X86ISelLowering.cpp revision 471e4224809f51652c71f319532697a879a75a0d
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/CallSite.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54using namespace llvm;
55using namespace dwarf;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58
59// Forward declarations.
60static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
61                       SDValue V2);
62
63static SDValue Insert128BitVector(SDValue Result,
64                                  SDValue Vec,
65                                  SDValue Idx,
66                                  SelectionDAG &DAG,
67                                  DebugLoc dl);
68
69static SDValue Extract128BitVector(SDValue Vec,
70                                   SDValue Idx,
71                                   SelectionDAG &DAG,
72                                   DebugLoc dl);
73
74static SDValue ConcatVectors(SDValue Lower, SDValue Upper, SelectionDAG &DAG);
75
76
77/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
78/// sets things up to match to an AVX VEXTRACTF128 instruction or a
79/// simple subregister reference.  Idx is an index in the 128 bits we
80/// want.  It need not be aligned to a 128-bit bounday.  That makes
81/// lowering EXTRACT_VECTOR_ELT operations easier.
82static SDValue Extract128BitVector(SDValue Vec,
83                                   SDValue Idx,
84                                   SelectionDAG &DAG,
85                                   DebugLoc dl) {
86  EVT VT = Vec.getValueType();
87  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
88
89  EVT ElVT = VT.getVectorElementType();
90
91  int Factor = VT.getSizeInBits() / 128;
92
93  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(),
94                                  ElVT,
95                                  VT.getVectorNumElements() / Factor);
96
97  // Extract from UNDEF is UNDEF.
98  if (Vec.getOpcode() == ISD::UNDEF)
99    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
100
101  if (isa<ConstantSDNode>(Idx)) {
102    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
103
104    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
105    // we can match to VEXTRACTF128.
106    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
107
108    // This is the index of the first element of the 128-bit chunk
109    // we want.
110    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
111                                 * ElemsPerChunk);
112
113    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
114
115    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
116                                 VecIdx);
117
118    return Result;
119  }
120
121  return SDValue();
122}
123
124/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
125/// sets things up to match to an AVX VINSERTF128 instruction or a
126/// simple superregister reference.  Idx is an index in the 128 bits
127/// we want.  It need not be aligned to a 128-bit bounday.  That makes
128/// lowering INSERT_VECTOR_ELT operations easier.
129static SDValue Insert128BitVector(SDValue Result,
130                                  SDValue Vec,
131                                  SDValue Idx,
132                                  SelectionDAG &DAG,
133                                  DebugLoc dl) {
134  if (isa<ConstantSDNode>(Idx)) {
135    EVT VT = Vec.getValueType();
136    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
137
138    EVT ElVT = VT.getVectorElementType();
139
140    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
141
142    EVT ResultVT = Result.getValueType();
143
144    // Insert the relevant 128 bits.
145    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
146
147    // This is the index of the first element of the 128-bit chunk
148    // we want.
149    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
150                                 * ElemsPerChunk);
151
152    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
153
154    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
155                         VecIdx);
156    return Result;
157  }
158
159  return SDValue();
160}
161
162/// Given two vectors, concat them.
163static SDValue ConcatVectors(SDValue Lower, SDValue Upper, SelectionDAG &DAG) {
164  DebugLoc dl = Lower.getDebugLoc();
165
166  assert(Lower.getValueType() == Upper.getValueType() && "Mismatched vectors!");
167
168  EVT VT = EVT::getVectorVT(*DAG.getContext(),
169                            Lower.getValueType().getVectorElementType(),
170                            Lower.getValueType().getVectorNumElements() * 2);
171
172  // TODO: Generalize to arbitrary vector length (this assumes 256-bit vectors).
173  assert(VT.getSizeInBits() == 256 && "Unsupported vector concat!");
174
175  // Insert the upper subvector.
176  SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Upper,
177                                   DAG.getConstant(
178                                     // This is half the length of the result
179                                     // vector.  Start inserting the upper 128
180                                     // bits here.
181                                     Lower.getValueType().getVectorNumElements(),
182                                     MVT::i32),
183                                   DAG, dl);
184
185  // Insert the lower subvector.
186  Vec = Insert128BitVector(Vec, Lower, DAG.getConstant(0, MVT::i32), DAG, dl);
187  return Vec;
188}
189
190static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
191  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
192  bool is64Bit = Subtarget->is64Bit();
193
194  if (Subtarget->isTargetEnvMacho()) {
195    if (is64Bit)
196      return new X8664_MachoTargetObjectFile();
197    return new TargetLoweringObjectFileMachO();
198  }
199
200  if (Subtarget->isTargetELF()) {
201    if (is64Bit)
202      return new X8664_ELFTargetObjectFile(TM);
203    return new X8632_ELFTargetObjectFile(TM);
204  }
205  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
206    return new TargetLoweringObjectFileCOFF();
207  llvm_unreachable("unknown subtarget type");
208}
209
210X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
211  : TargetLowering(TM, createTLOF(TM)) {
212  Subtarget = &TM.getSubtarget<X86Subtarget>();
213  X86ScalarSSEf64 = Subtarget->hasXMMInt();
214  X86ScalarSSEf32 = Subtarget->hasXMM();
215  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
216
217  RegInfo = TM.getRegisterInfo();
218  TD = getTargetData();
219
220  // Set up the TargetLowering object.
221  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
222
223  // X86 is weird, it always uses i8 for shift amounts and setcc results.
224  setBooleanContents(ZeroOrOneBooleanContent);
225
226  // For 64-bit since we have so many registers use the ILP scheduler, for
227  // 32-bit code use the register pressure specific scheduling.
228  if (Subtarget->is64Bit())
229    setSchedulingPreference(Sched::ILP);
230  else
231    setSchedulingPreference(Sched::RegPressure);
232  setStackPointerRegisterToSaveRestore(X86StackPtr);
233
234  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
235    // Setup Windows compiler runtime calls.
236    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
237    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
238    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
239    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
240    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
241    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
242    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
243    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
244  }
245
246  if (Subtarget->isTargetDarwin()) {
247    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
248    setUseUnderscoreSetJmp(false);
249    setUseUnderscoreLongJmp(false);
250  } else if (Subtarget->isTargetMingw()) {
251    // MS runtime is weird: it exports _setjmp, but longjmp!
252    setUseUnderscoreSetJmp(true);
253    setUseUnderscoreLongJmp(false);
254  } else {
255    setUseUnderscoreSetJmp(true);
256    setUseUnderscoreLongJmp(true);
257  }
258
259  // Set up the register classes.
260  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
261  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
262  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
263  if (Subtarget->is64Bit())
264    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
265
266  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
267
268  // We don't accept any truncstore of integer registers.
269  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
270  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
271  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
272  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
273  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
274  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
275
276  // SETOEQ and SETUNE require checking two conditions.
277  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
278  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
279  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
280  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
281  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
282  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
283
284  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
285  // operation.
286  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
287  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
288  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
289
290  if (Subtarget->is64Bit()) {
291    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
292    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
293  } else if (!UseSoftFloat) {
294    // We have an algorithm for SSE2->double, and we turn this into a
295    // 64-bit FILD followed by conditional FADD for other targets.
296    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
297    // We have an algorithm for SSE2, and we turn this into a 64-bit
298    // FILD for other targets.
299    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
300  }
301
302  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
303  // this operation.
304  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
305  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
306
307  if (!UseSoftFloat) {
308    // SSE has no i16 to fp conversion, only i32
309    if (X86ScalarSSEf32) {
310      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
311      // f32 and f64 cases are Legal, f80 case is not
312      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
313    } else {
314      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
315      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
316    }
317  } else {
318    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
319    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
320  }
321
322  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
323  // are Legal, f80 is custom lowered.
324  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
325  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
326
327  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
328  // this operation.
329  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
330  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
331
332  if (X86ScalarSSEf32) {
333    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
334    // f32 and f64 cases are Legal, f80 case is not
335    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
336  } else {
337    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
338    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
339  }
340
341  // Handle FP_TO_UINT by promoting the destination to a larger signed
342  // conversion.
343  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
344  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
345  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
346
347  if (Subtarget->is64Bit()) {
348    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
349    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
350  } else if (!UseSoftFloat) {
351    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
352      // Expand FP_TO_UINT into a select.
353      // FIXME: We would like to use a Custom expander here eventually to do
354      // the optimal thing for SSE vs. the default expansion in the legalizer.
355      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
356    else
357      // With SSE3 we can use fisttpll to convert to a signed i64; without
358      // SSE, we're stuck with a fistpll.
359      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
360  }
361
362  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
363  if (!X86ScalarSSEf64) {
364    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
365    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
366    if (Subtarget->is64Bit()) {
367      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
368      // Without SSE, i64->f64 goes through memory.
369      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
370    }
371  }
372
373  // Scalar integer divide and remainder are lowered to use operations that
374  // produce two results, to match the available instructions. This exposes
375  // the two-result form to trivial CSE, which is able to combine x/y and x%y
376  // into a single instruction.
377  //
378  // Scalar integer multiply-high is also lowered to use two-result
379  // operations, to match the available instructions. However, plain multiply
380  // (low) operations are left as Legal, as there are single-result
381  // instructions for this in x86. Using the two-result multiply instructions
382  // when both high and low results are needed must be arranged by dagcombine.
383  for (unsigned i = 0, e = 4; i != e; ++i) {
384    MVT VT = IntVTs[i];
385    setOperationAction(ISD::MULHS, VT, Expand);
386    setOperationAction(ISD::MULHU, VT, Expand);
387    setOperationAction(ISD::SDIV, VT, Expand);
388    setOperationAction(ISD::UDIV, VT, Expand);
389    setOperationAction(ISD::SREM, VT, Expand);
390    setOperationAction(ISD::UREM, VT, Expand);
391
392    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
393    setOperationAction(ISD::ADDC, VT, Custom);
394    setOperationAction(ISD::ADDE, VT, Custom);
395    setOperationAction(ISD::SUBC, VT, Custom);
396    setOperationAction(ISD::SUBE, VT, Custom);
397  }
398
399  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
400  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
401  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
402  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
403  if (Subtarget->is64Bit())
404    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
405  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
406  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
407  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
408  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
409  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
410  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
411  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
412  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
413
414  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
415  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
416  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
417  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
418  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
419  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
420  if (Subtarget->is64Bit()) {
421    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
422    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
423  }
424
425  if (Subtarget->hasPOPCNT()) {
426    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
427  } else {
428    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
429    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
430    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
431    if (Subtarget->is64Bit())
432      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
433  }
434
435  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
436  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
437
438  // These should be promoted to a larger select which is supported.
439  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
440  // X86 wants to expand cmov itself.
441  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
442  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
443  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
444  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
445  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
446  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
447  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
448  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
450  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
451  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
452  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
453  if (Subtarget->is64Bit()) {
454    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
455    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
456  }
457  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
458
459  // Darwin ABI issue.
460  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
461  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
462  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
463  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
464  if (Subtarget->is64Bit())
465    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
466  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
467  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
468  if (Subtarget->is64Bit()) {
469    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
470    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
471    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
472    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
473    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
474  }
475  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
476  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
477  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
478  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
479  if (Subtarget->is64Bit()) {
480    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
481    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
482    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
483  }
484
485  if (Subtarget->hasXMM())
486    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
487
488  // We may not have a libcall for MEMBARRIER so we should lower this.
489  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
490
491  // On X86 and X86-64, atomic operations are lowered to locked instructions.
492  // Locked instructions, in turn, have implicit fence semantics (all memory
493  // operations are flushed before issuing the locked instruction, and they
494  // are not buffered), so we can fold away the common pattern of
495  // fence-atomic-fence.
496  setShouldFoldAtomicFences(true);
497
498  // Expand certain atomics
499  for (unsigned i = 0, e = 4; i != e; ++i) {
500    MVT VT = IntVTs[i];
501    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
502    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
503  }
504
505  if (!Subtarget->is64Bit()) {
506    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
511    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
512    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
513  }
514
515  // FIXME - use subtarget debug flags
516  if (!Subtarget->isTargetDarwin() &&
517      !Subtarget->isTargetELF() &&
518      !Subtarget->isTargetCygMing()) {
519    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
520  }
521
522  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
523  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
524  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
525  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
526  if (Subtarget->is64Bit()) {
527    setExceptionPointerRegister(X86::RAX);
528    setExceptionSelectorRegister(X86::RDX);
529  } else {
530    setExceptionPointerRegister(X86::EAX);
531    setExceptionSelectorRegister(X86::EDX);
532  }
533  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
534  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
535
536  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
537
538  setOperationAction(ISD::TRAP, MVT::Other, Legal);
539
540  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
541  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
542  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
543  if (Subtarget->is64Bit()) {
544    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
545    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
546  } else {
547    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
548    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
549  }
550
551  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
552  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
553  setOperationAction(ISD::DYNAMIC_STACKALLOC,
554                     (Subtarget->is64Bit() ? MVT::i64 : MVT::i32),
555                     (Subtarget->isTargetCOFF()
556                      && !Subtarget->isTargetEnvMacho()
557                      ? Custom : Expand));
558
559  if (!UseSoftFloat && X86ScalarSSEf64) {
560    // f32 and f64 use SSE.
561    // Set up the FP register classes.
562    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
563    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
564
565    // Use ANDPD to simulate FABS.
566    setOperationAction(ISD::FABS , MVT::f64, Custom);
567    setOperationAction(ISD::FABS , MVT::f32, Custom);
568
569    // Use XORP to simulate FNEG.
570    setOperationAction(ISD::FNEG , MVT::f64, Custom);
571    setOperationAction(ISD::FNEG , MVT::f32, Custom);
572
573    // Use ANDPD and ORPD to simulate FCOPYSIGN.
574    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
575    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
576
577    // Lower this to FGETSIGNx86 plus an AND.
578    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
579    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
580
581    // We don't support sin/cos/fmod
582    setOperationAction(ISD::FSIN , MVT::f64, Expand);
583    setOperationAction(ISD::FCOS , MVT::f64, Expand);
584    setOperationAction(ISD::FSIN , MVT::f32, Expand);
585    setOperationAction(ISD::FCOS , MVT::f32, Expand);
586
587    // Expand FP immediates into loads from the stack, except for the special
588    // cases we handle.
589    addLegalFPImmediate(APFloat(+0.0)); // xorpd
590    addLegalFPImmediate(APFloat(+0.0f)); // xorps
591  } else if (!UseSoftFloat && X86ScalarSSEf32) {
592    // Use SSE for f32, x87 for f64.
593    // Set up the FP register classes.
594    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
595    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
596
597    // Use ANDPS to simulate FABS.
598    setOperationAction(ISD::FABS , MVT::f32, Custom);
599
600    // Use XORP to simulate FNEG.
601    setOperationAction(ISD::FNEG , MVT::f32, Custom);
602
603    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
604
605    // Use ANDPS and ORPS to simulate FCOPYSIGN.
606    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
607    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
608
609    // We don't support sin/cos/fmod
610    setOperationAction(ISD::FSIN , MVT::f32, Expand);
611    setOperationAction(ISD::FCOS , MVT::f32, Expand);
612
613    // Special cases we handle for FP constants.
614    addLegalFPImmediate(APFloat(+0.0f)); // xorps
615    addLegalFPImmediate(APFloat(+0.0)); // FLD0
616    addLegalFPImmediate(APFloat(+1.0)); // FLD1
617    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
618    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
619
620    if (!UnsafeFPMath) {
621      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
622      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
623    }
624  } else if (!UseSoftFloat) {
625    // f32 and f64 in x87.
626    // Set up the FP register classes.
627    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
628    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
629
630    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
631    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
632    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
633    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
634
635    if (!UnsafeFPMath) {
636      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
637      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
638    }
639    addLegalFPImmediate(APFloat(+0.0)); // FLD0
640    addLegalFPImmediate(APFloat(+1.0)); // FLD1
641    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
642    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
643    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
644    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
645    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
646    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
647  }
648
649  // Long double always uses X87.
650  if (!UseSoftFloat) {
651    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
652    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
653    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
654    {
655      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
656      addLegalFPImmediate(TmpFlt);  // FLD0
657      TmpFlt.changeSign();
658      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
659
660      bool ignored;
661      APFloat TmpFlt2(+1.0);
662      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
663                      &ignored);
664      addLegalFPImmediate(TmpFlt2);  // FLD1
665      TmpFlt2.changeSign();
666      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
667    }
668
669    if (!UnsafeFPMath) {
670      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
671      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
672    }
673  }
674
675  // Always use a library call for pow.
676  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
677  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
678  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
679
680  setOperationAction(ISD::FLOG, MVT::f80, Expand);
681  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
682  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
683  setOperationAction(ISD::FEXP, MVT::f80, Expand);
684  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
685
686  // First set operation action for all vector types to either promote
687  // (for widening) or expand (for scalarization). Then we will selectively
688  // turn on ones that can be effectively codegen'd.
689  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
690       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
691    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
694    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
702    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
703    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
706    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
708    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
709    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
741    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
745    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
746         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
747      setTruncStoreAction((MVT::SimpleValueType)VT,
748                          (MVT::SimpleValueType)InnerVT, Expand);
749    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
750    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
751    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
752  }
753
754  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
755  // with -msoft-float, disable use of MMX as well.
756  if (!UseSoftFloat && Subtarget->hasMMX()) {
757    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
758    // No operations on x86mmx supported, everything uses intrinsics.
759  }
760
761  // MMX-sized vectors (other than x86mmx) are expected to be expanded
762  // into smaller operations.
763  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
764  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
765  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
766  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
767  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
768  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
769  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
770  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
771  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
772  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
773  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
774  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
775  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
776  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
777  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
778  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
779  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
780  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
781  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
782  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
783  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
784  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
785  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
786  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
787  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
788  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
789  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
790  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
791  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
792
793  if (!UseSoftFloat && Subtarget->hasXMM()) {
794    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
795
796    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
797    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
798    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
799    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
800    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
801    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
802    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
803    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
804    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
805    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
806    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
807    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
808  }
809
810  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
811    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
812
813    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
814    // registers cannot be used even for integer operations.
815    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
816    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
817    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
818    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
819
820    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
821    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
822    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
823    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
824    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
825    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
826    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
827    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
828    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
829    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
830    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
831    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
832    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
833    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
834    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
835    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
836
837    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
838    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
839    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
840    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
841
842    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
843    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
844    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
845    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
846    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
847
848    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
849    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
850    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
851    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
852    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
853
854    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
855    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
856      EVT VT = (MVT::SimpleValueType)i;
857      // Do not attempt to custom lower non-power-of-2 vectors
858      if (!isPowerOf2_32(VT.getVectorNumElements()))
859        continue;
860      // Do not attempt to custom lower non-128-bit vectors
861      if (!VT.is128BitVector())
862        continue;
863      setOperationAction(ISD::BUILD_VECTOR,
864                         VT.getSimpleVT().SimpleTy, Custom);
865      setOperationAction(ISD::VECTOR_SHUFFLE,
866                         VT.getSimpleVT().SimpleTy, Custom);
867      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
868                         VT.getSimpleVT().SimpleTy, Custom);
869    }
870
871    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
872    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
873    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
874    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
875    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
876    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
877
878    if (Subtarget->is64Bit()) {
879      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
880      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
881    }
882
883    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
884    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
885      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
886      EVT VT = SVT;
887
888      // Do not attempt to promote non-128-bit vectors
889      if (!VT.is128BitVector())
890        continue;
891
892      setOperationAction(ISD::AND,    SVT, Promote);
893      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
894      setOperationAction(ISD::OR,     SVT, Promote);
895      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
896      setOperationAction(ISD::XOR,    SVT, Promote);
897      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
898      setOperationAction(ISD::LOAD,   SVT, Promote);
899      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
900      setOperationAction(ISD::SELECT, SVT, Promote);
901      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
902    }
903
904    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
905
906    // Custom lower v2i64 and v2f64 selects.
907    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
908    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
909    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
910    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
911
912    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
913    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
914  }
915
916  if (Subtarget->hasSSE41()) {
917    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
918    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
919    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
920    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
921    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
922    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
923    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
924    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
925    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
926    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
927
928    // FIXME: Do we need to handle scalar-to-vector here?
929    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
930
931    // Can turn SHL into an integer multiply.
932    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
933    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
934
935    // i8 and i16 vectors are custom , because the source register and source
936    // source memory operand types are not the same width.  f32 vectors are
937    // custom since the immediate controlling the insert encodes additional
938    // information.
939    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
940    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
941    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
942    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
943
944    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
945    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
946    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
947    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
948
949    if (Subtarget->is64Bit()) {
950      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
951      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
952    }
953  }
954
955  if (Subtarget->hasSSE2()) {
956    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
957    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
958    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
959
960    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
961    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
962    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
963
964    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
965    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
966  }
967
968  if (Subtarget->hasSSE42())
969    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
970
971  if (!UseSoftFloat && Subtarget->hasAVX()) {
972    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
973    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
974    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
975    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
976    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
977
978    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
979    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
980    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
981    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
982
983    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
984    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
985    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
986    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
987    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
988    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
989
990    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
991    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
992    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
993    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
994    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
995    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
996
997    // Custom lower build_vector, vector_shuffle, scalar_to_vector,
998    // insert_vector_elt extract_subvector and extract_vector_elt for
999    // 256-bit types.
1000    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1001         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE;
1002         ++i) {
1003      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
1004      // Do not attempt to custom lower non-256-bit vectors
1005      if (!isPowerOf2_32(MVT(VT).getVectorNumElements())
1006          || (MVT(VT).getSizeInBits() < 256))
1007        continue;
1008      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1009      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1010      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1011      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1012      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1013    }
1014    // Custom-lower insert_subvector and extract_subvector based on
1015    // the result type.
1016    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1017         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE;
1018         ++i) {
1019      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
1020      // Do not attempt to custom lower non-256-bit vectors
1021      if (!isPowerOf2_32(MVT(VT).getVectorNumElements()))
1022        continue;
1023
1024      if (MVT(VT).getSizeInBits() == 128) {
1025        setOperationAction(ISD::EXTRACT_SUBVECTOR,  VT, Custom);
1026      }
1027      else if (MVT(VT).getSizeInBits() == 256) {
1028        setOperationAction(ISD::INSERT_SUBVECTOR,  VT, Custom);
1029      }
1030    }
1031
1032    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1033    // Don't promote loads because we need them for VPERM vector index versions.
1034
1035    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1036         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE;
1037         VT++) {
1038      if (!isPowerOf2_32(MVT((MVT::SimpleValueType)VT).getVectorNumElements())
1039          || (MVT((MVT::SimpleValueType)VT).getSizeInBits() < 256))
1040        continue;
1041      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
1042      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v4i64);
1043      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
1044      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v4i64);
1045      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
1046      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v4i64);
1047      //setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
1048      //AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v4i64);
1049      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
1050      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v4i64);
1051    }
1052  }
1053
1054  // We want to custom lower some of our intrinsics.
1055  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1056
1057
1058  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1059  // handle type legalization for these operations here.
1060  //
1061  // FIXME: We really should do custom legalization for addition and
1062  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1063  // than generic legalization for 64-bit multiplication-with-overflow, though.
1064  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1065    // Add/Sub/Mul with overflow operations are custom lowered.
1066    MVT VT = IntVTs[i];
1067    setOperationAction(ISD::SADDO, VT, Custom);
1068    setOperationAction(ISD::UADDO, VT, Custom);
1069    setOperationAction(ISD::SSUBO, VT, Custom);
1070    setOperationAction(ISD::USUBO, VT, Custom);
1071    setOperationAction(ISD::SMULO, VT, Custom);
1072    setOperationAction(ISD::UMULO, VT, Custom);
1073  }
1074
1075  // There are no 8-bit 3-address imul/mul instructions
1076  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1077  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1078
1079  if (!Subtarget->is64Bit()) {
1080    // These libcalls are not available in 32-bit.
1081    setLibcallName(RTLIB::SHL_I128, 0);
1082    setLibcallName(RTLIB::SRL_I128, 0);
1083    setLibcallName(RTLIB::SRA_I128, 0);
1084  }
1085
1086  // We have target-specific dag combine patterns for the following nodes:
1087  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1088  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1089  setTargetDAGCombine(ISD::BUILD_VECTOR);
1090  setTargetDAGCombine(ISD::SELECT);
1091  setTargetDAGCombine(ISD::SHL);
1092  setTargetDAGCombine(ISD::SRA);
1093  setTargetDAGCombine(ISD::SRL);
1094  setTargetDAGCombine(ISD::OR);
1095  setTargetDAGCombine(ISD::AND);
1096  setTargetDAGCombine(ISD::ADD);
1097  setTargetDAGCombine(ISD::SUB);
1098  setTargetDAGCombine(ISD::STORE);
1099  setTargetDAGCombine(ISD::ZERO_EXTEND);
1100  setTargetDAGCombine(ISD::SINT_TO_FP);
1101  if (Subtarget->is64Bit())
1102    setTargetDAGCombine(ISD::MUL);
1103
1104  computeRegisterProperties();
1105
1106  // On Darwin, -Os means optimize for size without hurting performance,
1107  // do not reduce the limit.
1108  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1109  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1110  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1111  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1112  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1113  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1114  setPrefLoopAlignment(16);
1115  benefitFromCodePlacementOpt = true;
1116
1117  setPrefFunctionAlignment(4);
1118}
1119
1120
1121MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1122  return MVT::i8;
1123}
1124
1125
1126/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1127/// the desired ByVal argument alignment.
1128static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1129  if (MaxAlign == 16)
1130    return;
1131  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1132    if (VTy->getBitWidth() == 128)
1133      MaxAlign = 16;
1134  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1135    unsigned EltAlign = 0;
1136    getMaxByValAlign(ATy->getElementType(), EltAlign);
1137    if (EltAlign > MaxAlign)
1138      MaxAlign = EltAlign;
1139  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1140    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1141      unsigned EltAlign = 0;
1142      getMaxByValAlign(STy->getElementType(i), EltAlign);
1143      if (EltAlign > MaxAlign)
1144        MaxAlign = EltAlign;
1145      if (MaxAlign == 16)
1146        break;
1147    }
1148  }
1149  return;
1150}
1151
1152/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1153/// function arguments in the caller parameter area. For X86, aggregates
1154/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1155/// are at 4-byte boundaries.
1156unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1157  if (Subtarget->is64Bit()) {
1158    // Max of 8 and alignment of type.
1159    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1160    if (TyAlign > 8)
1161      return TyAlign;
1162    return 8;
1163  }
1164
1165  unsigned Align = 4;
1166  if (Subtarget->hasXMM())
1167    getMaxByValAlign(Ty, Align);
1168  return Align;
1169}
1170
1171/// getOptimalMemOpType - Returns the target specific optimal type for load
1172/// and store operations as a result of memset, memcpy, and memmove
1173/// lowering. If DstAlign is zero that means it's safe to destination
1174/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1175/// means there isn't a need to check it against alignment requirement,
1176/// probably because the source does not need to be loaded. If
1177/// 'NonScalarIntSafe' is true, that means it's safe to return a
1178/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1179/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1180/// constant so it does not need to be loaded.
1181/// It returns EVT::Other if the type should be determined using generic
1182/// target-independent logic.
1183EVT
1184X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1185                                       unsigned DstAlign, unsigned SrcAlign,
1186                                       bool NonScalarIntSafe,
1187                                       bool MemcpyStrSrc,
1188                                       MachineFunction &MF) const {
1189  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1190  // linux.  This is because the stack realignment code can't handle certain
1191  // cases like PR2962.  This should be removed when PR2962 is fixed.
1192  const Function *F = MF.getFunction();
1193  if (NonScalarIntSafe &&
1194      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1195    if (Size >= 16 &&
1196        (Subtarget->isUnalignedMemAccessFast() ||
1197         ((DstAlign == 0 || DstAlign >= 16) &&
1198          (SrcAlign == 0 || SrcAlign >= 16))) &&
1199        Subtarget->getStackAlignment() >= 16) {
1200      if (Subtarget->hasSSE2())
1201        return MVT::v4i32;
1202      if (Subtarget->hasSSE1())
1203        return MVT::v4f32;
1204    } else if (!MemcpyStrSrc && Size >= 8 &&
1205               !Subtarget->is64Bit() &&
1206               Subtarget->getStackAlignment() >= 8 &&
1207               Subtarget->hasXMMInt()) {
1208      // Do not use f64 to lower memcpy if source is string constant. It's
1209      // better to use i32 to avoid the loads.
1210      return MVT::f64;
1211    }
1212  }
1213  if (Subtarget->is64Bit() && Size >= 8)
1214    return MVT::i64;
1215  return MVT::i32;
1216}
1217
1218/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1219/// current function.  The returned value is a member of the
1220/// MachineJumpTableInfo::JTEntryKind enum.
1221unsigned X86TargetLowering::getJumpTableEncoding() const {
1222  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1223  // symbol.
1224  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1225      Subtarget->isPICStyleGOT())
1226    return MachineJumpTableInfo::EK_Custom32;
1227
1228  // Otherwise, use the normal jump table encoding heuristics.
1229  return TargetLowering::getJumpTableEncoding();
1230}
1231
1232const MCExpr *
1233X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1234                                             const MachineBasicBlock *MBB,
1235                                             unsigned uid,MCContext &Ctx) const{
1236  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1237         Subtarget->isPICStyleGOT());
1238  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1239  // entries.
1240  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1241                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1242}
1243
1244/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1245/// jumptable.
1246SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1247                                                    SelectionDAG &DAG) const {
1248  if (!Subtarget->is64Bit())
1249    // This doesn't have DebugLoc associated with it, but is not really the
1250    // same as a Register.
1251    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1252  return Table;
1253}
1254
1255/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1256/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1257/// MCExpr.
1258const MCExpr *X86TargetLowering::
1259getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1260                             MCContext &Ctx) const {
1261  // X86-64 uses RIP relative addressing based on the jump table label.
1262  if (Subtarget->isPICStyleRIPRel())
1263    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1264
1265  // Otherwise, the reference is relative to the PIC base.
1266  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1267}
1268
1269// FIXME: Why this routine is here? Move to RegInfo!
1270std::pair<const TargetRegisterClass*, uint8_t>
1271X86TargetLowering::findRepresentativeClass(EVT VT) const{
1272  const TargetRegisterClass *RRC = 0;
1273  uint8_t Cost = 1;
1274  switch (VT.getSimpleVT().SimpleTy) {
1275  default:
1276    return TargetLowering::findRepresentativeClass(VT);
1277  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1278    RRC = (Subtarget->is64Bit()
1279           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1280    break;
1281  case MVT::x86mmx:
1282    RRC = X86::VR64RegisterClass;
1283    break;
1284  case MVT::f32: case MVT::f64:
1285  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1286  case MVT::v4f32: case MVT::v2f64:
1287  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1288  case MVT::v4f64:
1289    RRC = X86::VR128RegisterClass;
1290    break;
1291  }
1292  return std::make_pair(RRC, Cost);
1293}
1294
1295bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1296                                               unsigned &Offset) const {
1297  if (!Subtarget->isTargetLinux())
1298    return false;
1299
1300  if (Subtarget->is64Bit()) {
1301    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1302    Offset = 0x28;
1303    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1304      AddressSpace = 256;
1305    else
1306      AddressSpace = 257;
1307  } else {
1308    // %gs:0x14 on i386
1309    Offset = 0x14;
1310    AddressSpace = 256;
1311  }
1312  return true;
1313}
1314
1315
1316//===----------------------------------------------------------------------===//
1317//               Return Value Calling Convention Implementation
1318//===----------------------------------------------------------------------===//
1319
1320#include "X86GenCallingConv.inc"
1321
1322bool
1323X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1324				  MachineFunction &MF, bool isVarArg,
1325                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1326                        LLVMContext &Context) const {
1327  SmallVector<CCValAssign, 16> RVLocs;
1328  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1329                 RVLocs, Context);
1330  return CCInfo.CheckReturn(Outs, RetCC_X86);
1331}
1332
1333SDValue
1334X86TargetLowering::LowerReturn(SDValue Chain,
1335                               CallingConv::ID CallConv, bool isVarArg,
1336                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1337                               const SmallVectorImpl<SDValue> &OutVals,
1338                               DebugLoc dl, SelectionDAG &DAG) const {
1339  MachineFunction &MF = DAG.getMachineFunction();
1340  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1341
1342  SmallVector<CCValAssign, 16> RVLocs;
1343  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1344                 RVLocs, *DAG.getContext());
1345  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1346
1347  // Add the regs to the liveout set for the function.
1348  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1349  for (unsigned i = 0; i != RVLocs.size(); ++i)
1350    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1351      MRI.addLiveOut(RVLocs[i].getLocReg());
1352
1353  SDValue Flag;
1354
1355  SmallVector<SDValue, 6> RetOps;
1356  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1357  // Operand #1 = Bytes To Pop
1358  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1359                   MVT::i16));
1360
1361  // Copy the result values into the output registers.
1362  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1363    CCValAssign &VA = RVLocs[i];
1364    assert(VA.isRegLoc() && "Can only return in registers!");
1365    SDValue ValToCopy = OutVals[i];
1366    EVT ValVT = ValToCopy.getValueType();
1367
1368    // If this is x86-64, and we disabled SSE, we can't return FP values,
1369    // or SSE or MMX vectors.
1370    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1371         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1372          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1373      report_fatal_error("SSE register return with SSE disabled");
1374    }
1375    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1376    // llvm-gcc has never done it right and no one has noticed, so this
1377    // should be OK for now.
1378    if (ValVT == MVT::f64 &&
1379        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1380      report_fatal_error("SSE2 register return with SSE2 disabled");
1381
1382    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1383    // the RET instruction and handled by the FP Stackifier.
1384    if (VA.getLocReg() == X86::ST0 ||
1385        VA.getLocReg() == X86::ST1) {
1386      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1387      // change the value to the FP stack register class.
1388      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1389        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1390      RetOps.push_back(ValToCopy);
1391      // Don't emit a copytoreg.
1392      continue;
1393    }
1394
1395    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1396    // which is returned in RAX / RDX.
1397    if (Subtarget->is64Bit()) {
1398      if (ValVT == MVT::x86mmx) {
1399        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1400          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1401          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1402                                  ValToCopy);
1403          // If we don't have SSE2 available, convert to v4f32 so the generated
1404          // register is legal.
1405          if (!Subtarget->hasSSE2())
1406            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1407        }
1408      }
1409    }
1410
1411    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1412    Flag = Chain.getValue(1);
1413  }
1414
1415  // The x86-64 ABI for returning structs by value requires that we copy
1416  // the sret argument into %rax for the return. We saved the argument into
1417  // a virtual register in the entry block, so now we copy the value out
1418  // and into %rax.
1419  if (Subtarget->is64Bit() &&
1420      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1421    MachineFunction &MF = DAG.getMachineFunction();
1422    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1423    unsigned Reg = FuncInfo->getSRetReturnReg();
1424    assert(Reg &&
1425           "SRetReturnReg should have been set in LowerFormalArguments().");
1426    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1427
1428    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1429    Flag = Chain.getValue(1);
1430
1431    // RAX now acts like a return value.
1432    MRI.addLiveOut(X86::RAX);
1433  }
1434
1435  RetOps[0] = Chain;  // Update chain.
1436
1437  // Add the flag if we have it.
1438  if (Flag.getNode())
1439    RetOps.push_back(Flag);
1440
1441  return DAG.getNode(X86ISD::RET_FLAG, dl,
1442                     MVT::Other, &RetOps[0], RetOps.size());
1443}
1444
1445bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1446  if (N->getNumValues() != 1)
1447    return false;
1448  if (!N->hasNUsesOfValue(1, 0))
1449    return false;
1450
1451  SDNode *Copy = *N->use_begin();
1452  if (Copy->getOpcode() != ISD::CopyToReg &&
1453      Copy->getOpcode() != ISD::FP_EXTEND)
1454    return false;
1455
1456  bool HasRet = false;
1457  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1458       UI != UE; ++UI) {
1459    if (UI->getOpcode() != X86ISD::RET_FLAG)
1460      return false;
1461    HasRet = true;
1462  }
1463
1464  return HasRet;
1465}
1466
1467EVT
1468X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1469                                            ISD::NodeType ExtendKind) const {
1470  MVT ReturnMVT;
1471  // TODO: Is this also valid on 32-bit?
1472  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1473    ReturnMVT = MVT::i8;
1474  else
1475    ReturnMVT = MVT::i32;
1476
1477  EVT MinVT = getRegisterType(Context, ReturnMVT);
1478  return VT.bitsLT(MinVT) ? MinVT : VT;
1479}
1480
1481/// LowerCallResult - Lower the result values of a call into the
1482/// appropriate copies out of appropriate physical registers.
1483///
1484SDValue
1485X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1486                                   CallingConv::ID CallConv, bool isVarArg,
1487                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1488                                   DebugLoc dl, SelectionDAG &DAG,
1489                                   SmallVectorImpl<SDValue> &InVals) const {
1490
1491  // Assign locations to each value returned by this call.
1492  SmallVector<CCValAssign, 16> RVLocs;
1493  bool Is64Bit = Subtarget->is64Bit();
1494  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1495		 getTargetMachine(), RVLocs, *DAG.getContext());
1496  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1497
1498  // Copy all of the result registers out of their specified physreg.
1499  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1500    CCValAssign &VA = RVLocs[i];
1501    EVT CopyVT = VA.getValVT();
1502
1503    // If this is x86-64, and we disabled SSE, we can't return FP values
1504    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1505        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1506      report_fatal_error("SSE register return with SSE disabled");
1507    }
1508
1509    SDValue Val;
1510
1511    // If this is a call to a function that returns an fp value on the floating
1512    // point stack, we must guarantee the the value is popped from the stack, so
1513    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1514    // if the return value is not used. We use the FpGET_ST0 instructions
1515    // instead.
1516    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1517      // If we prefer to use the value in xmm registers, copy it out as f80 and
1518      // use a truncate to move it from fp stack reg to xmm reg.
1519      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1520      bool isST0 = VA.getLocReg() == X86::ST0;
1521      unsigned Opc = 0;
1522      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1523      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1524      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1525      SDValue Ops[] = { Chain, InFlag };
1526      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Glue,
1527                                         Ops, 2), 1);
1528      Val = Chain.getValue(0);
1529
1530      // Round the f80 to the right size, which also moves it to the appropriate
1531      // xmm register.
1532      if (CopyVT != VA.getValVT())
1533        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1534                          // This truncation won't change the value.
1535                          DAG.getIntPtrConstant(1));
1536    } else {
1537      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1538                                 CopyVT, InFlag).getValue(1);
1539      Val = Chain.getValue(0);
1540    }
1541    InFlag = Chain.getValue(2);
1542    InVals.push_back(Val);
1543  }
1544
1545  return Chain;
1546}
1547
1548
1549//===----------------------------------------------------------------------===//
1550//                C & StdCall & Fast Calling Convention implementation
1551//===----------------------------------------------------------------------===//
1552//  StdCall calling convention seems to be standard for many Windows' API
1553//  routines and around. It differs from C calling convention just a little:
1554//  callee should clean up the stack, not caller. Symbols should be also
1555//  decorated in some fancy way :) It doesn't support any vector arguments.
1556//  For info on fast calling convention see Fast Calling Convention (tail call)
1557//  implementation LowerX86_32FastCCCallTo.
1558
1559/// CallIsStructReturn - Determines whether a call uses struct return
1560/// semantics.
1561static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1562  if (Outs.empty())
1563    return false;
1564
1565  return Outs[0].Flags.isSRet();
1566}
1567
1568/// ArgsAreStructReturn - Determines whether a function uses struct
1569/// return semantics.
1570static bool
1571ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1572  if (Ins.empty())
1573    return false;
1574
1575  return Ins[0].Flags.isSRet();
1576}
1577
1578/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1579/// by "Src" to address "Dst" with size and alignment information specified by
1580/// the specific parameter attribute. The copy will be passed as a byval
1581/// function parameter.
1582static SDValue
1583CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1584                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1585                          DebugLoc dl) {
1586  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1587
1588  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1589                       /*isVolatile*/false, /*AlwaysInline=*/true,
1590                       MachinePointerInfo(), MachinePointerInfo());
1591}
1592
1593/// IsTailCallConvention - Return true if the calling convention is one that
1594/// supports tail call optimization.
1595static bool IsTailCallConvention(CallingConv::ID CC) {
1596  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1597}
1598
1599bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1600  if (!CI->isTailCall())
1601    return false;
1602
1603  CallSite CS(CI);
1604  CallingConv::ID CalleeCC = CS.getCallingConv();
1605  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1606    return false;
1607
1608  return true;
1609}
1610
1611/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1612/// a tailcall target by changing its ABI.
1613static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1614  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1615}
1616
1617SDValue
1618X86TargetLowering::LowerMemArgument(SDValue Chain,
1619                                    CallingConv::ID CallConv,
1620                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1621                                    DebugLoc dl, SelectionDAG &DAG,
1622                                    const CCValAssign &VA,
1623                                    MachineFrameInfo *MFI,
1624                                    unsigned i) const {
1625  // Create the nodes corresponding to a load from this parameter slot.
1626  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1627  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1628  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1629  EVT ValVT;
1630
1631  // If value is passed by pointer we have address passed instead of the value
1632  // itself.
1633  if (VA.getLocInfo() == CCValAssign::Indirect)
1634    ValVT = VA.getLocVT();
1635  else
1636    ValVT = VA.getValVT();
1637
1638  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1639  // changed with more analysis.
1640  // In case of tail call optimization mark all arguments mutable. Since they
1641  // could be overwritten by lowering of arguments in case of a tail call.
1642  if (Flags.isByVal()) {
1643    unsigned Bytes = Flags.getByValSize();
1644    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1645    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1646    return DAG.getFrameIndex(FI, getPointerTy());
1647  } else {
1648    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1649                                    VA.getLocMemOffset(), isImmutable);
1650    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1651    return DAG.getLoad(ValVT, dl, Chain, FIN,
1652                       MachinePointerInfo::getFixedStack(FI),
1653                       false, false, 0);
1654  }
1655}
1656
1657SDValue
1658X86TargetLowering::LowerFormalArguments(SDValue Chain,
1659                                        CallingConv::ID CallConv,
1660                                        bool isVarArg,
1661                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1662                                        DebugLoc dl,
1663                                        SelectionDAG &DAG,
1664                                        SmallVectorImpl<SDValue> &InVals)
1665                                          const {
1666  MachineFunction &MF = DAG.getMachineFunction();
1667  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1668
1669  const Function* Fn = MF.getFunction();
1670  if (Fn->hasExternalLinkage() &&
1671      Subtarget->isTargetCygMing() &&
1672      Fn->getName() == "main")
1673    FuncInfo->setForceFramePointer(true);
1674
1675  MachineFrameInfo *MFI = MF.getFrameInfo();
1676  bool Is64Bit = Subtarget->is64Bit();
1677  bool IsWin64 = Subtarget->isTargetWin64();
1678
1679  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1680         "Var args not supported with calling convention fastcc or ghc");
1681
1682  // Assign locations to all of the incoming arguments.
1683  SmallVector<CCValAssign, 16> ArgLocs;
1684  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1685                 ArgLocs, *DAG.getContext());
1686
1687  // Allocate shadow area for Win64
1688  if (IsWin64) {
1689    CCInfo.AllocateStack(32, 8);
1690  }
1691
1692  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1693
1694  unsigned LastVal = ~0U;
1695  SDValue ArgValue;
1696  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1697    CCValAssign &VA = ArgLocs[i];
1698    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1699    // places.
1700    assert(VA.getValNo() != LastVal &&
1701           "Don't support value assigned to multiple locs yet");
1702    LastVal = VA.getValNo();
1703
1704    if (VA.isRegLoc()) {
1705      EVT RegVT = VA.getLocVT();
1706      TargetRegisterClass *RC = NULL;
1707      if (RegVT == MVT::i32)
1708        RC = X86::GR32RegisterClass;
1709      else if (Is64Bit && RegVT == MVT::i64)
1710        RC = X86::GR64RegisterClass;
1711      else if (RegVT == MVT::f32)
1712        RC = X86::FR32RegisterClass;
1713      else if (RegVT == MVT::f64)
1714        RC = X86::FR64RegisterClass;
1715      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1716        RC = X86::VR256RegisterClass;
1717      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1718        RC = X86::VR128RegisterClass;
1719      else if (RegVT == MVT::x86mmx)
1720        RC = X86::VR64RegisterClass;
1721      else
1722        llvm_unreachable("Unknown argument type!");
1723
1724      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1725      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1726
1727      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1728      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1729      // right size.
1730      if (VA.getLocInfo() == CCValAssign::SExt)
1731        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1732                               DAG.getValueType(VA.getValVT()));
1733      else if (VA.getLocInfo() == CCValAssign::ZExt)
1734        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1735                               DAG.getValueType(VA.getValVT()));
1736      else if (VA.getLocInfo() == CCValAssign::BCvt)
1737        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1738
1739      if (VA.isExtInLoc()) {
1740        // Handle MMX values passed in XMM regs.
1741        if (RegVT.isVector()) {
1742          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1743                                 ArgValue);
1744        } else
1745          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1746      }
1747    } else {
1748      assert(VA.isMemLoc());
1749      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1750    }
1751
1752    // If value is passed via pointer - do a load.
1753    if (VA.getLocInfo() == CCValAssign::Indirect)
1754      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1755                             MachinePointerInfo(), false, false, 0);
1756
1757    InVals.push_back(ArgValue);
1758  }
1759
1760  // The x86-64 ABI for returning structs by value requires that we copy
1761  // the sret argument into %rax for the return. Save the argument into
1762  // a virtual register so that we can access it from the return points.
1763  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1764    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1765    unsigned Reg = FuncInfo->getSRetReturnReg();
1766    if (!Reg) {
1767      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1768      FuncInfo->setSRetReturnReg(Reg);
1769    }
1770    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1771    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1772  }
1773
1774  unsigned StackSize = CCInfo.getNextStackOffset();
1775  // Align stack specially for tail calls.
1776  if (FuncIsMadeTailCallSafe(CallConv))
1777    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1778
1779  // If the function takes variable number of arguments, make a frame index for
1780  // the start of the first vararg value... for expansion of llvm.va_start.
1781  if (isVarArg) {
1782    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1783                    CallConv != CallingConv::X86_ThisCall)) {
1784      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1785    }
1786    if (Is64Bit) {
1787      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1788
1789      // FIXME: We should really autogenerate these arrays
1790      static const unsigned GPR64ArgRegsWin64[] = {
1791        X86::RCX, X86::RDX, X86::R8,  X86::R9
1792      };
1793      static const unsigned GPR64ArgRegs64Bit[] = {
1794        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1795      };
1796      static const unsigned XMMArgRegs64Bit[] = {
1797        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1798        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1799      };
1800      const unsigned *GPR64ArgRegs;
1801      unsigned NumXMMRegs = 0;
1802
1803      if (IsWin64) {
1804        // The XMM registers which might contain var arg parameters are shadowed
1805        // in their paired GPR.  So we only need to save the GPR to their home
1806        // slots.
1807        TotalNumIntRegs = 4;
1808        GPR64ArgRegs = GPR64ArgRegsWin64;
1809      } else {
1810        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1811        GPR64ArgRegs = GPR64ArgRegs64Bit;
1812
1813        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1814      }
1815      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1816                                                       TotalNumIntRegs);
1817
1818      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1819      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1820             "SSE register cannot be used when SSE is disabled!");
1821      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1822             "SSE register cannot be used when SSE is disabled!");
1823      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1824        // Kernel mode asks for SSE to be disabled, so don't push them
1825        // on the stack.
1826        TotalNumXMMRegs = 0;
1827
1828      if (IsWin64) {
1829        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1830        // Get to the caller-allocated home save location.  Add 8 to account
1831        // for the return address.
1832        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1833        FuncInfo->setRegSaveFrameIndex(
1834          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1835        // Fixup to set vararg frame on shadow area (4 x i64).
1836        if (NumIntRegs < 4)
1837          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1838      } else {
1839        // For X86-64, if there are vararg parameters that are passed via
1840        // registers, then we must store them to their spots on the stack so they
1841        // may be loaded by deferencing the result of va_next.
1842        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1843        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1844        FuncInfo->setRegSaveFrameIndex(
1845          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1846                               false));
1847      }
1848
1849      // Store the integer parameter registers.
1850      SmallVector<SDValue, 8> MemOps;
1851      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1852                                        getPointerTy());
1853      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1854      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1855        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1856                                  DAG.getIntPtrConstant(Offset));
1857        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1858                                     X86::GR64RegisterClass);
1859        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1860        SDValue Store =
1861          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1862                       MachinePointerInfo::getFixedStack(
1863                         FuncInfo->getRegSaveFrameIndex(), Offset),
1864                       false, false, 0);
1865        MemOps.push_back(Store);
1866        Offset += 8;
1867      }
1868
1869      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1870        // Now store the XMM (fp + vector) parameter registers.
1871        SmallVector<SDValue, 11> SaveXMMOps;
1872        SaveXMMOps.push_back(Chain);
1873
1874        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1875        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1876        SaveXMMOps.push_back(ALVal);
1877
1878        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1879                               FuncInfo->getRegSaveFrameIndex()));
1880        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1881                               FuncInfo->getVarArgsFPOffset()));
1882
1883        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1884          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1885                                       X86::VR128RegisterClass);
1886          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1887          SaveXMMOps.push_back(Val);
1888        }
1889        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1890                                     MVT::Other,
1891                                     &SaveXMMOps[0], SaveXMMOps.size()));
1892      }
1893
1894      if (!MemOps.empty())
1895        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1896                            &MemOps[0], MemOps.size());
1897    }
1898  }
1899
1900  // Some CCs need callee pop.
1901  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1902    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1903  } else {
1904    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1905    // If this is an sret function, the return should pop the hidden pointer.
1906    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1907      FuncInfo->setBytesToPopOnReturn(4);
1908  }
1909
1910  if (!Is64Bit) {
1911    // RegSaveFrameIndex is X86-64 only.
1912    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1913    if (CallConv == CallingConv::X86_FastCall ||
1914        CallConv == CallingConv::X86_ThisCall)
1915      // fastcc functions can't have varargs.
1916      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1917  }
1918
1919  return Chain;
1920}
1921
1922SDValue
1923X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1924                                    SDValue StackPtr, SDValue Arg,
1925                                    DebugLoc dl, SelectionDAG &DAG,
1926                                    const CCValAssign &VA,
1927                                    ISD::ArgFlagsTy Flags) const {
1928  unsigned LocMemOffset = VA.getLocMemOffset();
1929  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1930  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1931  if (Flags.isByVal())
1932    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1933
1934  return DAG.getStore(Chain, dl, Arg, PtrOff,
1935                      MachinePointerInfo::getStack(LocMemOffset),
1936                      false, false, 0);
1937}
1938
1939/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1940/// optimization is performed and it is required.
1941SDValue
1942X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1943                                           SDValue &OutRetAddr, SDValue Chain,
1944                                           bool IsTailCall, bool Is64Bit,
1945                                           int FPDiff, DebugLoc dl) const {
1946  // Adjust the Return address stack slot.
1947  EVT VT = getPointerTy();
1948  OutRetAddr = getReturnAddressFrameIndex(DAG);
1949
1950  // Load the "old" Return address.
1951  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1952                           false, false, 0);
1953  return SDValue(OutRetAddr.getNode(), 1);
1954}
1955
1956/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
1957/// optimization is performed and it is required (FPDiff!=0).
1958static SDValue
1959EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1960                         SDValue Chain, SDValue RetAddrFrIdx,
1961                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1962  // Store the return address to the appropriate stack slot.
1963  if (!FPDiff) return Chain;
1964  // Calculate the new stack slot for the return address.
1965  int SlotSize = Is64Bit ? 8 : 4;
1966  int NewReturnAddrFI =
1967    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1968  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1969  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1970  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1971                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1972                       false, false, 0);
1973  return Chain;
1974}
1975
1976SDValue
1977X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1978                             CallingConv::ID CallConv, bool isVarArg,
1979                             bool &isTailCall,
1980                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1981                             const SmallVectorImpl<SDValue> &OutVals,
1982                             const SmallVectorImpl<ISD::InputArg> &Ins,
1983                             DebugLoc dl, SelectionDAG &DAG,
1984                             SmallVectorImpl<SDValue> &InVals) const {
1985  MachineFunction &MF = DAG.getMachineFunction();
1986  bool Is64Bit        = Subtarget->is64Bit();
1987  bool IsWin64        = Subtarget->isTargetWin64();
1988  bool IsStructRet    = CallIsStructReturn(Outs);
1989  bool IsSibcall      = false;
1990
1991  if (isTailCall) {
1992    // Check if it's really possible to do a tail call.
1993    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1994                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1995                                                   Outs, OutVals, Ins, DAG);
1996
1997    // Sibcalls are automatically detected tailcalls which do not require
1998    // ABI changes.
1999    if (!GuaranteedTailCallOpt && isTailCall)
2000      IsSibcall = true;
2001
2002    if (isTailCall)
2003      ++NumTailCalls;
2004  }
2005
2006  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2007         "Var args not supported with calling convention fastcc or ghc");
2008
2009  // Analyze operands of the call, assigning locations to each operand.
2010  SmallVector<CCValAssign, 16> ArgLocs;
2011  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2012                 ArgLocs, *DAG.getContext());
2013
2014  // Allocate shadow area for Win64
2015  if (IsWin64) {
2016    CCInfo.AllocateStack(32, 8);
2017  }
2018
2019  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2020
2021  // Get a count of how many bytes are to be pushed on the stack.
2022  unsigned NumBytes = CCInfo.getNextStackOffset();
2023  if (IsSibcall)
2024    // This is a sibcall. The memory operands are available in caller's
2025    // own caller's stack.
2026    NumBytes = 0;
2027  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2028    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2029
2030  int FPDiff = 0;
2031  if (isTailCall && !IsSibcall) {
2032    // Lower arguments at fp - stackoffset + fpdiff.
2033    unsigned NumBytesCallerPushed =
2034      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2035    FPDiff = NumBytesCallerPushed - NumBytes;
2036
2037    // Set the delta of movement of the returnaddr stackslot.
2038    // But only set if delta is greater than previous delta.
2039    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2040      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2041  }
2042
2043  if (!IsSibcall)
2044    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2045
2046  SDValue RetAddrFrIdx;
2047  // Load return address for tail calls.
2048  if (isTailCall && FPDiff)
2049    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2050                                    Is64Bit, FPDiff, dl);
2051
2052  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2053  SmallVector<SDValue, 8> MemOpChains;
2054  SDValue StackPtr;
2055
2056  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2057  // of tail call optimization arguments are handle later.
2058  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2059    CCValAssign &VA = ArgLocs[i];
2060    EVT RegVT = VA.getLocVT();
2061    SDValue Arg = OutVals[i];
2062    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2063    bool isByVal = Flags.isByVal();
2064
2065    // Promote the value if needed.
2066    switch (VA.getLocInfo()) {
2067    default: llvm_unreachable("Unknown loc info!");
2068    case CCValAssign::Full: break;
2069    case CCValAssign::SExt:
2070      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2071      break;
2072    case CCValAssign::ZExt:
2073      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2074      break;
2075    case CCValAssign::AExt:
2076      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2077        // Special case: passing MMX values in XMM registers.
2078        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2079        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2080        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2081      } else
2082        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2083      break;
2084    case CCValAssign::BCvt:
2085      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2086      break;
2087    case CCValAssign::Indirect: {
2088      // Store the argument.
2089      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2090      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2091      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2092                           MachinePointerInfo::getFixedStack(FI),
2093                           false, false, 0);
2094      Arg = SpillSlot;
2095      break;
2096    }
2097    }
2098
2099    if (VA.isRegLoc()) {
2100      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2101      if (isVarArg && IsWin64) {
2102        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2103        // shadow reg if callee is a varargs function.
2104        unsigned ShadowReg = 0;
2105        switch (VA.getLocReg()) {
2106        case X86::XMM0: ShadowReg = X86::RCX; break;
2107        case X86::XMM1: ShadowReg = X86::RDX; break;
2108        case X86::XMM2: ShadowReg = X86::R8; break;
2109        case X86::XMM3: ShadowReg = X86::R9; break;
2110        }
2111        if (ShadowReg)
2112          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2113      }
2114    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2115      assert(VA.isMemLoc());
2116      if (StackPtr.getNode() == 0)
2117        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2118      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2119                                             dl, DAG, VA, Flags));
2120    }
2121  }
2122
2123  if (!MemOpChains.empty())
2124    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2125                        &MemOpChains[0], MemOpChains.size());
2126
2127  // Build a sequence of copy-to-reg nodes chained together with token chain
2128  // and flag operands which copy the outgoing args into registers.
2129  SDValue InFlag;
2130  // Tail call byval lowering might overwrite argument registers so in case of
2131  // tail call optimization the copies to registers are lowered later.
2132  if (!isTailCall)
2133    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2134      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2135                               RegsToPass[i].second, InFlag);
2136      InFlag = Chain.getValue(1);
2137    }
2138
2139  if (Subtarget->isPICStyleGOT()) {
2140    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2141    // GOT pointer.
2142    if (!isTailCall) {
2143      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2144                               DAG.getNode(X86ISD::GlobalBaseReg,
2145                                           DebugLoc(), getPointerTy()),
2146                               InFlag);
2147      InFlag = Chain.getValue(1);
2148    } else {
2149      // If we are tail calling and generating PIC/GOT style code load the
2150      // address of the callee into ECX. The value in ecx is used as target of
2151      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2152      // for tail calls on PIC/GOT architectures. Normally we would just put the
2153      // address of GOT into ebx and then call target@PLT. But for tail calls
2154      // ebx would be restored (since ebx is callee saved) before jumping to the
2155      // target@PLT.
2156
2157      // Note: The actual moving to ECX is done further down.
2158      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2159      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2160          !G->getGlobal()->hasProtectedVisibility())
2161        Callee = LowerGlobalAddress(Callee, DAG);
2162      else if (isa<ExternalSymbolSDNode>(Callee))
2163        Callee = LowerExternalSymbol(Callee, DAG);
2164    }
2165  }
2166
2167  if (Is64Bit && isVarArg && !IsWin64) {
2168    // From AMD64 ABI document:
2169    // For calls that may call functions that use varargs or stdargs
2170    // (prototype-less calls or calls to functions containing ellipsis (...) in
2171    // the declaration) %al is used as hidden argument to specify the number
2172    // of SSE registers used. The contents of %al do not need to match exactly
2173    // the number of registers, but must be an ubound on the number of SSE
2174    // registers used and is in the range 0 - 8 inclusive.
2175
2176    // Count the number of XMM registers allocated.
2177    static const unsigned XMMArgRegs[] = {
2178      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2179      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2180    };
2181    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2182    assert((Subtarget->hasXMM() || !NumXMMRegs)
2183           && "SSE registers cannot be used when SSE is disabled");
2184
2185    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2186                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2187    InFlag = Chain.getValue(1);
2188  }
2189
2190
2191  // For tail calls lower the arguments to the 'real' stack slot.
2192  if (isTailCall) {
2193    // Force all the incoming stack arguments to be loaded from the stack
2194    // before any new outgoing arguments are stored to the stack, because the
2195    // outgoing stack slots may alias the incoming argument stack slots, and
2196    // the alias isn't otherwise explicit. This is slightly more conservative
2197    // than necessary, because it means that each store effectively depends
2198    // on every argument instead of just those arguments it would clobber.
2199    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2200
2201    SmallVector<SDValue, 8> MemOpChains2;
2202    SDValue FIN;
2203    int FI = 0;
2204    // Do not flag preceding copytoreg stuff together with the following stuff.
2205    InFlag = SDValue();
2206    if (GuaranteedTailCallOpt) {
2207      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2208        CCValAssign &VA = ArgLocs[i];
2209        if (VA.isRegLoc())
2210          continue;
2211        assert(VA.isMemLoc());
2212        SDValue Arg = OutVals[i];
2213        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2214        // Create frame index.
2215        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2216        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2217        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2218        FIN = DAG.getFrameIndex(FI, getPointerTy());
2219
2220        if (Flags.isByVal()) {
2221          // Copy relative to framepointer.
2222          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2223          if (StackPtr.getNode() == 0)
2224            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2225                                          getPointerTy());
2226          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2227
2228          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2229                                                           ArgChain,
2230                                                           Flags, DAG, dl));
2231        } else {
2232          // Store relative to framepointer.
2233          MemOpChains2.push_back(
2234            DAG.getStore(ArgChain, dl, Arg, FIN,
2235                         MachinePointerInfo::getFixedStack(FI),
2236                         false, false, 0));
2237        }
2238      }
2239    }
2240
2241    if (!MemOpChains2.empty())
2242      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2243                          &MemOpChains2[0], MemOpChains2.size());
2244
2245    // Copy arguments to their registers.
2246    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2247      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2248                               RegsToPass[i].second, InFlag);
2249      InFlag = Chain.getValue(1);
2250    }
2251    InFlag =SDValue();
2252
2253    // Store the return address to the appropriate stack slot.
2254    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2255                                     FPDiff, dl);
2256  }
2257
2258  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2259    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2260    // In the 64-bit large code model, we have to make all calls
2261    // through a register, since the call instruction's 32-bit
2262    // pc-relative offset may not be large enough to hold the whole
2263    // address.
2264  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2265    // If the callee is a GlobalAddress node (quite common, every direct call
2266    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2267    // it.
2268
2269    // We should use extra load for direct calls to dllimported functions in
2270    // non-JIT mode.
2271    const GlobalValue *GV = G->getGlobal();
2272    if (!GV->hasDLLImportLinkage()) {
2273      unsigned char OpFlags = 0;
2274
2275      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2276      // external symbols most go through the PLT in PIC mode.  If the symbol
2277      // has hidden or protected visibility, or if it is static or local, then
2278      // we don't need to use the PLT - we can directly call it.
2279      if (Subtarget->isTargetELF() &&
2280          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2281          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2282        OpFlags = X86II::MO_PLT;
2283      } else if (Subtarget->isPICStyleStubAny() &&
2284                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2285                 (!Subtarget->getTargetTriple().isMacOSX() ||
2286                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2287        // PC-relative references to external symbols should go through $stub,
2288        // unless we're building with the leopard linker or later, which
2289        // automatically synthesizes these stubs.
2290        OpFlags = X86II::MO_DARWIN_STUB;
2291      }
2292
2293      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2294                                          G->getOffset(), OpFlags);
2295    }
2296  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2297    unsigned char OpFlags = 0;
2298
2299    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2300    // external symbols should go through the PLT.
2301    if (Subtarget->isTargetELF() &&
2302        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2303      OpFlags = X86II::MO_PLT;
2304    } else if (Subtarget->isPICStyleStubAny() &&
2305               (!Subtarget->getTargetTriple().isMacOSX() ||
2306                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2307      // PC-relative references to external symbols should go through $stub,
2308      // unless we're building with the leopard linker or later, which
2309      // automatically synthesizes these stubs.
2310      OpFlags = X86II::MO_DARWIN_STUB;
2311    }
2312
2313    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2314                                         OpFlags);
2315  }
2316
2317  // Returns a chain & a flag for retval copy to use.
2318  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2319  SmallVector<SDValue, 8> Ops;
2320
2321  if (!IsSibcall && isTailCall) {
2322    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2323                           DAG.getIntPtrConstant(0, true), InFlag);
2324    InFlag = Chain.getValue(1);
2325  }
2326
2327  Ops.push_back(Chain);
2328  Ops.push_back(Callee);
2329
2330  if (isTailCall)
2331    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2332
2333  // Add argument registers to the end of the list so that they are known live
2334  // into the call.
2335  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2336    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2337                                  RegsToPass[i].second.getValueType()));
2338
2339  // Add an implicit use GOT pointer in EBX.
2340  if (!isTailCall && Subtarget->isPICStyleGOT())
2341    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2342
2343  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2344  if (Is64Bit && isVarArg && !IsWin64)
2345    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2346
2347  if (InFlag.getNode())
2348    Ops.push_back(InFlag);
2349
2350  if (isTailCall) {
2351    // We used to do:
2352    //// If this is the first return lowered for this function, add the regs
2353    //// to the liveout set for the function.
2354    // This isn't right, although it's probably harmless on x86; liveouts
2355    // should be computed from returns not tail calls.  Consider a void
2356    // function making a tail call to a function returning int.
2357    return DAG.getNode(X86ISD::TC_RETURN, dl,
2358                       NodeTys, &Ops[0], Ops.size());
2359  }
2360
2361  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2362  InFlag = Chain.getValue(1);
2363
2364  // Create the CALLSEQ_END node.
2365  unsigned NumBytesForCalleeToPush;
2366  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2367    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2368  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2369    // If this is a call to a struct-return function, the callee
2370    // pops the hidden struct pointer, so we have to push it back.
2371    // This is common for Darwin/X86, Linux & Mingw32 targets.
2372    NumBytesForCalleeToPush = 4;
2373  else
2374    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2375
2376  // Returns a flag for retval copy to use.
2377  if (!IsSibcall) {
2378    Chain = DAG.getCALLSEQ_END(Chain,
2379                               DAG.getIntPtrConstant(NumBytes, true),
2380                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2381                                                     true),
2382                               InFlag);
2383    InFlag = Chain.getValue(1);
2384  }
2385
2386  // Handle result values, copying them out of physregs into vregs that we
2387  // return.
2388  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2389                         Ins, dl, DAG, InVals);
2390}
2391
2392
2393//===----------------------------------------------------------------------===//
2394//                Fast Calling Convention (tail call) implementation
2395//===----------------------------------------------------------------------===//
2396
2397//  Like std call, callee cleans arguments, convention except that ECX is
2398//  reserved for storing the tail called function address. Only 2 registers are
2399//  free for argument passing (inreg). Tail call optimization is performed
2400//  provided:
2401//                * tailcallopt is enabled
2402//                * caller/callee are fastcc
2403//  On X86_64 architecture with GOT-style position independent code only local
2404//  (within module) calls are supported at the moment.
2405//  To keep the stack aligned according to platform abi the function
2406//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2407//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2408//  If a tail called function callee has more arguments than the caller the
2409//  caller needs to make sure that there is room to move the RETADDR to. This is
2410//  achieved by reserving an area the size of the argument delta right after the
2411//  original REtADDR, but before the saved framepointer or the spilled registers
2412//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2413//  stack layout:
2414//    arg1
2415//    arg2
2416//    RETADDR
2417//    [ new RETADDR
2418//      move area ]
2419//    (possible EBP)
2420//    ESI
2421//    EDI
2422//    local1 ..
2423
2424/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2425/// for a 16 byte align requirement.
2426unsigned
2427X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2428                                               SelectionDAG& DAG) const {
2429  MachineFunction &MF = DAG.getMachineFunction();
2430  const TargetMachine &TM = MF.getTarget();
2431  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2432  unsigned StackAlignment = TFI.getStackAlignment();
2433  uint64_t AlignMask = StackAlignment - 1;
2434  int64_t Offset = StackSize;
2435  uint64_t SlotSize = TD->getPointerSize();
2436  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2437    // Number smaller than 12 so just add the difference.
2438    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2439  } else {
2440    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2441    Offset = ((~AlignMask) & Offset) + StackAlignment +
2442      (StackAlignment-SlotSize);
2443  }
2444  return Offset;
2445}
2446
2447/// MatchingStackOffset - Return true if the given stack call argument is
2448/// already available in the same position (relatively) of the caller's
2449/// incoming argument stack.
2450static
2451bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2452                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2453                         const X86InstrInfo *TII) {
2454  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2455  int FI = INT_MAX;
2456  if (Arg.getOpcode() == ISD::CopyFromReg) {
2457    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2458    if (!TargetRegisterInfo::isVirtualRegister(VR))
2459      return false;
2460    MachineInstr *Def = MRI->getVRegDef(VR);
2461    if (!Def)
2462      return false;
2463    if (!Flags.isByVal()) {
2464      if (!TII->isLoadFromStackSlot(Def, FI))
2465        return false;
2466    } else {
2467      unsigned Opcode = Def->getOpcode();
2468      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2469          Def->getOperand(1).isFI()) {
2470        FI = Def->getOperand(1).getIndex();
2471        Bytes = Flags.getByValSize();
2472      } else
2473        return false;
2474    }
2475  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2476    if (Flags.isByVal())
2477      // ByVal argument is passed in as a pointer but it's now being
2478      // dereferenced. e.g.
2479      // define @foo(%struct.X* %A) {
2480      //   tail call @bar(%struct.X* byval %A)
2481      // }
2482      return false;
2483    SDValue Ptr = Ld->getBasePtr();
2484    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2485    if (!FINode)
2486      return false;
2487    FI = FINode->getIndex();
2488  } else
2489    return false;
2490
2491  assert(FI != INT_MAX);
2492  if (!MFI->isFixedObjectIndex(FI))
2493    return false;
2494  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2495}
2496
2497/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2498/// for tail call optimization. Targets which want to do tail call
2499/// optimization should implement this function.
2500bool
2501X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2502                                                     CallingConv::ID CalleeCC,
2503                                                     bool isVarArg,
2504                                                     bool isCalleeStructRet,
2505                                                     bool isCallerStructRet,
2506                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2507                                    const SmallVectorImpl<SDValue> &OutVals,
2508                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2509                                                     SelectionDAG& DAG) const {
2510  if (!IsTailCallConvention(CalleeCC) &&
2511      CalleeCC != CallingConv::C)
2512    return false;
2513
2514  // If -tailcallopt is specified, make fastcc functions tail-callable.
2515  const MachineFunction &MF = DAG.getMachineFunction();
2516  const Function *CallerF = DAG.getMachineFunction().getFunction();
2517  CallingConv::ID CallerCC = CallerF->getCallingConv();
2518  bool CCMatch = CallerCC == CalleeCC;
2519
2520  if (GuaranteedTailCallOpt) {
2521    if (IsTailCallConvention(CalleeCC) && CCMatch)
2522      return true;
2523    return false;
2524  }
2525
2526  // Look for obvious safe cases to perform tail call optimization that do not
2527  // require ABI changes. This is what gcc calls sibcall.
2528
2529  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2530  // emit a special epilogue.
2531  if (RegInfo->needsStackRealignment(MF))
2532    return false;
2533
2534  // Also avoid sibcall optimization if either caller or callee uses struct
2535  // return semantics.
2536  if (isCalleeStructRet || isCallerStructRet)
2537    return false;
2538
2539  // Do not sibcall optimize vararg calls unless all arguments are passed via
2540  // registers.
2541  if (isVarArg && !Outs.empty()) {
2542
2543    // Optimizing for varargs on Win64 is unlikely to be safe without
2544    // additional testing.
2545    if (Subtarget->isTargetWin64())
2546      return false;
2547
2548    SmallVector<CCValAssign, 16> ArgLocs;
2549    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2550		   getTargetMachine(), ArgLocs, *DAG.getContext());
2551
2552    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2553    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2554      if (!ArgLocs[i].isRegLoc())
2555        return false;
2556  }
2557
2558  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2559  // Therefore if it's not used by the call it is not safe to optimize this into
2560  // a sibcall.
2561  bool Unused = false;
2562  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2563    if (!Ins[i].Used) {
2564      Unused = true;
2565      break;
2566    }
2567  }
2568  if (Unused) {
2569    SmallVector<CCValAssign, 16> RVLocs;
2570    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2571		   getTargetMachine(), RVLocs, *DAG.getContext());
2572    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2573    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2574      CCValAssign &VA = RVLocs[i];
2575      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2576        return false;
2577    }
2578  }
2579
2580  // If the calling conventions do not match, then we'd better make sure the
2581  // results are returned in the same way as what the caller expects.
2582  if (!CCMatch) {
2583    SmallVector<CCValAssign, 16> RVLocs1;
2584    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2585		    getTargetMachine(), RVLocs1, *DAG.getContext());
2586    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2587
2588    SmallVector<CCValAssign, 16> RVLocs2;
2589    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2590		    getTargetMachine(), RVLocs2, *DAG.getContext());
2591    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2592
2593    if (RVLocs1.size() != RVLocs2.size())
2594      return false;
2595    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2596      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2597        return false;
2598      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2599        return false;
2600      if (RVLocs1[i].isRegLoc()) {
2601        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2602          return false;
2603      } else {
2604        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2605          return false;
2606      }
2607    }
2608  }
2609
2610  // If the callee takes no arguments then go on to check the results of the
2611  // call.
2612  if (!Outs.empty()) {
2613    // Check if stack adjustment is needed. For now, do not do this if any
2614    // argument is passed on the stack.
2615    SmallVector<CCValAssign, 16> ArgLocs;
2616    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2617		   getTargetMachine(), ArgLocs, *DAG.getContext());
2618
2619    // Allocate shadow area for Win64
2620    if (Subtarget->isTargetWin64()) {
2621      CCInfo.AllocateStack(32, 8);
2622    }
2623
2624    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2625    if (CCInfo.getNextStackOffset()) {
2626      MachineFunction &MF = DAG.getMachineFunction();
2627      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2628        return false;
2629
2630      // Check if the arguments are already laid out in the right way as
2631      // the caller's fixed stack objects.
2632      MachineFrameInfo *MFI = MF.getFrameInfo();
2633      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2634      const X86InstrInfo *TII =
2635        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2636      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2637        CCValAssign &VA = ArgLocs[i];
2638        SDValue Arg = OutVals[i];
2639        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2640        if (VA.getLocInfo() == CCValAssign::Indirect)
2641          return false;
2642        if (!VA.isRegLoc()) {
2643          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2644                                   MFI, MRI, TII))
2645            return false;
2646        }
2647      }
2648    }
2649
2650    // If the tailcall address may be in a register, then make sure it's
2651    // possible to register allocate for it. In 32-bit, the call address can
2652    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2653    // callee-saved registers are restored. These happen to be the same
2654    // registers used to pass 'inreg' arguments so watch out for those.
2655    if (!Subtarget->is64Bit() &&
2656        !isa<GlobalAddressSDNode>(Callee) &&
2657        !isa<ExternalSymbolSDNode>(Callee)) {
2658      unsigned NumInRegs = 0;
2659      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2660        CCValAssign &VA = ArgLocs[i];
2661        if (!VA.isRegLoc())
2662          continue;
2663        unsigned Reg = VA.getLocReg();
2664        switch (Reg) {
2665        default: break;
2666        case X86::EAX: case X86::EDX: case X86::ECX:
2667          if (++NumInRegs == 3)
2668            return false;
2669          break;
2670        }
2671      }
2672    }
2673  }
2674
2675  // An stdcall caller is expected to clean up its arguments; the callee
2676  // isn't going to do that.
2677  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2678    return false;
2679
2680  return true;
2681}
2682
2683FastISel *
2684X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2685  return X86::createFastISel(funcInfo);
2686}
2687
2688
2689//===----------------------------------------------------------------------===//
2690//                           Other Lowering Hooks
2691//===----------------------------------------------------------------------===//
2692
2693static bool MayFoldLoad(SDValue Op) {
2694  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2695}
2696
2697static bool MayFoldIntoStore(SDValue Op) {
2698  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2699}
2700
2701static bool isTargetShuffle(unsigned Opcode) {
2702  switch(Opcode) {
2703  default: return false;
2704  case X86ISD::PSHUFD:
2705  case X86ISD::PSHUFHW:
2706  case X86ISD::PSHUFLW:
2707  case X86ISD::SHUFPD:
2708  case X86ISD::PALIGN:
2709  case X86ISD::SHUFPS:
2710  case X86ISD::MOVLHPS:
2711  case X86ISD::MOVLHPD:
2712  case X86ISD::MOVHLPS:
2713  case X86ISD::MOVLPS:
2714  case X86ISD::MOVLPD:
2715  case X86ISD::MOVSHDUP:
2716  case X86ISD::MOVSLDUP:
2717  case X86ISD::MOVDDUP:
2718  case X86ISD::MOVSS:
2719  case X86ISD::MOVSD:
2720  case X86ISD::UNPCKLPS:
2721  case X86ISD::UNPCKLPD:
2722  case X86ISD::VUNPCKLPS:
2723  case X86ISD::VUNPCKLPD:
2724  case X86ISD::VUNPCKLPSY:
2725  case X86ISD::VUNPCKLPDY:
2726  case X86ISD::PUNPCKLWD:
2727  case X86ISD::PUNPCKLBW:
2728  case X86ISD::PUNPCKLDQ:
2729  case X86ISD::PUNPCKLQDQ:
2730  case X86ISD::UNPCKHPS:
2731  case X86ISD::UNPCKHPD:
2732  case X86ISD::PUNPCKHWD:
2733  case X86ISD::PUNPCKHBW:
2734  case X86ISD::PUNPCKHDQ:
2735  case X86ISD::PUNPCKHQDQ:
2736    return true;
2737  }
2738  return false;
2739}
2740
2741static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2742                                               SDValue V1, SelectionDAG &DAG) {
2743  switch(Opc) {
2744  default: llvm_unreachable("Unknown x86 shuffle node");
2745  case X86ISD::MOVSHDUP:
2746  case X86ISD::MOVSLDUP:
2747  case X86ISD::MOVDDUP:
2748    return DAG.getNode(Opc, dl, VT, V1);
2749  }
2750
2751  return SDValue();
2752}
2753
2754static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2755                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2756  switch(Opc) {
2757  default: llvm_unreachable("Unknown x86 shuffle node");
2758  case X86ISD::PSHUFD:
2759  case X86ISD::PSHUFHW:
2760  case X86ISD::PSHUFLW:
2761    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2762  }
2763
2764  return SDValue();
2765}
2766
2767static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2768               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2769  switch(Opc) {
2770  default: llvm_unreachable("Unknown x86 shuffle node");
2771  case X86ISD::PALIGN:
2772  case X86ISD::SHUFPD:
2773  case X86ISD::SHUFPS:
2774    return DAG.getNode(Opc, dl, VT, V1, V2,
2775                       DAG.getConstant(TargetMask, MVT::i8));
2776  }
2777  return SDValue();
2778}
2779
2780static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2781                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2782  switch(Opc) {
2783  default: llvm_unreachable("Unknown x86 shuffle node");
2784  case X86ISD::MOVLHPS:
2785  case X86ISD::MOVLHPD:
2786  case X86ISD::MOVHLPS:
2787  case X86ISD::MOVLPS:
2788  case X86ISD::MOVLPD:
2789  case X86ISD::MOVSS:
2790  case X86ISD::MOVSD:
2791  case X86ISD::UNPCKLPS:
2792  case X86ISD::UNPCKLPD:
2793  case X86ISD::VUNPCKLPS:
2794  case X86ISD::VUNPCKLPD:
2795  case X86ISD::VUNPCKLPSY:
2796  case X86ISD::VUNPCKLPDY:
2797  case X86ISD::PUNPCKLWD:
2798  case X86ISD::PUNPCKLBW:
2799  case X86ISD::PUNPCKLDQ:
2800  case X86ISD::PUNPCKLQDQ:
2801  case X86ISD::UNPCKHPS:
2802  case X86ISD::UNPCKHPD:
2803  case X86ISD::PUNPCKHWD:
2804  case X86ISD::PUNPCKHBW:
2805  case X86ISD::PUNPCKHDQ:
2806  case X86ISD::PUNPCKHQDQ:
2807    return DAG.getNode(Opc, dl, VT, V1, V2);
2808  }
2809  return SDValue();
2810}
2811
2812SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2813  MachineFunction &MF = DAG.getMachineFunction();
2814  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2815  int ReturnAddrIndex = FuncInfo->getRAIndex();
2816
2817  if (ReturnAddrIndex == 0) {
2818    // Set up a frame object for the return address.
2819    uint64_t SlotSize = TD->getPointerSize();
2820    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2821                                                           false);
2822    FuncInfo->setRAIndex(ReturnAddrIndex);
2823  }
2824
2825  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2826}
2827
2828
2829bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2830                                       bool hasSymbolicDisplacement) {
2831  // Offset should fit into 32 bit immediate field.
2832  if (!isInt<32>(Offset))
2833    return false;
2834
2835  // If we don't have a symbolic displacement - we don't have any extra
2836  // restrictions.
2837  if (!hasSymbolicDisplacement)
2838    return true;
2839
2840  // FIXME: Some tweaks might be needed for medium code model.
2841  if (M != CodeModel::Small && M != CodeModel::Kernel)
2842    return false;
2843
2844  // For small code model we assume that latest object is 16MB before end of 31
2845  // bits boundary. We may also accept pretty large negative constants knowing
2846  // that all objects are in the positive half of address space.
2847  if (M == CodeModel::Small && Offset < 16*1024*1024)
2848    return true;
2849
2850  // For kernel code model we know that all object resist in the negative half
2851  // of 32bits address space. We may not accept negative offsets, since they may
2852  // be just off and we may accept pretty large positive ones.
2853  if (M == CodeModel::Kernel && Offset > 0)
2854    return true;
2855
2856  return false;
2857}
2858
2859/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2860/// specific condition code, returning the condition code and the LHS/RHS of the
2861/// comparison to make.
2862static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2863                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2864  if (!isFP) {
2865    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2866      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2867        // X > -1   -> X == 0, jump !sign.
2868        RHS = DAG.getConstant(0, RHS.getValueType());
2869        return X86::COND_NS;
2870      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2871        // X < 0   -> X == 0, jump on sign.
2872        return X86::COND_S;
2873      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2874        // X < 1   -> X <= 0
2875        RHS = DAG.getConstant(0, RHS.getValueType());
2876        return X86::COND_LE;
2877      }
2878    }
2879
2880    switch (SetCCOpcode) {
2881    default: llvm_unreachable("Invalid integer condition!");
2882    case ISD::SETEQ:  return X86::COND_E;
2883    case ISD::SETGT:  return X86::COND_G;
2884    case ISD::SETGE:  return X86::COND_GE;
2885    case ISD::SETLT:  return X86::COND_L;
2886    case ISD::SETLE:  return X86::COND_LE;
2887    case ISD::SETNE:  return X86::COND_NE;
2888    case ISD::SETULT: return X86::COND_B;
2889    case ISD::SETUGT: return X86::COND_A;
2890    case ISD::SETULE: return X86::COND_BE;
2891    case ISD::SETUGE: return X86::COND_AE;
2892    }
2893  }
2894
2895  // First determine if it is required or is profitable to flip the operands.
2896
2897  // If LHS is a foldable load, but RHS is not, flip the condition.
2898  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
2899      !ISD::isNON_EXTLoad(RHS.getNode())) {
2900    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2901    std::swap(LHS, RHS);
2902  }
2903
2904  switch (SetCCOpcode) {
2905  default: break;
2906  case ISD::SETOLT:
2907  case ISD::SETOLE:
2908  case ISD::SETUGT:
2909  case ISD::SETUGE:
2910    std::swap(LHS, RHS);
2911    break;
2912  }
2913
2914  // On a floating point condition, the flags are set as follows:
2915  // ZF  PF  CF   op
2916  //  0 | 0 | 0 | X > Y
2917  //  0 | 0 | 1 | X < Y
2918  //  1 | 0 | 0 | X == Y
2919  //  1 | 1 | 1 | unordered
2920  switch (SetCCOpcode) {
2921  default: llvm_unreachable("Condcode should be pre-legalized away");
2922  case ISD::SETUEQ:
2923  case ISD::SETEQ:   return X86::COND_E;
2924  case ISD::SETOLT:              // flipped
2925  case ISD::SETOGT:
2926  case ISD::SETGT:   return X86::COND_A;
2927  case ISD::SETOLE:              // flipped
2928  case ISD::SETOGE:
2929  case ISD::SETGE:   return X86::COND_AE;
2930  case ISD::SETUGT:              // flipped
2931  case ISD::SETULT:
2932  case ISD::SETLT:   return X86::COND_B;
2933  case ISD::SETUGE:              // flipped
2934  case ISD::SETULE:
2935  case ISD::SETLE:   return X86::COND_BE;
2936  case ISD::SETONE:
2937  case ISD::SETNE:   return X86::COND_NE;
2938  case ISD::SETUO:   return X86::COND_P;
2939  case ISD::SETO:    return X86::COND_NP;
2940  case ISD::SETOEQ:
2941  case ISD::SETUNE:  return X86::COND_INVALID;
2942  }
2943}
2944
2945/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2946/// code. Current x86 isa includes the following FP cmov instructions:
2947/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2948static bool hasFPCMov(unsigned X86CC) {
2949  switch (X86CC) {
2950  default:
2951    return false;
2952  case X86::COND_B:
2953  case X86::COND_BE:
2954  case X86::COND_E:
2955  case X86::COND_P:
2956  case X86::COND_A:
2957  case X86::COND_AE:
2958  case X86::COND_NE:
2959  case X86::COND_NP:
2960    return true;
2961  }
2962}
2963
2964/// isFPImmLegal - Returns true if the target can instruction select the
2965/// specified FP immediate natively. If false, the legalizer will
2966/// materialize the FP immediate as a load from a constant pool.
2967bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2968  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2969    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2970      return true;
2971  }
2972  return false;
2973}
2974
2975/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2976/// the specified range (L, H].
2977static bool isUndefOrInRange(int Val, int Low, int Hi) {
2978  return (Val < 0) || (Val >= Low && Val < Hi);
2979}
2980
2981/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2982/// specified value.
2983static bool isUndefOrEqual(int Val, int CmpVal) {
2984  if (Val < 0 || Val == CmpVal)
2985    return true;
2986  return false;
2987}
2988
2989/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2990/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2991/// the second operand.
2992static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2993  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
2994    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2995  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2996    return (Mask[0] < 2 && Mask[1] < 2);
2997  return false;
2998}
2999
3000bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3001  SmallVector<int, 8> M;
3002  N->getMask(M);
3003  return ::isPSHUFDMask(M, N->getValueType(0));
3004}
3005
3006/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3007/// is suitable for input to PSHUFHW.
3008static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3009  if (VT != MVT::v8i16)
3010    return false;
3011
3012  // Lower quadword copied in order or undef.
3013  for (int i = 0; i != 4; ++i)
3014    if (Mask[i] >= 0 && Mask[i] != i)
3015      return false;
3016
3017  // Upper quadword shuffled.
3018  for (int i = 4; i != 8; ++i)
3019    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3020      return false;
3021
3022  return true;
3023}
3024
3025bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3026  SmallVector<int, 8> M;
3027  N->getMask(M);
3028  return ::isPSHUFHWMask(M, N->getValueType(0));
3029}
3030
3031/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3032/// is suitable for input to PSHUFLW.
3033static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3034  if (VT != MVT::v8i16)
3035    return false;
3036
3037  // Upper quadword copied in order.
3038  for (int i = 4; i != 8; ++i)
3039    if (Mask[i] >= 0 && Mask[i] != i)
3040      return false;
3041
3042  // Lower quadword shuffled.
3043  for (int i = 0; i != 4; ++i)
3044    if (Mask[i] >= 4)
3045      return false;
3046
3047  return true;
3048}
3049
3050bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3051  SmallVector<int, 8> M;
3052  N->getMask(M);
3053  return ::isPSHUFLWMask(M, N->getValueType(0));
3054}
3055
3056/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3057/// is suitable for input to PALIGNR.
3058static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3059                          bool hasSSSE3) {
3060  int i, e = VT.getVectorNumElements();
3061
3062  // Do not handle v2i64 / v2f64 shuffles with palignr.
3063  if (e < 4 || !hasSSSE3)
3064    return false;
3065
3066  for (i = 0; i != e; ++i)
3067    if (Mask[i] >= 0)
3068      break;
3069
3070  // All undef, not a palignr.
3071  if (i == e)
3072    return false;
3073
3074  // Determine if it's ok to perform a palignr with only the LHS, since we
3075  // don't have access to the actual shuffle elements to see if RHS is undef.
3076  bool Unary = Mask[i] < (int)e;
3077  bool NeedsUnary = false;
3078
3079  int s = Mask[i] - i;
3080
3081  // Check the rest of the elements to see if they are consecutive.
3082  for (++i; i != e; ++i) {
3083    int m = Mask[i];
3084    if (m < 0)
3085      continue;
3086
3087    Unary = Unary && (m < (int)e);
3088    NeedsUnary = NeedsUnary || (m < s);
3089
3090    if (NeedsUnary && !Unary)
3091      return false;
3092    if (Unary && m != ((s+i) & (e-1)))
3093      return false;
3094    if (!Unary && m != (s+i))
3095      return false;
3096  }
3097  return true;
3098}
3099
3100bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
3101  SmallVector<int, 8> M;
3102  N->getMask(M);
3103  return ::isPALIGNRMask(M, N->getValueType(0), true);
3104}
3105
3106/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3107/// specifies a shuffle of elements that is suitable for input to SHUFP*.
3108static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3109  int NumElems = VT.getVectorNumElements();
3110  if (NumElems != 2 && NumElems != 4)
3111    return false;
3112
3113  int Half = NumElems / 2;
3114  for (int i = 0; i < Half; ++i)
3115    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3116      return false;
3117  for (int i = Half; i < NumElems; ++i)
3118    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3119      return false;
3120
3121  return true;
3122}
3123
3124bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3125  SmallVector<int, 8> M;
3126  N->getMask(M);
3127  return ::isSHUFPMask(M, N->getValueType(0));
3128}
3129
3130/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3131/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3132/// half elements to come from vector 1 (which would equal the dest.) and
3133/// the upper half to come from vector 2.
3134static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3135  int NumElems = VT.getVectorNumElements();
3136
3137  if (NumElems != 2 && NumElems != 4)
3138    return false;
3139
3140  int Half = NumElems / 2;
3141  for (int i = 0; i < Half; ++i)
3142    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3143      return false;
3144  for (int i = Half; i < NumElems; ++i)
3145    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3146      return false;
3147  return true;
3148}
3149
3150static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3151  SmallVector<int, 8> M;
3152  N->getMask(M);
3153  return isCommutedSHUFPMask(M, N->getValueType(0));
3154}
3155
3156/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3157/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3158bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3159  if (N->getValueType(0).getVectorNumElements() != 4)
3160    return false;
3161
3162  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3163  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3164         isUndefOrEqual(N->getMaskElt(1), 7) &&
3165         isUndefOrEqual(N->getMaskElt(2), 2) &&
3166         isUndefOrEqual(N->getMaskElt(3), 3);
3167}
3168
3169/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3170/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3171/// <2, 3, 2, 3>
3172bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3173  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3174
3175  if (NumElems != 4)
3176    return false;
3177
3178  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3179  isUndefOrEqual(N->getMaskElt(1), 3) &&
3180  isUndefOrEqual(N->getMaskElt(2), 2) &&
3181  isUndefOrEqual(N->getMaskElt(3), 3);
3182}
3183
3184/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3185/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3186bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3187  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3188
3189  if (NumElems != 2 && NumElems != 4)
3190    return false;
3191
3192  for (unsigned i = 0; i < NumElems/2; ++i)
3193    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3194      return false;
3195
3196  for (unsigned i = NumElems/2; i < NumElems; ++i)
3197    if (!isUndefOrEqual(N->getMaskElt(i), i))
3198      return false;
3199
3200  return true;
3201}
3202
3203/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3204/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3205bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3206  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3207
3208  if ((NumElems != 2 && NumElems != 4)
3209      || N->getValueType(0).getSizeInBits() > 128)
3210    return false;
3211
3212  for (unsigned i = 0; i < NumElems/2; ++i)
3213    if (!isUndefOrEqual(N->getMaskElt(i), i))
3214      return false;
3215
3216  for (unsigned i = 0; i < NumElems/2; ++i)
3217    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3218      return false;
3219
3220  return true;
3221}
3222
3223/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3224/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3225static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3226                         bool V2IsSplat = false) {
3227  int NumElts = VT.getVectorNumElements();
3228  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3229    return false;
3230
3231  // Handle vector lengths > 128 bits.  Define a "section" as a set of
3232  // 128 bits.  AVX defines UNPCK* to operate independently on 128-bit
3233  // sections.
3234  unsigned NumSections = VT.getSizeInBits() / 128;
3235  if (NumSections == 0 ) NumSections = 1;  // Handle MMX
3236  unsigned NumSectionElts = NumElts / NumSections;
3237
3238  unsigned Start = 0;
3239  unsigned End = NumSectionElts;
3240  for (unsigned s = 0; s < NumSections; ++s) {
3241    for (unsigned i = Start, j = s * NumSectionElts;
3242         i != End;
3243         i += 2, ++j) {
3244      int BitI  = Mask[i];
3245      int BitI1 = Mask[i+1];
3246      if (!isUndefOrEqual(BitI, j))
3247        return false;
3248      if (V2IsSplat) {
3249        if (!isUndefOrEqual(BitI1, NumElts))
3250          return false;
3251      } else {
3252        if (!isUndefOrEqual(BitI1, j + NumElts))
3253          return false;
3254      }
3255    }
3256    // Process the next 128 bits.
3257    Start += NumSectionElts;
3258    End += NumSectionElts;
3259  }
3260
3261  return true;
3262}
3263
3264bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3265  SmallVector<int, 8> M;
3266  N->getMask(M);
3267  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3268}
3269
3270/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3271/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3272static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3273                         bool V2IsSplat = false) {
3274  int NumElts = VT.getVectorNumElements();
3275  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3276    return false;
3277
3278  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3279    int BitI  = Mask[i];
3280    int BitI1 = Mask[i+1];
3281    if (!isUndefOrEqual(BitI, j + NumElts/2))
3282      return false;
3283    if (V2IsSplat) {
3284      if (isUndefOrEqual(BitI1, NumElts))
3285        return false;
3286    } else {
3287      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3288        return false;
3289    }
3290  }
3291  return true;
3292}
3293
3294bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3295  SmallVector<int, 8> M;
3296  N->getMask(M);
3297  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3298}
3299
3300/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3301/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3302/// <0, 0, 1, 1>
3303static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3304  int NumElems = VT.getVectorNumElements();
3305  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3306    return false;
3307
3308  // Handle vector lengths > 128 bits.  Define a "section" as a set of
3309  // 128 bits.  AVX defines UNPCK* to operate independently on 128-bit
3310  // sections.
3311  unsigned NumSections = VT.getSizeInBits() / 128;
3312  if (NumSections == 0 ) NumSections = 1;  // Handle MMX
3313  unsigned NumSectionElts = NumElems / NumSections;
3314
3315  for (unsigned s = 0; s < NumSections; ++s) {
3316    for (unsigned i = s * NumSectionElts, j = s * NumSectionElts;
3317         i != NumSectionElts * (s + 1);
3318         i += 2, ++j) {
3319      int BitI  = Mask[i];
3320      int BitI1 = Mask[i+1];
3321
3322      if (!isUndefOrEqual(BitI, j))
3323        return false;
3324      if (!isUndefOrEqual(BitI1, j))
3325        return false;
3326    }
3327  }
3328
3329  return true;
3330}
3331
3332bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3333  SmallVector<int, 8> M;
3334  N->getMask(M);
3335  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3336}
3337
3338/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3339/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3340/// <2, 2, 3, 3>
3341static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3342  int NumElems = VT.getVectorNumElements();
3343  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3344    return false;
3345
3346  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3347    int BitI  = Mask[i];
3348    int BitI1 = Mask[i+1];
3349    if (!isUndefOrEqual(BitI, j))
3350      return false;
3351    if (!isUndefOrEqual(BitI1, j))
3352      return false;
3353  }
3354  return true;
3355}
3356
3357bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3358  SmallVector<int, 8> M;
3359  N->getMask(M);
3360  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3361}
3362
3363/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3364/// specifies a shuffle of elements that is suitable for input to MOVSS,
3365/// MOVSD, and MOVD, i.e. setting the lowest element.
3366static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3367  if (VT.getVectorElementType().getSizeInBits() < 32)
3368    return false;
3369
3370  int NumElts = VT.getVectorNumElements();
3371
3372  if (!isUndefOrEqual(Mask[0], NumElts))
3373    return false;
3374
3375  for (int i = 1; i < NumElts; ++i)
3376    if (!isUndefOrEqual(Mask[i], i))
3377      return false;
3378
3379  return true;
3380}
3381
3382bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3383  SmallVector<int, 8> M;
3384  N->getMask(M);
3385  return ::isMOVLMask(M, N->getValueType(0));
3386}
3387
3388/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3389/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3390/// element of vector 2 and the other elements to come from vector 1 in order.
3391static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3392                               bool V2IsSplat = false, bool V2IsUndef = false) {
3393  int NumOps = VT.getVectorNumElements();
3394  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3395    return false;
3396
3397  if (!isUndefOrEqual(Mask[0], 0))
3398    return false;
3399
3400  for (int i = 1; i < NumOps; ++i)
3401    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3402          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3403          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3404      return false;
3405
3406  return true;
3407}
3408
3409static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3410                           bool V2IsUndef = false) {
3411  SmallVector<int, 8> M;
3412  N->getMask(M);
3413  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3414}
3415
3416/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3417/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3418bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3419  if (N->getValueType(0).getVectorNumElements() != 4)
3420    return false;
3421
3422  // Expect 1, 1, 3, 3
3423  for (unsigned i = 0; i < 2; ++i) {
3424    int Elt = N->getMaskElt(i);
3425    if (Elt >= 0 && Elt != 1)
3426      return false;
3427  }
3428
3429  bool HasHi = false;
3430  for (unsigned i = 2; i < 4; ++i) {
3431    int Elt = N->getMaskElt(i);
3432    if (Elt >= 0 && Elt != 3)
3433      return false;
3434    if (Elt == 3)
3435      HasHi = true;
3436  }
3437  // Don't use movshdup if it can be done with a shufps.
3438  // FIXME: verify that matching u, u, 3, 3 is what we want.
3439  return HasHi;
3440}
3441
3442/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3443/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3444bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3445  if (N->getValueType(0).getVectorNumElements() != 4)
3446    return false;
3447
3448  // Expect 0, 0, 2, 2
3449  for (unsigned i = 0; i < 2; ++i)
3450    if (N->getMaskElt(i) > 0)
3451      return false;
3452
3453  bool HasHi = false;
3454  for (unsigned i = 2; i < 4; ++i) {
3455    int Elt = N->getMaskElt(i);
3456    if (Elt >= 0 && Elt != 2)
3457      return false;
3458    if (Elt == 2)
3459      HasHi = true;
3460  }
3461  // Don't use movsldup if it can be done with a shufps.
3462  return HasHi;
3463}
3464
3465/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3466/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3467bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3468  int e = N->getValueType(0).getVectorNumElements() / 2;
3469
3470  for (int i = 0; i < e; ++i)
3471    if (!isUndefOrEqual(N->getMaskElt(i), i))
3472      return false;
3473  for (int i = 0; i < e; ++i)
3474    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3475      return false;
3476  return true;
3477}
3478
3479/// isVEXTRACTF128Index - Return true if the specified
3480/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3481/// suitable for input to VEXTRACTF128.
3482bool X86::isVEXTRACTF128Index(SDNode *N) {
3483  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3484    return false;
3485
3486  // The index should be aligned on a 128-bit boundary.
3487  uint64_t Index =
3488    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3489
3490  unsigned VL = N->getValueType(0).getVectorNumElements();
3491  unsigned VBits = N->getValueType(0).getSizeInBits();
3492  unsigned ElSize = VBits / VL;
3493  bool Result = (Index * ElSize) % 128 == 0;
3494
3495  return Result;
3496}
3497
3498/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3499/// operand specifies a subvector insert that is suitable for input to
3500/// VINSERTF128.
3501bool X86::isVINSERTF128Index(SDNode *N) {
3502  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3503    return false;
3504
3505  // The index should be aligned on a 128-bit boundary.
3506  uint64_t Index =
3507    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3508
3509  unsigned VL = N->getValueType(0).getVectorNumElements();
3510  unsigned VBits = N->getValueType(0).getSizeInBits();
3511  unsigned ElSize = VBits / VL;
3512  bool Result = (Index * ElSize) % 128 == 0;
3513
3514  return Result;
3515}
3516
3517/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3518/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3519unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3520  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3521  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3522
3523  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3524  unsigned Mask = 0;
3525  for (int i = 0; i < NumOperands; ++i) {
3526    int Val = SVOp->getMaskElt(NumOperands-i-1);
3527    if (Val < 0) Val = 0;
3528    if (Val >= NumOperands) Val -= NumOperands;
3529    Mask |= Val;
3530    if (i != NumOperands - 1)
3531      Mask <<= Shift;
3532  }
3533  return Mask;
3534}
3535
3536/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3537/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3538unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3539  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3540  unsigned Mask = 0;
3541  // 8 nodes, but we only care about the last 4.
3542  for (unsigned i = 7; i >= 4; --i) {
3543    int Val = SVOp->getMaskElt(i);
3544    if (Val >= 0)
3545      Mask |= (Val - 4);
3546    if (i != 4)
3547      Mask <<= 2;
3548  }
3549  return Mask;
3550}
3551
3552/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3553/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3554unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3555  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3556  unsigned Mask = 0;
3557  // 8 nodes, but we only care about the first 4.
3558  for (int i = 3; i >= 0; --i) {
3559    int Val = SVOp->getMaskElt(i);
3560    if (Val >= 0)
3561      Mask |= Val;
3562    if (i != 0)
3563      Mask <<= 2;
3564  }
3565  return Mask;
3566}
3567
3568/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3569/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3570unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3571  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3572  EVT VVT = N->getValueType(0);
3573  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3574  int Val = 0;
3575
3576  unsigned i, e;
3577  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3578    Val = SVOp->getMaskElt(i);
3579    if (Val >= 0)
3580      break;
3581  }
3582  return (Val - i) * EltSize;
3583}
3584
3585/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3586/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3587/// instructions.
3588unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3589  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3590    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3591
3592  uint64_t Index =
3593    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3594
3595  EVT VecVT = N->getOperand(0).getValueType();
3596  EVT ElVT = VecVT.getVectorElementType();
3597
3598  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3599
3600  return Index / NumElemsPerChunk;
3601}
3602
3603/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3604/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3605/// instructions.
3606unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3607  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3608    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3609
3610  uint64_t Index =
3611    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3612
3613  EVT VecVT = N->getValueType(0);
3614  EVT ElVT = VecVT.getVectorElementType();
3615
3616  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3617
3618  return Index / NumElemsPerChunk;
3619}
3620
3621/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3622/// constant +0.0.
3623bool X86::isZeroNode(SDValue Elt) {
3624  return ((isa<ConstantSDNode>(Elt) &&
3625           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3626          (isa<ConstantFPSDNode>(Elt) &&
3627           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3628}
3629
3630/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3631/// their permute mask.
3632static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3633                                    SelectionDAG &DAG) {
3634  EVT VT = SVOp->getValueType(0);
3635  unsigned NumElems = VT.getVectorNumElements();
3636  SmallVector<int, 8> MaskVec;
3637
3638  for (unsigned i = 0; i != NumElems; ++i) {
3639    int idx = SVOp->getMaskElt(i);
3640    if (idx < 0)
3641      MaskVec.push_back(idx);
3642    else if (idx < (int)NumElems)
3643      MaskVec.push_back(idx + NumElems);
3644    else
3645      MaskVec.push_back(idx - NumElems);
3646  }
3647  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3648                              SVOp->getOperand(0), &MaskVec[0]);
3649}
3650
3651/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3652/// the two vector operands have swapped position.
3653static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3654  unsigned NumElems = VT.getVectorNumElements();
3655  for (unsigned i = 0; i != NumElems; ++i) {
3656    int idx = Mask[i];
3657    if (idx < 0)
3658      continue;
3659    else if (idx < (int)NumElems)
3660      Mask[i] = idx + NumElems;
3661    else
3662      Mask[i] = idx - NumElems;
3663  }
3664}
3665
3666/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3667/// match movhlps. The lower half elements should come from upper half of
3668/// V1 (and in order), and the upper half elements should come from the upper
3669/// half of V2 (and in order).
3670static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3671  if (Op->getValueType(0).getVectorNumElements() != 4)
3672    return false;
3673  for (unsigned i = 0, e = 2; i != e; ++i)
3674    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3675      return false;
3676  for (unsigned i = 2; i != 4; ++i)
3677    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3678      return false;
3679  return true;
3680}
3681
3682/// isScalarLoadToVector - Returns true if the node is a scalar load that
3683/// is promoted to a vector. It also returns the LoadSDNode by reference if
3684/// required.
3685static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3686  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3687    return false;
3688  N = N->getOperand(0).getNode();
3689  if (!ISD::isNON_EXTLoad(N))
3690    return false;
3691  if (LD)
3692    *LD = cast<LoadSDNode>(N);
3693  return true;
3694}
3695
3696/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3697/// match movlp{s|d}. The lower half elements should come from lower half of
3698/// V1 (and in order), and the upper half elements should come from the upper
3699/// half of V2 (and in order). And since V1 will become the source of the
3700/// MOVLP, it must be either a vector load or a scalar load to vector.
3701static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3702                               ShuffleVectorSDNode *Op) {
3703  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3704    return false;
3705  // Is V2 is a vector load, don't do this transformation. We will try to use
3706  // load folding shufps op.
3707  if (ISD::isNON_EXTLoad(V2))
3708    return false;
3709
3710  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3711
3712  if (NumElems != 2 && NumElems != 4)
3713    return false;
3714  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3715    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3716      return false;
3717  for (unsigned i = NumElems/2; i != NumElems; ++i)
3718    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3719      return false;
3720  return true;
3721}
3722
3723/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3724/// all the same.
3725static bool isSplatVector(SDNode *N) {
3726  if (N->getOpcode() != ISD::BUILD_VECTOR)
3727    return false;
3728
3729  SDValue SplatValue = N->getOperand(0);
3730  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3731    if (N->getOperand(i) != SplatValue)
3732      return false;
3733  return true;
3734}
3735
3736/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3737/// to an zero vector.
3738/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3739static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3740  SDValue V1 = N->getOperand(0);
3741  SDValue V2 = N->getOperand(1);
3742  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3743  for (unsigned i = 0; i != NumElems; ++i) {
3744    int Idx = N->getMaskElt(i);
3745    if (Idx >= (int)NumElems) {
3746      unsigned Opc = V2.getOpcode();
3747      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3748        continue;
3749      if (Opc != ISD::BUILD_VECTOR ||
3750          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3751        return false;
3752    } else if (Idx >= 0) {
3753      unsigned Opc = V1.getOpcode();
3754      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3755        continue;
3756      if (Opc != ISD::BUILD_VECTOR ||
3757          !X86::isZeroNode(V1.getOperand(Idx)))
3758        return false;
3759    }
3760  }
3761  return true;
3762}
3763
3764/// getZeroVector - Returns a vector of specified type with all zero elements.
3765///
3766static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3767                             DebugLoc dl) {
3768  assert(VT.isVector() && "Expected a vector type");
3769
3770  // Always build SSE zero vectors as <4 x i32> bitcasted
3771  // to their dest type. This ensures they get CSE'd.
3772  SDValue Vec;
3773  if (VT.getSizeInBits() == 128) {  // SSE
3774    if (HasSSE2) {  // SSE2
3775      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3776      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3777    } else { // SSE1
3778      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3779      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3780    }
3781  } else if (VT.getSizeInBits() == 256) { // AVX
3782    // 256-bit logic and arithmetic instructions in AVX are
3783    // all floating-point, no support for integer ops. Default
3784    // to emitting fp zeroed vectors then.
3785    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3786    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3787    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3788  }
3789  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3790}
3791
3792/// getOnesVector - Returns a vector of specified type with all bits set.
3793///
3794static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3795  assert(VT.isVector() && "Expected a vector type");
3796
3797  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3798  // type.  This ensures they get CSE'd.
3799  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3800  SDValue Vec;
3801  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3802  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3803}
3804
3805
3806/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3807/// that point to V2 points to its first element.
3808static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3809  EVT VT = SVOp->getValueType(0);
3810  unsigned NumElems = VT.getVectorNumElements();
3811
3812  bool Changed = false;
3813  SmallVector<int, 8> MaskVec;
3814  SVOp->getMask(MaskVec);
3815
3816  for (unsigned i = 0; i != NumElems; ++i) {
3817    if (MaskVec[i] > (int)NumElems) {
3818      MaskVec[i] = NumElems;
3819      Changed = true;
3820    }
3821  }
3822  if (Changed)
3823    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3824                                SVOp->getOperand(1), &MaskVec[0]);
3825  return SDValue(SVOp, 0);
3826}
3827
3828/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3829/// operation of specified width.
3830static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3831                       SDValue V2) {
3832  unsigned NumElems = VT.getVectorNumElements();
3833  SmallVector<int, 8> Mask;
3834  Mask.push_back(NumElems);
3835  for (unsigned i = 1; i != NumElems; ++i)
3836    Mask.push_back(i);
3837  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3838}
3839
3840/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3841static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3842                          SDValue V2) {
3843  unsigned NumElems = VT.getVectorNumElements();
3844  SmallVector<int, 8> Mask;
3845  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3846    Mask.push_back(i);
3847    Mask.push_back(i + NumElems);
3848  }
3849  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3850}
3851
3852/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3853static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3854                          SDValue V2) {
3855  unsigned NumElems = VT.getVectorNumElements();
3856  unsigned Half = NumElems/2;
3857  SmallVector<int, 8> Mask;
3858  for (unsigned i = 0; i != Half; ++i) {
3859    Mask.push_back(i + Half);
3860    Mask.push_back(i + NumElems + Half);
3861  }
3862  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3863}
3864
3865/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3866static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3867  EVT PVT = MVT::v4f32;
3868  EVT VT = SV->getValueType(0);
3869  DebugLoc dl = SV->getDebugLoc();
3870  SDValue V1 = SV->getOperand(0);
3871  int NumElems = VT.getVectorNumElements();
3872  int EltNo = SV->getSplatIndex();
3873
3874  // unpack elements to the correct location
3875  while (NumElems > 4) {
3876    if (EltNo < NumElems/2) {
3877      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3878    } else {
3879      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3880      EltNo -= NumElems/2;
3881    }
3882    NumElems >>= 1;
3883  }
3884
3885  // Perform the splat.
3886  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3887  V1 = DAG.getNode(ISD::BITCAST, dl, PVT, V1);
3888  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3889  return DAG.getNode(ISD::BITCAST, dl, VT, V1);
3890}
3891
3892/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3893/// vector of zero or undef vector.  This produces a shuffle where the low
3894/// element of V2 is swizzled into the zero/undef vector, landing at element
3895/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3896static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3897                                             bool isZero, bool HasSSE2,
3898                                             SelectionDAG &DAG) {
3899  EVT VT = V2.getValueType();
3900  SDValue V1 = isZero
3901    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3902  unsigned NumElems = VT.getVectorNumElements();
3903  SmallVector<int, 16> MaskVec;
3904  for (unsigned i = 0; i != NumElems; ++i)
3905    // If this is the insertion idx, put the low elt of V2 here.
3906    MaskVec.push_back(i == Idx ? NumElems : i);
3907  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3908}
3909
3910/// getShuffleScalarElt - Returns the scalar element that will make up the ith
3911/// element of the result of the vector shuffle.
3912static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
3913                                   unsigned Depth) {
3914  if (Depth == 6)
3915    return SDValue();  // Limit search depth.
3916
3917  SDValue V = SDValue(N, 0);
3918  EVT VT = V.getValueType();
3919  unsigned Opcode = V.getOpcode();
3920
3921  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
3922  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
3923    Index = SV->getMaskElt(Index);
3924
3925    if (Index < 0)
3926      return DAG.getUNDEF(VT.getVectorElementType());
3927
3928    int NumElems = VT.getVectorNumElements();
3929    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
3930    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
3931  }
3932
3933  // Recurse into target specific vector shuffles to find scalars.
3934  if (isTargetShuffle(Opcode)) {
3935    int NumElems = VT.getVectorNumElements();
3936    SmallVector<unsigned, 16> ShuffleMask;
3937    SDValue ImmN;
3938
3939    switch(Opcode) {
3940    case X86ISD::SHUFPS:
3941    case X86ISD::SHUFPD:
3942      ImmN = N->getOperand(N->getNumOperands()-1);
3943      DecodeSHUFPSMask(NumElems,
3944                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
3945                       ShuffleMask);
3946      break;
3947    case X86ISD::PUNPCKHBW:
3948    case X86ISD::PUNPCKHWD:
3949    case X86ISD::PUNPCKHDQ:
3950    case X86ISD::PUNPCKHQDQ:
3951      DecodePUNPCKHMask(NumElems, ShuffleMask);
3952      break;
3953    case X86ISD::UNPCKHPS:
3954    case X86ISD::UNPCKHPD:
3955      DecodeUNPCKHPMask(NumElems, ShuffleMask);
3956      break;
3957    case X86ISD::PUNPCKLBW:
3958    case X86ISD::PUNPCKLWD:
3959    case X86ISD::PUNPCKLDQ:
3960    case X86ISD::PUNPCKLQDQ:
3961      DecodePUNPCKLMask(VT, ShuffleMask);
3962      break;
3963    case X86ISD::UNPCKLPS:
3964    case X86ISD::UNPCKLPD:
3965    case X86ISD::VUNPCKLPS:
3966    case X86ISD::VUNPCKLPD:
3967    case X86ISD::VUNPCKLPSY:
3968    case X86ISD::VUNPCKLPDY:
3969      DecodeUNPCKLPMask(VT, ShuffleMask);
3970      break;
3971    case X86ISD::MOVHLPS:
3972      DecodeMOVHLPSMask(NumElems, ShuffleMask);
3973      break;
3974    case X86ISD::MOVLHPS:
3975      DecodeMOVLHPSMask(NumElems, ShuffleMask);
3976      break;
3977    case X86ISD::PSHUFD:
3978      ImmN = N->getOperand(N->getNumOperands()-1);
3979      DecodePSHUFMask(NumElems,
3980                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
3981                      ShuffleMask);
3982      break;
3983    case X86ISD::PSHUFHW:
3984      ImmN = N->getOperand(N->getNumOperands()-1);
3985      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3986                        ShuffleMask);
3987      break;
3988    case X86ISD::PSHUFLW:
3989      ImmN = N->getOperand(N->getNumOperands()-1);
3990      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3991                        ShuffleMask);
3992      break;
3993    case X86ISD::MOVSS:
3994    case X86ISD::MOVSD: {
3995      // The index 0 always comes from the first element of the second source,
3996      // this is why MOVSS and MOVSD are used in the first place. The other
3997      // elements come from the other positions of the first source vector.
3998      unsigned OpNum = (Index == 0) ? 1 : 0;
3999      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4000                                 Depth+1);
4001    }
4002    default:
4003      assert("not implemented for target shuffle node");
4004      return SDValue();
4005    }
4006
4007    Index = ShuffleMask[Index];
4008    if (Index < 0)
4009      return DAG.getUNDEF(VT.getVectorElementType());
4010
4011    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4012    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4013                               Depth+1);
4014  }
4015
4016  // Actual nodes that may contain scalar elements
4017  if (Opcode == ISD::BITCAST) {
4018    V = V.getOperand(0);
4019    EVT SrcVT = V.getValueType();
4020    unsigned NumElems = VT.getVectorNumElements();
4021
4022    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4023      return SDValue();
4024  }
4025
4026  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4027    return (Index == 0) ? V.getOperand(0)
4028                          : DAG.getUNDEF(VT.getVectorElementType());
4029
4030  if (V.getOpcode() == ISD::BUILD_VECTOR)
4031    return V.getOperand(Index);
4032
4033  return SDValue();
4034}
4035
4036/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4037/// shuffle operation which come from a consecutively from a zero. The
4038/// search can start in two different directions, from left or right.
4039static
4040unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4041                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4042  int i = 0;
4043
4044  while (i < NumElems) {
4045    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4046    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4047    if (!(Elt.getNode() &&
4048         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4049      break;
4050    ++i;
4051  }
4052
4053  return i;
4054}
4055
4056/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4057/// MaskE correspond consecutively to elements from one of the vector operands,
4058/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4059static
4060bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4061                              int OpIdx, int NumElems, unsigned &OpNum) {
4062  bool SeenV1 = false;
4063  bool SeenV2 = false;
4064
4065  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4066    int Idx = SVOp->getMaskElt(i);
4067    // Ignore undef indicies
4068    if (Idx < 0)
4069      continue;
4070
4071    if (Idx < NumElems)
4072      SeenV1 = true;
4073    else
4074      SeenV2 = true;
4075
4076    // Only accept consecutive elements from the same vector
4077    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4078      return false;
4079  }
4080
4081  OpNum = SeenV1 ? 0 : 1;
4082  return true;
4083}
4084
4085/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4086/// logical left shift of a vector.
4087static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4088                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4089  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4090  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4091              false /* check zeros from right */, DAG);
4092  unsigned OpSrc;
4093
4094  if (!NumZeros)
4095    return false;
4096
4097  // Considering the elements in the mask that are not consecutive zeros,
4098  // check if they consecutively come from only one of the source vectors.
4099  //
4100  //               V1 = {X, A, B, C}     0
4101  //                         \  \  \    /
4102  //   vector_shuffle V1, V2 <1, 2, 3, X>
4103  //
4104  if (!isShuffleMaskConsecutive(SVOp,
4105            0,                   // Mask Start Index
4106            NumElems-NumZeros-1, // Mask End Index
4107            NumZeros,            // Where to start looking in the src vector
4108            NumElems,            // Number of elements in vector
4109            OpSrc))              // Which source operand ?
4110    return false;
4111
4112  isLeft = false;
4113  ShAmt = NumZeros;
4114  ShVal = SVOp->getOperand(OpSrc);
4115  return true;
4116}
4117
4118/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4119/// logical left shift of a vector.
4120static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4121                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4122  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4123  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4124              true /* check zeros from left */, DAG);
4125  unsigned OpSrc;
4126
4127  if (!NumZeros)
4128    return false;
4129
4130  // Considering the elements in the mask that are not consecutive zeros,
4131  // check if they consecutively come from only one of the source vectors.
4132  //
4133  //                           0    { A, B, X, X } = V2
4134  //                          / \    /  /
4135  //   vector_shuffle V1, V2 <X, X, 4, 5>
4136  //
4137  if (!isShuffleMaskConsecutive(SVOp,
4138            NumZeros,     // Mask Start Index
4139            NumElems-1,   // Mask End Index
4140            0,            // Where to start looking in the src vector
4141            NumElems,     // Number of elements in vector
4142            OpSrc))       // Which source operand ?
4143    return false;
4144
4145  isLeft = true;
4146  ShAmt = NumZeros;
4147  ShVal = SVOp->getOperand(OpSrc);
4148  return true;
4149}
4150
4151/// isVectorShift - Returns true if the shuffle can be implemented as a
4152/// logical left or right shift of a vector.
4153static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4154                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4155  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4156      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4157    return true;
4158
4159  return false;
4160}
4161
4162/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4163///
4164static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4165                                       unsigned NumNonZero, unsigned NumZero,
4166                                       SelectionDAG &DAG,
4167                                       const TargetLowering &TLI) {
4168  if (NumNonZero > 8)
4169    return SDValue();
4170
4171  DebugLoc dl = Op.getDebugLoc();
4172  SDValue V(0, 0);
4173  bool First = true;
4174  for (unsigned i = 0; i < 16; ++i) {
4175    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4176    if (ThisIsNonZero && First) {
4177      if (NumZero)
4178        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4179      else
4180        V = DAG.getUNDEF(MVT::v8i16);
4181      First = false;
4182    }
4183
4184    if ((i & 1) != 0) {
4185      SDValue ThisElt(0, 0), LastElt(0, 0);
4186      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4187      if (LastIsNonZero) {
4188        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4189                              MVT::i16, Op.getOperand(i-1));
4190      }
4191      if (ThisIsNonZero) {
4192        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4193        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4194                              ThisElt, DAG.getConstant(8, MVT::i8));
4195        if (LastIsNonZero)
4196          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4197      } else
4198        ThisElt = LastElt;
4199
4200      if (ThisElt.getNode())
4201        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4202                        DAG.getIntPtrConstant(i/2));
4203    }
4204  }
4205
4206  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4207}
4208
4209/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4210///
4211static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4212                                     unsigned NumNonZero, unsigned NumZero,
4213                                     SelectionDAG &DAG,
4214                                     const TargetLowering &TLI) {
4215  if (NumNonZero > 4)
4216    return SDValue();
4217
4218  DebugLoc dl = Op.getDebugLoc();
4219  SDValue V(0, 0);
4220  bool First = true;
4221  for (unsigned i = 0; i < 8; ++i) {
4222    bool isNonZero = (NonZeros & (1 << i)) != 0;
4223    if (isNonZero) {
4224      if (First) {
4225        if (NumZero)
4226          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4227        else
4228          V = DAG.getUNDEF(MVT::v8i16);
4229        First = false;
4230      }
4231      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4232                      MVT::v8i16, V, Op.getOperand(i),
4233                      DAG.getIntPtrConstant(i));
4234    }
4235  }
4236
4237  return V;
4238}
4239
4240/// getVShift - Return a vector logical shift node.
4241///
4242static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4243                         unsigned NumBits, SelectionDAG &DAG,
4244                         const TargetLowering &TLI, DebugLoc dl) {
4245  EVT ShVT = MVT::v2i64;
4246  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4247  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4248  return DAG.getNode(ISD::BITCAST, dl, VT,
4249                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4250                             DAG.getConstant(NumBits,
4251                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4252}
4253
4254SDValue
4255X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4256                                          SelectionDAG &DAG) const {
4257
4258  // Check if the scalar load can be widened into a vector load. And if
4259  // the address is "base + cst" see if the cst can be "absorbed" into
4260  // the shuffle mask.
4261  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4262    SDValue Ptr = LD->getBasePtr();
4263    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4264      return SDValue();
4265    EVT PVT = LD->getValueType(0);
4266    if (PVT != MVT::i32 && PVT != MVT::f32)
4267      return SDValue();
4268
4269    int FI = -1;
4270    int64_t Offset = 0;
4271    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4272      FI = FINode->getIndex();
4273      Offset = 0;
4274    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4275               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4276      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4277      Offset = Ptr.getConstantOperandVal(1);
4278      Ptr = Ptr.getOperand(0);
4279    } else {
4280      return SDValue();
4281    }
4282
4283    SDValue Chain = LD->getChain();
4284    // Make sure the stack object alignment is at least 16.
4285    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4286    if (DAG.InferPtrAlignment(Ptr) < 16) {
4287      if (MFI->isFixedObjectIndex(FI)) {
4288        // Can't change the alignment. FIXME: It's possible to compute
4289        // the exact stack offset and reference FI + adjust offset instead.
4290        // If someone *really* cares about this. That's the way to implement it.
4291        return SDValue();
4292      } else {
4293        MFI->setObjectAlignment(FI, 16);
4294      }
4295    }
4296
4297    // (Offset % 16) must be multiple of 4. Then address is then
4298    // Ptr + (Offset & ~15).
4299    if (Offset < 0)
4300      return SDValue();
4301    if ((Offset % 16) & 3)
4302      return SDValue();
4303    int64_t StartOffset = Offset & ~15;
4304    if (StartOffset)
4305      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4306                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4307
4308    int EltNo = (Offset - StartOffset) >> 2;
4309    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4310    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4311    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
4312                             LD->getPointerInfo().getWithOffset(StartOffset),
4313                             false, false, 0);
4314    // Canonicalize it to a v4i32 shuffle.
4315    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
4316    return DAG.getNode(ISD::BITCAST, dl, VT,
4317                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4318                                            DAG.getUNDEF(MVT::v4i32),&Mask[0]));
4319  }
4320
4321  return SDValue();
4322}
4323
4324/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4325/// vector of type 'VT', see if the elements can be replaced by a single large
4326/// load which has the same value as a build_vector whose operands are 'elts'.
4327///
4328/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4329///
4330/// FIXME: we'd also like to handle the case where the last elements are zero
4331/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4332/// There's even a handy isZeroNode for that purpose.
4333static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4334                                        DebugLoc &DL, SelectionDAG &DAG) {
4335  EVT EltVT = VT.getVectorElementType();
4336  unsigned NumElems = Elts.size();
4337
4338  LoadSDNode *LDBase = NULL;
4339  unsigned LastLoadedElt = -1U;
4340
4341  // For each element in the initializer, see if we've found a load or an undef.
4342  // If we don't find an initial load element, or later load elements are
4343  // non-consecutive, bail out.
4344  for (unsigned i = 0; i < NumElems; ++i) {
4345    SDValue Elt = Elts[i];
4346
4347    if (!Elt.getNode() ||
4348        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4349      return SDValue();
4350    if (!LDBase) {
4351      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4352        return SDValue();
4353      LDBase = cast<LoadSDNode>(Elt.getNode());
4354      LastLoadedElt = i;
4355      continue;
4356    }
4357    if (Elt.getOpcode() == ISD::UNDEF)
4358      continue;
4359
4360    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4361    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4362      return SDValue();
4363    LastLoadedElt = i;
4364  }
4365
4366  // If we have found an entire vector of loads and undefs, then return a large
4367  // load of the entire vector width starting at the base pointer.  If we found
4368  // consecutive loads for the low half, generate a vzext_load node.
4369  if (LastLoadedElt == NumElems - 1) {
4370    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4371      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4372                         LDBase->getPointerInfo(),
4373                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4374    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4375                       LDBase->getPointerInfo(),
4376                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4377                       LDBase->getAlignment());
4378  } else if (NumElems == 4 && LastLoadedElt == 1) {
4379    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4380    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4381    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4382                                              Ops, 2, MVT::i32,
4383                                              LDBase->getMemOperand());
4384    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4385  }
4386  return SDValue();
4387}
4388
4389SDValue
4390X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4391  DebugLoc dl = Op.getDebugLoc();
4392
4393  EVT VT = Op.getValueType();
4394  EVT ExtVT = VT.getVectorElementType();
4395
4396  unsigned NumElems = Op.getNumOperands();
4397
4398  // For AVX-length vectors, build the individual 128-bit pieces and
4399  // use shuffles to put them in place.
4400  if (VT.getSizeInBits() > 256 &&
4401      Subtarget->hasAVX() &&
4402      !ISD::isBuildVectorAllZeros(Op.getNode())) {
4403    SmallVector<SDValue, 8> V;
4404    V.resize(NumElems);
4405    for (unsigned i = 0; i < NumElems; ++i) {
4406      V[i] = Op.getOperand(i);
4407    }
4408
4409    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
4410
4411    // Build the lower subvector.
4412    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
4413    // Build the upper subvector.
4414    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
4415                                NumElems/2);
4416
4417    return ConcatVectors(Lower, Upper, DAG);
4418  }
4419
4420  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
4421  // All one's are handled with pcmpeqd. In AVX, zero's are handled with
4422  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
4423  // is present, so AllOnes is ignored.
4424  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4425      (Op.getValueType().getSizeInBits() != 256 &&
4426       ISD::isBuildVectorAllOnes(Op.getNode()))) {
4427    // Canonicalize this to <4 x i32> (SSE) to
4428    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4429    // eliminated on x86-32 hosts.
4430    if (Op.getValueType() == MVT::v4i32)
4431      return Op;
4432
4433    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4434      return getOnesVector(Op.getValueType(), DAG, dl);
4435    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4436  }
4437
4438  unsigned EVTBits = ExtVT.getSizeInBits();
4439
4440  unsigned NumZero  = 0;
4441  unsigned NumNonZero = 0;
4442  unsigned NonZeros = 0;
4443  bool IsAllConstants = true;
4444  SmallSet<SDValue, 8> Values;
4445  for (unsigned i = 0; i < NumElems; ++i) {
4446    SDValue Elt = Op.getOperand(i);
4447    if (Elt.getOpcode() == ISD::UNDEF)
4448      continue;
4449    Values.insert(Elt);
4450    if (Elt.getOpcode() != ISD::Constant &&
4451        Elt.getOpcode() != ISD::ConstantFP)
4452      IsAllConstants = false;
4453    if (X86::isZeroNode(Elt))
4454      NumZero++;
4455    else {
4456      NonZeros |= (1 << i);
4457      NumNonZero++;
4458    }
4459  }
4460
4461  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4462  if (NumNonZero == 0)
4463    return DAG.getUNDEF(VT);
4464
4465  // Special case for single non-zero, non-undef, element.
4466  if (NumNonZero == 1) {
4467    unsigned Idx = CountTrailingZeros_32(NonZeros);
4468    SDValue Item = Op.getOperand(Idx);
4469
4470    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4471    // the value are obviously zero, truncate the value to i32 and do the
4472    // insertion that way.  Only do this if the value is non-constant or if the
4473    // value is a constant being inserted into element 0.  It is cheaper to do
4474    // a constant pool load than it is to do a movd + shuffle.
4475    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4476        (!IsAllConstants || Idx == 0)) {
4477      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4478        // Handle SSE only.
4479        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4480        EVT VecVT = MVT::v4i32;
4481        unsigned VecElts = 4;
4482
4483        // Truncate the value (which may itself be a constant) to i32, and
4484        // convert it to a vector with movd (S2V+shuffle to zero extend).
4485        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4486        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4487        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4488                                           Subtarget->hasSSE2(), DAG);
4489
4490        // Now we have our 32-bit value zero extended in the low element of
4491        // a vector.  If Idx != 0, swizzle it into place.
4492        if (Idx != 0) {
4493          SmallVector<int, 4> Mask;
4494          Mask.push_back(Idx);
4495          for (unsigned i = 1; i != VecElts; ++i)
4496            Mask.push_back(i);
4497          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4498                                      DAG.getUNDEF(Item.getValueType()),
4499                                      &Mask[0]);
4500        }
4501        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
4502      }
4503    }
4504
4505    // If we have a constant or non-constant insertion into the low element of
4506    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4507    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4508    // depending on what the source datatype is.
4509    if (Idx == 0) {
4510      if (NumZero == 0) {
4511        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4512      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4513          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4514        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4515        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4516        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4517                                           DAG);
4518      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4519        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4520        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4521        EVT MiddleVT = MVT::v4i32;
4522        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4523        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4524                                           Subtarget->hasSSE2(), DAG);
4525        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
4526      }
4527    }
4528
4529    // Is it a vector logical left shift?
4530    if (NumElems == 2 && Idx == 1 &&
4531        X86::isZeroNode(Op.getOperand(0)) &&
4532        !X86::isZeroNode(Op.getOperand(1))) {
4533      unsigned NumBits = VT.getSizeInBits();
4534      return getVShift(true, VT,
4535                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4536                                   VT, Op.getOperand(1)),
4537                       NumBits/2, DAG, *this, dl);
4538    }
4539
4540    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4541      return SDValue();
4542
4543    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4544    // is a non-constant being inserted into an element other than the low one,
4545    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4546    // movd/movss) to move this into the low element, then shuffle it into
4547    // place.
4548    if (EVTBits == 32) {
4549      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4550
4551      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4552      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4553                                         Subtarget->hasSSE2(), DAG);
4554      SmallVector<int, 8> MaskVec;
4555      for (unsigned i = 0; i < NumElems; i++)
4556        MaskVec.push_back(i == Idx ? 0 : 1);
4557      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4558    }
4559  }
4560
4561  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4562  if (Values.size() == 1) {
4563    if (EVTBits == 32) {
4564      // Instead of a shuffle like this:
4565      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4566      // Check if it's possible to issue this instead.
4567      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4568      unsigned Idx = CountTrailingZeros_32(NonZeros);
4569      SDValue Item = Op.getOperand(Idx);
4570      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4571        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4572    }
4573    return SDValue();
4574  }
4575
4576  // A vector full of immediates; various special cases are already
4577  // handled, so this is best done with a single constant-pool load.
4578  if (IsAllConstants)
4579    return SDValue();
4580
4581  // Let legalizer expand 2-wide build_vectors.
4582  if (EVTBits == 64) {
4583    if (NumNonZero == 1) {
4584      // One half is zero or undef.
4585      unsigned Idx = CountTrailingZeros_32(NonZeros);
4586      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4587                                 Op.getOperand(Idx));
4588      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4589                                         Subtarget->hasSSE2(), DAG);
4590    }
4591    return SDValue();
4592  }
4593
4594  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4595  if (EVTBits == 8 && NumElems == 16) {
4596    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4597                                        *this);
4598    if (V.getNode()) return V;
4599  }
4600
4601  if (EVTBits == 16 && NumElems == 8) {
4602    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4603                                      *this);
4604    if (V.getNode()) return V;
4605  }
4606
4607  // If element VT is == 32 bits, turn it into a number of shuffles.
4608  SmallVector<SDValue, 8> V;
4609  V.resize(NumElems);
4610  if (NumElems == 4 && NumZero > 0) {
4611    for (unsigned i = 0; i < 4; ++i) {
4612      bool isZero = !(NonZeros & (1 << i));
4613      if (isZero)
4614        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4615      else
4616        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4617    }
4618
4619    for (unsigned i = 0; i < 2; ++i) {
4620      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4621        default: break;
4622        case 0:
4623          V[i] = V[i*2];  // Must be a zero vector.
4624          break;
4625        case 1:
4626          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4627          break;
4628        case 2:
4629          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4630          break;
4631        case 3:
4632          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4633          break;
4634      }
4635    }
4636
4637    SmallVector<int, 8> MaskVec;
4638    bool Reverse = (NonZeros & 0x3) == 2;
4639    for (unsigned i = 0; i < 2; ++i)
4640      MaskVec.push_back(Reverse ? 1-i : i);
4641    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4642    for (unsigned i = 0; i < 2; ++i)
4643      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4644    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4645  }
4646
4647  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4648    // Check for a build vector of consecutive loads.
4649    for (unsigned i = 0; i < NumElems; ++i)
4650      V[i] = Op.getOperand(i);
4651
4652    // Check for elements which are consecutive loads.
4653    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4654    if (LD.getNode())
4655      return LD;
4656
4657    // For SSE 4.1, use insertps to put the high elements into the low element.
4658    if (getSubtarget()->hasSSE41()) {
4659      SDValue Result;
4660      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4661        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4662      else
4663        Result = DAG.getUNDEF(VT);
4664
4665      for (unsigned i = 1; i < NumElems; ++i) {
4666        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4667        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4668                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4669      }
4670      return Result;
4671    }
4672
4673    // Otherwise, expand into a number of unpckl*, start by extending each of
4674    // our (non-undef) elements to the full vector width with the element in the
4675    // bottom slot of the vector (which generates no code for SSE).
4676    for (unsigned i = 0; i < NumElems; ++i) {
4677      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4678        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4679      else
4680        V[i] = DAG.getUNDEF(VT);
4681    }
4682
4683    // Next, we iteratively mix elements, e.g. for v4f32:
4684    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4685    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4686    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4687    unsigned EltStride = NumElems >> 1;
4688    while (EltStride != 0) {
4689      for (unsigned i = 0; i < EltStride; ++i) {
4690        // If V[i+EltStride] is undef and this is the first round of mixing,
4691        // then it is safe to just drop this shuffle: V[i] is already in the
4692        // right place, the one element (since it's the first round) being
4693        // inserted as undef can be dropped.  This isn't safe for successive
4694        // rounds because they will permute elements within both vectors.
4695        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4696            EltStride == NumElems/2)
4697          continue;
4698
4699        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4700      }
4701      EltStride >>= 1;
4702    }
4703    return V[0];
4704  }
4705  return SDValue();
4706}
4707
4708SDValue
4709X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4710  // We support concatenate two MMX registers and place them in a MMX
4711  // register.  This is better than doing a stack convert.
4712  DebugLoc dl = Op.getDebugLoc();
4713  EVT ResVT = Op.getValueType();
4714  assert(Op.getNumOperands() == 2);
4715  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4716         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4717  int Mask[2];
4718  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
4719  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4720  InVec = Op.getOperand(1);
4721  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4722    unsigned NumElts = ResVT.getVectorNumElements();
4723    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4724    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4725                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4726  } else {
4727    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
4728    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4729    Mask[0] = 0; Mask[1] = 2;
4730    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4731  }
4732  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4733}
4734
4735// v8i16 shuffles - Prefer shuffles in the following order:
4736// 1. [all]   pshuflw, pshufhw, optional move
4737// 2. [ssse3] 1 x pshufb
4738// 3. [ssse3] 2 x pshufb + 1 x por
4739// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4740SDValue
4741X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4742                                            SelectionDAG &DAG) const {
4743  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4744  SDValue V1 = SVOp->getOperand(0);
4745  SDValue V2 = SVOp->getOperand(1);
4746  DebugLoc dl = SVOp->getDebugLoc();
4747  SmallVector<int, 8> MaskVals;
4748
4749  // Determine if more than 1 of the words in each of the low and high quadwords
4750  // of the result come from the same quadword of one of the two inputs.  Undef
4751  // mask values count as coming from any quadword, for better codegen.
4752  SmallVector<unsigned, 4> LoQuad(4);
4753  SmallVector<unsigned, 4> HiQuad(4);
4754  BitVector InputQuads(4);
4755  for (unsigned i = 0; i < 8; ++i) {
4756    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4757    int EltIdx = SVOp->getMaskElt(i);
4758    MaskVals.push_back(EltIdx);
4759    if (EltIdx < 0) {
4760      ++Quad[0];
4761      ++Quad[1];
4762      ++Quad[2];
4763      ++Quad[3];
4764      continue;
4765    }
4766    ++Quad[EltIdx / 4];
4767    InputQuads.set(EltIdx / 4);
4768  }
4769
4770  int BestLoQuad = -1;
4771  unsigned MaxQuad = 1;
4772  for (unsigned i = 0; i < 4; ++i) {
4773    if (LoQuad[i] > MaxQuad) {
4774      BestLoQuad = i;
4775      MaxQuad = LoQuad[i];
4776    }
4777  }
4778
4779  int BestHiQuad = -1;
4780  MaxQuad = 1;
4781  for (unsigned i = 0; i < 4; ++i) {
4782    if (HiQuad[i] > MaxQuad) {
4783      BestHiQuad = i;
4784      MaxQuad = HiQuad[i];
4785    }
4786  }
4787
4788  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4789  // of the two input vectors, shuffle them into one input vector so only a
4790  // single pshufb instruction is necessary. If There are more than 2 input
4791  // quads, disable the next transformation since it does not help SSSE3.
4792  bool V1Used = InputQuads[0] || InputQuads[1];
4793  bool V2Used = InputQuads[2] || InputQuads[3];
4794  if (Subtarget->hasSSSE3()) {
4795    if (InputQuads.count() == 2 && V1Used && V2Used) {
4796      BestLoQuad = InputQuads.find_first();
4797      BestHiQuad = InputQuads.find_next(BestLoQuad);
4798    }
4799    if (InputQuads.count() > 2) {
4800      BestLoQuad = -1;
4801      BestHiQuad = -1;
4802    }
4803  }
4804
4805  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4806  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4807  // words from all 4 input quadwords.
4808  SDValue NewV;
4809  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4810    SmallVector<int, 8> MaskV;
4811    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4812    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4813    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4814                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
4815                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
4816    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
4817
4818    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4819    // source words for the shuffle, to aid later transformations.
4820    bool AllWordsInNewV = true;
4821    bool InOrder[2] = { true, true };
4822    for (unsigned i = 0; i != 8; ++i) {
4823      int idx = MaskVals[i];
4824      if (idx != (int)i)
4825        InOrder[i/4] = false;
4826      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4827        continue;
4828      AllWordsInNewV = false;
4829      break;
4830    }
4831
4832    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4833    if (AllWordsInNewV) {
4834      for (int i = 0; i != 8; ++i) {
4835        int idx = MaskVals[i];
4836        if (idx < 0)
4837          continue;
4838        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4839        if ((idx != i) && idx < 4)
4840          pshufhw = false;
4841        if ((idx != i) && idx > 3)
4842          pshuflw = false;
4843      }
4844      V1 = NewV;
4845      V2Used = false;
4846      BestLoQuad = 0;
4847      BestHiQuad = 1;
4848    }
4849
4850    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4851    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4852    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4853      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4854      unsigned TargetMask = 0;
4855      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4856                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4857      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4858                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4859      V1 = NewV.getOperand(0);
4860      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4861    }
4862  }
4863
4864  // If we have SSSE3, and all words of the result are from 1 input vector,
4865  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4866  // is present, fall back to case 4.
4867  if (Subtarget->hasSSSE3()) {
4868    SmallVector<SDValue,16> pshufbMask;
4869
4870    // If we have elements from both input vectors, set the high bit of the
4871    // shuffle mask element to zero out elements that come from V2 in the V1
4872    // mask, and elements that come from V1 in the V2 mask, so that the two
4873    // results can be OR'd together.
4874    bool TwoInputs = V1Used && V2Used;
4875    for (unsigned i = 0; i != 8; ++i) {
4876      int EltIdx = MaskVals[i] * 2;
4877      if (TwoInputs && (EltIdx >= 16)) {
4878        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4879        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4880        continue;
4881      }
4882      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4883      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4884    }
4885    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
4886    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4887                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4888                                 MVT::v16i8, &pshufbMask[0], 16));
4889    if (!TwoInputs)
4890      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4891
4892    // Calculate the shuffle mask for the second input, shuffle it, and
4893    // OR it with the first shuffled input.
4894    pshufbMask.clear();
4895    for (unsigned i = 0; i != 8; ++i) {
4896      int EltIdx = MaskVals[i] * 2;
4897      if (EltIdx < 16) {
4898        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4899        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4900        continue;
4901      }
4902      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4903      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4904    }
4905    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
4906    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4907                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4908                                 MVT::v16i8, &pshufbMask[0], 16));
4909    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4910    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4911  }
4912
4913  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4914  // and update MaskVals with new element order.
4915  BitVector InOrder(8);
4916  if (BestLoQuad >= 0) {
4917    SmallVector<int, 8> MaskV;
4918    for (int i = 0; i != 4; ++i) {
4919      int idx = MaskVals[i];
4920      if (idx < 0) {
4921        MaskV.push_back(-1);
4922        InOrder.set(i);
4923      } else if ((idx / 4) == BestLoQuad) {
4924        MaskV.push_back(idx & 3);
4925        InOrder.set(i);
4926      } else {
4927        MaskV.push_back(-1);
4928      }
4929    }
4930    for (unsigned i = 4; i != 8; ++i)
4931      MaskV.push_back(i);
4932    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4933                                &MaskV[0]);
4934
4935    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4936      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4937                               NewV.getOperand(0),
4938                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4939                               DAG);
4940  }
4941
4942  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4943  // and update MaskVals with the new element order.
4944  if (BestHiQuad >= 0) {
4945    SmallVector<int, 8> MaskV;
4946    for (unsigned i = 0; i != 4; ++i)
4947      MaskV.push_back(i);
4948    for (unsigned i = 4; i != 8; ++i) {
4949      int idx = MaskVals[i];
4950      if (idx < 0) {
4951        MaskV.push_back(-1);
4952        InOrder.set(i);
4953      } else if ((idx / 4) == BestHiQuad) {
4954        MaskV.push_back((idx & 3) + 4);
4955        InOrder.set(i);
4956      } else {
4957        MaskV.push_back(-1);
4958      }
4959    }
4960    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4961                                &MaskV[0]);
4962
4963    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4964      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4965                              NewV.getOperand(0),
4966                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4967                              DAG);
4968  }
4969
4970  // In case BestHi & BestLo were both -1, which means each quadword has a word
4971  // from each of the four input quadwords, calculate the InOrder bitvector now
4972  // before falling through to the insert/extract cleanup.
4973  if (BestLoQuad == -1 && BestHiQuad == -1) {
4974    NewV = V1;
4975    for (int i = 0; i != 8; ++i)
4976      if (MaskVals[i] < 0 || MaskVals[i] == i)
4977        InOrder.set(i);
4978  }
4979
4980  // The other elements are put in the right place using pextrw and pinsrw.
4981  for (unsigned i = 0; i != 8; ++i) {
4982    if (InOrder[i])
4983      continue;
4984    int EltIdx = MaskVals[i];
4985    if (EltIdx < 0)
4986      continue;
4987    SDValue ExtOp = (EltIdx < 8)
4988    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4989                  DAG.getIntPtrConstant(EltIdx))
4990    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4991                  DAG.getIntPtrConstant(EltIdx - 8));
4992    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4993                       DAG.getIntPtrConstant(i));
4994  }
4995  return NewV;
4996}
4997
4998// v16i8 shuffles - Prefer shuffles in the following order:
4999// 1. [ssse3] 1 x pshufb
5000// 2. [ssse3] 2 x pshufb + 1 x por
5001// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5002static
5003SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5004                                 SelectionDAG &DAG,
5005                                 const X86TargetLowering &TLI) {
5006  SDValue V1 = SVOp->getOperand(0);
5007  SDValue V2 = SVOp->getOperand(1);
5008  DebugLoc dl = SVOp->getDebugLoc();
5009  SmallVector<int, 16> MaskVals;
5010  SVOp->getMask(MaskVals);
5011
5012  // If we have SSSE3, case 1 is generated when all result bytes come from
5013  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5014  // present, fall back to case 3.
5015  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5016  bool V1Only = true;
5017  bool V2Only = true;
5018  for (unsigned i = 0; i < 16; ++i) {
5019    int EltIdx = MaskVals[i];
5020    if (EltIdx < 0)
5021      continue;
5022    if (EltIdx < 16)
5023      V2Only = false;
5024    else
5025      V1Only = false;
5026  }
5027
5028  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5029  if (TLI.getSubtarget()->hasSSSE3()) {
5030    SmallVector<SDValue,16> pshufbMask;
5031
5032    // If all result elements are from one input vector, then only translate
5033    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5034    //
5035    // Otherwise, we have elements from both input vectors, and must zero out
5036    // elements that come from V2 in the first mask, and V1 in the second mask
5037    // so that we can OR them together.
5038    bool TwoInputs = !(V1Only || V2Only);
5039    for (unsigned i = 0; i != 16; ++i) {
5040      int EltIdx = MaskVals[i];
5041      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5042        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5043        continue;
5044      }
5045      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5046    }
5047    // If all the elements are from V2, assign it to V1 and return after
5048    // building the first pshufb.
5049    if (V2Only)
5050      V1 = V2;
5051    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5052                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5053                                 MVT::v16i8, &pshufbMask[0], 16));
5054    if (!TwoInputs)
5055      return V1;
5056
5057    // Calculate the shuffle mask for the second input, shuffle it, and
5058    // OR it with the first shuffled input.
5059    pshufbMask.clear();
5060    for (unsigned i = 0; i != 16; ++i) {
5061      int EltIdx = MaskVals[i];
5062      if (EltIdx < 16) {
5063        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5064        continue;
5065      }
5066      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5067    }
5068    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5069                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5070                                 MVT::v16i8, &pshufbMask[0], 16));
5071    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5072  }
5073
5074  // No SSSE3 - Calculate in place words and then fix all out of place words
5075  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5076  // the 16 different words that comprise the two doublequadword input vectors.
5077  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5078  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5079  SDValue NewV = V2Only ? V2 : V1;
5080  for (int i = 0; i != 8; ++i) {
5081    int Elt0 = MaskVals[i*2];
5082    int Elt1 = MaskVals[i*2+1];
5083
5084    // This word of the result is all undef, skip it.
5085    if (Elt0 < 0 && Elt1 < 0)
5086      continue;
5087
5088    // This word of the result is already in the correct place, skip it.
5089    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5090      continue;
5091    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5092      continue;
5093
5094    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5095    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5096    SDValue InsElt;
5097
5098    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5099    // using a single extract together, load it and store it.
5100    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5101      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5102                           DAG.getIntPtrConstant(Elt1 / 2));
5103      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5104                        DAG.getIntPtrConstant(i));
5105      continue;
5106    }
5107
5108    // If Elt1 is defined, extract it from the appropriate source.  If the
5109    // source byte is not also odd, shift the extracted word left 8 bits
5110    // otherwise clear the bottom 8 bits if we need to do an or.
5111    if (Elt1 >= 0) {
5112      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5113                           DAG.getIntPtrConstant(Elt1 / 2));
5114      if ((Elt1 & 1) == 0)
5115        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5116                             DAG.getConstant(8,
5117                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5118      else if (Elt0 >= 0)
5119        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5120                             DAG.getConstant(0xFF00, MVT::i16));
5121    }
5122    // If Elt0 is defined, extract it from the appropriate source.  If the
5123    // source byte is not also even, shift the extracted word right 8 bits. If
5124    // Elt1 was also defined, OR the extracted values together before
5125    // inserting them in the result.
5126    if (Elt0 >= 0) {
5127      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5128                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5129      if ((Elt0 & 1) != 0)
5130        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5131                              DAG.getConstant(8,
5132                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5133      else if (Elt1 >= 0)
5134        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5135                             DAG.getConstant(0x00FF, MVT::i16));
5136      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5137                         : InsElt0;
5138    }
5139    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5140                       DAG.getIntPtrConstant(i));
5141  }
5142  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5143}
5144
5145/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5146/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5147/// done when every pair / quad of shuffle mask elements point to elements in
5148/// the right sequence. e.g.
5149/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5150static
5151SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5152                                 SelectionDAG &DAG, DebugLoc dl) {
5153  EVT VT = SVOp->getValueType(0);
5154  SDValue V1 = SVOp->getOperand(0);
5155  SDValue V2 = SVOp->getOperand(1);
5156  unsigned NumElems = VT.getVectorNumElements();
5157  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5158  EVT NewVT;
5159  switch (VT.getSimpleVT().SimpleTy) {
5160  default: assert(false && "Unexpected!");
5161  case MVT::v4f32: NewVT = MVT::v2f64; break;
5162  case MVT::v4i32: NewVT = MVT::v2i64; break;
5163  case MVT::v8i16: NewVT = MVT::v4i32; break;
5164  case MVT::v16i8: NewVT = MVT::v4i32; break;
5165  }
5166
5167  int Scale = NumElems / NewWidth;
5168  SmallVector<int, 8> MaskVec;
5169  for (unsigned i = 0; i < NumElems; i += Scale) {
5170    int StartIdx = -1;
5171    for (int j = 0; j < Scale; ++j) {
5172      int EltIdx = SVOp->getMaskElt(i+j);
5173      if (EltIdx < 0)
5174        continue;
5175      if (StartIdx == -1)
5176        StartIdx = EltIdx - (EltIdx % Scale);
5177      if (EltIdx != StartIdx + j)
5178        return SDValue();
5179    }
5180    if (StartIdx == -1)
5181      MaskVec.push_back(-1);
5182    else
5183      MaskVec.push_back(StartIdx / Scale);
5184  }
5185
5186  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5187  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5188  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5189}
5190
5191/// getVZextMovL - Return a zero-extending vector move low node.
5192///
5193static SDValue getVZextMovL(EVT VT, EVT OpVT,
5194                            SDValue SrcOp, SelectionDAG &DAG,
5195                            const X86Subtarget *Subtarget, DebugLoc dl) {
5196  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5197    LoadSDNode *LD = NULL;
5198    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5199      LD = dyn_cast<LoadSDNode>(SrcOp);
5200    if (!LD) {
5201      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5202      // instead.
5203      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5204      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5205          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5206          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5207          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5208        // PR2108
5209        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5210        return DAG.getNode(ISD::BITCAST, dl, VT,
5211                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5212                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5213                                                   OpVT,
5214                                                   SrcOp.getOperand(0)
5215                                                          .getOperand(0))));
5216      }
5217    }
5218  }
5219
5220  return DAG.getNode(ISD::BITCAST, dl, VT,
5221                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5222                                 DAG.getNode(ISD::BITCAST, dl,
5223                                             OpVT, SrcOp)));
5224}
5225
5226/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
5227/// shuffles.
5228static SDValue
5229LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5230  SDValue V1 = SVOp->getOperand(0);
5231  SDValue V2 = SVOp->getOperand(1);
5232  DebugLoc dl = SVOp->getDebugLoc();
5233  EVT VT = SVOp->getValueType(0);
5234
5235  SmallVector<std::pair<int, int>, 8> Locs;
5236  Locs.resize(4);
5237  SmallVector<int, 8> Mask1(4U, -1);
5238  SmallVector<int, 8> PermMask;
5239  SVOp->getMask(PermMask);
5240
5241  unsigned NumHi = 0;
5242  unsigned NumLo = 0;
5243  for (unsigned i = 0; i != 4; ++i) {
5244    int Idx = PermMask[i];
5245    if (Idx < 0) {
5246      Locs[i] = std::make_pair(-1, -1);
5247    } else {
5248      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5249      if (Idx < 4) {
5250        Locs[i] = std::make_pair(0, NumLo);
5251        Mask1[NumLo] = Idx;
5252        NumLo++;
5253      } else {
5254        Locs[i] = std::make_pair(1, NumHi);
5255        if (2+NumHi < 4)
5256          Mask1[2+NumHi] = Idx;
5257        NumHi++;
5258      }
5259    }
5260  }
5261
5262  if (NumLo <= 2 && NumHi <= 2) {
5263    // If no more than two elements come from either vector. This can be
5264    // implemented with two shuffles. First shuffle gather the elements.
5265    // The second shuffle, which takes the first shuffle as both of its
5266    // vector operands, put the elements into the right order.
5267    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5268
5269    SmallVector<int, 8> Mask2(4U, -1);
5270
5271    for (unsigned i = 0; i != 4; ++i) {
5272      if (Locs[i].first == -1)
5273        continue;
5274      else {
5275        unsigned Idx = (i < 2) ? 0 : 4;
5276        Idx += Locs[i].first * 2 + Locs[i].second;
5277        Mask2[i] = Idx;
5278      }
5279    }
5280
5281    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
5282  } else if (NumLo == 3 || NumHi == 3) {
5283    // Otherwise, we must have three elements from one vector, call it X, and
5284    // one element from the other, call it Y.  First, use a shufps to build an
5285    // intermediate vector with the one element from Y and the element from X
5286    // that will be in the same half in the final destination (the indexes don't
5287    // matter). Then, use a shufps to build the final vector, taking the half
5288    // containing the element from Y from the intermediate, and the other half
5289    // from X.
5290    if (NumHi == 3) {
5291      // Normalize it so the 3 elements come from V1.
5292      CommuteVectorShuffleMask(PermMask, VT);
5293      std::swap(V1, V2);
5294    }
5295
5296    // Find the element from V2.
5297    unsigned HiIndex;
5298    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5299      int Val = PermMask[HiIndex];
5300      if (Val < 0)
5301        continue;
5302      if (Val >= 4)
5303        break;
5304    }
5305
5306    Mask1[0] = PermMask[HiIndex];
5307    Mask1[1] = -1;
5308    Mask1[2] = PermMask[HiIndex^1];
5309    Mask1[3] = -1;
5310    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5311
5312    if (HiIndex >= 2) {
5313      Mask1[0] = PermMask[0];
5314      Mask1[1] = PermMask[1];
5315      Mask1[2] = HiIndex & 1 ? 6 : 4;
5316      Mask1[3] = HiIndex & 1 ? 4 : 6;
5317      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5318    } else {
5319      Mask1[0] = HiIndex & 1 ? 2 : 0;
5320      Mask1[1] = HiIndex & 1 ? 0 : 2;
5321      Mask1[2] = PermMask[2];
5322      Mask1[3] = PermMask[3];
5323      if (Mask1[2] >= 0)
5324        Mask1[2] += 4;
5325      if (Mask1[3] >= 0)
5326        Mask1[3] += 4;
5327      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5328    }
5329  }
5330
5331  // Break it into (shuffle shuffle_hi, shuffle_lo).
5332  Locs.clear();
5333  Locs.resize(4);
5334  SmallVector<int,8> LoMask(4U, -1);
5335  SmallVector<int,8> HiMask(4U, -1);
5336
5337  SmallVector<int,8> *MaskPtr = &LoMask;
5338  unsigned MaskIdx = 0;
5339  unsigned LoIdx = 0;
5340  unsigned HiIdx = 2;
5341  for (unsigned i = 0; i != 4; ++i) {
5342    if (i == 2) {
5343      MaskPtr = &HiMask;
5344      MaskIdx = 1;
5345      LoIdx = 0;
5346      HiIdx = 2;
5347    }
5348    int Idx = PermMask[i];
5349    if (Idx < 0) {
5350      Locs[i] = std::make_pair(-1, -1);
5351    } else if (Idx < 4) {
5352      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5353      (*MaskPtr)[LoIdx] = Idx;
5354      LoIdx++;
5355    } else {
5356      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5357      (*MaskPtr)[HiIdx] = Idx;
5358      HiIdx++;
5359    }
5360  }
5361
5362  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5363  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5364  SmallVector<int, 8> MaskOps;
5365  for (unsigned i = 0; i != 4; ++i) {
5366    if (Locs[i].first == -1) {
5367      MaskOps.push_back(-1);
5368    } else {
5369      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5370      MaskOps.push_back(Idx);
5371    }
5372  }
5373  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5374}
5375
5376static bool MayFoldVectorLoad(SDValue V) {
5377  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5378    V = V.getOperand(0);
5379  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5380    V = V.getOperand(0);
5381  if (MayFoldLoad(V))
5382    return true;
5383  return false;
5384}
5385
5386// FIXME: the version above should always be used. Since there's
5387// a bug where several vector shuffles can't be folded because the
5388// DAG is not updated during lowering and a node claims to have two
5389// uses while it only has one, use this version, and let isel match
5390// another instruction if the load really happens to have more than
5391// one use. Remove this version after this bug get fixed.
5392// rdar://8434668, PR8156
5393static bool RelaxedMayFoldVectorLoad(SDValue V) {
5394  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5395    V = V.getOperand(0);
5396  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5397    V = V.getOperand(0);
5398  if (ISD::isNormalLoad(V.getNode()))
5399    return true;
5400  return false;
5401}
5402
5403/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5404/// a vector extract, and if both can be later optimized into a single load.
5405/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5406/// here because otherwise a target specific shuffle node is going to be
5407/// emitted for this shuffle, and the optimization not done.
5408/// FIXME: This is probably not the best approach, but fix the problem
5409/// until the right path is decided.
5410static
5411bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5412                                         const TargetLowering &TLI) {
5413  EVT VT = V.getValueType();
5414  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5415
5416  // Be sure that the vector shuffle is present in a pattern like this:
5417  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5418  if (!V.hasOneUse())
5419    return false;
5420
5421  SDNode *N = *V.getNode()->use_begin();
5422  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5423    return false;
5424
5425  SDValue EltNo = N->getOperand(1);
5426  if (!isa<ConstantSDNode>(EltNo))
5427    return false;
5428
5429  // If the bit convert changed the number of elements, it is unsafe
5430  // to examine the mask.
5431  bool HasShuffleIntoBitcast = false;
5432  if (V.getOpcode() == ISD::BITCAST) {
5433    EVT SrcVT = V.getOperand(0).getValueType();
5434    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5435      return false;
5436    V = V.getOperand(0);
5437    HasShuffleIntoBitcast = true;
5438  }
5439
5440  // Select the input vector, guarding against out of range extract vector.
5441  unsigned NumElems = VT.getVectorNumElements();
5442  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5443  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5444  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5445
5446  // Skip one more bit_convert if necessary
5447  if (V.getOpcode() == ISD::BITCAST)
5448    V = V.getOperand(0);
5449
5450  if (ISD::isNormalLoad(V.getNode())) {
5451    // Is the original load suitable?
5452    LoadSDNode *LN0 = cast<LoadSDNode>(V);
5453
5454    // FIXME: avoid the multi-use bug that is preventing lots of
5455    // of foldings to be detected, this is still wrong of course, but
5456    // give the temporary desired behavior, and if it happens that
5457    // the load has real more uses, during isel it will not fold, and
5458    // will generate poor code.
5459    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5460      return false;
5461
5462    if (!HasShuffleIntoBitcast)
5463      return true;
5464
5465    // If there's a bitcast before the shuffle, check if the load type and
5466    // alignment is valid.
5467    unsigned Align = LN0->getAlignment();
5468    unsigned NewAlign =
5469      TLI.getTargetData()->getABITypeAlignment(
5470                                    VT.getTypeForEVT(*DAG.getContext()));
5471
5472    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5473      return false;
5474  }
5475
5476  return true;
5477}
5478
5479static
5480SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5481  EVT VT = Op.getValueType();
5482
5483  // Canonizalize to v2f64.
5484  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
5485  return DAG.getNode(ISD::BITCAST, dl, VT,
5486                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5487                                          V1, DAG));
5488}
5489
5490static
5491SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5492                        bool HasSSE2) {
5493  SDValue V1 = Op.getOperand(0);
5494  SDValue V2 = Op.getOperand(1);
5495  EVT VT = Op.getValueType();
5496
5497  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5498
5499  if (HasSSE2 && VT == MVT::v2f64)
5500    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5501
5502  // v4f32 or v4i32
5503  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5504}
5505
5506static
5507SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5508  SDValue V1 = Op.getOperand(0);
5509  SDValue V2 = Op.getOperand(1);
5510  EVT VT = Op.getValueType();
5511
5512  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5513         "unsupported shuffle type");
5514
5515  if (V2.getOpcode() == ISD::UNDEF)
5516    V2 = V1;
5517
5518  // v4i32 or v4f32
5519  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5520}
5521
5522static
5523SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5524  SDValue V1 = Op.getOperand(0);
5525  SDValue V2 = Op.getOperand(1);
5526  EVT VT = Op.getValueType();
5527  unsigned NumElems = VT.getVectorNumElements();
5528
5529  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5530  // operand of these instructions is only memory, so check if there's a
5531  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5532  // same masks.
5533  bool CanFoldLoad = false;
5534
5535  // Trivial case, when V2 comes from a load.
5536  if (MayFoldVectorLoad(V2))
5537    CanFoldLoad = true;
5538
5539  // When V1 is a load, it can be folded later into a store in isel, example:
5540  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5541  //    turns into:
5542  //  (MOVLPSmr addr:$src1, VR128:$src2)
5543  // So, recognize this potential and also use MOVLPS or MOVLPD
5544  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5545    CanFoldLoad = true;
5546
5547  // Both of them can't be memory operations though.
5548  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
5549    CanFoldLoad = false;
5550
5551  if (CanFoldLoad) {
5552    if (HasSSE2 && NumElems == 2)
5553      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5554
5555    if (NumElems == 4)
5556      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5557  }
5558
5559  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5560  // movl and movlp will both match v2i64, but v2i64 is never matched by
5561  // movl earlier because we make it strict to avoid messing with the movlp load
5562  // folding logic (see the code above getMOVLP call). Match it here then,
5563  // this is horrible, but will stay like this until we move all shuffle
5564  // matching to x86 specific nodes. Note that for the 1st condition all
5565  // types are matched with movsd.
5566  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5567    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5568  else if (HasSSE2)
5569    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5570
5571
5572  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5573
5574  // Invert the operand order and use SHUFPS to match it.
5575  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5576                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5577}
5578
5579static inline unsigned getUNPCKLOpcode(EVT VT, const X86Subtarget *Subtarget) {
5580  switch(VT.getSimpleVT().SimpleTy) {
5581  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5582  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5583  case MVT::v4f32:
5584    return Subtarget->hasAVX() ? X86ISD::VUNPCKLPS : X86ISD::UNPCKLPS;
5585  case MVT::v2f64:
5586    return Subtarget->hasAVX() ? X86ISD::VUNPCKLPD : X86ISD::UNPCKLPD;
5587  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
5588  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
5589  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5590  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5591  default:
5592    llvm_unreachable("Unknown type for unpckl");
5593  }
5594  return 0;
5595}
5596
5597static inline unsigned getUNPCKHOpcode(EVT VT) {
5598  switch(VT.getSimpleVT().SimpleTy) {
5599  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5600  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5601  case MVT::v4f32: return X86ISD::UNPCKHPS;
5602  case MVT::v2f64: return X86ISD::UNPCKHPD;
5603  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5604  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5605  default:
5606    llvm_unreachable("Unknown type for unpckh");
5607  }
5608  return 0;
5609}
5610
5611static
5612SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5613                               const TargetLowering &TLI,
5614                               const X86Subtarget *Subtarget) {
5615  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5616  EVT VT = Op.getValueType();
5617  DebugLoc dl = Op.getDebugLoc();
5618  SDValue V1 = Op.getOperand(0);
5619  SDValue V2 = Op.getOperand(1);
5620
5621  if (isZeroShuffle(SVOp))
5622    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5623
5624  // Handle splat operations
5625  if (SVOp->isSplat()) {
5626    // Special case, this is the only place now where it's
5627    // allowed to return a vector_shuffle operation without
5628    // using a target specific node, because *hopefully* it
5629    // will be optimized away by the dag combiner.
5630    if (VT.getVectorNumElements() <= 4 &&
5631        CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
5632      return Op;
5633
5634    // Handle splats by matching through known masks
5635    if (VT.getVectorNumElements() <= 4)
5636      return SDValue();
5637
5638    // Canonicalize all of the remaining to v4f32.
5639    return PromoteSplat(SVOp, DAG);
5640  }
5641
5642  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5643  // do it!
5644  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5645    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5646    if (NewOp.getNode())
5647      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
5648  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5649    // FIXME: Figure out a cleaner way to do this.
5650    // Try to make use of movq to zero out the top part.
5651    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5652      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5653      if (NewOp.getNode()) {
5654        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5655          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5656                              DAG, Subtarget, dl);
5657      }
5658    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5659      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5660      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5661        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5662                            DAG, Subtarget, dl);
5663    }
5664  }
5665  return SDValue();
5666}
5667
5668SDValue
5669X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5670  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5671  SDValue V1 = Op.getOperand(0);
5672  SDValue V2 = Op.getOperand(1);
5673  EVT VT = Op.getValueType();
5674  DebugLoc dl = Op.getDebugLoc();
5675  unsigned NumElems = VT.getVectorNumElements();
5676  bool isMMX = VT.getSizeInBits() == 64;
5677  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5678  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5679  bool V1IsSplat = false;
5680  bool V2IsSplat = false;
5681  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5682  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5683  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
5684  MachineFunction &MF = DAG.getMachineFunction();
5685  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5686
5687  // Shuffle operations on MMX not supported.
5688  if (isMMX)
5689    return Op;
5690
5691  // Vector shuffle lowering takes 3 steps:
5692  //
5693  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
5694  //    narrowing and commutation of operands should be handled.
5695  // 2) Matching of shuffles with known shuffle masks to x86 target specific
5696  //    shuffle nodes.
5697  // 3) Rewriting of unmatched masks into new generic shuffle operations,
5698  //    so the shuffle can be broken into other shuffles and the legalizer can
5699  //    try the lowering again.
5700  //
5701  // The general ideia is that no vector_shuffle operation should be left to
5702  // be matched during isel, all of them must be converted to a target specific
5703  // node here.
5704
5705  // Normalize the input vectors. Here splats, zeroed vectors, profitable
5706  // narrowing and commutation of operands should be handled. The actual code
5707  // doesn't include all of those, work in progress...
5708  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
5709  if (NewOp.getNode())
5710    return NewOp;
5711
5712  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5713  // unpckh_undef). Only use pshufd if speed is more important than size.
5714  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
5715    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5716      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()), dl, VT, V1, V1, DAG);
5717  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
5718    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5719      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5720
5721  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
5722      RelaxedMayFoldVectorLoad(V1))
5723    return getMOVDDup(Op, dl, V1, DAG);
5724
5725  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
5726    return getMOVHighToLow(Op, dl, DAG);
5727
5728  // Use to match splats
5729  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
5730      (VT == MVT::v2f64 || VT == MVT::v2i64))
5731    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5732
5733  if (X86::isPSHUFDMask(SVOp)) {
5734    // The actual implementation will match the mask in the if above and then
5735    // during isel it can match several different instructions, not only pshufd
5736    // as its name says, sad but true, emulate the behavior for now...
5737    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5738        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5739
5740    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5741
5742    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5743      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5744
5745    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5746      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5747                                  TargetMask, DAG);
5748
5749    if (VT == MVT::v4f32)
5750      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5751                                  TargetMask, DAG);
5752  }
5753
5754  // Check if this can be converted into a logical shift.
5755  bool isLeft = false;
5756  unsigned ShAmt = 0;
5757  SDValue ShVal;
5758  bool isShift = getSubtarget()->hasSSE2() &&
5759    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5760  if (isShift && ShVal.hasOneUse()) {
5761    // If the shifted value has multiple uses, it may be cheaper to use
5762    // v_set0 + movlhps or movhlps, etc.
5763    EVT EltVT = VT.getVectorElementType();
5764    ShAmt *= EltVT.getSizeInBits();
5765    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5766  }
5767
5768  if (X86::isMOVLMask(SVOp)) {
5769    if (V1IsUndef)
5770      return V2;
5771    if (ISD::isBuildVectorAllZeros(V1.getNode()))
5772      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5773    if (!X86::isMOVLPMask(SVOp)) {
5774      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5775        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5776
5777      if (VT == MVT::v4i32 || VT == MVT::v4f32)
5778        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5779    }
5780  }
5781
5782  // FIXME: fold these into legal mask.
5783  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5784    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5785
5786  if (X86::isMOVHLPSMask(SVOp))
5787    return getMOVHighToLow(Op, dl, DAG);
5788
5789  if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5790    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
5791
5792  if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5793    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
5794
5795  if (X86::isMOVLPMask(SVOp))
5796    return getMOVLP(Op, dl, DAG, HasSSE2);
5797
5798  if (ShouldXformToMOVHLPS(SVOp) ||
5799      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5800    return CommuteVectorShuffle(SVOp, DAG);
5801
5802  if (isShift) {
5803    // No better options. Use a vshl / vsrl.
5804    EVT EltVT = VT.getVectorElementType();
5805    ShAmt *= EltVT.getSizeInBits();
5806    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5807  }
5808
5809  bool Commuted = false;
5810  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
5811  // 1,1,1,1 -> v8i16 though.
5812  V1IsSplat = isSplatVector(V1.getNode());
5813  V2IsSplat = isSplatVector(V2.getNode());
5814
5815  // Canonicalize the splat or undef, if present, to be on the RHS.
5816  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
5817    Op = CommuteVectorShuffle(SVOp, DAG);
5818    SVOp = cast<ShuffleVectorSDNode>(Op);
5819    V1 = SVOp->getOperand(0);
5820    V2 = SVOp->getOperand(1);
5821    std::swap(V1IsSplat, V2IsSplat);
5822    std::swap(V1IsUndef, V2IsUndef);
5823    Commuted = true;
5824  }
5825
5826  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
5827    // Shuffling low element of v1 into undef, just return v1.
5828    if (V2IsUndef)
5829      return V1;
5830    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5831    // the instruction selector will not match, so get a canonical MOVL with
5832    // swapped operands to undo the commute.
5833    return getMOVL(DAG, dl, VT, V2, V1);
5834  }
5835
5836  if (X86::isUNPCKLMask(SVOp))
5837    return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5838                                dl, VT, V1, V2, DAG);
5839
5840  if (X86::isUNPCKHMask(SVOp))
5841    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
5842
5843  if (V2IsSplat) {
5844    // Normalize mask so all entries that point to V2 points to its first
5845    // element then try to match unpck{h|l} again. If match, return a
5846    // new vector_shuffle with the corrected mask.
5847    SDValue NewMask = NormalizeMask(SVOp, DAG);
5848    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
5849    if (NSVOp != SVOp) {
5850      if (X86::isUNPCKLMask(NSVOp, true)) {
5851        return NewMask;
5852      } else if (X86::isUNPCKHMask(NSVOp, true)) {
5853        return NewMask;
5854      }
5855    }
5856  }
5857
5858  if (Commuted) {
5859    // Commute is back and try unpck* again.
5860    // FIXME: this seems wrong.
5861    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5862    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5863
5864    if (X86::isUNPCKLMask(NewSVOp))
5865      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5866                                  dl, VT, V2, V1, DAG);
5867
5868    if (X86::isUNPCKHMask(NewSVOp))
5869      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
5870  }
5871
5872  // Normalize the node to match x86 shuffle ops if needed
5873  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5874    return CommuteVectorShuffle(SVOp, DAG);
5875
5876  // The checks below are all present in isShuffleMaskLegal, but they are
5877  // inlined here right now to enable us to directly emit target specific
5878  // nodes, and remove one by one until they don't return Op anymore.
5879  SmallVector<int, 16> M;
5880  SVOp->getMask(M);
5881
5882  if (isPALIGNRMask(M, VT, HasSSSE3))
5883    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
5884                                X86::getShufflePALIGNRImmediate(SVOp),
5885                                DAG);
5886
5887  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
5888      SVOp->getSplatIndex() == 0 && V2IsUndef) {
5889    if (VT == MVT::v2f64) {
5890      X86ISD::NodeType Opcode =
5891        getSubtarget()->hasAVX() ? X86ISD::VUNPCKLPD : X86ISD::UNPCKLPD;
5892      return getTargetShuffleNode(Opcode, dl, VT, V1, V1, DAG);
5893    }
5894    if (VT == MVT::v2i64)
5895      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
5896  }
5897
5898  if (isPSHUFHWMask(M, VT))
5899    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
5900                                X86::getShufflePSHUFHWImmediate(SVOp),
5901                                DAG);
5902
5903  if (isPSHUFLWMask(M, VT))
5904    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
5905                                X86::getShufflePSHUFLWImmediate(SVOp),
5906                                DAG);
5907
5908  if (isSHUFPMask(M, VT)) {
5909    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5910    if (VT == MVT::v4f32 || VT == MVT::v4i32)
5911      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
5912                                  TargetMask, DAG);
5913    if (VT == MVT::v2f64 || VT == MVT::v2i64)
5914      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
5915                                  TargetMask, DAG);
5916  }
5917
5918  if (X86::isUNPCKL_v_undef_Mask(SVOp))
5919    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5920      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5921                                  dl, VT, V1, V1, DAG);
5922  if (X86::isUNPCKH_v_undef_Mask(SVOp))
5923    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5924      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5925
5926  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5927  if (VT == MVT::v8i16) {
5928    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5929    if (NewOp.getNode())
5930      return NewOp;
5931  }
5932
5933  if (VT == MVT::v16i8) {
5934    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5935    if (NewOp.getNode())
5936      return NewOp;
5937  }
5938
5939  // Handle all 4 wide cases with a number of shuffles.
5940  if (NumElems == 4)
5941    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5942
5943  return SDValue();
5944}
5945
5946SDValue
5947X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5948                                                SelectionDAG &DAG) const {
5949  EVT VT = Op.getValueType();
5950  DebugLoc dl = Op.getDebugLoc();
5951  if (VT.getSizeInBits() == 8) {
5952    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5953                                    Op.getOperand(0), Op.getOperand(1));
5954    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5955                                    DAG.getValueType(VT));
5956    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5957  } else if (VT.getSizeInBits() == 16) {
5958    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5959    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5960    if (Idx == 0)
5961      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5962                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5963                                     DAG.getNode(ISD::BITCAST, dl,
5964                                                 MVT::v4i32,
5965                                                 Op.getOperand(0)),
5966                                     Op.getOperand(1)));
5967    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5968                                    Op.getOperand(0), Op.getOperand(1));
5969    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5970                                    DAG.getValueType(VT));
5971    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5972  } else if (VT == MVT::f32) {
5973    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5974    // the result back to FR32 register. It's only worth matching if the
5975    // result has a single use which is a store or a bitcast to i32.  And in
5976    // the case of a store, it's not worth it if the index is a constant 0,
5977    // because a MOVSSmr can be used instead, which is smaller and faster.
5978    if (!Op.hasOneUse())
5979      return SDValue();
5980    SDNode *User = *Op.getNode()->use_begin();
5981    if ((User->getOpcode() != ISD::STORE ||
5982         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5983          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5984        (User->getOpcode() != ISD::BITCAST ||
5985         User->getValueType(0) != MVT::i32))
5986      return SDValue();
5987    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5988                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
5989                                              Op.getOperand(0)),
5990                                              Op.getOperand(1));
5991    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
5992  } else if (VT == MVT::i32) {
5993    // ExtractPS works with constant index.
5994    if (isa<ConstantSDNode>(Op.getOperand(1)))
5995      return Op;
5996  }
5997  return SDValue();
5998}
5999
6000
6001SDValue
6002X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6003                                           SelectionDAG &DAG) const {
6004  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6005    return SDValue();
6006
6007  SDValue Vec = Op.getOperand(0);
6008  EVT VecVT = Vec.getValueType();
6009
6010  // If this is a 256-bit vector result, first extract the 128-bit
6011  // vector and then extract from the 128-bit vector.
6012  if (VecVT.getSizeInBits() > 128) {
6013    DebugLoc dl = Op.getNode()->getDebugLoc();
6014    unsigned NumElems = VecVT.getVectorNumElements();
6015    SDValue Idx = Op.getOperand(1);
6016
6017    if (!isa<ConstantSDNode>(Idx))
6018      return SDValue();
6019
6020    unsigned ExtractNumElems = NumElems / (VecVT.getSizeInBits() / 128);
6021    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6022
6023    // Get the 128-bit vector.
6024    bool Upper = IdxVal >= ExtractNumElems;
6025    Vec = Extract128BitVector(Vec, Idx, DAG, dl);
6026
6027    // Extract from it.
6028    SDValue ScaledIdx = Idx;
6029    if (Upper)
6030      ScaledIdx = DAG.getNode(ISD::SUB, dl, Idx.getValueType(), Idx,
6031                              DAG.getConstant(ExtractNumElems,
6032                                              Idx.getValueType()));
6033    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6034                       ScaledIdx);
6035  }
6036
6037  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6038
6039  if (Subtarget->hasSSE41()) {
6040    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6041    if (Res.getNode())
6042      return Res;
6043  }
6044
6045  EVT VT = Op.getValueType();
6046  DebugLoc dl = Op.getDebugLoc();
6047  // TODO: handle v16i8.
6048  if (VT.getSizeInBits() == 16) {
6049    SDValue Vec = Op.getOperand(0);
6050    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6051    if (Idx == 0)
6052      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6053                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6054                                     DAG.getNode(ISD::BITCAST, dl,
6055                                                 MVT::v4i32, Vec),
6056                                     Op.getOperand(1)));
6057    // Transform it so it match pextrw which produces a 32-bit result.
6058    EVT EltVT = MVT::i32;
6059    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6060                                    Op.getOperand(0), Op.getOperand(1));
6061    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6062                                    DAG.getValueType(VT));
6063    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6064  } else if (VT.getSizeInBits() == 32) {
6065    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6066    if (Idx == 0)
6067      return Op;
6068
6069    // SHUFPS the element to the lowest double word, then movss.
6070    int Mask[4] = { Idx, -1, -1, -1 };
6071    EVT VVT = Op.getOperand(0).getValueType();
6072    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6073                                       DAG.getUNDEF(VVT), Mask);
6074    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6075                       DAG.getIntPtrConstant(0));
6076  } else if (VT.getSizeInBits() == 64) {
6077    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6078    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6079    //        to match extract_elt for f64.
6080    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6081    if (Idx == 0)
6082      return Op;
6083
6084    // UNPCKHPD the element to the lowest double word, then movsd.
6085    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6086    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6087    int Mask[2] = { 1, -1 };
6088    EVT VVT = Op.getOperand(0).getValueType();
6089    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6090                                       DAG.getUNDEF(VVT), Mask);
6091    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6092                       DAG.getIntPtrConstant(0));
6093  }
6094
6095  return SDValue();
6096}
6097
6098SDValue
6099X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6100                                               SelectionDAG &DAG) const {
6101  EVT VT = Op.getValueType();
6102  EVT EltVT = VT.getVectorElementType();
6103  DebugLoc dl = Op.getDebugLoc();
6104
6105  SDValue N0 = Op.getOperand(0);
6106  SDValue N1 = Op.getOperand(1);
6107  SDValue N2 = Op.getOperand(2);
6108
6109  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6110      isa<ConstantSDNode>(N2)) {
6111    unsigned Opc;
6112    if (VT == MVT::v8i16)
6113      Opc = X86ISD::PINSRW;
6114    else if (VT == MVT::v16i8)
6115      Opc = X86ISD::PINSRB;
6116    else
6117      Opc = X86ISD::PINSRB;
6118
6119    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6120    // argument.
6121    if (N1.getValueType() != MVT::i32)
6122      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6123    if (N2.getValueType() != MVT::i32)
6124      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6125    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6126  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6127    // Bits [7:6] of the constant are the source select.  This will always be
6128    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6129    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6130    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6131    // Bits [5:4] of the constant are the destination select.  This is the
6132    //  value of the incoming immediate.
6133    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6134    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6135    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6136    // Create this as a scalar to vector..
6137    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6138    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6139  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
6140    // PINSR* works with constant index.
6141    return Op;
6142  }
6143  return SDValue();
6144}
6145
6146SDValue
6147X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6148  EVT VT = Op.getValueType();
6149  EVT EltVT = VT.getVectorElementType();
6150
6151  DebugLoc dl = Op.getDebugLoc();
6152  SDValue N0 = Op.getOperand(0);
6153  SDValue N1 = Op.getOperand(1);
6154  SDValue N2 = Op.getOperand(2);
6155
6156  // If this is a 256-bit vector result, first insert into a 128-bit
6157  // vector and then insert into the 256-bit vector.
6158  if (VT.getSizeInBits() > 128) {
6159    if (!isa<ConstantSDNode>(N2))
6160      return SDValue();
6161
6162    // Get the 128-bit vector.
6163    unsigned NumElems = VT.getVectorNumElements();
6164    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6165    bool Upper = IdxVal >= NumElems / 2;
6166
6167    SDValue SubN0 = Extract128BitVector(N0, N2, DAG, dl);
6168
6169    // Insert into it.
6170    SDValue ScaledN2 = N2;
6171    if (Upper)
6172      ScaledN2 = DAG.getNode(ISD::SUB, dl, N2.getValueType(), N2,
6173                             DAG.getConstant(NumElems /
6174                                             (VT.getSizeInBits() / 128),
6175                                             N2.getValueType()));
6176    Op = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubN0.getValueType(), SubN0,
6177                     N1, ScaledN2);
6178
6179    // Insert the 128-bit vector
6180    // FIXME: Why UNDEF?
6181    return Insert128BitVector(N0, Op, N2, DAG, dl);
6182  }
6183
6184  if (Subtarget->hasSSE41())
6185    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6186
6187  if (EltVT == MVT::i8)
6188    return SDValue();
6189
6190  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6191    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6192    // as its second argument.
6193    if (N1.getValueType() != MVT::i32)
6194      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6195    if (N2.getValueType() != MVT::i32)
6196      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6197    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6198  }
6199  return SDValue();
6200}
6201
6202SDValue
6203X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6204  LLVMContext *Context = DAG.getContext();
6205  DebugLoc dl = Op.getDebugLoc();
6206  EVT OpVT = Op.getValueType();
6207
6208  // If this is a 256-bit vector result, first insert into a 128-bit
6209  // vector and then insert into the 256-bit vector.
6210  if (OpVT.getSizeInBits() > 128) {
6211    // Insert into a 128-bit vector.
6212    EVT VT128 = EVT::getVectorVT(*Context,
6213                                 OpVT.getVectorElementType(),
6214                                 OpVT.getVectorNumElements() / 2);
6215
6216    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6217
6218    // Insert the 128-bit vector.
6219    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6220                              DAG.getConstant(0, MVT::i32),
6221                              DAG, dl);
6222  }
6223
6224  if (Op.getValueType() == MVT::v1i64 &&
6225      Op.getOperand(0).getValueType() == MVT::i64)
6226    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6227
6228  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6229  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6230         "Expected an SSE type!");
6231  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6232                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6233}
6234
6235// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6236// a simple subregister reference or explicit instructions to grab
6237// upper bits of a vector.
6238SDValue
6239X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6240  if (Subtarget->hasAVX()) {
6241    DebugLoc dl = Op.getNode()->getDebugLoc();
6242    SDValue Vec = Op.getNode()->getOperand(0);
6243    SDValue Idx = Op.getNode()->getOperand(1);
6244
6245    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6246        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6247        return Extract128BitVector(Vec, Idx, DAG, dl);
6248    }
6249  }
6250  return SDValue();
6251}
6252
6253// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6254// simple superregister reference or explicit instructions to insert
6255// the upper bits of a vector.
6256SDValue
6257X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6258  if (Subtarget->hasAVX()) {
6259    DebugLoc dl = Op.getNode()->getDebugLoc();
6260    SDValue Vec = Op.getNode()->getOperand(0);
6261    SDValue SubVec = Op.getNode()->getOperand(1);
6262    SDValue Idx = Op.getNode()->getOperand(2);
6263
6264    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6265        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6266      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6267    }
6268  }
6269  return SDValue();
6270}
6271
6272// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
6273// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
6274// one of the above mentioned nodes. It has to be wrapped because otherwise
6275// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
6276// be used to form addressing mode. These wrapped nodes will be selected
6277// into MOV32ri.
6278SDValue
6279X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
6280  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
6281
6282  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6283  // global base reg.
6284  unsigned char OpFlag = 0;
6285  unsigned WrapperKind = X86ISD::Wrapper;
6286  CodeModel::Model M = getTargetMachine().getCodeModel();
6287
6288  if (Subtarget->isPICStyleRIPRel() &&
6289      (M == CodeModel::Small || M == CodeModel::Kernel))
6290    WrapperKind = X86ISD::WrapperRIP;
6291  else if (Subtarget->isPICStyleGOT())
6292    OpFlag = X86II::MO_GOTOFF;
6293  else if (Subtarget->isPICStyleStubPIC())
6294    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6295
6296  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
6297                                             CP->getAlignment(),
6298                                             CP->getOffset(), OpFlag);
6299  DebugLoc DL = CP->getDebugLoc();
6300  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6301  // With PIC, the address is actually $g + Offset.
6302  if (OpFlag) {
6303    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6304                         DAG.getNode(X86ISD::GlobalBaseReg,
6305                                     DebugLoc(), getPointerTy()),
6306                         Result);
6307  }
6308
6309  return Result;
6310}
6311
6312SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
6313  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
6314
6315  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6316  // global base reg.
6317  unsigned char OpFlag = 0;
6318  unsigned WrapperKind = X86ISD::Wrapper;
6319  CodeModel::Model M = getTargetMachine().getCodeModel();
6320
6321  if (Subtarget->isPICStyleRIPRel() &&
6322      (M == CodeModel::Small || M == CodeModel::Kernel))
6323    WrapperKind = X86ISD::WrapperRIP;
6324  else if (Subtarget->isPICStyleGOT())
6325    OpFlag = X86II::MO_GOTOFF;
6326  else if (Subtarget->isPICStyleStubPIC())
6327    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6328
6329  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
6330                                          OpFlag);
6331  DebugLoc DL = JT->getDebugLoc();
6332  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6333
6334  // With PIC, the address is actually $g + Offset.
6335  if (OpFlag)
6336    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6337                         DAG.getNode(X86ISD::GlobalBaseReg,
6338                                     DebugLoc(), getPointerTy()),
6339                         Result);
6340
6341  return Result;
6342}
6343
6344SDValue
6345X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
6346  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
6347
6348  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6349  // global base reg.
6350  unsigned char OpFlag = 0;
6351  unsigned WrapperKind = X86ISD::Wrapper;
6352  CodeModel::Model M = getTargetMachine().getCodeModel();
6353
6354  if (Subtarget->isPICStyleRIPRel() &&
6355      (M == CodeModel::Small || M == CodeModel::Kernel))
6356    WrapperKind = X86ISD::WrapperRIP;
6357  else if (Subtarget->isPICStyleGOT())
6358    OpFlag = X86II::MO_GOTOFF;
6359  else if (Subtarget->isPICStyleStubPIC())
6360    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6361
6362  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
6363
6364  DebugLoc DL = Op.getDebugLoc();
6365  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6366
6367
6368  // With PIC, the address is actually $g + Offset.
6369  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
6370      !Subtarget->is64Bit()) {
6371    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6372                         DAG.getNode(X86ISD::GlobalBaseReg,
6373                                     DebugLoc(), getPointerTy()),
6374                         Result);
6375  }
6376
6377  return Result;
6378}
6379
6380SDValue
6381X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
6382  // Create the TargetBlockAddressAddress node.
6383  unsigned char OpFlags =
6384    Subtarget->ClassifyBlockAddressReference();
6385  CodeModel::Model M = getTargetMachine().getCodeModel();
6386  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
6387  DebugLoc dl = Op.getDebugLoc();
6388  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
6389                                       /*isTarget=*/true, OpFlags);
6390
6391  if (Subtarget->isPICStyleRIPRel() &&
6392      (M == CodeModel::Small || M == CodeModel::Kernel))
6393    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6394  else
6395    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6396
6397  // With PIC, the address is actually $g + Offset.
6398  if (isGlobalRelativeToPICBase(OpFlags)) {
6399    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6400                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6401                         Result);
6402  }
6403
6404  return Result;
6405}
6406
6407SDValue
6408X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
6409                                      int64_t Offset,
6410                                      SelectionDAG &DAG) const {
6411  // Create the TargetGlobalAddress node, folding in the constant
6412  // offset if it is legal.
6413  unsigned char OpFlags =
6414    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
6415  CodeModel::Model M = getTargetMachine().getCodeModel();
6416  SDValue Result;
6417  if (OpFlags == X86II::MO_NO_FLAG &&
6418      X86::isOffsetSuitableForCodeModel(Offset, M)) {
6419    // A direct static reference to a global.
6420    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
6421    Offset = 0;
6422  } else {
6423    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
6424  }
6425
6426  if (Subtarget->isPICStyleRIPRel() &&
6427      (M == CodeModel::Small || M == CodeModel::Kernel))
6428    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6429  else
6430    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6431
6432  // With PIC, the address is actually $g + Offset.
6433  if (isGlobalRelativeToPICBase(OpFlags)) {
6434    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6435                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6436                         Result);
6437  }
6438
6439  // For globals that require a load from a stub to get the address, emit the
6440  // load.
6441  if (isGlobalStubReference(OpFlags))
6442    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
6443                         MachinePointerInfo::getGOT(), false, false, 0);
6444
6445  // If there was a non-zero offset that we didn't fold, create an explicit
6446  // addition for it.
6447  if (Offset != 0)
6448    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6449                         DAG.getConstant(Offset, getPointerTy()));
6450
6451  return Result;
6452}
6453
6454SDValue
6455X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6456  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6457  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6458  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6459}
6460
6461static SDValue
6462GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6463           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6464           unsigned char OperandFlags) {
6465  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6466  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6467  DebugLoc dl = GA->getDebugLoc();
6468  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6469                                           GA->getValueType(0),
6470                                           GA->getOffset(),
6471                                           OperandFlags);
6472  if (InFlag) {
6473    SDValue Ops[] = { Chain,  TGA, *InFlag };
6474    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6475  } else {
6476    SDValue Ops[]  = { Chain, TGA };
6477    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6478  }
6479
6480  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6481  MFI->setAdjustsStack(true);
6482
6483  SDValue Flag = Chain.getValue(1);
6484  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6485}
6486
6487// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6488static SDValue
6489LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6490                                const EVT PtrVT) {
6491  SDValue InFlag;
6492  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
6493  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6494                                     DAG.getNode(X86ISD::GlobalBaseReg,
6495                                                 DebugLoc(), PtrVT), InFlag);
6496  InFlag = Chain.getValue(1);
6497
6498  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6499}
6500
6501// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6502static SDValue
6503LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6504                                const EVT PtrVT) {
6505  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6506                    X86::RAX, X86II::MO_TLSGD);
6507}
6508
6509// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6510// "local exec" model.
6511static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6512                                   const EVT PtrVT, TLSModel::Model model,
6513                                   bool is64Bit) {
6514  DebugLoc dl = GA->getDebugLoc();
6515
6516  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6517  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6518                                                         is64Bit ? 257 : 256));
6519
6520  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6521                                      DAG.getIntPtrConstant(0),
6522                                      MachinePointerInfo(Ptr), false, false, 0);
6523
6524  unsigned char OperandFlags = 0;
6525  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6526  // initialexec.
6527  unsigned WrapperKind = X86ISD::Wrapper;
6528  if (model == TLSModel::LocalExec) {
6529    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6530  } else if (is64Bit) {
6531    assert(model == TLSModel::InitialExec);
6532    OperandFlags = X86II::MO_GOTTPOFF;
6533    WrapperKind = X86ISD::WrapperRIP;
6534  } else {
6535    assert(model == TLSModel::InitialExec);
6536    OperandFlags = X86II::MO_INDNTPOFF;
6537  }
6538
6539  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6540  // exec)
6541  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6542                                           GA->getValueType(0),
6543                                           GA->getOffset(), OperandFlags);
6544  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6545
6546  if (model == TLSModel::InitialExec)
6547    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6548                         MachinePointerInfo::getGOT(), false, false, 0);
6549
6550  // The address of the thread local variable is the add of the thread
6551  // pointer with the offset of the variable.
6552  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6553}
6554
6555SDValue
6556X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6557
6558  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6559  const GlobalValue *GV = GA->getGlobal();
6560
6561  if (Subtarget->isTargetELF()) {
6562    // TODO: implement the "local dynamic" model
6563    // TODO: implement the "initial exec"model for pic executables
6564
6565    // If GV is an alias then use the aliasee for determining
6566    // thread-localness.
6567    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6568      GV = GA->resolveAliasedGlobal(false);
6569
6570    TLSModel::Model model
6571      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6572
6573    switch (model) {
6574      case TLSModel::GeneralDynamic:
6575      case TLSModel::LocalDynamic: // not implemented
6576        if (Subtarget->is64Bit())
6577          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6578        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6579
6580      case TLSModel::InitialExec:
6581      case TLSModel::LocalExec:
6582        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6583                                   Subtarget->is64Bit());
6584    }
6585  } else if (Subtarget->isTargetDarwin()) {
6586    // Darwin only has one model of TLS.  Lower to that.
6587    unsigned char OpFlag = 0;
6588    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6589                           X86ISD::WrapperRIP : X86ISD::Wrapper;
6590
6591    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6592    // global base reg.
6593    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6594                  !Subtarget->is64Bit();
6595    if (PIC32)
6596      OpFlag = X86II::MO_TLVP_PIC_BASE;
6597    else
6598      OpFlag = X86II::MO_TLVP;
6599    DebugLoc DL = Op.getDebugLoc();
6600    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6601                                                GA->getValueType(0),
6602                                                GA->getOffset(), OpFlag);
6603    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6604
6605    // With PIC32, the address is actually $g + Offset.
6606    if (PIC32)
6607      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6608                           DAG.getNode(X86ISD::GlobalBaseReg,
6609                                       DebugLoc(), getPointerTy()),
6610                           Offset);
6611
6612    // Lowering the machine isd will make sure everything is in the right
6613    // location.
6614    SDValue Chain = DAG.getEntryNode();
6615    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6616    SDValue Args[] = { Chain, Offset };
6617    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
6618
6619    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6620    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6621    MFI->setAdjustsStack(true);
6622
6623    // And our return value (tls address) is in the standard call return value
6624    // location.
6625    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
6626    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
6627  }
6628
6629  assert(false &&
6630         "TLS not implemented for this target.");
6631
6632  llvm_unreachable("Unreachable");
6633  return SDValue();
6634}
6635
6636
6637/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
6638/// take a 2 x i32 value to shift plus a shift amount.
6639SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
6640  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6641  EVT VT = Op.getValueType();
6642  unsigned VTBits = VT.getSizeInBits();
6643  DebugLoc dl = Op.getDebugLoc();
6644  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
6645  SDValue ShOpLo = Op.getOperand(0);
6646  SDValue ShOpHi = Op.getOperand(1);
6647  SDValue ShAmt  = Op.getOperand(2);
6648  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6649                                     DAG.getConstant(VTBits - 1, MVT::i8))
6650                       : DAG.getConstant(0, VT);
6651
6652  SDValue Tmp2, Tmp3;
6653  if (Op.getOpcode() == ISD::SHL_PARTS) {
6654    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6655    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6656  } else {
6657    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6658    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6659  }
6660
6661  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6662                                DAG.getConstant(VTBits, MVT::i8));
6663  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6664                             AndNode, DAG.getConstant(0, MVT::i8));
6665
6666  SDValue Hi, Lo;
6667  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6668  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6669  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6670
6671  if (Op.getOpcode() == ISD::SHL_PARTS) {
6672    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6673    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6674  } else {
6675    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6676    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6677  }
6678
6679  SDValue Ops[2] = { Lo, Hi };
6680  return DAG.getMergeValues(Ops, 2, dl);
6681}
6682
6683SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6684                                           SelectionDAG &DAG) const {
6685  EVT SrcVT = Op.getOperand(0).getValueType();
6686
6687  if (SrcVT.isVector())
6688    return SDValue();
6689
6690  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6691         "Unknown SINT_TO_FP to lower!");
6692
6693  // These are really Legal; return the operand so the caller accepts it as
6694  // Legal.
6695  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6696    return Op;
6697  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6698      Subtarget->is64Bit()) {
6699    return Op;
6700  }
6701
6702  DebugLoc dl = Op.getDebugLoc();
6703  unsigned Size = SrcVT.getSizeInBits()/8;
6704  MachineFunction &MF = DAG.getMachineFunction();
6705  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6706  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6707  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6708                               StackSlot,
6709                               MachinePointerInfo::getFixedStack(SSFI),
6710                               false, false, 0);
6711  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
6712}
6713
6714SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
6715                                     SDValue StackSlot,
6716                                     SelectionDAG &DAG) const {
6717  // Build the FILD
6718  DebugLoc DL = Op.getDebugLoc();
6719  SDVTList Tys;
6720  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
6721  if (useSSE)
6722    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
6723  else
6724    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
6725
6726  unsigned ByteSize = SrcVT.getSizeInBits()/8;
6727
6728  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
6729  MachineMemOperand *MMO;
6730  if (FI) {
6731    int SSFI = FI->getIndex();
6732    MMO =
6733      DAG.getMachineFunction()
6734      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6735                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
6736  } else {
6737    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
6738    StackSlot = StackSlot.getOperand(1);
6739  }
6740  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
6741  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
6742                                           X86ISD::FILD, DL,
6743                                           Tys, Ops, array_lengthof(Ops),
6744                                           SrcVT, MMO);
6745
6746  if (useSSE) {
6747    Chain = Result.getValue(1);
6748    SDValue InFlag = Result.getValue(2);
6749
6750    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6751    // shouldn't be necessary except that RFP cannot be live across
6752    // multiple blocks. When stackifier is fixed, they can be uncoupled.
6753    MachineFunction &MF = DAG.getMachineFunction();
6754    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
6755    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
6756    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6757    Tys = DAG.getVTList(MVT::Other);
6758    SDValue Ops[] = {
6759      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
6760    };
6761    MachineMemOperand *MMO =
6762      DAG.getMachineFunction()
6763      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6764                            MachineMemOperand::MOStore, SSFISize, SSFISize);
6765
6766    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
6767                                    Ops, array_lengthof(Ops),
6768                                    Op.getValueType(), MMO);
6769    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
6770                         MachinePointerInfo::getFixedStack(SSFI),
6771                         false, false, 0);
6772  }
6773
6774  return Result;
6775}
6776
6777// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6778SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
6779                                               SelectionDAG &DAG) const {
6780  // This algorithm is not obvious. Here it is in C code, more or less:
6781  /*
6782    double uint64_to_double( uint32_t hi, uint32_t lo ) {
6783      static const __m128i exp = { 0x4330000045300000ULL, 0 };
6784      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6785
6786      // Copy ints to xmm registers.
6787      __m128i xh = _mm_cvtsi32_si128( hi );
6788      __m128i xl = _mm_cvtsi32_si128( lo );
6789
6790      // Combine into low half of a single xmm register.
6791      __m128i x = _mm_unpacklo_epi32( xh, xl );
6792      __m128d d;
6793      double sd;
6794
6795      // Merge in appropriate exponents to give the integer bits the right
6796      // magnitude.
6797      x = _mm_unpacklo_epi32( x, exp );
6798
6799      // Subtract away the biases to deal with the IEEE-754 double precision
6800      // implicit 1.
6801      d = _mm_sub_pd( (__m128d) x, bias );
6802
6803      // All conversions up to here are exact. The correctly rounded result is
6804      // calculated using the current rounding mode using the following
6805      // horizontal add.
6806      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
6807      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
6808                                // store doesn't really need to be here (except
6809                                // maybe to zero the other double)
6810      return sd;
6811    }
6812  */
6813
6814  DebugLoc dl = Op.getDebugLoc();
6815  LLVMContext *Context = DAG.getContext();
6816
6817  // Build some magic constants.
6818  std::vector<Constant*> CV0;
6819  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
6820  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
6821  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6822  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6823  Constant *C0 = ConstantVector::get(CV0);
6824  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
6825
6826  std::vector<Constant*> CV1;
6827  CV1.push_back(
6828    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
6829  CV1.push_back(
6830    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
6831  Constant *C1 = ConstantVector::get(CV1);
6832  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
6833
6834  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6835                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6836                                        Op.getOperand(0),
6837                                        DAG.getIntPtrConstant(1)));
6838  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6839                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6840                                        Op.getOperand(0),
6841                                        DAG.getIntPtrConstant(0)));
6842  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
6843  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
6844                              MachinePointerInfo::getConstantPool(),
6845                              false, false, 16);
6846  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
6847  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
6848  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
6849                              MachinePointerInfo::getConstantPool(),
6850                              false, false, 16);
6851  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
6852
6853  // Add the halves; easiest way is to swap them into another reg first.
6854  int ShufMask[2] = { 1, -1 };
6855  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
6856                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
6857  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
6858  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
6859                     DAG.getIntPtrConstant(0));
6860}
6861
6862// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6863SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
6864                                               SelectionDAG &DAG) const {
6865  DebugLoc dl = Op.getDebugLoc();
6866  // FP constant to bias correct the final result.
6867  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
6868                                   MVT::f64);
6869
6870  // Load the 32-bit value into an XMM register.
6871  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6872                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6873                                         Op.getOperand(0),
6874                                         DAG.getIntPtrConstant(0)));
6875
6876  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6877                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
6878                     DAG.getIntPtrConstant(0));
6879
6880  // Or the load with the bias.
6881  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
6882                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6883                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6884                                                   MVT::v2f64, Load)),
6885                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6886                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6887                                                   MVT::v2f64, Bias)));
6888  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6889                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
6890                   DAG.getIntPtrConstant(0));
6891
6892  // Subtract the bias.
6893  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
6894
6895  // Handle final rounding.
6896  EVT DestVT = Op.getValueType();
6897
6898  if (DestVT.bitsLT(MVT::f64)) {
6899    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
6900                       DAG.getIntPtrConstant(0));
6901  } else if (DestVT.bitsGT(MVT::f64)) {
6902    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
6903  }
6904
6905  // Handle final rounding.
6906  return Sub;
6907}
6908
6909SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
6910                                           SelectionDAG &DAG) const {
6911  SDValue N0 = Op.getOperand(0);
6912  DebugLoc dl = Op.getDebugLoc();
6913
6914  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
6915  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
6916  // the optimization here.
6917  if (DAG.SignBitIsZero(N0))
6918    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
6919
6920  EVT SrcVT = N0.getValueType();
6921  EVT DstVT = Op.getValueType();
6922  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
6923    return LowerUINT_TO_FP_i64(Op, DAG);
6924  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
6925    return LowerUINT_TO_FP_i32(Op, DAG);
6926
6927  // Make a 64-bit buffer, and use it to build an FILD.
6928  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
6929  if (SrcVT == MVT::i32) {
6930    SDValue WordOff = DAG.getConstant(4, getPointerTy());
6931    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
6932                                     getPointerTy(), StackSlot, WordOff);
6933    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6934                                  StackSlot, MachinePointerInfo(),
6935                                  false, false, 0);
6936    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
6937                                  OffsetSlot, MachinePointerInfo(),
6938                                  false, false, 0);
6939    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
6940    return Fild;
6941  }
6942
6943  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
6944  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6945                                StackSlot, MachinePointerInfo(),
6946                               false, false, 0);
6947  // For i64 source, we need to add the appropriate power of 2 if the input
6948  // was negative.  This is the same as the optimization in
6949  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
6950  // we must be careful to do the computation in x87 extended precision, not
6951  // in SSE. (The generic code can't know it's OK to do this, or how to.)
6952  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6953  MachineMemOperand *MMO =
6954    DAG.getMachineFunction()
6955    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6956                          MachineMemOperand::MOLoad, 8, 8);
6957
6958  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
6959  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
6960  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
6961                                         MVT::i64, MMO);
6962
6963  APInt FF(32, 0x5F800000ULL);
6964
6965  // Check whether the sign bit is set.
6966  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
6967                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
6968                                 ISD::SETLT);
6969
6970  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
6971  SDValue FudgePtr = DAG.getConstantPool(
6972                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
6973                                         getPointerTy());
6974
6975  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
6976  SDValue Zero = DAG.getIntPtrConstant(0);
6977  SDValue Four = DAG.getIntPtrConstant(4);
6978  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
6979                               Zero, Four);
6980  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
6981
6982  // Load the value out, extending it from f32 to f80.
6983  // FIXME: Avoid the extend by constructing the right constant pool?
6984  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
6985                                 FudgePtr, MachinePointerInfo::getConstantPool(),
6986                                 MVT::f32, false, false, 4);
6987  // Extend everything to 80 bits to force it to be done on x87.
6988  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
6989  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
6990}
6991
6992std::pair<SDValue,SDValue> X86TargetLowering::
6993FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
6994  DebugLoc DL = Op.getDebugLoc();
6995
6996  EVT DstTy = Op.getValueType();
6997
6998  if (!IsSigned) {
6999    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7000    DstTy = MVT::i64;
7001  }
7002
7003  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7004         DstTy.getSimpleVT() >= MVT::i16 &&
7005         "Unknown FP_TO_SINT to lower!");
7006
7007  // These are really Legal.
7008  if (DstTy == MVT::i32 &&
7009      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7010    return std::make_pair(SDValue(), SDValue());
7011  if (Subtarget->is64Bit() &&
7012      DstTy == MVT::i64 &&
7013      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7014    return std::make_pair(SDValue(), SDValue());
7015
7016  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7017  // stack slot.
7018  MachineFunction &MF = DAG.getMachineFunction();
7019  unsigned MemSize = DstTy.getSizeInBits()/8;
7020  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7021  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7022
7023
7024
7025  unsigned Opc;
7026  switch (DstTy.getSimpleVT().SimpleTy) {
7027  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7028  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7029  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7030  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7031  }
7032
7033  SDValue Chain = DAG.getEntryNode();
7034  SDValue Value = Op.getOperand(0);
7035  EVT TheVT = Op.getOperand(0).getValueType();
7036  if (isScalarFPTypeInSSEReg(TheVT)) {
7037    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7038    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7039                         MachinePointerInfo::getFixedStack(SSFI),
7040                         false, false, 0);
7041    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7042    SDValue Ops[] = {
7043      Chain, StackSlot, DAG.getValueType(TheVT)
7044    };
7045
7046    MachineMemOperand *MMO =
7047      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7048                              MachineMemOperand::MOLoad, MemSize, MemSize);
7049    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7050                                    DstTy, MMO);
7051    Chain = Value.getValue(1);
7052    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7053    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7054  }
7055
7056  MachineMemOperand *MMO =
7057    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7058                            MachineMemOperand::MOStore, MemSize, MemSize);
7059
7060  // Build the FP_TO_INT*_IN_MEM
7061  SDValue Ops[] = { Chain, Value, StackSlot };
7062  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7063                                         Ops, 3, DstTy, MMO);
7064
7065  return std::make_pair(FIST, StackSlot);
7066}
7067
7068SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7069                                           SelectionDAG &DAG) const {
7070  if (Op.getValueType().isVector())
7071    return SDValue();
7072
7073  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7074  SDValue FIST = Vals.first, StackSlot = Vals.second;
7075  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7076  if (FIST.getNode() == 0) return Op;
7077
7078  // Load the result.
7079  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7080                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7081}
7082
7083SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7084                                           SelectionDAG &DAG) const {
7085  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7086  SDValue FIST = Vals.first, StackSlot = Vals.second;
7087  assert(FIST.getNode() && "Unexpected failure");
7088
7089  // Load the result.
7090  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7091                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7092}
7093
7094SDValue X86TargetLowering::LowerFABS(SDValue Op,
7095                                     SelectionDAG &DAG) const {
7096  LLVMContext *Context = DAG.getContext();
7097  DebugLoc dl = Op.getDebugLoc();
7098  EVT VT = Op.getValueType();
7099  EVT EltVT = VT;
7100  if (VT.isVector())
7101    EltVT = VT.getVectorElementType();
7102  std::vector<Constant*> CV;
7103  if (EltVT == MVT::f64) {
7104    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7105    CV.push_back(C);
7106    CV.push_back(C);
7107  } else {
7108    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7109    CV.push_back(C);
7110    CV.push_back(C);
7111    CV.push_back(C);
7112    CV.push_back(C);
7113  }
7114  Constant *C = ConstantVector::get(CV);
7115  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7116  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7117                             MachinePointerInfo::getConstantPool(),
7118                             false, false, 16);
7119  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7120}
7121
7122SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7123  LLVMContext *Context = DAG.getContext();
7124  DebugLoc dl = Op.getDebugLoc();
7125  EVT VT = Op.getValueType();
7126  EVT EltVT = VT;
7127  if (VT.isVector())
7128    EltVT = VT.getVectorElementType();
7129  std::vector<Constant*> CV;
7130  if (EltVT == MVT::f64) {
7131    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7132    CV.push_back(C);
7133    CV.push_back(C);
7134  } else {
7135    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7136    CV.push_back(C);
7137    CV.push_back(C);
7138    CV.push_back(C);
7139    CV.push_back(C);
7140  }
7141  Constant *C = ConstantVector::get(CV);
7142  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7143  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7144                             MachinePointerInfo::getConstantPool(),
7145                             false, false, 16);
7146  if (VT.isVector()) {
7147    return DAG.getNode(ISD::BITCAST, dl, VT,
7148                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
7149                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7150                                Op.getOperand(0)),
7151                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
7152  } else {
7153    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7154  }
7155}
7156
7157SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7158  LLVMContext *Context = DAG.getContext();
7159  SDValue Op0 = Op.getOperand(0);
7160  SDValue Op1 = Op.getOperand(1);
7161  DebugLoc dl = Op.getDebugLoc();
7162  EVT VT = Op.getValueType();
7163  EVT SrcVT = Op1.getValueType();
7164
7165  // If second operand is smaller, extend it first.
7166  if (SrcVT.bitsLT(VT)) {
7167    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7168    SrcVT = VT;
7169  }
7170  // And if it is bigger, shrink it first.
7171  if (SrcVT.bitsGT(VT)) {
7172    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7173    SrcVT = VT;
7174  }
7175
7176  // At this point the operands and the result should have the same
7177  // type, and that won't be f80 since that is not custom lowered.
7178
7179  // First get the sign bit of second operand.
7180  std::vector<Constant*> CV;
7181  if (SrcVT == MVT::f64) {
7182    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7183    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7184  } else {
7185    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7186    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7187    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7188    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7189  }
7190  Constant *C = ConstantVector::get(CV);
7191  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7192  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7193                              MachinePointerInfo::getConstantPool(),
7194                              false, false, 16);
7195  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7196
7197  // Shift sign bit right or left if the two operands have different types.
7198  if (SrcVT.bitsGT(VT)) {
7199    // Op0 is MVT::f32, Op1 is MVT::f64.
7200    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7201    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7202                          DAG.getConstant(32, MVT::i32));
7203    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7204    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7205                          DAG.getIntPtrConstant(0));
7206  }
7207
7208  // Clear first operand sign bit.
7209  CV.clear();
7210  if (VT == MVT::f64) {
7211    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7212    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7213  } else {
7214    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7215    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7216    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7217    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7218  }
7219  C = ConstantVector::get(CV);
7220  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7221  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7222                              MachinePointerInfo::getConstantPool(),
7223                              false, false, 16);
7224  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7225
7226  // Or the value with the sign bit.
7227  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7228}
7229
7230SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
7231  SDValue N0 = Op.getOperand(0);
7232  DebugLoc dl = Op.getDebugLoc();
7233  EVT VT = Op.getValueType();
7234
7235  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
7236  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
7237                                  DAG.getConstant(1, VT));
7238  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
7239}
7240
7241/// Emit nodes that will be selected as "test Op0,Op0", or something
7242/// equivalent.
7243SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
7244                                    SelectionDAG &DAG) const {
7245  DebugLoc dl = Op.getDebugLoc();
7246
7247  // CF and OF aren't always set the way we want. Determine which
7248  // of these we need.
7249  bool NeedCF = false;
7250  bool NeedOF = false;
7251  switch (X86CC) {
7252  default: break;
7253  case X86::COND_A: case X86::COND_AE:
7254  case X86::COND_B: case X86::COND_BE:
7255    NeedCF = true;
7256    break;
7257  case X86::COND_G: case X86::COND_GE:
7258  case X86::COND_L: case X86::COND_LE:
7259  case X86::COND_O: case X86::COND_NO:
7260    NeedOF = true;
7261    break;
7262  }
7263
7264  // See if we can use the EFLAGS value from the operand instead of
7265  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
7266  // we prove that the arithmetic won't overflow, we can't use OF or CF.
7267  if (Op.getResNo() != 0 || NeedOF || NeedCF)
7268    // Emit a CMP with 0, which is the TEST pattern.
7269    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7270                       DAG.getConstant(0, Op.getValueType()));
7271
7272  unsigned Opcode = 0;
7273  unsigned NumOperands = 0;
7274  switch (Op.getNode()->getOpcode()) {
7275  case ISD::ADD:
7276    // Due to an isel shortcoming, be conservative if this add is likely to be
7277    // selected as part of a load-modify-store instruction. When the root node
7278    // in a match is a store, isel doesn't know how to remap non-chain non-flag
7279    // uses of other nodes in the match, such as the ADD in this case. This
7280    // leads to the ADD being left around and reselected, with the result being
7281    // two adds in the output.  Alas, even if none our users are stores, that
7282    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
7283    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
7284    // climbing the DAG back to the root, and it doesn't seem to be worth the
7285    // effort.
7286    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7287           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7288      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
7289        goto default_case;
7290
7291    if (ConstantSDNode *C =
7292        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
7293      // An add of one will be selected as an INC.
7294      if (C->getAPIntValue() == 1) {
7295        Opcode = X86ISD::INC;
7296        NumOperands = 1;
7297        break;
7298      }
7299
7300      // An add of negative one (subtract of one) will be selected as a DEC.
7301      if (C->getAPIntValue().isAllOnesValue()) {
7302        Opcode = X86ISD::DEC;
7303        NumOperands = 1;
7304        break;
7305      }
7306    }
7307
7308    // Otherwise use a regular EFLAGS-setting add.
7309    Opcode = X86ISD::ADD;
7310    NumOperands = 2;
7311    break;
7312  case ISD::AND: {
7313    // If the primary and result isn't used, don't bother using X86ISD::AND,
7314    // because a TEST instruction will be better.
7315    bool NonFlagUse = false;
7316    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7317           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
7318      SDNode *User = *UI;
7319      unsigned UOpNo = UI.getOperandNo();
7320      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
7321        // Look pass truncate.
7322        UOpNo = User->use_begin().getOperandNo();
7323        User = *User->use_begin();
7324      }
7325
7326      if (User->getOpcode() != ISD::BRCOND &&
7327          User->getOpcode() != ISD::SETCC &&
7328          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
7329        NonFlagUse = true;
7330        break;
7331      }
7332    }
7333
7334    if (!NonFlagUse)
7335      break;
7336  }
7337    // FALL THROUGH
7338  case ISD::SUB:
7339  case ISD::OR:
7340  case ISD::XOR:
7341    // Due to the ISEL shortcoming noted above, be conservative if this op is
7342    // likely to be selected as part of a load-modify-store instruction.
7343    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7344           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7345      if (UI->getOpcode() == ISD::STORE)
7346        goto default_case;
7347
7348    // Otherwise use a regular EFLAGS-setting instruction.
7349    switch (Op.getNode()->getOpcode()) {
7350    default: llvm_unreachable("unexpected operator!");
7351    case ISD::SUB: Opcode = X86ISD::SUB; break;
7352    case ISD::OR:  Opcode = X86ISD::OR;  break;
7353    case ISD::XOR: Opcode = X86ISD::XOR; break;
7354    case ISD::AND: Opcode = X86ISD::AND; break;
7355    }
7356
7357    NumOperands = 2;
7358    break;
7359  case X86ISD::ADD:
7360  case X86ISD::SUB:
7361  case X86ISD::INC:
7362  case X86ISD::DEC:
7363  case X86ISD::OR:
7364  case X86ISD::XOR:
7365  case X86ISD::AND:
7366    return SDValue(Op.getNode(), 1);
7367  default:
7368  default_case:
7369    break;
7370  }
7371
7372  if (Opcode == 0)
7373    // Emit a CMP with 0, which is the TEST pattern.
7374    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7375                       DAG.getConstant(0, Op.getValueType()));
7376
7377  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
7378  SmallVector<SDValue, 4> Ops;
7379  for (unsigned i = 0; i != NumOperands; ++i)
7380    Ops.push_back(Op.getOperand(i));
7381
7382  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
7383  DAG.ReplaceAllUsesWith(Op, New);
7384  return SDValue(New.getNode(), 1);
7385}
7386
7387/// Emit nodes that will be selected as "cmp Op0,Op1", or something
7388/// equivalent.
7389SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
7390                                   SelectionDAG &DAG) const {
7391  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
7392    if (C->getAPIntValue() == 0)
7393      return EmitTest(Op0, X86CC, DAG);
7394
7395  DebugLoc dl = Op0.getDebugLoc();
7396  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
7397}
7398
7399/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
7400/// if it's possible.
7401SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
7402                                     DebugLoc dl, SelectionDAG &DAG) const {
7403  SDValue Op0 = And.getOperand(0);
7404  SDValue Op1 = And.getOperand(1);
7405  if (Op0.getOpcode() == ISD::TRUNCATE)
7406    Op0 = Op0.getOperand(0);
7407  if (Op1.getOpcode() == ISD::TRUNCATE)
7408    Op1 = Op1.getOperand(0);
7409
7410  SDValue LHS, RHS;
7411  if (Op1.getOpcode() == ISD::SHL)
7412    std::swap(Op0, Op1);
7413  if (Op0.getOpcode() == ISD::SHL) {
7414    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
7415      if (And00C->getZExtValue() == 1) {
7416        // If we looked past a truncate, check that it's only truncating away
7417        // known zeros.
7418        unsigned BitWidth = Op0.getValueSizeInBits();
7419        unsigned AndBitWidth = And.getValueSizeInBits();
7420        if (BitWidth > AndBitWidth) {
7421          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
7422          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
7423          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
7424            return SDValue();
7425        }
7426        LHS = Op1;
7427        RHS = Op0.getOperand(1);
7428      }
7429  } else if (Op1.getOpcode() == ISD::Constant) {
7430    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
7431    SDValue AndLHS = Op0;
7432    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
7433      LHS = AndLHS.getOperand(0);
7434      RHS = AndLHS.getOperand(1);
7435    }
7436  }
7437
7438  if (LHS.getNode()) {
7439    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
7440    // instruction.  Since the shift amount is in-range-or-undefined, we know
7441    // that doing a bittest on the i32 value is ok.  We extend to i32 because
7442    // the encoding for the i16 version is larger than the i32 version.
7443    // Also promote i16 to i32 for performance / code size reason.
7444    if (LHS.getValueType() == MVT::i8 ||
7445        LHS.getValueType() == MVT::i16)
7446      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
7447
7448    // If the operand types disagree, extend the shift amount to match.  Since
7449    // BT ignores high bits (like shifts) we can use anyextend.
7450    if (LHS.getValueType() != RHS.getValueType())
7451      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
7452
7453    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
7454    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
7455    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7456                       DAG.getConstant(Cond, MVT::i8), BT);
7457  }
7458
7459  return SDValue();
7460}
7461
7462SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
7463  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
7464  SDValue Op0 = Op.getOperand(0);
7465  SDValue Op1 = Op.getOperand(1);
7466  DebugLoc dl = Op.getDebugLoc();
7467  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7468
7469  // Optimize to BT if possible.
7470  // Lower (X & (1 << N)) == 0 to BT(X, N).
7471  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7472  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7473  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
7474      Op1.getOpcode() == ISD::Constant &&
7475      cast<ConstantSDNode>(Op1)->isNullValue() &&
7476      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7477    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7478    if (NewSetCC.getNode())
7479      return NewSetCC;
7480  }
7481
7482  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
7483  // these.
7484  if (Op1.getOpcode() == ISD::Constant &&
7485      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7486       cast<ConstantSDNode>(Op1)->isNullValue()) &&
7487      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7488
7489    // If the input is a setcc, then reuse the input setcc or use a new one with
7490    // the inverted condition.
7491    if (Op0.getOpcode() == X86ISD::SETCC) {
7492      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7493      bool Invert = (CC == ISD::SETNE) ^
7494        cast<ConstantSDNode>(Op1)->isNullValue();
7495      if (!Invert) return Op0;
7496
7497      CCode = X86::GetOppositeBranchCondition(CCode);
7498      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7499                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7500    }
7501  }
7502
7503  bool isFP = Op1.getValueType().isFloatingPoint();
7504  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7505  if (X86CC == X86::COND_INVALID)
7506    return SDValue();
7507
7508  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
7509  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7510                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
7511}
7512
7513SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7514  SDValue Cond;
7515  SDValue Op0 = Op.getOperand(0);
7516  SDValue Op1 = Op.getOperand(1);
7517  SDValue CC = Op.getOperand(2);
7518  EVT VT = Op.getValueType();
7519  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7520  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7521  DebugLoc dl = Op.getDebugLoc();
7522
7523  if (isFP) {
7524    unsigned SSECC = 8;
7525    EVT VT0 = Op0.getValueType();
7526    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
7527    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7528    bool Swap = false;
7529
7530    switch (SetCCOpcode) {
7531    default: break;
7532    case ISD::SETOEQ:
7533    case ISD::SETEQ:  SSECC = 0; break;
7534    case ISD::SETOGT:
7535    case ISD::SETGT: Swap = true; // Fallthrough
7536    case ISD::SETLT:
7537    case ISD::SETOLT: SSECC = 1; break;
7538    case ISD::SETOGE:
7539    case ISD::SETGE: Swap = true; // Fallthrough
7540    case ISD::SETLE:
7541    case ISD::SETOLE: SSECC = 2; break;
7542    case ISD::SETUO:  SSECC = 3; break;
7543    case ISD::SETUNE:
7544    case ISD::SETNE:  SSECC = 4; break;
7545    case ISD::SETULE: Swap = true;
7546    case ISD::SETUGE: SSECC = 5; break;
7547    case ISD::SETULT: Swap = true;
7548    case ISD::SETUGT: SSECC = 6; break;
7549    case ISD::SETO:   SSECC = 7; break;
7550    }
7551    if (Swap)
7552      std::swap(Op0, Op1);
7553
7554    // In the two special cases we can't handle, emit two comparisons.
7555    if (SSECC == 8) {
7556      if (SetCCOpcode == ISD::SETUEQ) {
7557        SDValue UNORD, EQ;
7558        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7559        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7560        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7561      }
7562      else if (SetCCOpcode == ISD::SETONE) {
7563        SDValue ORD, NEQ;
7564        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7565        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7566        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7567      }
7568      llvm_unreachable("Illegal FP comparison");
7569    }
7570    // Handle all other FP comparisons here.
7571    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7572  }
7573
7574  // We are handling one of the integer comparisons here.  Since SSE only has
7575  // GT and EQ comparisons for integer, swapping operands and multiple
7576  // operations may be required for some comparisons.
7577  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7578  bool Swap = false, Invert = false, FlipSigns = false;
7579
7580  switch (VT.getSimpleVT().SimpleTy) {
7581  default: break;
7582  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7583  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7584  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7585  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7586  }
7587
7588  switch (SetCCOpcode) {
7589  default: break;
7590  case ISD::SETNE:  Invert = true;
7591  case ISD::SETEQ:  Opc = EQOpc; break;
7592  case ISD::SETLT:  Swap = true;
7593  case ISD::SETGT:  Opc = GTOpc; break;
7594  case ISD::SETGE:  Swap = true;
7595  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
7596  case ISD::SETULT: Swap = true;
7597  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
7598  case ISD::SETUGE: Swap = true;
7599  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
7600  }
7601  if (Swap)
7602    std::swap(Op0, Op1);
7603
7604  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
7605  // bits of the inputs before performing those operations.
7606  if (FlipSigns) {
7607    EVT EltVT = VT.getVectorElementType();
7608    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
7609                                      EltVT);
7610    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
7611    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
7612                                    SignBits.size());
7613    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
7614    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
7615  }
7616
7617  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
7618
7619  // If the logical-not of the result is required, perform that now.
7620  if (Invert)
7621    Result = DAG.getNOT(dl, Result, VT);
7622
7623  return Result;
7624}
7625
7626// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7627static bool isX86LogicalCmp(SDValue Op) {
7628  unsigned Opc = Op.getNode()->getOpcode();
7629  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
7630    return true;
7631  if (Op.getResNo() == 1 &&
7632      (Opc == X86ISD::ADD ||
7633       Opc == X86ISD::SUB ||
7634       Opc == X86ISD::ADC ||
7635       Opc == X86ISD::SBB ||
7636       Opc == X86ISD::SMUL ||
7637       Opc == X86ISD::UMUL ||
7638       Opc == X86ISD::INC ||
7639       Opc == X86ISD::DEC ||
7640       Opc == X86ISD::OR ||
7641       Opc == X86ISD::XOR ||
7642       Opc == X86ISD::AND))
7643    return true;
7644
7645  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
7646    return true;
7647
7648  return false;
7649}
7650
7651static bool isZero(SDValue V) {
7652  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7653  return C && C->isNullValue();
7654}
7655
7656static bool isAllOnes(SDValue V) {
7657  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7658  return C && C->isAllOnesValue();
7659}
7660
7661SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7662  bool addTest = true;
7663  SDValue Cond  = Op.getOperand(0);
7664  SDValue Op1 = Op.getOperand(1);
7665  SDValue Op2 = Op.getOperand(2);
7666  DebugLoc DL = Op.getDebugLoc();
7667  SDValue CC;
7668
7669  if (Cond.getOpcode() == ISD::SETCC) {
7670    SDValue NewCond = LowerSETCC(Cond, DAG);
7671    if (NewCond.getNode())
7672      Cond = NewCond;
7673  }
7674
7675  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
7676  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
7677  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
7678  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
7679  if (Cond.getOpcode() == X86ISD::SETCC &&
7680      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
7681      isZero(Cond.getOperand(1).getOperand(1))) {
7682    SDValue Cmp = Cond.getOperand(1);
7683
7684    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
7685
7686    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
7687        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
7688      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
7689
7690      SDValue CmpOp0 = Cmp.getOperand(0);
7691      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
7692                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
7693
7694      SDValue Res =   // Res = 0 or -1.
7695        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7696                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
7697
7698      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
7699        Res = DAG.getNOT(DL, Res, Res.getValueType());
7700
7701      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
7702      if (N2C == 0 || !N2C->isNullValue())
7703        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
7704      return Res;
7705    }
7706  }
7707
7708  // Look past (and (setcc_carry (cmp ...)), 1).
7709  if (Cond.getOpcode() == ISD::AND &&
7710      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7711    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7712    if (C && C->getAPIntValue() == 1)
7713      Cond = Cond.getOperand(0);
7714  }
7715
7716  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7717  // setting operand in place of the X86ISD::SETCC.
7718  if (Cond.getOpcode() == X86ISD::SETCC ||
7719      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7720    CC = Cond.getOperand(0);
7721
7722    SDValue Cmp = Cond.getOperand(1);
7723    unsigned Opc = Cmp.getOpcode();
7724    EVT VT = Op.getValueType();
7725
7726    bool IllegalFPCMov = false;
7727    if (VT.isFloatingPoint() && !VT.isVector() &&
7728        !isScalarFPTypeInSSEReg(VT))  // FPStack?
7729      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
7730
7731    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
7732        Opc == X86ISD::BT) { // FIXME
7733      Cond = Cmp;
7734      addTest = false;
7735    }
7736  }
7737
7738  if (addTest) {
7739    // Look pass the truncate.
7740    if (Cond.getOpcode() == ISD::TRUNCATE)
7741      Cond = Cond.getOperand(0);
7742
7743    // We know the result of AND is compared against zero. Try to match
7744    // it to BT.
7745    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7746      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
7747      if (NewSetCC.getNode()) {
7748        CC = NewSetCC.getOperand(0);
7749        Cond = NewSetCC.getOperand(1);
7750        addTest = false;
7751      }
7752    }
7753  }
7754
7755  if (addTest) {
7756    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7757    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7758  }
7759
7760  // a <  b ? -1 :  0 -> RES = ~setcc_carry
7761  // a <  b ?  0 : -1 -> RES = setcc_carry
7762  // a >= b ? -1 :  0 -> RES = setcc_carry
7763  // a >= b ?  0 : -1 -> RES = ~setcc_carry
7764  if (Cond.getOpcode() == X86ISD::CMP) {
7765    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
7766
7767    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
7768        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
7769      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7770                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
7771      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
7772        return DAG.getNOT(DL, Res, Res.getValueType());
7773      return Res;
7774    }
7775  }
7776
7777  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
7778  // condition is true.
7779  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
7780  SDValue Ops[] = { Op2, Op1, CC, Cond };
7781  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
7782}
7783
7784// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7785// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7786// from the AND / OR.
7787static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
7788  Opc = Op.getOpcode();
7789  if (Opc != ISD::OR && Opc != ISD::AND)
7790    return false;
7791  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7792          Op.getOperand(0).hasOneUse() &&
7793          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
7794          Op.getOperand(1).hasOneUse());
7795}
7796
7797// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7798// 1 and that the SETCC node has a single use.
7799static bool isXor1OfSetCC(SDValue Op) {
7800  if (Op.getOpcode() != ISD::XOR)
7801    return false;
7802  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7803  if (N1C && N1C->getAPIntValue() == 1) {
7804    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7805      Op.getOperand(0).hasOneUse();
7806  }
7807  return false;
7808}
7809
7810SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
7811  bool addTest = true;
7812  SDValue Chain = Op.getOperand(0);
7813  SDValue Cond  = Op.getOperand(1);
7814  SDValue Dest  = Op.getOperand(2);
7815  DebugLoc dl = Op.getDebugLoc();
7816  SDValue CC;
7817
7818  if (Cond.getOpcode() == ISD::SETCC) {
7819    SDValue NewCond = LowerSETCC(Cond, DAG);
7820    if (NewCond.getNode())
7821      Cond = NewCond;
7822  }
7823#if 0
7824  // FIXME: LowerXALUO doesn't handle these!!
7825  else if (Cond.getOpcode() == X86ISD::ADD  ||
7826           Cond.getOpcode() == X86ISD::SUB  ||
7827           Cond.getOpcode() == X86ISD::SMUL ||
7828           Cond.getOpcode() == X86ISD::UMUL)
7829    Cond = LowerXALUO(Cond, DAG);
7830#endif
7831
7832  // Look pass (and (setcc_carry (cmp ...)), 1).
7833  if (Cond.getOpcode() == ISD::AND &&
7834      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7835    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7836    if (C && C->getAPIntValue() == 1)
7837      Cond = Cond.getOperand(0);
7838  }
7839
7840  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7841  // setting operand in place of the X86ISD::SETCC.
7842  if (Cond.getOpcode() == X86ISD::SETCC ||
7843      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7844    CC = Cond.getOperand(0);
7845
7846    SDValue Cmp = Cond.getOperand(1);
7847    unsigned Opc = Cmp.getOpcode();
7848    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
7849    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
7850      Cond = Cmp;
7851      addTest = false;
7852    } else {
7853      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
7854      default: break;
7855      case X86::COND_O:
7856      case X86::COND_B:
7857        // These can only come from an arithmetic instruction with overflow,
7858        // e.g. SADDO, UADDO.
7859        Cond = Cond.getNode()->getOperand(1);
7860        addTest = false;
7861        break;
7862      }
7863    }
7864  } else {
7865    unsigned CondOpc;
7866    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
7867      SDValue Cmp = Cond.getOperand(0).getOperand(1);
7868      if (CondOpc == ISD::OR) {
7869        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
7870        // two branches instead of an explicit OR instruction with a
7871        // separate test.
7872        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7873            isX86LogicalCmp(Cmp)) {
7874          CC = Cond.getOperand(0).getOperand(0);
7875          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7876                              Chain, Dest, CC, Cmp);
7877          CC = Cond.getOperand(1).getOperand(0);
7878          Cond = Cmp;
7879          addTest = false;
7880        }
7881      } else { // ISD::AND
7882        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
7883        // two branches instead of an explicit AND instruction with a
7884        // separate test. However, we only do this if this block doesn't
7885        // have a fall-through edge, because this requires an explicit
7886        // jmp when the condition is false.
7887        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7888            isX86LogicalCmp(Cmp) &&
7889            Op.getNode()->hasOneUse()) {
7890          X86::CondCode CCode =
7891            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7892          CCode = X86::GetOppositeBranchCondition(CCode);
7893          CC = DAG.getConstant(CCode, MVT::i8);
7894          SDNode *User = *Op.getNode()->use_begin();
7895          // Look for an unconditional branch following this conditional branch.
7896          // We need this because we need to reverse the successors in order
7897          // to implement FCMP_OEQ.
7898          if (User->getOpcode() == ISD::BR) {
7899            SDValue FalseBB = User->getOperand(1);
7900            SDNode *NewBR =
7901              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
7902            assert(NewBR == User);
7903            (void)NewBR;
7904            Dest = FalseBB;
7905
7906            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7907                                Chain, Dest, CC, Cmp);
7908            X86::CondCode CCode =
7909              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
7910            CCode = X86::GetOppositeBranchCondition(CCode);
7911            CC = DAG.getConstant(CCode, MVT::i8);
7912            Cond = Cmp;
7913            addTest = false;
7914          }
7915        }
7916      }
7917    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
7918      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
7919      // It should be transformed during dag combiner except when the condition
7920      // is set by a arithmetics with overflow node.
7921      X86::CondCode CCode =
7922        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7923      CCode = X86::GetOppositeBranchCondition(CCode);
7924      CC = DAG.getConstant(CCode, MVT::i8);
7925      Cond = Cond.getOperand(0).getOperand(1);
7926      addTest = false;
7927    }
7928  }
7929
7930  if (addTest) {
7931    // Look pass the truncate.
7932    if (Cond.getOpcode() == ISD::TRUNCATE)
7933      Cond = Cond.getOperand(0);
7934
7935    // We know the result of AND is compared against zero. Try to match
7936    // it to BT.
7937    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7938      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7939      if (NewSetCC.getNode()) {
7940        CC = NewSetCC.getOperand(0);
7941        Cond = NewSetCC.getOperand(1);
7942        addTest = false;
7943      }
7944    }
7945  }
7946
7947  if (addTest) {
7948    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7949    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7950  }
7951  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7952                     Chain, Dest, CC, Cond);
7953}
7954
7955
7956// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
7957// Calls to _alloca is needed to probe the stack when allocating more than 4k
7958// bytes in one go. Touching the stack at 4K increments is necessary to ensure
7959// that the guard pages used by the OS virtual memory manager are allocated in
7960// correct sequence.
7961SDValue
7962X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7963                                           SelectionDAG &DAG) const {
7964  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
7965         "This should be used only on Windows targets");
7966  assert(!Subtarget->isTargetEnvMacho());
7967  DebugLoc dl = Op.getDebugLoc();
7968
7969  // Get the inputs.
7970  SDValue Chain = Op.getOperand(0);
7971  SDValue Size  = Op.getOperand(1);
7972  // FIXME: Ensure alignment here
7973
7974  SDValue Flag;
7975
7976  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
7977  unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
7978
7979  Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
7980  Flag = Chain.getValue(1);
7981
7982  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7983
7984  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
7985  Flag = Chain.getValue(1);
7986
7987  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
7988
7989  SDValue Ops1[2] = { Chain.getValue(0), Chain };
7990  return DAG.getMergeValues(Ops1, 2, dl);
7991}
7992
7993SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
7994  MachineFunction &MF = DAG.getMachineFunction();
7995  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
7996
7997  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7998  DebugLoc DL = Op.getDebugLoc();
7999
8000  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8001    // vastart just stores the address of the VarArgsFrameIndex slot into the
8002    // memory location argument.
8003    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8004                                   getPointerTy());
8005    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8006                        MachinePointerInfo(SV), false, false, 0);
8007  }
8008
8009  // __va_list_tag:
8010  //   gp_offset         (0 - 6 * 8)
8011  //   fp_offset         (48 - 48 + 8 * 16)
8012  //   overflow_arg_area (point to parameters coming in memory).
8013  //   reg_save_area
8014  SmallVector<SDValue, 8> MemOps;
8015  SDValue FIN = Op.getOperand(1);
8016  // Store gp_offset
8017  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
8018                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
8019                                               MVT::i32),
8020                               FIN, MachinePointerInfo(SV), false, false, 0);
8021  MemOps.push_back(Store);
8022
8023  // Store fp_offset
8024  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8025                    FIN, DAG.getIntPtrConstant(4));
8026  Store = DAG.getStore(Op.getOperand(0), DL,
8027                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
8028                                       MVT::i32),
8029                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
8030  MemOps.push_back(Store);
8031
8032  // Store ptr to overflow_arg_area
8033  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8034                    FIN, DAG.getIntPtrConstant(4));
8035  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8036                                    getPointerTy());
8037  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
8038                       MachinePointerInfo(SV, 8),
8039                       false, false, 0);
8040  MemOps.push_back(Store);
8041
8042  // Store ptr to reg_save_area.
8043  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8044                    FIN, DAG.getIntPtrConstant(8));
8045  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
8046                                    getPointerTy());
8047  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
8048                       MachinePointerInfo(SV, 16), false, false, 0);
8049  MemOps.push_back(Store);
8050  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
8051                     &MemOps[0], MemOps.size());
8052}
8053
8054SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
8055  assert(Subtarget->is64Bit() &&
8056         "LowerVAARG only handles 64-bit va_arg!");
8057  assert((Subtarget->isTargetLinux() ||
8058          Subtarget->isTargetDarwin()) &&
8059          "Unhandled target in LowerVAARG");
8060  assert(Op.getNode()->getNumOperands() == 4);
8061  SDValue Chain = Op.getOperand(0);
8062  SDValue SrcPtr = Op.getOperand(1);
8063  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8064  unsigned Align = Op.getConstantOperandVal(3);
8065  DebugLoc dl = Op.getDebugLoc();
8066
8067  EVT ArgVT = Op.getNode()->getValueType(0);
8068  const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
8069  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
8070  uint8_t ArgMode;
8071
8072  // Decide which area this value should be read from.
8073  // TODO: Implement the AMD64 ABI in its entirety. This simple
8074  // selection mechanism works only for the basic types.
8075  if (ArgVT == MVT::f80) {
8076    llvm_unreachable("va_arg for f80 not yet implemented");
8077  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
8078    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
8079  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
8080    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
8081  } else {
8082    llvm_unreachable("Unhandled argument type in LowerVAARG");
8083  }
8084
8085  if (ArgMode == 2) {
8086    // Sanity Check: Make sure using fp_offset makes sense.
8087    assert(!UseSoftFloat &&
8088           !(DAG.getMachineFunction()
8089                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
8090           Subtarget->hasXMM());
8091  }
8092
8093  // Insert VAARG_64 node into the DAG
8094  // VAARG_64 returns two values: Variable Argument Address, Chain
8095  SmallVector<SDValue, 11> InstOps;
8096  InstOps.push_back(Chain);
8097  InstOps.push_back(SrcPtr);
8098  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
8099  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
8100  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
8101  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
8102  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
8103                                          VTs, &InstOps[0], InstOps.size(),
8104                                          MVT::i64,
8105                                          MachinePointerInfo(SV),
8106                                          /*Align=*/0,
8107                                          /*Volatile=*/false,
8108                                          /*ReadMem=*/true,
8109                                          /*WriteMem=*/true);
8110  Chain = VAARG.getValue(1);
8111
8112  // Load the next argument and return it
8113  return DAG.getLoad(ArgVT, dl,
8114                     Chain,
8115                     VAARG,
8116                     MachinePointerInfo(),
8117                     false, false, 0);
8118}
8119
8120SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
8121  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
8122  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
8123  SDValue Chain = Op.getOperand(0);
8124  SDValue DstPtr = Op.getOperand(1);
8125  SDValue SrcPtr = Op.getOperand(2);
8126  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
8127  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8128  DebugLoc DL = Op.getDebugLoc();
8129
8130  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
8131                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
8132                       false,
8133                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
8134}
8135
8136SDValue
8137X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
8138  DebugLoc dl = Op.getDebugLoc();
8139  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8140  switch (IntNo) {
8141  default: return SDValue();    // Don't custom lower most intrinsics.
8142  // Comparison intrinsics.
8143  case Intrinsic::x86_sse_comieq_ss:
8144  case Intrinsic::x86_sse_comilt_ss:
8145  case Intrinsic::x86_sse_comile_ss:
8146  case Intrinsic::x86_sse_comigt_ss:
8147  case Intrinsic::x86_sse_comige_ss:
8148  case Intrinsic::x86_sse_comineq_ss:
8149  case Intrinsic::x86_sse_ucomieq_ss:
8150  case Intrinsic::x86_sse_ucomilt_ss:
8151  case Intrinsic::x86_sse_ucomile_ss:
8152  case Intrinsic::x86_sse_ucomigt_ss:
8153  case Intrinsic::x86_sse_ucomige_ss:
8154  case Intrinsic::x86_sse_ucomineq_ss:
8155  case Intrinsic::x86_sse2_comieq_sd:
8156  case Intrinsic::x86_sse2_comilt_sd:
8157  case Intrinsic::x86_sse2_comile_sd:
8158  case Intrinsic::x86_sse2_comigt_sd:
8159  case Intrinsic::x86_sse2_comige_sd:
8160  case Intrinsic::x86_sse2_comineq_sd:
8161  case Intrinsic::x86_sse2_ucomieq_sd:
8162  case Intrinsic::x86_sse2_ucomilt_sd:
8163  case Intrinsic::x86_sse2_ucomile_sd:
8164  case Intrinsic::x86_sse2_ucomigt_sd:
8165  case Intrinsic::x86_sse2_ucomige_sd:
8166  case Intrinsic::x86_sse2_ucomineq_sd: {
8167    unsigned Opc = 0;
8168    ISD::CondCode CC = ISD::SETCC_INVALID;
8169    switch (IntNo) {
8170    default: break;
8171    case Intrinsic::x86_sse_comieq_ss:
8172    case Intrinsic::x86_sse2_comieq_sd:
8173      Opc = X86ISD::COMI;
8174      CC = ISD::SETEQ;
8175      break;
8176    case Intrinsic::x86_sse_comilt_ss:
8177    case Intrinsic::x86_sse2_comilt_sd:
8178      Opc = X86ISD::COMI;
8179      CC = ISD::SETLT;
8180      break;
8181    case Intrinsic::x86_sse_comile_ss:
8182    case Intrinsic::x86_sse2_comile_sd:
8183      Opc = X86ISD::COMI;
8184      CC = ISD::SETLE;
8185      break;
8186    case Intrinsic::x86_sse_comigt_ss:
8187    case Intrinsic::x86_sse2_comigt_sd:
8188      Opc = X86ISD::COMI;
8189      CC = ISD::SETGT;
8190      break;
8191    case Intrinsic::x86_sse_comige_ss:
8192    case Intrinsic::x86_sse2_comige_sd:
8193      Opc = X86ISD::COMI;
8194      CC = ISD::SETGE;
8195      break;
8196    case Intrinsic::x86_sse_comineq_ss:
8197    case Intrinsic::x86_sse2_comineq_sd:
8198      Opc = X86ISD::COMI;
8199      CC = ISD::SETNE;
8200      break;
8201    case Intrinsic::x86_sse_ucomieq_ss:
8202    case Intrinsic::x86_sse2_ucomieq_sd:
8203      Opc = X86ISD::UCOMI;
8204      CC = ISD::SETEQ;
8205      break;
8206    case Intrinsic::x86_sse_ucomilt_ss:
8207    case Intrinsic::x86_sse2_ucomilt_sd:
8208      Opc = X86ISD::UCOMI;
8209      CC = ISD::SETLT;
8210      break;
8211    case Intrinsic::x86_sse_ucomile_ss:
8212    case Intrinsic::x86_sse2_ucomile_sd:
8213      Opc = X86ISD::UCOMI;
8214      CC = ISD::SETLE;
8215      break;
8216    case Intrinsic::x86_sse_ucomigt_ss:
8217    case Intrinsic::x86_sse2_ucomigt_sd:
8218      Opc = X86ISD::UCOMI;
8219      CC = ISD::SETGT;
8220      break;
8221    case Intrinsic::x86_sse_ucomige_ss:
8222    case Intrinsic::x86_sse2_ucomige_sd:
8223      Opc = X86ISD::UCOMI;
8224      CC = ISD::SETGE;
8225      break;
8226    case Intrinsic::x86_sse_ucomineq_ss:
8227    case Intrinsic::x86_sse2_ucomineq_sd:
8228      Opc = X86ISD::UCOMI;
8229      CC = ISD::SETNE;
8230      break;
8231    }
8232
8233    SDValue LHS = Op.getOperand(1);
8234    SDValue RHS = Op.getOperand(2);
8235    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
8236    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
8237    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
8238    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8239                                DAG.getConstant(X86CC, MVT::i8), Cond);
8240    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8241  }
8242  // ptest and testp intrinsics. The intrinsic these come from are designed to
8243  // return an integer value, not just an instruction so lower it to the ptest
8244  // or testp pattern and a setcc for the result.
8245  case Intrinsic::x86_sse41_ptestz:
8246  case Intrinsic::x86_sse41_ptestc:
8247  case Intrinsic::x86_sse41_ptestnzc:
8248  case Intrinsic::x86_avx_ptestz_256:
8249  case Intrinsic::x86_avx_ptestc_256:
8250  case Intrinsic::x86_avx_ptestnzc_256:
8251  case Intrinsic::x86_avx_vtestz_ps:
8252  case Intrinsic::x86_avx_vtestc_ps:
8253  case Intrinsic::x86_avx_vtestnzc_ps:
8254  case Intrinsic::x86_avx_vtestz_pd:
8255  case Intrinsic::x86_avx_vtestc_pd:
8256  case Intrinsic::x86_avx_vtestnzc_pd:
8257  case Intrinsic::x86_avx_vtestz_ps_256:
8258  case Intrinsic::x86_avx_vtestc_ps_256:
8259  case Intrinsic::x86_avx_vtestnzc_ps_256:
8260  case Intrinsic::x86_avx_vtestz_pd_256:
8261  case Intrinsic::x86_avx_vtestc_pd_256:
8262  case Intrinsic::x86_avx_vtestnzc_pd_256: {
8263    bool IsTestPacked = false;
8264    unsigned X86CC = 0;
8265    switch (IntNo) {
8266    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
8267    case Intrinsic::x86_avx_vtestz_ps:
8268    case Intrinsic::x86_avx_vtestz_pd:
8269    case Intrinsic::x86_avx_vtestz_ps_256:
8270    case Intrinsic::x86_avx_vtestz_pd_256:
8271      IsTestPacked = true; // Fallthrough
8272    case Intrinsic::x86_sse41_ptestz:
8273    case Intrinsic::x86_avx_ptestz_256:
8274      // ZF = 1
8275      X86CC = X86::COND_E;
8276      break;
8277    case Intrinsic::x86_avx_vtestc_ps:
8278    case Intrinsic::x86_avx_vtestc_pd:
8279    case Intrinsic::x86_avx_vtestc_ps_256:
8280    case Intrinsic::x86_avx_vtestc_pd_256:
8281      IsTestPacked = true; // Fallthrough
8282    case Intrinsic::x86_sse41_ptestc:
8283    case Intrinsic::x86_avx_ptestc_256:
8284      // CF = 1
8285      X86CC = X86::COND_B;
8286      break;
8287    case Intrinsic::x86_avx_vtestnzc_ps:
8288    case Intrinsic::x86_avx_vtestnzc_pd:
8289    case Intrinsic::x86_avx_vtestnzc_ps_256:
8290    case Intrinsic::x86_avx_vtestnzc_pd_256:
8291      IsTestPacked = true; // Fallthrough
8292    case Intrinsic::x86_sse41_ptestnzc:
8293    case Intrinsic::x86_avx_ptestnzc_256:
8294      // ZF and CF = 0
8295      X86CC = X86::COND_A;
8296      break;
8297    }
8298
8299    SDValue LHS = Op.getOperand(1);
8300    SDValue RHS = Op.getOperand(2);
8301    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
8302    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
8303    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
8304    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
8305    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8306  }
8307
8308  // Fix vector shift instructions where the last operand is a non-immediate
8309  // i32 value.
8310  case Intrinsic::x86_sse2_pslli_w:
8311  case Intrinsic::x86_sse2_pslli_d:
8312  case Intrinsic::x86_sse2_pslli_q:
8313  case Intrinsic::x86_sse2_psrli_w:
8314  case Intrinsic::x86_sse2_psrli_d:
8315  case Intrinsic::x86_sse2_psrli_q:
8316  case Intrinsic::x86_sse2_psrai_w:
8317  case Intrinsic::x86_sse2_psrai_d:
8318  case Intrinsic::x86_mmx_pslli_w:
8319  case Intrinsic::x86_mmx_pslli_d:
8320  case Intrinsic::x86_mmx_pslli_q:
8321  case Intrinsic::x86_mmx_psrli_w:
8322  case Intrinsic::x86_mmx_psrli_d:
8323  case Intrinsic::x86_mmx_psrli_q:
8324  case Intrinsic::x86_mmx_psrai_w:
8325  case Intrinsic::x86_mmx_psrai_d: {
8326    SDValue ShAmt = Op.getOperand(2);
8327    if (isa<ConstantSDNode>(ShAmt))
8328      return SDValue();
8329
8330    unsigned NewIntNo = 0;
8331    EVT ShAmtVT = MVT::v4i32;
8332    switch (IntNo) {
8333    case Intrinsic::x86_sse2_pslli_w:
8334      NewIntNo = Intrinsic::x86_sse2_psll_w;
8335      break;
8336    case Intrinsic::x86_sse2_pslli_d:
8337      NewIntNo = Intrinsic::x86_sse2_psll_d;
8338      break;
8339    case Intrinsic::x86_sse2_pslli_q:
8340      NewIntNo = Intrinsic::x86_sse2_psll_q;
8341      break;
8342    case Intrinsic::x86_sse2_psrli_w:
8343      NewIntNo = Intrinsic::x86_sse2_psrl_w;
8344      break;
8345    case Intrinsic::x86_sse2_psrli_d:
8346      NewIntNo = Intrinsic::x86_sse2_psrl_d;
8347      break;
8348    case Intrinsic::x86_sse2_psrli_q:
8349      NewIntNo = Intrinsic::x86_sse2_psrl_q;
8350      break;
8351    case Intrinsic::x86_sse2_psrai_w:
8352      NewIntNo = Intrinsic::x86_sse2_psra_w;
8353      break;
8354    case Intrinsic::x86_sse2_psrai_d:
8355      NewIntNo = Intrinsic::x86_sse2_psra_d;
8356      break;
8357    default: {
8358      ShAmtVT = MVT::v2i32;
8359      switch (IntNo) {
8360      case Intrinsic::x86_mmx_pslli_w:
8361        NewIntNo = Intrinsic::x86_mmx_psll_w;
8362        break;
8363      case Intrinsic::x86_mmx_pslli_d:
8364        NewIntNo = Intrinsic::x86_mmx_psll_d;
8365        break;
8366      case Intrinsic::x86_mmx_pslli_q:
8367        NewIntNo = Intrinsic::x86_mmx_psll_q;
8368        break;
8369      case Intrinsic::x86_mmx_psrli_w:
8370        NewIntNo = Intrinsic::x86_mmx_psrl_w;
8371        break;
8372      case Intrinsic::x86_mmx_psrli_d:
8373        NewIntNo = Intrinsic::x86_mmx_psrl_d;
8374        break;
8375      case Intrinsic::x86_mmx_psrli_q:
8376        NewIntNo = Intrinsic::x86_mmx_psrl_q;
8377        break;
8378      case Intrinsic::x86_mmx_psrai_w:
8379        NewIntNo = Intrinsic::x86_mmx_psra_w;
8380        break;
8381      case Intrinsic::x86_mmx_psrai_d:
8382        NewIntNo = Intrinsic::x86_mmx_psra_d;
8383        break;
8384      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8385      }
8386      break;
8387    }
8388    }
8389
8390    // The vector shift intrinsics with scalars uses 32b shift amounts but
8391    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
8392    // to be zero.
8393    SDValue ShOps[4];
8394    ShOps[0] = ShAmt;
8395    ShOps[1] = DAG.getConstant(0, MVT::i32);
8396    if (ShAmtVT == MVT::v4i32) {
8397      ShOps[2] = DAG.getUNDEF(MVT::i32);
8398      ShOps[3] = DAG.getUNDEF(MVT::i32);
8399      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
8400    } else {
8401      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
8402// FIXME this must be lowered to get rid of the invalid type.
8403    }
8404
8405    EVT VT = Op.getValueType();
8406    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
8407    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8408                       DAG.getConstant(NewIntNo, MVT::i32),
8409                       Op.getOperand(1), ShAmt);
8410  }
8411  }
8412}
8413
8414SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
8415                                           SelectionDAG &DAG) const {
8416  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8417  MFI->setReturnAddressIsTaken(true);
8418
8419  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8420  DebugLoc dl = Op.getDebugLoc();
8421
8422  if (Depth > 0) {
8423    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
8424    SDValue Offset =
8425      DAG.getConstant(TD->getPointerSize(),
8426                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8427    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8428                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
8429                                   FrameAddr, Offset),
8430                       MachinePointerInfo(), false, false, 0);
8431  }
8432
8433  // Just load the return address.
8434  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
8435  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8436                     RetAddrFI, MachinePointerInfo(), false, false, 0);
8437}
8438
8439SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
8440  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8441  MFI->setFrameAddressIsTaken(true);
8442
8443  EVT VT = Op.getValueType();
8444  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
8445  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8446  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
8447  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
8448  while (Depth--)
8449    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
8450                            MachinePointerInfo(),
8451                            false, false, 0);
8452  return FrameAddr;
8453}
8454
8455SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
8456                                                     SelectionDAG &DAG) const {
8457  return DAG.getIntPtrConstant(2*TD->getPointerSize());
8458}
8459
8460SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
8461  MachineFunction &MF = DAG.getMachineFunction();
8462  SDValue Chain     = Op.getOperand(0);
8463  SDValue Offset    = Op.getOperand(1);
8464  SDValue Handler   = Op.getOperand(2);
8465  DebugLoc dl       = Op.getDebugLoc();
8466
8467  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
8468                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
8469                                     getPointerTy());
8470  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
8471
8472  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
8473                                  DAG.getIntPtrConstant(TD->getPointerSize()));
8474  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
8475  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
8476                       false, false, 0);
8477  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
8478  MF.getRegInfo().addLiveOut(StoreAddrReg);
8479
8480  return DAG.getNode(X86ISD::EH_RETURN, dl,
8481                     MVT::Other,
8482                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
8483}
8484
8485SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
8486                                             SelectionDAG &DAG) const {
8487  SDValue Root = Op.getOperand(0);
8488  SDValue Trmp = Op.getOperand(1); // trampoline
8489  SDValue FPtr = Op.getOperand(2); // nested function
8490  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
8491  DebugLoc dl  = Op.getDebugLoc();
8492
8493  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8494
8495  if (Subtarget->is64Bit()) {
8496    SDValue OutChains[6];
8497
8498    // Large code-model.
8499    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
8500    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
8501
8502    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
8503    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
8504
8505    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
8506
8507    // Load the pointer to the nested function into R11.
8508    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8509    SDValue Addr = Trmp;
8510    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8511                                Addr, MachinePointerInfo(TrmpAddr),
8512                                false, false, 0);
8513
8514    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8515                       DAG.getConstant(2, MVT::i64));
8516    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8517                                MachinePointerInfo(TrmpAddr, 2),
8518                                false, false, 2);
8519
8520    // Load the 'nest' parameter value into R10.
8521    // R10 is specified in X86CallingConv.td
8522    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8523    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8524                       DAG.getConstant(10, MVT::i64));
8525    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8526                                Addr, MachinePointerInfo(TrmpAddr, 10),
8527                                false, false, 0);
8528
8529    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8530                       DAG.getConstant(12, MVT::i64));
8531    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8532                                MachinePointerInfo(TrmpAddr, 12),
8533                                false, false, 2);
8534
8535    // Jump to the nested function.
8536    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8537    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8538                       DAG.getConstant(20, MVT::i64));
8539    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8540                                Addr, MachinePointerInfo(TrmpAddr, 20),
8541                                false, false, 0);
8542
8543    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8544    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8545                       DAG.getConstant(22, MVT::i64));
8546    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8547                                MachinePointerInfo(TrmpAddr, 22),
8548                                false, false, 0);
8549
8550    SDValue Ops[] =
8551      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8552    return DAG.getMergeValues(Ops, 2, dl);
8553  } else {
8554    const Function *Func =
8555      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8556    CallingConv::ID CC = Func->getCallingConv();
8557    unsigned NestReg;
8558
8559    switch (CC) {
8560    default:
8561      llvm_unreachable("Unsupported calling convention");
8562    case CallingConv::C:
8563    case CallingConv::X86_StdCall: {
8564      // Pass 'nest' parameter in ECX.
8565      // Must be kept in sync with X86CallingConv.td
8566      NestReg = X86::ECX;
8567
8568      // Check that ECX wasn't needed by an 'inreg' parameter.
8569      const FunctionType *FTy = Func->getFunctionType();
8570      const AttrListPtr &Attrs = Func->getAttributes();
8571
8572      if (!Attrs.isEmpty() && !Func->isVarArg()) {
8573        unsigned InRegCount = 0;
8574        unsigned Idx = 1;
8575
8576        for (FunctionType::param_iterator I = FTy->param_begin(),
8577             E = FTy->param_end(); I != E; ++I, ++Idx)
8578          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8579            // FIXME: should only count parameters that are lowered to integers.
8580            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8581
8582        if (InRegCount > 2) {
8583          report_fatal_error("Nest register in use - reduce number of inreg"
8584                             " parameters!");
8585        }
8586      }
8587      break;
8588    }
8589    case CallingConv::X86_FastCall:
8590    case CallingConv::X86_ThisCall:
8591    case CallingConv::Fast:
8592      // Pass 'nest' parameter in EAX.
8593      // Must be kept in sync with X86CallingConv.td
8594      NestReg = X86::EAX;
8595      break;
8596    }
8597
8598    SDValue OutChains[4];
8599    SDValue Addr, Disp;
8600
8601    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8602                       DAG.getConstant(10, MVT::i32));
8603    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
8604
8605    // This is storing the opcode for MOV32ri.
8606    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
8607    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
8608    OutChains[0] = DAG.getStore(Root, dl,
8609                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
8610                                Trmp, MachinePointerInfo(TrmpAddr),
8611                                false, false, 0);
8612
8613    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8614                       DAG.getConstant(1, MVT::i32));
8615    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
8616                                MachinePointerInfo(TrmpAddr, 1),
8617                                false, false, 1);
8618
8619    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
8620    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8621                       DAG.getConstant(5, MVT::i32));
8622    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
8623                                MachinePointerInfo(TrmpAddr, 5),
8624                                false, false, 1);
8625
8626    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8627                       DAG.getConstant(6, MVT::i32));
8628    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
8629                                MachinePointerInfo(TrmpAddr, 6),
8630                                false, false, 1);
8631
8632    SDValue Ops[] =
8633      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
8634    return DAG.getMergeValues(Ops, 2, dl);
8635  }
8636}
8637
8638SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8639                                            SelectionDAG &DAG) const {
8640  /*
8641   The rounding mode is in bits 11:10 of FPSR, and has the following
8642   settings:
8643     00 Round to nearest
8644     01 Round to -inf
8645     10 Round to +inf
8646     11 Round to 0
8647
8648  FLT_ROUNDS, on the other hand, expects the following:
8649    -1 Undefined
8650     0 Round to 0
8651     1 Round to nearest
8652     2 Round to +inf
8653     3 Round to -inf
8654
8655  To perform the conversion, we do:
8656    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
8657  */
8658
8659  MachineFunction &MF = DAG.getMachineFunction();
8660  const TargetMachine &TM = MF.getTarget();
8661  const TargetFrameLowering &TFI = *TM.getFrameLowering();
8662  unsigned StackAlignment = TFI.getStackAlignment();
8663  EVT VT = Op.getValueType();
8664  DebugLoc DL = Op.getDebugLoc();
8665
8666  // Save FP Control Word to stack slot
8667  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
8668  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8669
8670
8671  MachineMemOperand *MMO =
8672   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8673                           MachineMemOperand::MOStore, 2, 2);
8674
8675  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
8676  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
8677                                          DAG.getVTList(MVT::Other),
8678                                          Ops, 2, MVT::i16, MMO);
8679
8680  // Load FP Control Word from stack slot
8681  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
8682                            MachinePointerInfo(), false, false, 0);
8683
8684  // Transform as necessary
8685  SDValue CWD1 =
8686    DAG.getNode(ISD::SRL, DL, MVT::i16,
8687                DAG.getNode(ISD::AND, DL, MVT::i16,
8688                            CWD, DAG.getConstant(0x800, MVT::i16)),
8689                DAG.getConstant(11, MVT::i8));
8690  SDValue CWD2 =
8691    DAG.getNode(ISD::SRL, DL, MVT::i16,
8692                DAG.getNode(ISD::AND, DL, MVT::i16,
8693                            CWD, DAG.getConstant(0x400, MVT::i16)),
8694                DAG.getConstant(9, MVT::i8));
8695
8696  SDValue RetVal =
8697    DAG.getNode(ISD::AND, DL, MVT::i16,
8698                DAG.getNode(ISD::ADD, DL, MVT::i16,
8699                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
8700                            DAG.getConstant(1, MVT::i16)),
8701                DAG.getConstant(3, MVT::i16));
8702
8703
8704  return DAG.getNode((VT.getSizeInBits() < 16 ?
8705                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
8706}
8707
8708SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
8709  EVT VT = Op.getValueType();
8710  EVT OpVT = VT;
8711  unsigned NumBits = VT.getSizeInBits();
8712  DebugLoc dl = Op.getDebugLoc();
8713
8714  Op = Op.getOperand(0);
8715  if (VT == MVT::i8) {
8716    // Zero extend to i32 since there is not an i8 bsr.
8717    OpVT = MVT::i32;
8718    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8719  }
8720
8721  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
8722  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8723  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
8724
8725  // If src is zero (i.e. bsr sets ZF), returns NumBits.
8726  SDValue Ops[] = {
8727    Op,
8728    DAG.getConstant(NumBits+NumBits-1, OpVT),
8729    DAG.getConstant(X86::COND_E, MVT::i8),
8730    Op.getValue(1)
8731  };
8732  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8733
8734  // Finally xor with NumBits-1.
8735  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
8736
8737  if (VT == MVT::i8)
8738    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8739  return Op;
8740}
8741
8742SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
8743  EVT VT = Op.getValueType();
8744  EVT OpVT = VT;
8745  unsigned NumBits = VT.getSizeInBits();
8746  DebugLoc dl = Op.getDebugLoc();
8747
8748  Op = Op.getOperand(0);
8749  if (VT == MVT::i8) {
8750    OpVT = MVT::i32;
8751    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8752  }
8753
8754  // Issue a bsf (scan bits forward) which also sets EFLAGS.
8755  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8756  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
8757
8758  // If src is zero (i.e. bsf sets ZF), returns NumBits.
8759  SDValue Ops[] = {
8760    Op,
8761    DAG.getConstant(NumBits, OpVT),
8762    DAG.getConstant(X86::COND_E, MVT::i8),
8763    Op.getValue(1)
8764  };
8765  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8766
8767  if (VT == MVT::i8)
8768    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8769  return Op;
8770}
8771
8772SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
8773  EVT VT = Op.getValueType();
8774  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
8775  DebugLoc dl = Op.getDebugLoc();
8776
8777  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
8778  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
8779  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
8780  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
8781  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
8782  //
8783  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
8784  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
8785  //  return AloBlo + AloBhi + AhiBlo;
8786
8787  SDValue A = Op.getOperand(0);
8788  SDValue B = Op.getOperand(1);
8789
8790  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8791                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8792                       A, DAG.getConstant(32, MVT::i32));
8793  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8794                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8795                       B, DAG.getConstant(32, MVT::i32));
8796  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8797                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8798                       A, B);
8799  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8800                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8801                       A, Bhi);
8802  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8803                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8804                       Ahi, B);
8805  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8806                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8807                       AloBhi, DAG.getConstant(32, MVT::i32));
8808  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8809                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8810                       AhiBlo, DAG.getConstant(32, MVT::i32));
8811  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
8812  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
8813  return Res;
8814}
8815
8816SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
8817
8818  EVT VT = Op.getValueType();
8819  DebugLoc dl = Op.getDebugLoc();
8820  SDValue R = Op.getOperand(0);
8821  SDValue Amt = Op.getOperand(1);
8822
8823  LLVMContext *Context = DAG.getContext();
8824
8825  // Must have SSE2.
8826  if (!Subtarget->hasSSE2()) return SDValue();
8827
8828  // Optimize shl/srl/sra with constant shift amount.
8829  if (isSplatVector(Amt.getNode())) {
8830    SDValue SclrAmt = Amt->getOperand(0);
8831    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
8832      uint64_t ShiftAmt = C->getZExtValue();
8833
8834      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
8835       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8836                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8837                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8838
8839      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
8840       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8841                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8842                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8843
8844      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
8845       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8846                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8847                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8848
8849      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
8850       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8851                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8852                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8853
8854      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
8855       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8856                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8857                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8858
8859      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
8860       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8861                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8862                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8863
8864      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
8865       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8866                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8867                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8868
8869      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
8870       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8871                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8872                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8873    }
8874  }
8875
8876  // Lower SHL with variable shift amount.
8877  // Cannot lower SHL without SSE4.1 or later.
8878  if (!Subtarget->hasSSE41()) return SDValue();
8879
8880  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
8881    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8882                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8883                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
8884
8885    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
8886
8887    std::vector<Constant*> CV(4, CI);
8888    Constant *C = ConstantVector::get(CV);
8889    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8890    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8891                                 MachinePointerInfo::getConstantPool(),
8892                                 false, false, 16);
8893
8894    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
8895    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
8896    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
8897    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
8898  }
8899  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
8900    // a = a << 5;
8901    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8902                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8903                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
8904
8905    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
8906    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
8907
8908    std::vector<Constant*> CVM1(16, CM1);
8909    std::vector<Constant*> CVM2(16, CM2);
8910    Constant *C = ConstantVector::get(CVM1);
8911    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8912    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8913                            MachinePointerInfo::getConstantPool(),
8914                            false, false, 16);
8915
8916    // r = pblendv(r, psllw(r & (char16)15, 4), a);
8917    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8918    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8919                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8920                    DAG.getConstant(4, MVT::i32));
8921    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
8922    // a += a
8923    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8924
8925    C = ConstantVector::get(CVM2);
8926    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8927    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8928                    MachinePointerInfo::getConstantPool(),
8929                    false, false, 16);
8930
8931    // r = pblendv(r, psllw(r & (char16)63, 2), a);
8932    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8933    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8934                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8935                    DAG.getConstant(2, MVT::i32));
8936    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
8937    // a += a
8938    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8939
8940    // return pblendv(r, r+r, a);
8941    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
8942                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
8943    return R;
8944  }
8945  return SDValue();
8946}
8947
8948SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
8949  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
8950  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
8951  // looks for this combo and may remove the "setcc" instruction if the "setcc"
8952  // has only one use.
8953  SDNode *N = Op.getNode();
8954  SDValue LHS = N->getOperand(0);
8955  SDValue RHS = N->getOperand(1);
8956  unsigned BaseOp = 0;
8957  unsigned Cond = 0;
8958  DebugLoc DL = Op.getDebugLoc();
8959  switch (Op.getOpcode()) {
8960  default: llvm_unreachable("Unknown ovf instruction!");
8961  case ISD::SADDO:
8962    // A subtract of one will be selected as a INC. Note that INC doesn't
8963    // set CF, so we can't do this for UADDO.
8964    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
8965      if (C->isOne()) {
8966        BaseOp = X86ISD::INC;
8967        Cond = X86::COND_O;
8968        break;
8969      }
8970    BaseOp = X86ISD::ADD;
8971    Cond = X86::COND_O;
8972    break;
8973  case ISD::UADDO:
8974    BaseOp = X86ISD::ADD;
8975    Cond = X86::COND_B;
8976    break;
8977  case ISD::SSUBO:
8978    // A subtract of one will be selected as a DEC. Note that DEC doesn't
8979    // set CF, so we can't do this for USUBO.
8980    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
8981      if (C->isOne()) {
8982        BaseOp = X86ISD::DEC;
8983        Cond = X86::COND_O;
8984        break;
8985      }
8986    BaseOp = X86ISD::SUB;
8987    Cond = X86::COND_O;
8988    break;
8989  case ISD::USUBO:
8990    BaseOp = X86ISD::SUB;
8991    Cond = X86::COND_B;
8992    break;
8993  case ISD::SMULO:
8994    BaseOp = X86ISD::SMUL;
8995    Cond = X86::COND_O;
8996    break;
8997  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
8998    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
8999                                 MVT::i32);
9000    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
9001
9002    SDValue SetCC =
9003      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9004                  DAG.getConstant(X86::COND_O, MVT::i32),
9005                  SDValue(Sum.getNode(), 2));
9006
9007    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
9008    return Sum;
9009  }
9010  }
9011
9012  // Also sets EFLAGS.
9013  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
9014  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
9015
9016  SDValue SetCC =
9017    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
9018                DAG.getConstant(Cond, MVT::i32),
9019                SDValue(Sum.getNode(), 1));
9020
9021  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
9022  return Sum;
9023}
9024
9025SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
9026  DebugLoc dl = Op.getDebugLoc();
9027
9028  if (!Subtarget->hasSSE2()) {
9029    SDValue Chain = Op.getOperand(0);
9030    SDValue Zero = DAG.getConstant(0,
9031                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9032    SDValue Ops[] = {
9033      DAG.getRegister(X86::ESP, MVT::i32), // Base
9034      DAG.getTargetConstant(1, MVT::i8),   // Scale
9035      DAG.getRegister(0, MVT::i32),        // Index
9036      DAG.getTargetConstant(0, MVT::i32),  // Disp
9037      DAG.getRegister(0, MVT::i32),        // Segment.
9038      Zero,
9039      Chain
9040    };
9041    SDNode *Res =
9042      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
9043                          array_lengthof(Ops));
9044    return SDValue(Res, 0);
9045  }
9046
9047  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
9048  if (!isDev)
9049    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
9050
9051  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
9052  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
9053  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
9054  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
9055
9056  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
9057  if (!Op1 && !Op2 && !Op3 && Op4)
9058    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
9059
9060  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
9061  if (Op1 && !Op2 && !Op3 && !Op4)
9062    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
9063
9064  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
9065  //           (MFENCE)>;
9066  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
9067}
9068
9069SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
9070  EVT T = Op.getValueType();
9071  DebugLoc DL = Op.getDebugLoc();
9072  unsigned Reg = 0;
9073  unsigned size = 0;
9074  switch(T.getSimpleVT().SimpleTy) {
9075  default:
9076    assert(false && "Invalid value type!");
9077  case MVT::i8:  Reg = X86::AL;  size = 1; break;
9078  case MVT::i16: Reg = X86::AX;  size = 2; break;
9079  case MVT::i32: Reg = X86::EAX; size = 4; break;
9080  case MVT::i64:
9081    assert(Subtarget->is64Bit() && "Node not type legal!");
9082    Reg = X86::RAX; size = 8;
9083    break;
9084  }
9085  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
9086                                    Op.getOperand(2), SDValue());
9087  SDValue Ops[] = { cpIn.getValue(0),
9088                    Op.getOperand(1),
9089                    Op.getOperand(3),
9090                    DAG.getTargetConstant(size, MVT::i8),
9091                    cpIn.getValue(1) };
9092  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9093  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
9094  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
9095                                           Ops, 5, T, MMO);
9096  SDValue cpOut =
9097    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
9098  return cpOut;
9099}
9100
9101SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
9102                                                 SelectionDAG &DAG) const {
9103  assert(Subtarget->is64Bit() && "Result not type legalized?");
9104  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9105  SDValue TheChain = Op.getOperand(0);
9106  DebugLoc dl = Op.getDebugLoc();
9107  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9108  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
9109  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
9110                                   rax.getValue(2));
9111  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
9112                            DAG.getConstant(32, MVT::i8));
9113  SDValue Ops[] = {
9114    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
9115    rdx.getValue(1)
9116  };
9117  return DAG.getMergeValues(Ops, 2, dl);
9118}
9119
9120SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
9121                                            SelectionDAG &DAG) const {
9122  EVT SrcVT = Op.getOperand(0).getValueType();
9123  EVT DstVT = Op.getValueType();
9124  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
9125         Subtarget->hasMMX() && "Unexpected custom BITCAST");
9126  assert((DstVT == MVT::i64 ||
9127          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
9128         "Unexpected custom BITCAST");
9129  // i64 <=> MMX conversions are Legal.
9130  if (SrcVT==MVT::i64 && DstVT.isVector())
9131    return Op;
9132  if (DstVT==MVT::i64 && SrcVT.isVector())
9133    return Op;
9134  // MMX <=> MMX conversions are Legal.
9135  if (SrcVT.isVector() && DstVT.isVector())
9136    return Op;
9137  // All other conversions need to be expanded.
9138  return SDValue();
9139}
9140
9141SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
9142  SDNode *Node = Op.getNode();
9143  DebugLoc dl = Node->getDebugLoc();
9144  EVT T = Node->getValueType(0);
9145  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
9146                              DAG.getConstant(0, T), Node->getOperand(2));
9147  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
9148                       cast<AtomicSDNode>(Node)->getMemoryVT(),
9149                       Node->getOperand(0),
9150                       Node->getOperand(1), negOp,
9151                       cast<AtomicSDNode>(Node)->getSrcValue(),
9152                       cast<AtomicSDNode>(Node)->getAlignment());
9153}
9154
9155static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
9156  EVT VT = Op.getNode()->getValueType(0);
9157
9158  // Let legalize expand this if it isn't a legal type yet.
9159  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9160    return SDValue();
9161
9162  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9163
9164  unsigned Opc;
9165  bool ExtraOp = false;
9166  switch (Op.getOpcode()) {
9167  default: assert(0 && "Invalid code");
9168  case ISD::ADDC: Opc = X86ISD::ADD; break;
9169  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
9170  case ISD::SUBC: Opc = X86ISD::SUB; break;
9171  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
9172  }
9173
9174  if (!ExtraOp)
9175    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9176                       Op.getOperand(1));
9177  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9178                     Op.getOperand(1), Op.getOperand(2));
9179}
9180
9181/// LowerOperation - Provide custom lowering hooks for some operations.
9182///
9183SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9184  switch (Op.getOpcode()) {
9185  default: llvm_unreachable("Should not custom lower this!");
9186  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
9187  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
9188  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
9189  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9190  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
9191  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9192  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9193  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9194  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
9195  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
9196  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9197  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9198  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9199  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9200  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
9201  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9202  case ISD::SHL_PARTS:
9203  case ISD::SRA_PARTS:
9204  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
9205  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
9206  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
9207  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
9208  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
9209  case ISD::FABS:               return LowerFABS(Op, DAG);
9210  case ISD::FNEG:               return LowerFNEG(Op, DAG);
9211  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
9212  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
9213  case ISD::SETCC:              return LowerSETCC(Op, DAG);
9214  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
9215  case ISD::SELECT:             return LowerSELECT(Op, DAG);
9216  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
9217  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9218  case ISD::VASTART:            return LowerVASTART(Op, DAG);
9219  case ISD::VAARG:              return LowerVAARG(Op, DAG);
9220  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9221  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9222  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9223  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9224  case ISD::FRAME_TO_ARGS_OFFSET:
9225                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
9226  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9227  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
9228  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
9229  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9230  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
9231  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
9232  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
9233  case ISD::SRA:
9234  case ISD::SRL:
9235  case ISD::SHL:                return LowerShift(Op, DAG);
9236  case ISD::SADDO:
9237  case ISD::UADDO:
9238  case ISD::SSUBO:
9239  case ISD::USUBO:
9240  case ISD::SMULO:
9241  case ISD::UMULO:              return LowerXALUO(Op, DAG);
9242  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
9243  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9244  case ISD::ADDC:
9245  case ISD::ADDE:
9246  case ISD::SUBC:
9247  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
9248  }
9249}
9250
9251void X86TargetLowering::
9252ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
9253                        SelectionDAG &DAG, unsigned NewOp) const {
9254  EVT T = Node->getValueType(0);
9255  DebugLoc dl = Node->getDebugLoc();
9256  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
9257
9258  SDValue Chain = Node->getOperand(0);
9259  SDValue In1 = Node->getOperand(1);
9260  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9261                             Node->getOperand(2), DAG.getIntPtrConstant(0));
9262  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9263                             Node->getOperand(2), DAG.getIntPtrConstant(1));
9264  SDValue Ops[] = { Chain, In1, In2L, In2H };
9265  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9266  SDValue Result =
9267    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
9268                            cast<MemSDNode>(Node)->getMemOperand());
9269  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
9270  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9271  Results.push_back(Result.getValue(2));
9272}
9273
9274/// ReplaceNodeResults - Replace a node with an illegal result type
9275/// with a new node built out of custom code.
9276void X86TargetLowering::ReplaceNodeResults(SDNode *N,
9277                                           SmallVectorImpl<SDValue>&Results,
9278                                           SelectionDAG &DAG) const {
9279  DebugLoc dl = N->getDebugLoc();
9280  switch (N->getOpcode()) {
9281  default:
9282    assert(false && "Do not know how to custom type legalize this operation!");
9283    return;
9284  case ISD::ADDC:
9285  case ISD::ADDE:
9286  case ISD::SUBC:
9287  case ISD::SUBE:
9288    // We don't want to expand or promote these.
9289    return;
9290  case ISD::FP_TO_SINT: {
9291    std::pair<SDValue,SDValue> Vals =
9292        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
9293    SDValue FIST = Vals.first, StackSlot = Vals.second;
9294    if (FIST.getNode() != 0) {
9295      EVT VT = N->getValueType(0);
9296      // Return a load from the stack slot.
9297      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
9298                                    MachinePointerInfo(), false, false, 0));
9299    }
9300    return;
9301  }
9302  case ISD::READCYCLECOUNTER: {
9303    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9304    SDValue TheChain = N->getOperand(0);
9305    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9306    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
9307                                     rd.getValue(1));
9308    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
9309                                     eax.getValue(2));
9310    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
9311    SDValue Ops[] = { eax, edx };
9312    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
9313    Results.push_back(edx.getValue(1));
9314    return;
9315  }
9316  case ISD::ATOMIC_CMP_SWAP: {
9317    EVT T = N->getValueType(0);
9318    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
9319    SDValue cpInL, cpInH;
9320    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9321                        DAG.getConstant(0, MVT::i32));
9322    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9323                        DAG.getConstant(1, MVT::i32));
9324    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
9325    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
9326                             cpInL.getValue(1));
9327    SDValue swapInL, swapInH;
9328    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9329                          DAG.getConstant(0, MVT::i32));
9330    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9331                          DAG.getConstant(1, MVT::i32));
9332    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
9333                               cpInH.getValue(1));
9334    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
9335                               swapInL.getValue(1));
9336    SDValue Ops[] = { swapInH.getValue(0),
9337                      N->getOperand(1),
9338                      swapInH.getValue(1) };
9339    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9340    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
9341    SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
9342                                             Ops, 3, T, MMO);
9343    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
9344                                        MVT::i32, Result.getValue(1));
9345    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
9346                                        MVT::i32, cpOutL.getValue(2));
9347    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
9348    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9349    Results.push_back(cpOutH.getValue(1));
9350    return;
9351  }
9352  case ISD::ATOMIC_LOAD_ADD:
9353    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
9354    return;
9355  case ISD::ATOMIC_LOAD_AND:
9356    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
9357    return;
9358  case ISD::ATOMIC_LOAD_NAND:
9359    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
9360    return;
9361  case ISD::ATOMIC_LOAD_OR:
9362    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
9363    return;
9364  case ISD::ATOMIC_LOAD_SUB:
9365    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
9366    return;
9367  case ISD::ATOMIC_LOAD_XOR:
9368    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
9369    return;
9370  case ISD::ATOMIC_SWAP:
9371    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
9372    return;
9373  }
9374}
9375
9376const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
9377  switch (Opcode) {
9378  default: return NULL;
9379  case X86ISD::BSF:                return "X86ISD::BSF";
9380  case X86ISD::BSR:                return "X86ISD::BSR";
9381  case X86ISD::SHLD:               return "X86ISD::SHLD";
9382  case X86ISD::SHRD:               return "X86ISD::SHRD";
9383  case X86ISD::FAND:               return "X86ISD::FAND";
9384  case X86ISD::FOR:                return "X86ISD::FOR";
9385  case X86ISD::FXOR:               return "X86ISD::FXOR";
9386  case X86ISD::FSRL:               return "X86ISD::FSRL";
9387  case X86ISD::FILD:               return "X86ISD::FILD";
9388  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
9389  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
9390  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
9391  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
9392  case X86ISD::FLD:                return "X86ISD::FLD";
9393  case X86ISD::FST:                return "X86ISD::FST";
9394  case X86ISD::CALL:               return "X86ISD::CALL";
9395  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
9396  case X86ISD::BT:                 return "X86ISD::BT";
9397  case X86ISD::CMP:                return "X86ISD::CMP";
9398  case X86ISD::COMI:               return "X86ISD::COMI";
9399  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
9400  case X86ISD::SETCC:              return "X86ISD::SETCC";
9401  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
9402  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
9403  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
9404  case X86ISD::CMOV:               return "X86ISD::CMOV";
9405  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
9406  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
9407  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
9408  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
9409  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
9410  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
9411  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
9412  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
9413  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
9414  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
9415  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
9416  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
9417  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
9418  case X86ISD::PANDN:              return "X86ISD::PANDN";
9419  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
9420  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
9421  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
9422  case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB";
9423  case X86ISD::FMAX:               return "X86ISD::FMAX";
9424  case X86ISD::FMIN:               return "X86ISD::FMIN";
9425  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
9426  case X86ISD::FRCP:               return "X86ISD::FRCP";
9427  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
9428  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
9429  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
9430  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
9431  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
9432  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
9433  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
9434  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
9435  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
9436  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
9437  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
9438  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
9439  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
9440  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
9441  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
9442  case X86ISD::VSHL:               return "X86ISD::VSHL";
9443  case X86ISD::VSRL:               return "X86ISD::VSRL";
9444  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
9445  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
9446  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
9447  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
9448  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
9449  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
9450  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
9451  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
9452  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
9453  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
9454  case X86ISD::ADD:                return "X86ISD::ADD";
9455  case X86ISD::SUB:                return "X86ISD::SUB";
9456  case X86ISD::ADC:                return "X86ISD::ADC";
9457  case X86ISD::SBB:                return "X86ISD::SBB";
9458  case X86ISD::SMUL:               return "X86ISD::SMUL";
9459  case X86ISD::UMUL:               return "X86ISD::UMUL";
9460  case X86ISD::INC:                return "X86ISD::INC";
9461  case X86ISD::DEC:                return "X86ISD::DEC";
9462  case X86ISD::OR:                 return "X86ISD::OR";
9463  case X86ISD::XOR:                return "X86ISD::XOR";
9464  case X86ISD::AND:                return "X86ISD::AND";
9465  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
9466  case X86ISD::PTEST:              return "X86ISD::PTEST";
9467  case X86ISD::TESTP:              return "X86ISD::TESTP";
9468  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
9469  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
9470  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
9471  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
9472  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
9473  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
9474  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
9475  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
9476  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
9477  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
9478  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
9479  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
9480  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
9481  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
9482  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
9483  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
9484  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
9485  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
9486  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
9487  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
9488  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
9489  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
9490  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
9491  case X86ISD::VUNPCKLPS:          return "X86ISD::VUNPCKLPS";
9492  case X86ISD::VUNPCKLPD:          return "X86ISD::VUNPCKLPD";
9493  case X86ISD::VUNPCKLPSY:         return "X86ISD::VUNPCKLPSY";
9494  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
9495  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
9496  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
9497  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
9498  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
9499  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
9500  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
9501  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
9502  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
9503  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
9504  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
9505  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
9506  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
9507  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
9508  }
9509}
9510
9511// isLegalAddressingMode - Return true if the addressing mode represented
9512// by AM is legal for this target, for a load/store of the specified type.
9513bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
9514                                              const Type *Ty) const {
9515  // X86 supports extremely general addressing modes.
9516  CodeModel::Model M = getTargetMachine().getCodeModel();
9517  Reloc::Model R = getTargetMachine().getRelocationModel();
9518
9519  // X86 allows a sign-extended 32-bit immediate field as a displacement.
9520  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
9521    return false;
9522
9523  if (AM.BaseGV) {
9524    unsigned GVFlags =
9525      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
9526
9527    // If a reference to this global requires an extra load, we can't fold it.
9528    if (isGlobalStubReference(GVFlags))
9529      return false;
9530
9531    // If BaseGV requires a register for the PIC base, we cannot also have a
9532    // BaseReg specified.
9533    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
9534      return false;
9535
9536    // If lower 4G is not available, then we must use rip-relative addressing.
9537    if ((M != CodeModel::Small || R != Reloc::Static) &&
9538        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
9539      return false;
9540  }
9541
9542  switch (AM.Scale) {
9543  case 0:
9544  case 1:
9545  case 2:
9546  case 4:
9547  case 8:
9548    // These scales always work.
9549    break;
9550  case 3:
9551  case 5:
9552  case 9:
9553    // These scales are formed with basereg+scalereg.  Only accept if there is
9554    // no basereg yet.
9555    if (AM.HasBaseReg)
9556      return false;
9557    break;
9558  default:  // Other stuff never works.
9559    return false;
9560  }
9561
9562  return true;
9563}
9564
9565
9566bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
9567  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
9568    return false;
9569  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
9570  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
9571  if (NumBits1 <= NumBits2)
9572    return false;
9573  return true;
9574}
9575
9576bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
9577  if (!VT1.isInteger() || !VT2.isInteger())
9578    return false;
9579  unsigned NumBits1 = VT1.getSizeInBits();
9580  unsigned NumBits2 = VT2.getSizeInBits();
9581  if (NumBits1 <= NumBits2)
9582    return false;
9583  return true;
9584}
9585
9586bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
9587  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9588  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
9589}
9590
9591bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
9592  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9593  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
9594}
9595
9596bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
9597  // i16 instructions are longer (0x66 prefix) and potentially slower.
9598  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
9599}
9600
9601/// isShuffleMaskLegal - Targets can use this to indicate that they only
9602/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
9603/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
9604/// are assumed to be legal.
9605bool
9606X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
9607                                      EVT VT) const {
9608  // Very little shuffling can be done for 64-bit vectors right now.
9609  if (VT.getSizeInBits() == 64)
9610    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
9611
9612  // FIXME: pshufb, blends, shifts.
9613  return (VT.getVectorNumElements() == 2 ||
9614          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
9615          isMOVLMask(M, VT) ||
9616          isSHUFPMask(M, VT) ||
9617          isPSHUFDMask(M, VT) ||
9618          isPSHUFHWMask(M, VT) ||
9619          isPSHUFLWMask(M, VT) ||
9620          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
9621          isUNPCKLMask(M, VT) ||
9622          isUNPCKHMask(M, VT) ||
9623          isUNPCKL_v_undef_Mask(M, VT) ||
9624          isUNPCKH_v_undef_Mask(M, VT));
9625}
9626
9627bool
9628X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
9629                                          EVT VT) const {
9630  unsigned NumElts = VT.getVectorNumElements();
9631  // FIXME: This collection of masks seems suspect.
9632  if (NumElts == 2)
9633    return true;
9634  if (NumElts == 4 && VT.getSizeInBits() == 128) {
9635    return (isMOVLMask(Mask, VT)  ||
9636            isCommutedMOVLMask(Mask, VT, true) ||
9637            isSHUFPMask(Mask, VT) ||
9638            isCommutedSHUFPMask(Mask, VT));
9639  }
9640  return false;
9641}
9642
9643//===----------------------------------------------------------------------===//
9644//                           X86 Scheduler Hooks
9645//===----------------------------------------------------------------------===//
9646
9647// private utility function
9648MachineBasicBlock *
9649X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
9650                                                       MachineBasicBlock *MBB,
9651                                                       unsigned regOpc,
9652                                                       unsigned immOpc,
9653                                                       unsigned LoadOpc,
9654                                                       unsigned CXchgOpc,
9655                                                       unsigned notOpc,
9656                                                       unsigned EAXreg,
9657                                                       TargetRegisterClass *RC,
9658                                                       bool invSrc) const {
9659  // For the atomic bitwise operator, we generate
9660  //   thisMBB:
9661  //   newMBB:
9662  //     ld  t1 = [bitinstr.addr]
9663  //     op  t2 = t1, [bitinstr.val]
9664  //     mov EAX = t1
9665  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9666  //     bz  newMBB
9667  //     fallthrough -->nextMBB
9668  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9669  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9670  MachineFunction::iterator MBBIter = MBB;
9671  ++MBBIter;
9672
9673  /// First build the CFG
9674  MachineFunction *F = MBB->getParent();
9675  MachineBasicBlock *thisMBB = MBB;
9676  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9677  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9678  F->insert(MBBIter, newMBB);
9679  F->insert(MBBIter, nextMBB);
9680
9681  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9682  nextMBB->splice(nextMBB->begin(), thisMBB,
9683                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9684                  thisMBB->end());
9685  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9686
9687  // Update thisMBB to fall through to newMBB
9688  thisMBB->addSuccessor(newMBB);
9689
9690  // newMBB jumps to itself and fall through to nextMBB
9691  newMBB->addSuccessor(nextMBB);
9692  newMBB->addSuccessor(newMBB);
9693
9694  // Insert instructions into newMBB based on incoming instruction
9695  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9696         "unexpected number of operands");
9697  DebugLoc dl = bInstr->getDebugLoc();
9698  MachineOperand& destOper = bInstr->getOperand(0);
9699  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9700  int numArgs = bInstr->getNumOperands() - 1;
9701  for (int i=0; i < numArgs; ++i)
9702    argOpers[i] = &bInstr->getOperand(i+1);
9703
9704  // x86 address has 4 operands: base, index, scale, and displacement
9705  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9706  int valArgIndx = lastAddrIndx + 1;
9707
9708  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9709  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
9710  for (int i=0; i <= lastAddrIndx; ++i)
9711    (*MIB).addOperand(*argOpers[i]);
9712
9713  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
9714  if (invSrc) {
9715    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
9716  }
9717  else
9718    tt = t1;
9719
9720  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9721  assert((argOpers[valArgIndx]->isReg() ||
9722          argOpers[valArgIndx]->isImm()) &&
9723         "invalid operand");
9724  if (argOpers[valArgIndx]->isReg())
9725    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
9726  else
9727    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
9728  MIB.addReg(tt);
9729  (*MIB).addOperand(*argOpers[valArgIndx]);
9730
9731  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
9732  MIB.addReg(t1);
9733
9734  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
9735  for (int i=0; i <= lastAddrIndx; ++i)
9736    (*MIB).addOperand(*argOpers[i]);
9737  MIB.addReg(t2);
9738  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9739  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9740                    bInstr->memoperands_end());
9741
9742  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9743  MIB.addReg(EAXreg);
9744
9745  // insert branch
9746  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9747
9748  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9749  return nextMBB;
9750}
9751
9752// private utility function:  64 bit atomics on 32 bit host.
9753MachineBasicBlock *
9754X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
9755                                                       MachineBasicBlock *MBB,
9756                                                       unsigned regOpcL,
9757                                                       unsigned regOpcH,
9758                                                       unsigned immOpcL,
9759                                                       unsigned immOpcH,
9760                                                       bool invSrc) const {
9761  // For the atomic bitwise operator, we generate
9762  //   thisMBB (instructions are in pairs, except cmpxchg8b)
9763  //     ld t1,t2 = [bitinstr.addr]
9764  //   newMBB:
9765  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
9766  //     op  t5, t6 <- out1, out2, [bitinstr.val]
9767  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
9768  //     mov ECX, EBX <- t5, t6
9769  //     mov EAX, EDX <- t1, t2
9770  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
9771  //     mov t3, t4 <- EAX, EDX
9772  //     bz  newMBB
9773  //     result in out1, out2
9774  //     fallthrough -->nextMBB
9775
9776  const TargetRegisterClass *RC = X86::GR32RegisterClass;
9777  const unsigned LoadOpc = X86::MOV32rm;
9778  const unsigned NotOpc = X86::NOT32r;
9779  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9780  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9781  MachineFunction::iterator MBBIter = MBB;
9782  ++MBBIter;
9783
9784  /// First build the CFG
9785  MachineFunction *F = MBB->getParent();
9786  MachineBasicBlock *thisMBB = MBB;
9787  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9788  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9789  F->insert(MBBIter, newMBB);
9790  F->insert(MBBIter, nextMBB);
9791
9792  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9793  nextMBB->splice(nextMBB->begin(), thisMBB,
9794                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9795                  thisMBB->end());
9796  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9797
9798  // Update thisMBB to fall through to newMBB
9799  thisMBB->addSuccessor(newMBB);
9800
9801  // newMBB jumps to itself and fall through to nextMBB
9802  newMBB->addSuccessor(nextMBB);
9803  newMBB->addSuccessor(newMBB);
9804
9805  DebugLoc dl = bInstr->getDebugLoc();
9806  // Insert instructions into newMBB based on incoming instruction
9807  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
9808  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
9809         "unexpected number of operands");
9810  MachineOperand& dest1Oper = bInstr->getOperand(0);
9811  MachineOperand& dest2Oper = bInstr->getOperand(1);
9812  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9813  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
9814    argOpers[i] = &bInstr->getOperand(i+2);
9815
9816    // We use some of the operands multiple times, so conservatively just
9817    // clear any kill flags that might be present.
9818    if (argOpers[i]->isReg() && argOpers[i]->isUse())
9819      argOpers[i]->setIsKill(false);
9820  }
9821
9822  // x86 address has 5 operands: base, index, scale, displacement, and segment.
9823  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9824
9825  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9826  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
9827  for (int i=0; i <= lastAddrIndx; ++i)
9828    (*MIB).addOperand(*argOpers[i]);
9829  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9830  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
9831  // add 4 to displacement.
9832  for (int i=0; i <= lastAddrIndx-2; ++i)
9833    (*MIB).addOperand(*argOpers[i]);
9834  MachineOperand newOp3 = *(argOpers[3]);
9835  if (newOp3.isImm())
9836    newOp3.setImm(newOp3.getImm()+4);
9837  else
9838    newOp3.setOffset(newOp3.getOffset()+4);
9839  (*MIB).addOperand(newOp3);
9840  (*MIB).addOperand(*argOpers[lastAddrIndx]);
9841
9842  // t3/4 are defined later, at the bottom of the loop
9843  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
9844  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
9845  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
9846    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
9847  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
9848    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
9849
9850  // The subsequent operations should be using the destination registers of
9851  //the PHI instructions.
9852  if (invSrc) {
9853    t1 = F->getRegInfo().createVirtualRegister(RC);
9854    t2 = F->getRegInfo().createVirtualRegister(RC);
9855    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
9856    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
9857  } else {
9858    t1 = dest1Oper.getReg();
9859    t2 = dest2Oper.getReg();
9860  }
9861
9862  int valArgIndx = lastAddrIndx + 1;
9863  assert((argOpers[valArgIndx]->isReg() ||
9864          argOpers[valArgIndx]->isImm()) &&
9865         "invalid operand");
9866  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
9867  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
9868  if (argOpers[valArgIndx]->isReg())
9869    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
9870  else
9871    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
9872  if (regOpcL != X86::MOV32rr)
9873    MIB.addReg(t1);
9874  (*MIB).addOperand(*argOpers[valArgIndx]);
9875  assert(argOpers[valArgIndx + 1]->isReg() ==
9876         argOpers[valArgIndx]->isReg());
9877  assert(argOpers[valArgIndx + 1]->isImm() ==
9878         argOpers[valArgIndx]->isImm());
9879  if (argOpers[valArgIndx + 1]->isReg())
9880    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
9881  else
9882    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
9883  if (regOpcH != X86::MOV32rr)
9884    MIB.addReg(t2);
9885  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
9886
9887  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9888  MIB.addReg(t1);
9889  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
9890  MIB.addReg(t2);
9891
9892  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
9893  MIB.addReg(t5);
9894  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
9895  MIB.addReg(t6);
9896
9897  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
9898  for (int i=0; i <= lastAddrIndx; ++i)
9899    (*MIB).addOperand(*argOpers[i]);
9900
9901  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9902  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9903                    bInstr->memoperands_end());
9904
9905  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
9906  MIB.addReg(X86::EAX);
9907  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
9908  MIB.addReg(X86::EDX);
9909
9910  // insert branch
9911  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9912
9913  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9914  return nextMBB;
9915}
9916
9917// private utility function
9918MachineBasicBlock *
9919X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
9920                                                      MachineBasicBlock *MBB,
9921                                                      unsigned cmovOpc) const {
9922  // For the atomic min/max operator, we generate
9923  //   thisMBB:
9924  //   newMBB:
9925  //     ld t1 = [min/max.addr]
9926  //     mov t2 = [min/max.val]
9927  //     cmp  t1, t2
9928  //     cmov[cond] t2 = t1
9929  //     mov EAX = t1
9930  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9931  //     bz   newMBB
9932  //     fallthrough -->nextMBB
9933  //
9934  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9935  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9936  MachineFunction::iterator MBBIter = MBB;
9937  ++MBBIter;
9938
9939  /// First build the CFG
9940  MachineFunction *F = MBB->getParent();
9941  MachineBasicBlock *thisMBB = MBB;
9942  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9943  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9944  F->insert(MBBIter, newMBB);
9945  F->insert(MBBIter, nextMBB);
9946
9947  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9948  nextMBB->splice(nextMBB->begin(), thisMBB,
9949                  llvm::next(MachineBasicBlock::iterator(mInstr)),
9950                  thisMBB->end());
9951  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9952
9953  // Update thisMBB to fall through to newMBB
9954  thisMBB->addSuccessor(newMBB);
9955
9956  // newMBB jumps to newMBB and fall through to nextMBB
9957  newMBB->addSuccessor(nextMBB);
9958  newMBB->addSuccessor(newMBB);
9959
9960  DebugLoc dl = mInstr->getDebugLoc();
9961  // Insert instructions into newMBB based on incoming instruction
9962  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9963         "unexpected number of operands");
9964  MachineOperand& destOper = mInstr->getOperand(0);
9965  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9966  int numArgs = mInstr->getNumOperands() - 1;
9967  for (int i=0; i < numArgs; ++i)
9968    argOpers[i] = &mInstr->getOperand(i+1);
9969
9970  // x86 address has 4 operands: base, index, scale, and displacement
9971  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9972  int valArgIndx = lastAddrIndx + 1;
9973
9974  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9975  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
9976  for (int i=0; i <= lastAddrIndx; ++i)
9977    (*MIB).addOperand(*argOpers[i]);
9978
9979  // We only support register and immediate values
9980  assert((argOpers[valArgIndx]->isReg() ||
9981          argOpers[valArgIndx]->isImm()) &&
9982         "invalid operand");
9983
9984  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9985  if (argOpers[valArgIndx]->isReg())
9986    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
9987  else
9988    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
9989  (*MIB).addOperand(*argOpers[valArgIndx]);
9990
9991  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9992  MIB.addReg(t1);
9993
9994  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
9995  MIB.addReg(t1);
9996  MIB.addReg(t2);
9997
9998  // Generate movc
9999  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
10000  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
10001  MIB.addReg(t2);
10002  MIB.addReg(t1);
10003
10004  // Cmp and exchange if none has modified the memory location
10005  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
10006  for (int i=0; i <= lastAddrIndx; ++i)
10007    (*MIB).addOperand(*argOpers[i]);
10008  MIB.addReg(t3);
10009  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10010  (*MIB).setMemRefs(mInstr->memoperands_begin(),
10011                    mInstr->memoperands_end());
10012
10013  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10014  MIB.addReg(X86::EAX);
10015
10016  // insert branch
10017  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10018
10019  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
10020  return nextMBB;
10021}
10022
10023// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
10024// or XMM0_V32I8 in AVX all of this code can be replaced with that
10025// in the .td file.
10026MachineBasicBlock *
10027X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
10028                            unsigned numArgs, bool memArg) const {
10029  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
10030         "Target must have SSE4.2 or AVX features enabled");
10031
10032  DebugLoc dl = MI->getDebugLoc();
10033  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10034  unsigned Opc;
10035  if (!Subtarget->hasAVX()) {
10036    if (memArg)
10037      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
10038    else
10039      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
10040  } else {
10041    if (memArg)
10042      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
10043    else
10044      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
10045  }
10046
10047  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
10048  for (unsigned i = 0; i < numArgs; ++i) {
10049    MachineOperand &Op = MI->getOperand(i+1);
10050    if (!(Op.isReg() && Op.isImplicit()))
10051      MIB.addOperand(Op);
10052  }
10053  BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
10054    .addReg(X86::XMM0);
10055
10056  MI->eraseFromParent();
10057  return BB;
10058}
10059
10060MachineBasicBlock *
10061X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
10062  DebugLoc dl = MI->getDebugLoc();
10063  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10064
10065  // Address into RAX/EAX, other two args into ECX, EDX.
10066  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
10067  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
10068  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
10069  for (int i = 0; i < X86::AddrNumOperands; ++i)
10070    MIB.addOperand(MI->getOperand(i));
10071
10072  unsigned ValOps = X86::AddrNumOperands;
10073  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
10074    .addReg(MI->getOperand(ValOps).getReg());
10075  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
10076    .addReg(MI->getOperand(ValOps+1).getReg());
10077
10078  // The instruction doesn't actually take any operands though.
10079  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
10080
10081  MI->eraseFromParent(); // The pseudo is gone now.
10082  return BB;
10083}
10084
10085MachineBasicBlock *
10086X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
10087  DebugLoc dl = MI->getDebugLoc();
10088  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10089
10090  // First arg in ECX, the second in EAX.
10091  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
10092    .addReg(MI->getOperand(0).getReg());
10093  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
10094    .addReg(MI->getOperand(1).getReg());
10095
10096  // The instruction doesn't actually take any operands though.
10097  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
10098
10099  MI->eraseFromParent(); // The pseudo is gone now.
10100  return BB;
10101}
10102
10103MachineBasicBlock *
10104X86TargetLowering::EmitVAARG64WithCustomInserter(
10105                   MachineInstr *MI,
10106                   MachineBasicBlock *MBB) const {
10107  // Emit va_arg instruction on X86-64.
10108
10109  // Operands to this pseudo-instruction:
10110  // 0  ) Output        : destination address (reg)
10111  // 1-5) Input         : va_list address (addr, i64mem)
10112  // 6  ) ArgSize       : Size (in bytes) of vararg type
10113  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
10114  // 8  ) Align         : Alignment of type
10115  // 9  ) EFLAGS (implicit-def)
10116
10117  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
10118  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
10119
10120  unsigned DestReg = MI->getOperand(0).getReg();
10121  MachineOperand &Base = MI->getOperand(1);
10122  MachineOperand &Scale = MI->getOperand(2);
10123  MachineOperand &Index = MI->getOperand(3);
10124  MachineOperand &Disp = MI->getOperand(4);
10125  MachineOperand &Segment = MI->getOperand(5);
10126  unsigned ArgSize = MI->getOperand(6).getImm();
10127  unsigned ArgMode = MI->getOperand(7).getImm();
10128  unsigned Align = MI->getOperand(8).getImm();
10129
10130  // Memory Reference
10131  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
10132  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
10133  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
10134
10135  // Machine Information
10136  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10137  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
10138  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
10139  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
10140  DebugLoc DL = MI->getDebugLoc();
10141
10142  // struct va_list {
10143  //   i32   gp_offset
10144  //   i32   fp_offset
10145  //   i64   overflow_area (address)
10146  //   i64   reg_save_area (address)
10147  // }
10148  // sizeof(va_list) = 24
10149  // alignment(va_list) = 8
10150
10151  unsigned TotalNumIntRegs = 6;
10152  unsigned TotalNumXMMRegs = 8;
10153  bool UseGPOffset = (ArgMode == 1);
10154  bool UseFPOffset = (ArgMode == 2);
10155  unsigned MaxOffset = TotalNumIntRegs * 8 +
10156                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
10157
10158  /* Align ArgSize to a multiple of 8 */
10159  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
10160  bool NeedsAlign = (Align > 8);
10161
10162  MachineBasicBlock *thisMBB = MBB;
10163  MachineBasicBlock *overflowMBB;
10164  MachineBasicBlock *offsetMBB;
10165  MachineBasicBlock *endMBB;
10166
10167  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
10168  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
10169  unsigned OffsetReg = 0;
10170
10171  if (!UseGPOffset && !UseFPOffset) {
10172    // If we only pull from the overflow region, we don't create a branch.
10173    // We don't need to alter control flow.
10174    OffsetDestReg = 0; // unused
10175    OverflowDestReg = DestReg;
10176
10177    offsetMBB = NULL;
10178    overflowMBB = thisMBB;
10179    endMBB = thisMBB;
10180  } else {
10181    // First emit code to check if gp_offset (or fp_offset) is below the bound.
10182    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
10183    // If not, pull from overflow_area. (branch to overflowMBB)
10184    //
10185    //       thisMBB
10186    //         |     .
10187    //         |        .
10188    //     offsetMBB   overflowMBB
10189    //         |        .
10190    //         |     .
10191    //        endMBB
10192
10193    // Registers for the PHI in endMBB
10194    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
10195    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
10196
10197    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10198    MachineFunction *MF = MBB->getParent();
10199    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10200    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10201    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10202
10203    MachineFunction::iterator MBBIter = MBB;
10204    ++MBBIter;
10205
10206    // Insert the new basic blocks
10207    MF->insert(MBBIter, offsetMBB);
10208    MF->insert(MBBIter, overflowMBB);
10209    MF->insert(MBBIter, endMBB);
10210
10211    // Transfer the remainder of MBB and its successor edges to endMBB.
10212    endMBB->splice(endMBB->begin(), thisMBB,
10213                    llvm::next(MachineBasicBlock::iterator(MI)),
10214                    thisMBB->end());
10215    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10216
10217    // Make offsetMBB and overflowMBB successors of thisMBB
10218    thisMBB->addSuccessor(offsetMBB);
10219    thisMBB->addSuccessor(overflowMBB);
10220
10221    // endMBB is a successor of both offsetMBB and overflowMBB
10222    offsetMBB->addSuccessor(endMBB);
10223    overflowMBB->addSuccessor(endMBB);
10224
10225    // Load the offset value into a register
10226    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10227    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
10228      .addOperand(Base)
10229      .addOperand(Scale)
10230      .addOperand(Index)
10231      .addDisp(Disp, UseFPOffset ? 4 : 0)
10232      .addOperand(Segment)
10233      .setMemRefs(MMOBegin, MMOEnd);
10234
10235    // Check if there is enough room left to pull this argument.
10236    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
10237      .addReg(OffsetReg)
10238      .addImm(MaxOffset + 8 - ArgSizeA8);
10239
10240    // Branch to "overflowMBB" if offset >= max
10241    // Fall through to "offsetMBB" otherwise
10242    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
10243      .addMBB(overflowMBB);
10244  }
10245
10246  // In offsetMBB, emit code to use the reg_save_area.
10247  if (offsetMBB) {
10248    assert(OffsetReg != 0);
10249
10250    // Read the reg_save_area address.
10251    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
10252    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
10253      .addOperand(Base)
10254      .addOperand(Scale)
10255      .addOperand(Index)
10256      .addDisp(Disp, 16)
10257      .addOperand(Segment)
10258      .setMemRefs(MMOBegin, MMOEnd);
10259
10260    // Zero-extend the offset
10261    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
10262      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
10263        .addImm(0)
10264        .addReg(OffsetReg)
10265        .addImm(X86::sub_32bit);
10266
10267    // Add the offset to the reg_save_area to get the final address.
10268    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
10269      .addReg(OffsetReg64)
10270      .addReg(RegSaveReg);
10271
10272    // Compute the offset for the next argument
10273    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10274    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
10275      .addReg(OffsetReg)
10276      .addImm(UseFPOffset ? 16 : 8);
10277
10278    // Store it back into the va_list.
10279    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
10280      .addOperand(Base)
10281      .addOperand(Scale)
10282      .addOperand(Index)
10283      .addDisp(Disp, UseFPOffset ? 4 : 0)
10284      .addOperand(Segment)
10285      .addReg(NextOffsetReg)
10286      .setMemRefs(MMOBegin, MMOEnd);
10287
10288    // Jump to endMBB
10289    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
10290      .addMBB(endMBB);
10291  }
10292
10293  //
10294  // Emit code to use overflow area
10295  //
10296
10297  // Load the overflow_area address into a register.
10298  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
10299  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
10300    .addOperand(Base)
10301    .addOperand(Scale)
10302    .addOperand(Index)
10303    .addDisp(Disp, 8)
10304    .addOperand(Segment)
10305    .setMemRefs(MMOBegin, MMOEnd);
10306
10307  // If we need to align it, do so. Otherwise, just copy the address
10308  // to OverflowDestReg.
10309  if (NeedsAlign) {
10310    // Align the overflow address
10311    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
10312    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
10313
10314    // aligned_addr = (addr + (align-1)) & ~(align-1)
10315    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
10316      .addReg(OverflowAddrReg)
10317      .addImm(Align-1);
10318
10319    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
10320      .addReg(TmpReg)
10321      .addImm(~(uint64_t)(Align-1));
10322  } else {
10323    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
10324      .addReg(OverflowAddrReg);
10325  }
10326
10327  // Compute the next overflow address after this argument.
10328  // (the overflow address should be kept 8-byte aligned)
10329  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
10330  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
10331    .addReg(OverflowDestReg)
10332    .addImm(ArgSizeA8);
10333
10334  // Store the new overflow address.
10335  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
10336    .addOperand(Base)
10337    .addOperand(Scale)
10338    .addOperand(Index)
10339    .addDisp(Disp, 8)
10340    .addOperand(Segment)
10341    .addReg(NextAddrReg)
10342    .setMemRefs(MMOBegin, MMOEnd);
10343
10344  // If we branched, emit the PHI to the front of endMBB.
10345  if (offsetMBB) {
10346    BuildMI(*endMBB, endMBB->begin(), DL,
10347            TII->get(X86::PHI), DestReg)
10348      .addReg(OffsetDestReg).addMBB(offsetMBB)
10349      .addReg(OverflowDestReg).addMBB(overflowMBB);
10350  }
10351
10352  // Erase the pseudo instruction
10353  MI->eraseFromParent();
10354
10355  return endMBB;
10356}
10357
10358MachineBasicBlock *
10359X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
10360                                                 MachineInstr *MI,
10361                                                 MachineBasicBlock *MBB) const {
10362  // Emit code to save XMM registers to the stack. The ABI says that the
10363  // number of registers to save is given in %al, so it's theoretically
10364  // possible to do an indirect jump trick to avoid saving all of them,
10365  // however this code takes a simpler approach and just executes all
10366  // of the stores if %al is non-zero. It's less code, and it's probably
10367  // easier on the hardware branch predictor, and stores aren't all that
10368  // expensive anyway.
10369
10370  // Create the new basic blocks. One block contains all the XMM stores,
10371  // and one block is the final destination regardless of whether any
10372  // stores were performed.
10373  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10374  MachineFunction *F = MBB->getParent();
10375  MachineFunction::iterator MBBIter = MBB;
10376  ++MBBIter;
10377  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
10378  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
10379  F->insert(MBBIter, XMMSaveMBB);
10380  F->insert(MBBIter, EndMBB);
10381
10382  // Transfer the remainder of MBB and its successor edges to EndMBB.
10383  EndMBB->splice(EndMBB->begin(), MBB,
10384                 llvm::next(MachineBasicBlock::iterator(MI)),
10385                 MBB->end());
10386  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
10387
10388  // The original block will now fall through to the XMM save block.
10389  MBB->addSuccessor(XMMSaveMBB);
10390  // The XMMSaveMBB will fall through to the end block.
10391  XMMSaveMBB->addSuccessor(EndMBB);
10392
10393  // Now add the instructions.
10394  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10395  DebugLoc DL = MI->getDebugLoc();
10396
10397  unsigned CountReg = MI->getOperand(0).getReg();
10398  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
10399  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
10400
10401  if (!Subtarget->isTargetWin64()) {
10402    // If %al is 0, branch around the XMM save block.
10403    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
10404    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
10405    MBB->addSuccessor(EndMBB);
10406  }
10407
10408  // In the XMM save block, save all the XMM argument registers.
10409  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
10410    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
10411    MachineMemOperand *MMO =
10412      F->getMachineMemOperand(
10413          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
10414        MachineMemOperand::MOStore,
10415        /*Size=*/16, /*Align=*/16);
10416    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
10417      .addFrameIndex(RegSaveFrameIndex)
10418      .addImm(/*Scale=*/1)
10419      .addReg(/*IndexReg=*/0)
10420      .addImm(/*Disp=*/Offset)
10421      .addReg(/*Segment=*/0)
10422      .addReg(MI->getOperand(i).getReg())
10423      .addMemOperand(MMO);
10424  }
10425
10426  MI->eraseFromParent();   // The pseudo instruction is gone now.
10427
10428  return EndMBB;
10429}
10430
10431MachineBasicBlock *
10432X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
10433                                     MachineBasicBlock *BB) const {
10434  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10435  DebugLoc DL = MI->getDebugLoc();
10436
10437  // To "insert" a SELECT_CC instruction, we actually have to insert the
10438  // diamond control-flow pattern.  The incoming instruction knows the
10439  // destination vreg to set, the condition code register to branch on, the
10440  // true/false values to select between, and a branch opcode to use.
10441  const BasicBlock *LLVM_BB = BB->getBasicBlock();
10442  MachineFunction::iterator It = BB;
10443  ++It;
10444
10445  //  thisMBB:
10446  //  ...
10447  //   TrueVal = ...
10448  //   cmpTY ccX, r1, r2
10449  //   bCC copy1MBB
10450  //   fallthrough --> copy0MBB
10451  MachineBasicBlock *thisMBB = BB;
10452  MachineFunction *F = BB->getParent();
10453  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10454  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10455  F->insert(It, copy0MBB);
10456  F->insert(It, sinkMBB);
10457
10458  // If the EFLAGS register isn't dead in the terminator, then claim that it's
10459  // live into the sink and copy blocks.
10460  const MachineFunction *MF = BB->getParent();
10461  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
10462  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
10463
10464  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
10465    const MachineOperand &MO = MI->getOperand(I);
10466    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
10467    unsigned Reg = MO.getReg();
10468    if (Reg != X86::EFLAGS) continue;
10469    copy0MBB->addLiveIn(Reg);
10470    sinkMBB->addLiveIn(Reg);
10471  }
10472
10473  // Transfer the remainder of BB and its successor edges to sinkMBB.
10474  sinkMBB->splice(sinkMBB->begin(), BB,
10475                  llvm::next(MachineBasicBlock::iterator(MI)),
10476                  BB->end());
10477  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10478
10479  // Add the true and fallthrough blocks as its successors.
10480  BB->addSuccessor(copy0MBB);
10481  BB->addSuccessor(sinkMBB);
10482
10483  // Create the conditional branch instruction.
10484  unsigned Opc =
10485    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
10486  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
10487
10488  //  copy0MBB:
10489  //   %FalseValue = ...
10490  //   # fallthrough to sinkMBB
10491  copy0MBB->addSuccessor(sinkMBB);
10492
10493  //  sinkMBB:
10494  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10495  //  ...
10496  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10497          TII->get(X86::PHI), MI->getOperand(0).getReg())
10498    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
10499    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
10500
10501  MI->eraseFromParent();   // The pseudo instruction is gone now.
10502  return sinkMBB;
10503}
10504
10505MachineBasicBlock *
10506X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
10507                                          MachineBasicBlock *BB) const {
10508  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10509  DebugLoc DL = MI->getDebugLoc();
10510
10511  assert(!Subtarget->isTargetEnvMacho());
10512
10513  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
10514  // non-trivial part is impdef of ESP.
10515
10516  if (Subtarget->isTargetWin64()) {
10517    if (Subtarget->isTargetCygMing()) {
10518      // ___chkstk(Mingw64):
10519      // Clobbers R10, R11, RAX and EFLAGS.
10520      // Updates RSP.
10521      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
10522        .addExternalSymbol("___chkstk")
10523        .addReg(X86::RAX, RegState::Implicit)
10524        .addReg(X86::RSP, RegState::Implicit)
10525        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
10526        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
10527        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10528    } else {
10529      // __chkstk(MSVCRT): does not update stack pointer.
10530      // Clobbers R10, R11 and EFLAGS.
10531      // FIXME: RAX(allocated size) might be reused and not killed.
10532      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
10533        .addExternalSymbol("__chkstk")
10534        .addReg(X86::RAX, RegState::Implicit)
10535        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10536      // RAX has the offset to subtracted from RSP.
10537      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
10538        .addReg(X86::RSP)
10539        .addReg(X86::RAX);
10540    }
10541  } else {
10542    const char *StackProbeSymbol =
10543      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
10544
10545    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
10546      .addExternalSymbol(StackProbeSymbol)
10547      .addReg(X86::EAX, RegState::Implicit)
10548      .addReg(X86::ESP, RegState::Implicit)
10549      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
10550      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
10551      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10552  }
10553
10554  MI->eraseFromParent();   // The pseudo instruction is gone now.
10555  return BB;
10556}
10557
10558MachineBasicBlock *
10559X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
10560                                      MachineBasicBlock *BB) const {
10561  // This is pretty easy.  We're taking the value that we received from
10562  // our load from the relocation, sticking it in either RDI (x86-64)
10563  // or EAX and doing an indirect call.  The return value will then
10564  // be in the normal return register.
10565  const X86InstrInfo *TII
10566    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
10567  DebugLoc DL = MI->getDebugLoc();
10568  MachineFunction *F = BB->getParent();
10569
10570  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
10571  assert(MI->getOperand(3).isGlobal() && "This should be a global");
10572
10573  if (Subtarget->is64Bit()) {
10574    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10575                                      TII->get(X86::MOV64rm), X86::RDI)
10576    .addReg(X86::RIP)
10577    .addImm(0).addReg(0)
10578    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10579                      MI->getOperand(3).getTargetFlags())
10580    .addReg(0);
10581    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
10582    addDirectMem(MIB, X86::RDI);
10583  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
10584    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10585                                      TII->get(X86::MOV32rm), X86::EAX)
10586    .addReg(0)
10587    .addImm(0).addReg(0)
10588    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10589                      MI->getOperand(3).getTargetFlags())
10590    .addReg(0);
10591    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10592    addDirectMem(MIB, X86::EAX);
10593  } else {
10594    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10595                                      TII->get(X86::MOV32rm), X86::EAX)
10596    .addReg(TII->getGlobalBaseReg(F))
10597    .addImm(0).addReg(0)
10598    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10599                      MI->getOperand(3).getTargetFlags())
10600    .addReg(0);
10601    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10602    addDirectMem(MIB, X86::EAX);
10603  }
10604
10605  MI->eraseFromParent(); // The pseudo instruction is gone now.
10606  return BB;
10607}
10608
10609MachineBasicBlock *
10610X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
10611                                               MachineBasicBlock *BB) const {
10612  switch (MI->getOpcode()) {
10613  default: assert(false && "Unexpected instr type to insert");
10614  case X86::TAILJMPd64:
10615  case X86::TAILJMPr64:
10616  case X86::TAILJMPm64:
10617    assert(!"TAILJMP64 would not be touched here.");
10618  case X86::TCRETURNdi64:
10619  case X86::TCRETURNri64:
10620  case X86::TCRETURNmi64:
10621    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
10622    // On AMD64, additional defs should be added before register allocation.
10623    if (!Subtarget->isTargetWin64()) {
10624      MI->addRegisterDefined(X86::RSI);
10625      MI->addRegisterDefined(X86::RDI);
10626      MI->addRegisterDefined(X86::XMM6);
10627      MI->addRegisterDefined(X86::XMM7);
10628      MI->addRegisterDefined(X86::XMM8);
10629      MI->addRegisterDefined(X86::XMM9);
10630      MI->addRegisterDefined(X86::XMM10);
10631      MI->addRegisterDefined(X86::XMM11);
10632      MI->addRegisterDefined(X86::XMM12);
10633      MI->addRegisterDefined(X86::XMM13);
10634      MI->addRegisterDefined(X86::XMM14);
10635      MI->addRegisterDefined(X86::XMM15);
10636    }
10637    return BB;
10638  case X86::WIN_ALLOCA:
10639    return EmitLoweredWinAlloca(MI, BB);
10640  case X86::TLSCall_32:
10641  case X86::TLSCall_64:
10642    return EmitLoweredTLSCall(MI, BB);
10643  case X86::CMOV_GR8:
10644  case X86::CMOV_FR32:
10645  case X86::CMOV_FR64:
10646  case X86::CMOV_V4F32:
10647  case X86::CMOV_V2F64:
10648  case X86::CMOV_V2I64:
10649  case X86::CMOV_GR16:
10650  case X86::CMOV_GR32:
10651  case X86::CMOV_RFP32:
10652  case X86::CMOV_RFP64:
10653  case X86::CMOV_RFP80:
10654    return EmitLoweredSelect(MI, BB);
10655
10656  case X86::FP32_TO_INT16_IN_MEM:
10657  case X86::FP32_TO_INT32_IN_MEM:
10658  case X86::FP32_TO_INT64_IN_MEM:
10659  case X86::FP64_TO_INT16_IN_MEM:
10660  case X86::FP64_TO_INT32_IN_MEM:
10661  case X86::FP64_TO_INT64_IN_MEM:
10662  case X86::FP80_TO_INT16_IN_MEM:
10663  case X86::FP80_TO_INT32_IN_MEM:
10664  case X86::FP80_TO_INT64_IN_MEM: {
10665    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10666    DebugLoc DL = MI->getDebugLoc();
10667
10668    // Change the floating point control register to use "round towards zero"
10669    // mode when truncating to an integer value.
10670    MachineFunction *F = BB->getParent();
10671    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
10672    addFrameReference(BuildMI(*BB, MI, DL,
10673                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
10674
10675    // Load the old value of the high byte of the control word...
10676    unsigned OldCW =
10677      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
10678    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
10679                      CWFrameIdx);
10680
10681    // Set the high part to be round to zero...
10682    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
10683      .addImm(0xC7F);
10684
10685    // Reload the modified control word now...
10686    addFrameReference(BuildMI(*BB, MI, DL,
10687                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10688
10689    // Restore the memory image of control word to original value
10690    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
10691      .addReg(OldCW);
10692
10693    // Get the X86 opcode to use.
10694    unsigned Opc;
10695    switch (MI->getOpcode()) {
10696    default: llvm_unreachable("illegal opcode!");
10697    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
10698    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
10699    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
10700    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
10701    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
10702    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
10703    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
10704    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
10705    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
10706    }
10707
10708    X86AddressMode AM;
10709    MachineOperand &Op = MI->getOperand(0);
10710    if (Op.isReg()) {
10711      AM.BaseType = X86AddressMode::RegBase;
10712      AM.Base.Reg = Op.getReg();
10713    } else {
10714      AM.BaseType = X86AddressMode::FrameIndexBase;
10715      AM.Base.FrameIndex = Op.getIndex();
10716    }
10717    Op = MI->getOperand(1);
10718    if (Op.isImm())
10719      AM.Scale = Op.getImm();
10720    Op = MI->getOperand(2);
10721    if (Op.isImm())
10722      AM.IndexReg = Op.getImm();
10723    Op = MI->getOperand(3);
10724    if (Op.isGlobal()) {
10725      AM.GV = Op.getGlobal();
10726    } else {
10727      AM.Disp = Op.getImm();
10728    }
10729    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
10730                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
10731
10732    // Reload the original control word now.
10733    addFrameReference(BuildMI(*BB, MI, DL,
10734                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10735
10736    MI->eraseFromParent();   // The pseudo instruction is gone now.
10737    return BB;
10738  }
10739    // String/text processing lowering.
10740  case X86::PCMPISTRM128REG:
10741  case X86::VPCMPISTRM128REG:
10742    return EmitPCMP(MI, BB, 3, false /* in-mem */);
10743  case X86::PCMPISTRM128MEM:
10744  case X86::VPCMPISTRM128MEM:
10745    return EmitPCMP(MI, BB, 3, true /* in-mem */);
10746  case X86::PCMPESTRM128REG:
10747  case X86::VPCMPESTRM128REG:
10748    return EmitPCMP(MI, BB, 5, false /* in mem */);
10749  case X86::PCMPESTRM128MEM:
10750  case X86::VPCMPESTRM128MEM:
10751    return EmitPCMP(MI, BB, 5, true /* in mem */);
10752
10753    // Thread synchronization.
10754  case X86::MONITOR:
10755    return EmitMonitor(MI, BB);
10756  case X86::MWAIT:
10757    return EmitMwait(MI, BB);
10758
10759    // Atomic Lowering.
10760  case X86::ATOMAND32:
10761    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10762                                               X86::AND32ri, X86::MOV32rm,
10763                                               X86::LCMPXCHG32,
10764                                               X86::NOT32r, X86::EAX,
10765                                               X86::GR32RegisterClass);
10766  case X86::ATOMOR32:
10767    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
10768                                               X86::OR32ri, X86::MOV32rm,
10769                                               X86::LCMPXCHG32,
10770                                               X86::NOT32r, X86::EAX,
10771                                               X86::GR32RegisterClass);
10772  case X86::ATOMXOR32:
10773    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
10774                                               X86::XOR32ri, X86::MOV32rm,
10775                                               X86::LCMPXCHG32,
10776                                               X86::NOT32r, X86::EAX,
10777                                               X86::GR32RegisterClass);
10778  case X86::ATOMNAND32:
10779    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10780                                               X86::AND32ri, X86::MOV32rm,
10781                                               X86::LCMPXCHG32,
10782                                               X86::NOT32r, X86::EAX,
10783                                               X86::GR32RegisterClass, true);
10784  case X86::ATOMMIN32:
10785    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
10786  case X86::ATOMMAX32:
10787    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
10788  case X86::ATOMUMIN32:
10789    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
10790  case X86::ATOMUMAX32:
10791    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
10792
10793  case X86::ATOMAND16:
10794    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10795                                               X86::AND16ri, X86::MOV16rm,
10796                                               X86::LCMPXCHG16,
10797                                               X86::NOT16r, X86::AX,
10798                                               X86::GR16RegisterClass);
10799  case X86::ATOMOR16:
10800    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
10801                                               X86::OR16ri, X86::MOV16rm,
10802                                               X86::LCMPXCHG16,
10803                                               X86::NOT16r, X86::AX,
10804                                               X86::GR16RegisterClass);
10805  case X86::ATOMXOR16:
10806    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
10807                                               X86::XOR16ri, X86::MOV16rm,
10808                                               X86::LCMPXCHG16,
10809                                               X86::NOT16r, X86::AX,
10810                                               X86::GR16RegisterClass);
10811  case X86::ATOMNAND16:
10812    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10813                                               X86::AND16ri, X86::MOV16rm,
10814                                               X86::LCMPXCHG16,
10815                                               X86::NOT16r, X86::AX,
10816                                               X86::GR16RegisterClass, true);
10817  case X86::ATOMMIN16:
10818    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
10819  case X86::ATOMMAX16:
10820    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
10821  case X86::ATOMUMIN16:
10822    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
10823  case X86::ATOMUMAX16:
10824    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
10825
10826  case X86::ATOMAND8:
10827    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10828                                               X86::AND8ri, X86::MOV8rm,
10829                                               X86::LCMPXCHG8,
10830                                               X86::NOT8r, X86::AL,
10831                                               X86::GR8RegisterClass);
10832  case X86::ATOMOR8:
10833    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
10834                                               X86::OR8ri, X86::MOV8rm,
10835                                               X86::LCMPXCHG8,
10836                                               X86::NOT8r, X86::AL,
10837                                               X86::GR8RegisterClass);
10838  case X86::ATOMXOR8:
10839    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
10840                                               X86::XOR8ri, X86::MOV8rm,
10841                                               X86::LCMPXCHG8,
10842                                               X86::NOT8r, X86::AL,
10843                                               X86::GR8RegisterClass);
10844  case X86::ATOMNAND8:
10845    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10846                                               X86::AND8ri, X86::MOV8rm,
10847                                               X86::LCMPXCHG8,
10848                                               X86::NOT8r, X86::AL,
10849                                               X86::GR8RegisterClass, true);
10850  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
10851  // This group is for 64-bit host.
10852  case X86::ATOMAND64:
10853    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10854                                               X86::AND64ri32, X86::MOV64rm,
10855                                               X86::LCMPXCHG64,
10856                                               X86::NOT64r, X86::RAX,
10857                                               X86::GR64RegisterClass);
10858  case X86::ATOMOR64:
10859    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
10860                                               X86::OR64ri32, X86::MOV64rm,
10861                                               X86::LCMPXCHG64,
10862                                               X86::NOT64r, X86::RAX,
10863                                               X86::GR64RegisterClass);
10864  case X86::ATOMXOR64:
10865    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
10866                                               X86::XOR64ri32, X86::MOV64rm,
10867                                               X86::LCMPXCHG64,
10868                                               X86::NOT64r, X86::RAX,
10869                                               X86::GR64RegisterClass);
10870  case X86::ATOMNAND64:
10871    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10872                                               X86::AND64ri32, X86::MOV64rm,
10873                                               X86::LCMPXCHG64,
10874                                               X86::NOT64r, X86::RAX,
10875                                               X86::GR64RegisterClass, true);
10876  case X86::ATOMMIN64:
10877    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
10878  case X86::ATOMMAX64:
10879    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
10880  case X86::ATOMUMIN64:
10881    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
10882  case X86::ATOMUMAX64:
10883    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
10884
10885  // This group does 64-bit operations on a 32-bit host.
10886  case X86::ATOMAND6432:
10887    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10888                                               X86::AND32rr, X86::AND32rr,
10889                                               X86::AND32ri, X86::AND32ri,
10890                                               false);
10891  case X86::ATOMOR6432:
10892    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10893                                               X86::OR32rr, X86::OR32rr,
10894                                               X86::OR32ri, X86::OR32ri,
10895                                               false);
10896  case X86::ATOMXOR6432:
10897    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10898                                               X86::XOR32rr, X86::XOR32rr,
10899                                               X86::XOR32ri, X86::XOR32ri,
10900                                               false);
10901  case X86::ATOMNAND6432:
10902    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10903                                               X86::AND32rr, X86::AND32rr,
10904                                               X86::AND32ri, X86::AND32ri,
10905                                               true);
10906  case X86::ATOMADD6432:
10907    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10908                                               X86::ADD32rr, X86::ADC32rr,
10909                                               X86::ADD32ri, X86::ADC32ri,
10910                                               false);
10911  case X86::ATOMSUB6432:
10912    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10913                                               X86::SUB32rr, X86::SBB32rr,
10914                                               X86::SUB32ri, X86::SBB32ri,
10915                                               false);
10916  case X86::ATOMSWAP6432:
10917    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10918                                               X86::MOV32rr, X86::MOV32rr,
10919                                               X86::MOV32ri, X86::MOV32ri,
10920                                               false);
10921  case X86::VASTART_SAVE_XMM_REGS:
10922    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
10923
10924  case X86::VAARG_64:
10925    return EmitVAARG64WithCustomInserter(MI, BB);
10926  }
10927}
10928
10929//===----------------------------------------------------------------------===//
10930//                           X86 Optimization Hooks
10931//===----------------------------------------------------------------------===//
10932
10933void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
10934                                                       const APInt &Mask,
10935                                                       APInt &KnownZero,
10936                                                       APInt &KnownOne,
10937                                                       const SelectionDAG &DAG,
10938                                                       unsigned Depth) const {
10939  unsigned Opc = Op.getOpcode();
10940  assert((Opc >= ISD::BUILTIN_OP_END ||
10941          Opc == ISD::INTRINSIC_WO_CHAIN ||
10942          Opc == ISD::INTRINSIC_W_CHAIN ||
10943          Opc == ISD::INTRINSIC_VOID) &&
10944         "Should use MaskedValueIsZero if you don't know whether Op"
10945         " is a target node!");
10946
10947  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
10948  switch (Opc) {
10949  default: break;
10950  case X86ISD::ADD:
10951  case X86ISD::SUB:
10952  case X86ISD::ADC:
10953  case X86ISD::SBB:
10954  case X86ISD::SMUL:
10955  case X86ISD::UMUL:
10956  case X86ISD::INC:
10957  case X86ISD::DEC:
10958  case X86ISD::OR:
10959  case X86ISD::XOR:
10960  case X86ISD::AND:
10961    // These nodes' second result is a boolean.
10962    if (Op.getResNo() == 0)
10963      break;
10964    // Fallthrough
10965  case X86ISD::SETCC:
10966    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
10967                                       Mask.getBitWidth() - 1);
10968    break;
10969  }
10970}
10971
10972unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
10973                                                         unsigned Depth) const {
10974  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
10975  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
10976    return Op.getValueType().getScalarType().getSizeInBits();
10977
10978  // Fallback case.
10979  return 1;
10980}
10981
10982/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
10983/// node is a GlobalAddress + offset.
10984bool X86TargetLowering::isGAPlusOffset(SDNode *N,
10985                                       const GlobalValue* &GA,
10986                                       int64_t &Offset) const {
10987  if (N->getOpcode() == X86ISD::Wrapper) {
10988    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
10989      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
10990      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
10991      return true;
10992    }
10993  }
10994  return TargetLowering::isGAPlusOffset(N, GA, Offset);
10995}
10996
10997/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
10998/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
10999/// if the load addresses are consecutive, non-overlapping, and in the right
11000/// order.
11001static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
11002                                     TargetLowering::DAGCombinerInfo &DCI) {
11003  DebugLoc dl = N->getDebugLoc();
11004  EVT VT = N->getValueType(0);
11005
11006  if (VT.getSizeInBits() != 128)
11007    return SDValue();
11008
11009  // Don't create instructions with illegal types after legalize types has run.
11010  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11011  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
11012    return SDValue();
11013
11014  SmallVector<SDValue, 16> Elts;
11015  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
11016    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
11017
11018  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
11019}
11020
11021/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
11022/// generation and convert it from being a bunch of shuffles and extracts
11023/// to a simple store and scalar loads to extract the elements.
11024static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
11025                                                const TargetLowering &TLI) {
11026  SDValue InputVector = N->getOperand(0);
11027
11028  // Only operate on vectors of 4 elements, where the alternative shuffling
11029  // gets to be more expensive.
11030  if (InputVector.getValueType() != MVT::v4i32)
11031    return SDValue();
11032
11033  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
11034  // single use which is a sign-extend or zero-extend, and all elements are
11035  // used.
11036  SmallVector<SDNode *, 4> Uses;
11037  unsigned ExtractedElements = 0;
11038  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
11039       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
11040    if (UI.getUse().getResNo() != InputVector.getResNo())
11041      return SDValue();
11042
11043    SDNode *Extract = *UI;
11044    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11045      return SDValue();
11046
11047    if (Extract->getValueType(0) != MVT::i32)
11048      return SDValue();
11049    if (!Extract->hasOneUse())
11050      return SDValue();
11051    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
11052        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
11053      return SDValue();
11054    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
11055      return SDValue();
11056
11057    // Record which element was extracted.
11058    ExtractedElements |=
11059      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
11060
11061    Uses.push_back(Extract);
11062  }
11063
11064  // If not all the elements were used, this may not be worthwhile.
11065  if (ExtractedElements != 15)
11066    return SDValue();
11067
11068  // Ok, we've now decided to do the transformation.
11069  DebugLoc dl = InputVector.getDebugLoc();
11070
11071  // Store the value to a temporary stack slot.
11072  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
11073  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
11074                            MachinePointerInfo(), false, false, 0);
11075
11076  // Replace each use (extract) with a load of the appropriate element.
11077  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
11078       UE = Uses.end(); UI != UE; ++UI) {
11079    SDNode *Extract = *UI;
11080
11081    // cOMpute the element's address.
11082    SDValue Idx = Extract->getOperand(1);
11083    unsigned EltSize =
11084        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
11085    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
11086    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
11087
11088    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
11089                                     StackPtr, OffsetVal);
11090
11091    // Load the scalar.
11092    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
11093                                     ScalarAddr, MachinePointerInfo(),
11094                                     false, false, 0);
11095
11096    // Replace the exact with the load.
11097    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
11098  }
11099
11100  // The replacement was made in place; don't return anything.
11101  return SDValue();
11102}
11103
11104/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
11105static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
11106                                    const X86Subtarget *Subtarget) {
11107  DebugLoc DL = N->getDebugLoc();
11108  SDValue Cond = N->getOperand(0);
11109  // Get the LHS/RHS of the select.
11110  SDValue LHS = N->getOperand(1);
11111  SDValue RHS = N->getOperand(2);
11112
11113  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
11114  // instructions match the semantics of the common C idiom x<y?x:y but not
11115  // x<=y?x:y, because of how they handle negative zero (which can be
11116  // ignored in unsafe-math mode).
11117  if (Subtarget->hasSSE2() &&
11118      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
11119      Cond.getOpcode() == ISD::SETCC) {
11120    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
11121
11122    unsigned Opcode = 0;
11123    // Check for x CC y ? x : y.
11124    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
11125        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
11126      switch (CC) {
11127      default: break;
11128      case ISD::SETULT:
11129        // Converting this to a min would handle NaNs incorrectly, and swapping
11130        // the operands would cause it to handle comparisons between positive
11131        // and negative zero incorrectly.
11132        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11133          if (!UnsafeFPMath &&
11134              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11135            break;
11136          std::swap(LHS, RHS);
11137        }
11138        Opcode = X86ISD::FMIN;
11139        break;
11140      case ISD::SETOLE:
11141        // Converting this to a min would handle comparisons between positive
11142        // and negative zero incorrectly.
11143        if (!UnsafeFPMath &&
11144            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
11145          break;
11146        Opcode = X86ISD::FMIN;
11147        break;
11148      case ISD::SETULE:
11149        // Converting this to a min would handle both negative zeros and NaNs
11150        // incorrectly, but we can swap the operands to fix both.
11151        std::swap(LHS, RHS);
11152      case ISD::SETOLT:
11153      case ISD::SETLT:
11154      case ISD::SETLE:
11155        Opcode = X86ISD::FMIN;
11156        break;
11157
11158      case ISD::SETOGE:
11159        // Converting this to a max would handle comparisons between positive
11160        // and negative zero incorrectly.
11161        if (!UnsafeFPMath &&
11162            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
11163          break;
11164        Opcode = X86ISD::FMAX;
11165        break;
11166      case ISD::SETUGT:
11167        // Converting this to a max would handle NaNs incorrectly, and swapping
11168        // the operands would cause it to handle comparisons between positive
11169        // and negative zero incorrectly.
11170        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11171          if (!UnsafeFPMath &&
11172              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11173            break;
11174          std::swap(LHS, RHS);
11175        }
11176        Opcode = X86ISD::FMAX;
11177        break;
11178      case ISD::SETUGE:
11179        // Converting this to a max would handle both negative zeros and NaNs
11180        // incorrectly, but we can swap the operands to fix both.
11181        std::swap(LHS, RHS);
11182      case ISD::SETOGT:
11183      case ISD::SETGT:
11184      case ISD::SETGE:
11185        Opcode = X86ISD::FMAX;
11186        break;
11187      }
11188    // Check for x CC y ? y : x -- a min/max with reversed arms.
11189    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
11190               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
11191      switch (CC) {
11192      default: break;
11193      case ISD::SETOGE:
11194        // Converting this to a min would handle comparisons between positive
11195        // and negative zero incorrectly, and swapping the operands would
11196        // cause it to handle NaNs incorrectly.
11197        if (!UnsafeFPMath &&
11198            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
11199          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11200            break;
11201          std::swap(LHS, RHS);
11202        }
11203        Opcode = X86ISD::FMIN;
11204        break;
11205      case ISD::SETUGT:
11206        // Converting this to a min would handle NaNs incorrectly.
11207        if (!UnsafeFPMath &&
11208            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
11209          break;
11210        Opcode = X86ISD::FMIN;
11211        break;
11212      case ISD::SETUGE:
11213        // Converting this to a min would handle both negative zeros and NaNs
11214        // incorrectly, but we can swap the operands to fix both.
11215        std::swap(LHS, RHS);
11216      case ISD::SETOGT:
11217      case ISD::SETGT:
11218      case ISD::SETGE:
11219        Opcode = X86ISD::FMIN;
11220        break;
11221
11222      case ISD::SETULT:
11223        // Converting this to a max would handle NaNs incorrectly.
11224        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11225          break;
11226        Opcode = X86ISD::FMAX;
11227        break;
11228      case ISD::SETOLE:
11229        // Converting this to a max would handle comparisons between positive
11230        // and negative zero incorrectly, and swapping the operands would
11231        // cause it to handle NaNs incorrectly.
11232        if (!UnsafeFPMath &&
11233            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
11234          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11235            break;
11236          std::swap(LHS, RHS);
11237        }
11238        Opcode = X86ISD::FMAX;
11239        break;
11240      case ISD::SETULE:
11241        // Converting this to a max would handle both negative zeros and NaNs
11242        // incorrectly, but we can swap the operands to fix both.
11243        std::swap(LHS, RHS);
11244      case ISD::SETOLT:
11245      case ISD::SETLT:
11246      case ISD::SETLE:
11247        Opcode = X86ISD::FMAX;
11248        break;
11249      }
11250    }
11251
11252    if (Opcode)
11253      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
11254  }
11255
11256  // If this is a select between two integer constants, try to do some
11257  // optimizations.
11258  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
11259    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
11260      // Don't do this for crazy integer types.
11261      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
11262        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
11263        // so that TrueC (the true value) is larger than FalseC.
11264        bool NeedsCondInvert = false;
11265
11266        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
11267            // Efficiently invertible.
11268            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
11269             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
11270              isa<ConstantSDNode>(Cond.getOperand(1))))) {
11271          NeedsCondInvert = true;
11272          std::swap(TrueC, FalseC);
11273        }
11274
11275        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
11276        if (FalseC->getAPIntValue() == 0 &&
11277            TrueC->getAPIntValue().isPowerOf2()) {
11278          if (NeedsCondInvert) // Invert the condition if needed.
11279            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11280                               DAG.getConstant(1, Cond.getValueType()));
11281
11282          // Zero extend the condition if needed.
11283          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
11284
11285          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11286          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
11287                             DAG.getConstant(ShAmt, MVT::i8));
11288        }
11289
11290        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
11291        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11292          if (NeedsCondInvert) // Invert the condition if needed.
11293            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11294                               DAG.getConstant(1, Cond.getValueType()));
11295
11296          // Zero extend the condition if needed.
11297          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11298                             FalseC->getValueType(0), Cond);
11299          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11300                             SDValue(FalseC, 0));
11301        }
11302
11303        // Optimize cases that will turn into an LEA instruction.  This requires
11304        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11305        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11306          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11307          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11308
11309          bool isFastMultiplier = false;
11310          if (Diff < 10) {
11311            switch ((unsigned char)Diff) {
11312              default: break;
11313              case 1:  // result = add base, cond
11314              case 2:  // result = lea base(    , cond*2)
11315              case 3:  // result = lea base(cond, cond*2)
11316              case 4:  // result = lea base(    , cond*4)
11317              case 5:  // result = lea base(cond, cond*4)
11318              case 8:  // result = lea base(    , cond*8)
11319              case 9:  // result = lea base(cond, cond*8)
11320                isFastMultiplier = true;
11321                break;
11322            }
11323          }
11324
11325          if (isFastMultiplier) {
11326            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11327            if (NeedsCondInvert) // Invert the condition if needed.
11328              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11329                                 DAG.getConstant(1, Cond.getValueType()));
11330
11331            // Zero extend the condition if needed.
11332            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11333                               Cond);
11334            // Scale the condition by the difference.
11335            if (Diff != 1)
11336              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11337                                 DAG.getConstant(Diff, Cond.getValueType()));
11338
11339            // Add the base if non-zero.
11340            if (FalseC->getAPIntValue() != 0)
11341              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11342                                 SDValue(FalseC, 0));
11343            return Cond;
11344          }
11345        }
11346      }
11347  }
11348
11349  return SDValue();
11350}
11351
11352/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
11353static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
11354                                  TargetLowering::DAGCombinerInfo &DCI) {
11355  DebugLoc DL = N->getDebugLoc();
11356
11357  // If the flag operand isn't dead, don't touch this CMOV.
11358  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
11359    return SDValue();
11360
11361  SDValue FalseOp = N->getOperand(0);
11362  SDValue TrueOp = N->getOperand(1);
11363  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
11364  SDValue Cond = N->getOperand(3);
11365  if (CC == X86::COND_E || CC == X86::COND_NE) {
11366    switch (Cond.getOpcode()) {
11367    default: break;
11368    case X86ISD::BSR:
11369    case X86ISD::BSF:
11370      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
11371      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
11372        return (CC == X86::COND_E) ? FalseOp : TrueOp;
11373    }
11374  }
11375
11376  // If this is a select between two integer constants, try to do some
11377  // optimizations.  Note that the operands are ordered the opposite of SELECT
11378  // operands.
11379  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
11380    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
11381      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
11382      // larger than FalseC (the false value).
11383      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
11384        CC = X86::GetOppositeBranchCondition(CC);
11385        std::swap(TrueC, FalseC);
11386      }
11387
11388      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
11389      // This is efficient for any integer data type (including i8/i16) and
11390      // shift amount.
11391      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
11392        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11393                           DAG.getConstant(CC, MVT::i8), Cond);
11394
11395        // Zero extend the condition if needed.
11396        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
11397
11398        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11399        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
11400                           DAG.getConstant(ShAmt, MVT::i8));
11401        if (N->getNumValues() == 2)  // Dead flag value?
11402          return DCI.CombineTo(N, Cond, SDValue());
11403        return Cond;
11404      }
11405
11406      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
11407      // for any integer data type, including i8/i16.
11408      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11409        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11410                           DAG.getConstant(CC, MVT::i8), Cond);
11411
11412        // Zero extend the condition if needed.
11413        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11414                           FalseC->getValueType(0), Cond);
11415        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11416                           SDValue(FalseC, 0));
11417
11418        if (N->getNumValues() == 2)  // Dead flag value?
11419          return DCI.CombineTo(N, Cond, SDValue());
11420        return Cond;
11421      }
11422
11423      // Optimize cases that will turn into an LEA instruction.  This requires
11424      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11425      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11426        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11427        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11428
11429        bool isFastMultiplier = false;
11430        if (Diff < 10) {
11431          switch ((unsigned char)Diff) {
11432          default: break;
11433          case 1:  // result = add base, cond
11434          case 2:  // result = lea base(    , cond*2)
11435          case 3:  // result = lea base(cond, cond*2)
11436          case 4:  // result = lea base(    , cond*4)
11437          case 5:  // result = lea base(cond, cond*4)
11438          case 8:  // result = lea base(    , cond*8)
11439          case 9:  // result = lea base(cond, cond*8)
11440            isFastMultiplier = true;
11441            break;
11442          }
11443        }
11444
11445        if (isFastMultiplier) {
11446          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11447          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11448                             DAG.getConstant(CC, MVT::i8), Cond);
11449          // Zero extend the condition if needed.
11450          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11451                             Cond);
11452          // Scale the condition by the difference.
11453          if (Diff != 1)
11454            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11455                               DAG.getConstant(Diff, Cond.getValueType()));
11456
11457          // Add the base if non-zero.
11458          if (FalseC->getAPIntValue() != 0)
11459            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11460                               SDValue(FalseC, 0));
11461          if (N->getNumValues() == 2)  // Dead flag value?
11462            return DCI.CombineTo(N, Cond, SDValue());
11463          return Cond;
11464        }
11465      }
11466    }
11467  }
11468  return SDValue();
11469}
11470
11471
11472/// PerformMulCombine - Optimize a single multiply with constant into two
11473/// in order to implement it with two cheaper instructions, e.g.
11474/// LEA + SHL, LEA + LEA.
11475static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
11476                                 TargetLowering::DAGCombinerInfo &DCI) {
11477  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11478    return SDValue();
11479
11480  EVT VT = N->getValueType(0);
11481  if (VT != MVT::i64)
11482    return SDValue();
11483
11484  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11485  if (!C)
11486    return SDValue();
11487  uint64_t MulAmt = C->getZExtValue();
11488  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
11489    return SDValue();
11490
11491  uint64_t MulAmt1 = 0;
11492  uint64_t MulAmt2 = 0;
11493  if ((MulAmt % 9) == 0) {
11494    MulAmt1 = 9;
11495    MulAmt2 = MulAmt / 9;
11496  } else if ((MulAmt % 5) == 0) {
11497    MulAmt1 = 5;
11498    MulAmt2 = MulAmt / 5;
11499  } else if ((MulAmt % 3) == 0) {
11500    MulAmt1 = 3;
11501    MulAmt2 = MulAmt / 3;
11502  }
11503  if (MulAmt2 &&
11504      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
11505    DebugLoc DL = N->getDebugLoc();
11506
11507    if (isPowerOf2_64(MulAmt2) &&
11508        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
11509      // If second multiplifer is pow2, issue it first. We want the multiply by
11510      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
11511      // is an add.
11512      std::swap(MulAmt1, MulAmt2);
11513
11514    SDValue NewMul;
11515    if (isPowerOf2_64(MulAmt1))
11516      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
11517                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
11518    else
11519      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
11520                           DAG.getConstant(MulAmt1, VT));
11521
11522    if (isPowerOf2_64(MulAmt2))
11523      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
11524                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
11525    else
11526      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
11527                           DAG.getConstant(MulAmt2, VT));
11528
11529    // Do not add new nodes to DAG combiner worklist.
11530    DCI.CombineTo(N, NewMul, false);
11531  }
11532  return SDValue();
11533}
11534
11535static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
11536  SDValue N0 = N->getOperand(0);
11537  SDValue N1 = N->getOperand(1);
11538  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
11539  EVT VT = N0.getValueType();
11540
11541  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
11542  // since the result of setcc_c is all zero's or all ones.
11543  if (N1C && N0.getOpcode() == ISD::AND &&
11544      N0.getOperand(1).getOpcode() == ISD::Constant) {
11545    SDValue N00 = N0.getOperand(0);
11546    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
11547        ((N00.getOpcode() == ISD::ANY_EXTEND ||
11548          N00.getOpcode() == ISD::ZERO_EXTEND) &&
11549         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
11550      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
11551      APInt ShAmt = N1C->getAPIntValue();
11552      Mask = Mask.shl(ShAmt);
11553      if (Mask != 0)
11554        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
11555                           N00, DAG.getConstant(Mask, VT));
11556    }
11557  }
11558
11559  return SDValue();
11560}
11561
11562/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
11563///                       when possible.
11564static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
11565                                   const X86Subtarget *Subtarget) {
11566  EVT VT = N->getValueType(0);
11567  if (!VT.isVector() && VT.isInteger() &&
11568      N->getOpcode() == ISD::SHL)
11569    return PerformSHLCombine(N, DAG);
11570
11571  // On X86 with SSE2 support, we can transform this to a vector shift if
11572  // all elements are shifted by the same amount.  We can't do this in legalize
11573  // because the a constant vector is typically transformed to a constant pool
11574  // so we have no knowledge of the shift amount.
11575  if (!Subtarget->hasSSE2())
11576    return SDValue();
11577
11578  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
11579    return SDValue();
11580
11581  SDValue ShAmtOp = N->getOperand(1);
11582  EVT EltVT = VT.getVectorElementType();
11583  DebugLoc DL = N->getDebugLoc();
11584  SDValue BaseShAmt = SDValue();
11585  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
11586    unsigned NumElts = VT.getVectorNumElements();
11587    unsigned i = 0;
11588    for (; i != NumElts; ++i) {
11589      SDValue Arg = ShAmtOp.getOperand(i);
11590      if (Arg.getOpcode() == ISD::UNDEF) continue;
11591      BaseShAmt = Arg;
11592      break;
11593    }
11594    for (; i != NumElts; ++i) {
11595      SDValue Arg = ShAmtOp.getOperand(i);
11596      if (Arg.getOpcode() == ISD::UNDEF) continue;
11597      if (Arg != BaseShAmt) {
11598        return SDValue();
11599      }
11600    }
11601  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
11602             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
11603    SDValue InVec = ShAmtOp.getOperand(0);
11604    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
11605      unsigned NumElts = InVec.getValueType().getVectorNumElements();
11606      unsigned i = 0;
11607      for (; i != NumElts; ++i) {
11608        SDValue Arg = InVec.getOperand(i);
11609        if (Arg.getOpcode() == ISD::UNDEF) continue;
11610        BaseShAmt = Arg;
11611        break;
11612      }
11613    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
11614       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
11615         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
11616         if (C->getZExtValue() == SplatIdx)
11617           BaseShAmt = InVec.getOperand(1);
11618       }
11619    }
11620    if (BaseShAmt.getNode() == 0)
11621      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
11622                              DAG.getIntPtrConstant(0));
11623  } else
11624    return SDValue();
11625
11626  // The shift amount is an i32.
11627  if (EltVT.bitsGT(MVT::i32))
11628    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
11629  else if (EltVT.bitsLT(MVT::i32))
11630    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
11631
11632  // The shift amount is identical so we can do a vector shift.
11633  SDValue  ValOp = N->getOperand(0);
11634  switch (N->getOpcode()) {
11635  default:
11636    llvm_unreachable("Unknown shift opcode!");
11637    break;
11638  case ISD::SHL:
11639    if (VT == MVT::v2i64)
11640      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11641                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
11642                         ValOp, BaseShAmt);
11643    if (VT == MVT::v4i32)
11644      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11645                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
11646                         ValOp, BaseShAmt);
11647    if (VT == MVT::v8i16)
11648      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11649                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
11650                         ValOp, BaseShAmt);
11651    break;
11652  case ISD::SRA:
11653    if (VT == MVT::v4i32)
11654      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11655                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
11656                         ValOp, BaseShAmt);
11657    if (VT == MVT::v8i16)
11658      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11659                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
11660                         ValOp, BaseShAmt);
11661    break;
11662  case ISD::SRL:
11663    if (VT == MVT::v2i64)
11664      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11665                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
11666                         ValOp, BaseShAmt);
11667    if (VT == MVT::v4i32)
11668      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11669                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
11670                         ValOp, BaseShAmt);
11671    if (VT ==  MVT::v8i16)
11672      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11673                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
11674                         ValOp, BaseShAmt);
11675    break;
11676  }
11677  return SDValue();
11678}
11679
11680
11681// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
11682// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
11683// and friends.  Likewise for OR -> CMPNEQSS.
11684static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
11685                            TargetLowering::DAGCombinerInfo &DCI,
11686                            const X86Subtarget *Subtarget) {
11687  unsigned opcode;
11688
11689  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
11690  // we're requiring SSE2 for both.
11691  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
11692    SDValue N0 = N->getOperand(0);
11693    SDValue N1 = N->getOperand(1);
11694    SDValue CMP0 = N0->getOperand(1);
11695    SDValue CMP1 = N1->getOperand(1);
11696    DebugLoc DL = N->getDebugLoc();
11697
11698    // The SETCCs should both refer to the same CMP.
11699    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
11700      return SDValue();
11701
11702    SDValue CMP00 = CMP0->getOperand(0);
11703    SDValue CMP01 = CMP0->getOperand(1);
11704    EVT     VT    = CMP00.getValueType();
11705
11706    if (VT == MVT::f32 || VT == MVT::f64) {
11707      bool ExpectingFlags = false;
11708      // Check for any users that want flags:
11709      for (SDNode::use_iterator UI = N->use_begin(),
11710             UE = N->use_end();
11711           !ExpectingFlags && UI != UE; ++UI)
11712        switch (UI->getOpcode()) {
11713        default:
11714        case ISD::BR_CC:
11715        case ISD::BRCOND:
11716        case ISD::SELECT:
11717          ExpectingFlags = true;
11718          break;
11719        case ISD::CopyToReg:
11720        case ISD::SIGN_EXTEND:
11721        case ISD::ZERO_EXTEND:
11722        case ISD::ANY_EXTEND:
11723          break;
11724        }
11725
11726      if (!ExpectingFlags) {
11727        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
11728        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
11729
11730        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
11731          X86::CondCode tmp = cc0;
11732          cc0 = cc1;
11733          cc1 = tmp;
11734        }
11735
11736        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
11737            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
11738          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
11739          X86ISD::NodeType NTOperator = is64BitFP ?
11740            X86ISD::FSETCCsd : X86ISD::FSETCCss;
11741          // FIXME: need symbolic constants for these magic numbers.
11742          // See X86ATTInstPrinter.cpp:printSSECC().
11743          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
11744          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
11745                                              DAG.getConstant(x86cc, MVT::i8));
11746          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
11747                                              OnesOrZeroesF);
11748          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
11749                                      DAG.getConstant(1, MVT::i32));
11750          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
11751          return OneBitOfTruth;
11752        }
11753      }
11754    }
11755  }
11756  return SDValue();
11757}
11758
11759static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
11760                                 TargetLowering::DAGCombinerInfo &DCI,
11761                                 const X86Subtarget *Subtarget) {
11762  if (DCI.isBeforeLegalizeOps())
11763    return SDValue();
11764
11765  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
11766  if (R.getNode())
11767    return R;
11768
11769  // Want to form PANDN nodes, in the hopes of then easily combining them with
11770  // OR and AND nodes to form PBLEND/PSIGN.
11771  EVT VT = N->getValueType(0);
11772  if (VT != MVT::v2i64)
11773    return SDValue();
11774
11775  SDValue N0 = N->getOperand(0);
11776  SDValue N1 = N->getOperand(1);
11777  DebugLoc DL = N->getDebugLoc();
11778
11779  // Check LHS for vnot
11780  if (N0.getOpcode() == ISD::XOR &&
11781      ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
11782    return DAG.getNode(X86ISD::PANDN, DL, VT, N0.getOperand(0), N1);
11783
11784  // Check RHS for vnot
11785  if (N1.getOpcode() == ISD::XOR &&
11786      ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
11787    return DAG.getNode(X86ISD::PANDN, DL, VT, N1.getOperand(0), N0);
11788
11789  return SDValue();
11790}
11791
11792static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
11793                                TargetLowering::DAGCombinerInfo &DCI,
11794                                const X86Subtarget *Subtarget) {
11795  if (DCI.isBeforeLegalizeOps())
11796    return SDValue();
11797
11798  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
11799  if (R.getNode())
11800    return R;
11801
11802  EVT VT = N->getValueType(0);
11803  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
11804    return SDValue();
11805
11806  SDValue N0 = N->getOperand(0);
11807  SDValue N1 = N->getOperand(1);
11808
11809  // look for psign/blend
11810  if (Subtarget->hasSSSE3()) {
11811    if (VT == MVT::v2i64) {
11812      // Canonicalize pandn to RHS
11813      if (N0.getOpcode() == X86ISD::PANDN)
11814        std::swap(N0, N1);
11815      // or (and (m, x), (pandn m, y))
11816      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::PANDN) {
11817        SDValue Mask = N1.getOperand(0);
11818        SDValue X    = N1.getOperand(1);
11819        SDValue Y;
11820        if (N0.getOperand(0) == Mask)
11821          Y = N0.getOperand(1);
11822        if (N0.getOperand(1) == Mask)
11823          Y = N0.getOperand(0);
11824
11825        // Check to see if the mask appeared in both the AND and PANDN and
11826        if (!Y.getNode())
11827          return SDValue();
11828
11829        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
11830        if (Mask.getOpcode() != ISD::BITCAST ||
11831            X.getOpcode() != ISD::BITCAST ||
11832            Y.getOpcode() != ISD::BITCAST)
11833          return SDValue();
11834
11835        // Look through mask bitcast.
11836        Mask = Mask.getOperand(0);
11837        EVT MaskVT = Mask.getValueType();
11838
11839        // Validate that the Mask operand is a vector sra node.  The sra node
11840        // will be an intrinsic.
11841        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
11842          return SDValue();
11843
11844        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
11845        // there is no psrai.b
11846        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
11847        case Intrinsic::x86_sse2_psrai_w:
11848        case Intrinsic::x86_sse2_psrai_d:
11849          break;
11850        default: return SDValue();
11851        }
11852
11853        // Check that the SRA is all signbits.
11854        SDValue SraC = Mask.getOperand(2);
11855        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
11856        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
11857        if ((SraAmt + 1) != EltBits)
11858          return SDValue();
11859
11860        DebugLoc DL = N->getDebugLoc();
11861
11862        // Now we know we at least have a plendvb with the mask val.  See if
11863        // we can form a psignb/w/d.
11864        // psign = x.type == y.type == mask.type && y = sub(0, x);
11865        X = X.getOperand(0);
11866        Y = Y.getOperand(0);
11867        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
11868            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
11869            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
11870          unsigned Opc = 0;
11871          switch (EltBits) {
11872          case 8: Opc = X86ISD::PSIGNB; break;
11873          case 16: Opc = X86ISD::PSIGNW; break;
11874          case 32: Opc = X86ISD::PSIGND; break;
11875          default: break;
11876          }
11877          if (Opc) {
11878            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
11879            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
11880          }
11881        }
11882        // PBLENDVB only available on SSE 4.1
11883        if (!Subtarget->hasSSE41())
11884          return SDValue();
11885
11886        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
11887        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
11888        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
11889        Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
11890        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
11891      }
11892    }
11893  }
11894
11895  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
11896  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
11897    std::swap(N0, N1);
11898  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
11899    return SDValue();
11900  if (!N0.hasOneUse() || !N1.hasOneUse())
11901    return SDValue();
11902
11903  SDValue ShAmt0 = N0.getOperand(1);
11904  if (ShAmt0.getValueType() != MVT::i8)
11905    return SDValue();
11906  SDValue ShAmt1 = N1.getOperand(1);
11907  if (ShAmt1.getValueType() != MVT::i8)
11908    return SDValue();
11909  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
11910    ShAmt0 = ShAmt0.getOperand(0);
11911  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
11912    ShAmt1 = ShAmt1.getOperand(0);
11913
11914  DebugLoc DL = N->getDebugLoc();
11915  unsigned Opc = X86ISD::SHLD;
11916  SDValue Op0 = N0.getOperand(0);
11917  SDValue Op1 = N1.getOperand(0);
11918  if (ShAmt0.getOpcode() == ISD::SUB) {
11919    Opc = X86ISD::SHRD;
11920    std::swap(Op0, Op1);
11921    std::swap(ShAmt0, ShAmt1);
11922  }
11923
11924  unsigned Bits = VT.getSizeInBits();
11925  if (ShAmt1.getOpcode() == ISD::SUB) {
11926    SDValue Sum = ShAmt1.getOperand(0);
11927    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
11928      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
11929      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
11930        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
11931      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
11932        return DAG.getNode(Opc, DL, VT,
11933                           Op0, Op1,
11934                           DAG.getNode(ISD::TRUNCATE, DL,
11935                                       MVT::i8, ShAmt0));
11936    }
11937  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
11938    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
11939    if (ShAmt0C &&
11940        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
11941      return DAG.getNode(Opc, DL, VT,
11942                         N0.getOperand(0), N1.getOperand(0),
11943                         DAG.getNode(ISD::TRUNCATE, DL,
11944                                       MVT::i8, ShAmt0));
11945  }
11946
11947  return SDValue();
11948}
11949
11950/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
11951static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
11952                                   const X86Subtarget *Subtarget) {
11953  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
11954  // the FP state in cases where an emms may be missing.
11955  // A preferable solution to the general problem is to figure out the right
11956  // places to insert EMMS.  This qualifies as a quick hack.
11957
11958  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
11959  StoreSDNode *St = cast<StoreSDNode>(N);
11960  EVT VT = St->getValue().getValueType();
11961  if (VT.getSizeInBits() != 64)
11962    return SDValue();
11963
11964  const Function *F = DAG.getMachineFunction().getFunction();
11965  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
11966  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
11967    && Subtarget->hasSSE2();
11968  if ((VT.isVector() ||
11969       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
11970      isa<LoadSDNode>(St->getValue()) &&
11971      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
11972      St->getChain().hasOneUse() && !St->isVolatile()) {
11973    SDNode* LdVal = St->getValue().getNode();
11974    LoadSDNode *Ld = 0;
11975    int TokenFactorIndex = -1;
11976    SmallVector<SDValue, 8> Ops;
11977    SDNode* ChainVal = St->getChain().getNode();
11978    // Must be a store of a load.  We currently handle two cases:  the load
11979    // is a direct child, and it's under an intervening TokenFactor.  It is
11980    // possible to dig deeper under nested TokenFactors.
11981    if (ChainVal == LdVal)
11982      Ld = cast<LoadSDNode>(St->getChain());
11983    else if (St->getValue().hasOneUse() &&
11984             ChainVal->getOpcode() == ISD::TokenFactor) {
11985      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
11986        if (ChainVal->getOperand(i).getNode() == LdVal) {
11987          TokenFactorIndex = i;
11988          Ld = cast<LoadSDNode>(St->getValue());
11989        } else
11990          Ops.push_back(ChainVal->getOperand(i));
11991      }
11992    }
11993
11994    if (!Ld || !ISD::isNormalLoad(Ld))
11995      return SDValue();
11996
11997    // If this is not the MMX case, i.e. we are just turning i64 load/store
11998    // into f64 load/store, avoid the transformation if there are multiple
11999    // uses of the loaded value.
12000    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
12001      return SDValue();
12002
12003    DebugLoc LdDL = Ld->getDebugLoc();
12004    DebugLoc StDL = N->getDebugLoc();
12005    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
12006    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
12007    // pair instead.
12008    if (Subtarget->is64Bit() || F64IsLegal) {
12009      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
12010      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
12011                                  Ld->getPointerInfo(), Ld->isVolatile(),
12012                                  Ld->isNonTemporal(), Ld->getAlignment());
12013      SDValue NewChain = NewLd.getValue(1);
12014      if (TokenFactorIndex != -1) {
12015        Ops.push_back(NewChain);
12016        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
12017                               Ops.size());
12018      }
12019      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
12020                          St->getPointerInfo(),
12021                          St->isVolatile(), St->isNonTemporal(),
12022                          St->getAlignment());
12023    }
12024
12025    // Otherwise, lower to two pairs of 32-bit loads / stores.
12026    SDValue LoAddr = Ld->getBasePtr();
12027    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
12028                                 DAG.getConstant(4, MVT::i32));
12029
12030    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
12031                               Ld->getPointerInfo(),
12032                               Ld->isVolatile(), Ld->isNonTemporal(),
12033                               Ld->getAlignment());
12034    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
12035                               Ld->getPointerInfo().getWithOffset(4),
12036                               Ld->isVolatile(), Ld->isNonTemporal(),
12037                               MinAlign(Ld->getAlignment(), 4));
12038
12039    SDValue NewChain = LoLd.getValue(1);
12040    if (TokenFactorIndex != -1) {
12041      Ops.push_back(LoLd);
12042      Ops.push_back(HiLd);
12043      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
12044                             Ops.size());
12045    }
12046
12047    LoAddr = St->getBasePtr();
12048    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
12049                         DAG.getConstant(4, MVT::i32));
12050
12051    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
12052                                St->getPointerInfo(),
12053                                St->isVolatile(), St->isNonTemporal(),
12054                                St->getAlignment());
12055    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
12056                                St->getPointerInfo().getWithOffset(4),
12057                                St->isVolatile(),
12058                                St->isNonTemporal(),
12059                                MinAlign(St->getAlignment(), 4));
12060    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
12061  }
12062  return SDValue();
12063}
12064
12065/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
12066/// X86ISD::FXOR nodes.
12067static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
12068  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
12069  // F[X]OR(0.0, x) -> x
12070  // F[X]OR(x, 0.0) -> x
12071  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
12072    if (C->getValueAPF().isPosZero())
12073      return N->getOperand(1);
12074  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
12075    if (C->getValueAPF().isPosZero())
12076      return N->getOperand(0);
12077  return SDValue();
12078}
12079
12080/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
12081static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
12082  // FAND(0.0, x) -> 0.0
12083  // FAND(x, 0.0) -> 0.0
12084  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
12085    if (C->getValueAPF().isPosZero())
12086      return N->getOperand(0);
12087  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
12088    if (C->getValueAPF().isPosZero())
12089      return N->getOperand(1);
12090  return SDValue();
12091}
12092
12093static SDValue PerformBTCombine(SDNode *N,
12094                                SelectionDAG &DAG,
12095                                TargetLowering::DAGCombinerInfo &DCI) {
12096  // BT ignores high bits in the bit index operand.
12097  SDValue Op1 = N->getOperand(1);
12098  if (Op1.hasOneUse()) {
12099    unsigned BitWidth = Op1.getValueSizeInBits();
12100    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
12101    APInt KnownZero, KnownOne;
12102    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
12103                                          !DCI.isBeforeLegalizeOps());
12104    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12105    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
12106        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
12107      DCI.CommitTargetLoweringOpt(TLO);
12108  }
12109  return SDValue();
12110}
12111
12112static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
12113  SDValue Op = N->getOperand(0);
12114  if (Op.getOpcode() == ISD::BITCAST)
12115    Op = Op.getOperand(0);
12116  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
12117  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
12118      VT.getVectorElementType().getSizeInBits() ==
12119      OpVT.getVectorElementType().getSizeInBits()) {
12120    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
12121  }
12122  return SDValue();
12123}
12124
12125static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
12126  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
12127  //           (and (i32 x86isd::setcc_carry), 1)
12128  // This eliminates the zext. This transformation is necessary because
12129  // ISD::SETCC is always legalized to i8.
12130  DebugLoc dl = N->getDebugLoc();
12131  SDValue N0 = N->getOperand(0);
12132  EVT VT = N->getValueType(0);
12133  if (N0.getOpcode() == ISD::AND &&
12134      N0.hasOneUse() &&
12135      N0.getOperand(0).hasOneUse()) {
12136    SDValue N00 = N0.getOperand(0);
12137    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
12138      return SDValue();
12139    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
12140    if (!C || C->getZExtValue() != 1)
12141      return SDValue();
12142    return DAG.getNode(ISD::AND, dl, VT,
12143                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
12144                                   N00.getOperand(0), N00.getOperand(1)),
12145                       DAG.getConstant(1, VT));
12146  }
12147
12148  return SDValue();
12149}
12150
12151// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
12152static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
12153  unsigned X86CC = N->getConstantOperandVal(0);
12154  SDValue EFLAG = N->getOperand(1);
12155  DebugLoc DL = N->getDebugLoc();
12156
12157  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
12158  // a zext and produces an all-ones bit which is more useful than 0/1 in some
12159  // cases.
12160  if (X86CC == X86::COND_B)
12161    return DAG.getNode(ISD::AND, DL, MVT::i8,
12162                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
12163                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
12164                       DAG.getConstant(1, MVT::i8));
12165
12166  return SDValue();
12167}
12168
12169static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG, const X86TargetLowering *XTLI) {
12170  DebugLoc dl = N->getDebugLoc();
12171  SDValue Op0 = N->getOperand(0);
12172  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
12173  // a 32-bit target where SSE doesn't support i64->FP operations.
12174  if (Op0.getOpcode() == ISD::LOAD) {
12175    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
12176    EVT VT = Ld->getValueType(0);
12177    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
12178        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
12179        !XTLI->getSubtarget()->is64Bit() &&
12180        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
12181      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0), Ld->getChain(), Op0, DAG);
12182      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
12183      return FILDChain;
12184    }
12185  }
12186  return SDValue();
12187}
12188
12189// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
12190static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
12191                                 X86TargetLowering::DAGCombinerInfo &DCI) {
12192  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
12193  // the result is either zero or one (depending on the input carry bit).
12194  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
12195  if (X86::isZeroNode(N->getOperand(0)) &&
12196      X86::isZeroNode(N->getOperand(1)) &&
12197      // We don't have a good way to replace an EFLAGS use, so only do this when
12198      // dead right now.
12199      SDValue(N, 1).use_empty()) {
12200    DebugLoc DL = N->getDebugLoc();
12201    EVT VT = N->getValueType(0);
12202    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
12203    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
12204                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
12205                                           DAG.getConstant(X86::COND_B,MVT::i8),
12206                                           N->getOperand(2)),
12207                               DAG.getConstant(1, VT));
12208    return DCI.CombineTo(N, Res1, CarryOut);
12209  }
12210
12211  return SDValue();
12212}
12213
12214// fold (add Y, (sete  X, 0)) -> adc  0, Y
12215//      (add Y, (setne X, 0)) -> sbb -1, Y
12216//      (sub (sete  X, 0), Y) -> sbb  0, Y
12217//      (sub (setne X, 0), Y) -> adc -1, Y
12218static SDValue OptimizeConditonalInDecrement(SDNode *N, SelectionDAG &DAG) {
12219  DebugLoc DL = N->getDebugLoc();
12220
12221  // Look through ZExts.
12222  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
12223  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
12224    return SDValue();
12225
12226  SDValue SetCC = Ext.getOperand(0);
12227  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
12228    return SDValue();
12229
12230  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
12231  if (CC != X86::COND_E && CC != X86::COND_NE)
12232    return SDValue();
12233
12234  SDValue Cmp = SetCC.getOperand(1);
12235  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
12236      !X86::isZeroNode(Cmp.getOperand(1)) ||
12237      !Cmp.getOperand(0).getValueType().isInteger())
12238    return SDValue();
12239
12240  SDValue CmpOp0 = Cmp.getOperand(0);
12241  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
12242                               DAG.getConstant(1, CmpOp0.getValueType()));
12243
12244  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
12245  if (CC == X86::COND_NE)
12246    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
12247                       DL, OtherVal.getValueType(), OtherVal,
12248                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
12249  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
12250                     DL, OtherVal.getValueType(), OtherVal,
12251                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
12252}
12253
12254SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
12255                                             DAGCombinerInfo &DCI) const {
12256  SelectionDAG &DAG = DCI.DAG;
12257  switch (N->getOpcode()) {
12258  default: break;
12259  case ISD::EXTRACT_VECTOR_ELT:
12260    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
12261  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
12262  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
12263  case ISD::ADD:
12264  case ISD::SUB:            return OptimizeConditonalInDecrement(N, DAG);
12265  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
12266  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
12267  case ISD::SHL:
12268  case ISD::SRA:
12269  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
12270  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
12271  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
12272  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
12273  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
12274  case X86ISD::FXOR:
12275  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
12276  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
12277  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
12278  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
12279  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
12280  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
12281  case X86ISD::SHUFPS:      // Handle all target specific shuffles
12282  case X86ISD::SHUFPD:
12283  case X86ISD::PALIGN:
12284  case X86ISD::PUNPCKHBW:
12285  case X86ISD::PUNPCKHWD:
12286  case X86ISD::PUNPCKHDQ:
12287  case X86ISD::PUNPCKHQDQ:
12288  case X86ISD::UNPCKHPS:
12289  case X86ISD::UNPCKHPD:
12290  case X86ISD::PUNPCKLBW:
12291  case X86ISD::PUNPCKLWD:
12292  case X86ISD::PUNPCKLDQ:
12293  case X86ISD::PUNPCKLQDQ:
12294  case X86ISD::UNPCKLPS:
12295  case X86ISD::UNPCKLPD:
12296  case X86ISD::VUNPCKLPS:
12297  case X86ISD::VUNPCKLPD:
12298  case X86ISD::VUNPCKLPSY:
12299  case X86ISD::VUNPCKLPDY:
12300  case X86ISD::MOVHLPS:
12301  case X86ISD::MOVLHPS:
12302  case X86ISD::PSHUFD:
12303  case X86ISD::PSHUFHW:
12304  case X86ISD::PSHUFLW:
12305  case X86ISD::MOVSS:
12306  case X86ISD::MOVSD:
12307  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI);
12308  }
12309
12310  return SDValue();
12311}
12312
12313/// isTypeDesirableForOp - Return true if the target has native support for
12314/// the specified value type and it is 'desirable' to use the type for the
12315/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
12316/// instruction encodings are longer and some i16 instructions are slow.
12317bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
12318  if (!isTypeLegal(VT))
12319    return false;
12320  if (VT != MVT::i16)
12321    return true;
12322
12323  switch (Opc) {
12324  default:
12325    return true;
12326  case ISD::LOAD:
12327  case ISD::SIGN_EXTEND:
12328  case ISD::ZERO_EXTEND:
12329  case ISD::ANY_EXTEND:
12330  case ISD::SHL:
12331  case ISD::SRL:
12332  case ISD::SUB:
12333  case ISD::ADD:
12334  case ISD::MUL:
12335  case ISD::AND:
12336  case ISD::OR:
12337  case ISD::XOR:
12338    return false;
12339  }
12340}
12341
12342/// IsDesirableToPromoteOp - This method query the target whether it is
12343/// beneficial for dag combiner to promote the specified node. If true, it
12344/// should return the desired promotion type by reference.
12345bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
12346  EVT VT = Op.getValueType();
12347  if (VT != MVT::i16)
12348    return false;
12349
12350  bool Promote = false;
12351  bool Commute = false;
12352  switch (Op.getOpcode()) {
12353  default: break;
12354  case ISD::LOAD: {
12355    LoadSDNode *LD = cast<LoadSDNode>(Op);
12356    // If the non-extending load has a single use and it's not live out, then it
12357    // might be folded.
12358    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
12359                                                     Op.hasOneUse()*/) {
12360      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
12361             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
12362        // The only case where we'd want to promote LOAD (rather then it being
12363        // promoted as an operand is when it's only use is liveout.
12364        if (UI->getOpcode() != ISD::CopyToReg)
12365          return false;
12366      }
12367    }
12368    Promote = true;
12369    break;
12370  }
12371  case ISD::SIGN_EXTEND:
12372  case ISD::ZERO_EXTEND:
12373  case ISD::ANY_EXTEND:
12374    Promote = true;
12375    break;
12376  case ISD::SHL:
12377  case ISD::SRL: {
12378    SDValue N0 = Op.getOperand(0);
12379    // Look out for (store (shl (load), x)).
12380    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
12381      return false;
12382    Promote = true;
12383    break;
12384  }
12385  case ISD::ADD:
12386  case ISD::MUL:
12387  case ISD::AND:
12388  case ISD::OR:
12389  case ISD::XOR:
12390    Commute = true;
12391    // fallthrough
12392  case ISD::SUB: {
12393    SDValue N0 = Op.getOperand(0);
12394    SDValue N1 = Op.getOperand(1);
12395    if (!Commute && MayFoldLoad(N1))
12396      return false;
12397    // Avoid disabling potential load folding opportunities.
12398    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
12399      return false;
12400    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
12401      return false;
12402    Promote = true;
12403  }
12404  }
12405
12406  PVT = MVT::i32;
12407  return Promote;
12408}
12409
12410//===----------------------------------------------------------------------===//
12411//                           X86 Inline Assembly Support
12412//===----------------------------------------------------------------------===//
12413
12414bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
12415  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
12416
12417  std::string AsmStr = IA->getAsmString();
12418
12419  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
12420  SmallVector<StringRef, 4> AsmPieces;
12421  SplitString(AsmStr, AsmPieces, ";\n");
12422
12423  switch (AsmPieces.size()) {
12424  default: return false;
12425  case 1:
12426    AsmStr = AsmPieces[0];
12427    AsmPieces.clear();
12428    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
12429
12430    // FIXME: this should verify that we are targeting a 486 or better.  If not,
12431    // we will turn this bswap into something that will be lowered to logical ops
12432    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
12433    // so don't worry about this.
12434    // bswap $0
12435    if (AsmPieces.size() == 2 &&
12436        (AsmPieces[0] == "bswap" ||
12437         AsmPieces[0] == "bswapq" ||
12438         AsmPieces[0] == "bswapl") &&
12439        (AsmPieces[1] == "$0" ||
12440         AsmPieces[1] == "${0:q}")) {
12441      // No need to check constraints, nothing other than the equivalent of
12442      // "=r,0" would be valid here.
12443      const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12444      if (!Ty || Ty->getBitWidth() % 16 != 0)
12445        return false;
12446      return IntrinsicLowering::LowerToByteSwap(CI);
12447    }
12448    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
12449    if (CI->getType()->isIntegerTy(16) &&
12450        AsmPieces.size() == 3 &&
12451        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
12452        AsmPieces[1] == "$$8," &&
12453        AsmPieces[2] == "${0:w}" &&
12454        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
12455      AsmPieces.clear();
12456      const std::string &ConstraintsStr = IA->getConstraintString();
12457      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
12458      std::sort(AsmPieces.begin(), AsmPieces.end());
12459      if (AsmPieces.size() == 4 &&
12460          AsmPieces[0] == "~{cc}" &&
12461          AsmPieces[1] == "~{dirflag}" &&
12462          AsmPieces[2] == "~{flags}" &&
12463          AsmPieces[3] == "~{fpsr}") {
12464        const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12465        if (!Ty || Ty->getBitWidth() % 16 != 0)
12466          return false;
12467        return IntrinsicLowering::LowerToByteSwap(CI);
12468      }
12469    }
12470    break;
12471  case 3:
12472    if (CI->getType()->isIntegerTy(32) &&
12473        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
12474      SmallVector<StringRef, 4> Words;
12475      SplitString(AsmPieces[0], Words, " \t,");
12476      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
12477          Words[2] == "${0:w}") {
12478        Words.clear();
12479        SplitString(AsmPieces[1], Words, " \t,");
12480        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
12481            Words[2] == "$0") {
12482          Words.clear();
12483          SplitString(AsmPieces[2], Words, " \t,");
12484          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
12485              Words[2] == "${0:w}") {
12486            AsmPieces.clear();
12487            const std::string &ConstraintsStr = IA->getConstraintString();
12488            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
12489            std::sort(AsmPieces.begin(), AsmPieces.end());
12490            if (AsmPieces.size() == 4 &&
12491                AsmPieces[0] == "~{cc}" &&
12492                AsmPieces[1] == "~{dirflag}" &&
12493                AsmPieces[2] == "~{flags}" &&
12494                AsmPieces[3] == "~{fpsr}") {
12495              const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12496              if (!Ty || Ty->getBitWidth() % 16 != 0)
12497                return false;
12498              return IntrinsicLowering::LowerToByteSwap(CI);
12499            }
12500          }
12501        }
12502      }
12503    }
12504
12505    if (CI->getType()->isIntegerTy(64)) {
12506      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
12507      if (Constraints.size() >= 2 &&
12508          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
12509          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
12510        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
12511        SmallVector<StringRef, 4> Words;
12512        SplitString(AsmPieces[0], Words, " \t");
12513        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
12514          Words.clear();
12515          SplitString(AsmPieces[1], Words, " \t");
12516          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
12517            Words.clear();
12518            SplitString(AsmPieces[2], Words, " \t,");
12519            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
12520                Words[2] == "%edx") {
12521              const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12522              if (!Ty || Ty->getBitWidth() % 16 != 0)
12523                return false;
12524              return IntrinsicLowering::LowerToByteSwap(CI);
12525            }
12526          }
12527        }
12528      }
12529    }
12530    break;
12531  }
12532  return false;
12533}
12534
12535
12536
12537/// getConstraintType - Given a constraint letter, return the type of
12538/// constraint it is for this target.
12539X86TargetLowering::ConstraintType
12540X86TargetLowering::getConstraintType(const std::string &Constraint) const {
12541  if (Constraint.size() == 1) {
12542    switch (Constraint[0]) {
12543    case 'R':
12544    case 'q':
12545    case 'Q':
12546    case 'f':
12547    case 't':
12548    case 'u':
12549    case 'y':
12550    case 'x':
12551    case 'Y':
12552      return C_RegisterClass;
12553    case 'a':
12554    case 'b':
12555    case 'c':
12556    case 'd':
12557    case 'S':
12558    case 'D':
12559    case 'A':
12560      return C_Register;
12561    case 'I':
12562    case 'J':
12563    case 'K':
12564    case 'L':
12565    case 'M':
12566    case 'N':
12567    case 'G':
12568    case 'C':
12569    case 'e':
12570    case 'Z':
12571      return C_Other;
12572    default:
12573      break;
12574    }
12575  }
12576  return TargetLowering::getConstraintType(Constraint);
12577}
12578
12579/// Examine constraint type and operand type and determine a weight value.
12580/// This object must already have been set up with the operand type
12581/// and the current alternative constraint selected.
12582TargetLowering::ConstraintWeight
12583  X86TargetLowering::getSingleConstraintMatchWeight(
12584    AsmOperandInfo &info, const char *constraint) const {
12585  ConstraintWeight weight = CW_Invalid;
12586  Value *CallOperandVal = info.CallOperandVal;
12587    // If we don't have a value, we can't do a match,
12588    // but allow it at the lowest weight.
12589  if (CallOperandVal == NULL)
12590    return CW_Default;
12591  const Type *type = CallOperandVal->getType();
12592  // Look at the constraint type.
12593  switch (*constraint) {
12594  default:
12595    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
12596  case 'R':
12597  case 'q':
12598  case 'Q':
12599  case 'a':
12600  case 'b':
12601  case 'c':
12602  case 'd':
12603  case 'S':
12604  case 'D':
12605  case 'A':
12606    if (CallOperandVal->getType()->isIntegerTy())
12607      weight = CW_SpecificReg;
12608    break;
12609  case 'f':
12610  case 't':
12611  case 'u':
12612      if (type->isFloatingPointTy())
12613        weight = CW_SpecificReg;
12614      break;
12615  case 'y':
12616      if (type->isX86_MMXTy() && Subtarget->hasMMX())
12617        weight = CW_SpecificReg;
12618      break;
12619  case 'x':
12620  case 'Y':
12621    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
12622      weight = CW_Register;
12623    break;
12624  case 'I':
12625    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
12626      if (C->getZExtValue() <= 31)
12627        weight = CW_Constant;
12628    }
12629    break;
12630  case 'J':
12631    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12632      if (C->getZExtValue() <= 63)
12633        weight = CW_Constant;
12634    }
12635    break;
12636  case 'K':
12637    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12638      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
12639        weight = CW_Constant;
12640    }
12641    break;
12642  case 'L':
12643    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12644      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
12645        weight = CW_Constant;
12646    }
12647    break;
12648  case 'M':
12649    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12650      if (C->getZExtValue() <= 3)
12651        weight = CW_Constant;
12652    }
12653    break;
12654  case 'N':
12655    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12656      if (C->getZExtValue() <= 0xff)
12657        weight = CW_Constant;
12658    }
12659    break;
12660  case 'G':
12661  case 'C':
12662    if (dyn_cast<ConstantFP>(CallOperandVal)) {
12663      weight = CW_Constant;
12664    }
12665    break;
12666  case 'e':
12667    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12668      if ((C->getSExtValue() >= -0x80000000LL) &&
12669          (C->getSExtValue() <= 0x7fffffffLL))
12670        weight = CW_Constant;
12671    }
12672    break;
12673  case 'Z':
12674    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12675      if (C->getZExtValue() <= 0xffffffff)
12676        weight = CW_Constant;
12677    }
12678    break;
12679  }
12680  return weight;
12681}
12682
12683/// LowerXConstraint - try to replace an X constraint, which matches anything,
12684/// with another that has more specific requirements based on the type of the
12685/// corresponding operand.
12686const char *X86TargetLowering::
12687LowerXConstraint(EVT ConstraintVT) const {
12688  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
12689  // 'f' like normal targets.
12690  if (ConstraintVT.isFloatingPoint()) {
12691    if (Subtarget->hasXMMInt())
12692      return "Y";
12693    if (Subtarget->hasXMM())
12694      return "x";
12695  }
12696
12697  return TargetLowering::LowerXConstraint(ConstraintVT);
12698}
12699
12700/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
12701/// vector.  If it is invalid, don't add anything to Ops.
12702void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
12703                                                     std::string &Constraint,
12704                                                     std::vector<SDValue>&Ops,
12705                                                     SelectionDAG &DAG) const {
12706  SDValue Result(0, 0);
12707
12708  // Only support length 1 constraints for now.
12709  if (Constraint.length() > 1) return;
12710
12711  char ConstraintLetter = Constraint[0];
12712  switch (ConstraintLetter) {
12713  default: break;
12714  case 'I':
12715    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12716      if (C->getZExtValue() <= 31) {
12717        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12718        break;
12719      }
12720    }
12721    return;
12722  case 'J':
12723    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12724      if (C->getZExtValue() <= 63) {
12725        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12726        break;
12727      }
12728    }
12729    return;
12730  case 'K':
12731    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12732      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
12733        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12734        break;
12735      }
12736    }
12737    return;
12738  case 'N':
12739    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12740      if (C->getZExtValue() <= 255) {
12741        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12742        break;
12743      }
12744    }
12745    return;
12746  case 'e': {
12747    // 32-bit signed value
12748    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12749      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
12750                                           C->getSExtValue())) {
12751        // Widen to 64 bits here to get it sign extended.
12752        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
12753        break;
12754      }
12755    // FIXME gcc accepts some relocatable values here too, but only in certain
12756    // memory models; it's complicated.
12757    }
12758    return;
12759  }
12760  case 'Z': {
12761    // 32-bit unsigned value
12762    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12763      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
12764                                           C->getZExtValue())) {
12765        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12766        break;
12767      }
12768    }
12769    // FIXME gcc accepts some relocatable values here too, but only in certain
12770    // memory models; it's complicated.
12771    return;
12772  }
12773  case 'i': {
12774    // Literal immediates are always ok.
12775    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
12776      // Widen to 64 bits here to get it sign extended.
12777      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
12778      break;
12779    }
12780
12781    // In any sort of PIC mode addresses need to be computed at runtime by
12782    // adding in a register or some sort of table lookup.  These can't
12783    // be used as immediates.
12784    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
12785      return;
12786
12787    // If we are in non-pic codegen mode, we allow the address of a global (with
12788    // an optional displacement) to be used with 'i'.
12789    GlobalAddressSDNode *GA = 0;
12790    int64_t Offset = 0;
12791
12792    // Match either (GA), (GA+C), (GA+C1+C2), etc.
12793    while (1) {
12794      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
12795        Offset += GA->getOffset();
12796        break;
12797      } else if (Op.getOpcode() == ISD::ADD) {
12798        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
12799          Offset += C->getZExtValue();
12800          Op = Op.getOperand(0);
12801          continue;
12802        }
12803      } else if (Op.getOpcode() == ISD::SUB) {
12804        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
12805          Offset += -C->getZExtValue();
12806          Op = Op.getOperand(0);
12807          continue;
12808        }
12809      }
12810
12811      // Otherwise, this isn't something we can handle, reject it.
12812      return;
12813    }
12814
12815    const GlobalValue *GV = GA->getGlobal();
12816    // If we require an extra load to get this address, as in PIC mode, we
12817    // can't accept it.
12818    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
12819                                                        getTargetMachine())))
12820      return;
12821
12822    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
12823                                        GA->getValueType(0), Offset);
12824    break;
12825  }
12826  }
12827
12828  if (Result.getNode()) {
12829    Ops.push_back(Result);
12830    return;
12831  }
12832  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12833}
12834
12835std::vector<unsigned> X86TargetLowering::
12836getRegClassForInlineAsmConstraint(const std::string &Constraint,
12837                                  EVT VT) const {
12838  if (Constraint.size() == 1) {
12839    // FIXME: not handling fp-stack yet!
12840    switch (Constraint[0]) {      // GCC X86 Constraint Letters
12841    default: break;  // Unknown constraint letter
12842    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
12843      if (Subtarget->is64Bit()) {
12844        if (VT == MVT::i32)
12845          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
12846                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
12847                                       X86::R10D,X86::R11D,X86::R12D,
12848                                       X86::R13D,X86::R14D,X86::R15D,
12849                                       X86::EBP, X86::ESP, 0);
12850        else if (VT == MVT::i16)
12851          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
12852                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
12853                                       X86::R10W,X86::R11W,X86::R12W,
12854                                       X86::R13W,X86::R14W,X86::R15W,
12855                                       X86::BP,  X86::SP, 0);
12856        else if (VT == MVT::i8)
12857          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
12858                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
12859                                       X86::R10B,X86::R11B,X86::R12B,
12860                                       X86::R13B,X86::R14B,X86::R15B,
12861                                       X86::BPL, X86::SPL, 0);
12862
12863        else if (VT == MVT::i64)
12864          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
12865                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
12866                                       X86::R10, X86::R11, X86::R12,
12867                                       X86::R13, X86::R14, X86::R15,
12868                                       X86::RBP, X86::RSP, 0);
12869
12870        break;
12871      }
12872      // 32-bit fallthrough
12873    case 'Q':   // Q_REGS
12874      if (VT == MVT::i32)
12875        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
12876      else if (VT == MVT::i16)
12877        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
12878      else if (VT == MVT::i8)
12879        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
12880      else if (VT == MVT::i64)
12881        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
12882      break;
12883    }
12884  }
12885
12886  return std::vector<unsigned>();
12887}
12888
12889std::pair<unsigned, const TargetRegisterClass*>
12890X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
12891                                                EVT VT) const {
12892  // First, see if this is a constraint that directly corresponds to an LLVM
12893  // register class.
12894  if (Constraint.size() == 1) {
12895    // GCC Constraint Letters
12896    switch (Constraint[0]) {
12897    default: break;
12898    case 'r':   // GENERAL_REGS
12899    case 'l':   // INDEX_REGS
12900      if (VT == MVT::i8)
12901        return std::make_pair(0U, X86::GR8RegisterClass);
12902      if (VT == MVT::i16)
12903        return std::make_pair(0U, X86::GR16RegisterClass);
12904      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
12905        return std::make_pair(0U, X86::GR32RegisterClass);
12906      return std::make_pair(0U, X86::GR64RegisterClass);
12907    case 'R':   // LEGACY_REGS
12908      if (VT == MVT::i8)
12909        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
12910      if (VT == MVT::i16)
12911        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
12912      if (VT == MVT::i32 || !Subtarget->is64Bit())
12913        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
12914      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
12915    case 'f':  // FP Stack registers.
12916      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
12917      // value to the correct fpstack register class.
12918      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
12919        return std::make_pair(0U, X86::RFP32RegisterClass);
12920      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
12921        return std::make_pair(0U, X86::RFP64RegisterClass);
12922      return std::make_pair(0U, X86::RFP80RegisterClass);
12923    case 'y':   // MMX_REGS if MMX allowed.
12924      if (!Subtarget->hasMMX()) break;
12925      return std::make_pair(0U, X86::VR64RegisterClass);
12926    case 'Y':   // SSE_REGS if SSE2 allowed
12927      if (!Subtarget->hasXMMInt()) break;
12928      // FALL THROUGH.
12929    case 'x':   // SSE_REGS if SSE1 allowed
12930      if (!Subtarget->hasXMM()) break;
12931
12932      switch (VT.getSimpleVT().SimpleTy) {
12933      default: break;
12934      // Scalar SSE types.
12935      case MVT::f32:
12936      case MVT::i32:
12937        return std::make_pair(0U, X86::FR32RegisterClass);
12938      case MVT::f64:
12939      case MVT::i64:
12940        return std::make_pair(0U, X86::FR64RegisterClass);
12941      // Vector types.
12942      case MVT::v16i8:
12943      case MVT::v8i16:
12944      case MVT::v4i32:
12945      case MVT::v2i64:
12946      case MVT::v4f32:
12947      case MVT::v2f64:
12948        return std::make_pair(0U, X86::VR128RegisterClass);
12949      }
12950      break;
12951    }
12952  }
12953
12954  // Use the default implementation in TargetLowering to convert the register
12955  // constraint into a member of a register class.
12956  std::pair<unsigned, const TargetRegisterClass*> Res;
12957  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
12958
12959  // Not found as a standard register?
12960  if (Res.second == 0) {
12961    // Map st(0) -> st(7) -> ST0
12962    if (Constraint.size() == 7 && Constraint[0] == '{' &&
12963        tolower(Constraint[1]) == 's' &&
12964        tolower(Constraint[2]) == 't' &&
12965        Constraint[3] == '(' &&
12966        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
12967        Constraint[5] == ')' &&
12968        Constraint[6] == '}') {
12969
12970      Res.first = X86::ST0+Constraint[4]-'0';
12971      Res.second = X86::RFP80RegisterClass;
12972      return Res;
12973    }
12974
12975    // GCC allows "st(0)" to be called just plain "st".
12976    if (StringRef("{st}").equals_lower(Constraint)) {
12977      Res.first = X86::ST0;
12978      Res.second = X86::RFP80RegisterClass;
12979      return Res;
12980    }
12981
12982    // flags -> EFLAGS
12983    if (StringRef("{flags}").equals_lower(Constraint)) {
12984      Res.first = X86::EFLAGS;
12985      Res.second = X86::CCRRegisterClass;
12986      return Res;
12987    }
12988
12989    // 'A' means EAX + EDX.
12990    if (Constraint == "A") {
12991      Res.first = X86::EAX;
12992      Res.second = X86::GR32_ADRegisterClass;
12993      return Res;
12994    }
12995    return Res;
12996  }
12997
12998  // Otherwise, check to see if this is a register class of the wrong value
12999  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
13000  // turn into {ax},{dx}.
13001  if (Res.second->hasType(VT))
13002    return Res;   // Correct type already, nothing to do.
13003
13004  // All of the single-register GCC register classes map their values onto
13005  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
13006  // really want an 8-bit or 32-bit register, map to the appropriate register
13007  // class and return the appropriate register.
13008  if (Res.second == X86::GR16RegisterClass) {
13009    if (VT == MVT::i8) {
13010      unsigned DestReg = 0;
13011      switch (Res.first) {
13012      default: break;
13013      case X86::AX: DestReg = X86::AL; break;
13014      case X86::DX: DestReg = X86::DL; break;
13015      case X86::CX: DestReg = X86::CL; break;
13016      case X86::BX: DestReg = X86::BL; break;
13017      }
13018      if (DestReg) {
13019        Res.first = DestReg;
13020        Res.second = X86::GR8RegisterClass;
13021      }
13022    } else if (VT == MVT::i32) {
13023      unsigned DestReg = 0;
13024      switch (Res.first) {
13025      default: break;
13026      case X86::AX: DestReg = X86::EAX; break;
13027      case X86::DX: DestReg = X86::EDX; break;
13028      case X86::CX: DestReg = X86::ECX; break;
13029      case X86::BX: DestReg = X86::EBX; break;
13030      case X86::SI: DestReg = X86::ESI; break;
13031      case X86::DI: DestReg = X86::EDI; break;
13032      case X86::BP: DestReg = X86::EBP; break;
13033      case X86::SP: DestReg = X86::ESP; break;
13034      }
13035      if (DestReg) {
13036        Res.first = DestReg;
13037        Res.second = X86::GR32RegisterClass;
13038      }
13039    } else if (VT == MVT::i64) {
13040      unsigned DestReg = 0;
13041      switch (Res.first) {
13042      default: break;
13043      case X86::AX: DestReg = X86::RAX; break;
13044      case X86::DX: DestReg = X86::RDX; break;
13045      case X86::CX: DestReg = X86::RCX; break;
13046      case X86::BX: DestReg = X86::RBX; break;
13047      case X86::SI: DestReg = X86::RSI; break;
13048      case X86::DI: DestReg = X86::RDI; break;
13049      case X86::BP: DestReg = X86::RBP; break;
13050      case X86::SP: DestReg = X86::RSP; break;
13051      }
13052      if (DestReg) {
13053        Res.first = DestReg;
13054        Res.second = X86::GR64RegisterClass;
13055      }
13056    }
13057  } else if (Res.second == X86::FR32RegisterClass ||
13058             Res.second == X86::FR64RegisterClass ||
13059             Res.second == X86::VR128RegisterClass) {
13060    // Handle references to XMM physical registers that got mapped into the
13061    // wrong class.  This can happen with constraints like {xmm0} where the
13062    // target independent register mapper will just pick the first match it can
13063    // find, ignoring the required type.
13064    if (VT == MVT::f32)
13065      Res.second = X86::FR32RegisterClass;
13066    else if (VT == MVT::f64)
13067      Res.second = X86::FR64RegisterClass;
13068    else if (X86::VR128RegisterClass->hasType(VT))
13069      Res.second = X86::VR128RegisterClass;
13070  }
13071
13072  return Res;
13073}
13074