X86ISelLowering.cpp revision 475aecf467aa63623e5840ac896faef496eaca8c
1//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86TargetMachine.h"
19#include "llvm/CallingConv.h"
20#include "llvm/Constants.h"
21#include "llvm/Function.h"
22#include "llvm/ADT/VectorExtras.h"
23#include "llvm/Analysis/ScalarEvolutionExpressions.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CodeGen/SSARegMap.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Target/TargetOptions.h"
31using namespace llvm;
32
33// FIXME: temporary.
34#include "llvm/Support/CommandLine.h"
35static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden,
36                                  cl::desc("Enable fastcc on X86"));
37
38X86TargetLowering::X86TargetLowering(TargetMachine &TM)
39  : TargetLowering(TM) {
40  Subtarget = &TM.getSubtarget<X86Subtarget>();
41  X86ScalarSSE = Subtarget->hasSSE2();
42
43  // Set up the TargetLowering object.
44
45  // X86 is weird, it always uses i8 for shift amounts and setcc results.
46  setShiftAmountType(MVT::i8);
47  setSetCCResultType(MVT::i8);
48  setSetCCResultContents(ZeroOrOneSetCCResult);
49  setSchedulingPreference(SchedulingForRegPressure);
50  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
51  setStackPointerRegisterToSaveRestore(X86::ESP);
52
53  if (!Subtarget->isTargetDarwin())
54    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
55    setUseUnderscoreSetJmpLongJmp(true);
56
57  // Add legal addressing mode scale values.
58  addLegalAddressScale(8);
59  addLegalAddressScale(4);
60  addLegalAddressScale(2);
61  // Enter the ones which require both scale + index last. These are more
62  // expensive.
63  addLegalAddressScale(9);
64  addLegalAddressScale(5);
65  addLegalAddressScale(3);
66
67  // Set up the register classes.
68  addRegisterClass(MVT::i8, X86::R8RegisterClass);
69  addRegisterClass(MVT::i16, X86::R16RegisterClass);
70  addRegisterClass(MVT::i32, X86::R32RegisterClass);
71
72  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
73  // operation.
74  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
75  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
76  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
77
78  if (X86ScalarSSE)
79    // No SSE i64 SINT_TO_FP, so expand i32 UINT_TO_FP instead.
80    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Expand);
81  else
82    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
83
84  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
85  // this operation.
86  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
87  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
88  // SSE has no i16 to fp conversion, only i32
89  if (X86ScalarSSE)
90    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
91  else {
92    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
93    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
94  }
95
96  // We can handle SINT_TO_FP and FP_TO_SINT from/to i64 even though i64
97  // isn't legal.
98  setOperationAction(ISD::SINT_TO_FP       , MVT::i64  , Custom);
99  setOperationAction(ISD::FP_TO_SINT       , MVT::i64  , Custom);
100
101  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
102  // this operation.
103  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
104  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
105
106  if (X86ScalarSSE) {
107    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
108  } else {
109    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
110    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
111  }
112
113  // Handle FP_TO_UINT by promoting the destination to a larger signed
114  // conversion.
115  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
116  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
117  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
118
119  if (X86ScalarSSE && !Subtarget->hasSSE3())
120    // Expand FP_TO_UINT into a select.
121    // FIXME: We would like to use a Custom expander here eventually to do
122    // the optimal thing for SSE vs. the default expansion in the legalizer.
123    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Expand);
124  else
125    // With SSE3 we can use fisttpll to convert to a signed i64.
126    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
127
128  setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
129  setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
130
131  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
132  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
133  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
134  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
135  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Expand);
136  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Expand);
137  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
138  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
139  setOperationAction(ISD::SEXTLOAD         , MVT::i1   , Expand);
140  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
141  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
142  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
143  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
144  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
145  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
146  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
147  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
148  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
149  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
150  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
151  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
152
153  // These should be promoted to a larger select which is supported.
154  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
155  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
156
157  // X86 wants to expand cmov itself.
158  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
159  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
160  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
161  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
162  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
163  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
164  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
165  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
166  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
167  // X86 ret instruction may pop stack.
168  setOperationAction(ISD::RET             , MVT::Other, Custom);
169  // Darwin ABI issue.
170  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
171  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
172  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
173  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
174  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
175  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
176  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
177  // X86 wants to expand memset / memcpy itself.
178  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
179  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
180
181  // We don't have line number support yet.
182  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
183  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
184  // FIXME - use subtarget debug flags
185  if (!Subtarget->isTargetDarwin())
186    setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
187
188  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
189  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
190
191  // Use the default implementation.
192  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
193  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
194  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
195  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
196  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
197  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand);
198
199  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
200  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
201
202  if (X86ScalarSSE) {
203    // Set up the FP register classes.
204    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
205    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
206
207    // SSE has no load+extend ops
208    setOperationAction(ISD::EXTLOAD,  MVT::f32, Expand);
209    setOperationAction(ISD::ZEXTLOAD, MVT::f32, Expand);
210
211    // Use ANDPD to simulate FABS.
212    setOperationAction(ISD::FABS , MVT::f64, Custom);
213    setOperationAction(ISD::FABS , MVT::f32, Custom);
214
215    // Use XORP to simulate FNEG.
216    setOperationAction(ISD::FNEG , MVT::f64, Custom);
217    setOperationAction(ISD::FNEG , MVT::f32, Custom);
218
219    // We don't support sin/cos/fmod
220    setOperationAction(ISD::FSIN , MVT::f64, Expand);
221    setOperationAction(ISD::FCOS , MVT::f64, Expand);
222    setOperationAction(ISD::FREM , MVT::f64, Expand);
223    setOperationAction(ISD::FSIN , MVT::f32, Expand);
224    setOperationAction(ISD::FCOS , MVT::f32, Expand);
225    setOperationAction(ISD::FREM , MVT::f32, Expand);
226
227    // Expand FP immediates into loads from the stack, except for the special
228    // cases we handle.
229    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
230    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
231    addLegalFPImmediate(+0.0); // xorps / xorpd
232  } else {
233    // Set up the FP register classes.
234    addRegisterClass(MVT::f64, X86::RFPRegisterClass);
235
236    setOperationAction(ISD::UNDEF, MVT::f64, Expand);
237
238    if (!UnsafeFPMath) {
239      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
240      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
241    }
242
243    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
244    addLegalFPImmediate(+0.0); // FLD0
245    addLegalFPImmediate(+1.0); // FLD1
246    addLegalFPImmediate(-0.0); // FLD0/FCHS
247    addLegalFPImmediate(-1.0); // FLD1/FCHS
248  }
249
250  // First set operation action for all vector types to expand. Then we
251  // will selectively turn on ones that can be effectively codegen'd.
252  for (unsigned VT = (unsigned)MVT::Vector + 1;
253       VT != (unsigned)MVT::LAST_VALUETYPE; VT++) {
254    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
255    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
256    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
257    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
258    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand);
259    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
260  }
261
262  if (Subtarget->hasMMX()) {
263    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
264    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
265    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
266
267    // FIXME: add MMX packed arithmetics
268    setOperationAction(ISD::BUILD_VECTOR,     MVT::v8i8,  Expand);
269    setOperationAction(ISD::BUILD_VECTOR,     MVT::v4i16, Expand);
270    setOperationAction(ISD::BUILD_VECTOR,     MVT::v2i32, Expand);
271  }
272
273  if (Subtarget->hasSSE1()) {
274    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
275
276    setOperationAction(ISD::ADD,              MVT::v4f32, Legal);
277    setOperationAction(ISD::SUB,              MVT::v4f32, Legal);
278    setOperationAction(ISD::MUL,              MVT::v4f32, Legal);
279    setOperationAction(ISD::LOAD,             MVT::v4f32, Legal);
280    setOperationAction(ISD::BUILD_VECTOR,     MVT::v4f32, Custom);
281    setOperationAction(ISD::VECTOR_SHUFFLE,   MVT::v4f32, Custom);
282  }
283
284  if (Subtarget->hasSSE2()) {
285    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
286    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
287    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
288    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
289    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
290
291
292    setOperationAction(ISD::ADD,              MVT::v2f64, Legal);
293    setOperationAction(ISD::ADD,              MVT::v16i8, Legal);
294    setOperationAction(ISD::ADD,              MVT::v8i16, Legal);
295    setOperationAction(ISD::ADD,              MVT::v4i32, Legal);
296    setOperationAction(ISD::SUB,              MVT::v2f64, Legal);
297    setOperationAction(ISD::SUB,              MVT::v16i8, Legal);
298    setOperationAction(ISD::SUB,              MVT::v8i16, Legal);
299    setOperationAction(ISD::SUB,              MVT::v4i32, Legal);
300    setOperationAction(ISD::MUL,              MVT::v2f64, Legal);
301    setOperationAction(ISD::LOAD,             MVT::v2f64, Legal);
302    setOperationAction(ISD::LOAD,             MVT::v16i8, Legal);
303    setOperationAction(ISD::LOAD,             MVT::v8i16, Legal);
304    setOperationAction(ISD::LOAD,             MVT::v4i32, Legal);
305    setOperationAction(ISD::LOAD,             MVT::v2i64, Legal);
306    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
307    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
308    setOperationAction(ISD::BUILD_VECTOR,     MVT::v2f64, Custom);
309    setOperationAction(ISD::BUILD_VECTOR,     MVT::v16i8, Custom);
310    setOperationAction(ISD::BUILD_VECTOR,     MVT::v8i16, Custom);
311    setOperationAction(ISD::BUILD_VECTOR,     MVT::v4i32, Custom);
312    setOperationAction(ISD::BUILD_VECTOR,     MVT::v2i64, Custom);
313    setOperationAction(ISD::VECTOR_SHUFFLE,   MVT::v2f64, Custom);
314    setOperationAction(ISD::VECTOR_SHUFFLE,   MVT::v16i8, Custom);
315    setOperationAction(ISD::VECTOR_SHUFFLE,   MVT::v8i16, Custom);
316    setOperationAction(ISD::VECTOR_SHUFFLE,   MVT::v4i32, Custom);
317    setOperationAction(ISD::VECTOR_SHUFFLE,   MVT::v2i64, Custom);
318  }
319
320  computeRegisterProperties();
321
322  // FIXME: These should be based on subtarget info. Plus, the values should
323  // be smaller when we are in optimizing for size mode.
324  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
325  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
326  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
327  allowUnalignedMemoryAccesses = true; // x86 supports it!
328}
329
330std::vector<SDOperand>
331X86TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
332  if (F.getCallingConv() == CallingConv::Fast && EnableFastCC)
333    return LowerFastCCArguments(F, DAG);
334  return LowerCCCArguments(F, DAG);
335}
336
337std::pair<SDOperand, SDOperand>
338X86TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
339                               bool isVarArg, unsigned CallingConv,
340                               bool isTailCall,
341                               SDOperand Callee, ArgListTy &Args,
342                               SelectionDAG &DAG) {
343  assert((!isVarArg || CallingConv == CallingConv::C) &&
344         "Only C takes varargs!");
345
346  // If the callee is a GlobalAddress node (quite common, every direct call is)
347  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
348  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
349    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
350  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
351    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
352
353  if (CallingConv == CallingConv::Fast && EnableFastCC)
354    return LowerFastCCCallTo(Chain, RetTy, isTailCall, Callee, Args, DAG);
355  return  LowerCCCCallTo(Chain, RetTy, isVarArg, isTailCall, Callee, Args, DAG);
356}
357
358//===----------------------------------------------------------------------===//
359//                    C Calling Convention implementation
360//===----------------------------------------------------------------------===//
361
362std::vector<SDOperand>
363X86TargetLowering::LowerCCCArguments(Function &F, SelectionDAG &DAG) {
364  std::vector<SDOperand> ArgValues;
365
366  MachineFunction &MF = DAG.getMachineFunction();
367  MachineFrameInfo *MFI = MF.getFrameInfo();
368
369  // Add DAG nodes to load the arguments...  On entry to a function on the X86,
370  // the stack frame looks like this:
371  //
372  // [ESP] -- return address
373  // [ESP + 4] -- first argument (leftmost lexically)
374  // [ESP + 8] -- second argument, if first argument is four bytes in size
375  //    ...
376  //
377  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
378  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
379    MVT::ValueType ObjectVT = getValueType(I->getType());
380    unsigned ArgIncrement = 4;
381    unsigned ObjSize;
382    switch (ObjectVT) {
383    default: assert(0 && "Unhandled argument type!");
384    case MVT::i1:
385    case MVT::i8:  ObjSize = 1;                break;
386    case MVT::i16: ObjSize = 2;                break;
387    case MVT::i32: ObjSize = 4;                break;
388    case MVT::i64: ObjSize = ArgIncrement = 8; break;
389    case MVT::f32: ObjSize = 4;                break;
390    case MVT::f64: ObjSize = ArgIncrement = 8; break;
391    }
392    // Create the frame index object for this incoming parameter...
393    int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
394
395    // Create the SelectionDAG nodes corresponding to a load from this parameter
396    SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
397
398    // Don't codegen dead arguments.  FIXME: remove this check when we can nuke
399    // dead loads.
400    SDOperand ArgValue;
401    if (!I->use_empty())
402      ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN,
403                             DAG.getSrcValue(NULL));
404    else {
405      if (MVT::isInteger(ObjectVT))
406        ArgValue = DAG.getConstant(0, ObjectVT);
407      else
408        ArgValue = DAG.getConstantFP(0, ObjectVT);
409    }
410    ArgValues.push_back(ArgValue);
411
412    ArgOffset += ArgIncrement;   // Move on to the next argument...
413  }
414
415  // If the function takes variable number of arguments, make a frame index for
416  // the start of the first vararg value... for expansion of llvm.va_start.
417  if (F.isVarArg())
418    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
419  ReturnAddrIndex = 0;     // No return address slot generated yet.
420  BytesToPopOnReturn = 0;  // Callee pops nothing.
421  BytesCallerReserves = ArgOffset;
422
423  // Finally, inform the code generator which regs we return values in.
424  switch (getValueType(F.getReturnType())) {
425  default: assert(0 && "Unknown type!");
426  case MVT::isVoid: break;
427  case MVT::i1:
428  case MVT::i8:
429  case MVT::i16:
430  case MVT::i32:
431    MF.addLiveOut(X86::EAX);
432    break;
433  case MVT::i64:
434    MF.addLiveOut(X86::EAX);
435    MF.addLiveOut(X86::EDX);
436    break;
437  case MVT::f32:
438  case MVT::f64:
439    MF.addLiveOut(X86::ST0);
440    break;
441  }
442  return ArgValues;
443}
444
445std::pair<SDOperand, SDOperand>
446X86TargetLowering::LowerCCCCallTo(SDOperand Chain, const Type *RetTy,
447                                  bool isVarArg, bool isTailCall,
448                                  SDOperand Callee, ArgListTy &Args,
449                                  SelectionDAG &DAG) {
450  // Count how many bytes are to be pushed on the stack.
451  unsigned NumBytes = 0;
452
453  if (Args.empty()) {
454    // Save zero bytes.
455    Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(0, getPointerTy()));
456  } else {
457    for (unsigned i = 0, e = Args.size(); i != e; ++i)
458      switch (getValueType(Args[i].second)) {
459      default: assert(0 && "Unknown value type!");
460      case MVT::i1:
461      case MVT::i8:
462      case MVT::i16:
463      case MVT::i32:
464      case MVT::f32:
465        NumBytes += 4;
466        break;
467      case MVT::i64:
468      case MVT::f64:
469        NumBytes += 8;
470        break;
471      }
472
473    Chain = DAG.getCALLSEQ_START(Chain,
474                                 DAG.getConstant(NumBytes, getPointerTy()));
475
476    // Arguments go on the stack in reverse order, as specified by the ABI.
477    unsigned ArgOffset = 0;
478    SDOperand StackPtr = DAG.getRegister(X86::ESP, MVT::i32);
479    std::vector<SDOperand> Stores;
480
481    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
482      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
483      PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
484
485      switch (getValueType(Args[i].second)) {
486      default: assert(0 && "Unexpected ValueType for argument!");
487      case MVT::i1:
488      case MVT::i8:
489      case MVT::i16:
490        // Promote the integer to 32 bits.  If the input type is signed use a
491        // sign extend, otherwise use a zero extend.
492        if (Args[i].second->isSigned())
493          Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
494        else
495          Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);
496
497        // FALL THROUGH
498      case MVT::i32:
499      case MVT::f32:
500        Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
501                                     Args[i].first, PtrOff,
502                                     DAG.getSrcValue(NULL)));
503        ArgOffset += 4;
504        break;
505      case MVT::i64:
506      case MVT::f64:
507        Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
508                                     Args[i].first, PtrOff,
509                                     DAG.getSrcValue(NULL)));
510        ArgOffset += 8;
511        break;
512      }
513    }
514    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores);
515  }
516
517  std::vector<MVT::ValueType> RetVals;
518  MVT::ValueType RetTyVT = getValueType(RetTy);
519  RetVals.push_back(MVT::Other);
520
521  // The result values produced have to be legal.  Promote the result.
522  switch (RetTyVT) {
523  case MVT::isVoid: break;
524  default:
525    RetVals.push_back(RetTyVT);
526    break;
527  case MVT::i1:
528  case MVT::i8:
529  case MVT::i16:
530    RetVals.push_back(MVT::i32);
531    break;
532  case MVT::f32:
533    if (X86ScalarSSE)
534      RetVals.push_back(MVT::f32);
535    else
536      RetVals.push_back(MVT::f64);
537    break;
538  case MVT::i64:
539    RetVals.push_back(MVT::i32);
540    RetVals.push_back(MVT::i32);
541    break;
542  }
543
544  std::vector<MVT::ValueType> NodeTys;
545  NodeTys.push_back(MVT::Other);   // Returns a chain
546  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
547  std::vector<SDOperand> Ops;
548  Ops.push_back(Chain);
549  Ops.push_back(Callee);
550
551  // FIXME: Do not generate X86ISD::TAILCALL for now.
552  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops);
553  SDOperand InFlag = Chain.getValue(1);
554
555  NodeTys.clear();
556  NodeTys.push_back(MVT::Other);   // Returns a chain
557  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
558  Ops.clear();
559  Ops.push_back(Chain);
560  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
561  Ops.push_back(DAG.getConstant(0, getPointerTy()));
562  Ops.push_back(InFlag);
563  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops);
564  InFlag = Chain.getValue(1);
565
566  SDOperand RetVal;
567  if (RetTyVT != MVT::isVoid) {
568    switch (RetTyVT) {
569    default: assert(0 && "Unknown value type to return!");
570    case MVT::i1:
571    case MVT::i8:
572      RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag);
573      Chain = RetVal.getValue(1);
574      if (RetTyVT == MVT::i1)
575        RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal);
576      break;
577    case MVT::i16:
578      RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag);
579      Chain = RetVal.getValue(1);
580      break;
581    case MVT::i32:
582      RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag);
583      Chain = RetVal.getValue(1);
584      break;
585    case MVT::i64: {
586      SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag);
587      SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32,
588                                        Lo.getValue(2));
589      RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi);
590      Chain = Hi.getValue(1);
591      break;
592    }
593    case MVT::f32:
594    case MVT::f64: {
595      std::vector<MVT::ValueType> Tys;
596      Tys.push_back(MVT::f64);
597      Tys.push_back(MVT::Other);
598      Tys.push_back(MVT::Flag);
599      std::vector<SDOperand> Ops;
600      Ops.push_back(Chain);
601      Ops.push_back(InFlag);
602      RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops);
603      Chain  = RetVal.getValue(1);
604      InFlag = RetVal.getValue(2);
605      if (X86ScalarSSE) {
606        // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
607        // shouldn't be necessary except that RFP cannot be live across
608        // multiple blocks. When stackifier is fixed, they can be uncoupled.
609        MachineFunction &MF = DAG.getMachineFunction();
610        int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
611        SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
612        Tys.clear();
613        Tys.push_back(MVT::Other);
614        Ops.clear();
615        Ops.push_back(Chain);
616        Ops.push_back(RetVal);
617        Ops.push_back(StackSlot);
618        Ops.push_back(DAG.getValueType(RetTyVT));
619        Ops.push_back(InFlag);
620        Chain = DAG.getNode(X86ISD::FST, Tys, Ops);
621        RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot,
622                             DAG.getSrcValue(NULL));
623        Chain = RetVal.getValue(1);
624      }
625
626      if (RetTyVT == MVT::f32 && !X86ScalarSSE)
627        // FIXME: we would really like to remember that this FP_ROUND
628        // operation is okay to eliminate if we allow excess FP precision.
629        RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
630      break;
631    }
632    }
633  }
634
635  return std::make_pair(RetVal, Chain);
636}
637
638//===----------------------------------------------------------------------===//
639//                    Fast Calling Convention implementation
640//===----------------------------------------------------------------------===//
641//
642// The X86 'fast' calling convention passes up to two integer arguments in
643// registers (an appropriate portion of EAX/EDX), passes arguments in C order,
644// and requires that the callee pop its arguments off the stack (allowing proper
645// tail calls), and has the same return value conventions as C calling convs.
646//
647// This calling convention always arranges for the callee pop value to be 8n+4
648// bytes, which is needed for tail recursion elimination and stack alignment
649// reasons.
650//
651// Note that this can be enhanced in the future to pass fp vals in registers
652// (when we have a global fp allocator) and do other tricks.
653//
654
655/// AddLiveIn - This helper function adds the specified physical register to the
656/// MachineFunction as a live in value.  It also creates a corresponding virtual
657/// register for it.
658static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
659                          TargetRegisterClass *RC) {
660  assert(RC->contains(PReg) && "Not the correct regclass!");
661  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
662  MF.addLiveIn(PReg, VReg);
663  return VReg;
664}
665
666// FASTCC_NUM_INT_ARGS_INREGS - This is the max number of integer arguments
667// to pass in registers.  0 is none, 1 is is "use EAX", 2 is "use EAX and
668// EDX".  Anything more is illegal.
669//
670// FIXME: The linscan register allocator currently has problem with
671// coalescing.  At the time of this writing, whenever it decides to coalesce
672// a physreg with a virtreg, this increases the size of the physreg's live
673// range, and the live range cannot ever be reduced.  This causes problems if
674// too many physregs are coaleced with virtregs, which can cause the register
675// allocator to wedge itself.
676//
677// This code triggers this problem more often if we pass args in registers,
678// so disable it until this is fixed.
679//
680// NOTE: this isn't marked const, so that GCC doesn't emit annoying warnings
681// about code being dead.
682//
683static unsigned FASTCC_NUM_INT_ARGS_INREGS = 0;
684
685
686std::vector<SDOperand>
687X86TargetLowering::LowerFastCCArguments(Function &F, SelectionDAG &DAG) {
688  std::vector<SDOperand> ArgValues;
689
690  MachineFunction &MF = DAG.getMachineFunction();
691  MachineFrameInfo *MFI = MF.getFrameInfo();
692
693  // Add DAG nodes to load the arguments...  On entry to a function the stack
694  // frame looks like this:
695  //
696  // [ESP] -- return address
697  // [ESP + 4] -- first nonreg argument (leftmost lexically)
698  // [ESP + 8] -- second nonreg argument, if first argument is 4 bytes in size
699  //    ...
700  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
701
702  // Keep track of the number of integer regs passed so far.  This can be either
703  // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both
704  // used).
705  unsigned NumIntRegs = 0;
706
707  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
708    MVT::ValueType ObjectVT = getValueType(I->getType());
709    unsigned ArgIncrement = 4;
710    unsigned ObjSize = 0;
711    SDOperand ArgValue;
712
713    switch (ObjectVT) {
714    default: assert(0 && "Unhandled argument type!");
715    case MVT::i1:
716    case MVT::i8:
717      if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) {
718        if (!I->use_empty()) {
719          unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::AL,
720                                    X86::R8RegisterClass);
721          ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i8);
722          DAG.setRoot(ArgValue.getValue(1));
723          if (ObjectVT == MVT::i1)
724            // FIXME: Should insert a assertzext here.
725            ArgValue = DAG.getNode(ISD::TRUNCATE, MVT::i1, ArgValue);
726        }
727        ++NumIntRegs;
728        break;
729      }
730
731      ObjSize = 1;
732      break;
733    case MVT::i16:
734      if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) {
735        if (!I->use_empty()) {
736          unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::AX,
737                                    X86::R16RegisterClass);
738          ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i16);
739          DAG.setRoot(ArgValue.getValue(1));
740        }
741        ++NumIntRegs;
742        break;
743      }
744      ObjSize = 2;
745      break;
746    case MVT::i32:
747      if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) {
748        if (!I->use_empty()) {
749          unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX,
750                                    X86::R32RegisterClass);
751          ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
752          DAG.setRoot(ArgValue.getValue(1));
753        }
754        ++NumIntRegs;
755        break;
756      }
757      ObjSize = 4;
758      break;
759    case MVT::i64:
760      if (NumIntRegs+2 <= FASTCC_NUM_INT_ARGS_INREGS) {
761        if (!I->use_empty()) {
762          unsigned BotReg = AddLiveIn(MF, X86::EAX, X86::R32RegisterClass);
763          unsigned TopReg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass);
764
765          SDOperand Low = DAG.getCopyFromReg(DAG.getRoot(), BotReg, MVT::i32);
766          SDOperand Hi  = DAG.getCopyFromReg(Low.getValue(1), TopReg, MVT::i32);
767          DAG.setRoot(Hi.getValue(1));
768
769          ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Low, Hi);
770        }
771        NumIntRegs += 2;
772        break;
773      } else if (NumIntRegs+1 <= FASTCC_NUM_INT_ARGS_INREGS) {
774        if (!I->use_empty()) {
775          unsigned BotReg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass);
776          SDOperand Low = DAG.getCopyFromReg(DAG.getRoot(), BotReg, MVT::i32);
777          DAG.setRoot(Low.getValue(1));
778
779          // Load the high part from memory.
780          // Create the frame index object for this incoming parameter...
781          int FI = MFI->CreateFixedObject(4, ArgOffset);
782          SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
783          SDOperand Hi = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN,
784                                     DAG.getSrcValue(NULL));
785          ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Low, Hi);
786        }
787        ArgOffset += 4;
788        NumIntRegs = FASTCC_NUM_INT_ARGS_INREGS;
789        break;
790      }
791      ObjSize = ArgIncrement = 8;
792      break;
793    case MVT::f32: ObjSize = 4;                break;
794    case MVT::f64: ObjSize = ArgIncrement = 8; break;
795    }
796
797    // Don't codegen dead arguments.  FIXME: remove this check when we can nuke
798    // dead loads.
799    if (ObjSize && !I->use_empty()) {
800      // Create the frame index object for this incoming parameter...
801      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
802
803      // Create the SelectionDAG nodes corresponding to a load from this
804      // parameter.
805      SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
806
807      ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN,
808                             DAG.getSrcValue(NULL));
809    } else if (ArgValue.Val == 0) {
810      if (MVT::isInteger(ObjectVT))
811        ArgValue = DAG.getConstant(0, ObjectVT);
812      else
813        ArgValue = DAG.getConstantFP(0, ObjectVT);
814    }
815    ArgValues.push_back(ArgValue);
816
817    if (ObjSize)
818      ArgOffset += ArgIncrement;   // Move on to the next argument.
819  }
820
821  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
822  // arguments and the arguments after the retaddr has been pushed are aligned.
823  if ((ArgOffset & 7) == 0)
824    ArgOffset += 4;
825
826  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
827  ReturnAddrIndex = 0;             // No return address slot generated yet.
828  BytesToPopOnReturn = ArgOffset;  // Callee pops all stack arguments.
829  BytesCallerReserves = 0;
830
831  // Finally, inform the code generator which regs we return values in.
832  switch (getValueType(F.getReturnType())) {
833  default: assert(0 && "Unknown type!");
834  case MVT::isVoid: break;
835  case MVT::i1:
836  case MVT::i8:
837  case MVT::i16:
838  case MVT::i32:
839    MF.addLiveOut(X86::EAX);
840    break;
841  case MVT::i64:
842    MF.addLiveOut(X86::EAX);
843    MF.addLiveOut(X86::EDX);
844    break;
845  case MVT::f32:
846  case MVT::f64:
847    MF.addLiveOut(X86::ST0);
848    break;
849  }
850  return ArgValues;
851}
852
853std::pair<SDOperand, SDOperand>
854X86TargetLowering::LowerFastCCCallTo(SDOperand Chain, const Type *RetTy,
855                                     bool isTailCall, SDOperand Callee,
856                                     ArgListTy &Args, SelectionDAG &DAG) {
857  // Count how many bytes are to be pushed on the stack.
858  unsigned NumBytes = 0;
859
860  // Keep track of the number of integer regs passed so far.  This can be either
861  // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both
862  // used).
863  unsigned NumIntRegs = 0;
864
865  for (unsigned i = 0, e = Args.size(); i != e; ++i)
866    switch (getValueType(Args[i].second)) {
867    default: assert(0 && "Unknown value type!");
868    case MVT::i1:
869    case MVT::i8:
870    case MVT::i16:
871    case MVT::i32:
872      if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) {
873        ++NumIntRegs;
874        break;
875      }
876      // fall through
877    case MVT::f32:
878      NumBytes += 4;
879      break;
880    case MVT::i64:
881      if (NumIntRegs+2 <= FASTCC_NUM_INT_ARGS_INREGS) {
882        NumIntRegs += 2;
883        break;
884      } else if (NumIntRegs+1 <= FASTCC_NUM_INT_ARGS_INREGS) {
885        NumIntRegs = FASTCC_NUM_INT_ARGS_INREGS;
886        NumBytes += 4;
887        break;
888      }
889
890      // fall through
891    case MVT::f64:
892      NumBytes += 8;
893      break;
894    }
895
896  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
897  // arguments and the arguments after the retaddr has been pushed are aligned.
898  if ((NumBytes & 7) == 0)
899    NumBytes += 4;
900
901  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
902
903  // Arguments go on the stack in reverse order, as specified by the ABI.
904  unsigned ArgOffset = 0;
905  SDOperand StackPtr = DAG.getRegister(X86::ESP, MVT::i32);
906  NumIntRegs = 0;
907  std::vector<SDOperand> Stores;
908  std::vector<SDOperand> RegValuesToPass;
909  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
910    switch (getValueType(Args[i].second)) {
911    default: assert(0 && "Unexpected ValueType for argument!");
912    case MVT::i1:
913      Args[i].first = DAG.getNode(ISD::ANY_EXTEND, MVT::i8, Args[i].first);
914      // Fall through.
915    case MVT::i8:
916    case MVT::i16:
917    case MVT::i32:
918      if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) {
919        RegValuesToPass.push_back(Args[i].first);
920        ++NumIntRegs;
921        break;
922      }
923      // Fall through
924    case MVT::f32: {
925      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
926      PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
927      Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
928                                   Args[i].first, PtrOff,
929                                   DAG.getSrcValue(NULL)));
930      ArgOffset += 4;
931      break;
932    }
933    case MVT::i64:
934       // Can pass (at least) part of it in regs?
935      if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) {
936        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
937                                   Args[i].first, DAG.getConstant(1, MVT::i32));
938        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
939                                   Args[i].first, DAG.getConstant(0, MVT::i32));
940        RegValuesToPass.push_back(Lo);
941        ++NumIntRegs;
942
943        // Pass both parts in regs?
944        if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) {
945          RegValuesToPass.push_back(Hi);
946          ++NumIntRegs;
947        } else {
948          // Pass the high part in memory.
949          SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
950          PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
951          Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
952                                       Hi, PtrOff, DAG.getSrcValue(NULL)));
953          ArgOffset += 4;
954        }
955        break;
956      }
957      // Fall through
958    case MVT::f64:
959      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
960      PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
961      Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
962                                   Args[i].first, PtrOff,
963                                   DAG.getSrcValue(NULL)));
964      ArgOffset += 8;
965      break;
966    }
967  }
968  if (!Stores.empty())
969    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores);
970
971  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
972  // arguments and the arguments after the retaddr has been pushed are aligned.
973  if ((ArgOffset & 7) == 0)
974    ArgOffset += 4;
975
976  std::vector<MVT::ValueType> RetVals;
977  MVT::ValueType RetTyVT = getValueType(RetTy);
978
979  RetVals.push_back(MVT::Other);
980
981  // The result values produced have to be legal.  Promote the result.
982  switch (RetTyVT) {
983  case MVT::isVoid: break;
984  default:
985    RetVals.push_back(RetTyVT);
986    break;
987  case MVT::i1:
988  case MVT::i8:
989  case MVT::i16:
990    RetVals.push_back(MVT::i32);
991    break;
992  case MVT::f32:
993    if (X86ScalarSSE)
994      RetVals.push_back(MVT::f32);
995    else
996      RetVals.push_back(MVT::f64);
997    break;
998  case MVT::i64:
999    RetVals.push_back(MVT::i32);
1000    RetVals.push_back(MVT::i32);
1001    break;
1002  }
1003
1004  // Build a sequence of copy-to-reg nodes chained together with token chain
1005  // and flag operands which copy the outgoing args into registers.
1006  SDOperand InFlag;
1007  for (unsigned i = 0, e = RegValuesToPass.size(); i != e; ++i) {
1008    unsigned CCReg;
1009    SDOperand RegToPass = RegValuesToPass[i];
1010    switch (RegToPass.getValueType()) {
1011    default: assert(0 && "Bad thing to pass in regs");
1012    case MVT::i8:
1013      CCReg = (i == 0) ? X86::AL  : X86::DL;
1014      break;
1015    case MVT::i16:
1016      CCReg = (i == 0) ? X86::AX  : X86::DX;
1017      break;
1018    case MVT::i32:
1019      CCReg = (i == 0) ? X86::EAX : X86::EDX;
1020      break;
1021    }
1022
1023    Chain = DAG.getCopyToReg(Chain, CCReg, RegToPass, InFlag);
1024    InFlag = Chain.getValue(1);
1025  }
1026
1027  std::vector<MVT::ValueType> NodeTys;
1028  NodeTys.push_back(MVT::Other);   // Returns a chain
1029  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1030  std::vector<SDOperand> Ops;
1031  Ops.push_back(Chain);
1032  Ops.push_back(Callee);
1033  if (InFlag.Val)
1034    Ops.push_back(InFlag);
1035
1036  // FIXME: Do not generate X86ISD::TAILCALL for now.
1037  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops);
1038  InFlag = Chain.getValue(1);
1039
1040  NodeTys.clear();
1041  NodeTys.push_back(MVT::Other);   // Returns a chain
1042  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1043  Ops.clear();
1044  Ops.push_back(Chain);
1045  Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy()));
1046  Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy()));
1047  Ops.push_back(InFlag);
1048  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops);
1049  InFlag = Chain.getValue(1);
1050
1051  SDOperand RetVal;
1052  if (RetTyVT != MVT::isVoid) {
1053    switch (RetTyVT) {
1054    default: assert(0 && "Unknown value type to return!");
1055    case MVT::i1:
1056    case MVT::i8:
1057      RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag);
1058      Chain = RetVal.getValue(1);
1059      if (RetTyVT == MVT::i1)
1060        RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal);
1061      break;
1062    case MVT::i16:
1063      RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag);
1064      Chain = RetVal.getValue(1);
1065      break;
1066    case MVT::i32:
1067      RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag);
1068      Chain = RetVal.getValue(1);
1069      break;
1070    case MVT::i64: {
1071      SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag);
1072      SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32,
1073                                        Lo.getValue(2));
1074      RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi);
1075      Chain = Hi.getValue(1);
1076      break;
1077    }
1078    case MVT::f32:
1079    case MVT::f64: {
1080      std::vector<MVT::ValueType> Tys;
1081      Tys.push_back(MVT::f64);
1082      Tys.push_back(MVT::Other);
1083      Tys.push_back(MVT::Flag);
1084      std::vector<SDOperand> Ops;
1085      Ops.push_back(Chain);
1086      Ops.push_back(InFlag);
1087      RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops);
1088      Chain  = RetVal.getValue(1);
1089      InFlag = RetVal.getValue(2);
1090      if (X86ScalarSSE) {
1091        // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
1092        // shouldn't be necessary except that RFP cannot be live across
1093        // multiple blocks. When stackifier is fixed, they can be uncoupled.
1094        MachineFunction &MF = DAG.getMachineFunction();
1095        int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
1096        SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
1097        Tys.clear();
1098        Tys.push_back(MVT::Other);
1099        Ops.clear();
1100        Ops.push_back(Chain);
1101        Ops.push_back(RetVal);
1102        Ops.push_back(StackSlot);
1103        Ops.push_back(DAG.getValueType(RetTyVT));
1104        Ops.push_back(InFlag);
1105        Chain = DAG.getNode(X86ISD::FST, Tys, Ops);
1106        RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot,
1107                             DAG.getSrcValue(NULL));
1108        Chain = RetVal.getValue(1);
1109      }
1110
1111      if (RetTyVT == MVT::f32 && !X86ScalarSSE)
1112        // FIXME: we would really like to remember that this FP_ROUND
1113        // operation is okay to eliminate if we allow excess FP precision.
1114        RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
1115      break;
1116    }
1117    }
1118  }
1119
1120  return std::make_pair(RetVal, Chain);
1121}
1122
1123SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1124  if (ReturnAddrIndex == 0) {
1125    // Set up a frame object for the return address.
1126    MachineFunction &MF = DAG.getMachineFunction();
1127    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1128  }
1129
1130  return DAG.getFrameIndex(ReturnAddrIndex, MVT::i32);
1131}
1132
1133
1134
1135std::pair<SDOperand, SDOperand> X86TargetLowering::
1136LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth,
1137                        SelectionDAG &DAG) {
1138  SDOperand Result;
1139  if (Depth)        // Depths > 0 not supported yet!
1140    Result = DAG.getConstant(0, getPointerTy());
1141  else {
1142    SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
1143    if (!isFrameAddress)
1144      // Just load the return address
1145      Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), RetAddrFI,
1146                           DAG.getSrcValue(NULL));
1147    else
1148      Result = DAG.getNode(ISD::SUB, MVT::i32, RetAddrFI,
1149                           DAG.getConstant(4, MVT::i32));
1150  }
1151  return std::make_pair(Result, Chain);
1152}
1153
1154/// getCondBrOpcodeForX86CC - Returns the X86 conditional branch opcode
1155/// which corresponds to the condition code.
1156static unsigned getCondBrOpcodeForX86CC(unsigned X86CC) {
1157  switch (X86CC) {
1158  default: assert(0 && "Unknown X86 conditional code!");
1159  case X86ISD::COND_A:  return X86::JA;
1160  case X86ISD::COND_AE: return X86::JAE;
1161  case X86ISD::COND_B:  return X86::JB;
1162  case X86ISD::COND_BE: return X86::JBE;
1163  case X86ISD::COND_E:  return X86::JE;
1164  case X86ISD::COND_G:  return X86::JG;
1165  case X86ISD::COND_GE: return X86::JGE;
1166  case X86ISD::COND_L:  return X86::JL;
1167  case X86ISD::COND_LE: return X86::JLE;
1168  case X86ISD::COND_NE: return X86::JNE;
1169  case X86ISD::COND_NO: return X86::JNO;
1170  case X86ISD::COND_NP: return X86::JNP;
1171  case X86ISD::COND_NS: return X86::JNS;
1172  case X86ISD::COND_O:  return X86::JO;
1173  case X86ISD::COND_P:  return X86::JP;
1174  case X86ISD::COND_S:  return X86::JS;
1175  }
1176}
1177
1178/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1179/// specific condition code. It returns a false if it cannot do a direct
1180/// translation. X86CC is the translated CondCode. Flip is set to true if the
1181/// the order of comparison operands should be flipped.
1182static bool translateX86CC(SDOperand CC, bool isFP, unsigned &X86CC,
1183                           bool &Flip) {
1184  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
1185  Flip = false;
1186  X86CC = X86ISD::COND_INVALID;
1187  if (!isFP) {
1188    switch (SetCCOpcode) {
1189    default: break;
1190    case ISD::SETEQ:  X86CC = X86ISD::COND_E;  break;
1191    case ISD::SETGT:  X86CC = X86ISD::COND_G;  break;
1192    case ISD::SETGE:  X86CC = X86ISD::COND_GE; break;
1193    case ISD::SETLT:  X86CC = X86ISD::COND_L;  break;
1194    case ISD::SETLE:  X86CC = X86ISD::COND_LE; break;
1195    case ISD::SETNE:  X86CC = X86ISD::COND_NE; break;
1196    case ISD::SETULT: X86CC = X86ISD::COND_B;  break;
1197    case ISD::SETUGT: X86CC = X86ISD::COND_A;  break;
1198    case ISD::SETULE: X86CC = X86ISD::COND_BE; break;
1199    case ISD::SETUGE: X86CC = X86ISD::COND_AE; break;
1200    }
1201  } else {
1202    // On a floating point condition, the flags are set as follows:
1203    // ZF  PF  CF   op
1204    //  0 | 0 | 0 | X > Y
1205    //  0 | 0 | 1 | X < Y
1206    //  1 | 0 | 0 | X == Y
1207    //  1 | 1 | 1 | unordered
1208    switch (SetCCOpcode) {
1209    default: break;
1210    case ISD::SETUEQ:
1211    case ISD::SETEQ: X86CC = X86ISD::COND_E;  break;
1212    case ISD::SETOLE: Flip = true; // Fallthrough
1213    case ISD::SETOGT:
1214    case ISD::SETGT: X86CC = X86ISD::COND_A;  break;
1215    case ISD::SETOLT: Flip = true; // Fallthrough
1216    case ISD::SETOGE:
1217    case ISD::SETGE: X86CC = X86ISD::COND_AE; break;
1218    case ISD::SETUGE: Flip = true; // Fallthrough
1219    case ISD::SETULT:
1220    case ISD::SETLT: X86CC = X86ISD::COND_B;  break;
1221    case ISD::SETUGT: Flip = true; // Fallthrough
1222    case ISD::SETULE:
1223    case ISD::SETLE: X86CC = X86ISD::COND_BE; break;
1224    case ISD::SETONE:
1225    case ISD::SETNE: X86CC = X86ISD::COND_NE; break;
1226    case ISD::SETUO: X86CC = X86ISD::COND_P;  break;
1227    case ISD::SETO:  X86CC = X86ISD::COND_NP; break;
1228    }
1229  }
1230
1231  return X86CC != X86ISD::COND_INVALID;
1232}
1233
1234/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1235/// code. Current x86 isa includes the following FP cmov instructions:
1236/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1237static bool hasFPCMov(unsigned X86CC) {
1238  switch (X86CC) {
1239  default:
1240    return false;
1241  case X86ISD::COND_B:
1242  case X86ISD::COND_BE:
1243  case X86ISD::COND_E:
1244  case X86ISD::COND_P:
1245  case X86ISD::COND_A:
1246  case X86ISD::COND_AE:
1247  case X86ISD::COND_NE:
1248  case X86ISD::COND_NP:
1249    return true;
1250  }
1251}
1252
1253MachineBasicBlock *
1254X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
1255                                           MachineBasicBlock *BB) {
1256  switch (MI->getOpcode()) {
1257  default: assert(false && "Unexpected instr type to insert");
1258  case X86::CMOV_FR32:
1259  case X86::CMOV_FR64: {
1260    // To "insert" a SELECT_CC instruction, we actually have to insert the
1261    // diamond control-flow pattern.  The incoming instruction knows the
1262    // destination vreg to set, the condition code register to branch on, the
1263    // true/false values to select between, and a branch opcode to use.
1264    const BasicBlock *LLVM_BB = BB->getBasicBlock();
1265    ilist<MachineBasicBlock>::iterator It = BB;
1266    ++It;
1267
1268    //  thisMBB:
1269    //  ...
1270    //   TrueVal = ...
1271    //   cmpTY ccX, r1, r2
1272    //   bCC copy1MBB
1273    //   fallthrough --> copy0MBB
1274    MachineBasicBlock *thisMBB = BB;
1275    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
1276    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
1277    unsigned Opc = getCondBrOpcodeForX86CC(MI->getOperand(3).getImmedValue());
1278    BuildMI(BB, Opc, 1).addMBB(sinkMBB);
1279    MachineFunction *F = BB->getParent();
1280    F->getBasicBlockList().insert(It, copy0MBB);
1281    F->getBasicBlockList().insert(It, sinkMBB);
1282    // Update machine-CFG edges by first adding all successors of the current
1283    // block to the new block which will contain the Phi node for the select.
1284    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
1285        e = BB->succ_end(); i != e; ++i)
1286      sinkMBB->addSuccessor(*i);
1287    // Next, remove all successors of the current block, and add the true
1288    // and fallthrough blocks as its successors.
1289    while(!BB->succ_empty())
1290      BB->removeSuccessor(BB->succ_begin());
1291    BB->addSuccessor(copy0MBB);
1292    BB->addSuccessor(sinkMBB);
1293
1294    //  copy0MBB:
1295    //   %FalseValue = ...
1296    //   # fallthrough to sinkMBB
1297    BB = copy0MBB;
1298
1299    // Update machine-CFG edges
1300    BB->addSuccessor(sinkMBB);
1301
1302    //  sinkMBB:
1303    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1304    //  ...
1305    BB = sinkMBB;
1306    BuildMI(BB, X86::PHI, 4, MI->getOperand(0).getReg())
1307      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
1308      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
1309
1310    delete MI;   // The pseudo instruction is gone now.
1311    return BB;
1312  }
1313
1314  case X86::FP_TO_INT16_IN_MEM:
1315  case X86::FP_TO_INT32_IN_MEM:
1316  case X86::FP_TO_INT64_IN_MEM: {
1317    // Change the floating point control register to use "round towards zero"
1318    // mode when truncating to an integer value.
1319    MachineFunction *F = BB->getParent();
1320    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
1321    addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx);
1322
1323    // Load the old value of the high byte of the control word...
1324    unsigned OldCW =
1325      F->getSSARegMap()->createVirtualRegister(X86::R16RegisterClass);
1326    addFrameReference(BuildMI(BB, X86::MOV16rm, 4, OldCW), CWFrameIdx);
1327
1328    // Set the high part to be round to zero...
1329    addFrameReference(BuildMI(BB, X86::MOV16mi, 5), CWFrameIdx).addImm(0xC7F);
1330
1331    // Reload the modified control word now...
1332    addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
1333
1334    // Restore the memory image of control word to original value
1335    addFrameReference(BuildMI(BB, X86::MOV16mr, 5), CWFrameIdx).addReg(OldCW);
1336
1337    // Get the X86 opcode to use.
1338    unsigned Opc;
1339    switch (MI->getOpcode()) {
1340    default: assert(0 && "illegal opcode!");
1341    case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break;
1342    case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break;
1343    case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break;
1344    }
1345
1346    X86AddressMode AM;
1347    MachineOperand &Op = MI->getOperand(0);
1348    if (Op.isRegister()) {
1349      AM.BaseType = X86AddressMode::RegBase;
1350      AM.Base.Reg = Op.getReg();
1351    } else {
1352      AM.BaseType = X86AddressMode::FrameIndexBase;
1353      AM.Base.FrameIndex = Op.getFrameIndex();
1354    }
1355    Op = MI->getOperand(1);
1356    if (Op.isImmediate())
1357      AM.Scale = Op.getImmedValue();
1358    Op = MI->getOperand(2);
1359    if (Op.isImmediate())
1360      AM.IndexReg = Op.getImmedValue();
1361    Op = MI->getOperand(3);
1362    if (Op.isGlobalAddress()) {
1363      AM.GV = Op.getGlobal();
1364    } else {
1365      AM.Disp = Op.getImmedValue();
1366    }
1367    addFullAddress(BuildMI(BB, Opc, 5), AM).addReg(MI->getOperand(4).getReg());
1368
1369    // Reload the original control word now.
1370    addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
1371
1372    delete MI;   // The pseudo instruction is gone now.
1373    return BB;
1374  }
1375  }
1376}
1377
1378
1379//===----------------------------------------------------------------------===//
1380//                           X86 Custom Lowering Hooks
1381//===----------------------------------------------------------------------===//
1382
1383/// DarwinGVRequiresExtraLoad - true if accessing the GV requires an extra
1384/// load. For Darwin, external and weak symbols are indirect, loading the value
1385/// at address GV rather then the value of GV itself. This means that the
1386/// GlobalAddress must be in the base or index register of the address, not the
1387/// GV offset field.
1388static bool DarwinGVRequiresExtraLoad(GlobalValue *GV) {
1389  return (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() ||
1390          (GV->isExternal() && !GV->hasNotBeenReadFromBytecode()));
1391}
1392
1393/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1394/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1395bool X86::isPSHUFDMask(SDNode *N) {
1396  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1397
1398  if (N->getNumOperands() != 4)
1399    return false;
1400
1401  // Check if the value doesn't reference the second vector.
1402  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) {
1403    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
1404           "Invalid VECTOR_SHUFFLE mask!");
1405    if (cast<ConstantSDNode>(N->getOperand(i))->getValue() >= 4) return false;
1406  }
1407
1408  return true;
1409}
1410
1411/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1412/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1413bool X86::isSHUFPMask(SDNode *N) {
1414  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1415
1416  unsigned NumElems = N->getNumOperands();
1417  if (NumElems == 2) {
1418    // The only case that ought be handled by SHUFPD is
1419    // Dest { 2, 1 } <=  shuffle( Dest { 1, 0 },  Src { 3, 2 }
1420    // Expect bit 0 == 1, bit1 == 2
1421    SDOperand Bit0 = N->getOperand(0);
1422    SDOperand Bit1 = N->getOperand(1);
1423    assert(isa<ConstantSDNode>(Bit0) && isa<ConstantSDNode>(Bit1) &&
1424           "Invalid VECTOR_SHUFFLE mask!");
1425    return (cast<ConstantSDNode>(Bit0)->getValue() == 1 &&
1426            cast<ConstantSDNode>(Bit1)->getValue() == 2);
1427  }
1428
1429  if (NumElems != 4) return false;
1430
1431  // Each half must refer to only one of the vector.
1432  SDOperand Elt = N->getOperand(0);
1433  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
1434  for (unsigned i = 1; i != NumElems / 2; ++i) {
1435    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
1436           "Invalid VECTOR_SHUFFLE mask!");
1437    if (cast<ConstantSDNode>(N->getOperand(i))->getValue() !=
1438        cast<ConstantSDNode>(Elt)->getValue())
1439      return false;
1440  }
1441  Elt = N->getOperand(NumElems / 2);
1442  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
1443  for (unsigned i = NumElems / 2; i != NumElems; ++i) {
1444    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
1445           "Invalid VECTOR_SHUFFLE mask!");
1446    if (cast<ConstantSDNode>(N->getOperand(i))->getValue() !=
1447        cast<ConstantSDNode>(Elt)->getValue())
1448      return false;
1449  }
1450
1451  return true;
1452}
1453
1454/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
1455/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1456bool X86::isMOVHLPSMask(SDNode *N) {
1457  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1458
1459  if (N->getNumOperands() != 4)
1460    return false;
1461
1462  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
1463  SDOperand Bit0 = N->getOperand(0);
1464  SDOperand Bit1 = N->getOperand(1);
1465  SDOperand Bit2 = N->getOperand(2);
1466  SDOperand Bit3 = N->getOperand(3);
1467  assert(isa<ConstantSDNode>(Bit0) && isa<ConstantSDNode>(Bit1) &&
1468         isa<ConstantSDNode>(Bit2) && isa<ConstantSDNode>(Bit3) &&
1469         "Invalid VECTOR_SHUFFLE mask!");
1470  return (cast<ConstantSDNode>(Bit0)->getValue() == 6 &&
1471          cast<ConstantSDNode>(Bit1)->getValue() == 7 &&
1472          cast<ConstantSDNode>(Bit2)->getValue() == 2 &&
1473          cast<ConstantSDNode>(Bit3)->getValue() == 3);
1474}
1475
1476/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
1477/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1478bool X86::isMOVLHPSMask(SDNode *N) {
1479  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1480
1481  if (N->getNumOperands() != 4)
1482    return false;
1483
1484  // Expect bit0 == 0, bit1 == 1, bit2 == 4, bit3 == 5
1485  SDOperand Bit0 = N->getOperand(0);
1486  SDOperand Bit1 = N->getOperand(1);
1487  SDOperand Bit2 = N->getOperand(2);
1488  SDOperand Bit3 = N->getOperand(3);
1489  assert(isa<ConstantSDNode>(Bit0) && isa<ConstantSDNode>(Bit1) &&
1490         isa<ConstantSDNode>(Bit2) && isa<ConstantSDNode>(Bit3) &&
1491         "Invalid VECTOR_SHUFFLE mask!");
1492  return (cast<ConstantSDNode>(Bit0)->getValue() == 0 &&
1493          cast<ConstantSDNode>(Bit1)->getValue() == 1 &&
1494          cast<ConstantSDNode>(Bit2)->getValue() == 4 &&
1495          cast<ConstantSDNode>(Bit3)->getValue() == 5);
1496}
1497
1498/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
1499/// specifies a shuffle of elements that is suitable for input to UNPCKL.
1500bool X86::isUNPCKLMask(SDNode *N) {
1501  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1502
1503  unsigned NumElems = N->getNumOperands();
1504  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1505    return false;
1506
1507  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
1508    SDOperand BitI  = N->getOperand(i);
1509    SDOperand BitI1 = N->getOperand(i+1);
1510    assert(isa<ConstantSDNode>(BitI) && isa<ConstantSDNode>(BitI1) &&
1511           "Invalid VECTOR_SHUFFLE mask!");
1512    if (cast<ConstantSDNode>(BitI)->getValue()  != j)
1513      return false;
1514    if (cast<ConstantSDNode>(BitI1)->getValue() != j + NumElems)
1515      return false;
1516  }
1517
1518  return true;
1519}
1520
1521/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
1522/// specifies a shuffle of elements that is suitable for input to UNPCKH.
1523bool X86::isUNPCKHMask(SDNode *N) {
1524  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1525
1526  unsigned NumElems = N->getNumOperands();
1527  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1528    return false;
1529
1530  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
1531    SDOperand BitI  = N->getOperand(i);
1532    SDOperand BitI1 = N->getOperand(i+1);
1533    assert(isa<ConstantSDNode>(BitI) && isa<ConstantSDNode>(BitI1) &&
1534           "Invalid VECTOR_SHUFFLE mask!");
1535    if (cast<ConstantSDNode>(BitI)->getValue()  != j + NumElems/2)
1536      return false;
1537    if (cast<ConstantSDNode>(BitI1)->getValue() != j + NumElems/2 + NumElems)
1538      return false;
1539  }
1540
1541  return true;
1542}
1543
1544/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
1545/// a splat of a single element.
1546bool X86::isSplatMask(SDNode *N) {
1547  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1548
1549  // We can only splat 64-bit, and 32-bit quantities.
1550  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
1551    return false;
1552
1553  // This is a splat operation if each element of the permute is the same, and
1554  // if the value doesn't reference the second vector.
1555  SDOperand Elt = N->getOperand(0);
1556  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
1557  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) {
1558    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
1559           "Invalid VECTOR_SHUFFLE mask!");
1560    if (N->getOperand(i) != Elt) return false;
1561  }
1562
1563  // Make sure it is a splat of the first vector operand.
1564  return cast<ConstantSDNode>(Elt)->getValue() < N->getNumOperands();
1565}
1566
1567/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
1568/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
1569/// instructions.
1570unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
1571  unsigned NumOperands = N->getNumOperands();
1572  unsigned Shift = (NumOperands == 4) ? 2 : 1;
1573  unsigned Mask = 0;
1574  for (unsigned i = 0; i < NumOperands; ++i) {
1575    unsigned Val
1576      = cast<ConstantSDNode>(N->getOperand(NumOperands-i-1))->getValue();
1577    if (Val >= NumOperands) Val -= NumOperands;
1578    Mask |= Val;
1579    if (i != NumOperands - 1)
1580      Mask <<= Shift;
1581  }
1582
1583  return Mask;
1584}
1585
1586/// NormalizeVectorShuffle - Swap vector_shuffle operands (as well as
1587/// values in ther permute mask if needed. Use V1 as second vector if it is
1588/// undef. Return an empty SDOperand is it is already well formed.
1589static SDOperand NormalizeVectorShuffle(SDOperand V1, SDOperand V2,
1590                                        SDOperand Mask, MVT::ValueType VT,
1591                                        SelectionDAG &DAG) {
1592  unsigned NumElems = Mask.getNumOperands();
1593  SDOperand Half1 = Mask.getOperand(0);
1594  SDOperand Half2 = Mask.getOperand(NumElems/2);
1595  bool V2Undef = false;
1596  if (V2.getOpcode() == ISD::UNDEF) {
1597    V2Undef = true;
1598    V2 = V1;
1599  }
1600
1601  if (cast<ConstantSDNode>(Half1)->getValue() >= NumElems &&
1602      cast<ConstantSDNode>(Half2)->getValue() <  NumElems) {
1603    // Swap the operands and change mask.
1604    std::vector<SDOperand> MaskVec;
1605    for (unsigned i = NumElems / 2; i != NumElems; ++i)
1606      MaskVec.push_back(Mask.getOperand(i));
1607    for (unsigned i = 0; i != NumElems / 2; ++i)
1608      MaskVec.push_back(Mask.getOperand(i));
1609    Mask =
1610      DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(), MaskVec);
1611    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V2, V1, Mask);
1612  }
1613
1614  if (V2Undef)
1615    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
1616
1617  return SDOperand();
1618}
1619
1620/// LowerOperation - Provide custom lowering hooks for some operations.
1621///
1622SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
1623  switch (Op.getOpcode()) {
1624  default: assert(0 && "Should not custom lower this!");
1625  case ISD::SHL_PARTS:
1626  case ISD::SRA_PARTS:
1627  case ISD::SRL_PARTS: {
1628    assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
1629           "Not an i64 shift!");
1630    bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
1631    SDOperand ShOpLo = Op.getOperand(0);
1632    SDOperand ShOpHi = Op.getOperand(1);
1633    SDOperand ShAmt  = Op.getOperand(2);
1634    SDOperand Tmp1 = isSRA ? DAG.getNode(ISD::SRA, MVT::i32, ShOpHi,
1635                                         DAG.getConstant(31, MVT::i8))
1636                           : DAG.getConstant(0, MVT::i32);
1637
1638    SDOperand Tmp2, Tmp3;
1639    if (Op.getOpcode() == ISD::SHL_PARTS) {
1640      Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
1641      Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
1642    } else {
1643      Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
1644      Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
1645    }
1646
1647    SDOperand InFlag = DAG.getNode(X86ISD::TEST, MVT::Flag,
1648                                   ShAmt, DAG.getConstant(32, MVT::i8));
1649
1650    SDOperand Hi, Lo;
1651    SDOperand CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8);
1652
1653    std::vector<MVT::ValueType> Tys;
1654    Tys.push_back(MVT::i32);
1655    Tys.push_back(MVT::Flag);
1656    std::vector<SDOperand> Ops;
1657    if (Op.getOpcode() == ISD::SHL_PARTS) {
1658      Ops.push_back(Tmp2);
1659      Ops.push_back(Tmp3);
1660      Ops.push_back(CC);
1661      Ops.push_back(InFlag);
1662      Hi = DAG.getNode(X86ISD::CMOV, Tys, Ops);
1663      InFlag = Hi.getValue(1);
1664
1665      Ops.clear();
1666      Ops.push_back(Tmp3);
1667      Ops.push_back(Tmp1);
1668      Ops.push_back(CC);
1669      Ops.push_back(InFlag);
1670      Lo = DAG.getNode(X86ISD::CMOV, Tys, Ops);
1671    } else {
1672      Ops.push_back(Tmp2);
1673      Ops.push_back(Tmp3);
1674      Ops.push_back(CC);
1675      Ops.push_back(InFlag);
1676      Lo = DAG.getNode(X86ISD::CMOV, Tys, Ops);
1677      InFlag = Lo.getValue(1);
1678
1679      Ops.clear();
1680      Ops.push_back(Tmp3);
1681      Ops.push_back(Tmp1);
1682      Ops.push_back(CC);
1683      Ops.push_back(InFlag);
1684      Hi = DAG.getNode(X86ISD::CMOV, Tys, Ops);
1685    }
1686
1687    Tys.clear();
1688    Tys.push_back(MVT::i32);
1689    Tys.push_back(MVT::i32);
1690    Ops.clear();
1691    Ops.push_back(Lo);
1692    Ops.push_back(Hi);
1693    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops);
1694  }
1695  case ISD::SINT_TO_FP: {
1696    assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
1697           Op.getOperand(0).getValueType() >= MVT::i16 &&
1698           "Unknown SINT_TO_FP to lower!");
1699
1700    SDOperand Result;
1701    MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
1702    unsigned Size = MVT::getSizeInBits(SrcVT)/8;
1703    MachineFunction &MF = DAG.getMachineFunction();
1704    int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
1705    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
1706    SDOperand Chain = DAG.getNode(ISD::STORE, MVT::Other,
1707                                  DAG.getEntryNode(), Op.getOperand(0),
1708                                  StackSlot, DAG.getSrcValue(NULL));
1709
1710    // Build the FILD
1711    std::vector<MVT::ValueType> Tys;
1712    Tys.push_back(MVT::f64);
1713    Tys.push_back(MVT::Other);
1714    if (X86ScalarSSE) Tys.push_back(MVT::Flag);
1715    std::vector<SDOperand> Ops;
1716    Ops.push_back(Chain);
1717    Ops.push_back(StackSlot);
1718    Ops.push_back(DAG.getValueType(SrcVT));
1719    Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
1720                         Tys, Ops);
1721
1722    if (X86ScalarSSE) {
1723      Chain = Result.getValue(1);
1724      SDOperand InFlag = Result.getValue(2);
1725
1726      // FIXME: Currently the FST is flagged to the FILD_FLAG. This
1727      // shouldn't be necessary except that RFP cannot be live across
1728      // multiple blocks. When stackifier is fixed, they can be uncoupled.
1729      MachineFunction &MF = DAG.getMachineFunction();
1730      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
1731      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
1732      std::vector<MVT::ValueType> Tys;
1733      Tys.push_back(MVT::Other);
1734      std::vector<SDOperand> Ops;
1735      Ops.push_back(Chain);
1736      Ops.push_back(Result);
1737      Ops.push_back(StackSlot);
1738      Ops.push_back(DAG.getValueType(Op.getValueType()));
1739      Ops.push_back(InFlag);
1740      Chain = DAG.getNode(X86ISD::FST, Tys, Ops);
1741      Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
1742                           DAG.getSrcValue(NULL));
1743    }
1744
1745    return Result;
1746  }
1747  case ISD::FP_TO_SINT: {
1748    assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
1749           "Unknown FP_TO_SINT to lower!");
1750    // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
1751    // stack slot.
1752    MachineFunction &MF = DAG.getMachineFunction();
1753    unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
1754    int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
1755    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
1756
1757    unsigned Opc;
1758    switch (Op.getValueType()) {
1759    default: assert(0 && "Invalid FP_TO_SINT to lower!");
1760    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
1761    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
1762    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
1763    }
1764
1765    SDOperand Chain = DAG.getEntryNode();
1766    SDOperand Value = Op.getOperand(0);
1767    if (X86ScalarSSE) {
1768      assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
1769      Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, StackSlot,
1770                          DAG.getSrcValue(0));
1771      std::vector<MVT::ValueType> Tys;
1772      Tys.push_back(MVT::f64);
1773      Tys.push_back(MVT::Other);
1774      std::vector<SDOperand> Ops;
1775      Ops.push_back(Chain);
1776      Ops.push_back(StackSlot);
1777      Ops.push_back(DAG.getValueType(Op.getOperand(0).getValueType()));
1778      Value = DAG.getNode(X86ISD::FLD, Tys, Ops);
1779      Chain = Value.getValue(1);
1780      SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
1781      StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
1782    }
1783
1784    // Build the FP_TO_INT*_IN_MEM
1785    std::vector<SDOperand> Ops;
1786    Ops.push_back(Chain);
1787    Ops.push_back(Value);
1788    Ops.push_back(StackSlot);
1789    SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops);
1790
1791    // Load the result.
1792    return DAG.getLoad(Op.getValueType(), FIST, StackSlot,
1793                       DAG.getSrcValue(NULL));
1794  }
1795  case ISD::READCYCLECOUNTER: {
1796    std::vector<MVT::ValueType> Tys;
1797    Tys.push_back(MVT::Other);
1798    Tys.push_back(MVT::Flag);
1799    std::vector<SDOperand> Ops;
1800    Ops.push_back(Op.getOperand(0));
1801    SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, Ops);
1802    Ops.clear();
1803    Ops.push_back(DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1)));
1804    Ops.push_back(DAG.getCopyFromReg(Ops[0].getValue(1), X86::EDX,
1805                                     MVT::i32, Ops[0].getValue(2)));
1806    Ops.push_back(Ops[1].getValue(1));
1807    Tys[0] = Tys[1] = MVT::i32;
1808    Tys.push_back(MVT::Other);
1809    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops);
1810  }
1811  case ISD::FABS: {
1812    MVT::ValueType VT = Op.getValueType();
1813    const Type *OpNTy =  MVT::getTypeForValueType(VT);
1814    std::vector<Constant*> CV;
1815    if (VT == MVT::f64) {
1816      CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63))));
1817      CV.push_back(ConstantFP::get(OpNTy, 0.0));
1818    } else {
1819      CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31))));
1820      CV.push_back(ConstantFP::get(OpNTy, 0.0));
1821      CV.push_back(ConstantFP::get(OpNTy, 0.0));
1822      CV.push_back(ConstantFP::get(OpNTy, 0.0));
1823    }
1824    Constant *CS = ConstantStruct::get(CV);
1825    SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
1826    SDOperand Mask
1827      = DAG.getNode(X86ISD::LOAD_PACK,
1828                    VT, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL));
1829    return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
1830  }
1831  case ISD::FNEG: {
1832    MVT::ValueType VT = Op.getValueType();
1833    const Type *OpNTy =  MVT::getTypeForValueType(VT);
1834    std::vector<Constant*> CV;
1835    if (VT == MVT::f64) {
1836      CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63)));
1837      CV.push_back(ConstantFP::get(OpNTy, 0.0));
1838    } else {
1839      CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31)));
1840      CV.push_back(ConstantFP::get(OpNTy, 0.0));
1841      CV.push_back(ConstantFP::get(OpNTy, 0.0));
1842      CV.push_back(ConstantFP::get(OpNTy, 0.0));
1843    }
1844    Constant *CS = ConstantStruct::get(CV);
1845    SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
1846    SDOperand Mask
1847      = DAG.getNode(X86ISD::LOAD_PACK,
1848                    VT, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL));
1849    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
1850  }
1851  case ISD::SETCC: {
1852    assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
1853    SDOperand Cond;
1854    SDOperand CC = Op.getOperand(2);
1855    ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
1856    bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
1857    bool Flip;
1858    unsigned X86CC;
1859    if (translateX86CC(CC, isFP, X86CC, Flip)) {
1860      if (Flip)
1861        Cond = DAG.getNode(X86ISD::CMP, MVT::Flag,
1862                           Op.getOperand(1), Op.getOperand(0));
1863      else
1864        Cond = DAG.getNode(X86ISD::CMP, MVT::Flag,
1865                           Op.getOperand(0), Op.getOperand(1));
1866      return DAG.getNode(X86ISD::SETCC, MVT::i8,
1867                         DAG.getConstant(X86CC, MVT::i8), Cond);
1868    } else {
1869      assert(isFP && "Illegal integer SetCC!");
1870
1871      Cond = DAG.getNode(X86ISD::CMP, MVT::Flag,
1872                         Op.getOperand(0), Op.getOperand(1));
1873      std::vector<MVT::ValueType> Tys;
1874      std::vector<SDOperand> Ops;
1875      switch (SetCCOpcode) {
1876      default: assert(false && "Illegal floating point SetCC!");
1877      case ISD::SETOEQ: {  // !PF & ZF
1878        Tys.push_back(MVT::i8);
1879        Tys.push_back(MVT::Flag);
1880        Ops.push_back(DAG.getConstant(X86ISD::COND_NP, MVT::i8));
1881        Ops.push_back(Cond);
1882        SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops);
1883        SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
1884                                     DAG.getConstant(X86ISD::COND_E, MVT::i8),
1885                                     Tmp1.getValue(1));
1886        return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
1887      }
1888      case ISD::SETUNE: {  // PF | !ZF
1889        Tys.push_back(MVT::i8);
1890        Tys.push_back(MVT::Flag);
1891        Ops.push_back(DAG.getConstant(X86ISD::COND_P, MVT::i8));
1892        Ops.push_back(Cond);
1893        SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops);
1894        SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
1895                                     DAG.getConstant(X86ISD::COND_NE, MVT::i8),
1896                                     Tmp1.getValue(1));
1897        return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
1898      }
1899      }
1900    }
1901  }
1902  case ISD::SELECT: {
1903    MVT::ValueType VT = Op.getValueType();
1904    bool isFP      = MVT::isFloatingPoint(VT);
1905    bool isFPStack = isFP && !X86ScalarSSE;
1906    bool isFPSSE   = isFP && X86ScalarSSE;
1907    bool addTest   = false;
1908    SDOperand Op0 = Op.getOperand(0);
1909    SDOperand Cond, CC;
1910    if (Op0.getOpcode() == ISD::SETCC)
1911      Op0 = LowerOperation(Op0, DAG);
1912
1913    if (Op0.getOpcode() == X86ISD::SETCC) {
1914      // If condition flag is set by a X86ISD::CMP, then make a copy of it
1915      // (since flag operand cannot be shared). If the X86ISD::SETCC does not
1916      // have another use it will be eliminated.
1917      // If the X86ISD::SETCC has more than one use, then it's probably better
1918      // to use a test instead of duplicating the X86ISD::CMP (for register
1919      // pressure reason).
1920      if (Op0.getOperand(1).getOpcode() == X86ISD::CMP) {
1921        if (!Op0.hasOneUse()) {
1922          std::vector<MVT::ValueType> Tys;
1923          for (unsigned i = 0; i < Op0.Val->getNumValues(); ++i)
1924            Tys.push_back(Op0.Val->getValueType(i));
1925          std::vector<SDOperand> Ops;
1926          for (unsigned i = 0; i < Op0.getNumOperands(); ++i)
1927            Ops.push_back(Op0.getOperand(i));
1928          Op0 = DAG.getNode(X86ISD::SETCC, Tys, Ops);
1929        }
1930
1931        CC   = Op0.getOperand(0);
1932        Cond = Op0.getOperand(1);
1933        // Make a copy as flag result cannot be used by more than one.
1934        Cond = DAG.getNode(X86ISD::CMP, MVT::Flag,
1935                           Cond.getOperand(0), Cond.getOperand(1));
1936        addTest =
1937          isFPStack && !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
1938      } else
1939        addTest = true;
1940    } else
1941      addTest = true;
1942
1943    if (addTest) {
1944      CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8);
1945      Cond = DAG.getNode(X86ISD::TEST, MVT::Flag, Op0, Op0);
1946    }
1947
1948    std::vector<MVT::ValueType> Tys;
1949    Tys.push_back(Op.getValueType());
1950    Tys.push_back(MVT::Flag);
1951    std::vector<SDOperand> Ops;
1952    // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
1953    // condition is true.
1954    Ops.push_back(Op.getOperand(2));
1955    Ops.push_back(Op.getOperand(1));
1956    Ops.push_back(CC);
1957    Ops.push_back(Cond);
1958    return DAG.getNode(X86ISD::CMOV, Tys, Ops);
1959  }
1960  case ISD::BRCOND: {
1961    bool addTest = false;
1962    SDOperand Cond  = Op.getOperand(1);
1963    SDOperand Dest  = Op.getOperand(2);
1964    SDOperand CC;
1965    if (Cond.getOpcode() == ISD::SETCC)
1966      Cond = LowerOperation(Cond, DAG);
1967
1968    if (Cond.getOpcode() == X86ISD::SETCC) {
1969      // If condition flag is set by a X86ISD::CMP, then make a copy of it
1970      // (since flag operand cannot be shared). If the X86ISD::SETCC does not
1971      // have another use it will be eliminated.
1972      // If the X86ISD::SETCC has more than one use, then it's probably better
1973      // to use a test instead of duplicating the X86ISD::CMP (for register
1974      // pressure reason).
1975      if (Cond.getOperand(1).getOpcode() == X86ISD::CMP) {
1976        if (!Cond.hasOneUse()) {
1977          std::vector<MVT::ValueType> Tys;
1978          for (unsigned i = 0; i < Cond.Val->getNumValues(); ++i)
1979            Tys.push_back(Cond.Val->getValueType(i));
1980          std::vector<SDOperand> Ops;
1981          for (unsigned i = 0; i < Cond.getNumOperands(); ++i)
1982            Ops.push_back(Cond.getOperand(i));
1983          Cond = DAG.getNode(X86ISD::SETCC, Tys, Ops);
1984        }
1985
1986        CC   = Cond.getOperand(0);
1987        Cond = Cond.getOperand(1);
1988        // Make a copy as flag result cannot be used by more than one.
1989        Cond = DAG.getNode(X86ISD::CMP, MVT::Flag,
1990                           Cond.getOperand(0), Cond.getOperand(1));
1991      } else
1992        addTest = true;
1993    } else
1994      addTest = true;
1995
1996    if (addTest) {
1997      CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8);
1998      Cond = DAG.getNode(X86ISD::TEST, MVT::Flag, Cond, Cond);
1999    }
2000    return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
2001                       Op.getOperand(0), Op.getOperand(2), CC, Cond);
2002  }
2003  case ISD::MEMSET: {
2004    SDOperand InFlag(0, 0);
2005    SDOperand Chain = Op.getOperand(0);
2006    unsigned Align =
2007      (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
2008    if (Align == 0) Align = 1;
2009
2010    ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
2011    // If not DWORD aligned, call memset if size is less than the threshold.
2012    // It knows how to align to the right boundary first.
2013    if ((Align & 3) != 0 ||
2014        (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
2015      MVT::ValueType IntPtr = getPointerTy();
2016      const Type *IntPtrTy = getTargetData().getIntPtrType();
2017      std::vector<std::pair<SDOperand, const Type*> > Args;
2018      Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy));
2019      // Extend the ubyte argument to be an int value for the call.
2020      SDOperand Val = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
2021      Args.push_back(std::make_pair(Val, IntPtrTy));
2022      Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy));
2023      std::pair<SDOperand,SDOperand> CallResult =
2024        LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false,
2025                    DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
2026      return CallResult.second;
2027    }
2028
2029    MVT::ValueType AVT;
2030    SDOperand Count;
2031    ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2032    unsigned BytesLeft = 0;
2033    bool TwoRepStos = false;
2034    if (ValC) {
2035      unsigned ValReg;
2036      unsigned Val = ValC->getValue() & 255;
2037
2038      // If the value is a constant, then we can potentially use larger sets.
2039      switch (Align & 3) {
2040      case 2:   // WORD aligned
2041        AVT = MVT::i16;
2042        Count = DAG.getConstant(I->getValue() / 2, MVT::i32);
2043        BytesLeft = I->getValue() % 2;
2044        Val    = (Val << 8) | Val;
2045        ValReg = X86::AX;
2046        break;
2047      case 0:   // DWORD aligned
2048        AVT = MVT::i32;
2049        if (I) {
2050          Count = DAG.getConstant(I->getValue() / 4, MVT::i32);
2051          BytesLeft = I->getValue() % 4;
2052        } else {
2053          Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3),
2054                              DAG.getConstant(2, MVT::i8));
2055          TwoRepStos = true;
2056        }
2057        Val = (Val << 8)  | Val;
2058        Val = (Val << 16) | Val;
2059        ValReg = X86::EAX;
2060        break;
2061      default:  // Byte aligned
2062        AVT = MVT::i8;
2063        Count = Op.getOperand(3);
2064        ValReg = X86::AL;
2065        break;
2066      }
2067
2068      Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
2069                                InFlag);
2070      InFlag = Chain.getValue(1);
2071    } else {
2072      AVT = MVT::i8;
2073      Count  = Op.getOperand(3);
2074      Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
2075      InFlag = Chain.getValue(1);
2076    }
2077
2078    Chain  = DAG.getCopyToReg(Chain, X86::ECX, Count, InFlag);
2079    InFlag = Chain.getValue(1);
2080    Chain  = DAG.getCopyToReg(Chain, X86::EDI, Op.getOperand(1), InFlag);
2081    InFlag = Chain.getValue(1);
2082
2083    std::vector<MVT::ValueType> Tys;
2084    Tys.push_back(MVT::Other);
2085    Tys.push_back(MVT::Flag);
2086    std::vector<SDOperand> Ops;
2087    Ops.push_back(Chain);
2088    Ops.push_back(DAG.getValueType(AVT));
2089    Ops.push_back(InFlag);
2090    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, Ops);
2091
2092    if (TwoRepStos) {
2093      InFlag = Chain.getValue(1);
2094      Count = Op.getOperand(3);
2095      MVT::ValueType CVT = Count.getValueType();
2096      SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
2097                                   DAG.getConstant(3, CVT));
2098      Chain  = DAG.getCopyToReg(Chain, X86::ECX, Left, InFlag);
2099      InFlag = Chain.getValue(1);
2100      Tys.clear();
2101      Tys.push_back(MVT::Other);
2102      Tys.push_back(MVT::Flag);
2103      Ops.clear();
2104      Ops.push_back(Chain);
2105      Ops.push_back(DAG.getValueType(MVT::i8));
2106      Ops.push_back(InFlag);
2107      Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, Ops);
2108    } else if (BytesLeft) {
2109      // Issue stores for the last 1 - 3 bytes.
2110      SDOperand Value;
2111      unsigned Val = ValC->getValue() & 255;
2112      unsigned Offset = I->getValue() - BytesLeft;
2113      SDOperand DstAddr = Op.getOperand(1);
2114      MVT::ValueType AddrVT = DstAddr.getValueType();
2115      if (BytesLeft >= 2) {
2116        Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
2117        Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
2118                            DAG.getNode(ISD::ADD, AddrVT, DstAddr,
2119                                        DAG.getConstant(Offset, AddrVT)),
2120                            DAG.getSrcValue(NULL));
2121        BytesLeft -= 2;
2122        Offset += 2;
2123      }
2124
2125      if (BytesLeft == 1) {
2126        Value = DAG.getConstant(Val, MVT::i8);
2127        Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
2128                            DAG.getNode(ISD::ADD, AddrVT, DstAddr,
2129                                        DAG.getConstant(Offset, AddrVT)),
2130                            DAG.getSrcValue(NULL));
2131      }
2132    }
2133
2134    return Chain;
2135  }
2136  case ISD::MEMCPY: {
2137    SDOperand Chain = Op.getOperand(0);
2138    unsigned Align =
2139      (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
2140    if (Align == 0) Align = 1;
2141
2142    ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
2143    // If not DWORD aligned, call memcpy if size is less than the threshold.
2144    // It knows how to align to the right boundary first.
2145    if ((Align & 3) != 0 ||
2146        (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
2147      MVT::ValueType IntPtr = getPointerTy();
2148      const Type *IntPtrTy = getTargetData().getIntPtrType();
2149      std::vector<std::pair<SDOperand, const Type*> > Args;
2150      Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy));
2151      Args.push_back(std::make_pair(Op.getOperand(2), IntPtrTy));
2152      Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy));
2153      std::pair<SDOperand,SDOperand> CallResult =
2154        LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false,
2155                    DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
2156      return CallResult.second;
2157    }
2158
2159    MVT::ValueType AVT;
2160    SDOperand Count;
2161    unsigned BytesLeft = 0;
2162    bool TwoRepMovs = false;
2163    switch (Align & 3) {
2164    case 2:   // WORD aligned
2165      AVT = MVT::i16;
2166      Count = DAG.getConstant(I->getValue() / 2, MVT::i32);
2167      BytesLeft = I->getValue() % 2;
2168      break;
2169    case 0:   // DWORD aligned
2170      AVT = MVT::i32;
2171      if (I) {
2172        Count = DAG.getConstant(I->getValue() / 4, MVT::i32);
2173        BytesLeft = I->getValue() % 4;
2174      } else {
2175        Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3),
2176                            DAG.getConstant(2, MVT::i8));
2177        TwoRepMovs = true;
2178      }
2179      break;
2180    default:  // Byte aligned
2181      AVT = MVT::i8;
2182      Count = Op.getOperand(3);
2183      break;
2184    }
2185
2186    SDOperand InFlag(0, 0);
2187    Chain  = DAG.getCopyToReg(Chain, X86::ECX, Count, InFlag);
2188    InFlag = Chain.getValue(1);
2189    Chain  = DAG.getCopyToReg(Chain, X86::EDI, Op.getOperand(1), InFlag);
2190    InFlag = Chain.getValue(1);
2191    Chain  = DAG.getCopyToReg(Chain, X86::ESI, Op.getOperand(2), InFlag);
2192    InFlag = Chain.getValue(1);
2193
2194    std::vector<MVT::ValueType> Tys;
2195    Tys.push_back(MVT::Other);
2196    Tys.push_back(MVT::Flag);
2197    std::vector<SDOperand> Ops;
2198    Ops.push_back(Chain);
2199    Ops.push_back(DAG.getValueType(AVT));
2200    Ops.push_back(InFlag);
2201    Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, Ops);
2202
2203    if (TwoRepMovs) {
2204      InFlag = Chain.getValue(1);
2205      Count = Op.getOperand(3);
2206      MVT::ValueType CVT = Count.getValueType();
2207      SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
2208                                   DAG.getConstant(3, CVT));
2209      Chain  = DAG.getCopyToReg(Chain, X86::ECX, Left, InFlag);
2210      InFlag = Chain.getValue(1);
2211      Tys.clear();
2212      Tys.push_back(MVT::Other);
2213      Tys.push_back(MVT::Flag);
2214      Ops.clear();
2215      Ops.push_back(Chain);
2216      Ops.push_back(DAG.getValueType(MVT::i8));
2217      Ops.push_back(InFlag);
2218      Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, Ops);
2219    } else if (BytesLeft) {
2220      // Issue loads and stores for the last 1 - 3 bytes.
2221      unsigned Offset = I->getValue() - BytesLeft;
2222      SDOperand DstAddr = Op.getOperand(1);
2223      MVT::ValueType DstVT = DstAddr.getValueType();
2224      SDOperand SrcAddr = Op.getOperand(2);
2225      MVT::ValueType SrcVT = SrcAddr.getValueType();
2226      SDOperand Value;
2227      if (BytesLeft >= 2) {
2228        Value = DAG.getLoad(MVT::i16, Chain,
2229                            DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
2230                                        DAG.getConstant(Offset, SrcVT)),
2231                            DAG.getSrcValue(NULL));
2232        Chain = Value.getValue(1);
2233        Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
2234                            DAG.getNode(ISD::ADD, DstVT, DstAddr,
2235                                        DAG.getConstant(Offset, DstVT)),
2236                            DAG.getSrcValue(NULL));
2237        BytesLeft -= 2;
2238        Offset += 2;
2239      }
2240
2241      if (BytesLeft == 1) {
2242        Value = DAG.getLoad(MVT::i8, Chain,
2243                            DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
2244                                        DAG.getConstant(Offset, SrcVT)),
2245                            DAG.getSrcValue(NULL));
2246        Chain = Value.getValue(1);
2247        Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
2248                            DAG.getNode(ISD::ADD, DstVT, DstAddr,
2249                                        DAG.getConstant(Offset, DstVT)),
2250                            DAG.getSrcValue(NULL));
2251      }
2252    }
2253
2254    return Chain;
2255  }
2256
2257  // ConstantPool, GlobalAddress, and ExternalSymbol are lowered as their
2258  // target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
2259  // one of the above mentioned nodes. It has to be wrapped because otherwise
2260  // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2261  // be used to form addressing mode. These wrapped nodes will be selected
2262  // into MOV32ri.
2263  case ISD::ConstantPool: {
2264    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2265    SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(),
2266                         DAG.getTargetConstantPool(CP->get(), getPointerTy(),
2267                                                   CP->getAlignment()));
2268    if (Subtarget->isTargetDarwin()) {
2269      // With PIC, the address is actually $g + Offset.
2270      if (getTargetMachine().getRelocationModel() == Reloc::PIC)
2271        Result = DAG.getNode(ISD::ADD, getPointerTy(),
2272                DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result);
2273    }
2274
2275    return Result;
2276  }
2277  case ISD::GlobalAddress: {
2278    GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2279    SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(),
2280                         DAG.getTargetGlobalAddress(GV, getPointerTy()));
2281    if (Subtarget->isTargetDarwin()) {
2282      // With PIC, the address is actually $g + Offset.
2283      if (getTargetMachine().getRelocationModel() == Reloc::PIC)
2284        Result = DAG.getNode(ISD::ADD, getPointerTy(),
2285                    DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result);
2286
2287      // For Darwin, external and weak symbols are indirect, so we want to load
2288      // the value at address GV, not the value of GV itself. This means that
2289      // the GlobalAddress must be in the base or index register of the address,
2290      // not the GV offset field.
2291      if (getTargetMachine().getRelocationModel() != Reloc::Static &&
2292          DarwinGVRequiresExtraLoad(GV))
2293        Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(),
2294                             Result, DAG.getSrcValue(NULL));
2295    }
2296
2297    return Result;
2298  }
2299  case ISD::ExternalSymbol: {
2300    const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
2301    SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(),
2302                         DAG.getTargetExternalSymbol(Sym, getPointerTy()));
2303    if (Subtarget->isTargetDarwin()) {
2304      // With PIC, the address is actually $g + Offset.
2305      if (getTargetMachine().getRelocationModel() == Reloc::PIC)
2306        Result = DAG.getNode(ISD::ADD, getPointerTy(),
2307                    DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result);
2308    }
2309
2310    return Result;
2311  }
2312  case ISD::VASTART: {
2313    // vastart just stores the address of the VarArgsFrameIndex slot into the
2314    // memory location argument.
2315    // FIXME: Replace MVT::i32 with PointerTy
2316    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
2317    return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR,
2318                       Op.getOperand(1), Op.getOperand(2));
2319  }
2320  case ISD::RET: {
2321    SDOperand Copy;
2322
2323    switch(Op.getNumOperands()) {
2324    default:
2325      assert(0 && "Do not know how to return this many arguments!");
2326      abort();
2327    case 1:
2328      return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Op.getOperand(0),
2329                         DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
2330    case 2: {
2331      MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
2332      if (MVT::isInteger(ArgVT))
2333        Copy = DAG.getCopyToReg(Op.getOperand(0), X86::EAX, Op.getOperand(1),
2334                                SDOperand());
2335      else if (!X86ScalarSSE) {
2336        std::vector<MVT::ValueType> Tys;
2337        Tys.push_back(MVT::Other);
2338        Tys.push_back(MVT::Flag);
2339        std::vector<SDOperand> Ops;
2340        Ops.push_back(Op.getOperand(0));
2341        Ops.push_back(Op.getOperand(1));
2342        Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops);
2343      } else {
2344        SDOperand MemLoc;
2345        SDOperand Chain = Op.getOperand(0);
2346        SDOperand Value = Op.getOperand(1);
2347
2348        if (Value.getOpcode() == ISD::LOAD &&
2349            (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
2350          Chain  = Value.getOperand(0);
2351          MemLoc = Value.getOperand(1);
2352        } else {
2353          // Spill the value to memory and reload it into top of stack.
2354          unsigned Size = MVT::getSizeInBits(ArgVT)/8;
2355          MachineFunction &MF = DAG.getMachineFunction();
2356          int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
2357          MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
2358          Chain = DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0),
2359                              Value, MemLoc, DAG.getSrcValue(0));
2360        }
2361        std::vector<MVT::ValueType> Tys;
2362        Tys.push_back(MVT::f64);
2363        Tys.push_back(MVT::Other);
2364        std::vector<SDOperand> Ops;
2365        Ops.push_back(Chain);
2366        Ops.push_back(MemLoc);
2367        Ops.push_back(DAG.getValueType(ArgVT));
2368        Copy = DAG.getNode(X86ISD::FLD, Tys, Ops);
2369        Tys.clear();
2370        Tys.push_back(MVT::Other);
2371        Tys.push_back(MVT::Flag);
2372        Ops.clear();
2373        Ops.push_back(Copy.getValue(1));
2374        Ops.push_back(Copy);
2375        Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops);
2376      }
2377      break;
2378    }
2379    case 3:
2380      Copy = DAG.getCopyToReg(Op.getOperand(0), X86::EDX, Op.getOperand(2),
2381                              SDOperand());
2382      Copy = DAG.getCopyToReg(Copy, X86::EAX,Op.getOperand(1),Copy.getValue(1));
2383      break;
2384    }
2385    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other,
2386                       Copy, DAG.getConstant(getBytesToPopOnReturn(), MVT::i16),
2387                       Copy.getValue(1));
2388  }
2389  case ISD::SCALAR_TO_VECTOR: {
2390    SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
2391    return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
2392  }
2393  case ISD::VECTOR_SHUFFLE: {
2394    SDOperand V1 = Op.getOperand(0);
2395    SDOperand V2 = Op.getOperand(1);
2396    SDOperand PermMask = Op.getOperand(2);
2397    MVT::ValueType VT = Op.getValueType();
2398    unsigned NumElems = PermMask.getNumOperands();
2399
2400    if (X86::isUNPCKLMask(PermMask.Val) ||
2401        X86::isUNPCKHMask(PermMask.Val))
2402      // Leave the VECTOR_SHUFFLE alone. It matches {P}UNPCKL*.
2403      return SDOperand();
2404
2405    // PSHUFD's 2nd vector must be undef.
2406    if (MVT::isInteger(VT) && X86::isPSHUFDMask(PermMask.Val)) {
2407      if (V2.getOpcode() != ISD::UNDEF)
2408        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2409                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2410      return SDOperand();
2411    }
2412
2413    if (NumElems == 2 ||
2414        X86::isSplatMask(PermMask.Val) ||
2415        X86::isSHUFPMask(PermMask.Val)) {
2416      return NormalizeVectorShuffle(V1, V2, PermMask, VT, DAG);
2417    }
2418
2419    assert(0 && "Unexpected VECTOR_SHUFFLE to lower");
2420    abort();
2421  }
2422  case ISD::BUILD_VECTOR: {
2423    // All one's are handled with pcmpeqd.
2424    if (ISD::isBuildVectorAllOnes(Op.Val))
2425      return Op;
2426
2427    std::set<SDOperand> Values;
2428    SDOperand Elt0 = Op.getOperand(0);
2429    Values.insert(Elt0);
2430    bool Elt0IsZero = (isa<ConstantSDNode>(Elt0) &&
2431                       cast<ConstantSDNode>(Elt0)->getValue() == 0) ||
2432      (isa<ConstantFPSDNode>(Elt0) &&
2433       cast<ConstantFPSDNode>(Elt0)->isExactlyValue(0.0));
2434    bool RestAreZero = true;
2435    unsigned NumElems = Op.getNumOperands();
2436    for (unsigned i = 1; i < NumElems; ++i) {
2437      SDOperand Elt = Op.getOperand(i);
2438      if (ConstantFPSDNode *FPC = dyn_cast<ConstantFPSDNode>(Elt)) {
2439        if (!FPC->isExactlyValue(+0.0))
2440          RestAreZero = false;
2441      } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
2442        if (!C->isNullValue())
2443          RestAreZero = false;
2444      } else
2445        RestAreZero = false;
2446      Values.insert(Elt);
2447    }
2448
2449    if (RestAreZero) {
2450      if (Elt0IsZero) return Op;
2451
2452      // Zero extend a scalar to a vector.
2453      return DAG.getNode(X86ISD::ZEXT_S2VEC, Op.getValueType(), Elt0);
2454    }
2455
2456    if (Values.size() > 2) {
2457      // Expand into a number of unpckl*.
2458      // e.g. for v4f32
2459      //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2460      //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2461      //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
2462      MVT::ValueType VT = Op.getValueType();
2463      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2464      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2465      std::vector<SDOperand> MaskVec;
2466      for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2467        MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2468        MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2469      }
2470      SDOperand PermMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec);
2471      std::vector<SDOperand> V(NumElems);
2472      for (unsigned i = 0; i < NumElems; ++i)
2473        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2474      NumElems >>= 1;
2475      while (NumElems != 0) {
2476        for (unsigned i = 0; i < NumElems; ++i)
2477          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2478                             PermMask);
2479        NumElems >>= 1;
2480      }
2481      return V[0];
2482    }
2483
2484    return SDOperand();
2485  }
2486  }
2487}
2488
2489const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
2490  switch (Opcode) {
2491  default: return NULL;
2492  case X86ISD::SHLD:               return "X86ISD::SHLD";
2493  case X86ISD::SHRD:               return "X86ISD::SHRD";
2494  case X86ISD::FAND:               return "X86ISD::FAND";
2495  case X86ISD::FXOR:               return "X86ISD::FXOR";
2496  case X86ISD::FILD:               return "X86ISD::FILD";
2497  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
2498  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
2499  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
2500  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
2501  case X86ISD::FLD:                return "X86ISD::FLD";
2502  case X86ISD::FST:                return "X86ISD::FST";
2503  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
2504  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
2505  case X86ISD::CALL:               return "X86ISD::CALL";
2506  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
2507  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
2508  case X86ISD::CMP:                return "X86ISD::CMP";
2509  case X86ISD::TEST:               return "X86ISD::TEST";
2510  case X86ISD::SETCC:              return "X86ISD::SETCC";
2511  case X86ISD::CMOV:               return "X86ISD::CMOV";
2512  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
2513  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
2514  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
2515  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
2516  case X86ISD::LOAD_PACK:          return "X86ISD::LOAD_PACK";
2517  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
2518  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
2519  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
2520  case X86ISD::ZEXT_S2VEC:         return "X86ISD::ZEXT_S2VEC";
2521  }
2522}
2523
2524void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
2525                                                       uint64_t Mask,
2526                                                       uint64_t &KnownZero,
2527                                                       uint64_t &KnownOne,
2528                                                       unsigned Depth) const {
2529
2530  unsigned Opc = Op.getOpcode();
2531  KnownZero = KnownOne = 0;   // Don't know anything.
2532
2533  switch (Opc) {
2534  default:
2535    assert(Opc >= ISD::BUILTIN_OP_END && "Expected a target specific node");
2536    break;
2537  case X86ISD::SETCC:
2538    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
2539    break;
2540  }
2541}
2542
2543std::vector<unsigned> X86TargetLowering::
2544getRegClassForInlineAsmConstraint(const std::string &Constraint,
2545                                  MVT::ValueType VT) const {
2546  if (Constraint.size() == 1) {
2547    // FIXME: not handling fp-stack yet!
2548    // FIXME: not handling MMX registers yet ('y' constraint).
2549    switch (Constraint[0]) {      // GCC X86 Constraint Letters
2550    default: break;  // Unknown constriant letter
2551    case 'r':   // GENERAL_REGS
2552    case 'R':   // LEGACY_REGS
2553      return make_vector<unsigned>(X86::EAX, X86::EBX, X86::ECX, X86::EDX,
2554                                   X86::ESI, X86::EDI, X86::EBP, X86::ESP, 0);
2555    case 'l':   // INDEX_REGS
2556      return make_vector<unsigned>(X86::EAX, X86::EBX, X86::ECX, X86::EDX,
2557                                   X86::ESI, X86::EDI, X86::EBP, 0);
2558    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
2559    case 'Q':   // Q_REGS
2560      return make_vector<unsigned>(X86::EAX, X86::EBX, X86::ECX, X86::EDX, 0);
2561    case 'x':   // SSE_REGS if SSE1 allowed
2562      if (Subtarget->hasSSE1())
2563        return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2564                                     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
2565                                     0);
2566      return std::vector<unsigned>();
2567    case 'Y':   // SSE_REGS if SSE2 allowed
2568      if (Subtarget->hasSSE2())
2569        return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2570                                     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
2571                                     0);
2572      return std::vector<unsigned>();
2573    }
2574  }
2575
2576  return std::vector<unsigned>();
2577}
2578
2579/// isLegalAddressImmediate - Return true if the integer value or
2580/// GlobalValue can be used as the offset of the target addressing mode.
2581bool X86TargetLowering::isLegalAddressImmediate(int64_t V) const {
2582  // X86 allows a sign-extended 32-bit immediate field.
2583  return (V > -(1LL << 32) && V < (1LL << 32)-1);
2584}
2585
2586bool X86TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
2587  if (Subtarget->isTargetDarwin()) {
2588    Reloc::Model RModel = getTargetMachine().getRelocationModel();
2589    if (RModel == Reloc::Static)
2590      return true;
2591    else if (RModel == Reloc::DynamicNoPIC)
2592      return !DarwinGVRequiresExtraLoad(GV);
2593    else
2594      return false;
2595  } else
2596    return true;
2597}
2598
2599/// isShuffleMaskLegal - Targets can use this to indicate that they only
2600/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
2601/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
2602/// are assumed to be legal.
2603bool
2604X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
2605  // Only do shuffles on 128-bit vector types for now.
2606  if (MVT::getSizeInBits(VT) == 64) return false;
2607  return (Mask.Val->getNumOperands() == 2 ||
2608          X86::isSplatMask(Mask.Val) ||
2609          X86::isPSHUFDMask(Mask.Val) ||
2610          X86::isSHUFPMask(Mask.Val) ||
2611          X86::isUNPCKLMask(Mask.Val) ||
2612          X86::isUNPCKHMask(Mask.Val));
2613}
2614