 0 | X == Y
1554    //  1 | 1 | 1 | unordered
1555    bool Flip = false;
1556    switch (SetCCOpcode) {
1557    default: break;
1558    case ISD::SETUEQ:
1559    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1560    case ISD::SETOLT: Flip = true; // Fallthrough
1561    case ISD::SETOGT:
1562    case ISD::SETGT: X86CC = X86::COND_A;  break;
1563    case ISD::SETOLE: Flip = true; // Fallthrough
1564    case ISD::SETOGE:
1565    case ISD::SETGE: X86CC = X86::COND_AE; break;
1566    case ISD::SETUGT: Flip = true; // Fallthrough
1567    case ISD::SETULT:
1568    case ISD::SETLT: X86CC = X86::COND_B;  break;
1569    case ISD::SETUGE: Flip = true; // Fallthrough
1570    case ISD::SETULE:
1571    case ISD::SETLE: X86CC = X86::COND_BE; break;
1572    case ISD::SETONE:
1573    case ISD::SETNE: X86CC = X86::COND_NE; break;
1574    case ISD::SETUO: X86CC = X86::COND_P;  break;
1575    case ISD::SETO:  X86CC = X86::COND_NP; break;
1576    }
1577    if (Flip)
1578      std::swap(LHS, RHS);
1579  }
1580
1581  return X86CC != X86::COND_INVALID;
1582}
1583
1584/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1585/// code. Current x86 isa includes the following FP cmov instructions:
1586/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1587static bool hasFPCMov(unsigned X86CC) {
1588  switch (X86CC) {
1589  default:
1590    return false;
1591  case X86::COND_B:
1592  case X86::COND_BE:
1593  case X86::COND_E:
1594  case X86::COND_P:
1595  case X86::COND_A:
1596  case X86::COND_AE:
1597  case X86::COND_NE:
1598  case X86::COND_NP:
1599    return true;
1600  }
1601}
1602
1603/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
1604/// true if Op is undef or if its value falls within the specified range (L, H].
1605static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1606  if (Op.getOpcode() == ISD::UNDEF)
1607    return true;
1608
1609  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1610  return (Val >= Low && Val < Hi);
1611}
1612
1613/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
1614/// true if Op is undef or if its value equal to the specified value.
1615static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1616  if (Op.getOpcode() == ISD::UNDEF)
1617    return true;
1618  return cast<ConstantSDNode>(Op)->getValue() == Val;
1619}
1620
1621/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1622/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1623bool X86::isPSHUFDMask(SDNode *N) {
1624  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1625
1626  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
1627    return false;
1628
1629  // Check if the value doesn't reference the second vector.
1630  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1631    SDOperand Arg = N->getOperand(i);
1632    if (Arg.getOpcode() == ISD::UNDEF) continue;
1633    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1634    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
1635      return false;
1636  }
1637
1638  return true;
1639}
1640
1641/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1642/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1643bool X86::isPSHUFHWMask(SDNode *N) {
1644  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1645
1646  if (N->getNumOperands() != 8)
1647    return false;
1648
1649  // Lower quadword copied in order.
1650  for (unsigned i = 0; i != 4; ++i) {
1651    SDOperand Arg = N->getOperand(i);
1652    if (Arg.getOpcode() == ISD::UNDEF) continue;
1653    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1654    if (cast<ConstantSDNode>(Arg)->getValue() != i)
1655      return false;
1656  }
1657
1658  // Upper quadword shuffled.
1659  for (unsigned i = 4; i != 8; ++i) {
1660    SDOperand Arg = N->getOperand(i);
1661    if (Arg.getOpcode() == ISD::UNDEF) continue;
1662    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1663    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1664    if (Val < 4 || Val > 7)
1665      return false;
1666  }
1667
1668  return true;
1669}
1670
1671/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1672/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1673bool X86::isPSHUFLWMask(SDNode *N) {
1674  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1675
1676  if (N->getNumOperands() != 8)
1677    return false;
1678
1679  // Upper quadword copied in order.
1680  for (unsigned i = 4; i != 8; ++i)
1681    if (!isUndefOrEqual(N->getOperand(i), i))
1682      return false;
1683
1684  // Lower quadword shuffled.
1685  for (unsigned i = 0; i != 4; ++i)
1686    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1687      return false;
1688
1689  return true;
1690}
1691
1692/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1693/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1694static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1695  if (NumElems != 2 && NumElems != 4) return false;
1696
1697  unsigned Half = NumElems / 2;
1698  for (unsigned i = 0; i < Half; ++i)
1699    if (!isUndefOrInRange(Elems[i], 0, NumElems))
1700      return false;
1701  for (unsigned i = Half; i < NumElems; ++i)
1702    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
1703      return false;
1704
1705  return true;
1706}
1707
1708bool X86::isSHUFPMask(SDNode *N) {
1709  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1710  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
1711}
1712
1713/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
1714/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
1715/// half elements to come from vector 1 (which would equal the dest.) and
1716/// the upper half to come from vector 2.
1717static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
1718  if (NumOps != 2 && NumOps != 4) return false;
1719
1720  unsigned Half = NumOps / 2;
1721  for (unsigned i = 0; i < Half; ++i)
1722    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
1723      return false;
1724  for (unsigned i = Half; i < NumOps; ++i)
1725    if (!isUndefOrInRange(Ops[i], 0, NumOps))
1726      return false;
1727  return true;
1728}
1729
1730static bool isCommutedSHUFP(SDNode *N) {
1731  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1732  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
1733}
1734
1735/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
1736/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1737bool X86::isMOVHLPSMask(SDNode *N) {
1738  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1739
1740  if (N->getNumOperands() != 4)
1741    return false;
1742
1743  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
1744  return isUndefOrEqual(N->getOperand(0), 6) &&
1745         isUndefOrEqual(N->getOperand(1), 7) &&
1746         isUndefOrEqual(N->getOperand(2), 2) &&
1747         isUndefOrEqual(N->getOperand(3), 3);
1748}
1749
1750/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
1751/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
1752/// <2, 3, 2, 3>
1753bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
1754  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1755
1756  if (N->getNumOperands() != 4)
1757    return false;
1758
1759  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
1760  return isUndefOrEqual(N->getOperand(0), 2) &&
1761         isUndefOrEqual(N->getOperand(1), 3) &&
1762         isUndefOrEqual(N->getOperand(2), 2) &&
1763         isUndefOrEqual(N->getOperand(3), 3);
1764}
1765
1766/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
1767/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
1768bool X86::isMOVLPMask(SDNode *N) {
1769  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1770
1771  unsigned NumElems = N->getNumOperands();
1772  if (NumElems != 2 && NumElems != 4)
1773    return false;
1774
1775  for (unsigned i = 0; i < NumElems/2; ++i)
1776    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
1777      return false;
1778
1779  for (unsigned i = NumElems/2; i < NumElems; ++i)
1780    if (!isUndefOrEqual(N->getOperand(i), i))
1781      return false;
1782
1783  return true;
1784}
1785
1786/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
1787/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
1788/// and MOVLHPS.
1789bool X86::isMOVHPMask(SDNode *N) {
1790  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1791
1792  unsigned NumElems = N->getNumOperands();
1793  if (NumElems != 2 && NumElems != 4)
1794    return false;
1795
1796  for (unsigned i = 0; i < NumElems/2; ++i)
1797    if (!isUndefOrEqual(N->getOperand(i), i))
1798      return false;
1799
1800  for (unsigned i = 0; i < NumElems/2; ++i) {
1801    SDOperand Arg = N->getOperand(i + NumElems/2);
1802    if (!isUndefOrEqual(Arg, i + NumElems))
1803      return false;
1804  }
1805
1806  return true;
1807}
1808
1809/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
1810/// specifies a shuffle of elements that is suitable for input to UNPCKL.
1811bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
1812                         bool V2IsSplat = false) {
1813  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1814    return false;
1815
1816  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1817    SDOperand BitI  = Elts[i];
1818    SDOperand BitI1 = Elts[i+1];
1819    if (!isUndefOrEqual(BitI, j))
1820      return false;
1821    if (V2IsSplat) {
1822      if (isUndefOrEqual(BitI1, NumElts))
1823        return false;
1824    } else {
1825      if (!isUndefOrEqual(BitI1, j + NumElts))
1826        return false;
1827    }
1828  }
1829
1830  return true;
1831}
1832
1833bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
1834  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1835  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1836}
1837
1838/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
1839/// specifies a shuffle of elements that is suitable for input to UNPCKH.
1840bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
1841                         bool V2IsSplat = false) {
1842  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1843    return false;
1844
1845  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1846    SDOperand BitI  = Elts[i];
1847    SDOperand BitI1 = Elts[i+1];
1848    if (!isUndefOrEqual(BitI, j + NumElts/2))
1849      return false;
1850    if (V2IsSplat) {
1851      if (isUndefOrEqual(BitI1, NumElts))
1852        return false;
1853    } else {
1854      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
1855        return false;
1856    }
1857  }
1858
1859  return true;
1860}
1861
1862bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
1863  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1864  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1865}
1866
1867/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
1868/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
1869/// <0, 0, 1, 1>
1870bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
1871  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1872
1873  unsigned NumElems = N->getNumOperands();
1874  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1875    return false;
1876
1877  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
1878    SDOperand BitI  = N->getOperand(i);
1879    SDOperand BitI1 = N->getOperand(i+1);
1880
1881    if (!isUndefOrEqual(BitI, j))
1882      return false;
1883    if (!isUndefOrEqual(BitI1, j))
1884      return false;
1885  }
1886
1887  return true;
1888}
1889
1890/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
1891/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
1892/// <2, 2, 3, 3>
1893bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
1894  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1895
1896  unsigned NumElems = N->getNumOperands();
1897  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1898    return false;
1899
1900  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
1901    SDOperand BitI  = N->getOperand(i);
1902    SDOperand BitI1 = N->getOperand(i + 1);
1903
1904    if (!isUndefOrEqual(BitI, j))
1905      return false;
1906    if (!isUndefOrEqual(BitI1, j))
1907      return false;
1908  }
1909
1910  return true;
1911}
1912
1913/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
1914/// specifies a shuffle of elements that is suitable for input to MOVSS,
1915/// MOVSD, and MOVD, i.e. setting the lowest element.
1916static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
1917  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1918    return false;
1919
1920  if (!isUndefOrEqual(Elts[0], NumElts))
1921    return false;
1922
1923  for (unsigned i = 1; i < NumElts; ++i) {
1924    if (!isUndefOrEqual(Elts[i], i))
1925      return false;
1926  }
1927
1928  return true;
1929}
1930
1931bool X86::isMOVLMask(SDNode *N) {
1932  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1933  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
1934}
1935
1936/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
1937/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
1938/// element of vector 2 and the other elements to come from vector 1 in order.
1939static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
1940                           bool V2IsSplat = false,
1941                           bool V2IsUndef = false) {
1942  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
1943    return false;
1944
1945  if (!isUndefOrEqual(Ops[0], 0))
1946    return false;
1947
1948  for (unsigned i = 1; i < NumOps; ++i) {
1949    SDOperand Arg = Ops[i];
1950    if (!(isUndefOrEqual(Arg, i+NumOps) ||
1951          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
1952          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
1953      return false;
1954  }
1955
1956  return true;
1957}
1958
1959static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
1960                           bool V2IsUndef = false) {
1961  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1962  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
1963                        V2IsSplat, V2IsUndef);
1964}
1965
1966/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1967/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
1968bool X86::isMOVSHDUPMask(SDNode *N) {
1969  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1970
1971  if (N->getNumOperands() != 4)
1972    return false;
1973
1974  // Expect 1, 1, 3, 3
1975  for (unsigned i = 0; i < 2; ++i) {
1976    SDOperand Arg = N->getOperand(i);
1977    if (Arg.getOpcode() == ISD::UNDEF) continue;
1978    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1979    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1980    if (Val != 1) return false;
1981  }
1982
1983  bool HasHi = false;
1984  for (unsigned i = 2; i < 4; ++i) {
1985    SDOperand Arg = N->getOperand(i);
1986    if (Arg.getOpcode() == ISD::UNDEF) continue;
1987    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1988    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1989    if (Val != 3) return false;
1990    HasHi = true;
1991  }
1992
1993  // Don't use movshdup if it can be done with a shufps.
1994  return HasHi;
1995}
1996
1997/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1998/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
1999bool X86::isMOVSLDUPMask(SDNode *N) {
2000  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2001
2002  if (N->getNumOperands() != 4)
2003    return false;
2004
2005  // Expect 0, 0, 2, 2
2006  for (unsigned i = 0; i < 2; ++i) {
2007    SDOperand Arg = N->getOperand(i);
2008    if (Arg.getOpcode() == ISD::UNDEF) continue;
2009    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2010    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2011    if (Val != 0) return false;
2012  }
2013
2014  bool HasHi = false;
2015  for (unsigned i = 2; i < 4; ++i) {
2016    SDOperand Arg = N->getOperand(i);
2017    if (Arg.getOpcode() == ISD::UNDEF) continue;
2018    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2019    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2020    if (Val != 2) return false;
2021    HasHi = true;
2022  }
2023
2024  // Don't use movshdup if it can be done with a shufps.
2025  return HasHi;
2026}
2027
2028/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2029/// specifies a identity operation on the LHS or RHS.
2030static bool isIdentityMask(SDNode *N, bool RHS = false) {
2031  unsigned NumElems = N->getNumOperands();
2032  for (unsigned i = 0; i < NumElems; ++i)
2033    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2034      return false;
2035  return true;
2036}
2037
2038/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2039/// a splat of a single element.
2040static bool isSplatMask(SDNode *N) {
2041  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2042
2043  // This is a splat operation if each element of the permute is the same, and
2044  // if the value doesn't reference the second vector.
2045  unsigned NumElems = N->getNumOperands();
2046  SDOperand ElementBase;
2047  unsigned i = 0;
2048  for (; i != NumElems; ++i) {
2049    SDOperand Elt = N->getOperand(i);
2050    if (isa<ConstantSDNode>(Elt)) {
2051      ElementBase = Elt;
2052      break;
2053    }
2054  }
2055
2056  if (!ElementBase.Val)
2057    return false;
2058
2059  for (; i != NumElems; ++i) {
2060    SDOperand Arg = N->getOperand(i);
2061    if (Arg.getOpcode() == ISD::UNDEF) continue;
2062    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2063    if (Arg != ElementBase) return false;
2064  }
2065
2066  // Make sure it is a splat of the first vector operand.
2067  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2068}
2069
2070/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2071/// a splat of a single element and it's a 2 or 4 element mask.
2072bool X86::isSplatMask(SDNode *N) {
2073  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2074
2075  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2076  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2077    return false;
2078  return ::isSplatMask(N);
2079}
2080
2081/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2082/// specifies a splat of zero element.
2083bool X86::isSplatLoMask(SDNode *N) {
2084  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2085
2086  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2087    if (!isUndefOrEqual(N->getOperand(i), 0))
2088      return false;
2089  return true;
2090}
2091
2092/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2093/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2094/// instructions.
2095unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2096  unsigned NumOperands = N->getNumOperands();
2097  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2098  unsigned Mask = 0;
2099  for (unsigned i = 0; i < NumOperands; ++i) {
2100    unsigned Val = 0;
2101    SDOperand Arg = N->getOperand(NumOperands-i-1);
2102    if (Arg.getOpcode() != ISD::UNDEF)
2103      Val = cast<ConstantSDNode>(Arg)->getValue();
2104    if (Val >= NumOperands) Val -= NumOperands;
2105    Mask |= Val;
2106    if (i != NumOperands - 1)
2107      Mask <<= Shift;
2108  }
2109
2110  return Mask;
2111}
2112
2113/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2114/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2115/// instructions.
2116unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2117  unsigned Mask = 0;
2118  // 8 nodes, but we only care about the last 4.
2119  for (unsigned i = 7; i >= 4; --i) {
2120    unsigned Val = 0;
2121    SDOperand Arg = N->getOperand(i);
2122    if (Arg.getOpcode() != ISD::UNDEF)
2123      Val = cast<ConstantSDNode>(Arg)->getValue();
2124    Mask |= (Val - 4);
2125    if (i != 4)
2126      Mask <<= 2;
2127  }
2128
2129  return Mask;
2130}
2131
2132/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2133/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2134/// instructions.
2135unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2136  unsigned Mask = 0;
2137  // 8 nodes, but we only care about the first 4.
2138  for (int i = 3; i >= 0; --i) {
2139    unsigned Val = 0;
2140    SDOperand Arg = N->getOperand(i);
2141    if (Arg.getOpcode() != ISD::UNDEF)
2142      Val = cast<ConstantSDNode>(Arg)->getValue();
2143    Mask |= Val;
2144    if (i != 0)
2145      Mask <<= 2;
2146  }
2147
2148  return Mask;
2149}
2150
2151/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2152/// specifies a 8 element shuffle that can be broken into a pair of
2153/// PSHUFHW and PSHUFLW.
2154static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2155  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2156
2157  if (N->getNumOperands() != 8)
2158    return false;
2159
2160  // Lower quadword shuffled.
2161  for (unsigned i = 0; i != 4; ++i) {
2162    SDOperand Arg = N->getOperand(i);
2163    if (Arg.getOpcode() == ISD::UNDEF) continue;
2164    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2165    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2166    if (Val > 4)
2167      return false;
2168  }
2169
2170  // Upper quadword shuffled.
2171  for (unsigned i = 4; i != 8; ++i) {
2172    SDOperand Arg = N->getOperand(i);
2173    if (Arg.getOpcode() == ISD::UNDEF) continue;
2174    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2175    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2176    if (Val < 4 || Val > 7)
2177      return false;
2178  }
2179
2180  return true;
2181}
2182
2183/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2184/// values in ther permute mask.
2185static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2186                                      SDOperand &V2, SDOperand &Mask,
2187                                      SelectionDAG &DAG) {
2188  MVT::ValueType VT = Op.getValueType();
2189  MVT::ValueType MaskVT = Mask.getValueType();
2190  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2191  unsigned NumElems = Mask.getNumOperands();
2192  SmallVector<SDOperand, 8> MaskVec;
2193
2194  for (unsigned i = 0; i != NumElems; ++i) {
2195    SDOperand Arg = Mask.getOperand(i);
2196    if (Arg.getOpcode() == ISD::UNDEF) {
2197      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2198      continue;
2199    }
2200    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2201    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2202    if (Val < NumElems)
2203      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2204    else
2205      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2206  }
2207
2208  std::swap(V1, V2);
2209  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2210  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2211}
2212
2213/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2214/// match movhlps. The lower half elements should come from upper half of
2215/// V1 (and in order), and the upper half elements should come from the upper
2216/// half of V2 (and in order).
2217static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2218  unsigned NumElems = Mask->getNumOperands();
2219  if (NumElems != 4)
2220    return false;
2221  for (unsigned i = 0, e = 2; i != e; ++i)
2222    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2223      return false;
2224  for (unsigned i = 2; i != 4; ++i)
2225    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2226      return false;
2227  return true;
2228}
2229
2230/// isScalarLoadToVector - Returns true if the node is a scalar load that
2231/// is promoted to a vector.
2232static inline bool isScalarLoadToVector(SDNode *N) {
2233  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2234    N = N->getOperand(0).Val;
2235    return ISD::isNON_EXTLoad(N);
2236  }
2237  return false;
2238}
2239
2240/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2241/// match movlp{s|d}. The lower half elements should come from lower half of
2242/// V1 (and in order), and the upper half elements should come from the upper
2243/// half of V2 (and in order). And since V1 will become the source of the
2244/// MOVLP, it must be either a vector load or a scalar load to vector.
2245static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2246  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2247    return false;
2248  // Is V2 is a vector load, don't do this transformation. We will try to use
2249  // load folding shufps op.
2250  if (ISD::isNON_EXTLoad(V2))
2251    return false;
2252
2253  unsigned NumElems = Mask->getNumOperands();
2254  if (NumElems != 2 && NumElems != 4)
2255    return false;
2256  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2257    if (!isUndefOrEqual(Mask->getOperand(i), i))
2258      return false;
2259  for (unsigned i = NumElems/2; i != NumElems; ++i)
2260    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2261      return false;
2262  return true;
2263}
2264
2265/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2266/// all the same.
2267static bool isSplatVector(SDNode *N) {
2268  if (N->getOpcode() != ISD::BUILD_VECTOR)
2269    return false;
2270
2271  SDOperand SplatValue = N->getOperand(0);
2272  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2273    if (N->getOperand(i) != SplatValue)
2274      return false;
2275  return true;
2276}
2277
2278/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2279/// to an undef.
2280static bool isUndefShuffle(SDNode *N) {
2281  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2282    return false;
2283
2284  SDOperand V1 = N->getOperand(0);
2285  SDOperand V2 = N->getOperand(1);
2286  SDOperand Mask = N->getOperand(2);
2287  unsigned NumElems = Mask.getNumOperands();
2288  for (unsigned i = 0; i != NumElems; ++i) {
2289    SDOperand Arg = Mask.getOperand(i);
2290    if (Arg.getOpcode() != ISD::UNDEF) {
2291      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2292      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2293        return false;
2294      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2295        return false;
2296    }
2297  }
2298  return true;
2299}
2300
2301/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2302/// constant +0.0.
2303static inline bool isZeroNode(SDOperand Elt) {
2304  return ((isa<ConstantSDNode>(Elt) &&
2305           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2306          (isa<ConstantFPSDNode>(Elt) &&
2307           cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0)));
2308}
2309
2310/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2311/// to an zero vector.
2312static bool isZeroShuffle(SDNode *N) {
2313  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2314    return false;
2315
2316  SDOperand V1 = N->getOperand(0);
2317  SDOperand V2 = N->getOperand(1);
2318  SDOperand Mask = N->getOperand(2);
2319  unsigned NumElems = Mask.getNumOperands();
2320  for (unsigned i = 0; i != NumElems; ++i) {
2321    SDOperand Arg = Mask.getOperand(i);
2322    if (Arg.getOpcode() != ISD::UNDEF) {
2323      unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2324      if (Idx < NumElems) {
2325        unsigned Opc = V1.Val->getOpcode();
2326        if (Opc == ISD::UNDEF)
2327          continue;
2328        if (Opc != ISD::BUILD_VECTOR ||
2329            !isZeroNode(V1.Val->getOperand(Idx)))
2330          return false;
2331      } else if (Idx >= NumElems) {
2332        unsigned Opc = V2.Val->getOpcode();
2333        if (Opc == ISD::UNDEF)
2334          continue;
2335        if (Opc != ISD::BUILD_VECTOR ||
2336            !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2337          return false;
2338      }
2339    }
2340  }
2341  return true;
2342}
2343
2344/// getZeroVector - Returns a vector of specified type with all zero elements.
2345///
2346static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2347  assert(MVT::isVector(VT) && "Expected a vector type");
2348  unsigned NumElems = MVT::getVectorNumElements(VT);
2349  MVT::ValueType EVT = MVT::getVectorElementType(VT);
2350  bool isFP = MVT::isFloatingPoint(EVT);
2351  SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2352  SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2353  return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2354}
2355
2356/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2357/// that point to V2 points to its first element.
2358static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2359  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2360
2361  bool Changed = false;
2362  SmallVector<SDOperand, 8> MaskVec;
2363  unsigned NumElems = Mask.getNumOperands();
2364  for (unsigned i = 0; i != NumElems; ++i) {
2365    SDOperand Arg = Mask.getOperand(i);
2366    if (Arg.getOpcode() != ISD::UNDEF) {
2367      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2368      if (Val > NumElems) {
2369        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2370        Changed = true;
2371      }
2372    }
2373    MaskVec.push_back(Arg);
2374  }
2375
2376  if (Changed)
2377    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2378                       &MaskVec[0], MaskVec.size());
2379  return Mask;
2380}
2381
2382/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2383/// operation of specified width.
2384static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2385  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2386  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2387
2388  SmallVector<SDOperand, 8> MaskVec;
2389  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2390  for (unsigned i = 1; i != NumElems; ++i)
2391    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2392  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2393}
2394
2395/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2396/// of specified width.
2397static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2398  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2399  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2400  SmallVector<SDOperand, 8> MaskVec;
2401  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2402    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2403    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2404  }
2405  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2406}
2407
2408/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2409/// of specified width.
2410static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2411  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2412  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2413  unsigned Half = NumElems/2;
2414  SmallVector<SDOperand, 8> MaskVec;
2415  for (unsigned i = 0; i != Half; ++i) {
2416    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2417    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2418  }
2419  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2420}
2421
2422/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2423///
2424static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2425  SDOperand V1 = Op.getOperand(0);
2426  SDOperand Mask = Op.getOperand(2);
2427  MVT::ValueType VT = Op.getValueType();
2428  unsigned NumElems = Mask.getNumOperands();
2429  Mask = getUnpacklMask(NumElems, DAG);
2430  while (NumElems != 4) {
2431    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2432    NumElems >>= 1;
2433  }
2434  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2435
2436  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2437  Mask = getZeroVector(MaskVT, DAG);
2438  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2439                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2440  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2441}
2442
2443/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2444/// vector of zero or undef vector.
2445static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2446                                             unsigned NumElems, unsigned Idx,
2447                                             bool isZero, SelectionDAG &DAG) {
2448  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2449  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2450  MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2451  SDOperand Zero = DAG.getConstant(0, EVT);
2452  SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2453  MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2454  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2455                               &MaskVec[0], MaskVec.size());
2456  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2457}
2458
2459/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2460///
2461static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2462                                       unsigned NumNonZero, unsigned NumZero,
2463                                       SelectionDAG &DAG, TargetLowering &TLI) {
2464  if (NumNonZero > 8)
2465    return SDOperand();
2466
2467  SDOperand V(0, 0);
2468  bool First = true;
2469  for (unsigned i = 0; i < 16; ++i) {
2470    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2471    if (ThisIsNonZero && First) {
2472      if (NumZero)
2473        V = getZeroVector(MVT::v8i16, DAG);
2474      else
2475        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2476      First = false;
2477    }
2478
2479    if ((i & 1) != 0) {
2480      SDOperand ThisElt(0, 0), LastElt(0, 0);
2481      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2482      if (LastIsNonZero) {
2483        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2484      }
2485      if (ThisIsNonZero) {
2486        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2487        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2488                              ThisElt, DAG.getConstant(8, MVT::i8));
2489        if (LastIsNonZero)
2490          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2491      } else
2492        ThisElt = LastElt;
2493
2494      if (ThisElt.Val)
2495        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2496                        DAG.getConstant(i/2, TLI.getPointerTy()));
2497    }
2498  }
2499
2500  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2501}
2502
2503/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2504///
2505static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2506                                       unsigned NumNonZero, unsigned NumZero,
2507                                       SelectionDAG &DAG, TargetLowering &TLI) {
2508  if (NumNonZero > 4)
2509    return SDOperand();
2510
2511  SDOperand V(0, 0);
2512  bool First = true;
2513  for (unsigned i = 0; i < 8; ++i) {
2514    bool isNonZero = (NonZeros & (1 << i)) != 0;
2515    if (isNonZero) {
2516      if (First) {
2517        if (NumZero)
2518          V = getZeroVector(MVT::v8i16, DAG);
2519        else
2520          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2521        First = false;
2522      }
2523      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2524                      DAG.getConstant(i, TLI.getPointerTy()));
2525    }
2526  }
2527
2528  return V;
2529}
2530
2531SDOperand
2532X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2533  // All zero's are handled with pxor.
2534  if (ISD::isBuildVectorAllZeros(Op.Val))
2535    return Op;
2536
2537  // All one's are handled with pcmpeqd.
2538  if (ISD::isBuildVectorAllOnes(Op.Val))
2539    return Op;
2540
2541  MVT::ValueType VT = Op.getValueType();
2542  MVT::ValueType EVT = MVT::getVectorElementType(VT);
2543  unsigned EVTBits = MVT::getSizeInBits(EVT);
2544
2545  unsigned NumElems = Op.getNumOperands();
2546  unsigned NumZero  = 0;
2547  unsigned NumNonZero = 0;
2548  unsigned NonZeros = 0;
2549  unsigned NumNonZeroImms = 0;
2550  std::set<SDOperand> Values;
2551  for (unsigned i = 0; i < NumElems; ++i) {
2552    SDOperand Elt = Op.getOperand(i);
2553    if (Elt.getOpcode() != ISD::UNDEF) {
2554      Values.insert(Elt);
2555      if (isZeroNode(Elt))
2556        NumZero++;
2557      else {
2558        NonZeros |= (1 << i);
2559        NumNonZero++;
2560        if (Elt.getOpcode() == ISD::Constant ||
2561            Elt.getOpcode() == ISD::ConstantFP)
2562          NumNonZeroImms++;
2563      }
2564    }
2565  }
2566
2567  if (NumNonZero == 0) {
2568    if (NumZero == 0)
2569      // All undef vector. Return an UNDEF.
2570      return DAG.getNode(ISD::UNDEF, VT);
2571    else
2572      // A mix of zero and undef. Return a zero vector.
2573      return getZeroVector(VT, DAG);
2574  }
2575
2576  // Splat is obviously ok. Let legalizer expand it to a shuffle.
2577  if (Values.size() == 1)
2578    return SDOperand();
2579
2580  // Special case for single non-zero element.
2581  if (NumNonZero == 1) {
2582    unsigned Idx = CountTrailingZeros_32(NonZeros);
2583    SDOperand Item = Op.getOperand(Idx);
2584    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2585    if (Idx == 0)
2586      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2587      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2588                                         NumZero > 0, DAG);
2589
2590    if (EVTBits == 32) {
2591      // Turn it into a shuffle of zero and zero-extended scalar to vector.
2592      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2593                                         DAG);
2594      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
2595      MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2596      SmallVector<SDOperand, 8> MaskVec;
2597      for (unsigned i = 0; i < NumElems; i++)
2598        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2599      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2600                                   &MaskVec[0], MaskVec.size());
2601      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2602                         DAG.getNode(ISD::UNDEF, VT), Mask);
2603    }
2604  }
2605
2606  // A vector full of immediates; various special cases are already
2607  // handled, so this is best done with a single constant-pool load.
2608  if (NumNonZero == NumNonZeroImms)
2609    return SDOperand();
2610
2611  // Let legalizer expand 2-wide build_vectors.
2612  if (EVTBits == 64)
2613    return SDOperand();
2614
2615  // If element VT is < 32 bits, convert it to inserts into a zero vector.
2616  if (EVTBits == 8 && NumElems == 16) {
2617    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2618                                        *this);
2619    if (V.Val) return V;
2620  }
2621
2622  if (EVTBits == 16 && NumElems == 8) {
2623    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2624                                        *this);
2625    if (V.Val) return V;
2626  }
2627
2628  // If element VT is == 32 bits, turn it into a number of shuffles.
2629  SmallVector<SDOperand, 8> V;
2630  V.resize(NumElems);
2631  if (NumElems == 4 && NumZero > 0) {
2632    for (unsigned i = 0; i < 4; ++i) {
2633      bool isZero = !(NonZeros & (1 << i));
2634      if (isZero)
2635        V[i] = getZeroVector(VT, DAG);
2636      else
2637        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2638    }
2639
2640    for (unsigned i = 0; i < 2; ++i) {
2641      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2642        default: break;
2643        case 0:
2644          V[i] = V[i*2];  // Must be a zero vector.
2645          break;
2646        case 1:
2647          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2648                             getMOVLMask(NumElems, DAG));
2649          break;
2650        case 2:
2651          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2652                             getMOVLMask(NumElems, DAG));
2653          break;
2654        case 3:
2655          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2656                             getUnpacklMask(NumElems, DAG));
2657          break;
2658      }
2659    }
2660
2661    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2662    // clears the upper bits.
2663    // FIXME: we can do the same for v4f32 case when we know both parts of
2664    // the lower half come from scalar_to_vector (loadf32). We should do
2665    // that in post legalizer dag combiner with target specific hooks.
2666    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2667      return V[0];
2668    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2669    MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2670    SmallVector<SDOperand, 8> MaskVec;
2671    bool Reverse = (NonZeros & 0x3) == 2;
2672    for (unsigned i = 0; i < 2; ++i)
2673      if (Reverse)
2674        MaskVec.push_back(DAG.getConstant(1-i, EVT));
2675      else
2676        MaskVec.push_back(DAG.getConstant(i, EVT));
2677    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2678    for (unsigned i = 0; i < 2; ++i)
2679      if (Reverse)
2680        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2681      else
2682        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2683    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2684                                     &MaskVec[0], MaskVec.size());
2685    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2686  }
2687
2688  if (Values.size() > 2) {
2689    // Expand into a number of unpckl*.
2690    // e.g. for v4f32
2691    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2692    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2693    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
2694    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2695    for (unsigned i = 0; i < NumElems; ++i)
2696      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2697    NumElems >>= 1;
2698    while (NumElems != 0) {
2699      for (unsigned i = 0; i < NumElems; ++i)
2700        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2701                           UnpckMask);
2702      NumElems >>= 1;
2703    }
2704    return V[0];
2705  }
2706
2707  return SDOperand();
2708}
2709
2710SDOperand
2711X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2712  SDOperand V1 = Op.getOperand(0);
2713  SDOperand V2 = Op.getOperand(1);
2714  SDOperand PermMask = Op.getOperand(2);
2715  MVT::ValueType VT = Op.getValueType();
2716  unsigned NumElems = PermMask.getNumOperands();
2717  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
2718  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
2719  bool V1IsSplat = false;
2720  bool V2IsSplat = false;
2721
2722  if (isUndefShuffle(Op.Val))
2723    return DAG.getNode(ISD::UNDEF, VT);
2724
2725  if (isZeroShuffle(Op.Val))
2726    return getZeroVector(VT, DAG);
2727
2728  if (isIdentityMask(PermMask.Val))
2729    return V1;
2730  else if (isIdentityMask(PermMask.Val, true))
2731    return V2;
2732
2733  if (isSplatMask(PermMask.Val)) {
2734    if (NumElems <= 4) return Op;
2735    // Promote it to a v4i32 splat.
2736    return PromoteSplat(Op, DAG);
2737  }
2738
2739  if (X86::isMOVLMask(PermMask.Val))
2740    return (V1IsUndef) ? V2 : Op;
2741
2742  if (X86::isMOVSHDUPMask(PermMask.Val) ||
2743      X86::isMOVSLDUPMask(PermMask.Val) ||
2744      X86::isMOVHLPSMask(PermMask.Val) ||
2745      X86::isMOVHPMask(PermMask.Val) ||
2746      X86::isMOVLPMask(PermMask.Val))
2747    return Op;
2748
2749  if (ShouldXformToMOVHLPS(PermMask.Val) ||
2750      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
2751    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2752
2753  bool Commuted = false;
2754  V1IsSplat = isSplatVector(V1.Val);
2755  V2IsSplat = isSplatVector(V2.Val);
2756  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
2757    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2758    std::swap(V1IsSplat, V2IsSplat);
2759    std::swap(V1IsUndef, V2IsUndef);
2760    Commuted = true;
2761  }
2762
2763  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
2764    if (V2IsUndef) return V1;
2765    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2766    if (V2IsSplat) {
2767      // V2 is a splat, so the mask may be malformed. That is, it may point
2768      // to any V2 element. The instruction selectior won't like this. Get
2769      // a corrected mask and commute to form a proper MOVS{S|D}.
2770      SDOperand NewMask = getMOVLMask(NumElems, DAG);
2771      if (NewMask.Val != PermMask.Val)
2772        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2773    }
2774    return Op;
2775  }
2776
2777  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2778      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2779      X86::isUNPCKLMask(PermMask.Val) ||
2780      X86::isUNPCKHMask(PermMask.Val))
2781    return Op;
2782
2783  if (V2IsSplat) {
2784    // Normalize mask so all entries that point to V2 points to its first
2785    // element then try to match unpck{h|l} again. If match, return a
2786    // new vector_shuffle with the corrected mask.
2787    SDOperand NewMask = NormalizeMask(PermMask, DAG);
2788    if (NewMask.Val != PermMask.Val) {
2789      if (X86::isUNPCKLMask(PermMask.Val, true)) {
2790        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
2791        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2792      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
2793        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
2794        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2795      }
2796    }
2797  }
2798
2799  // Normalize the node to match x86 shuffle ops if needed
2800  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
2801      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2802
2803  if (Commuted) {
2804    // Commute is back and try unpck* again.
2805    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2806    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2807        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2808        X86::isUNPCKLMask(PermMask.Val) ||
2809        X86::isUNPCKHMask(PermMask.Val))
2810      return Op;
2811  }
2812
2813  // If VT is integer, try PSHUF* first, then SHUFP*.
2814  if (MVT::isInteger(VT)) {
2815    // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
2816    // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
2817    if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
2818         X86::isPSHUFDMask(PermMask.Val)) ||
2819        X86::isPSHUFHWMask(PermMask.Val) ||
2820        X86::isPSHUFLWMask(PermMask.Val)) {
2821      if (V2.getOpcode() != ISD::UNDEF)
2822        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2823                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2824      return Op;
2825    }
2826
2827    if (X86::isSHUFPMask(PermMask.Val) &&
2828        MVT::getSizeInBits(VT) != 64)    // Don't do this for MMX.
2829      return Op;
2830
2831    // Handle v8i16 shuffle high / low shuffle node pair.
2832    if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
2833      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2834      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2835      SmallVector<SDOperand, 8> MaskVec;
2836      for (unsigned i = 0; i != 4; ++i)
2837        MaskVec.push_back(PermMask.getOperand(i));
2838      for (unsigned i = 4; i != 8; ++i)
2839        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2840      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2841                                   &MaskVec[0], MaskVec.size());
2842      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2843      MaskVec.clear();
2844      for (unsigned i = 0; i != 4; ++i)
2845        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2846      for (unsigned i = 4; i != 8; ++i)
2847        MaskVec.push_back(PermMask.getOperand(i));
2848      Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
2849      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2850    }
2851  } else {
2852    // Floating point cases in the other order.
2853    if (X86::isSHUFPMask(PermMask.Val))
2854      return Op;
2855    if (X86::isPSHUFDMask(PermMask.Val) ||
2856        X86::isPSHUFHWMask(PermMask.Val) ||
2857        X86::isPSHUFLWMask(PermMask.Val)) {
2858      if (V2.getOpcode() != ISD::UNDEF)
2859        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2860                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2861      return Op;
2862    }
2863  }
2864
2865  if (NumElems == 4 &&
2866      // Don't do this for MMX.
2867      MVT::getSizeInBits(VT) != 64) {
2868    MVT::ValueType MaskVT = PermMask.getValueType();
2869    MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2870    SmallVector<std::pair<int, int>, 8> Locs;
2871    Locs.reserve(NumElems);
2872    SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2873    SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2874    unsigned NumHi = 0;
2875    unsigned NumLo = 0;
2876    // If no more than two elements come from either vector. This can be
2877    // implemented with two shuffles. First shuffle gather the elements.
2878    // The second shuffle, which takes the first shuffle as both of its
2879    // vector operands, put the elements into the right order.
2880    for (unsigned i = 0; i != NumElems; ++i) {
2881      SDOperand Elt = PermMask.getOperand(i);
2882      if (Elt.getOpcode() == ISD::UNDEF) {
2883        Locs[i] = std::make_pair(-1, -1);
2884      } else {
2885        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
2886        if (Val < NumElems) {
2887          Locs[i] = std::make_pair(0, NumLo);
2888          Mask1[NumLo] = Elt;
2889          NumLo++;
2890        } else {
2891          Locs[i] = std::make_pair(1, NumHi);
2892          if (2+NumHi < NumElems)
2893            Mask1[2+NumHi] = Elt;
2894          NumHi++;
2895        }
2896      }
2897    }
2898    if (NumLo <= 2 && NumHi <= 2) {
2899      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2900                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2901                                   &Mask1[0], Mask1.size()));
2902      for (unsigned i = 0; i != NumElems; ++i) {
2903        if (Locs[i].first == -1)
2904          continue;
2905        else {
2906          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
2907          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
2908          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
2909        }
2910      }
2911
2912      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
2913                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2914                                     &Mask2[0], Mask2.size()));
2915    }
2916
2917    // Break it into (shuffle shuffle_hi, shuffle_lo).
2918    Locs.clear();
2919    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2920    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2921    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
2922    unsigned MaskIdx = 0;
2923    unsigned LoIdx = 0;
2924    unsigned HiIdx = NumElems/2;
2925    for (unsigned i = 0; i != NumElems; ++i) {
2926      if (i == NumElems/2) {
2927        MaskPtr = &HiMask;
2928        MaskIdx = 1;
2929        LoIdx = 0;
2930        HiIdx = NumElems/2;
2931      }
2932      SDOperand Elt = PermMask.getOperand(i);
2933      if (Elt.getOpcode() == ISD::UNDEF) {
2934        Locs[i] = std::make_pair(-1, -1);
2935      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
2936        Locs[i] = std::make_pair(MaskIdx, LoIdx);
2937        (*MaskPtr)[LoIdx] = Elt;
2938        LoIdx++;
2939      } else {
2940        Locs[i] = std::make_pair(MaskIdx, HiIdx);
2941        (*MaskPtr)[HiIdx] = Elt;
2942        HiIdx++;
2943      }
2944    }
2945
2946    SDOperand LoShuffle =
2947      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2948                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2949                              &LoMask[0], LoMask.size()));
2950    SDOperand HiShuffle =
2951      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2952                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2953                              &HiMask[0], HiMask.size()));
2954    SmallVector<SDOperand, 8> MaskOps;
2955    for (unsigned i = 0; i != NumElems; ++i) {
2956      if (Locs[i].first == -1) {
2957        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
2958      } else {
2959        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
2960        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
2961      }
2962    }
2963    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
2964                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2965                                   &MaskOps[0], MaskOps.size()));
2966  }
2967
2968  return SDOperand();
2969}
2970
2971SDOperand
2972X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
2973  if (!isa<ConstantSDNode>(Op.getOperand(1)))
2974    return SDOperand();
2975
2976  MVT::ValueType VT = Op.getValueType();
2977  // TODO: handle v16i8.
2978  if (MVT::getSizeInBits(VT) == 16) {
2979    // Transform it so it match pextrw which produces a 32-bit result.
2980    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
2981    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
2982                                    Op.getOperand(0), Op.getOperand(1));
2983    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
2984                                    DAG.getValueType(VT));
2985    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
2986  } else if (MVT::getSizeInBits(VT) == 32) {
2987    SDOperand Vec = Op.getOperand(0);
2988    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
2989    if (Idx == 0)
2990      return Op;
2991    // SHUFPS the element to the lowest double word, then movss.
2992    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2993    SmallVector<SDOperand, 8> IdxVec;
2994    IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
2995    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
2996    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
2997    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
2998    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2999                                 &IdxVec[0], IdxVec.size());
3000    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3001                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3002    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3003                       DAG.getConstant(0, getPointerTy()));
3004  } else if (MVT::getSizeInBits(VT) == 64) {
3005    SDOperand Vec = Op.getOperand(0);
3006    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3007    if (Idx == 0)
3008      return Op;
3009
3010    // UNPCKHPD the element to the lowest double word, then movsd.
3011    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3012    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3013    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3014    SmallVector<SDOperand, 8> IdxVec;
3015    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3016    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3017    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3018                                 &IdxVec[0], IdxVec.size());
3019    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3020                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3021    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3022                       DAG.getConstant(0, getPointerTy()));
3023  }
3024
3025  return SDOperand();
3026}
3027
3028SDOperand
3029X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3030  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3031  // as its second argument.
3032  MVT::ValueType VT = Op.getValueType();
3033  MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
3034  SDOperand N0 = Op.getOperand(0);
3035  SDOperand N1 = Op.getOperand(1);
3036  SDOperand N2 = Op.getOperand(2);
3037  if (MVT::getSizeInBits(BaseVT) == 16) {
3038    if (N1.getValueType() != MVT::i32)
3039      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3040    if (N2.getValueType() != MVT::i32)
3041      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3042    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3043  } else if (MVT::getSizeInBits(BaseVT) == 32) {
3044    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3045    if (Idx == 0) {
3046      // Use a movss.
3047      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3048      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3049      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3050      SmallVector<SDOperand, 8> MaskVec;
3051      MaskVec.push_back(DAG.getConstant(4, BaseVT));
3052      for (unsigned i = 1; i <= 3; ++i)
3053        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3054      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3055                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3056                                     &MaskVec[0], MaskVec.size()));
3057    } else {
3058      // Use two pinsrw instructions to insert a 32 bit value.
3059      Idx <<= 1;
3060      if (MVT::isFloatingPoint(N1.getValueType())) {
3061        N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3062        N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3063        N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3064                         DAG.getConstant(0, getPointerTy()));
3065      }
3066      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3067      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3068                       DAG.getConstant(Idx, getPointerTy()));
3069      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3070      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3071                       DAG.getConstant(Idx+1, getPointerTy()));
3072      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3073    }
3074  }
3075
3076  return SDOperand();
3077}
3078
3079SDOperand
3080X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3081  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3082  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3083}
3084
3085// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3086// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3087// one of the above mentioned nodes. It has to be wrapped because otherwise
3088// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3089// be used to form addressing mode. These wrapped nodes will be selected
3090// into MOV32ri.
3091SDOperand
3092X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3093  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3094  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3095                                               getPointerTy(),
3096                                               CP->getAlignment());
3097  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3098  // With PIC, the address is actually $g + Offset.
3099  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3100      !Subtarget->isPICStyleRIPRel()) {
3101    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3102                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3103                         Result);
3104  }
3105
3106  return Result;
3107}
3108
3109SDOperand
3110X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3111  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3112  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3113  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3114  // With PIC, the address is actually $g + Offset.
3115  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3116      !Subtarget->isPICStyleRIPRel()) {
3117    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3118                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3119                         Result);
3120  }
3121
3122  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3123  // load the value at address GV, not the value of GV itself. This means that
3124  // the GlobalAddress must be in the base or index register of the address, not
3125  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3126  // The same applies for external symbols during PIC codegen
3127  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3128    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3129
3130  return Result;
3131}
3132
3133// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3134static SDOperand
3135LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3136                              const MVT::ValueType PtrVT) {
3137  SDOperand InFlag;
3138  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3139                                     DAG.getNode(X86ISD::GlobalBaseReg,
3140                                                 PtrVT), InFlag);
3141  InFlag = Chain.getValue(1);
3142
3143  // emit leal symbol@TLSGD(,%ebx,1), %eax
3144  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3145  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3146                                             GA->getValueType(0),
3147                                             GA->getOffset());
3148  SDOperand Ops[] = { Chain,  TGA, InFlag };
3149  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3150  InFlag = Result.getValue(2);
3151  Chain = Result.getValue(1);
3152
3153  // call ___tls_get_addr. This function receives its argument in
3154  // the register EAX.
3155  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3156  InFlag = Chain.getValue(1);
3157
3158  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3159  SDOperand Ops1[] = { Chain,
3160                      DAG.getTargetExternalSymbol("___tls_get_addr",
3161                                                  PtrVT),
3162                      DAG.getRegister(X86::EAX, PtrVT),
3163                      DAG.getRegister(X86::EBX, PtrVT),
3164                      InFlag };
3165  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3166  InFlag = Chain.getValue(1);
3167
3168  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3169}
3170
3171// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3172// "local exec" model.
3173static SDOperand
3174LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3175                         const MVT::ValueType PtrVT) {
3176  // Get the Thread Pointer
3177  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3178  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3179  // exec)
3180  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3181                                             GA->getValueType(0),
3182                                             GA->getOffset());
3183  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3184
3185  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3186    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3187
3188  // The address of the thread local variable is the add of the thread
3189  // pointer with the offset of the variable.
3190  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3191}
3192
3193SDOperand
3194X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3195  // TODO: implement the "local dynamic" model
3196  // TODO: implement the "initial exec"model for pic executables
3197  assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3198         "TLS not implemented for non-ELF and 64-bit targets");
3199  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3200  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3201  // otherwise use the "Local Exec"TLS Model
3202  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3203    return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3204  else
3205    return LowerToTLSExecModel(GA, DAG, getPointerTy());
3206}
3207
3208SDOperand
3209X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3210  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3211  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3212  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3213  // With PIC, the address is actually $g + Offset.
3214  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3215      !Subtarget->isPICStyleRIPRel()) {
3216    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3217                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3218                         Result);
3219  }
3220
3221  return Result;
3222}
3223
3224SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3225  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3226  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3227  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3228  // With PIC, the address is actually $g + Offset.
3229  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3230      !Subtarget->isPICStyleRIPRel()) {
3231    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3232                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3233                         Result);
3234  }
3235
3236  return Result;
3237}
3238
3239SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3240    assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3241           "Not an i64 shift!");
3242    bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3243    SDOperand ShOpLo = Op.getOperand(0);
3244    SDOperand ShOpHi = Op.getOperand(1);
3245    SDOperand ShAmt  = Op.getOperand(2);
3246    SDOperand Tmp1 = isSRA ?
3247      DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3248      DAG.getConstant(0, MVT::i32);
3249
3250    SDOperand Tmp2, Tmp3;
3251    if (Op.getOpcode() == ISD::SHL_PARTS) {
3252      Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3253      Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3254    } else {
3255      Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3256      Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3257    }
3258
3259    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3260    SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3261                                    DAG.getConstant(32, MVT::i8));
3262    SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3263    SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3264
3265    SDOperand Hi, Lo;
3266    SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3267
3268    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3269    SmallVector<SDOperand, 4> Ops;
3270    if (Op.getOpcode() == ISD::SHL_PARTS) {
3271      Ops.push_back(Tmp2);
3272      Ops.push_back(Tmp3);
3273      Ops.push_back(CC);
3274      Ops.push_back(InFlag);
3275      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3276      InFlag = Hi.getValue(1);
3277
3278      Ops.clear();
3279      Ops.push_back(Tmp3);
3280      Ops.push_back(Tmp1);
3281      Ops.push_back(CC);
3282      Ops.push_back(InFlag);
3283      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3284    } else {
3285      Ops.push_back(Tmp2);
3286      Ops.push_back(Tmp3);
3287      Ops.push_back(CC);
3288      Ops.push_back(InFlag);
3289      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3290      InFlag = Lo.getValue(1);
3291
3292      Ops.clear();
3293      Ops.push_back(Tmp3);
3294      Ops.push_back(Tmp1);
3295      Ops.push_back(CC);
3296      Ops.push_back(InFlag);
3297      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3298    }
3299
3300    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3301    Ops.clear();
3302    Ops.push_back(Lo);
3303    Ops.push_back(Hi);
3304    return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3305}
3306
3307SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3308  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3309         Op.getOperand(0).getValueType() >= MVT::i16 &&
3310         "Unknown SINT_TO_FP to lower!");
3311
3312  SDOperand Result;
3313  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3314  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3315  MachineFunction &MF = DAG.getMachineFunction();
3316  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3317  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3318  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3319                                 StackSlot, NULL, 0);
3320
3321  // Build the FILD
3322  SDVTList Tys;
3323  if (X86ScalarSSE)
3324    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3325  else
3326    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3327  SmallVector<SDOperand, 8> Ops;
3328  Ops.push_back(Chain);
3329  Ops.push_back(StackSlot);
3330  Ops.push_back(DAG.getValueType(SrcVT));
3331  Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
3332                       Tys, &Ops[0], Ops.size());
3333
3334  if (X86ScalarSSE) {
3335    Chain = Result.getValue(1);
3336    SDOperand InFlag = Result.getValue(2);
3337
3338    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3339    // shouldn't be necessary except that RFP cannot be live across
3340    // multiple blocks. When stackifier is fixed, they can be uncoupled.
3341    MachineFunction &MF = DAG.getMachineFunction();
3342    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3343    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3344    Tys = DAG.getVTList(MVT::Other);
3345    SmallVector<SDOperand, 8> Ops;
3346    Ops.push_back(Chain);
3347    Ops.push_back(Result);
3348    Ops.push_back(StackSlot);
3349    Ops.push_back(DAG.getValueType(Op.getValueType()));
3350    Ops.push_back(InFlag);
3351    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3352    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3353  }
3354
3355  return Result;
3356}
3357
3358SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3359  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3360         "Unknown FP_TO_SINT to lower!");
3361  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3362  // stack slot.
3363  MachineFunction &MF = DAG.getMachineFunction();
3364  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3365  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3366  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3367
3368  unsigned Opc;
3369  switch (Op.getValueType()) {
3370    default: assert(0 && "Invalid FP_TO_SINT to lower!");
3371    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3372    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3373    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3374  }
3375
3376  SDOperand Chain = DAG.getEntryNode();
3377  SDOperand Value = Op.getOperand(0);
3378  if (X86ScalarSSE) {
3379    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3380    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3381    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3382    SDOperand Ops[] = {
3383      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3384    };
3385    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3386    Chain = Value.getValue(1);
3387    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3388    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3389  }
3390
3391  // Build the FP_TO_INT*_IN_MEM
3392  SDOperand Ops[] = { Chain, Value, StackSlot };
3393  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3394
3395  // Load the result.
3396  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3397}
3398
3399SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3400  MVT::ValueType VT = Op.getValueType();
3401  MVT::ValueType EltVT = VT;
3402  if (MVT::isVector(VT))
3403    EltVT = MVT::getVectorElementType(VT);
3404  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
3405  std::vector<Constant*> CV;
3406  if (EltVT == MVT::f64) {
3407    Constant *C = ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63)));
3408    CV.push_back(C);
3409    CV.push_back(C);
3410  } else {
3411    Constant *C = ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31)));
3412    CV.push_back(C);
3413    CV.push_back(C);
3414    CV.push_back(C);
3415    CV.push_back(C);
3416  }
3417  Constant *C = ConstantVector::get(CV);
3418  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3419  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3420                               false, 16);
3421  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3422}
3423
3424SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3425  MVT::ValueType VT = Op.getValueType();
3426  MVT::ValueType EltVT = VT;
3427  unsigned EltNum = 1;
3428  if (MVT::isVector(VT)) {
3429    EltVT = MVT::getVectorElementType(VT);
3430    EltNum = MVT::getVectorNumElements(VT);
3431  }
3432  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
3433  std::vector<Constant*> CV;
3434  if (EltVT == MVT::f64) {
3435    Constant *C = ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63));
3436    CV.push_back(C);
3437    CV.push_back(C);
3438  } else {
3439    Constant *C = ConstantFP::get(OpNTy, BitsToFloat(1U << 31));
3440    CV.push_back(C);
3441    CV.push_back(C);
3442    CV.push_back(C);
3443    CV.push_back(C);
3444  }
3445  Constant *C = ConstantVector::get(CV);
3446  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3447  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3448                               false, 16);
3449  if (MVT::isVector(VT)) {
3450    return DAG.getNode(ISD::BIT_CONVERT, VT,
3451                       DAG.getNode(ISD::XOR, MVT::v2i64,
3452                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
3453                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
3454  } else {
3455    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3456  }
3457}
3458
3459SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3460  SDOperand Op0 = Op.getOperand(0);
3461  SDOperand Op1 = Op.getOperand(1);
3462  MVT::ValueType VT = Op.getValueType();
3463  MVT::ValueType SrcVT = Op1.getValueType();
3464  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
3465
3466  // If second operand is smaller, extend it first.
3467  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3468    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3469    SrcVT = VT;
3470  }
3471
3472  // First get the sign bit of second operand.
3473  std::vector<Constant*> CV;
3474  if (SrcVT == MVT::f64) {
3475    CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(1ULL << 63)));
3476    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3477  } else {
3478    CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(1U << 31)));
3479    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3480    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3481    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3482  }
3483  Constant *C = ConstantVector::get(CV);
3484  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3485  SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
3486                                false, 16);
3487  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3488
3489  // Shift sign bit right or left if the two operands have different types.
3490  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3491    // Op0 is MVT::f32, Op1 is MVT::f64.
3492    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3493    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3494                          DAG.getConstant(32, MVT::i32));
3495    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3496    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3497                          DAG.getConstant(0, getPointerTy()));
3498  }
3499
3500  // Clear first operand sign bit.
3501  CV.clear();
3502  if (VT == MVT::f64) {
3503    CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(~(1ULL << 63))));
3504    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3505  } else {
3506    CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(~(1U << 31))));
3507    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3508    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3509    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3510  }
3511  C = ConstantVector::get(CV);
3512  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3513  SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3514                                false, 16);
3515  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3516
3517  // Or the value with the sign bit.
3518  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3519}
3520
3521SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
3522                                        SDOperand Chain) {
3523  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3524  SDOperand Cond;
3525  SDOperand Op0 = Op.getOperand(0);
3526  SDOperand Op1 = Op.getOperand(1);
3527  SDOperand CC = Op.getOperand(2);
3528  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3529  const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3530  const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3531  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3532  unsigned X86CC;
3533
3534  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3535                     Op0, Op1, DAG)) {
3536    SDOperand Ops1[] = { Chain, Op0, Op1 };
3537    Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
3538    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3539    return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3540  }
3541
3542  assert(isFP && "Illegal integer SetCC!");
3543
3544  SDOperand COps[] = { Chain, Op0, Op1 };
3545  Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
3546
3547  switch (SetCCOpcode) {
3548  default: assert(false && "Illegal floating point SetCC!");
3549  case ISD::SETOEQ: {  // !PF & ZF
3550    SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
3551    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3552    SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
3553                         Tmp1.getValue(1) };
3554    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3555    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3556  }
3557  case ISD::SETUNE: {  // PF | !ZF
3558    SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
3559    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3560    SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
3561                         Tmp1.getValue(1) };
3562    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3563    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3564  }
3565  }
3566}
3567
3568SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3569  bool addTest = true;
3570  SDOperand Chain = DAG.getEntryNode();
3571  SDOperand Cond  = Op.getOperand(0);
3572  SDOperand CC;
3573  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3574
3575  if (Cond.getOpcode() == ISD::SETCC)
3576    Cond = LowerSETCC(Cond, DAG, Chain);
3577
3578  if (Cond.getOpcode() == X86ISD::SETCC) {
3579    CC = Cond.getOperand(0);
3580
3581    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3582    // (since flag operand cannot be shared). Use it as the condition setting
3583    // operand in place of the X86ISD::SETCC.
3584    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3585    // to use a test instead of duplicating the X86ISD::CMP (for register
3586    // pressure reason)?
3587    SDOperand Cmp = Cond.getOperand(1);
3588    unsigned Opc = Cmp.getOpcode();
3589    bool IllegalFPCMov = !X86ScalarSSE &&
3590      MVT::isFloatingPoint(Op.getValueType()) &&
3591      !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3592    if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
3593        !IllegalFPCMov) {
3594      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3595      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3596      addTest = false;
3597    }
3598  }
3599
3600  if (addTest) {
3601    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3602    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3603    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3604  }
3605
3606  VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
3607  SmallVector<SDOperand, 4> Ops;
3608  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3609  // condition is true.
3610  Ops.push_back(Op.getOperand(2));
3611  Ops.push_back(Op.getOperand(1));
3612  Ops.push_back(CC);
3613  Ops.push_back(Cond.getValue(1));
3614  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3615}
3616
3617SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3618  bool addTest = true;
3619  SDOperand Chain = Op.getOperand(0);
3620  SDOperand Cond  = Op.getOperand(1);
3621  SDOperand Dest  = Op.getOperand(2);
3622  SDOperand CC;
3623  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3624
3625  if (Cond.getOpcode() == ISD::SETCC)
3626    Cond = LowerSETCC(Cond, DAG, Chain);
3627
3628  if (Cond.getOpcode() == X86ISD::SETCC) {
3629    CC = Cond.getOperand(0);
3630
3631    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3632    // (since flag operand cannot be shared). Use it as the condition setting
3633    // operand in place of the X86ISD::SETCC.
3634    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3635    // to use a test instead of duplicating the X86ISD::CMP (for register
3636    // pressure reason)?
3637    SDOperand Cmp = Cond.getOperand(1);
3638    unsigned Opc = Cmp.getOpcode();
3639    if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
3640      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3641      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3642      addTest = false;
3643    }
3644  }
3645
3646  if (addTest) {
3647    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3648    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3649    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3650  }
3651  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
3652                     Cond, Op.getOperand(2), CC, Cond.getValue(1));
3653}
3654
3655SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3656  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3657
3658  if (Subtarget->is64Bit())
3659    return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
3660  else
3661    switch (CallingConv) {
3662    default:
3663      assert(0 && "Unsupported calling convention");
3664    case CallingConv::Fast:
3665      // TODO: Implement fastcc
3666      // Falls through
3667    case CallingConv::C:
3668    case CallingConv::X86_StdCall:
3669      return LowerCCCCallTo(Op, DAG, CallingConv);
3670    case CallingConv::X86_FastCall:
3671      return LowerFastCCCallTo(Op, DAG, CallingConv);
3672    }
3673}
3674
3675
3676// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
3677// Calls to _alloca is needed to probe the stack when allocating more than 4k
3678// bytes in one go. Touching the stack at 4K increments is necessary to ensure
3679// that the guard pages used by the OS virtual memory manager are allocated in
3680// correct sequence.
3681SDOperand
3682X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
3683                                           SelectionDAG &DAG) {
3684  assert(Subtarget->isTargetCygMing() &&
3685         "This should be used only on Cygwin/Mingw targets");
3686
3687  // Get the inputs.
3688  SDOperand Chain = Op.getOperand(0);
3689  SDOperand Size  = Op.getOperand(1);
3690  // FIXME: Ensure alignment here
3691
3692  SDOperand Flag;
3693
3694  MVT::ValueType IntPtr = getPointerTy();
3695  MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
3696
3697  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
3698  Flag = Chain.getValue(1);
3699
3700  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3701  SDOperand Ops[] = { Chain,
3702                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
3703                      DAG.getRegister(X86::EAX, IntPtr),
3704                      Flag };
3705  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
3706  Flag = Chain.getValue(1);
3707
3708  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
3709
3710  std::vector<MVT::ValueType> Tys;
3711  Tys.push_back(SPTy);
3712  Tys.push_back(MVT::Other);
3713  SDOperand Ops1[2] = { Chain.getValue(0), Chain };
3714  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
3715}
3716
3717SDOperand
3718X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
3719  MachineFunction &MF = DAG.getMachineFunction();
3720  const Function* Fn = MF.getFunction();
3721  if (Fn->hasExternalLinkage() &&
3722      Subtarget->isTargetCygMing() &&
3723      Fn->getName() == "main")
3724    MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
3725
3726  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3727  if (Subtarget->is64Bit())
3728    return LowerX86_64CCCArguments(Op, DAG);
3729  else
3730    switch(CC) {
3731    default:
3732      assert(0 && "Unsupported calling convention");
3733    case CallingConv::Fast:
3734      // TODO: implement fastcc.
3735
3736      // Falls through
3737    case CallingConv::C:
3738      return LowerCCCArguments(Op, DAG);
3739    case CallingConv::X86_StdCall:
3740      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
3741      return LowerCCCArguments(Op, DAG, true);
3742    case CallingConv::X86_FastCall:
3743      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
3744      return LowerFastCCArguments(Op, DAG);
3745    }
3746}
3747
3748SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
3749  SDOperand InFlag(0, 0);
3750  SDOperand Chain = Op.getOperand(0);
3751  unsigned Align =
3752    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3753  if (Align == 0) Align = 1;
3754
3755  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3756  // If not DWORD aligned or size is more than the threshold, call memset.
3757  // The libc version is likely to be faster for these cases. It can use the
3758  // address value and run time information about the CPU.
3759  if ((Align & 3) != 0 ||
3760      (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
3761    MVT::ValueType IntPtr = getPointerTy();
3762    const Type *IntPtrTy = getTargetData()->getIntPtrType();
3763    TargetLowering::ArgListTy Args;
3764    TargetLowering::ArgListEntry Entry;
3765    Entry.Node = Op.getOperand(1);
3766    Entry.Ty = IntPtrTy;
3767    Args.push_back(Entry);
3768    // Extend the unsigned i8 argument to be an int value for the call.
3769    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
3770    Entry.Ty = IntPtrTy;
3771    Args.push_back(Entry);
3772    Entry.Node = Op.getOperand(3);
3773    Args.push_back(Entry);
3774    std::pair<SDOperand,SDOperand> CallResult =
3775      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3776                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
3777    return CallResult.second;
3778  }
3779
3780  MVT::ValueType AVT;
3781  SDOperand Count;
3782  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3783  unsigned BytesLeft = 0;
3784  bool TwoRepStos = false;
3785  if (ValC) {
3786    unsigned ValReg;
3787    uint64_t Val = ValC->getValue() & 255;
3788
3789    // If the value is a constant, then we can potentially use larger sets.
3790    switch (Align & 3) {
3791      case 2:   // WORD aligned
3792        AVT = MVT::i16;
3793        ValReg = X86::AX;
3794        Val = (Val << 8) | Val;
3795        break;
3796      case 0:  // DWORD aligned
3797        AVT = MVT::i32;
3798        ValReg = X86::EAX;
3799        Val = (Val << 8)  | Val;
3800        Val = (Val << 16) | Val;
3801        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
3802          AVT = MVT::i64;
3803          ValReg = X86::RAX;
3804          Val = (Val << 32) | Val;
3805        }
3806        break;
3807      default:  // Byte aligned
3808        AVT = MVT::i8;
3809        ValReg = X86::AL;
3810        Count = Op.getOperand(3);
3811        break;
3812    }
3813
3814    if (AVT > MVT::i8) {
3815      if (I) {
3816        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3817        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3818        BytesLeft = I->getValue() % UBytes;
3819      } else {
3820        assert(AVT >= MVT::i32 &&
3821               "Do not use rep;stos if not at least DWORD aligned");
3822        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3823                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3824        TwoRepStos = true;
3825      }
3826    }
3827
3828    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
3829                              InFlag);
3830    InFlag = Chain.getValue(1);
3831  } else {
3832    AVT = MVT::i8;
3833    Count  = Op.getOperand(3);
3834    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
3835    InFlag = Chain.getValue(1);
3836  }
3837
3838  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3839                            Count, InFlag);
3840  InFlag = Chain.getValue(1);
3841  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3842                            Op.getOperand(1), InFlag);
3843  InFlag = Chain.getValue(1);
3844
3845  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3846  SmallVector<SDOperand, 8> Ops;
3847  Ops.push_back(Chain);
3848  Ops.push_back(DAG.getValueType(AVT));
3849  Ops.push_back(InFlag);
3850  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3851
3852  if (TwoRepStos) {
3853    InFlag = Chain.getValue(1);
3854    Count = Op.getOperand(3);
3855    MVT::ValueType CVT = Count.getValueType();
3856    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3857                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3858    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3859                              Left, InFlag);
3860    InFlag = Chain.getValue(1);
3861    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3862    Ops.clear();
3863    Ops.push_back(Chain);
3864    Ops.push_back(DAG.getValueType(MVT::i8));
3865    Ops.push_back(InFlag);
3866    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3867  } else if (BytesLeft) {
3868    // Issue stores for the last 1 - 7 bytes.
3869    SDOperand Value;
3870    unsigned Val = ValC->getValue() & 255;
3871    unsigned Offset = I->getValue() - BytesLeft;
3872    SDOperand DstAddr = Op.getOperand(1);
3873    MVT::ValueType AddrVT = DstAddr.getValueType();
3874    if (BytesLeft >= 4) {
3875      Val = (Val << 8)  | Val;
3876      Val = (Val << 16) | Val;
3877      Value = DAG.getConstant(Val, MVT::i32);
3878      Chain = DAG.getStore(Chain, Value,
3879                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3880                                       DAG.getConstant(Offset, AddrVT)),
3881                           NULL, 0);
3882      BytesLeft -= 4;
3883      Offset += 4;
3884    }
3885    if (BytesLeft >= 2) {
3886      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
3887      Chain = DAG.getStore(Chain, Value,
3888                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3889                                       DAG.getConstant(Offset, AddrVT)),
3890                           NULL, 0);
3891      BytesLeft -= 2;
3892      Offset += 2;
3893    }
3894    if (BytesLeft == 1) {
3895      Value = DAG.getConstant(Val, MVT::i8);
3896      Chain = DAG.getStore(Chain, Value,
3897                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3898                                       DAG.getConstant(Offset, AddrVT)),
3899                           NULL, 0);
3900    }
3901  }
3902
3903  return Chain;
3904}
3905
3906SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
3907  SDOperand Chain = Op.getOperand(0);
3908  unsigned Align =
3909    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3910  if (Align == 0) Align = 1;
3911
3912  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3913  // If not DWORD aligned or size is more than the threshold, call memcpy.
3914  // The libc version is likely to be faster for these cases. It can use the
3915  // address value and run time information about the CPU.
3916  // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
3917  if ((Align & 3) != 0 ||
3918      (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
3919    MVT::ValueType IntPtr = getPointerTy();
3920    TargetLowering::ArgListTy Args;
3921    TargetLowering::ArgListEntry Entry;
3922    Entry.Ty = getTargetData()->getIntPtrType();
3923    Entry.Node = Op.getOperand(1); Args.push_back(Entry);
3924    Entry.Node = Op.getOperand(2); Args.push_back(Entry);
3925    Entry.Node = Op.getOperand(3); Args.push_back(Entry);
3926    std::pair<SDOperand,SDOperand> CallResult =
3927      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3928                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
3929    return CallResult.second;
3930  }
3931
3932  MVT::ValueType AVT;
3933  SDOperand Count;
3934  unsigned BytesLeft = 0;
3935  bool TwoRepMovs = false;
3936  switch (Align & 3) {
3937    case 2:   // WORD aligned
3938      AVT = MVT::i16;
3939      break;
3940    case 0:  // DWORD aligned
3941      AVT = MVT::i32;
3942      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
3943        AVT = MVT::i64;
3944      break;
3945    default:  // Byte aligned
3946      AVT = MVT::i8;
3947      Count = Op.getOperand(3);
3948      break;
3949  }
3950
3951  if (AVT > MVT::i8) {
3952    if (I) {
3953      unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3954      Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3955      BytesLeft = I->getValue() % UBytes;
3956    } else {
3957      assert(AVT >= MVT::i32 &&
3958             "Do not use rep;movs if not at least DWORD aligned");
3959      Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3960                          Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3961      TwoRepMovs = true;
3962    }
3963  }
3964
3965  SDOperand InFlag(0, 0);
3966  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3967                            Count, InFlag);
3968  InFlag = Chain.getValue(1);
3969  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3970                            Op.getOperand(1), InFlag);
3971  InFlag = Chain.getValue(1);
3972  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
3973                            Op.getOperand(2), InFlag);
3974  InFlag = Chain.getValue(1);
3975
3976  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3977  SmallVector<SDOperand, 8> Ops;
3978  Ops.push_back(Chain);
3979  Ops.push_back(DAG.getValueType(AVT));
3980  Ops.push_back(InFlag);
3981  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
3982
3983  if (TwoRepMovs) {
3984    InFlag = Chain.getValue(1);
3985    Count = Op.getOperand(3);
3986    MVT::ValueType CVT = Count.getValueType();
3987    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3988                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3989    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3990                              Left, InFlag);
3991    InFlag = Chain.getValue(1);
3992    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3993    Ops.clear();
3994    Ops.push_back(Chain);
3995    Ops.push_back(DAG.getValueType(MVT::i8));
3996    Ops.push_back(InFlag);
3997    Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
3998  } else if (BytesLeft) {
3999    // Issue loads and stores for the last 1 - 7 bytes.
4000    unsigned Offset = I->getValue() - BytesLeft;
4001    SDOperand DstAddr = Op.getOperand(1);
4002    MVT::ValueType DstVT = DstAddr.getValueType();
4003    SDOperand SrcAddr = Op.getOperand(2);
4004    MVT::ValueType SrcVT = SrcAddr.getValueType();
4005    SDOperand Value;
4006    if (BytesLeft >= 4) {
4007      Value = DAG.getLoad(MVT::i32, Chain,
4008                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4009                                      DAG.getConstant(Offset, SrcVT)),
4010                          NULL, 0);
4011      Chain = Value.getValue(1);
4012      Chain = DAG.getStore(Chain, Value,
4013                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4014                                       DAG.getConstant(Offset, DstVT)),
4015                           NULL, 0);
4016      BytesLeft -= 4;
4017      Offset += 4;
4018    }
4019    if (BytesLeft >= 2) {
4020      Value = DAG.getLoad(MVT::i16, Chain,
4021                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4022                                      DAG.getConstant(Offset, SrcVT)),
4023                          NULL, 0);
4024      Chain = Value.getValue(1);
4025      Chain = DAG.getStore(Chain, Value,
4026                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4027                                       DAG.getConstant(Offset, DstVT)),
4028                           NULL, 0);
4029      BytesLeft -= 2;
4030      Offset += 2;
4031    }
4032
4033    if (BytesLeft == 1) {
4034      Value = DAG.getLoad(MVT::i8, Chain,
4035                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4036                                      DAG.getConstant(Offset, SrcVT)),
4037                          NULL, 0);
4038      Chain = Value.getValue(1);
4039      Chain = DAG.getStore(Chain, Value,
4040                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4041                                       DAG.getConstant(Offset, DstVT)),
4042                           NULL, 0);
4043    }
4044  }
4045
4046  return Chain;
4047}
4048
4049SDOperand
4050X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4051  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4052  SDOperand TheOp = Op.getOperand(0);
4053  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4054  if (Subtarget->is64Bit()) {
4055    SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4056    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4057                                         MVT::i64, Copy1.getValue(2));
4058    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4059                                DAG.getConstant(32, MVT::i8));
4060    SDOperand Ops[] = {
4061      DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4062    };
4063
4064    Tys = DAG.getVTList(MVT::i64, MVT::Other);
4065    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4066  }
4067
4068  SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4069  SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4070                                       MVT::i32, Copy1.getValue(2));
4071  SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4072  Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4073  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4074}
4075
4076SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4077  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4078
4079  if (!Subtarget->is64Bit()) {
4080    // vastart just stores the address of the VarArgsFrameIndex slot into the
4081    // memory location argument.
4082    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4083    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4084                        SV->getOffset());
4085  }
4086
4087  // __va_list_tag:
4088  //   gp_offset         (0 - 6 * 8)
4089  //   fp_offset         (48 - 48 + 8 * 16)
4090  //   overflow_arg_area (point to parameters coming in memory).
4091  //   reg_save_area
4092  SmallVector<SDOperand, 8> MemOps;
4093  SDOperand FIN = Op.getOperand(1);
4094  // Store gp_offset
4095  SDOperand Store = DAG.getStore(Op.getOperand(0),
4096                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4097                                 FIN, SV->getValue(), SV->getOffset());
4098  MemOps.push_back(Store);
4099
4100  // Store fp_offset
4101  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4102                    DAG.getConstant(4, getPointerTy()));
4103  Store = DAG.getStore(Op.getOperand(0),
4104                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4105                       FIN, SV->getValue(), SV->getOffset());
4106  MemOps.push_back(Store);
4107
4108  // Store ptr to overflow_arg_area
4109  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4110                    DAG.getConstant(4, getPointerTy()));
4111  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4112  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4113                       SV->getOffset());
4114  MemOps.push_back(Store);
4115
4116  // Store ptr to reg_save_area.
4117  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4118                    DAG.getConstant(8, getPointerTy()));
4119  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4120  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4121                       SV->getOffset());
4122  MemOps.push_back(Store);
4123  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4124}
4125
4126SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4127  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4128  SDOperand Chain = Op.getOperand(0);
4129  SDOperand DstPtr = Op.getOperand(1);
4130  SDOperand SrcPtr = Op.getOperand(2);
4131  SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4132  SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4133
4134  SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4135                       SrcSV->getValue(), SrcSV->getOffset());
4136  Chain = SrcPtr.getValue(1);
4137  for (unsigned i = 0; i < 3; ++i) {
4138    SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4139                                SrcSV->getValue(), SrcSV->getOffset());
4140    Chain = Val.getValue(1);
4141    Chain = DAG.getStore(Chain, Val, DstPtr,
4142                         DstSV->getValue(), DstSV->getOffset());
4143    if (i == 2)
4144      break;
4145    SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4146                         DAG.getConstant(8, getPointerTy()));
4147    DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4148                         DAG.getConstant(8, getPointerTy()));
4149  }
4150  return Chain;
4151}
4152
4153SDOperand
4154X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4155  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4156  switch (IntNo) {
4157  default: return SDOperand();    // Don't custom lower most intrinsics.
4158    // Comparison intrinsics.
4159  case Intrinsic::x86_sse_comieq_ss:
4160  case Intrinsic::x86_sse_comilt_ss:
4161  case Intrinsic::x86_sse_comile_ss:
4162  case Intrinsic::x86_sse_comigt_ss:
4163  case Intrinsic::x86_sse_comige_ss:
4164  case Intrinsic::x86_sse_comineq_ss:
4165  case Intrinsic::x86_sse_ucomieq_ss:
4166  case Intrinsic::x86_sse_ucomilt_ss:
4167  case Intrinsic::x86_sse_ucomile_ss:
4168  case Intrinsic::x86_sse_ucomigt_ss:
4169  case Intrinsic::x86_sse_ucomige_ss:
4170  case Intrinsic::x86_sse_ucomineq_ss:
4171  case Intrinsic::x86_sse2_comieq_sd:
4172  case Intrinsic::x86_sse2_comilt_sd:
4173  case Intrinsic::x86_sse2_comile_sd:
4174  case Intrinsic::x86_sse2_comigt_sd:
4175  case Intrinsic::x86_sse2_comige_sd:
4176  case Intrinsic::x86_sse2_comineq_sd:
4177  case Intrinsic::x86_sse2_ucomieq_sd:
4178  case Intrinsic::x86_sse2_ucomilt_sd:
4179  case Intrinsic::x86_sse2_ucomile_sd:
4180  case Intrinsic::x86_sse2_ucomigt_sd:
4181  case Intrinsic::x86_sse2_ucomige_sd:
4182  case Intrinsic::x86_sse2_ucomineq_sd: {
4183    unsigned Opc = 0;
4184    ISD::CondCode CC = ISD::SETCC_INVALID;
4185    switch (IntNo) {
4186    default: break;
4187    case Intrinsic::x86_sse_comieq_ss:
4188    case Intrinsic::x86_sse2_comieq_sd:
4189      Opc = X86ISD::COMI;
4190      CC = ISD::SETEQ;
4191      break;
4192    case Intrinsic::x86_sse_comilt_ss:
4193    case Intrinsic::x86_sse2_comilt_sd:
4194      Opc = X86ISD::COMI;
4195      CC = ISD::SETLT;
4196      break;
4197    case Intrinsic::x86_sse_comile_ss:
4198    case Intrinsic::x86_sse2_comile_sd:
4199      Opc = X86ISD::COMI;
4200      CC = ISD::SETLE;
4201      break;
4202    case Intrinsic::x86_sse_comigt_ss:
4203    case Intrinsic::x86_sse2_comigt_sd:
4204      Opc = X86ISD::COMI;
4205      CC = ISD::SETGT;
4206      break;
4207    case Intrinsic::x86_sse_comige_ss:
4208    case Intrinsic::x86_sse2_comige_sd:
4209      Opc = X86ISD::COMI;
4210      CC = ISD::SETGE;
4211      break;
4212    case Intrinsic::x86_sse_comineq_ss:
4213    case Intrinsic::x86_sse2_comineq_sd:
4214      Opc = X86ISD::COMI;
4215      CC = ISD::SETNE;
4216      break;
4217    case Intrinsic::x86_sse_ucomieq_ss:
4218    case Intrinsic::x86_sse2_ucomieq_sd:
4219      Opc = X86ISD::UCOMI;
4220      CC = ISD::SETEQ;
4221      break;
4222    case Intrinsic::x86_sse_ucomilt_ss:
4223    case Intrinsic::x86_sse2_ucomilt_sd:
4224      Opc = X86ISD::UCOMI;
4225      CC = ISD::SETLT;
4226      break;
4227    case Intrinsic::x86_sse_ucomile_ss:
4228    case Intrinsic::x86_sse2_ucomile_sd:
4229      Opc = X86ISD::UCOMI;
4230      CC = ISD::SETLE;
4231      break;
4232    case Intrinsic::x86_sse_ucomigt_ss:
4233    case Intrinsic::x86_sse2_ucomigt_sd:
4234      Opc = X86ISD::UCOMI;
4235      CC = ISD::SETGT;
4236      break;
4237    case Intrinsic::x86_sse_ucomige_ss:
4238    case Intrinsic::x86_sse2_ucomige_sd:
4239      Opc = X86ISD::UCOMI;
4240      CC = ISD::SETGE;
4241      break;
4242    case Intrinsic::x86_sse_ucomineq_ss:
4243    case Intrinsic::x86_sse2_ucomineq_sd:
4244      Opc = X86ISD::UCOMI;
4245      CC = ISD::SETNE;
4246      break;
4247    }
4248
4249    unsigned X86CC;
4250    SDOperand LHS = Op.getOperand(1);
4251    SDOperand RHS = Op.getOperand(2);
4252    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4253
4254    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4255    SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4256    SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4257    VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4258    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4259    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4260    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4261  }
4262  }
4263}
4264
4265SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4266  // Depths > 0 not supported yet!
4267  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4268    return SDOperand();
4269
4270  // Just load the return address
4271  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4272  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4273}
4274
4275SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4276  // Depths > 0 not supported yet!
4277  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4278    return SDOperand();
4279
4280  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4281  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4282                     DAG.getConstant(4, getPointerTy()));
4283}
4284
4285SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4286                                                       SelectionDAG &DAG) {
4287  // Is not yet supported on x86-64
4288  if (Subtarget->is64Bit())
4289    return SDOperand();
4290
4291  return DAG.getConstant(8, getPointerTy());
4292}
4293
4294SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4295{
4296  assert(!Subtarget->is64Bit() &&
4297         "Lowering of eh_return builtin is not supported yet on x86-64");
4298
4299  MachineFunction &MF = DAG.getMachineFunction();
4300  SDOperand Chain     = Op.getOperand(0);
4301  SDOperand Offset    = Op.getOperand(1);
4302  SDOperand Handler   = Op.getOperand(2);
4303
4304  SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4305                                    getPointerTy());
4306
4307  SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4308                                    DAG.getConstant(-4UL, getPointerTy()));
4309  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4310  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4311  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4312  MF.addLiveOut(X86::ECX);
4313
4314  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4315                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4316}
4317
4318SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4319                                             SelectionDAG &DAG) {
4320  SDOperand Root = Op.getOperand(0);
4321  SDOperand Trmp = Op.getOperand(1); // trampoline
4322  SDOperand FPtr = Op.getOperand(2); // nested function
4323  SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4324
4325  SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4326
4327  if (Subtarget->is64Bit()) {
4328    return SDOperand(); // not yet supported
4329  } else {
4330    Function *Func = (Function *)
4331      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4332    unsigned CC = Func->getCallingConv();
4333    unsigned char NestReg;
4334
4335    switch (CC) {
4336    default:
4337      assert(0 && "Unsupported calling convention");
4338    case CallingConv::C:
4339    case CallingConv::Fast:
4340    case CallingConv::X86_StdCall: {
4341      // Pass 'nest' parameter in ECX.
4342      // Must be kept in sync with X86CallingConv.td
4343      NestReg = N86::ECX;
4344
4345      // Check that ECX wasn't needed by an 'inreg' parameter.
4346      const FunctionType *FTy = Func->getFunctionType();
4347      const ParamAttrsList *Attrs = FTy->getParamAttrs();
4348
4349      if (Attrs && !Func->isVarArg()) {
4350        unsigned InRegCount = 0;
4351        unsigned Idx = 1;
4352
4353        for (FunctionType::param_iterator I = FTy->param_begin(),
4354             E = FTy->param_end(); I != E; ++I, ++Idx)
4355          if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
4356            // FIXME: should only count parameters that are lowered to integers.
4357            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
4358
4359        if (InRegCount > 2) {
4360          cerr << "Nest register in use - reduce number of inreg parameters!\n";
4361          abort();
4362        }
4363      }
4364      break;
4365    }
4366    case CallingConv::X86_FastCall:
4367      // Pass 'nest' parameter in EAX.
4368      // Must be kept in sync with X86CallingConv.td
4369      NestReg = N86::EAX;
4370      break;
4371    }
4372
4373    SDOperand OutChains[4];
4374    SDOperand Addr, Disp;
4375
4376    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
4377    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
4378
4379    const unsigned char MOV32ri = 0xB8;
4380    const unsigned char JMP     = 0xE9;
4381
4382    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|NestReg, MVT::i8),
4383                                Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
4384
4385    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
4386    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4387                                TrmpSV->getOffset() + 1, false, 1);
4388
4389    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
4390    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
4391                                TrmpSV->getValue() + 5, TrmpSV->getOffset());
4392
4393    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
4394    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
4395                                TrmpSV->getOffset() + 6, false, 1);
4396
4397    return DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4);
4398  }
4399}
4400
4401/// LowerOperation - Provide custom lowering hooks for some operations.
4402///
4403SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4404  switch (Op.getOpcode()) {
4405  default: assert(0 && "Should not custom lower this!");
4406  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4407  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4408  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4409  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
4410  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4411  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4412  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4413  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4414  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
4415  case ISD::SHL_PARTS:
4416  case ISD::SRA_PARTS:
4417  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
4418  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4419  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
4420  case ISD::FABS:               return LowerFABS(Op, DAG);
4421  case ISD::FNEG:               return LowerFNEG(Op, DAG);
4422  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
4423  case ISD::SETCC:              return LowerSETCC(Op, DAG, DAG.getEntryNode());
4424  case ISD::SELECT:             return LowerSELECT(Op, DAG);
4425  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
4426  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4427  case ISD::CALL:               return LowerCALL(Op, DAG);
4428  case ISD::RET:                return LowerRET(Op, DAG);
4429  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
4430  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
4431  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
4432  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
4433  case ISD::VASTART:            return LowerVASTART(Op, DAG);
4434  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
4435  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4436  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4437  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4438  case ISD::FRAME_TO_ARGS_OFFSET:
4439                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
4440  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
4441  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
4442  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4443  }
4444  return SDOperand();
4445}
4446
4447const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4448  switch (Opcode) {
4449  default: return NULL;
4450  case X86ISD::SHLD:               return "X86ISD::SHLD";
4451  case X86ISD::SHRD:               return "X86ISD::SHRD";
4452  case X86ISD::FAND:               return "X86ISD::FAND";
4453  case X86ISD::FOR:                return "X86ISD::FOR";
4454  case X86ISD::FXOR:               return "X86ISD::FXOR";
4455  case X86ISD::FSRL:               return "X86ISD::FSRL";
4456  case X86ISD::FILD:               return "X86ISD::FILD";
4457  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
4458  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4459  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4460  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4461  case X86ISD::FLD:                return "X86ISD::FLD";
4462  case X86ISD::FST:                return "X86ISD::FST";
4463  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
4464  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
4465  case X86ISD::CALL:               return "X86ISD::CALL";
4466  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
4467  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
4468  case X86ISD::CMP:                return "X86ISD::CMP";
4469  case X86ISD::COMI:               return "X86ISD::COMI";
4470  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
4471  case X86ISD::SETCC:              return "X86ISD::SETCC";
4472  case X86ISD::CMOV:               return "X86ISD::CMOV";
4473  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
4474  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
4475  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
4476  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
4477  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
4478  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
4479  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
4480  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
4481  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
4482  case X86ISD::FMAX:               return "X86ISD::FMAX";
4483  case X86ISD::FMIN:               return "X86ISD::FMIN";
4484  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
4485  case X86ISD::FRCP:               return "X86ISD::FRCP";
4486  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
4487  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
4488  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
4489  }
4490}
4491
4492// isLegalAddressingMode - Return true if the addressing mode represented
4493// by AM is legal for this target, for a load/store of the specified type.
4494bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
4495                                              const Type *Ty) const {
4496  // X86 supports extremely general addressing modes.
4497
4498  // X86 allows a sign-extended 32-bit immediate field as a displacement.
4499  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
4500    return false;
4501
4502  if (AM.BaseGV) {
4503    // We can only fold this if we don't need an extra load.
4504    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
4505      return false;
4506
4507    // X86-64 only supports addr of globals in small code model.
4508    if (Subtarget->is64Bit()) {
4509      if (getTargetMachine().getCodeModel() != CodeModel::Small)
4510        return false;
4511      // If lower 4G is not available, then we must use rip-relative addressing.
4512      if (AM.BaseOffs || AM.Scale > 1)
4513        return false;
4514    }
4515  }
4516
4517  switch (AM.Scale) {
4518  case 0:
4519  case 1:
4520  case 2:
4521  case 4:
4522  case 8:
4523    // These scales always work.
4524    break;
4525  case 3:
4526  case 5:
4527  case 9:
4528    // These scales are formed with basereg+scalereg.  Only accept if there is
4529    // no basereg yet.
4530    if (AM.HasBaseReg)
4531      return false;
4532    break;
4533  default:  // Other stuff never works.
4534    return false;
4535  }
4536
4537  return true;
4538}
4539
4540
4541/// isShuffleMaskLegal - Targets can use this to indicate that they only
4542/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4543/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4544/// are assumed to be legal.
4545bool
4546X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4547  // Only do shuffles on 128-bit vector types for now.
4548  if (MVT::getSizeInBits(VT) == 64) return false;
4549  return (Mask.Val->getNumOperands() <= 4 ||
4550          isIdentityMask(Mask.Val) ||
4551          isIdentityMask(Mask.Val, true) ||
4552          isSplatMask(Mask.Val)  ||
4553          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4554          X86::isUNPCKLMask(Mask.Val) ||
4555          X86::isUNPCKHMask(Mask.Val) ||
4556          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4557          X86::isUNPCKH_v_undef_Mask(Mask.Val));
4558}
4559
4560bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4561                                               MVT::ValueType EVT,
4562                                               SelectionDAG &DAG) const {
4563  unsigned NumElts = BVOps.size();
4564  // Only do shuffles on 128-bit vector types for now.
4565  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4566  if (NumElts == 2) return true;
4567  if (NumElts == 4) {
4568    return (isMOVLMask(&BVOps[0], 4)  ||
4569            isCommutedMOVL(&BVOps[0], 4, true) ||
4570            isSHUFPMask(&BVOps[0], 4) ||
4571            isCommutedSHUFP(&BVOps[0], 4));
4572  }
4573  return false;
4574}
4575
4576//===----------------------------------------------------------------------===//
4577//                           X86 Scheduler Hooks
4578//===----------------------------------------------------------------------===//
4579
4580MachineBasicBlock *
4581X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4582                                           MachineBasicBlock *BB) {
4583  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4584  switch (MI->getOpcode()) {
4585  default: assert(false && "Unexpected instr type to insert");
4586  case X86::CMOV_FR32:
4587  case X86::CMOV_FR64:
4588  case X86::CMOV_V4F32:
4589  case X86::CMOV_V2F64:
4590  case X86::CMOV_V2I64: {
4591    // To "insert" a SELECT_CC instruction, we actually have to insert the
4592    // diamond control-flow pattern.  The incoming instruction knows the
4593    // destination vreg to set, the condition code register to branch on, the
4594    // true/false values to select between, and a branch opcode to use.
4595    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4596    ilist<MachineBasicBlock>::iterator It = BB;
4597    ++It;
4598
4599    //  thisMBB:
4600    //  ...
4601    //   TrueVal = ...
4602    //   cmpTY ccX, r1, r2
4603    //   bCC copy1MBB
4604    //   fallthrough --> copy0MBB
4605    MachineBasicBlock *thisMBB = BB;
4606    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4607    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4608    unsigned Opc =
4609      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4610    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4611    MachineFunction *F = BB->getParent();
4612    F->getBasicBlockList().insert(It, copy0MBB);
4613    F->getBasicBlockList().insert(It, sinkMBB);
4614    // Update machine-CFG edges by first adding all successors of the current
4615    // block to the new block which will contain the Phi node for the select.
4616    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4617        e = BB->succ_end(); i != e; ++i)
4618      sinkMBB->addSuccessor(*i);
4619    // Next, remove all successors of the current block, and add the true
4620    // and fallthrough blocks as its successors.
4621    while(!BB->succ_empty())
4622      BB->removeSuccessor(BB->succ_begin());
4623    BB->addSuccessor(copy0MBB);
4624    BB->addSuccessor(sinkMBB);
4625
4626    //  copy0MBB:
4627    //   %FalseValue = ...
4628    //   # fallthrough to sinkMBB
4629    BB = copy0MBB;
4630
4631    // Update machine-CFG edges
4632    BB->addSuccessor(sinkMBB);
4633
4634    //  sinkMBB:
4635    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4636    //  ...
4637    BB = sinkMBB;
4638    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4639      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4640      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4641
4642    delete MI;   // The pseudo instruction is gone now.
4643    return BB;
4644  }
4645
4646  case X86::FP32_TO_INT16_IN_MEM:
4647  case X86::FP32_TO_INT32_IN_MEM:
4648  case X86::FP32_TO_INT64_IN_MEM:
4649  case X86::FP64_TO_INT16_IN_MEM:
4650  case X86::FP64_TO_INT32_IN_MEM:
4651  case X86::FP64_TO_INT64_IN_MEM:
4652  case X86::FP80_TO_INT16_IN_MEM:
4653  case X86::FP80_TO_INT32_IN_MEM:
4654  case X86::FP80_TO_INT64_IN_MEM: {
4655    // Change the floating point control register to use "round towards zero"
4656    // mode when truncating to an integer value.
4657    MachineFunction *F = BB->getParent();
4658    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4659    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4660
4661    // Load the old value of the high byte of the control word...
4662    unsigned OldCW =
4663      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4664    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4665
4666    // Set the high part to be round to zero...
4667    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4668      .addImm(0xC7F);
4669
4670    // Reload the modified control word now...
4671    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4672
4673    // Restore the memory image of control word to original value
4674    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4675      .addReg(OldCW);
4676
4677    // Get the X86 opcode to use.
4678    unsigned Opc;
4679    switch (MI->getOpcode()) {
4680    default: assert(0 && "illegal opcode!");
4681    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
4682    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
4683    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
4684    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
4685    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
4686    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
4687    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
4688    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
4689    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
4690    }
4691
4692    X86AddressMode AM;
4693    MachineOperand &Op = MI->getOperand(0);
4694    if (Op.isRegister()) {
4695      AM.BaseType = X86AddressMode::RegBase;
4696      AM.Base.Reg = Op.getReg();
4697    } else {
4698      AM.BaseType = X86AddressMode::FrameIndexBase;
4699      AM.Base.FrameIndex = Op.getFrameIndex();
4700    }
4701    Op = MI->getOperand(1);
4702    if (Op.isImmediate())
4703      AM.Scale = Op.getImm();
4704    Op = MI->getOperand(2);
4705    if (Op.isImmediate())
4706      AM.IndexReg = Op.getImm();
4707    Op = MI->getOperand(3);
4708    if (Op.isGlobalAddress()) {
4709      AM.GV = Op.getGlobal();
4710    } else {
4711      AM.Disp = Op.getImm();
4712    }
4713    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
4714                      .addReg(MI->getOperand(4).getReg());
4715
4716    // Reload the original control word now.
4717    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4718
4719    delete MI;   // The pseudo instruction is gone now.
4720    return BB;
4721  }
4722  }
4723}
4724
4725//===----------------------------------------------------------------------===//
4726//                           X86 Optimization Hooks
4727//===----------------------------------------------------------------------===//
4728
4729void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
4730                                                       uint64_t Mask,
4731                                                       uint64_t &KnownZero,
4732                                                       uint64_t &KnownOne,
4733                                                       const SelectionDAG &DAG,
4734                                                       unsigned Depth) const {
4735  unsigned Opc = Op.getOpcode();
4736  assert((Opc >= ISD::BUILTIN_OP_END ||
4737          Opc == ISD::INTRINSIC_WO_CHAIN ||
4738          Opc == ISD::INTRINSIC_W_CHAIN ||
4739          Opc == ISD::INTRINSIC_VOID) &&
4740         "Should use MaskedValueIsZero if you don't know whether Op"
4741         " is a target node!");
4742
4743  KnownZero = KnownOne = 0;   // Don't know anything.
4744  switch (Opc) {
4745  default: break;
4746  case X86ISD::SETCC:
4747    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
4748    break;
4749  }
4750}
4751
4752/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4753/// element of the result of the vector shuffle.
4754static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
4755  MVT::ValueType VT = N->getValueType(0);
4756  SDOperand PermMask = N->getOperand(2);
4757  unsigned NumElems = PermMask.getNumOperands();
4758  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
4759  i %= NumElems;
4760  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4761    return (i == 0)
4762      ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4763  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
4764    SDOperand Idx = PermMask.getOperand(i);
4765    if (Idx.getOpcode() == ISD::UNDEF)
4766      return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4767    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
4768  }
4769  return SDOperand();
4770}
4771
4772/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
4773/// node is a GlobalAddress + an offset.
4774static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
4775  unsigned Opc = N->getOpcode();
4776  if (Opc == X86ISD::Wrapper) {
4777    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
4778      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
4779      return true;
4780    }
4781  } else if (Opc == ISD::ADD) {
4782    SDOperand N1 = N->getOperand(0);
4783    SDOperand N2 = N->getOperand(1);
4784    if (isGAPlusOffset(N1.Val, GA, Offset)) {
4785      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
4786      if (V) {
4787        Offset += V->getSignExtended();
4788        return true;
4789      }
4790    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
4791      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
4792      if (V) {
4793        Offset += V->getSignExtended();
4794        return true;
4795      }
4796    }
4797  }
4798  return false;
4799}
4800
4801/// isConsecutiveLoad - Returns true if N is loading from an address of Base
4802/// + Dist * Size.
4803static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
4804                              MachineFrameInfo *MFI) {
4805  if (N->getOperand(0).Val != Base->getOperand(0).Val)
4806    return false;
4807
4808  SDOperand Loc = N->getOperand(1);
4809  SDOperand BaseLoc = Base->getOperand(1);
4810  if (Loc.getOpcode() == ISD::FrameIndex) {
4811    if (BaseLoc.getOpcode() != ISD::FrameIndex)
4812      return false;
4813    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
4814    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
4815    int FS  = MFI->getObjectSize(FI);
4816    int BFS = MFI->getObjectSize(BFI);
4817    if (FS != BFS || FS != Size) return false;
4818    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
4819  } else {
4820    GlobalValue *GV1 = NULL;
4821    GlobalValue *GV2 = NULL;
4822    int64_t Offset1 = 0;
4823    int64_t Offset2 = 0;
4824    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
4825    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
4826    if (isGA1 && isGA2 && GV1 == GV2)
4827      return Offset1 == (Offset2 + Dist*Size);
4828  }
4829
4830  return false;
4831}
4832
4833static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
4834                              const X86Subtarget *Subtarget) {
4835  GlobalValue *GV;
4836  int64_t Offset;
4837  if (isGAPlusOffset(Base, GV, Offset))
4838    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
4839  else {
4840    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
4841    int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
4842    if (BFI < 0)
4843      // Fixed objects do not specify alignment, however the offsets are known.
4844      return ((Subtarget->getStackAlignment() % 16) == 0 &&
4845              (MFI->getObjectOffset(BFI) % 16) == 0);
4846    else
4847      return MFI->getObjectAlignment(BFI) >= 16;
4848  }
4849  return false;
4850}
4851
4852
4853/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
4854/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
4855/// if the load addresses are consecutive, non-overlapping, and in the right
4856/// order.
4857static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
4858                                       const X86Subtarget *Subtarget) {
4859  MachineFunction &MF = DAG.getMachineFunction();
4860  MachineFrameInfo *MFI = MF.getFrameInfo();
4861  MVT::ValueType VT = N->getValueType(0);
4862  MVT::ValueType EVT = MVT::getVectorElementType(VT);
4863  SDOperand PermMask = N->getOperand(2);
4864  int NumElems = (int)PermMask.getNumOperands();
4865  SDNode *Base = NULL;
4866  for (int i = 0; i < NumElems; ++i) {
4867    SDOperand Idx = PermMask.getOperand(i);
4868    if (Idx.getOpcode() == ISD::UNDEF) {
4869      if (!Base) return SDOperand();
4870    } else {
4871      SDOperand Arg =
4872        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
4873      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
4874        return SDOperand();
4875      if (!Base)
4876        Base = Arg.Val;
4877      else if (!isConsecutiveLoad(Arg.Val, Base,
4878                                  i, MVT::getSizeInBits(EVT)/8,MFI))
4879        return SDOperand();
4880    }
4881  }
4882
4883  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
4884  LoadSDNode *LD = cast<LoadSDNode>(Base);
4885  if (isAlign16) {
4886    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4887                       LD->getSrcValueOffset(), LD->isVolatile());
4888  } else {
4889    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4890                       LD->getSrcValueOffset(), LD->isVolatile(),
4891                       LD->getAlignment());
4892  }
4893}
4894
4895/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
4896static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
4897                                      const X86Subtarget *Subtarget) {
4898  SDOperand Cond = N->getOperand(0);
4899
4900  // If we have SSE[12] support, try to form min/max nodes.
4901  if (Subtarget->hasSSE2() &&
4902      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
4903    if (Cond.getOpcode() == ISD::SETCC) {
4904      // Get the LHS/RHS of the select.
4905      SDOperand LHS = N->getOperand(1);
4906      SDOperand RHS = N->getOperand(2);
4907      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
4908
4909      unsigned Opcode = 0;
4910      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
4911        switch (CC) {
4912        default: break;
4913        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
4914        case ISD::SETULE:
4915        case ISD::SETLE:
4916          if (!UnsafeFPMath) break;
4917          // FALL THROUGH.
4918        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
4919        case ISD::SETLT:
4920          Opcode = X86ISD::FMIN;
4921          break;
4922
4923        case ISD::SETOGT: // (X > Y) ? X : Y -> max
4924        case ISD::SETUGT:
4925        case ISD::SETGT:
4926          if (!UnsafeFPMath) break;
4927          // FALL THROUGH.
4928        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
4929        case ISD::SETGE:
4930          Opcode = X86ISD::FMAX;
4931          break;
4932        }
4933      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
4934        switch (CC) {
4935        default: break;
4936        case ISD::SETOGT: // (X > Y) ? Y : X -> min
4937        case ISD::SETUGT:
4938        case ISD::SETGT:
4939          if (!UnsafeFPMath) break;
4940          // FALL THROUGH.
4941        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
4942        case ISD::SETGE:
4943          Opcode = X86ISD::FMIN;
4944          break;
4945
4946        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
4947        case ISD::SETULE:
4948        case ISD::SETLE:
4949          if (!UnsafeFPMath) break;
4950          // FALL THROUGH.
4951        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
4952        case ISD::SETLT:
4953          Opcode = X86ISD::FMAX;
4954          break;
4955        }
4956      }
4957
4958      if (Opcode)
4959        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
4960    }
4961
4962  }
4963
4964  return SDOperand();
4965}
4966
4967
4968SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
4969                                               DAGCombinerInfo &DCI) const {
4970  SelectionDAG &DAG = DCI.DAG;
4971  switch (N->getOpcode()) {
4972  default: break;
4973  case ISD::VECTOR_SHUFFLE:
4974    return PerformShuffleCombine(N, DAG, Subtarget);
4975  case ISD::SELECT:
4976    return PerformSELECTCombine(N, DAG, Subtarget);
4977  }
4978
4979  return SDOperand();
4980}
4981
4982//===----------------------------------------------------------------------===//
4983//                           X86 Inline Assembly Support
4984//===----------------------------------------------------------------------===//
4985
4986/// getConstraintType - Given a constraint letter, return the type of
4987/// constraint it is for this target.
4988X86TargetLowering::ConstraintType
4989X86TargetLowering::getConstraintType(const std::string &Constraint) const {
4990  if (Constraint.size() == 1) {
4991    switch (Constraint[0]) {
4992    case 'A':
4993    case 'r':
4994    case 'R':
4995    case 'l':
4996    case 'q':
4997    case 'Q':
4998    case 'x':
4999    case 'Y':
5000      return C_RegisterClass;
5001    default:
5002      break;
5003    }
5004  }
5005  return TargetLowering::getConstraintType(Constraint);
5006}
5007
5008/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5009/// vector.  If it is invalid, don't add anything to Ops.
5010void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5011                                                     char Constraint,
5012                                                     std::vector<SDOperand>&Ops,
5013                                                     SelectionDAG &DAG) {
5014  SDOperand Result(0, 0);
5015
5016  switch (Constraint) {
5017  default: break;
5018  case 'I':
5019    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5020      if (C->getValue() <= 31) {
5021        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5022        break;
5023      }
5024    }
5025    return;
5026  case 'N':
5027    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5028      if (C->getValue() <= 255) {
5029        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5030        break;
5031      }
5032    }
5033    return;
5034  case 'i': {
5035    // Literal immediates are always ok.
5036    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5037      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5038      break;
5039    }
5040
5041    // If we are in non-pic codegen mode, we allow the address of a global (with
5042    // an optional displacement) to be used with 'i'.
5043    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5044    int64_t Offset = 0;
5045
5046    // Match either (GA) or (GA+C)
5047    if (GA) {
5048      Offset = GA->getOffset();
5049    } else if (Op.getOpcode() == ISD::ADD) {
5050      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5051      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5052      if (C && GA) {
5053        Offset = GA->getOffset()+C->getValue();
5054      } else {
5055        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5056        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5057        if (C && GA)
5058          Offset = GA->getOffset()+C->getValue();
5059        else
5060          C = 0, GA = 0;
5061      }
5062    }
5063
5064    if (GA) {
5065      // If addressing this global requires a load (e.g. in PIC mode), we can't
5066      // match.
5067      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5068                                         false))
5069        return;
5070
5071      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5072                                      Offset);
5073      Result = Op;
5074      break;
5075    }
5076
5077    // Otherwise, not valid for this mode.
5078    return;
5079  }
5080  }
5081
5082  if (Result.Val) {
5083    Ops.push_back(Result);
5084    return;
5085  }
5086  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5087}
5088
5089std::vector<unsigned> X86TargetLowering::
5090getRegClassForInlineAsmConstraint(const std::string &Constraint,
5091                                  MVT::ValueType VT) const {
5092  if (Constraint.size() == 1) {
5093    // FIXME: not handling fp-stack yet!
5094    switch (Constraint[0]) {      // GCC X86 Constraint Letters
5095    default: break;  // Unknown constraint letter
5096    case 'A':   // EAX/EDX
5097      if (VT == MVT::i32 || VT == MVT::i64)
5098        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5099      break;
5100    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
5101    case 'Q':   // Q_REGS
5102      if (VT == MVT::i32)
5103        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5104      else if (VT == MVT::i16)
5105        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5106      else if (VT == MVT::i8)
5107        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
5108        break;
5109    }
5110  }
5111
5112  return std::vector<unsigned>();
5113}
5114
5115std::pair<unsigned, const TargetRegisterClass*>
5116X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5117                                                MVT::ValueType VT) const {
5118  // First, see if this is a constraint that directly corresponds to an LLVM
5119  // register class.
5120  if (Constraint.size() == 1) {
5121    // GCC Constraint Letters
5122    switch (Constraint[0]) {
5123    default: break;
5124    case 'r':   // GENERAL_REGS
5125    case 'R':   // LEGACY_REGS
5126    case 'l':   // INDEX_REGS
5127      if (VT == MVT::i64 && Subtarget->is64Bit())
5128        return std::make_pair(0U, X86::GR64RegisterClass);
5129      if (VT == MVT::i32)
5130        return std::make_pair(0U, X86::GR32RegisterClass);
5131      else if (VT == MVT::i16)
5132        return std::make_pair(0U, X86::GR16RegisterClass);
5133      else if (VT == MVT::i8)
5134        return std::make_pair(0U, X86::GR8RegisterClass);
5135      break;
5136    case 'y':   // MMX_REGS if MMX allowed.
5137      if (!Subtarget->hasMMX()) break;
5138      return std::make_pair(0U, X86::VR64RegisterClass);
5139      break;
5140    case 'Y':   // SSE_REGS if SSE2 allowed
5141      if (!Subtarget->hasSSE2()) break;
5142      // FALL THROUGH.
5143    case 'x':   // SSE_REGS if SSE1 allowed
5144      if (!Subtarget->hasSSE1()) break;
5145
5146      switch (VT) {
5147      default: break;
5148      // Scalar SSE types.
5149      case MVT::f32:
5150      case MVT::i32:
5151        return std::make_pair(0U, X86::FR32RegisterClass);
5152      case MVT::f64:
5153      case MVT::i64:
5154        return std::make_pair(0U, X86::FR64RegisterClass);
5155      // Vector types.
5156      case MVT::v16i8:
5157      case MVT::v8i16:
5158      case MVT::v4i32:
5159      case MVT::v2i64:
5160      case MVT::v4f32:
5161      case MVT::v2f64:
5162        return std::make_pair(0U, X86::VR128RegisterClass);
5163      }
5164      break;
5165    }
5166  }
5167
5168  // Use the default implementation in TargetLowering to convert the register
5169  // constraint into a member of a register class.
5170  std::pair<unsigned, const TargetRegisterClass*> Res;
5171  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5172
5173  // Not found as a standard register?
5174  if (Res.second == 0) {
5175    // GCC calls "st(0)" just plain "st".
5176    if (StringsEqualNoCase("{st}", Constraint)) {
5177      Res.first = X86::ST0;
5178      Res.second = X86::RSTRegisterClass;
5179    }
5180
5181    return Res;
5182  }
5183
5184  // Otherwise, check to see if this is a register class of the wrong value
5185  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5186  // turn into {ax},{dx}.
5187  if (Res.second->hasType(VT))
5188    return Res;   // Correct type already, nothing to do.
5189
5190  // All of the single-register GCC register classes map their values onto
5191  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
5192  // really want an 8-bit or 32-bit register, map to the appropriate register
5193  // class and return the appropriate register.
5194  if (Res.second != X86::GR16RegisterClass)
5195    return Res;
5196
5197  if (VT == MVT::i8) {
5198    unsigned DestReg = 0;
5199    switch (Res.first) {
5200    default: break;
5201    case X86::AX: DestReg = X86::AL; break;
5202    case X86::DX: DestReg = X86::DL; break;
5203    case X86::CX: DestReg = X86::CL; break;
5204    case X86::BX: DestReg = X86::BL; break;
5205    }
5206    if (DestReg) {
5207      Res.first = DestReg;
5208      Res.second = Res.second = X86::GR8RegisterClass;
5209    }
5210  } else if (VT == MVT::i32) {
5211    unsigned DestReg = 0;
5212    switch (Res.first) {
5213    default: break;
5214    case X86::AX: DestReg = X86::EAX; break;
5215    case X86::DX: DestReg = X86::EDX; break;
5216    case X86::CX: DestReg = X86::ECX; break;
5217    case X86::BX: DestReg = X86::EBX; break;
5218    case X86::SI: DestReg = X86::ESI; break;
5219    case X86::DI: DestReg = X86::EDI; break;
5220    case X86::BP: DestReg = X86::EBP; break;
5221    case X86::SP: DestReg = X86::ESP; break;
5222    }
5223    if (DestReg) {
5224      Res.first = DestReg;
5225      Res.second = Res.second = X86::GR32RegisterClass;
5226    }
5227  } else if (VT == MVT::i64) {
5228    unsigned DestReg = 0;
5229    switch (Res.first) {
5230    default: break;
5231    case X86::AX: DestReg = X86::RAX; break;
5232    case X86::DX: DestReg = X86::RDX; break;
5233    case X86::CX: DestReg = X86::RCX; break;
5234    case X86::BX: DestReg = X86::RBX; break;
5235    case X86::SI: DestReg = X86::RSI; break;
5236    case X86::DI: DestReg = X86::RDI; break;
5237    case X86::BP: DestReg = X86::RBP; break;
5238    case X86::SP: DestReg = X86::RSP; break;
5239    }
5240    if (DestReg) {
5241      Res.first = DestReg;
5242      Res.second = Res.second = X86::GR64RegisterClass;
5243    }
5244  }
5245
5246  return Res;
5247}
5248