X86ISelLowering.cpp revision 4b7ab12d93f5677d7ee8d4f6955bcfe52c22daca
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "Utils/X86ShuffleDecode.h"
18#include "X86.h"
19#include "X86InstrBuilder.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/VariadicFunction.h"
26#include "llvm/CodeGen/IntrinsicLowering.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/IR/CallingConv.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/GlobalAlias.h"
38#include "llvm/IR/GlobalVariable.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/LLVMContext.h"
42#include "llvm/MC/MCAsmInfo.h"
43#include "llvm/MC/MCContext.h"
44#include "llvm/MC/MCExpr.h"
45#include "llvm/MC/MCSymbol.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52#include <cctype>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57// Forward declarations.
58static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
59                       SDValue V2);
60
61/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
62/// sets things up to match to an AVX VEXTRACTF128 instruction or a
63/// simple subregister reference.  Idx is an index in the 128 bits we
64/// want.  It need not be aligned to a 128-bit bounday.  That makes
65/// lowering EXTRACT_VECTOR_ELT operations easier.
66static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
67                                   SelectionDAG &DAG, DebugLoc dl) {
68  EVT VT = Vec.getValueType();
69  assert(VT.is256BitVector() && "Unexpected vector size!");
70  EVT ElVT = VT.getVectorElementType();
71  unsigned Factor = VT.getSizeInBits()/128;
72  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
73                                  VT.getVectorNumElements()/Factor);
74
75  // Extract from UNDEF is UNDEF.
76  if (Vec.getOpcode() == ISD::UNDEF)
77    return DAG.getUNDEF(ResultVT);
78
79  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
80  // we can match to VEXTRACTF128.
81  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
82
83  // This is the index of the first element of the 128-bit chunk
84  // we want.
85  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
86                               * ElemsPerChunk);
87
88  // If the input is a buildvector just emit a smaller one.
89  if (Vec.getOpcode() == ISD::BUILD_VECTOR)
90    return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
91                       Vec->op_begin()+NormalizedIdxVal, ElemsPerChunk);
92
93  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
94  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
95                               VecIdx);
96
97  return Result;
98}
99
100/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
101/// sets things up to match to an AVX VINSERTF128 instruction or a
102/// simple superregister reference.  Idx is an index in the 128 bits
103/// we want.  It need not be aligned to a 128-bit bounday.  That makes
104/// lowering INSERT_VECTOR_ELT operations easier.
105static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
106                                  unsigned IdxVal, SelectionDAG &DAG,
107                                  DebugLoc dl) {
108  // Inserting UNDEF is Result
109  if (Vec.getOpcode() == ISD::UNDEF)
110    return Result;
111
112  EVT VT = Vec.getValueType();
113  assert(VT.is128BitVector() && "Unexpected vector size!");
114
115  EVT ElVT = VT.getVectorElementType();
116  EVT ResultVT = Result.getValueType();
117
118  // Insert the relevant 128 bits.
119  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
120
121  // This is the index of the first element of the 128-bit chunk
122  // we want.
123  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
124                               * ElemsPerChunk);
125
126  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
127  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
128                     VecIdx);
129}
130
131/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
132/// instructions. This is used because creating CONCAT_VECTOR nodes of
133/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
134/// large BUILD_VECTORS.
135static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
136                                   unsigned NumElems, SelectionDAG &DAG,
137                                   DebugLoc dl) {
138  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
139  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
140}
141
142static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
143  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
144  bool is64Bit = Subtarget->is64Bit();
145
146  if (Subtarget->isTargetEnvMacho()) {
147    if (is64Bit)
148      return new X86_64MachoTargetObjectFile();
149    return new TargetLoweringObjectFileMachO();
150  }
151
152  if (Subtarget->isTargetLinux())
153    return new X86LinuxTargetObjectFile();
154  if (Subtarget->isTargetELF())
155    return new TargetLoweringObjectFileELF();
156  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
157    return new TargetLoweringObjectFileCOFF();
158  llvm_unreachable("unknown subtarget type");
159}
160
161X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
162  : TargetLowering(TM, createTLOF(TM)) {
163  Subtarget = &TM.getSubtarget<X86Subtarget>();
164  X86ScalarSSEf64 = Subtarget->hasSSE2();
165  X86ScalarSSEf32 = Subtarget->hasSSE1();
166
167  RegInfo = TM.getRegisterInfo();
168  TD = getDataLayout();
169
170  // Set up the TargetLowering object.
171  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
172
173  // X86 is weird, it always uses i8 for shift amounts and setcc results.
174  setBooleanContents(ZeroOrOneBooleanContent);
175  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
176  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
177
178  // For 64-bit since we have so many registers use the ILP scheduler, for
179  // 32-bit code use the register pressure specific scheduling.
180  // For Atom, always use ILP scheduling.
181  if (Subtarget->isAtom())
182    setSchedulingPreference(Sched::ILP);
183  else if (Subtarget->is64Bit())
184    setSchedulingPreference(Sched::ILP);
185  else
186    setSchedulingPreference(Sched::RegPressure);
187  setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
188
189  // Bypass expensive divides on Atom when compiling with O2
190  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default) {
191    addBypassSlowDiv(32, 8);
192    if (Subtarget->is64Bit())
193      addBypassSlowDiv(64, 16);
194  }
195
196  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
197    // Setup Windows compiler runtime calls.
198    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
199    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
200    setLibcallName(RTLIB::SREM_I64, "_allrem");
201    setLibcallName(RTLIB::UREM_I64, "_aullrem");
202    setLibcallName(RTLIB::MUL_I64, "_allmul");
203    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
204    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
207    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
208
209    // The _ftol2 runtime function has an unusual calling conv, which
210    // is modeled by a special pseudo-instruction.
211    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
212    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
213    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
214    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
215  }
216
217  if (Subtarget->isTargetDarwin()) {
218    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
219    setUseUnderscoreSetJmp(false);
220    setUseUnderscoreLongJmp(false);
221  } else if (Subtarget->isTargetMingw()) {
222    // MS runtime is weird: it exports _setjmp, but longjmp!
223    setUseUnderscoreSetJmp(true);
224    setUseUnderscoreLongJmp(false);
225  } else {
226    setUseUnderscoreSetJmp(true);
227    setUseUnderscoreLongJmp(true);
228  }
229
230  // Set up the register classes.
231  addRegisterClass(MVT::i8, &X86::GR8RegClass);
232  addRegisterClass(MVT::i16, &X86::GR16RegClass);
233  addRegisterClass(MVT::i32, &X86::GR32RegClass);
234  if (Subtarget->is64Bit())
235    addRegisterClass(MVT::i64, &X86::GR64RegClass);
236
237  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
238
239  // We don't accept any truncstore of integer registers.
240  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
241  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
242  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
243  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
244  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
245  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
246
247  // SETOEQ and SETUNE require checking two conditions.
248  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
249  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
250  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
251  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
252  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
253  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
254
255  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
256  // operation.
257  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
258  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
259  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
260
261  if (Subtarget->is64Bit()) {
262    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
264  } else if (!TM.Options.UseSoftFloat) {
265    // We have an algorithm for SSE2->double, and we turn this into a
266    // 64-bit FILD followed by conditional FADD for other targets.
267    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
268    // We have an algorithm for SSE2, and we turn this into a 64-bit
269    // FILD for other targets.
270    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
271  }
272
273  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
274  // this operation.
275  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
276  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
277
278  if (!TM.Options.UseSoftFloat) {
279    // SSE has no i16 to fp conversion, only i32
280    if (X86ScalarSSEf32) {
281      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
282      // f32 and f64 cases are Legal, f80 case is not
283      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
284    } else {
285      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
286      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
287    }
288  } else {
289    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
290    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
291  }
292
293  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
294  // are Legal, f80 is custom lowered.
295  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
296  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
297
298  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
299  // this operation.
300  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
301  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
302
303  if (X86ScalarSSEf32) {
304    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
305    // f32 and f64 cases are Legal, f80 case is not
306    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
307  } else {
308    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
309    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
310  }
311
312  // Handle FP_TO_UINT by promoting the destination to a larger signed
313  // conversion.
314  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
315  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
316  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
317
318  if (Subtarget->is64Bit()) {
319    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
320    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
321  } else if (!TM.Options.UseSoftFloat) {
322    // Since AVX is a superset of SSE3, only check for SSE here.
323    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
324      // Expand FP_TO_UINT into a select.
325      // FIXME: We would like to use a Custom expander here eventually to do
326      // the optimal thing for SSE vs. the default expansion in the legalizer.
327      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
328    else
329      // With SSE3 we can use fisttpll to convert to a signed i64; without
330      // SSE, we're stuck with a fistpll.
331      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
332  }
333
334  if (isTargetFTOL()) {
335    // Use the _ftol2 runtime function, which has a pseudo-instruction
336    // to handle its weird calling convention.
337    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
338  }
339
340  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
341  if (!X86ScalarSSEf64) {
342    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
343    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
344    if (Subtarget->is64Bit()) {
345      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
346      // Without SSE, i64->f64 goes through memory.
347      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
348    }
349  }
350
351  // Scalar integer divide and remainder are lowered to use operations that
352  // produce two results, to match the available instructions. This exposes
353  // the two-result form to trivial CSE, which is able to combine x/y and x%y
354  // into a single instruction.
355  //
356  // Scalar integer multiply-high is also lowered to use two-result
357  // operations, to match the available instructions. However, plain multiply
358  // (low) operations are left as Legal, as there are single-result
359  // instructions for this in x86. Using the two-result multiply instructions
360  // when both high and low results are needed must be arranged by dagcombine.
361  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
362    MVT VT = IntVTs[i];
363    setOperationAction(ISD::MULHS, VT, Expand);
364    setOperationAction(ISD::MULHU, VT, Expand);
365    setOperationAction(ISD::SDIV, VT, Expand);
366    setOperationAction(ISD::UDIV, VT, Expand);
367    setOperationAction(ISD::SREM, VT, Expand);
368    setOperationAction(ISD::UREM, VT, Expand);
369
370    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
371    setOperationAction(ISD::ADDC, VT, Custom);
372    setOperationAction(ISD::ADDE, VT, Custom);
373    setOperationAction(ISD::SUBC, VT, Custom);
374    setOperationAction(ISD::SUBE, VT, Custom);
375  }
376
377  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
378  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
379  setOperationAction(ISD::BR_CC            , MVT::f32,   Expand);
380  setOperationAction(ISD::BR_CC            , MVT::f64,   Expand);
381  setOperationAction(ISD::BR_CC            , MVT::f80,   Expand);
382  setOperationAction(ISD::BR_CC            , MVT::i8,    Expand);
383  setOperationAction(ISD::BR_CC            , MVT::i16,   Expand);
384  setOperationAction(ISD::BR_CC            , MVT::i32,   Expand);
385  setOperationAction(ISD::BR_CC            , MVT::i64,   Expand);
386  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
387  if (Subtarget->is64Bit())
388    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
389  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
390  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
391  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
392  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
393  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
394  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
395  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
396  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
397
398  // Promote the i8 variants and force them on up to i32 which has a shorter
399  // encoding.
400  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
401  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
402  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
403  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
404  if (Subtarget->hasBMI()) {
405    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
406    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
407    if (Subtarget->is64Bit())
408      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
409  } else {
410    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
411    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
412    if (Subtarget->is64Bit())
413      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
414  }
415
416  if (Subtarget->hasLZCNT()) {
417    // When promoting the i8 variants, force them to i32 for a shorter
418    // encoding.
419    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
420    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
421    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
422    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
423    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
424    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
425    if (Subtarget->is64Bit())
426      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
427  } else {
428    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
429    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
430    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
431    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
432    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
433    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
434    if (Subtarget->is64Bit()) {
435      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
436      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
437    }
438  }
439
440  if (Subtarget->hasPOPCNT()) {
441    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
442  } else {
443    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
444    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
445    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
446    if (Subtarget->is64Bit())
447      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
448  }
449
450  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
451  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
452
453  // These should be promoted to a larger select which is supported.
454  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
455  // X86 wants to expand cmov itself.
456  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
457  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
458  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
459  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
460  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
461  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
462  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
463  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
464  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
465  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
466  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
467  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
468  if (Subtarget->is64Bit()) {
469    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
470    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
471  }
472  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
473  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intened to support
474  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
475  // support continuation, user-level threading, and etc.. As a result, no
476  // other SjLj exception interfaces are implemented and please don't build
477  // your own exception handling based on them.
478  // LLVM/Clang supports zero-cost DWARF exception handling.
479  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
480  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
481
482  // Darwin ABI issue.
483  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
484  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
485  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
486  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
487  if (Subtarget->is64Bit())
488    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
489  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
490  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
491  if (Subtarget->is64Bit()) {
492    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
493    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
494    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
495    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
496    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
497  }
498  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
499  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
500  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
501  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
502  if (Subtarget->is64Bit()) {
503    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
504    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
505    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
506  }
507
508  if (Subtarget->hasSSE1())
509    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
510
511  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
512  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
513
514  // On X86 and X86-64, atomic operations are lowered to locked instructions.
515  // Locked instructions, in turn, have implicit fence semantics (all memory
516  // operations are flushed before issuing the locked instruction, and they
517  // are not buffered), so we can fold away the common pattern of
518  // fence-atomic-fence.
519  setShouldFoldAtomicFences(true);
520
521  // Expand certain atomics
522  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
523    MVT VT = IntVTs[i];
524    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
525    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
526    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
527  }
528
529  if (!Subtarget->is64Bit()) {
530    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
531    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
532    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
533    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
534    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
535    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
536    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
537    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
538    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
539    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
540    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
541    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
542  }
543
544  if (Subtarget->hasCmpxchg16b()) {
545    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
546  }
547
548  // FIXME - use subtarget debug flags
549  if (!Subtarget->isTargetDarwin() &&
550      !Subtarget->isTargetELF() &&
551      !Subtarget->isTargetCygMing()) {
552    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
553  }
554
555  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
556  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
557  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
558  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
559  if (Subtarget->is64Bit()) {
560    setExceptionPointerRegister(X86::RAX);
561    setExceptionSelectorRegister(X86::RDX);
562  } else {
563    setExceptionPointerRegister(X86::EAX);
564    setExceptionSelectorRegister(X86::EDX);
565  }
566  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
567  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
568
569  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
570  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
571
572  setOperationAction(ISD::TRAP, MVT::Other, Legal);
573  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
574
575  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
576  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
577  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
578  if (Subtarget->is64Bit()) {
579    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
580    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
581  } else {
582    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
583    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
584  }
585
586  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
587  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
588
589  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
590    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
591                       MVT::i64 : MVT::i32, Custom);
592  else if (TM.Options.EnableSegmentedStacks)
593    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
594                       MVT::i64 : MVT::i32, Custom);
595  else
596    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
597                       MVT::i64 : MVT::i32, Expand);
598
599  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
600    // f32 and f64 use SSE.
601    // Set up the FP register classes.
602    addRegisterClass(MVT::f32, &X86::FR32RegClass);
603    addRegisterClass(MVT::f64, &X86::FR64RegClass);
604
605    // Use ANDPD to simulate FABS.
606    setOperationAction(ISD::FABS , MVT::f64, Custom);
607    setOperationAction(ISD::FABS , MVT::f32, Custom);
608
609    // Use XORP to simulate FNEG.
610    setOperationAction(ISD::FNEG , MVT::f64, Custom);
611    setOperationAction(ISD::FNEG , MVT::f32, Custom);
612
613    // Use ANDPD and ORPD to simulate FCOPYSIGN.
614    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
615    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
616
617    // Lower this to FGETSIGNx86 plus an AND.
618    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
619    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
620
621    // We don't support sin/cos/fmod
622    setOperationAction(ISD::FSIN   , MVT::f64, Expand);
623    setOperationAction(ISD::FCOS   , MVT::f64, Expand);
624    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
625    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
626    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
627    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
628
629    // Expand FP immediates into loads from the stack, except for the special
630    // cases we handle.
631    addLegalFPImmediate(APFloat(+0.0)); // xorpd
632    addLegalFPImmediate(APFloat(+0.0f)); // xorps
633  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
634    // Use SSE for f32, x87 for f64.
635    // Set up the FP register classes.
636    addRegisterClass(MVT::f32, &X86::FR32RegClass);
637    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
638
639    // Use ANDPS to simulate FABS.
640    setOperationAction(ISD::FABS , MVT::f32, Custom);
641
642    // Use XORP to simulate FNEG.
643    setOperationAction(ISD::FNEG , MVT::f32, Custom);
644
645    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
646
647    // Use ANDPS and ORPS to simulate FCOPYSIGN.
648    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
649    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
650
651    // We don't support sin/cos/fmod
652    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
653    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
654    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
655
656    // Special cases we handle for FP constants.
657    addLegalFPImmediate(APFloat(+0.0f)); // xorps
658    addLegalFPImmediate(APFloat(+0.0)); // FLD0
659    addLegalFPImmediate(APFloat(+1.0)); // FLD1
660    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
661    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
662
663    if (!TM.Options.UnsafeFPMath) {
664      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
665      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
666      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
667    }
668  } else if (!TM.Options.UseSoftFloat) {
669    // f32 and f64 in x87.
670    // Set up the FP register classes.
671    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
672    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
673
674    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
675    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
676    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
677    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
678
679    if (!TM.Options.UnsafeFPMath) {
680      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
681      setOperationAction(ISD::FSIN   , MVT::f32, Expand);
682      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
683      setOperationAction(ISD::FCOS   , MVT::f32, Expand);
684      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
685      setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
686    }
687    addLegalFPImmediate(APFloat(+0.0)); // FLD0
688    addLegalFPImmediate(APFloat(+1.0)); // FLD1
689    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
690    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
691    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
692    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
693    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
694    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
695  }
696
697  // We don't support FMA.
698  setOperationAction(ISD::FMA, MVT::f64, Expand);
699  setOperationAction(ISD::FMA, MVT::f32, Expand);
700
701  // Long double always uses X87.
702  if (!TM.Options.UseSoftFloat) {
703    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
704    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
705    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
706    {
707      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
708      addLegalFPImmediate(TmpFlt);  // FLD0
709      TmpFlt.changeSign();
710      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
711
712      bool ignored;
713      APFloat TmpFlt2(+1.0);
714      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
715                      &ignored);
716      addLegalFPImmediate(TmpFlt2);  // FLD1
717      TmpFlt2.changeSign();
718      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
719    }
720
721    if (!TM.Options.UnsafeFPMath) {
722      setOperationAction(ISD::FSIN   , MVT::f80, Expand);
723      setOperationAction(ISD::FCOS   , MVT::f80, Expand);
724      setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
725    }
726
727    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
728    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
729    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
730    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
731    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
732    setOperationAction(ISD::FMA, MVT::f80, Expand);
733  }
734
735  // Always use a library call for pow.
736  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
737  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
738  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
739
740  setOperationAction(ISD::FLOG, MVT::f80, Expand);
741  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
742  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
743  setOperationAction(ISD::FEXP, MVT::f80, Expand);
744  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
745
746  // First set operation action for all vector types to either promote
747  // (for widening) or expand (for scalarization). Then we will selectively
748  // turn on ones that can be effectively codegen'd.
749  for (int i = MVT::FIRST_VECTOR_VALUETYPE;
750           i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
751    MVT VT = (MVT::SimpleValueType)i;
752    setOperationAction(ISD::ADD , VT, Expand);
753    setOperationAction(ISD::SUB , VT, Expand);
754    setOperationAction(ISD::FADD, VT, Expand);
755    setOperationAction(ISD::FNEG, VT, Expand);
756    setOperationAction(ISD::FSUB, VT, Expand);
757    setOperationAction(ISD::MUL , VT, Expand);
758    setOperationAction(ISD::FMUL, VT, Expand);
759    setOperationAction(ISD::SDIV, VT, Expand);
760    setOperationAction(ISD::UDIV, VT, Expand);
761    setOperationAction(ISD::FDIV, VT, Expand);
762    setOperationAction(ISD::SREM, VT, Expand);
763    setOperationAction(ISD::UREM, VT, Expand);
764    setOperationAction(ISD::LOAD, VT, Expand);
765    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
766    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
767    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
768    setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
769    setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
770    setOperationAction(ISD::FABS, VT, Expand);
771    setOperationAction(ISD::FSIN, VT, Expand);
772    setOperationAction(ISD::FSINCOS, VT, Expand);
773    setOperationAction(ISD::FCOS, VT, Expand);
774    setOperationAction(ISD::FSINCOS, VT, Expand);
775    setOperationAction(ISD::FREM, VT, Expand);
776    setOperationAction(ISD::FMA,  VT, Expand);
777    setOperationAction(ISD::FPOWI, VT, Expand);
778    setOperationAction(ISD::FSQRT, VT, Expand);
779    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
780    setOperationAction(ISD::FFLOOR, VT, Expand);
781    setOperationAction(ISD::FCEIL, VT, Expand);
782    setOperationAction(ISD::FTRUNC, VT, Expand);
783    setOperationAction(ISD::FRINT, VT, Expand);
784    setOperationAction(ISD::FNEARBYINT, VT, Expand);
785    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
786    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
787    setOperationAction(ISD::SDIVREM, VT, Expand);
788    setOperationAction(ISD::UDIVREM, VT, Expand);
789    setOperationAction(ISD::FPOW, VT, Expand);
790    setOperationAction(ISD::CTPOP, VT, Expand);
791    setOperationAction(ISD::CTTZ, VT, Expand);
792    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
793    setOperationAction(ISD::CTLZ, VT, Expand);
794    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
795    setOperationAction(ISD::SHL, VT, Expand);
796    setOperationAction(ISD::SRA, VT, Expand);
797    setOperationAction(ISD::SRL, VT, Expand);
798    setOperationAction(ISD::ROTL, VT, Expand);
799    setOperationAction(ISD::ROTR, VT, Expand);
800    setOperationAction(ISD::BSWAP, VT, Expand);
801    setOperationAction(ISD::SETCC, VT, Expand);
802    setOperationAction(ISD::FLOG, VT, Expand);
803    setOperationAction(ISD::FLOG2, VT, Expand);
804    setOperationAction(ISD::FLOG10, VT, Expand);
805    setOperationAction(ISD::FEXP, VT, Expand);
806    setOperationAction(ISD::FEXP2, VT, Expand);
807    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
808    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
809    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
810    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
811    setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
812    setOperationAction(ISD::TRUNCATE, VT, Expand);
813    setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
814    setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
815    setOperationAction(ISD::ANY_EXTEND, VT, Expand);
816    setOperationAction(ISD::VSELECT, VT, Expand);
817    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
818             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
819      setTruncStoreAction(VT,
820                          (MVT::SimpleValueType)InnerVT, Expand);
821    setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
822    setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
823    setLoadExtAction(ISD::EXTLOAD, VT, Expand);
824  }
825
826  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
827  // with -msoft-float, disable use of MMX as well.
828  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
829    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
830    // No operations on x86mmx supported, everything uses intrinsics.
831  }
832
833  // MMX-sized vectors (other than x86mmx) are expected to be expanded
834  // into smaller operations.
835  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
836  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
837  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
838  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
839  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
840  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
841  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
842  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
843  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
844  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
845  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
846  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
847  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
848  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
849  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
850  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
851  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
852  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
853  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
854  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
855  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
856  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
857  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
858  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
859  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
860  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
861  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
862  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
863  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
864
865  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
866    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
867
868    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
869    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
870    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
871    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
872    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
873    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
874    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
875    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
876    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
877    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
878    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
879    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
880  }
881
882  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
883    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
884
885    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
886    // registers cannot be used even for integer operations.
887    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
888    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
889    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
890    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
891
892    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
893    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
894    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
895    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
896    setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
897    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
898    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
899    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
900    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
901    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
902    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
903    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
904    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
905    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
906    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
907    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
908    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
909    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
910
911    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
912    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
913    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
914    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
915
916    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
917    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
918    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
919    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
920    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
921
922    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
923    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
924      MVT VT = (MVT::SimpleValueType)i;
925      // Do not attempt to custom lower non-power-of-2 vectors
926      if (!isPowerOf2_32(VT.getVectorNumElements()))
927        continue;
928      // Do not attempt to custom lower non-128-bit vectors
929      if (!VT.is128BitVector())
930        continue;
931      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
932      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
933      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
934    }
935
936    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
937    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
938    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
939    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
940    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
941    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
942
943    if (Subtarget->is64Bit()) {
944      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
945      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
946    }
947
948    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
949    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
950      MVT VT = (MVT::SimpleValueType)i;
951
952      // Do not attempt to promote non-128-bit vectors
953      if (!VT.is128BitVector())
954        continue;
955
956      setOperationAction(ISD::AND,    VT, Promote);
957      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
958      setOperationAction(ISD::OR,     VT, Promote);
959      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
960      setOperationAction(ISD::XOR,    VT, Promote);
961      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
962      setOperationAction(ISD::LOAD,   VT, Promote);
963      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
964      setOperationAction(ISD::SELECT, VT, Promote);
965      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
966    }
967
968    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
969
970    // Custom lower v2i64 and v2f64 selects.
971    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
972    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
973    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
974    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
975
976    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
977    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
978
979    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
980    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
981    // As there is no 64-bit GPR available, we need build a special custom
982    // sequence to convert from v2i32 to v2f32.
983    if (!Subtarget->is64Bit())
984      setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
985
986    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
987    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
988
989    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
990  }
991
992  if (Subtarget->hasSSE41()) {
993    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
994    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
995    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
996    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
997    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
998    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
999    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
1000    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
1001    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
1002    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
1003
1004    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
1005    setOperationAction(ISD::FCEIL,              MVT::v4f32, Legal);
1006    setOperationAction(ISD::FTRUNC,             MVT::v4f32, Legal);
1007    setOperationAction(ISD::FRINT,              MVT::v4f32, Legal);
1008    setOperationAction(ISD::FNEARBYINT,         MVT::v4f32, Legal);
1009    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
1010    setOperationAction(ISD::FCEIL,              MVT::v2f64, Legal);
1011    setOperationAction(ISD::FTRUNC,             MVT::v2f64, Legal);
1012    setOperationAction(ISD::FRINT,              MVT::v2f64, Legal);
1013    setOperationAction(ISD::FNEARBYINT,         MVT::v2f64, Legal);
1014
1015    // FIXME: Do we need to handle scalar-to-vector here?
1016    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
1017
1018    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
1019    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
1020    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
1021    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
1022    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
1023
1024    // i8 and i16 vectors are custom , because the source register and source
1025    // source memory operand types are not the same width.  f32 vectors are
1026    // custom since the immediate controlling the insert encodes additional
1027    // information.
1028    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
1029    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
1030    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
1031    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
1032
1033    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
1034    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
1035    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
1036    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
1037
1038    // FIXME: these should be Legal but thats only for the case where
1039    // the index is constant.  For now custom expand to deal with that.
1040    if (Subtarget->is64Bit()) {
1041      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
1042      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1043    }
1044  }
1045
1046  if (Subtarget->hasSSE2()) {
1047    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
1048    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
1049
1050    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1051    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1052
1053    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1054    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1055
1056    if (Subtarget->hasInt256()) {
1057      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
1058      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
1059
1060      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
1061      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
1062
1063      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1064    } else {
1065      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1066      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1067
1068      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1069      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1070
1071      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1072    }
1073    setOperationAction(ISD::SDIV,              MVT::v8i16, Custom);
1074    setOperationAction(ISD::SDIV,              MVT::v4i32, Custom);
1075  }
1076
1077  if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
1078    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1079    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1080    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1081    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1082    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1083    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1084
1085    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1086    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1087    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1088
1089    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1090    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1091    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1092    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1093    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1094    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1095    setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal);
1096    setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal);
1097    setOperationAction(ISD::FRINT,              MVT::v8f32, Legal);
1098    setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal);
1099    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1100    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1101
1102    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1103    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1104    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1105    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1106    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1107    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1108    setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal);
1109    setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal);
1110    setOperationAction(ISD::FRINT,              MVT::v4f64, Legal);
1111    setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal);
1112    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1113    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1114
1115    setOperationAction(ISD::TRUNCATE,           MVT::v8i16, Custom);
1116    setOperationAction(ISD::TRUNCATE,           MVT::v4i32, Custom);
1117
1118    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Custom);
1119
1120    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1121    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1122    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1123
1124    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i32, Custom);
1125    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
1126    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
1127
1128    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1129
1130    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1131    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1132
1133    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1134    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1135
1136    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1137    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1138
1139    setOperationAction(ISD::SDIV,              MVT::v16i16, Custom);
1140
1141    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1142    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1143    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1144    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1145
1146    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1147    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1148    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1149
1150    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1151    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1152    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1153    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1154
1155    setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom);
1156    setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom);
1157    setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom);
1158    setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom);
1159    setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom);
1160    setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom);
1161
1162    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1163      setOperationAction(ISD::FMA,             MVT::v8f32, Legal);
1164      setOperationAction(ISD::FMA,             MVT::v4f64, Legal);
1165      setOperationAction(ISD::FMA,             MVT::v4f32, Legal);
1166      setOperationAction(ISD::FMA,             MVT::v2f64, Legal);
1167      setOperationAction(ISD::FMA,             MVT::f32, Legal);
1168      setOperationAction(ISD::FMA,             MVT::f64, Legal);
1169    }
1170
1171    if (Subtarget->hasInt256()) {
1172      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1173      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1174      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1175      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1176
1177      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1178      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1179      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1180      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1181
1182      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1183      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1184      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1185      // Don't lower v32i8 because there is no 128-bit byte mul
1186
1187      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1188
1189      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1190      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1191
1192      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1193      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1194
1195      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1196
1197      setOperationAction(ISD::SDIV,            MVT::v8i32, Custom);
1198    } else {
1199      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1200      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1201      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1202      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1203
1204      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1205      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1206      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1207      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1208
1209      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1210      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1211      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1212      // Don't lower v32i8 because there is no 128-bit byte mul
1213
1214      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1215      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1216
1217      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1218      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1219
1220      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1221    }
1222
1223    // Custom lower several nodes for 256-bit types.
1224    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1225             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1226      MVT VT = (MVT::SimpleValueType)i;
1227
1228      // Extract subvector is special because the value type
1229      // (result) is 128-bit but the source is 256-bit wide.
1230      if (VT.is128BitVector())
1231        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1232
1233      // Do not attempt to custom lower other non-256-bit vectors
1234      if (!VT.is256BitVector())
1235        continue;
1236
1237      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1238      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1239      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1240      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1241      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1242      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1243      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1244    }
1245
1246    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1247    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1248      MVT VT = (MVT::SimpleValueType)i;
1249
1250      // Do not attempt to promote non-256-bit vectors
1251      if (!VT.is256BitVector())
1252        continue;
1253
1254      setOperationAction(ISD::AND,    VT, Promote);
1255      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1256      setOperationAction(ISD::OR,     VT, Promote);
1257      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1258      setOperationAction(ISD::XOR,    VT, Promote);
1259      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1260      setOperationAction(ISD::LOAD,   VT, Promote);
1261      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1262      setOperationAction(ISD::SELECT, VT, Promote);
1263      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1264    }
1265  }
1266
1267  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1268  // of this type with custom code.
1269  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1270           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1271    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1272                       Custom);
1273  }
1274
1275  // We want to custom lower some of our intrinsics.
1276  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1277  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1278
1279  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1280  // handle type legalization for these operations here.
1281  //
1282  // FIXME: We really should do custom legalization for addition and
1283  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1284  // than generic legalization for 64-bit multiplication-with-overflow, though.
1285  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1286    // Add/Sub/Mul with overflow operations are custom lowered.
1287    MVT VT = IntVTs[i];
1288    setOperationAction(ISD::SADDO, VT, Custom);
1289    setOperationAction(ISD::UADDO, VT, Custom);
1290    setOperationAction(ISD::SSUBO, VT, Custom);
1291    setOperationAction(ISD::USUBO, VT, Custom);
1292    setOperationAction(ISD::SMULO, VT, Custom);
1293    setOperationAction(ISD::UMULO, VT, Custom);
1294  }
1295
1296  // There are no 8-bit 3-address imul/mul instructions
1297  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1298  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1299
1300  if (!Subtarget->is64Bit()) {
1301    // These libcalls are not available in 32-bit.
1302    setLibcallName(RTLIB::SHL_I128, 0);
1303    setLibcallName(RTLIB::SRL_I128, 0);
1304    setLibcallName(RTLIB::SRA_I128, 0);
1305  }
1306
1307  // Combine sin / cos into one node or libcall if possible.
1308  if (Subtarget->hasSinCos()) {
1309    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
1310    setLibcallName(RTLIB::SINCOS_F64, "sincos");
1311    if (Subtarget->isTargetDarwin()) {
1312      // For MacOSX, we don't want to the normal expansion of a libcall to
1313      // sincos. We want to issue a libcall to __sincos_stret to avoid memory
1314      // traffic.
1315      setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1316      setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1317    }
1318  }
1319
1320  // We have target-specific dag combine patterns for the following nodes:
1321  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1322  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1323  setTargetDAGCombine(ISD::VSELECT);
1324  setTargetDAGCombine(ISD::SELECT);
1325  setTargetDAGCombine(ISD::SHL);
1326  setTargetDAGCombine(ISD::SRA);
1327  setTargetDAGCombine(ISD::SRL);
1328  setTargetDAGCombine(ISD::OR);
1329  setTargetDAGCombine(ISD::AND);
1330  setTargetDAGCombine(ISD::ADD);
1331  setTargetDAGCombine(ISD::FADD);
1332  setTargetDAGCombine(ISD::FSUB);
1333  setTargetDAGCombine(ISD::FMA);
1334  setTargetDAGCombine(ISD::SUB);
1335  setTargetDAGCombine(ISD::LOAD);
1336  setTargetDAGCombine(ISD::STORE);
1337  setTargetDAGCombine(ISD::ZERO_EXTEND);
1338  setTargetDAGCombine(ISD::ANY_EXTEND);
1339  setTargetDAGCombine(ISD::SIGN_EXTEND);
1340  setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1341  setTargetDAGCombine(ISD::TRUNCATE);
1342  setTargetDAGCombine(ISD::SINT_TO_FP);
1343  setTargetDAGCombine(ISD::SETCC);
1344  if (Subtarget->is64Bit())
1345    setTargetDAGCombine(ISD::MUL);
1346  setTargetDAGCombine(ISD::XOR);
1347
1348  computeRegisterProperties();
1349
1350  // On Darwin, -Os means optimize for size without hurting performance,
1351  // do not reduce the limit.
1352  MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1353  MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1354  MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1355  MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1356  MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1357  MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1358  setPrefLoopAlignment(4); // 2^4 bytes.
1359  BenefitFromCodePlacementOpt = true;
1360
1361  // Predictable cmov don't hurt on atom because it's in-order.
1362  PredictableSelectIsExpensive = !Subtarget->isAtom();
1363
1364  setPrefFunctionAlignment(4); // 2^4 bytes.
1365}
1366
1367EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1368  if (!VT.isVector()) return MVT::i8;
1369  return VT.changeVectorElementTypeToInteger();
1370}
1371
1372/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1373/// the desired ByVal argument alignment.
1374static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1375  if (MaxAlign == 16)
1376    return;
1377  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1378    if (VTy->getBitWidth() == 128)
1379      MaxAlign = 16;
1380  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1381    unsigned EltAlign = 0;
1382    getMaxByValAlign(ATy->getElementType(), EltAlign);
1383    if (EltAlign > MaxAlign)
1384      MaxAlign = EltAlign;
1385  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1386    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1387      unsigned EltAlign = 0;
1388      getMaxByValAlign(STy->getElementType(i), EltAlign);
1389      if (EltAlign > MaxAlign)
1390        MaxAlign = EltAlign;
1391      if (MaxAlign == 16)
1392        break;
1393    }
1394  }
1395}
1396
1397/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1398/// function arguments in the caller parameter area. For X86, aggregates
1399/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1400/// are at 4-byte boundaries.
1401unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1402  if (Subtarget->is64Bit()) {
1403    // Max of 8 and alignment of type.
1404    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1405    if (TyAlign > 8)
1406      return TyAlign;
1407    return 8;
1408  }
1409
1410  unsigned Align = 4;
1411  if (Subtarget->hasSSE1())
1412    getMaxByValAlign(Ty, Align);
1413  return Align;
1414}
1415
1416/// getOptimalMemOpType - Returns the target specific optimal type for load
1417/// and store operations as a result of memset, memcpy, and memmove
1418/// lowering. If DstAlign is zero that means it's safe to destination
1419/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1420/// means there isn't a need to check it against alignment requirement,
1421/// probably because the source does not need to be loaded. If 'IsMemset' is
1422/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
1423/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
1424/// source is constant so it does not need to be loaded.
1425/// It returns EVT::Other if the type should be determined using generic
1426/// target-independent logic.
1427EVT
1428X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1429                                       unsigned DstAlign, unsigned SrcAlign,
1430                                       bool IsMemset, bool ZeroMemset,
1431                                       bool MemcpyStrSrc,
1432                                       MachineFunction &MF) const {
1433  const Function *F = MF.getFunction();
1434  if ((!IsMemset || ZeroMemset) &&
1435      !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1436                                       Attribute::NoImplicitFloat)) {
1437    if (Size >= 16 &&
1438        (Subtarget->isUnalignedMemAccessFast() ||
1439         ((DstAlign == 0 || DstAlign >= 16) &&
1440          (SrcAlign == 0 || SrcAlign >= 16)))) {
1441      if (Size >= 32) {
1442        if (Subtarget->hasInt256())
1443          return MVT::v8i32;
1444        if (Subtarget->hasFp256())
1445          return MVT::v8f32;
1446      }
1447      if (Subtarget->hasSSE2())
1448        return MVT::v4i32;
1449      if (Subtarget->hasSSE1())
1450        return MVT::v4f32;
1451    } else if (!MemcpyStrSrc && Size >= 8 &&
1452               !Subtarget->is64Bit() &&
1453               Subtarget->hasSSE2()) {
1454      // Do not use f64 to lower memcpy if source is string constant. It's
1455      // better to use i32 to avoid the loads.
1456      return MVT::f64;
1457    }
1458  }
1459  if (Subtarget->is64Bit() && Size >= 8)
1460    return MVT::i64;
1461  return MVT::i32;
1462}
1463
1464bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
1465  if (VT == MVT::f32)
1466    return X86ScalarSSEf32;
1467  else if (VT == MVT::f64)
1468    return X86ScalarSSEf64;
1469  return true;
1470}
1471
1472bool
1473X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
1474  if (Fast)
1475    *Fast = Subtarget->isUnalignedMemAccessFast();
1476  return true;
1477}
1478
1479/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1480/// current function.  The returned value is a member of the
1481/// MachineJumpTableInfo::JTEntryKind enum.
1482unsigned X86TargetLowering::getJumpTableEncoding() const {
1483  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1484  // symbol.
1485  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1486      Subtarget->isPICStyleGOT())
1487    return MachineJumpTableInfo::EK_Custom32;
1488
1489  // Otherwise, use the normal jump table encoding heuristics.
1490  return TargetLowering::getJumpTableEncoding();
1491}
1492
1493const MCExpr *
1494X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1495                                             const MachineBasicBlock *MBB,
1496                                             unsigned uid,MCContext &Ctx) const{
1497  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1498         Subtarget->isPICStyleGOT());
1499  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1500  // entries.
1501  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1502                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1503}
1504
1505/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1506/// jumptable.
1507SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1508                                                    SelectionDAG &DAG) const {
1509  if (!Subtarget->is64Bit())
1510    // This doesn't have DebugLoc associated with it, but is not really the
1511    // same as a Register.
1512    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1513  return Table;
1514}
1515
1516/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1517/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1518/// MCExpr.
1519const MCExpr *X86TargetLowering::
1520getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1521                             MCContext &Ctx) const {
1522  // X86-64 uses RIP relative addressing based on the jump table label.
1523  if (Subtarget->isPICStyleRIPRel())
1524    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1525
1526  // Otherwise, the reference is relative to the PIC base.
1527  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1528}
1529
1530// FIXME: Why this routine is here? Move to RegInfo!
1531std::pair<const TargetRegisterClass*, uint8_t>
1532X86TargetLowering::findRepresentativeClass(MVT VT) const{
1533  const TargetRegisterClass *RRC = 0;
1534  uint8_t Cost = 1;
1535  switch (VT.SimpleTy) {
1536  default:
1537    return TargetLowering::findRepresentativeClass(VT);
1538  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1539    RRC = Subtarget->is64Bit() ?
1540      (const TargetRegisterClass*)&X86::GR64RegClass :
1541      (const TargetRegisterClass*)&X86::GR32RegClass;
1542    break;
1543  case MVT::x86mmx:
1544    RRC = &X86::VR64RegClass;
1545    break;
1546  case MVT::f32: case MVT::f64:
1547  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1548  case MVT::v4f32: case MVT::v2f64:
1549  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1550  case MVT::v4f64:
1551    RRC = &X86::VR128RegClass;
1552    break;
1553  }
1554  return std::make_pair(RRC, Cost);
1555}
1556
1557bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1558                                               unsigned &Offset) const {
1559  if (!Subtarget->isTargetLinux())
1560    return false;
1561
1562  if (Subtarget->is64Bit()) {
1563    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1564    Offset = 0x28;
1565    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1566      AddressSpace = 256;
1567    else
1568      AddressSpace = 257;
1569  } else {
1570    // %gs:0x14 on i386
1571    Offset = 0x14;
1572    AddressSpace = 256;
1573  }
1574  return true;
1575}
1576
1577//===----------------------------------------------------------------------===//
1578//               Return Value Calling Convention Implementation
1579//===----------------------------------------------------------------------===//
1580
1581#include "X86GenCallingConv.inc"
1582
1583bool
1584X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1585                                  MachineFunction &MF, bool isVarArg,
1586                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1587                        LLVMContext &Context) const {
1588  SmallVector<CCValAssign, 16> RVLocs;
1589  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1590                 RVLocs, Context);
1591  return CCInfo.CheckReturn(Outs, RetCC_X86);
1592}
1593
1594SDValue
1595X86TargetLowering::LowerReturn(SDValue Chain,
1596                               CallingConv::ID CallConv, bool isVarArg,
1597                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1598                               const SmallVectorImpl<SDValue> &OutVals,
1599                               DebugLoc dl, SelectionDAG &DAG) const {
1600  MachineFunction &MF = DAG.getMachineFunction();
1601  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1602
1603  SmallVector<CCValAssign, 16> RVLocs;
1604  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1605                 RVLocs, *DAG.getContext());
1606  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1607
1608  SDValue Flag;
1609  SmallVector<SDValue, 6> RetOps;
1610  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1611  // Operand #1 = Bytes To Pop
1612  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1613                   MVT::i16));
1614
1615  // Copy the result values into the output registers.
1616  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1617    CCValAssign &VA = RVLocs[i];
1618    assert(VA.isRegLoc() && "Can only return in registers!");
1619    SDValue ValToCopy = OutVals[i];
1620    EVT ValVT = ValToCopy.getValueType();
1621
1622    // Promote values to the appropriate types
1623    if (VA.getLocInfo() == CCValAssign::SExt)
1624      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1625    else if (VA.getLocInfo() == CCValAssign::ZExt)
1626      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1627    else if (VA.getLocInfo() == CCValAssign::AExt)
1628      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1629    else if (VA.getLocInfo() == CCValAssign::BCvt)
1630      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1631
1632    // If this is x86-64, and we disabled SSE, we can't return FP values,
1633    // or SSE or MMX vectors.
1634    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1635         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1636          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1637      report_fatal_error("SSE register return with SSE disabled");
1638    }
1639    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1640    // llvm-gcc has never done it right and no one has noticed, so this
1641    // should be OK for now.
1642    if (ValVT == MVT::f64 &&
1643        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1644      report_fatal_error("SSE2 register return with SSE2 disabled");
1645
1646    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1647    // the RET instruction and handled by the FP Stackifier.
1648    if (VA.getLocReg() == X86::ST0 ||
1649        VA.getLocReg() == X86::ST1) {
1650      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1651      // change the value to the FP stack register class.
1652      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1653        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1654      RetOps.push_back(ValToCopy);
1655      // Don't emit a copytoreg.
1656      continue;
1657    }
1658
1659    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1660    // which is returned in RAX / RDX.
1661    if (Subtarget->is64Bit()) {
1662      if (ValVT == MVT::x86mmx) {
1663        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1664          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1665          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1666                                  ValToCopy);
1667          // If we don't have SSE2 available, convert to v4f32 so the generated
1668          // register is legal.
1669          if (!Subtarget->hasSSE2())
1670            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1671        }
1672      }
1673    }
1674
1675    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1676    Flag = Chain.getValue(1);
1677    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1678  }
1679
1680  // The x86-64 ABIs require that for returning structs by value we copy
1681  // the sret argument into %rax/%eax (depending on ABI) for the return.
1682  // We saved the argument into a virtual register in the entry block,
1683  // so now we copy the value out and into %rax/%eax.
1684  if (Subtarget->is64Bit() &&
1685      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1686    MachineFunction &MF = DAG.getMachineFunction();
1687    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1688    unsigned Reg = FuncInfo->getSRetReturnReg();
1689    assert(Reg &&
1690           "SRetReturnReg should have been set in LowerFormalArguments().");
1691    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1692
1693    unsigned RetValReg = Subtarget->isTarget64BitILP32() ? X86::EAX : X86::RAX;
1694    Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
1695    Flag = Chain.getValue(1);
1696
1697    // RAX/EAX now acts like a return value.
1698    RetOps.push_back(DAG.getRegister(RetValReg, MVT::i64));
1699  }
1700
1701  RetOps[0] = Chain;  // Update chain.
1702
1703  // Add the flag if we have it.
1704  if (Flag.getNode())
1705    RetOps.push_back(Flag);
1706
1707  return DAG.getNode(X86ISD::RET_FLAG, dl,
1708                     MVT::Other, &RetOps[0], RetOps.size());
1709}
1710
1711bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1712  if (N->getNumValues() != 1)
1713    return false;
1714  if (!N->hasNUsesOfValue(1, 0))
1715    return false;
1716
1717  SDValue TCChain = Chain;
1718  SDNode *Copy = *N->use_begin();
1719  if (Copy->getOpcode() == ISD::CopyToReg) {
1720    // If the copy has a glue operand, we conservatively assume it isn't safe to
1721    // perform a tail call.
1722    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1723      return false;
1724    TCChain = Copy->getOperand(0);
1725  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1726    return false;
1727
1728  bool HasRet = false;
1729  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1730       UI != UE; ++UI) {
1731    if (UI->getOpcode() != X86ISD::RET_FLAG)
1732      return false;
1733    HasRet = true;
1734  }
1735
1736  if (!HasRet)
1737    return false;
1738
1739  Chain = TCChain;
1740  return true;
1741}
1742
1743MVT
1744X86TargetLowering::getTypeForExtArgOrReturn(MVT VT,
1745                                            ISD::NodeType ExtendKind) const {
1746  MVT ReturnMVT;
1747  // TODO: Is this also valid on 32-bit?
1748  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1749    ReturnMVT = MVT::i8;
1750  else
1751    ReturnMVT = MVT::i32;
1752
1753  MVT MinVT = getRegisterType(ReturnMVT);
1754  return VT.bitsLT(MinVT) ? MinVT : VT;
1755}
1756
1757/// LowerCallResult - Lower the result values of a call into the
1758/// appropriate copies out of appropriate physical registers.
1759///
1760SDValue
1761X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1762                                   CallingConv::ID CallConv, bool isVarArg,
1763                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1764                                   DebugLoc dl, SelectionDAG &DAG,
1765                                   SmallVectorImpl<SDValue> &InVals) const {
1766
1767  // Assign locations to each value returned by this call.
1768  SmallVector<CCValAssign, 16> RVLocs;
1769  bool Is64Bit = Subtarget->is64Bit();
1770  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1771                 getTargetMachine(), RVLocs, *DAG.getContext());
1772  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1773
1774  // Copy all of the result registers out of their specified physreg.
1775  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1776    CCValAssign &VA = RVLocs[i];
1777    EVT CopyVT = VA.getValVT();
1778
1779    // If this is x86-64, and we disabled SSE, we can't return FP values
1780    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1781        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1782      report_fatal_error("SSE register return with SSE disabled");
1783    }
1784
1785    SDValue Val;
1786
1787    // If this is a call to a function that returns an fp value on the floating
1788    // point stack, we must guarantee the value is popped from the stack, so
1789    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1790    // if the return value is not used. We use the FpPOP_RETVAL instruction
1791    // instead.
1792    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1793      // If we prefer to use the value in xmm registers, copy it out as f80 and
1794      // use a truncate to move it from fp stack reg to xmm reg.
1795      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1796      SDValue Ops[] = { Chain, InFlag };
1797      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1798                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1799      Val = Chain.getValue(0);
1800
1801      // Round the f80 to the right size, which also moves it to the appropriate
1802      // xmm register.
1803      if (CopyVT != VA.getValVT())
1804        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1805                          // This truncation won't change the value.
1806                          DAG.getIntPtrConstant(1));
1807    } else {
1808      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1809                                 CopyVT, InFlag).getValue(1);
1810      Val = Chain.getValue(0);
1811    }
1812    InFlag = Chain.getValue(2);
1813    InVals.push_back(Val);
1814  }
1815
1816  return Chain;
1817}
1818
1819//===----------------------------------------------------------------------===//
1820//                C & StdCall & Fast Calling Convention implementation
1821//===----------------------------------------------------------------------===//
1822//  StdCall calling convention seems to be standard for many Windows' API
1823//  routines and around. It differs from C calling convention just a little:
1824//  callee should clean up the stack, not caller. Symbols should be also
1825//  decorated in some fancy way :) It doesn't support any vector arguments.
1826//  For info on fast calling convention see Fast Calling Convention (tail call)
1827//  implementation LowerX86_32FastCCCallTo.
1828
1829/// CallIsStructReturn - Determines whether a call uses struct return
1830/// semantics.
1831enum StructReturnType {
1832  NotStructReturn,
1833  RegStructReturn,
1834  StackStructReturn
1835};
1836static StructReturnType
1837callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1838  if (Outs.empty())
1839    return NotStructReturn;
1840
1841  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
1842  if (!Flags.isSRet())
1843    return NotStructReturn;
1844  if (Flags.isInReg())
1845    return RegStructReturn;
1846  return StackStructReturn;
1847}
1848
1849/// ArgsAreStructReturn - Determines whether a function uses struct
1850/// return semantics.
1851static StructReturnType
1852argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1853  if (Ins.empty())
1854    return NotStructReturn;
1855
1856  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
1857  if (!Flags.isSRet())
1858    return NotStructReturn;
1859  if (Flags.isInReg())
1860    return RegStructReturn;
1861  return StackStructReturn;
1862}
1863
1864/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1865/// by "Src" to address "Dst" with size and alignment information specified by
1866/// the specific parameter attribute. The copy will be passed as a byval
1867/// function parameter.
1868static SDValue
1869CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1870                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1871                          DebugLoc dl) {
1872  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1873
1874  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1875                       /*isVolatile*/false, /*AlwaysInline=*/true,
1876                       MachinePointerInfo(), MachinePointerInfo());
1877}
1878
1879/// IsTailCallConvention - Return true if the calling convention is one that
1880/// supports tail call optimization.
1881static bool IsTailCallConvention(CallingConv::ID CC) {
1882  return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
1883          CC == CallingConv::HiPE);
1884}
1885
1886bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1887  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1888    return false;
1889
1890  CallSite CS(CI);
1891  CallingConv::ID CalleeCC = CS.getCallingConv();
1892  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1893    return false;
1894
1895  return true;
1896}
1897
1898/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1899/// a tailcall target by changing its ABI.
1900static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1901                                   bool GuaranteedTailCallOpt) {
1902  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1903}
1904
1905SDValue
1906X86TargetLowering::LowerMemArgument(SDValue Chain,
1907                                    CallingConv::ID CallConv,
1908                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1909                                    DebugLoc dl, SelectionDAG &DAG,
1910                                    const CCValAssign &VA,
1911                                    MachineFrameInfo *MFI,
1912                                    unsigned i) const {
1913  // Create the nodes corresponding to a load from this parameter slot.
1914  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1915  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1916                              getTargetMachine().Options.GuaranteedTailCallOpt);
1917  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1918  EVT ValVT;
1919
1920  // If value is passed by pointer we have address passed instead of the value
1921  // itself.
1922  if (VA.getLocInfo() == CCValAssign::Indirect)
1923    ValVT = VA.getLocVT();
1924  else
1925    ValVT = VA.getValVT();
1926
1927  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1928  // changed with more analysis.
1929  // In case of tail call optimization mark all arguments mutable. Since they
1930  // could be overwritten by lowering of arguments in case of a tail call.
1931  if (Flags.isByVal()) {
1932    unsigned Bytes = Flags.getByValSize();
1933    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1934    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1935    return DAG.getFrameIndex(FI, getPointerTy());
1936  } else {
1937    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1938                                    VA.getLocMemOffset(), isImmutable);
1939    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1940    return DAG.getLoad(ValVT, dl, Chain, FIN,
1941                       MachinePointerInfo::getFixedStack(FI),
1942                       false, false, false, 0);
1943  }
1944}
1945
1946SDValue
1947X86TargetLowering::LowerFormalArguments(SDValue Chain,
1948                                        CallingConv::ID CallConv,
1949                                        bool isVarArg,
1950                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1951                                        DebugLoc dl,
1952                                        SelectionDAG &DAG,
1953                                        SmallVectorImpl<SDValue> &InVals)
1954                                          const {
1955  MachineFunction &MF = DAG.getMachineFunction();
1956  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1957
1958  const Function* Fn = MF.getFunction();
1959  if (Fn->hasExternalLinkage() &&
1960      Subtarget->isTargetCygMing() &&
1961      Fn->getName() == "main")
1962    FuncInfo->setForceFramePointer(true);
1963
1964  MachineFrameInfo *MFI = MF.getFrameInfo();
1965  bool Is64Bit = Subtarget->is64Bit();
1966  bool IsWindows = Subtarget->isTargetWindows();
1967  bool IsWin64 = Subtarget->isTargetWin64();
1968
1969  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1970         "Var args not supported with calling convention fastcc, ghc or hipe");
1971
1972  // Assign locations to all of the incoming arguments.
1973  SmallVector<CCValAssign, 16> ArgLocs;
1974  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1975                 ArgLocs, *DAG.getContext());
1976
1977  // Allocate shadow area for Win64
1978  if (IsWin64) {
1979    CCInfo.AllocateStack(32, 8);
1980  }
1981
1982  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1983
1984  unsigned LastVal = ~0U;
1985  SDValue ArgValue;
1986  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1987    CCValAssign &VA = ArgLocs[i];
1988    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1989    // places.
1990    assert(VA.getValNo() != LastVal &&
1991           "Don't support value assigned to multiple locs yet");
1992    (void)LastVal;
1993    LastVal = VA.getValNo();
1994
1995    if (VA.isRegLoc()) {
1996      EVT RegVT = VA.getLocVT();
1997      const TargetRegisterClass *RC;
1998      if (RegVT == MVT::i32)
1999        RC = &X86::GR32RegClass;
2000      else if (Is64Bit && RegVT == MVT::i64)
2001        RC = &X86::GR64RegClass;
2002      else if (RegVT == MVT::f32)
2003        RC = &X86::FR32RegClass;
2004      else if (RegVT == MVT::f64)
2005        RC = &X86::FR64RegClass;
2006      else if (RegVT.is256BitVector())
2007        RC = &X86::VR256RegClass;
2008      else if (RegVT.is128BitVector())
2009        RC = &X86::VR128RegClass;
2010      else if (RegVT == MVT::x86mmx)
2011        RC = &X86::VR64RegClass;
2012      else
2013        llvm_unreachable("Unknown argument type!");
2014
2015      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2016      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2017
2018      // If this is an 8 or 16-bit value, it is really passed promoted to 32
2019      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
2020      // right size.
2021      if (VA.getLocInfo() == CCValAssign::SExt)
2022        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2023                               DAG.getValueType(VA.getValVT()));
2024      else if (VA.getLocInfo() == CCValAssign::ZExt)
2025        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2026                               DAG.getValueType(VA.getValVT()));
2027      else if (VA.getLocInfo() == CCValAssign::BCvt)
2028        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2029
2030      if (VA.isExtInLoc()) {
2031        // Handle MMX values passed in XMM regs.
2032        if (RegVT.isVector())
2033          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
2034        else
2035          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2036      }
2037    } else {
2038      assert(VA.isMemLoc());
2039      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
2040    }
2041
2042    // If value is passed via pointer - do a load.
2043    if (VA.getLocInfo() == CCValAssign::Indirect)
2044      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
2045                             MachinePointerInfo(), false, false, false, 0);
2046
2047    InVals.push_back(ArgValue);
2048  }
2049
2050  // The x86-64 ABIs require that for returning structs by value we copy
2051  // the sret argument into %rax/%eax (depending on ABI) for the return.
2052  // Save the argument into a virtual register so that we can access it
2053  // from the return points.
2054  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
2055    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2056    unsigned Reg = FuncInfo->getSRetReturnReg();
2057    if (!Reg) {
2058      MVT PtrTy = getPointerTy();
2059      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
2060      FuncInfo->setSRetReturnReg(Reg);
2061    }
2062    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
2063    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2064  }
2065
2066  unsigned StackSize = CCInfo.getNextStackOffset();
2067  // Align stack specially for tail calls.
2068  if (FuncIsMadeTailCallSafe(CallConv,
2069                             MF.getTarget().Options.GuaranteedTailCallOpt))
2070    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
2071
2072  // If the function takes variable number of arguments, make a frame index for
2073  // the start of the first vararg value... for expansion of llvm.va_start.
2074  if (isVarArg) {
2075    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2076                    CallConv != CallingConv::X86_ThisCall)) {
2077      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
2078    }
2079    if (Is64Bit) {
2080      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
2081
2082      // FIXME: We should really autogenerate these arrays
2083      static const uint16_t GPR64ArgRegsWin64[] = {
2084        X86::RCX, X86::RDX, X86::R8,  X86::R9
2085      };
2086      static const uint16_t GPR64ArgRegs64Bit[] = {
2087        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2088      };
2089      static const uint16_t XMMArgRegs64Bit[] = {
2090        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2091        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2092      };
2093      const uint16_t *GPR64ArgRegs;
2094      unsigned NumXMMRegs = 0;
2095
2096      if (IsWin64) {
2097        // The XMM registers which might contain var arg parameters are shadowed
2098        // in their paired GPR.  So we only need to save the GPR to their home
2099        // slots.
2100        TotalNumIntRegs = 4;
2101        GPR64ArgRegs = GPR64ArgRegsWin64;
2102      } else {
2103        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2104        GPR64ArgRegs = GPR64ArgRegs64Bit;
2105
2106        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2107                                                TotalNumXMMRegs);
2108      }
2109      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2110                                                       TotalNumIntRegs);
2111
2112      bool NoImplicitFloatOps = Fn->getAttributes().
2113        hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
2114      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2115             "SSE register cannot be used when SSE is disabled!");
2116      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2117               NoImplicitFloatOps) &&
2118             "SSE register cannot be used when SSE is disabled!");
2119      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2120          !Subtarget->hasSSE1())
2121        // Kernel mode asks for SSE to be disabled, so don't push them
2122        // on the stack.
2123        TotalNumXMMRegs = 0;
2124
2125      if (IsWin64) {
2126        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2127        // Get to the caller-allocated home save location.  Add 8 to account
2128        // for the return address.
2129        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2130        FuncInfo->setRegSaveFrameIndex(
2131          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2132        // Fixup to set vararg frame on shadow area (4 x i64).
2133        if (NumIntRegs < 4)
2134          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2135      } else {
2136        // For X86-64, if there are vararg parameters that are passed via
2137        // registers, then we must store them to their spots on the stack so
2138        // they may be loaded by deferencing the result of va_next.
2139        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2140        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2141        FuncInfo->setRegSaveFrameIndex(
2142          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2143                               false));
2144      }
2145
2146      // Store the integer parameter registers.
2147      SmallVector<SDValue, 8> MemOps;
2148      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2149                                        getPointerTy());
2150      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2151      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2152        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2153                                  DAG.getIntPtrConstant(Offset));
2154        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2155                                     &X86::GR64RegClass);
2156        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2157        SDValue Store =
2158          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2159                       MachinePointerInfo::getFixedStack(
2160                         FuncInfo->getRegSaveFrameIndex(), Offset),
2161                       false, false, 0);
2162        MemOps.push_back(Store);
2163        Offset += 8;
2164      }
2165
2166      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2167        // Now store the XMM (fp + vector) parameter registers.
2168        SmallVector<SDValue, 11> SaveXMMOps;
2169        SaveXMMOps.push_back(Chain);
2170
2171        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2172        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2173        SaveXMMOps.push_back(ALVal);
2174
2175        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2176                               FuncInfo->getRegSaveFrameIndex()));
2177        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2178                               FuncInfo->getVarArgsFPOffset()));
2179
2180        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2181          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2182                                       &X86::VR128RegClass);
2183          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2184          SaveXMMOps.push_back(Val);
2185        }
2186        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2187                                     MVT::Other,
2188                                     &SaveXMMOps[0], SaveXMMOps.size()));
2189      }
2190
2191      if (!MemOps.empty())
2192        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2193                            &MemOps[0], MemOps.size());
2194    }
2195  }
2196
2197  // Some CCs need callee pop.
2198  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2199                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2200    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2201  } else {
2202    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2203    // If this is an sret function, the return should pop the hidden pointer.
2204    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2205        argsAreStructReturn(Ins) == StackStructReturn)
2206      FuncInfo->setBytesToPopOnReturn(4);
2207  }
2208
2209  if (!Is64Bit) {
2210    // RegSaveFrameIndex is X86-64 only.
2211    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2212    if (CallConv == CallingConv::X86_FastCall ||
2213        CallConv == CallingConv::X86_ThisCall)
2214      // fastcc functions can't have varargs.
2215      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2216  }
2217
2218  FuncInfo->setArgumentStackSize(StackSize);
2219
2220  return Chain;
2221}
2222
2223SDValue
2224X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2225                                    SDValue StackPtr, SDValue Arg,
2226                                    DebugLoc dl, SelectionDAG &DAG,
2227                                    const CCValAssign &VA,
2228                                    ISD::ArgFlagsTy Flags) const {
2229  unsigned LocMemOffset = VA.getLocMemOffset();
2230  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2231  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2232  if (Flags.isByVal())
2233    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2234
2235  return DAG.getStore(Chain, dl, Arg, PtrOff,
2236                      MachinePointerInfo::getStack(LocMemOffset),
2237                      false, false, 0);
2238}
2239
2240/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2241/// optimization is performed and it is required.
2242SDValue
2243X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2244                                           SDValue &OutRetAddr, SDValue Chain,
2245                                           bool IsTailCall, bool Is64Bit,
2246                                           int FPDiff, DebugLoc dl) const {
2247  // Adjust the Return address stack slot.
2248  EVT VT = getPointerTy();
2249  OutRetAddr = getReturnAddressFrameIndex(DAG);
2250
2251  // Load the "old" Return address.
2252  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2253                           false, false, false, 0);
2254  return SDValue(OutRetAddr.getNode(), 1);
2255}
2256
2257/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2258/// optimization is performed and it is required (FPDiff!=0).
2259static SDValue
2260EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2261                         SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT,
2262                         unsigned SlotSize, int FPDiff, DebugLoc dl) {
2263  // Store the return address to the appropriate stack slot.
2264  if (!FPDiff) return Chain;
2265  // Calculate the new stack slot for the return address.
2266  int NewReturnAddrFI =
2267    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2268  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
2269  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2270                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2271                       false, false, 0);
2272  return Chain;
2273}
2274
2275SDValue
2276X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2277                             SmallVectorImpl<SDValue> &InVals) const {
2278  SelectionDAG &DAG                     = CLI.DAG;
2279  DebugLoc &dl                          = CLI.DL;
2280  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2281  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2282  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2283  SDValue Chain                         = CLI.Chain;
2284  SDValue Callee                        = CLI.Callee;
2285  CallingConv::ID CallConv              = CLI.CallConv;
2286  bool &isTailCall                      = CLI.IsTailCall;
2287  bool isVarArg                         = CLI.IsVarArg;
2288
2289  MachineFunction &MF = DAG.getMachineFunction();
2290  bool Is64Bit        = Subtarget->is64Bit();
2291  bool IsWin64        = Subtarget->isTargetWin64();
2292  bool IsWindows      = Subtarget->isTargetWindows();
2293  StructReturnType SR = callIsStructReturn(Outs);
2294  bool IsSibcall      = false;
2295
2296  if (MF.getTarget().Options.DisableTailCalls)
2297    isTailCall = false;
2298
2299  if (isTailCall) {
2300    // Check if it's really possible to do a tail call.
2301    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2302                    isVarArg, SR != NotStructReturn,
2303                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2304                    Outs, OutVals, Ins, DAG);
2305
2306    // Sibcalls are automatically detected tailcalls which do not require
2307    // ABI changes.
2308    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2309      IsSibcall = true;
2310
2311    if (isTailCall)
2312      ++NumTailCalls;
2313  }
2314
2315  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2316         "Var args not supported with calling convention fastcc, ghc or hipe");
2317
2318  // Analyze operands of the call, assigning locations to each operand.
2319  SmallVector<CCValAssign, 16> ArgLocs;
2320  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2321                 ArgLocs, *DAG.getContext());
2322
2323  // Allocate shadow area for Win64
2324  if (IsWin64) {
2325    CCInfo.AllocateStack(32, 8);
2326  }
2327
2328  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2329
2330  // Get a count of how many bytes are to be pushed on the stack.
2331  unsigned NumBytes = CCInfo.getNextStackOffset();
2332  if (IsSibcall)
2333    // This is a sibcall. The memory operands are available in caller's
2334    // own caller's stack.
2335    NumBytes = 0;
2336  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2337           IsTailCallConvention(CallConv))
2338    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2339
2340  int FPDiff = 0;
2341  if (isTailCall && !IsSibcall) {
2342    // Lower arguments at fp - stackoffset + fpdiff.
2343    X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2344    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2345
2346    FPDiff = NumBytesCallerPushed - NumBytes;
2347
2348    // Set the delta of movement of the returnaddr stackslot.
2349    // But only set if delta is greater than previous delta.
2350    if (FPDiff < X86Info->getTCReturnAddrDelta())
2351      X86Info->setTCReturnAddrDelta(FPDiff);
2352  }
2353
2354  if (!IsSibcall)
2355    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2356
2357  SDValue RetAddrFrIdx;
2358  // Load return address for tail calls.
2359  if (isTailCall && FPDiff)
2360    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2361                                    Is64Bit, FPDiff, dl);
2362
2363  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2364  SmallVector<SDValue, 8> MemOpChains;
2365  SDValue StackPtr;
2366
2367  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2368  // of tail call optimization arguments are handle later.
2369  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2370    CCValAssign &VA = ArgLocs[i];
2371    EVT RegVT = VA.getLocVT();
2372    SDValue Arg = OutVals[i];
2373    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2374    bool isByVal = Flags.isByVal();
2375
2376    // Promote the value if needed.
2377    switch (VA.getLocInfo()) {
2378    default: llvm_unreachable("Unknown loc info!");
2379    case CCValAssign::Full: break;
2380    case CCValAssign::SExt:
2381      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2382      break;
2383    case CCValAssign::ZExt:
2384      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2385      break;
2386    case CCValAssign::AExt:
2387      if (RegVT.is128BitVector()) {
2388        // Special case: passing MMX values in XMM registers.
2389        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2390        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2391        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2392      } else
2393        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2394      break;
2395    case CCValAssign::BCvt:
2396      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2397      break;
2398    case CCValAssign::Indirect: {
2399      // Store the argument.
2400      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2401      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2402      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2403                           MachinePointerInfo::getFixedStack(FI),
2404                           false, false, 0);
2405      Arg = SpillSlot;
2406      break;
2407    }
2408    }
2409
2410    if (VA.isRegLoc()) {
2411      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2412      if (isVarArg && IsWin64) {
2413        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2414        // shadow reg if callee is a varargs function.
2415        unsigned ShadowReg = 0;
2416        switch (VA.getLocReg()) {
2417        case X86::XMM0: ShadowReg = X86::RCX; break;
2418        case X86::XMM1: ShadowReg = X86::RDX; break;
2419        case X86::XMM2: ShadowReg = X86::R8; break;
2420        case X86::XMM3: ShadowReg = X86::R9; break;
2421        }
2422        if (ShadowReg)
2423          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2424      }
2425    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2426      assert(VA.isMemLoc());
2427      if (StackPtr.getNode() == 0)
2428        StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
2429                                      getPointerTy());
2430      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2431                                             dl, DAG, VA, Flags));
2432    }
2433  }
2434
2435  if (!MemOpChains.empty())
2436    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2437                        &MemOpChains[0], MemOpChains.size());
2438
2439  if (Subtarget->isPICStyleGOT()) {
2440    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2441    // GOT pointer.
2442    if (!isTailCall) {
2443      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2444               DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy())));
2445    } else {
2446      // If we are tail calling and generating PIC/GOT style code load the
2447      // address of the callee into ECX. The value in ecx is used as target of
2448      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2449      // for tail calls on PIC/GOT architectures. Normally we would just put the
2450      // address of GOT into ebx and then call target@PLT. But for tail calls
2451      // ebx would be restored (since ebx is callee saved) before jumping to the
2452      // target@PLT.
2453
2454      // Note: The actual moving to ECX is done further down.
2455      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2456      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2457          !G->getGlobal()->hasProtectedVisibility())
2458        Callee = LowerGlobalAddress(Callee, DAG);
2459      else if (isa<ExternalSymbolSDNode>(Callee))
2460        Callee = LowerExternalSymbol(Callee, DAG);
2461    }
2462  }
2463
2464  if (Is64Bit && isVarArg && !IsWin64) {
2465    // From AMD64 ABI document:
2466    // For calls that may call functions that use varargs or stdargs
2467    // (prototype-less calls or calls to functions containing ellipsis (...) in
2468    // the declaration) %al is used as hidden argument to specify the number
2469    // of SSE registers used. The contents of %al do not need to match exactly
2470    // the number of registers, but must be an ubound on the number of SSE
2471    // registers used and is in the range 0 - 8 inclusive.
2472
2473    // Count the number of XMM registers allocated.
2474    static const uint16_t XMMArgRegs[] = {
2475      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2476      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2477    };
2478    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2479    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2480           && "SSE registers cannot be used when SSE is disabled");
2481
2482    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2483                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2484  }
2485
2486  // For tail calls lower the arguments to the 'real' stack slot.
2487  if (isTailCall) {
2488    // Force all the incoming stack arguments to be loaded from the stack
2489    // before any new outgoing arguments are stored to the stack, because the
2490    // outgoing stack slots may alias the incoming argument stack slots, and
2491    // the alias isn't otherwise explicit. This is slightly more conservative
2492    // than necessary, because it means that each store effectively depends
2493    // on every argument instead of just those arguments it would clobber.
2494    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2495
2496    SmallVector<SDValue, 8> MemOpChains2;
2497    SDValue FIN;
2498    int FI = 0;
2499    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2500      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2501        CCValAssign &VA = ArgLocs[i];
2502        if (VA.isRegLoc())
2503          continue;
2504        assert(VA.isMemLoc());
2505        SDValue Arg = OutVals[i];
2506        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2507        // Create frame index.
2508        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2509        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2510        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2511        FIN = DAG.getFrameIndex(FI, getPointerTy());
2512
2513        if (Flags.isByVal()) {
2514          // Copy relative to framepointer.
2515          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2516          if (StackPtr.getNode() == 0)
2517            StackPtr = DAG.getCopyFromReg(Chain, dl,
2518                                          RegInfo->getStackRegister(),
2519                                          getPointerTy());
2520          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2521
2522          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2523                                                           ArgChain,
2524                                                           Flags, DAG, dl));
2525        } else {
2526          // Store relative to framepointer.
2527          MemOpChains2.push_back(
2528            DAG.getStore(ArgChain, dl, Arg, FIN,
2529                         MachinePointerInfo::getFixedStack(FI),
2530                         false, false, 0));
2531        }
2532      }
2533    }
2534
2535    if (!MemOpChains2.empty())
2536      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2537                          &MemOpChains2[0], MemOpChains2.size());
2538
2539    // Store the return address to the appropriate stack slot.
2540    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
2541                                     getPointerTy(), RegInfo->getSlotSize(),
2542                                     FPDiff, dl);
2543  }
2544
2545  // Build a sequence of copy-to-reg nodes chained together with token chain
2546  // and flag operands which copy the outgoing args into registers.
2547  SDValue InFlag;
2548  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2549    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2550                             RegsToPass[i].second, InFlag);
2551    InFlag = Chain.getValue(1);
2552  }
2553
2554  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2555    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2556    // In the 64-bit large code model, we have to make all calls
2557    // through a register, since the call instruction's 32-bit
2558    // pc-relative offset may not be large enough to hold the whole
2559    // address.
2560  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2561    // If the callee is a GlobalAddress node (quite common, every direct call
2562    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2563    // it.
2564
2565    // We should use extra load for direct calls to dllimported functions in
2566    // non-JIT mode.
2567    const GlobalValue *GV = G->getGlobal();
2568    if (!GV->hasDLLImportLinkage()) {
2569      unsigned char OpFlags = 0;
2570      bool ExtraLoad = false;
2571      unsigned WrapperKind = ISD::DELETED_NODE;
2572
2573      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2574      // external symbols most go through the PLT in PIC mode.  If the symbol
2575      // has hidden or protected visibility, or if it is static or local, then
2576      // we don't need to use the PLT - we can directly call it.
2577      if (Subtarget->isTargetELF() &&
2578          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2579          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2580        OpFlags = X86II::MO_PLT;
2581      } else if (Subtarget->isPICStyleStubAny() &&
2582                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2583                 (!Subtarget->getTargetTriple().isMacOSX() ||
2584                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2585        // PC-relative references to external symbols should go through $stub,
2586        // unless we're building with the leopard linker or later, which
2587        // automatically synthesizes these stubs.
2588        OpFlags = X86II::MO_DARWIN_STUB;
2589      } else if (Subtarget->isPICStyleRIPRel() &&
2590                 isa<Function>(GV) &&
2591                 cast<Function>(GV)->getAttributes().
2592                   hasAttribute(AttributeSet::FunctionIndex,
2593                                Attribute::NonLazyBind)) {
2594        // If the function is marked as non-lazy, generate an indirect call
2595        // which loads from the GOT directly. This avoids runtime overhead
2596        // at the cost of eager binding (and one extra byte of encoding).
2597        OpFlags = X86II::MO_GOTPCREL;
2598        WrapperKind = X86ISD::WrapperRIP;
2599        ExtraLoad = true;
2600      }
2601
2602      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2603                                          G->getOffset(), OpFlags);
2604
2605      // Add a wrapper if needed.
2606      if (WrapperKind != ISD::DELETED_NODE)
2607        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2608      // Add extra indirection if needed.
2609      if (ExtraLoad)
2610        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2611                             MachinePointerInfo::getGOT(),
2612                             false, false, false, 0);
2613    }
2614  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2615    unsigned char OpFlags = 0;
2616
2617    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2618    // external symbols should go through the PLT.
2619    if (Subtarget->isTargetELF() &&
2620        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2621      OpFlags = X86II::MO_PLT;
2622    } else if (Subtarget->isPICStyleStubAny() &&
2623               (!Subtarget->getTargetTriple().isMacOSX() ||
2624                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2625      // PC-relative references to external symbols should go through $stub,
2626      // unless we're building with the leopard linker or later, which
2627      // automatically synthesizes these stubs.
2628      OpFlags = X86II::MO_DARWIN_STUB;
2629    }
2630
2631    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2632                                         OpFlags);
2633  }
2634
2635  // Returns a chain & a flag for retval copy to use.
2636  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2637  SmallVector<SDValue, 8> Ops;
2638
2639  if (!IsSibcall && isTailCall) {
2640    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2641                           DAG.getIntPtrConstant(0, true), InFlag);
2642    InFlag = Chain.getValue(1);
2643  }
2644
2645  Ops.push_back(Chain);
2646  Ops.push_back(Callee);
2647
2648  if (isTailCall)
2649    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2650
2651  // Add argument registers to the end of the list so that they are known live
2652  // into the call.
2653  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2654    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2655                                  RegsToPass[i].second.getValueType()));
2656
2657  // Add a register mask operand representing the call-preserved registers.
2658  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2659  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2660  assert(Mask && "Missing call preserved mask for calling convention");
2661  Ops.push_back(DAG.getRegisterMask(Mask));
2662
2663  if (InFlag.getNode())
2664    Ops.push_back(InFlag);
2665
2666  if (isTailCall) {
2667    // We used to do:
2668    //// If this is the first return lowered for this function, add the regs
2669    //// to the liveout set for the function.
2670    // This isn't right, although it's probably harmless on x86; liveouts
2671    // should be computed from returns not tail calls.  Consider a void
2672    // function making a tail call to a function returning int.
2673    return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
2674  }
2675
2676  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2677  InFlag = Chain.getValue(1);
2678
2679  // Create the CALLSEQ_END node.
2680  unsigned NumBytesForCalleeToPush;
2681  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2682                       getTargetMachine().Options.GuaranteedTailCallOpt))
2683    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2684  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2685           SR == StackStructReturn)
2686    // If this is a call to a struct-return function, the callee
2687    // pops the hidden struct pointer, so we have to push it back.
2688    // This is common for Darwin/X86, Linux & Mingw32 targets.
2689    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2690    NumBytesForCalleeToPush = 4;
2691  else
2692    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2693
2694  // Returns a flag for retval copy to use.
2695  if (!IsSibcall) {
2696    Chain = DAG.getCALLSEQ_END(Chain,
2697                               DAG.getIntPtrConstant(NumBytes, true),
2698                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2699                                                     true),
2700                               InFlag);
2701    InFlag = Chain.getValue(1);
2702  }
2703
2704  // Handle result values, copying them out of physregs into vregs that we
2705  // return.
2706  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2707                         Ins, dl, DAG, InVals);
2708}
2709
2710//===----------------------------------------------------------------------===//
2711//                Fast Calling Convention (tail call) implementation
2712//===----------------------------------------------------------------------===//
2713
2714//  Like std call, callee cleans arguments, convention except that ECX is
2715//  reserved for storing the tail called function address. Only 2 registers are
2716//  free for argument passing (inreg). Tail call optimization is performed
2717//  provided:
2718//                * tailcallopt is enabled
2719//                * caller/callee are fastcc
2720//  On X86_64 architecture with GOT-style position independent code only local
2721//  (within module) calls are supported at the moment.
2722//  To keep the stack aligned according to platform abi the function
2723//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2724//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2725//  If a tail called function callee has more arguments than the caller the
2726//  caller needs to make sure that there is room to move the RETADDR to. This is
2727//  achieved by reserving an area the size of the argument delta right after the
2728//  original REtADDR, but before the saved framepointer or the spilled registers
2729//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2730//  stack layout:
2731//    arg1
2732//    arg2
2733//    RETADDR
2734//    [ new RETADDR
2735//      move area ]
2736//    (possible EBP)
2737//    ESI
2738//    EDI
2739//    local1 ..
2740
2741/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2742/// for a 16 byte align requirement.
2743unsigned
2744X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2745                                               SelectionDAG& DAG) const {
2746  MachineFunction &MF = DAG.getMachineFunction();
2747  const TargetMachine &TM = MF.getTarget();
2748  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2749  unsigned StackAlignment = TFI.getStackAlignment();
2750  uint64_t AlignMask = StackAlignment - 1;
2751  int64_t Offset = StackSize;
2752  unsigned SlotSize = RegInfo->getSlotSize();
2753  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2754    // Number smaller than 12 so just add the difference.
2755    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2756  } else {
2757    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2758    Offset = ((~AlignMask) & Offset) + StackAlignment +
2759      (StackAlignment-SlotSize);
2760  }
2761  return Offset;
2762}
2763
2764/// MatchingStackOffset - Return true if the given stack call argument is
2765/// already available in the same position (relatively) of the caller's
2766/// incoming argument stack.
2767static
2768bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2769                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2770                         const X86InstrInfo *TII) {
2771  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2772  int FI = INT_MAX;
2773  if (Arg.getOpcode() == ISD::CopyFromReg) {
2774    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2775    if (!TargetRegisterInfo::isVirtualRegister(VR))
2776      return false;
2777    MachineInstr *Def = MRI->getVRegDef(VR);
2778    if (!Def)
2779      return false;
2780    if (!Flags.isByVal()) {
2781      if (!TII->isLoadFromStackSlot(Def, FI))
2782        return false;
2783    } else {
2784      unsigned Opcode = Def->getOpcode();
2785      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2786          Def->getOperand(1).isFI()) {
2787        FI = Def->getOperand(1).getIndex();
2788        Bytes = Flags.getByValSize();
2789      } else
2790        return false;
2791    }
2792  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2793    if (Flags.isByVal())
2794      // ByVal argument is passed in as a pointer but it's now being
2795      // dereferenced. e.g.
2796      // define @foo(%struct.X* %A) {
2797      //   tail call @bar(%struct.X* byval %A)
2798      // }
2799      return false;
2800    SDValue Ptr = Ld->getBasePtr();
2801    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2802    if (!FINode)
2803      return false;
2804    FI = FINode->getIndex();
2805  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2806    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2807    FI = FINode->getIndex();
2808    Bytes = Flags.getByValSize();
2809  } else
2810    return false;
2811
2812  assert(FI != INT_MAX);
2813  if (!MFI->isFixedObjectIndex(FI))
2814    return false;
2815  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2816}
2817
2818/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2819/// for tail call optimization. Targets which want to do tail call
2820/// optimization should implement this function.
2821bool
2822X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2823                                                     CallingConv::ID CalleeCC,
2824                                                     bool isVarArg,
2825                                                     bool isCalleeStructRet,
2826                                                     bool isCallerStructRet,
2827                                                     Type *RetTy,
2828                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2829                                    const SmallVectorImpl<SDValue> &OutVals,
2830                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2831                                                     SelectionDAG &DAG) const {
2832  if (!IsTailCallConvention(CalleeCC) &&
2833      CalleeCC != CallingConv::C)
2834    return false;
2835
2836  // If -tailcallopt is specified, make fastcc functions tail-callable.
2837  const MachineFunction &MF = DAG.getMachineFunction();
2838  const Function *CallerF = DAG.getMachineFunction().getFunction();
2839
2840  // If the function return type is x86_fp80 and the callee return type is not,
2841  // then the FP_EXTEND of the call result is not a nop. It's not safe to
2842  // perform a tailcall optimization here.
2843  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
2844    return false;
2845
2846  CallingConv::ID CallerCC = CallerF->getCallingConv();
2847  bool CCMatch = CallerCC == CalleeCC;
2848
2849  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2850    if (IsTailCallConvention(CalleeCC) && CCMatch)
2851      return true;
2852    return false;
2853  }
2854
2855  // Look for obvious safe cases to perform tail call optimization that do not
2856  // require ABI changes. This is what gcc calls sibcall.
2857
2858  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2859  // emit a special epilogue.
2860  if (RegInfo->needsStackRealignment(MF))
2861    return false;
2862
2863  // Also avoid sibcall optimization if either caller or callee uses struct
2864  // return semantics.
2865  if (isCalleeStructRet || isCallerStructRet)
2866    return false;
2867
2868  // An stdcall caller is expected to clean up its arguments; the callee
2869  // isn't going to do that.
2870  if (!CCMatch && CallerCC == CallingConv::X86_StdCall)
2871    return false;
2872
2873  // Do not sibcall optimize vararg calls unless all arguments are passed via
2874  // registers.
2875  if (isVarArg && !Outs.empty()) {
2876
2877    // Optimizing for varargs on Win64 is unlikely to be safe without
2878    // additional testing.
2879    if (Subtarget->isTargetWin64())
2880      return false;
2881
2882    SmallVector<CCValAssign, 16> ArgLocs;
2883    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2884                   getTargetMachine(), ArgLocs, *DAG.getContext());
2885
2886    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2887    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2888      if (!ArgLocs[i].isRegLoc())
2889        return false;
2890  }
2891
2892  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2893  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2894  // this into a sibcall.
2895  bool Unused = false;
2896  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2897    if (!Ins[i].Used) {
2898      Unused = true;
2899      break;
2900    }
2901  }
2902  if (Unused) {
2903    SmallVector<CCValAssign, 16> RVLocs;
2904    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2905                   getTargetMachine(), RVLocs, *DAG.getContext());
2906    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2907    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2908      CCValAssign &VA = RVLocs[i];
2909      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2910        return false;
2911    }
2912  }
2913
2914  // If the calling conventions do not match, then we'd better make sure the
2915  // results are returned in the same way as what the caller expects.
2916  if (!CCMatch) {
2917    SmallVector<CCValAssign, 16> RVLocs1;
2918    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2919                    getTargetMachine(), RVLocs1, *DAG.getContext());
2920    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2921
2922    SmallVector<CCValAssign, 16> RVLocs2;
2923    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2924                    getTargetMachine(), RVLocs2, *DAG.getContext());
2925    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2926
2927    if (RVLocs1.size() != RVLocs2.size())
2928      return false;
2929    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2930      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2931        return false;
2932      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2933        return false;
2934      if (RVLocs1[i].isRegLoc()) {
2935        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2936          return false;
2937      } else {
2938        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2939          return false;
2940      }
2941    }
2942  }
2943
2944  // If the callee takes no arguments then go on to check the results of the
2945  // call.
2946  if (!Outs.empty()) {
2947    // Check if stack adjustment is needed. For now, do not do this if any
2948    // argument is passed on the stack.
2949    SmallVector<CCValAssign, 16> ArgLocs;
2950    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2951                   getTargetMachine(), ArgLocs, *DAG.getContext());
2952
2953    // Allocate shadow area for Win64
2954    if (Subtarget->isTargetWin64()) {
2955      CCInfo.AllocateStack(32, 8);
2956    }
2957
2958    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2959    if (CCInfo.getNextStackOffset()) {
2960      MachineFunction &MF = DAG.getMachineFunction();
2961      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2962        return false;
2963
2964      // Check if the arguments are already laid out in the right way as
2965      // the caller's fixed stack objects.
2966      MachineFrameInfo *MFI = MF.getFrameInfo();
2967      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2968      const X86InstrInfo *TII =
2969        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
2970      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2971        CCValAssign &VA = ArgLocs[i];
2972        SDValue Arg = OutVals[i];
2973        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2974        if (VA.getLocInfo() == CCValAssign::Indirect)
2975          return false;
2976        if (!VA.isRegLoc()) {
2977          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2978                                   MFI, MRI, TII))
2979            return false;
2980        }
2981      }
2982    }
2983
2984    // If the tailcall address may be in a register, then make sure it's
2985    // possible to register allocate for it. In 32-bit, the call address can
2986    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2987    // callee-saved registers are restored. These happen to be the same
2988    // registers used to pass 'inreg' arguments so watch out for those.
2989    if (!Subtarget->is64Bit() &&
2990        ((!isa<GlobalAddressSDNode>(Callee) &&
2991          !isa<ExternalSymbolSDNode>(Callee)) ||
2992         getTargetMachine().getRelocationModel() == Reloc::PIC_)) {
2993      unsigned NumInRegs = 0;
2994      // In PIC we need an extra register to formulate the address computation
2995      // for the callee.
2996      unsigned MaxInRegs =
2997          (getTargetMachine().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
2998
2999      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3000        CCValAssign &VA = ArgLocs[i];
3001        if (!VA.isRegLoc())
3002          continue;
3003        unsigned Reg = VA.getLocReg();
3004        switch (Reg) {
3005        default: break;
3006        case X86::EAX: case X86::EDX: case X86::ECX:
3007          if (++NumInRegs == MaxInRegs)
3008            return false;
3009          break;
3010        }
3011      }
3012    }
3013  }
3014
3015  return true;
3016}
3017
3018FastISel *
3019X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
3020                                  const TargetLibraryInfo *libInfo) const {
3021  return X86::createFastISel(funcInfo, libInfo);
3022}
3023
3024//===----------------------------------------------------------------------===//
3025//                           Other Lowering Hooks
3026//===----------------------------------------------------------------------===//
3027
3028static bool MayFoldLoad(SDValue Op) {
3029  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
3030}
3031
3032static bool MayFoldIntoStore(SDValue Op) {
3033  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
3034}
3035
3036static bool isTargetShuffle(unsigned Opcode) {
3037  switch(Opcode) {
3038  default: return false;
3039  case X86ISD::PSHUFD:
3040  case X86ISD::PSHUFHW:
3041  case X86ISD::PSHUFLW:
3042  case X86ISD::SHUFP:
3043  case X86ISD::PALIGNR:
3044  case X86ISD::MOVLHPS:
3045  case X86ISD::MOVLHPD:
3046  case X86ISD::MOVHLPS:
3047  case X86ISD::MOVLPS:
3048  case X86ISD::MOVLPD:
3049  case X86ISD::MOVSHDUP:
3050  case X86ISD::MOVSLDUP:
3051  case X86ISD::MOVDDUP:
3052  case X86ISD::MOVSS:
3053  case X86ISD::MOVSD:
3054  case X86ISD::UNPCKL:
3055  case X86ISD::UNPCKH:
3056  case X86ISD::VPERMILP:
3057  case X86ISD::VPERM2X128:
3058  case X86ISD::VPERMI:
3059    return true;
3060  }
3061}
3062
3063static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3064                                    SDValue V1, SelectionDAG &DAG) {
3065  switch(Opc) {
3066  default: llvm_unreachable("Unknown x86 shuffle node");
3067  case X86ISD::MOVSHDUP:
3068  case X86ISD::MOVSLDUP:
3069  case X86ISD::MOVDDUP:
3070    return DAG.getNode(Opc, dl, VT, V1);
3071  }
3072}
3073
3074static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3075                                    SDValue V1, unsigned TargetMask,
3076                                    SelectionDAG &DAG) {
3077  switch(Opc) {
3078  default: llvm_unreachable("Unknown x86 shuffle node");
3079  case X86ISD::PSHUFD:
3080  case X86ISD::PSHUFHW:
3081  case X86ISD::PSHUFLW:
3082  case X86ISD::VPERMILP:
3083  case X86ISD::VPERMI:
3084    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
3085  }
3086}
3087
3088static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3089                                    SDValue V1, SDValue V2, unsigned TargetMask,
3090                                    SelectionDAG &DAG) {
3091  switch(Opc) {
3092  default: llvm_unreachable("Unknown x86 shuffle node");
3093  case X86ISD::PALIGNR:
3094  case X86ISD::SHUFP:
3095  case X86ISD::VPERM2X128:
3096    return DAG.getNode(Opc, dl, VT, V1, V2,
3097                       DAG.getConstant(TargetMask, MVT::i8));
3098  }
3099}
3100
3101static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3102                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3103  switch(Opc) {
3104  default: llvm_unreachable("Unknown x86 shuffle node");
3105  case X86ISD::MOVLHPS:
3106  case X86ISD::MOVLHPD:
3107  case X86ISD::MOVHLPS:
3108  case X86ISD::MOVLPS:
3109  case X86ISD::MOVLPD:
3110  case X86ISD::MOVSS:
3111  case X86ISD::MOVSD:
3112  case X86ISD::UNPCKL:
3113  case X86ISD::UNPCKH:
3114    return DAG.getNode(Opc, dl, VT, V1, V2);
3115  }
3116}
3117
3118SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3119  MachineFunction &MF = DAG.getMachineFunction();
3120  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3121  int ReturnAddrIndex = FuncInfo->getRAIndex();
3122
3123  if (ReturnAddrIndex == 0) {
3124    // Set up a frame object for the return address.
3125    unsigned SlotSize = RegInfo->getSlotSize();
3126    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
3127                                                           false);
3128    FuncInfo->setRAIndex(ReturnAddrIndex);
3129  }
3130
3131  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3132}
3133
3134bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3135                                       bool hasSymbolicDisplacement) {
3136  // Offset should fit into 32 bit immediate field.
3137  if (!isInt<32>(Offset))
3138    return false;
3139
3140  // If we don't have a symbolic displacement - we don't have any extra
3141  // restrictions.
3142  if (!hasSymbolicDisplacement)
3143    return true;
3144
3145  // FIXME: Some tweaks might be needed for medium code model.
3146  if (M != CodeModel::Small && M != CodeModel::Kernel)
3147    return false;
3148
3149  // For small code model we assume that latest object is 16MB before end of 31
3150  // bits boundary. We may also accept pretty large negative constants knowing
3151  // that all objects are in the positive half of address space.
3152  if (M == CodeModel::Small && Offset < 16*1024*1024)
3153    return true;
3154
3155  // For kernel code model we know that all object resist in the negative half
3156  // of 32bits address space. We may not accept negative offsets, since they may
3157  // be just off and we may accept pretty large positive ones.
3158  if (M == CodeModel::Kernel && Offset > 0)
3159    return true;
3160
3161  return false;
3162}
3163
3164/// isCalleePop - Determines whether the callee is required to pop its
3165/// own arguments. Callee pop is necessary to support tail calls.
3166bool X86::isCalleePop(CallingConv::ID CallingConv,
3167                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3168  if (IsVarArg)
3169    return false;
3170
3171  switch (CallingConv) {
3172  default:
3173    return false;
3174  case CallingConv::X86_StdCall:
3175    return !is64Bit;
3176  case CallingConv::X86_FastCall:
3177    return !is64Bit;
3178  case CallingConv::X86_ThisCall:
3179    return !is64Bit;
3180  case CallingConv::Fast:
3181    return TailCallOpt;
3182  case CallingConv::GHC:
3183    return TailCallOpt;
3184  case CallingConv::HiPE:
3185    return TailCallOpt;
3186  }
3187}
3188
3189/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3190/// specific condition code, returning the condition code and the LHS/RHS of the
3191/// comparison to make.
3192static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3193                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3194  if (!isFP) {
3195    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3196      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3197        // X > -1   -> X == 0, jump !sign.
3198        RHS = DAG.getConstant(0, RHS.getValueType());
3199        return X86::COND_NS;
3200      }
3201      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3202        // X < 0   -> X == 0, jump on sign.
3203        return X86::COND_S;
3204      }
3205      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3206        // X < 1   -> X <= 0
3207        RHS = DAG.getConstant(0, RHS.getValueType());
3208        return X86::COND_LE;
3209      }
3210    }
3211
3212    switch (SetCCOpcode) {
3213    default: llvm_unreachable("Invalid integer condition!");
3214    case ISD::SETEQ:  return X86::COND_E;
3215    case ISD::SETGT:  return X86::COND_G;
3216    case ISD::SETGE:  return X86::COND_GE;
3217    case ISD::SETLT:  return X86::COND_L;
3218    case ISD::SETLE:  return X86::COND_LE;
3219    case ISD::SETNE:  return X86::COND_NE;
3220    case ISD::SETULT: return X86::COND_B;
3221    case ISD::SETUGT: return X86::COND_A;
3222    case ISD::SETULE: return X86::COND_BE;
3223    case ISD::SETUGE: return X86::COND_AE;
3224    }
3225  }
3226
3227  // First determine if it is required or is profitable to flip the operands.
3228
3229  // If LHS is a foldable load, but RHS is not, flip the condition.
3230  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3231      !ISD::isNON_EXTLoad(RHS.getNode())) {
3232    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3233    std::swap(LHS, RHS);
3234  }
3235
3236  switch (SetCCOpcode) {
3237  default: break;
3238  case ISD::SETOLT:
3239  case ISD::SETOLE:
3240  case ISD::SETUGT:
3241  case ISD::SETUGE:
3242    std::swap(LHS, RHS);
3243    break;
3244  }
3245
3246  // On a floating point condition, the flags are set as follows:
3247  // ZF  PF  CF   op
3248  //  0 | 0 | 0 | X > Y
3249  //  0 | 0 | 1 | X < Y
3250  //  1 | 0 | 0 | X == Y
3251  //  1 | 1 | 1 | unordered
3252  switch (SetCCOpcode) {
3253  default: llvm_unreachable("Condcode should be pre-legalized away");
3254  case ISD::SETUEQ:
3255  case ISD::SETEQ:   return X86::COND_E;
3256  case ISD::SETOLT:              // flipped
3257  case ISD::SETOGT:
3258  case ISD::SETGT:   return X86::COND_A;
3259  case ISD::SETOLE:              // flipped
3260  case ISD::SETOGE:
3261  case ISD::SETGE:   return X86::COND_AE;
3262  case ISD::SETUGT:              // flipped
3263  case ISD::SETULT:
3264  case ISD::SETLT:   return X86::COND_B;
3265  case ISD::SETUGE:              // flipped
3266  case ISD::SETULE:
3267  case ISD::SETLE:   return X86::COND_BE;
3268  case ISD::SETONE:
3269  case ISD::SETNE:   return X86::COND_NE;
3270  case ISD::SETUO:   return X86::COND_P;
3271  case ISD::SETO:    return X86::COND_NP;
3272  case ISD::SETOEQ:
3273  case ISD::SETUNE:  return X86::COND_INVALID;
3274  }
3275}
3276
3277/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3278/// code. Current x86 isa includes the following FP cmov instructions:
3279/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3280static bool hasFPCMov(unsigned X86CC) {
3281  switch (X86CC) {
3282  default:
3283    return false;
3284  case X86::COND_B:
3285  case X86::COND_BE:
3286  case X86::COND_E:
3287  case X86::COND_P:
3288  case X86::COND_A:
3289  case X86::COND_AE:
3290  case X86::COND_NE:
3291  case X86::COND_NP:
3292    return true;
3293  }
3294}
3295
3296/// isFPImmLegal - Returns true if the target can instruction select the
3297/// specified FP immediate natively. If false, the legalizer will
3298/// materialize the FP immediate as a load from a constant pool.
3299bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3300  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3301    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3302      return true;
3303  }
3304  return false;
3305}
3306
3307/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3308/// the specified range (L, H].
3309static bool isUndefOrInRange(int Val, int Low, int Hi) {
3310  return (Val < 0) || (Val >= Low && Val < Hi);
3311}
3312
3313/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3314/// specified value.
3315static bool isUndefOrEqual(int Val, int CmpVal) {
3316  return (Val < 0 || Val == CmpVal);
3317}
3318
3319/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3320/// from position Pos and ending in Pos+Size, falls within the specified
3321/// sequential range (L, L+Pos]. or is undef.
3322static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3323                                       unsigned Pos, unsigned Size, int Low) {
3324  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3325    if (!isUndefOrEqual(Mask[i], Low))
3326      return false;
3327  return true;
3328}
3329
3330/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3331/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3332/// the second operand.
3333static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3334  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3335    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3336  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3337    return (Mask[0] < 2 && Mask[1] < 2);
3338  return false;
3339}
3340
3341/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3342/// is suitable for input to PSHUFHW.
3343static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3344  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3345    return false;
3346
3347  // Lower quadword copied in order or undef.
3348  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3349    return false;
3350
3351  // Upper quadword shuffled.
3352  for (unsigned i = 4; i != 8; ++i)
3353    if (!isUndefOrInRange(Mask[i], 4, 8))
3354      return false;
3355
3356  if (VT == MVT::v16i16) {
3357    // Lower quadword copied in order or undef.
3358    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3359      return false;
3360
3361    // Upper quadword shuffled.
3362    for (unsigned i = 12; i != 16; ++i)
3363      if (!isUndefOrInRange(Mask[i], 12, 16))
3364        return false;
3365  }
3366
3367  return true;
3368}
3369
3370/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3371/// is suitable for input to PSHUFLW.
3372static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3373  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3374    return false;
3375
3376  // Upper quadword copied in order.
3377  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3378    return false;
3379
3380  // Lower quadword shuffled.
3381  for (unsigned i = 0; i != 4; ++i)
3382    if (!isUndefOrInRange(Mask[i], 0, 4))
3383      return false;
3384
3385  if (VT == MVT::v16i16) {
3386    // Upper quadword copied in order.
3387    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3388      return false;
3389
3390    // Lower quadword shuffled.
3391    for (unsigned i = 8; i != 12; ++i)
3392      if (!isUndefOrInRange(Mask[i], 8, 12))
3393        return false;
3394  }
3395
3396  return true;
3397}
3398
3399/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3400/// is suitable for input to PALIGNR.
3401static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3402                          const X86Subtarget *Subtarget) {
3403  if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
3404      (VT.is256BitVector() && !Subtarget->hasInt256()))
3405    return false;
3406
3407  unsigned NumElts = VT.getVectorNumElements();
3408  unsigned NumLanes = VT.getSizeInBits()/128;
3409  unsigned NumLaneElts = NumElts/NumLanes;
3410
3411  // Do not handle 64-bit element shuffles with palignr.
3412  if (NumLaneElts == 2)
3413    return false;
3414
3415  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3416    unsigned i;
3417    for (i = 0; i != NumLaneElts; ++i) {
3418      if (Mask[i+l] >= 0)
3419        break;
3420    }
3421
3422    // Lane is all undef, go to next lane
3423    if (i == NumLaneElts)
3424      continue;
3425
3426    int Start = Mask[i+l];
3427
3428    // Make sure its in this lane in one of the sources
3429    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3430        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3431      return false;
3432
3433    // If not lane 0, then we must match lane 0
3434    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3435      return false;
3436
3437    // Correct second source to be contiguous with first source
3438    if (Start >= (int)NumElts)
3439      Start -= NumElts - NumLaneElts;
3440
3441    // Make sure we're shifting in the right direction.
3442    if (Start <= (int)(i+l))
3443      return false;
3444
3445    Start -= i;
3446
3447    // Check the rest of the elements to see if they are consecutive.
3448    for (++i; i != NumLaneElts; ++i) {
3449      int Idx = Mask[i+l];
3450
3451      // Make sure its in this lane
3452      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3453          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3454        return false;
3455
3456      // If not lane 0, then we must match lane 0
3457      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3458        return false;
3459
3460      if (Idx >= (int)NumElts)
3461        Idx -= NumElts - NumLaneElts;
3462
3463      if (!isUndefOrEqual(Idx, Start+i))
3464        return false;
3465
3466    }
3467  }
3468
3469  return true;
3470}
3471
3472/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3473/// the two vector operands have swapped position.
3474static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3475                                     unsigned NumElems) {
3476  for (unsigned i = 0; i != NumElems; ++i) {
3477    int idx = Mask[i];
3478    if (idx < 0)
3479      continue;
3480    else if (idx < (int)NumElems)
3481      Mask[i] = idx + NumElems;
3482    else
3483      Mask[i] = idx - NumElems;
3484  }
3485}
3486
3487/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3488/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3489/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3490/// reverse of what x86 shuffles want.
3491static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256,
3492                        bool Commuted = false) {
3493  if (!HasFp256 && VT.is256BitVector())
3494    return false;
3495
3496  unsigned NumElems = VT.getVectorNumElements();
3497  unsigned NumLanes = VT.getSizeInBits()/128;
3498  unsigned NumLaneElems = NumElems/NumLanes;
3499
3500  if (NumLaneElems != 2 && NumLaneElems != 4)
3501    return false;
3502
3503  // VSHUFPSY divides the resulting vector into 4 chunks.
3504  // The sources are also splitted into 4 chunks, and each destination
3505  // chunk must come from a different source chunk.
3506  //
3507  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3508  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3509  //
3510  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3511  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3512  //
3513  // VSHUFPDY divides the resulting vector into 4 chunks.
3514  // The sources are also splitted into 4 chunks, and each destination
3515  // chunk must come from a different source chunk.
3516  //
3517  //  SRC1 =>      X3       X2       X1       X0
3518  //  SRC2 =>      Y3       Y2       Y1       Y0
3519  //
3520  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3521  //
3522  unsigned HalfLaneElems = NumLaneElems/2;
3523  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3524    for (unsigned i = 0; i != NumLaneElems; ++i) {
3525      int Idx = Mask[i+l];
3526      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3527      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3528        return false;
3529      // For VSHUFPSY, the mask of the second half must be the same as the
3530      // first but with the appropriate offsets. This works in the same way as
3531      // VPERMILPS works with masks.
3532      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3533        continue;
3534      if (!isUndefOrEqual(Idx, Mask[i]+l))
3535        return false;
3536    }
3537  }
3538
3539  return true;
3540}
3541
3542/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3543/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3544static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3545  if (!VT.is128BitVector())
3546    return false;
3547
3548  unsigned NumElems = VT.getVectorNumElements();
3549
3550  if (NumElems != 4)
3551    return false;
3552
3553  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3554  return isUndefOrEqual(Mask[0], 6) &&
3555         isUndefOrEqual(Mask[1], 7) &&
3556         isUndefOrEqual(Mask[2], 2) &&
3557         isUndefOrEqual(Mask[3], 3);
3558}
3559
3560/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3561/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3562/// <2, 3, 2, 3>
3563static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3564  if (!VT.is128BitVector())
3565    return false;
3566
3567  unsigned NumElems = VT.getVectorNumElements();
3568
3569  if (NumElems != 4)
3570    return false;
3571
3572  return isUndefOrEqual(Mask[0], 2) &&
3573         isUndefOrEqual(Mask[1], 3) &&
3574         isUndefOrEqual(Mask[2], 2) &&
3575         isUndefOrEqual(Mask[3], 3);
3576}
3577
3578/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3579/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3580static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3581  if (!VT.is128BitVector())
3582    return false;
3583
3584  unsigned NumElems = VT.getVectorNumElements();
3585
3586  if (NumElems != 2 && NumElems != 4)
3587    return false;
3588
3589  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3590    if (!isUndefOrEqual(Mask[i], i + NumElems))
3591      return false;
3592
3593  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3594    if (!isUndefOrEqual(Mask[i], i))
3595      return false;
3596
3597  return true;
3598}
3599
3600/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3601/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3602static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3603  if (!VT.is128BitVector())
3604    return false;
3605
3606  unsigned NumElems = VT.getVectorNumElements();
3607
3608  if (NumElems != 2 && NumElems != 4)
3609    return false;
3610
3611  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3612    if (!isUndefOrEqual(Mask[i], i))
3613      return false;
3614
3615  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3616    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3617      return false;
3618
3619  return true;
3620}
3621
3622//
3623// Some special combinations that can be optimized.
3624//
3625static
3626SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3627                               SelectionDAG &DAG) {
3628  MVT VT = SVOp->getValueType(0).getSimpleVT();
3629  DebugLoc dl = SVOp->getDebugLoc();
3630
3631  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3632    return SDValue();
3633
3634  ArrayRef<int> Mask = SVOp->getMask();
3635
3636  // These are the special masks that may be optimized.
3637  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3638  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3639  bool MatchEvenMask = true;
3640  bool MatchOddMask  = true;
3641  for (int i=0; i<8; ++i) {
3642    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3643      MatchEvenMask = false;
3644    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3645      MatchOddMask = false;
3646  }
3647
3648  if (!MatchEvenMask && !MatchOddMask)
3649    return SDValue();
3650
3651  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3652
3653  SDValue Op0 = SVOp->getOperand(0);
3654  SDValue Op1 = SVOp->getOperand(1);
3655
3656  if (MatchEvenMask) {
3657    // Shift the second operand right to 32 bits.
3658    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
3659    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
3660  } else {
3661    // Shift the first operand left to 32 bits.
3662    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
3663    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
3664  }
3665  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
3666  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
3667}
3668
3669/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3670/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3671static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3672                         bool HasInt256, bool V2IsSplat = false) {
3673  unsigned NumElts = VT.getVectorNumElements();
3674
3675  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3676         "Unsupported vector type for unpckh");
3677
3678  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3679      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3680    return false;
3681
3682  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3683  // independently on 128-bit lanes.
3684  unsigned NumLanes = VT.getSizeInBits()/128;
3685  unsigned NumLaneElts = NumElts/NumLanes;
3686
3687  for (unsigned l = 0; l != NumLanes; ++l) {
3688    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3689         i != (l+1)*NumLaneElts;
3690         i += 2, ++j) {
3691      int BitI  = Mask[i];
3692      int BitI1 = Mask[i+1];
3693      if (!isUndefOrEqual(BitI, j))
3694        return false;
3695      if (V2IsSplat) {
3696        if (!isUndefOrEqual(BitI1, NumElts))
3697          return false;
3698      } else {
3699        if (!isUndefOrEqual(BitI1, j + NumElts))
3700          return false;
3701      }
3702    }
3703  }
3704
3705  return true;
3706}
3707
3708/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3709/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3710static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3711                         bool HasInt256, bool V2IsSplat = false) {
3712  unsigned NumElts = VT.getVectorNumElements();
3713
3714  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3715         "Unsupported vector type for unpckh");
3716
3717  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3718      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3719    return false;
3720
3721  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3722  // independently on 128-bit lanes.
3723  unsigned NumLanes = VT.getSizeInBits()/128;
3724  unsigned NumLaneElts = NumElts/NumLanes;
3725
3726  for (unsigned l = 0; l != NumLanes; ++l) {
3727    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3728         i != (l+1)*NumLaneElts; i += 2, ++j) {
3729      int BitI  = Mask[i];
3730      int BitI1 = Mask[i+1];
3731      if (!isUndefOrEqual(BitI, j))
3732        return false;
3733      if (V2IsSplat) {
3734        if (isUndefOrEqual(BitI1, NumElts))
3735          return false;
3736      } else {
3737        if (!isUndefOrEqual(BitI1, j+NumElts))
3738          return false;
3739      }
3740    }
3741  }
3742  return true;
3743}
3744
3745/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3746/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3747/// <0, 0, 1, 1>
3748static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3749  unsigned NumElts = VT.getVectorNumElements();
3750  bool Is256BitVec = VT.is256BitVector();
3751
3752  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3753         "Unsupported vector type for unpckh");
3754
3755  if (Is256BitVec && NumElts != 4 && NumElts != 8 &&
3756      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3757    return false;
3758
3759  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3760  // FIXME: Need a better way to get rid of this, there's no latency difference
3761  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3762  // the former later. We should also remove the "_undef" special mask.
3763  if (NumElts == 4 && Is256BitVec)
3764    return false;
3765
3766  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3767  // independently on 128-bit lanes.
3768  unsigned NumLanes = VT.getSizeInBits()/128;
3769  unsigned NumLaneElts = NumElts/NumLanes;
3770
3771  for (unsigned l = 0; l != NumLanes; ++l) {
3772    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3773         i != (l+1)*NumLaneElts;
3774         i += 2, ++j) {
3775      int BitI  = Mask[i];
3776      int BitI1 = Mask[i+1];
3777
3778      if (!isUndefOrEqual(BitI, j))
3779        return false;
3780      if (!isUndefOrEqual(BitI1, j))
3781        return false;
3782    }
3783  }
3784
3785  return true;
3786}
3787
3788/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3789/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3790/// <2, 2, 3, 3>
3791static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3792  unsigned NumElts = VT.getVectorNumElements();
3793
3794  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3795         "Unsupported vector type for unpckh");
3796
3797  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3798      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3799    return false;
3800
3801  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3802  // independently on 128-bit lanes.
3803  unsigned NumLanes = VT.getSizeInBits()/128;
3804  unsigned NumLaneElts = NumElts/NumLanes;
3805
3806  for (unsigned l = 0; l != NumLanes; ++l) {
3807    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3808         i != (l+1)*NumLaneElts; i += 2, ++j) {
3809      int BitI  = Mask[i];
3810      int BitI1 = Mask[i+1];
3811      if (!isUndefOrEqual(BitI, j))
3812        return false;
3813      if (!isUndefOrEqual(BitI1, j))
3814        return false;
3815    }
3816  }
3817  return true;
3818}
3819
3820/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3821/// specifies a shuffle of elements that is suitable for input to MOVSS,
3822/// MOVSD, and MOVD, i.e. setting the lowest element.
3823static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3824  if (VT.getVectorElementType().getSizeInBits() < 32)
3825    return false;
3826  if (!VT.is128BitVector())
3827    return false;
3828
3829  unsigned NumElts = VT.getVectorNumElements();
3830
3831  if (!isUndefOrEqual(Mask[0], NumElts))
3832    return false;
3833
3834  for (unsigned i = 1; i != NumElts; ++i)
3835    if (!isUndefOrEqual(Mask[i], i))
3836      return false;
3837
3838  return true;
3839}
3840
3841/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3842/// as permutations between 128-bit chunks or halves. As an example: this
3843/// shuffle bellow:
3844///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3845/// The first half comes from the second half of V1 and the second half from the
3846/// the second half of V2.
3847static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3848  if (!HasFp256 || !VT.is256BitVector())
3849    return false;
3850
3851  // The shuffle result is divided into half A and half B. In total the two
3852  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3853  // B must come from C, D, E or F.
3854  unsigned HalfSize = VT.getVectorNumElements()/2;
3855  bool MatchA = false, MatchB = false;
3856
3857  // Check if A comes from one of C, D, E, F.
3858  for (unsigned Half = 0; Half != 4; ++Half) {
3859    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3860      MatchA = true;
3861      break;
3862    }
3863  }
3864
3865  // Check if B comes from one of C, D, E, F.
3866  for (unsigned Half = 0; Half != 4; ++Half) {
3867    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3868      MatchB = true;
3869      break;
3870    }
3871  }
3872
3873  return MatchA && MatchB;
3874}
3875
3876/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3877/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3878static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3879  MVT VT = SVOp->getValueType(0).getSimpleVT();
3880
3881  unsigned HalfSize = VT.getVectorNumElements()/2;
3882
3883  unsigned FstHalf = 0, SndHalf = 0;
3884  for (unsigned i = 0; i < HalfSize; ++i) {
3885    if (SVOp->getMaskElt(i) > 0) {
3886      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3887      break;
3888    }
3889  }
3890  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3891    if (SVOp->getMaskElt(i) > 0) {
3892      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3893      break;
3894    }
3895  }
3896
3897  return (FstHalf | (SndHalf << 4));
3898}
3899
3900/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3901/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3902/// Note that VPERMIL mask matching is different depending whether theunderlying
3903/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3904/// to the same elements of the low, but to the higher half of the source.
3905/// In VPERMILPD the two lanes could be shuffled independently of each other
3906/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3907static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3908  if (!HasFp256)
3909    return false;
3910
3911  unsigned NumElts = VT.getVectorNumElements();
3912  // Only match 256-bit with 32/64-bit types
3913  if (!VT.is256BitVector() || (NumElts != 4 && NumElts != 8))
3914    return false;
3915
3916  unsigned NumLanes = VT.getSizeInBits()/128;
3917  unsigned LaneSize = NumElts/NumLanes;
3918  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3919    for (unsigned i = 0; i != LaneSize; ++i) {
3920      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3921        return false;
3922      if (NumElts != 8 || l == 0)
3923        continue;
3924      // VPERMILPS handling
3925      if (Mask[i] < 0)
3926        continue;
3927      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3928        return false;
3929    }
3930  }
3931
3932  return true;
3933}
3934
3935/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3936/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3937/// element of vector 2 and the other elements to come from vector 1 in order.
3938static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3939                               bool V2IsSplat = false, bool V2IsUndef = false) {
3940  if (!VT.is128BitVector())
3941    return false;
3942
3943  unsigned NumOps = VT.getVectorNumElements();
3944  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3945    return false;
3946
3947  if (!isUndefOrEqual(Mask[0], 0))
3948    return false;
3949
3950  for (unsigned i = 1; i != NumOps; ++i)
3951    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3952          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3953          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3954      return false;
3955
3956  return true;
3957}
3958
3959/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3960/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3961/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3962static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3963                           const X86Subtarget *Subtarget) {
3964  if (!Subtarget->hasSSE3())
3965    return false;
3966
3967  unsigned NumElems = VT.getVectorNumElements();
3968
3969  if ((VT.is128BitVector() && NumElems != 4) ||
3970      (VT.is256BitVector() && NumElems != 8))
3971    return false;
3972
3973  // "i+1" is the value the indexed mask element must have
3974  for (unsigned i = 0; i != NumElems; i += 2)
3975    if (!isUndefOrEqual(Mask[i], i+1) ||
3976        !isUndefOrEqual(Mask[i+1], i+1))
3977      return false;
3978
3979  return true;
3980}
3981
3982/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3983/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3984/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3985static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3986                           const X86Subtarget *Subtarget) {
3987  if (!Subtarget->hasSSE3())
3988    return false;
3989
3990  unsigned NumElems = VT.getVectorNumElements();
3991
3992  if ((VT.is128BitVector() && NumElems != 4) ||
3993      (VT.is256BitVector() && NumElems != 8))
3994    return false;
3995
3996  // "i" is the value the indexed mask element must have
3997  for (unsigned i = 0; i != NumElems; i += 2)
3998    if (!isUndefOrEqual(Mask[i], i) ||
3999        !isUndefOrEqual(Mask[i+1], i))
4000      return false;
4001
4002  return true;
4003}
4004
4005/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
4006/// specifies a shuffle of elements that is suitable for input to 256-bit
4007/// version of MOVDDUP.
4008static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
4009  if (!HasFp256 || !VT.is256BitVector())
4010    return false;
4011
4012  unsigned NumElts = VT.getVectorNumElements();
4013  if (NumElts != 4)
4014    return false;
4015
4016  for (unsigned i = 0; i != NumElts/2; ++i)
4017    if (!isUndefOrEqual(Mask[i], 0))
4018      return false;
4019  for (unsigned i = NumElts/2; i != NumElts; ++i)
4020    if (!isUndefOrEqual(Mask[i], NumElts/2))
4021      return false;
4022  return true;
4023}
4024
4025/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4026/// specifies a shuffle of elements that is suitable for input to 128-bit
4027/// version of MOVDDUP.
4028static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
4029  if (!VT.is128BitVector())
4030    return false;
4031
4032  unsigned e = VT.getVectorNumElements() / 2;
4033  for (unsigned i = 0; i != e; ++i)
4034    if (!isUndefOrEqual(Mask[i], i))
4035      return false;
4036  for (unsigned i = 0; i != e; ++i)
4037    if (!isUndefOrEqual(Mask[e+i], i))
4038      return false;
4039  return true;
4040}
4041
4042/// isVEXTRACTF128Index - Return true if the specified
4043/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4044/// suitable for input to VEXTRACTF128.
4045bool X86::isVEXTRACTF128Index(SDNode *N) {
4046  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4047    return false;
4048
4049  // The index should be aligned on a 128-bit boundary.
4050  uint64_t Index =
4051    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4052
4053  MVT VT = N->getValueType(0).getSimpleVT();
4054  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4055  bool Result = (Index * ElSize) % 128 == 0;
4056
4057  return Result;
4058}
4059
4060/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
4061/// operand specifies a subvector insert that is suitable for input to
4062/// VINSERTF128.
4063bool X86::isVINSERTF128Index(SDNode *N) {
4064  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4065    return false;
4066
4067  // The index should be aligned on a 128-bit boundary.
4068  uint64_t Index =
4069    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4070
4071  MVT VT = N->getValueType(0).getSimpleVT();
4072  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4073  bool Result = (Index * ElSize) % 128 == 0;
4074
4075  return Result;
4076}
4077
4078/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4079/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4080/// Handles 128-bit and 256-bit.
4081static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
4082  MVT VT = N->getValueType(0).getSimpleVT();
4083
4084  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4085         "Unsupported vector type for PSHUF/SHUFP");
4086
4087  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
4088  // independently on 128-bit lanes.
4089  unsigned NumElts = VT.getVectorNumElements();
4090  unsigned NumLanes = VT.getSizeInBits()/128;
4091  unsigned NumLaneElts = NumElts/NumLanes;
4092
4093  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
4094         "Only supports 2 or 4 elements per lane");
4095
4096  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
4097  unsigned Mask = 0;
4098  for (unsigned i = 0; i != NumElts; ++i) {
4099    int Elt = N->getMaskElt(i);
4100    if (Elt < 0) continue;
4101    Elt &= NumLaneElts - 1;
4102    unsigned ShAmt = (i << Shift) % 8;
4103    Mask |= Elt << ShAmt;
4104  }
4105
4106  return Mask;
4107}
4108
4109/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4110/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4111static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4112  MVT VT = N->getValueType(0).getSimpleVT();
4113
4114  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4115         "Unsupported vector type for PSHUFHW");
4116
4117  unsigned NumElts = VT.getVectorNumElements();
4118
4119  unsigned Mask = 0;
4120  for (unsigned l = 0; l != NumElts; l += 8) {
4121    // 8 nodes per lane, but we only care about the last 4.
4122    for (unsigned i = 0; i < 4; ++i) {
4123      int Elt = N->getMaskElt(l+i+4);
4124      if (Elt < 0) continue;
4125      Elt &= 0x3; // only 2-bits.
4126      Mask |= Elt << (i * 2);
4127    }
4128  }
4129
4130  return Mask;
4131}
4132
4133/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4134/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4135static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4136  MVT VT = N->getValueType(0).getSimpleVT();
4137
4138  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4139         "Unsupported vector type for PSHUFHW");
4140
4141  unsigned NumElts = VT.getVectorNumElements();
4142
4143  unsigned Mask = 0;
4144  for (unsigned l = 0; l != NumElts; l += 8) {
4145    // 8 nodes per lane, but we only care about the first 4.
4146    for (unsigned i = 0; i < 4; ++i) {
4147      int Elt = N->getMaskElt(l+i);
4148      if (Elt < 0) continue;
4149      Elt &= 0x3; // only 2-bits
4150      Mask |= Elt << (i * 2);
4151    }
4152  }
4153
4154  return Mask;
4155}
4156
4157/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4158/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4159static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4160  MVT VT = SVOp->getValueType(0).getSimpleVT();
4161  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4162
4163  unsigned NumElts = VT.getVectorNumElements();
4164  unsigned NumLanes = VT.getSizeInBits()/128;
4165  unsigned NumLaneElts = NumElts/NumLanes;
4166
4167  int Val = 0;
4168  unsigned i;
4169  for (i = 0; i != NumElts; ++i) {
4170    Val = SVOp->getMaskElt(i);
4171    if (Val >= 0)
4172      break;
4173  }
4174  if (Val >= (int)NumElts)
4175    Val -= NumElts - NumLaneElts;
4176
4177  assert(Val - i > 0 && "PALIGNR imm should be positive");
4178  return (Val - i) * EltSize;
4179}
4180
4181/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4182/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4183/// instructions.
4184unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4185  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4186    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4187
4188  uint64_t Index =
4189    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4190
4191  MVT VecVT = N->getOperand(0).getValueType().getSimpleVT();
4192  MVT ElVT = VecVT.getVectorElementType();
4193
4194  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4195  return Index / NumElemsPerChunk;
4196}
4197
4198/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4199/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4200/// instructions.
4201unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4202  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4203    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4204
4205  uint64_t Index =
4206    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4207
4208  MVT VecVT = N->getValueType(0).getSimpleVT();
4209  MVT ElVT = VecVT.getVectorElementType();
4210
4211  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4212  return Index / NumElemsPerChunk;
4213}
4214
4215/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4216/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4217/// Handles 256-bit.
4218static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4219  MVT VT = N->getValueType(0).getSimpleVT();
4220
4221  unsigned NumElts = VT.getVectorNumElements();
4222
4223  assert((VT.is256BitVector() && NumElts == 4) &&
4224         "Unsupported vector type for VPERMQ/VPERMPD");
4225
4226  unsigned Mask = 0;
4227  for (unsigned i = 0; i != NumElts; ++i) {
4228    int Elt = N->getMaskElt(i);
4229    if (Elt < 0)
4230      continue;
4231    Mask |= Elt << (i*2);
4232  }
4233
4234  return Mask;
4235}
4236/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4237/// constant +0.0.
4238bool X86::isZeroNode(SDValue Elt) {
4239  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Elt))
4240    return CN->isNullValue();
4241  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt))
4242    return CFP->getValueAPF().isPosZero();
4243  return false;
4244}
4245
4246/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4247/// their permute mask.
4248static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4249                                    SelectionDAG &DAG) {
4250  MVT VT = SVOp->getValueType(0).getSimpleVT();
4251  unsigned NumElems = VT.getVectorNumElements();
4252  SmallVector<int, 8> MaskVec;
4253
4254  for (unsigned i = 0; i != NumElems; ++i) {
4255    int Idx = SVOp->getMaskElt(i);
4256    if (Idx >= 0) {
4257      if (Idx < (int)NumElems)
4258        Idx += NumElems;
4259      else
4260        Idx -= NumElems;
4261    }
4262    MaskVec.push_back(Idx);
4263  }
4264  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4265                              SVOp->getOperand(0), &MaskVec[0]);
4266}
4267
4268/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4269/// match movhlps. The lower half elements should come from upper half of
4270/// V1 (and in order), and the upper half elements should come from the upper
4271/// half of V2 (and in order).
4272static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4273  if (!VT.is128BitVector())
4274    return false;
4275  if (VT.getVectorNumElements() != 4)
4276    return false;
4277  for (unsigned i = 0, e = 2; i != e; ++i)
4278    if (!isUndefOrEqual(Mask[i], i+2))
4279      return false;
4280  for (unsigned i = 2; i != 4; ++i)
4281    if (!isUndefOrEqual(Mask[i], i+4))
4282      return false;
4283  return true;
4284}
4285
4286/// isScalarLoadToVector - Returns true if the node is a scalar load that
4287/// is promoted to a vector. It also returns the LoadSDNode by reference if
4288/// required.
4289static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4290  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4291    return false;
4292  N = N->getOperand(0).getNode();
4293  if (!ISD::isNON_EXTLoad(N))
4294    return false;
4295  if (LD)
4296    *LD = cast<LoadSDNode>(N);
4297  return true;
4298}
4299
4300// Test whether the given value is a vector value which will be legalized
4301// into a load.
4302static bool WillBeConstantPoolLoad(SDNode *N) {
4303  if (N->getOpcode() != ISD::BUILD_VECTOR)
4304    return false;
4305
4306  // Check for any non-constant elements.
4307  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4308    switch (N->getOperand(i).getNode()->getOpcode()) {
4309    case ISD::UNDEF:
4310    case ISD::ConstantFP:
4311    case ISD::Constant:
4312      break;
4313    default:
4314      return false;
4315    }
4316
4317  // Vectors of all-zeros and all-ones are materialized with special
4318  // instructions rather than being loaded.
4319  return !ISD::isBuildVectorAllZeros(N) &&
4320         !ISD::isBuildVectorAllOnes(N);
4321}
4322
4323/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4324/// match movlp{s|d}. The lower half elements should come from lower half of
4325/// V1 (and in order), and the upper half elements should come from the upper
4326/// half of V2 (and in order). And since V1 will become the source of the
4327/// MOVLP, it must be either a vector load or a scalar load to vector.
4328static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4329                               ArrayRef<int> Mask, EVT VT) {
4330  if (!VT.is128BitVector())
4331    return false;
4332
4333  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4334    return false;
4335  // Is V2 is a vector load, don't do this transformation. We will try to use
4336  // load folding shufps op.
4337  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4338    return false;
4339
4340  unsigned NumElems = VT.getVectorNumElements();
4341
4342  if (NumElems != 2 && NumElems != 4)
4343    return false;
4344  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4345    if (!isUndefOrEqual(Mask[i], i))
4346      return false;
4347  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4348    if (!isUndefOrEqual(Mask[i], i+NumElems))
4349      return false;
4350  return true;
4351}
4352
4353/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4354/// all the same.
4355static bool isSplatVector(SDNode *N) {
4356  if (N->getOpcode() != ISD::BUILD_VECTOR)
4357    return false;
4358
4359  SDValue SplatValue = N->getOperand(0);
4360  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4361    if (N->getOperand(i) != SplatValue)
4362      return false;
4363  return true;
4364}
4365
4366/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4367/// to an zero vector.
4368/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4369static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4370  SDValue V1 = N->getOperand(0);
4371  SDValue V2 = N->getOperand(1);
4372  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4373  for (unsigned i = 0; i != NumElems; ++i) {
4374    int Idx = N->getMaskElt(i);
4375    if (Idx >= (int)NumElems) {
4376      unsigned Opc = V2.getOpcode();
4377      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4378        continue;
4379      if (Opc != ISD::BUILD_VECTOR ||
4380          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4381        return false;
4382    } else if (Idx >= 0) {
4383      unsigned Opc = V1.getOpcode();
4384      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4385        continue;
4386      if (Opc != ISD::BUILD_VECTOR ||
4387          !X86::isZeroNode(V1.getOperand(Idx)))
4388        return false;
4389    }
4390  }
4391  return true;
4392}
4393
4394/// getZeroVector - Returns a vector of specified type with all zero elements.
4395///
4396static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4397                             SelectionDAG &DAG, DebugLoc dl) {
4398  assert(VT.isVector() && "Expected a vector type");
4399
4400  // Always build SSE zero vectors as <4 x i32> bitcasted
4401  // to their dest type. This ensures they get CSE'd.
4402  SDValue Vec;
4403  if (VT.is128BitVector()) {  // SSE
4404    if (Subtarget->hasSSE2()) {  // SSE2
4405      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4406      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4407    } else { // SSE1
4408      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4409      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4410    }
4411  } else if (VT.is256BitVector()) { // AVX
4412    if (Subtarget->hasInt256()) { // AVX2
4413      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4414      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4415      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4416    } else {
4417      // 256-bit logic and arithmetic instructions in AVX are all
4418      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4419      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4420      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4421      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4422    }
4423  } else
4424    llvm_unreachable("Unexpected vector type");
4425
4426  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4427}
4428
4429/// getOnesVector - Returns a vector of specified type with all bits set.
4430/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4431/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4432/// Then bitcast to their original type, ensuring they get CSE'd.
4433static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
4434                             DebugLoc dl) {
4435  assert(VT.isVector() && "Expected a vector type");
4436
4437  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4438  SDValue Vec;
4439  if (VT.is256BitVector()) {
4440    if (HasInt256) { // AVX2
4441      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4442      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4443    } else { // AVX
4444      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4445      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4446    }
4447  } else if (VT.is128BitVector()) {
4448    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4449  } else
4450    llvm_unreachable("Unexpected vector type");
4451
4452  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4453}
4454
4455/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4456/// that point to V2 points to its first element.
4457static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4458  for (unsigned i = 0; i != NumElems; ++i) {
4459    if (Mask[i] > (int)NumElems) {
4460      Mask[i] = NumElems;
4461    }
4462  }
4463}
4464
4465/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4466/// operation of specified width.
4467static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4468                       SDValue V2) {
4469  unsigned NumElems = VT.getVectorNumElements();
4470  SmallVector<int, 8> Mask;
4471  Mask.push_back(NumElems);
4472  for (unsigned i = 1; i != NumElems; ++i)
4473    Mask.push_back(i);
4474  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4475}
4476
4477/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4478static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4479                          SDValue V2) {
4480  unsigned NumElems = VT.getVectorNumElements();
4481  SmallVector<int, 8> Mask;
4482  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4483    Mask.push_back(i);
4484    Mask.push_back(i + NumElems);
4485  }
4486  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4487}
4488
4489/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4490static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4491                          SDValue V2) {
4492  unsigned NumElems = VT.getVectorNumElements();
4493  SmallVector<int, 8> Mask;
4494  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4495    Mask.push_back(i + Half);
4496    Mask.push_back(i + NumElems + Half);
4497  }
4498  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4499}
4500
4501// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4502// a generic shuffle instruction because the target has no such instructions.
4503// Generate shuffles which repeat i16 and i8 several times until they can be
4504// represented by v4f32 and then be manipulated by target suported shuffles.
4505static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4506  EVT VT = V.getValueType();
4507  int NumElems = VT.getVectorNumElements();
4508  DebugLoc dl = V.getDebugLoc();
4509
4510  while (NumElems > 4) {
4511    if (EltNo < NumElems/2) {
4512      V = getUnpackl(DAG, dl, VT, V, V);
4513    } else {
4514      V = getUnpackh(DAG, dl, VT, V, V);
4515      EltNo -= NumElems/2;
4516    }
4517    NumElems >>= 1;
4518  }
4519  return V;
4520}
4521
4522/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4523static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4524  EVT VT = V.getValueType();
4525  DebugLoc dl = V.getDebugLoc();
4526
4527  if (VT.is128BitVector()) {
4528    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4529    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4530    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4531                             &SplatMask[0]);
4532  } else if (VT.is256BitVector()) {
4533    // To use VPERMILPS to splat scalars, the second half of indicies must
4534    // refer to the higher part, which is a duplication of the lower one,
4535    // because VPERMILPS can only handle in-lane permutations.
4536    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4537                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4538
4539    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4540    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4541                             &SplatMask[0]);
4542  } else
4543    llvm_unreachable("Vector size not supported");
4544
4545  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4546}
4547
4548/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4549static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4550  EVT SrcVT = SV->getValueType(0);
4551  SDValue V1 = SV->getOperand(0);
4552  DebugLoc dl = SV->getDebugLoc();
4553
4554  int EltNo = SV->getSplatIndex();
4555  int NumElems = SrcVT.getVectorNumElements();
4556  bool Is256BitVec = SrcVT.is256BitVector();
4557
4558  assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) &&
4559         "Unknown how to promote splat for type");
4560
4561  // Extract the 128-bit part containing the splat element and update
4562  // the splat element index when it refers to the higher register.
4563  if (Is256BitVec) {
4564    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4565    if (EltNo >= NumElems/2)
4566      EltNo -= NumElems/2;
4567  }
4568
4569  // All i16 and i8 vector types can't be used directly by a generic shuffle
4570  // instruction because the target has no such instruction. Generate shuffles
4571  // which repeat i16 and i8 several times until they fit in i32, and then can
4572  // be manipulated by target suported shuffles.
4573  EVT EltVT = SrcVT.getVectorElementType();
4574  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4575    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4576
4577  // Recreate the 256-bit vector and place the same 128-bit vector
4578  // into the low and high part. This is necessary because we want
4579  // to use VPERM* to shuffle the vectors
4580  if (Is256BitVec) {
4581    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4582  }
4583
4584  return getLegalSplat(DAG, V1, EltNo);
4585}
4586
4587/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4588/// vector of zero or undef vector.  This produces a shuffle where the low
4589/// element of V2 is swizzled into the zero/undef vector, landing at element
4590/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4591static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4592                                           bool IsZero,
4593                                           const X86Subtarget *Subtarget,
4594                                           SelectionDAG &DAG) {
4595  EVT VT = V2.getValueType();
4596  SDValue V1 = IsZero
4597    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4598  unsigned NumElems = VT.getVectorNumElements();
4599  SmallVector<int, 16> MaskVec;
4600  for (unsigned i = 0; i != NumElems; ++i)
4601    // If this is the insertion idx, put the low elt of V2 here.
4602    MaskVec.push_back(i == Idx ? NumElems : i);
4603  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4604}
4605
4606/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4607/// target specific opcode. Returns true if the Mask could be calculated.
4608/// Sets IsUnary to true if only uses one source.
4609static bool getTargetShuffleMask(SDNode *N, MVT VT,
4610                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4611  unsigned NumElems = VT.getVectorNumElements();
4612  SDValue ImmN;
4613
4614  IsUnary = false;
4615  switch(N->getOpcode()) {
4616  case X86ISD::SHUFP:
4617    ImmN = N->getOperand(N->getNumOperands()-1);
4618    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4619    break;
4620  case X86ISD::UNPCKH:
4621    DecodeUNPCKHMask(VT, Mask);
4622    break;
4623  case X86ISD::UNPCKL:
4624    DecodeUNPCKLMask(VT, Mask);
4625    break;
4626  case X86ISD::MOVHLPS:
4627    DecodeMOVHLPSMask(NumElems, Mask);
4628    break;
4629  case X86ISD::MOVLHPS:
4630    DecodeMOVLHPSMask(NumElems, Mask);
4631    break;
4632  case X86ISD::PALIGNR:
4633    ImmN = N->getOperand(N->getNumOperands()-1);
4634    DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4635    break;
4636  case X86ISD::PSHUFD:
4637  case X86ISD::VPERMILP:
4638    ImmN = N->getOperand(N->getNumOperands()-1);
4639    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4640    IsUnary = true;
4641    break;
4642  case X86ISD::PSHUFHW:
4643    ImmN = N->getOperand(N->getNumOperands()-1);
4644    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4645    IsUnary = true;
4646    break;
4647  case X86ISD::PSHUFLW:
4648    ImmN = N->getOperand(N->getNumOperands()-1);
4649    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4650    IsUnary = true;
4651    break;
4652  case X86ISD::VPERMI:
4653    ImmN = N->getOperand(N->getNumOperands()-1);
4654    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4655    IsUnary = true;
4656    break;
4657  case X86ISD::MOVSS:
4658  case X86ISD::MOVSD: {
4659    // The index 0 always comes from the first element of the second source,
4660    // this is why MOVSS and MOVSD are used in the first place. The other
4661    // elements come from the other positions of the first source vector
4662    Mask.push_back(NumElems);
4663    for (unsigned i = 1; i != NumElems; ++i) {
4664      Mask.push_back(i);
4665    }
4666    break;
4667  }
4668  case X86ISD::VPERM2X128:
4669    ImmN = N->getOperand(N->getNumOperands()-1);
4670    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4671    if (Mask.empty()) return false;
4672    break;
4673  case X86ISD::MOVDDUP:
4674  case X86ISD::MOVLHPD:
4675  case X86ISD::MOVLPD:
4676  case X86ISD::MOVLPS:
4677  case X86ISD::MOVSHDUP:
4678  case X86ISD::MOVSLDUP:
4679    // Not yet implemented
4680    return false;
4681  default: llvm_unreachable("unknown target shuffle node");
4682  }
4683
4684  return true;
4685}
4686
4687/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4688/// element of the result of the vector shuffle.
4689static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4690                                   unsigned Depth) {
4691  if (Depth == 6)
4692    return SDValue();  // Limit search depth.
4693
4694  SDValue V = SDValue(N, 0);
4695  EVT VT = V.getValueType();
4696  unsigned Opcode = V.getOpcode();
4697
4698  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4699  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4700    int Elt = SV->getMaskElt(Index);
4701
4702    if (Elt < 0)
4703      return DAG.getUNDEF(VT.getVectorElementType());
4704
4705    unsigned NumElems = VT.getVectorNumElements();
4706    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4707                                         : SV->getOperand(1);
4708    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4709  }
4710
4711  // Recurse into target specific vector shuffles to find scalars.
4712  if (isTargetShuffle(Opcode)) {
4713    MVT ShufVT = V.getValueType().getSimpleVT();
4714    unsigned NumElems = ShufVT.getVectorNumElements();
4715    SmallVector<int, 16> ShuffleMask;
4716    bool IsUnary;
4717
4718    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4719      return SDValue();
4720
4721    int Elt = ShuffleMask[Index];
4722    if (Elt < 0)
4723      return DAG.getUNDEF(ShufVT.getVectorElementType());
4724
4725    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4726                                         : N->getOperand(1);
4727    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4728                               Depth+1);
4729  }
4730
4731  // Actual nodes that may contain scalar elements
4732  if (Opcode == ISD::BITCAST) {
4733    V = V.getOperand(0);
4734    EVT SrcVT = V.getValueType();
4735    unsigned NumElems = VT.getVectorNumElements();
4736
4737    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4738      return SDValue();
4739  }
4740
4741  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4742    return (Index == 0) ? V.getOperand(0)
4743                        : DAG.getUNDEF(VT.getVectorElementType());
4744
4745  if (V.getOpcode() == ISD::BUILD_VECTOR)
4746    return V.getOperand(Index);
4747
4748  return SDValue();
4749}
4750
4751/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4752/// shuffle operation which come from a consecutively from a zero. The
4753/// search can start in two different directions, from left or right.
4754static
4755unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4756                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4757  unsigned i;
4758  for (i = 0; i != NumElems; ++i) {
4759    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4760    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4761    if (!(Elt.getNode() &&
4762         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4763      break;
4764  }
4765
4766  return i;
4767}
4768
4769/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4770/// correspond consecutively to elements from one of the vector operands,
4771/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4772static
4773bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4774                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4775                              unsigned NumElems, unsigned &OpNum) {
4776  bool SeenV1 = false;
4777  bool SeenV2 = false;
4778
4779  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4780    int Idx = SVOp->getMaskElt(i);
4781    // Ignore undef indicies
4782    if (Idx < 0)
4783      continue;
4784
4785    if (Idx < (int)NumElems)
4786      SeenV1 = true;
4787    else
4788      SeenV2 = true;
4789
4790    // Only accept consecutive elements from the same vector
4791    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4792      return false;
4793  }
4794
4795  OpNum = SeenV1 ? 0 : 1;
4796  return true;
4797}
4798
4799/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4800/// logical left shift of a vector.
4801static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4802                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4803  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4804  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4805              false /* check zeros from right */, DAG);
4806  unsigned OpSrc;
4807
4808  if (!NumZeros)
4809    return false;
4810
4811  // Considering the elements in the mask that are not consecutive zeros,
4812  // check if they consecutively come from only one of the source vectors.
4813  //
4814  //               V1 = {X, A, B, C}     0
4815  //                         \  \  \    /
4816  //   vector_shuffle V1, V2 <1, 2, 3, X>
4817  //
4818  if (!isShuffleMaskConsecutive(SVOp,
4819            0,                   // Mask Start Index
4820            NumElems-NumZeros,   // Mask End Index(exclusive)
4821            NumZeros,            // Where to start looking in the src vector
4822            NumElems,            // Number of elements in vector
4823            OpSrc))              // Which source operand ?
4824    return false;
4825
4826  isLeft = false;
4827  ShAmt = NumZeros;
4828  ShVal = SVOp->getOperand(OpSrc);
4829  return true;
4830}
4831
4832/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4833/// logical left shift of a vector.
4834static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4835                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4836  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4837  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4838              true /* check zeros from left */, DAG);
4839  unsigned OpSrc;
4840
4841  if (!NumZeros)
4842    return false;
4843
4844  // Considering the elements in the mask that are not consecutive zeros,
4845  // check if they consecutively come from only one of the source vectors.
4846  //
4847  //                           0    { A, B, X, X } = V2
4848  //                          / \    /  /
4849  //   vector_shuffle V1, V2 <X, X, 4, 5>
4850  //
4851  if (!isShuffleMaskConsecutive(SVOp,
4852            NumZeros,     // Mask Start Index
4853            NumElems,     // Mask End Index(exclusive)
4854            0,            // Where to start looking in the src vector
4855            NumElems,     // Number of elements in vector
4856            OpSrc))       // Which source operand ?
4857    return false;
4858
4859  isLeft = true;
4860  ShAmt = NumZeros;
4861  ShVal = SVOp->getOperand(OpSrc);
4862  return true;
4863}
4864
4865/// isVectorShift - Returns true if the shuffle can be implemented as a
4866/// logical left or right shift of a vector.
4867static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4868                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4869  // Although the logic below support any bitwidth size, there are no
4870  // shift instructions which handle more than 128-bit vectors.
4871  if (!SVOp->getValueType(0).is128BitVector())
4872    return false;
4873
4874  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4875      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4876    return true;
4877
4878  return false;
4879}
4880
4881/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4882///
4883static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4884                                       unsigned NumNonZero, unsigned NumZero,
4885                                       SelectionDAG &DAG,
4886                                       const X86Subtarget* Subtarget,
4887                                       const TargetLowering &TLI) {
4888  if (NumNonZero > 8)
4889    return SDValue();
4890
4891  DebugLoc dl = Op.getDebugLoc();
4892  SDValue V(0, 0);
4893  bool First = true;
4894  for (unsigned i = 0; i < 16; ++i) {
4895    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4896    if (ThisIsNonZero && First) {
4897      if (NumZero)
4898        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4899      else
4900        V = DAG.getUNDEF(MVT::v8i16);
4901      First = false;
4902    }
4903
4904    if ((i & 1) != 0) {
4905      SDValue ThisElt(0, 0), LastElt(0, 0);
4906      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4907      if (LastIsNonZero) {
4908        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4909                              MVT::i16, Op.getOperand(i-1));
4910      }
4911      if (ThisIsNonZero) {
4912        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4913        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4914                              ThisElt, DAG.getConstant(8, MVT::i8));
4915        if (LastIsNonZero)
4916          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4917      } else
4918        ThisElt = LastElt;
4919
4920      if (ThisElt.getNode())
4921        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4922                        DAG.getIntPtrConstant(i/2));
4923    }
4924  }
4925
4926  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4927}
4928
4929/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4930///
4931static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4932                                     unsigned NumNonZero, unsigned NumZero,
4933                                     SelectionDAG &DAG,
4934                                     const X86Subtarget* Subtarget,
4935                                     const TargetLowering &TLI) {
4936  if (NumNonZero > 4)
4937    return SDValue();
4938
4939  DebugLoc dl = Op.getDebugLoc();
4940  SDValue V(0, 0);
4941  bool First = true;
4942  for (unsigned i = 0; i < 8; ++i) {
4943    bool isNonZero = (NonZeros & (1 << i)) != 0;
4944    if (isNonZero) {
4945      if (First) {
4946        if (NumZero)
4947          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4948        else
4949          V = DAG.getUNDEF(MVT::v8i16);
4950        First = false;
4951      }
4952      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4953                      MVT::v8i16, V, Op.getOperand(i),
4954                      DAG.getIntPtrConstant(i));
4955    }
4956  }
4957
4958  return V;
4959}
4960
4961/// getVShift - Return a vector logical shift node.
4962///
4963static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4964                         unsigned NumBits, SelectionDAG &DAG,
4965                         const TargetLowering &TLI, DebugLoc dl) {
4966  assert(VT.is128BitVector() && "Unknown type for VShift");
4967  EVT ShVT = MVT::v2i64;
4968  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4969  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4970  return DAG.getNode(ISD::BITCAST, dl, VT,
4971                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4972                             DAG.getConstant(NumBits,
4973                                  TLI.getScalarShiftAmountTy(SrcOp.getValueType()))));
4974}
4975
4976SDValue
4977X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4978                                          SelectionDAG &DAG) const {
4979
4980  // Check if the scalar load can be widened into a vector load. And if
4981  // the address is "base + cst" see if the cst can be "absorbed" into
4982  // the shuffle mask.
4983  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4984    SDValue Ptr = LD->getBasePtr();
4985    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4986      return SDValue();
4987    EVT PVT = LD->getValueType(0);
4988    if (PVT != MVT::i32 && PVT != MVT::f32)
4989      return SDValue();
4990
4991    int FI = -1;
4992    int64_t Offset = 0;
4993    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4994      FI = FINode->getIndex();
4995      Offset = 0;
4996    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4997               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4998      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4999      Offset = Ptr.getConstantOperandVal(1);
5000      Ptr = Ptr.getOperand(0);
5001    } else {
5002      return SDValue();
5003    }
5004
5005    // FIXME: 256-bit vector instructions don't require a strict alignment,
5006    // improve this code to support it better.
5007    unsigned RequiredAlign = VT.getSizeInBits()/8;
5008    SDValue Chain = LD->getChain();
5009    // Make sure the stack object alignment is at least 16 or 32.
5010    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5011    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
5012      if (MFI->isFixedObjectIndex(FI)) {
5013        // Can't change the alignment. FIXME: It's possible to compute
5014        // the exact stack offset and reference FI + adjust offset instead.
5015        // If someone *really* cares about this. That's the way to implement it.
5016        return SDValue();
5017      } else {
5018        MFI->setObjectAlignment(FI, RequiredAlign);
5019      }
5020    }
5021
5022    // (Offset % 16 or 32) must be multiple of 4. Then address is then
5023    // Ptr + (Offset & ~15).
5024    if (Offset < 0)
5025      return SDValue();
5026    if ((Offset % RequiredAlign) & 3)
5027      return SDValue();
5028    int64_t StartOffset = Offset & ~(RequiredAlign-1);
5029    if (StartOffset)
5030      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
5031                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
5032
5033    int EltNo = (Offset - StartOffset) >> 2;
5034    unsigned NumElems = VT.getVectorNumElements();
5035
5036    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
5037    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
5038                             LD->getPointerInfo().getWithOffset(StartOffset),
5039                             false, false, false, 0);
5040
5041    SmallVector<int, 8> Mask;
5042    for (unsigned i = 0; i != NumElems; ++i)
5043      Mask.push_back(EltNo);
5044
5045    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
5046  }
5047
5048  return SDValue();
5049}
5050
5051/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
5052/// vector of type 'VT', see if the elements can be replaced by a single large
5053/// load which has the same value as a build_vector whose operands are 'elts'.
5054///
5055/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
5056///
5057/// FIXME: we'd also like to handle the case where the last elements are zero
5058/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
5059/// There's even a handy isZeroNode for that purpose.
5060static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
5061                                        DebugLoc &DL, SelectionDAG &DAG) {
5062  EVT EltVT = VT.getVectorElementType();
5063  unsigned NumElems = Elts.size();
5064
5065  LoadSDNode *LDBase = NULL;
5066  unsigned LastLoadedElt = -1U;
5067
5068  // For each element in the initializer, see if we've found a load or an undef.
5069  // If we don't find an initial load element, or later load elements are
5070  // non-consecutive, bail out.
5071  for (unsigned i = 0; i < NumElems; ++i) {
5072    SDValue Elt = Elts[i];
5073
5074    if (!Elt.getNode() ||
5075        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5076      return SDValue();
5077    if (!LDBase) {
5078      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5079        return SDValue();
5080      LDBase = cast<LoadSDNode>(Elt.getNode());
5081      LastLoadedElt = i;
5082      continue;
5083    }
5084    if (Elt.getOpcode() == ISD::UNDEF)
5085      continue;
5086
5087    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5088    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5089      return SDValue();
5090    LastLoadedElt = i;
5091  }
5092
5093  // If we have found an entire vector of loads and undefs, then return a large
5094  // load of the entire vector width starting at the base pointer.  If we found
5095  // consecutive loads for the low half, generate a vzext_load node.
5096  if (LastLoadedElt == NumElems - 1) {
5097    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5098      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5099                         LDBase->getPointerInfo(),
5100                         LDBase->isVolatile(), LDBase->isNonTemporal(),
5101                         LDBase->isInvariant(), 0);
5102    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5103                       LDBase->getPointerInfo(),
5104                       LDBase->isVolatile(), LDBase->isNonTemporal(),
5105                       LDBase->isInvariant(), LDBase->getAlignment());
5106  }
5107  if (NumElems == 4 && LastLoadedElt == 1 &&
5108      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5109    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5110    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5111    SDValue ResNode =
5112        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5113                                LDBase->getPointerInfo(),
5114                                LDBase->getAlignment(),
5115                                false/*isVolatile*/, true/*ReadMem*/,
5116                                false/*WriteMem*/);
5117
5118    // Make sure the newly-created LOAD is in the same position as LDBase in
5119    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5120    // update uses of LDBase's output chain to use the TokenFactor.
5121    if (LDBase->hasAnyUseOfValue(1)) {
5122      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5123                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5124      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5125      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5126                             SDValue(ResNode.getNode(), 1));
5127    }
5128
5129    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5130  }
5131  return SDValue();
5132}
5133
5134/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5135/// to generate a splat value for the following cases:
5136/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5137/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5138/// a scalar load, or a constant.
5139/// The VBROADCAST node is returned when a pattern is found,
5140/// or SDValue() otherwise.
5141SDValue
5142X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
5143  if (!Subtarget->hasFp256())
5144    return SDValue();
5145
5146  MVT VT = Op.getValueType().getSimpleVT();
5147  DebugLoc dl = Op.getDebugLoc();
5148
5149  assert((VT.is128BitVector() || VT.is256BitVector()) &&
5150         "Unsupported vector type for broadcast.");
5151
5152  SDValue Ld;
5153  bool ConstSplatVal;
5154
5155  switch (Op.getOpcode()) {
5156    default:
5157      // Unknown pattern found.
5158      return SDValue();
5159
5160    case ISD::BUILD_VECTOR: {
5161      // The BUILD_VECTOR node must be a splat.
5162      if (!isSplatVector(Op.getNode()))
5163        return SDValue();
5164
5165      Ld = Op.getOperand(0);
5166      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5167                     Ld.getOpcode() == ISD::ConstantFP);
5168
5169      // The suspected load node has several users. Make sure that all
5170      // of its users are from the BUILD_VECTOR node.
5171      // Constants may have multiple users.
5172      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5173        return SDValue();
5174      break;
5175    }
5176
5177    case ISD::VECTOR_SHUFFLE: {
5178      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5179
5180      // Shuffles must have a splat mask where the first element is
5181      // broadcasted.
5182      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5183        return SDValue();
5184
5185      SDValue Sc = Op.getOperand(0);
5186      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5187          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5188
5189        if (!Subtarget->hasInt256())
5190          return SDValue();
5191
5192        // Use the register form of the broadcast instruction available on AVX2.
5193        if (VT.is256BitVector())
5194          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5195        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5196      }
5197
5198      Ld = Sc.getOperand(0);
5199      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5200                       Ld.getOpcode() == ISD::ConstantFP);
5201
5202      // The scalar_to_vector node and the suspected
5203      // load node must have exactly one user.
5204      // Constants may have multiple users.
5205      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
5206        return SDValue();
5207      break;
5208    }
5209  }
5210
5211  bool Is256 = VT.is256BitVector();
5212
5213  // Handle the broadcasting a single constant scalar from the constant pool
5214  // into a vector. On Sandybridge it is still better to load a constant vector
5215  // from the constant pool and not to broadcast it from a scalar.
5216  if (ConstSplatVal && Subtarget->hasInt256()) {
5217    EVT CVT = Ld.getValueType();
5218    assert(!CVT.isVector() && "Must not broadcast a vector type");
5219    unsigned ScalarSize = CVT.getSizeInBits();
5220
5221    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5222      const Constant *C = 0;
5223      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5224        C = CI->getConstantIntValue();
5225      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5226        C = CF->getConstantFPValue();
5227
5228      assert(C && "Invalid constant type");
5229
5230      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5231      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5232      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5233                       MachinePointerInfo::getConstantPool(),
5234                       false, false, false, Alignment);
5235
5236      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5237    }
5238  }
5239
5240  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5241  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5242
5243  // Handle AVX2 in-register broadcasts.
5244  if (!IsLoad && Subtarget->hasInt256() &&
5245      (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
5246    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5247
5248  // The scalar source must be a normal load.
5249  if (!IsLoad)
5250    return SDValue();
5251
5252  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5253    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5254
5255  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5256  // double since there is no vbroadcastsd xmm
5257  if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
5258    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5259      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5260  }
5261
5262  // Unsupported broadcast.
5263  return SDValue();
5264}
5265
5266SDValue
5267X86TargetLowering::buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) const {
5268  EVT VT = Op.getValueType();
5269
5270  // Skip if insert_vec_elt is not supported.
5271  if (!isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
5272    return SDValue();
5273
5274  DebugLoc DL = Op.getDebugLoc();
5275  unsigned NumElems = Op.getNumOperands();
5276
5277  SDValue VecIn1;
5278  SDValue VecIn2;
5279  SmallVector<unsigned, 4> InsertIndices;
5280  SmallVector<int, 8> Mask(NumElems, -1);
5281
5282  for (unsigned i = 0; i != NumElems; ++i) {
5283    unsigned Opc = Op.getOperand(i).getOpcode();
5284
5285    if (Opc == ISD::UNDEF)
5286      continue;
5287
5288    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
5289      // Quit if more than 1 elements need inserting.
5290      if (InsertIndices.size() > 1)
5291        return SDValue();
5292
5293      InsertIndices.push_back(i);
5294      continue;
5295    }
5296
5297    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
5298    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
5299
5300    // Quit if extracted from vector of different type.
5301    if (ExtractedFromVec.getValueType() != VT)
5302      return SDValue();
5303
5304    // Quit if non-constant index.
5305    if (!isa<ConstantSDNode>(ExtIdx))
5306      return SDValue();
5307
5308    if (VecIn1.getNode() == 0)
5309      VecIn1 = ExtractedFromVec;
5310    else if (VecIn1 != ExtractedFromVec) {
5311      if (VecIn2.getNode() == 0)
5312        VecIn2 = ExtractedFromVec;
5313      else if (VecIn2 != ExtractedFromVec)
5314        // Quit if more than 2 vectors to shuffle
5315        return SDValue();
5316    }
5317
5318    unsigned Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
5319
5320    if (ExtractedFromVec == VecIn1)
5321      Mask[i] = Idx;
5322    else if (ExtractedFromVec == VecIn2)
5323      Mask[i] = Idx + NumElems;
5324  }
5325
5326  if (VecIn1.getNode() == 0)
5327    return SDValue();
5328
5329  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5330  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
5331  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
5332    unsigned Idx = InsertIndices[i];
5333    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
5334                     DAG.getIntPtrConstant(Idx));
5335  }
5336
5337  return NV;
5338}
5339
5340SDValue
5341X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5342  DebugLoc dl = Op.getDebugLoc();
5343
5344  MVT VT = Op.getValueType().getSimpleVT();
5345  MVT ExtVT = VT.getVectorElementType();
5346  unsigned NumElems = Op.getNumOperands();
5347
5348  // Vectors containing all zeros can be matched by pxor and xorps later
5349  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5350    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5351    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5352    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5353      return Op;
5354
5355    return getZeroVector(VT, Subtarget, DAG, dl);
5356  }
5357
5358  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5359  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5360  // vpcmpeqd on 256-bit vectors.
5361  if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
5362    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
5363      return Op;
5364
5365    return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
5366  }
5367
5368  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5369  if (Broadcast.getNode())
5370    return Broadcast;
5371
5372  unsigned EVTBits = ExtVT.getSizeInBits();
5373
5374  unsigned NumZero  = 0;
5375  unsigned NumNonZero = 0;
5376  unsigned NonZeros = 0;
5377  bool IsAllConstants = true;
5378  SmallSet<SDValue, 8> Values;
5379  for (unsigned i = 0; i < NumElems; ++i) {
5380    SDValue Elt = Op.getOperand(i);
5381    if (Elt.getOpcode() == ISD::UNDEF)
5382      continue;
5383    Values.insert(Elt);
5384    if (Elt.getOpcode() != ISD::Constant &&
5385        Elt.getOpcode() != ISD::ConstantFP)
5386      IsAllConstants = false;
5387    if (X86::isZeroNode(Elt))
5388      NumZero++;
5389    else {
5390      NonZeros |= (1 << i);
5391      NumNonZero++;
5392    }
5393  }
5394
5395  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5396  if (NumNonZero == 0)
5397    return DAG.getUNDEF(VT);
5398
5399  // Special case for single non-zero, non-undef, element.
5400  if (NumNonZero == 1) {
5401    unsigned Idx = CountTrailingZeros_32(NonZeros);
5402    SDValue Item = Op.getOperand(Idx);
5403
5404    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5405    // the value are obviously zero, truncate the value to i32 and do the
5406    // insertion that way.  Only do this if the value is non-constant or if the
5407    // value is a constant being inserted into element 0.  It is cheaper to do
5408    // a constant pool load than it is to do a movd + shuffle.
5409    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5410        (!IsAllConstants || Idx == 0)) {
5411      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5412        // Handle SSE only.
5413        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5414        EVT VecVT = MVT::v4i32;
5415        unsigned VecElts = 4;
5416
5417        // Truncate the value (which may itself be a constant) to i32, and
5418        // convert it to a vector with movd (S2V+shuffle to zero extend).
5419        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5420        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5421        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5422
5423        // Now we have our 32-bit value zero extended in the low element of
5424        // a vector.  If Idx != 0, swizzle it into place.
5425        if (Idx != 0) {
5426          SmallVector<int, 4> Mask;
5427          Mask.push_back(Idx);
5428          for (unsigned i = 1; i != VecElts; ++i)
5429            Mask.push_back(i);
5430          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5431                                      &Mask[0]);
5432        }
5433        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5434      }
5435    }
5436
5437    // If we have a constant or non-constant insertion into the low element of
5438    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5439    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5440    // depending on what the source datatype is.
5441    if (Idx == 0) {
5442      if (NumZero == 0)
5443        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5444
5445      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5446          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5447        if (VT.is256BitVector()) {
5448          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5449          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5450                             Item, DAG.getIntPtrConstant(0));
5451        }
5452        assert(VT.is128BitVector() && "Expected an SSE value type!");
5453        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5454        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5455        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5456      }
5457
5458      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5459        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5460        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5461        if (VT.is256BitVector()) {
5462          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5463          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5464        } else {
5465          assert(VT.is128BitVector() && "Expected an SSE value type!");
5466          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5467        }
5468        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5469      }
5470    }
5471
5472    // Is it a vector logical left shift?
5473    if (NumElems == 2 && Idx == 1 &&
5474        X86::isZeroNode(Op.getOperand(0)) &&
5475        !X86::isZeroNode(Op.getOperand(1))) {
5476      unsigned NumBits = VT.getSizeInBits();
5477      return getVShift(true, VT,
5478                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5479                                   VT, Op.getOperand(1)),
5480                       NumBits/2, DAG, *this, dl);
5481    }
5482
5483    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5484      return SDValue();
5485
5486    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5487    // is a non-constant being inserted into an element other than the low one,
5488    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5489    // movd/movss) to move this into the low element, then shuffle it into
5490    // place.
5491    if (EVTBits == 32) {
5492      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5493
5494      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5495      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5496      SmallVector<int, 8> MaskVec;
5497      for (unsigned i = 0; i != NumElems; ++i)
5498        MaskVec.push_back(i == Idx ? 0 : 1);
5499      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5500    }
5501  }
5502
5503  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5504  if (Values.size() == 1) {
5505    if (EVTBits == 32) {
5506      // Instead of a shuffle like this:
5507      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5508      // Check if it's possible to issue this instead.
5509      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5510      unsigned Idx = CountTrailingZeros_32(NonZeros);
5511      SDValue Item = Op.getOperand(Idx);
5512      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5513        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5514    }
5515    return SDValue();
5516  }
5517
5518  // A vector full of immediates; various special cases are already
5519  // handled, so this is best done with a single constant-pool load.
5520  if (IsAllConstants)
5521    return SDValue();
5522
5523  // For AVX-length vectors, build the individual 128-bit pieces and use
5524  // shuffles to put them in place.
5525  if (VT.is256BitVector()) {
5526    SmallVector<SDValue, 32> V;
5527    for (unsigned i = 0; i != NumElems; ++i)
5528      V.push_back(Op.getOperand(i));
5529
5530    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5531
5532    // Build both the lower and upper subvector.
5533    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5534    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5535                                NumElems/2);
5536
5537    // Recreate the wider vector with the lower and upper part.
5538    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5539  }
5540
5541  // Let legalizer expand 2-wide build_vectors.
5542  if (EVTBits == 64) {
5543    if (NumNonZero == 1) {
5544      // One half is zero or undef.
5545      unsigned Idx = CountTrailingZeros_32(NonZeros);
5546      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5547                                 Op.getOperand(Idx));
5548      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5549    }
5550    return SDValue();
5551  }
5552
5553  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5554  if (EVTBits == 8 && NumElems == 16) {
5555    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5556                                        Subtarget, *this);
5557    if (V.getNode()) return V;
5558  }
5559
5560  if (EVTBits == 16 && NumElems == 8) {
5561    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5562                                      Subtarget, *this);
5563    if (V.getNode()) return V;
5564  }
5565
5566  // If element VT is == 32 bits, turn it into a number of shuffles.
5567  SmallVector<SDValue, 8> V(NumElems);
5568  if (NumElems == 4 && NumZero > 0) {
5569    for (unsigned i = 0; i < 4; ++i) {
5570      bool isZero = !(NonZeros & (1 << i));
5571      if (isZero)
5572        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5573      else
5574        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5575    }
5576
5577    for (unsigned i = 0; i < 2; ++i) {
5578      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5579        default: break;
5580        case 0:
5581          V[i] = V[i*2];  // Must be a zero vector.
5582          break;
5583        case 1:
5584          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5585          break;
5586        case 2:
5587          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5588          break;
5589        case 3:
5590          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5591          break;
5592      }
5593    }
5594
5595    bool Reverse1 = (NonZeros & 0x3) == 2;
5596    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5597    int MaskVec[] = {
5598      Reverse1 ? 1 : 0,
5599      Reverse1 ? 0 : 1,
5600      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5601      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5602    };
5603    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5604  }
5605
5606  if (Values.size() > 1 && VT.is128BitVector()) {
5607    // Check for a build vector of consecutive loads.
5608    for (unsigned i = 0; i < NumElems; ++i)
5609      V[i] = Op.getOperand(i);
5610
5611    // Check for elements which are consecutive loads.
5612    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5613    if (LD.getNode())
5614      return LD;
5615
5616    // Check for a build vector from mostly shuffle plus few inserting.
5617    SDValue Sh = buildFromShuffleMostly(Op, DAG);
5618    if (Sh.getNode())
5619      return Sh;
5620
5621    // For SSE 4.1, use insertps to put the high elements into the low element.
5622    if (getSubtarget()->hasSSE41()) {
5623      SDValue Result;
5624      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5625        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5626      else
5627        Result = DAG.getUNDEF(VT);
5628
5629      for (unsigned i = 1; i < NumElems; ++i) {
5630        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5631        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5632                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5633      }
5634      return Result;
5635    }
5636
5637    // Otherwise, expand into a number of unpckl*, start by extending each of
5638    // our (non-undef) elements to the full vector width with the element in the
5639    // bottom slot of the vector (which generates no code for SSE).
5640    for (unsigned i = 0; i < NumElems; ++i) {
5641      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5642        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5643      else
5644        V[i] = DAG.getUNDEF(VT);
5645    }
5646
5647    // Next, we iteratively mix elements, e.g. for v4f32:
5648    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5649    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5650    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5651    unsigned EltStride = NumElems >> 1;
5652    while (EltStride != 0) {
5653      for (unsigned i = 0; i < EltStride; ++i) {
5654        // If V[i+EltStride] is undef and this is the first round of mixing,
5655        // then it is safe to just drop this shuffle: V[i] is already in the
5656        // right place, the one element (since it's the first round) being
5657        // inserted as undef can be dropped.  This isn't safe for successive
5658        // rounds because they will permute elements within both vectors.
5659        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5660            EltStride == NumElems/2)
5661          continue;
5662
5663        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5664      }
5665      EltStride >>= 1;
5666    }
5667    return V[0];
5668  }
5669  return SDValue();
5670}
5671
5672// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5673// to create 256-bit vectors from two other 128-bit ones.
5674static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5675  DebugLoc dl = Op.getDebugLoc();
5676  MVT ResVT = Op.getValueType().getSimpleVT();
5677
5678  assert(ResVT.is256BitVector() && "Value type must be 256-bit wide");
5679
5680  SDValue V1 = Op.getOperand(0);
5681  SDValue V2 = Op.getOperand(1);
5682  unsigned NumElems = ResVT.getVectorNumElements();
5683
5684  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5685}
5686
5687static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5688  assert(Op.getNumOperands() == 2);
5689
5690  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5691  // from two other 128-bit ones.
5692  return LowerAVXCONCAT_VECTORS(Op, DAG);
5693}
5694
5695// Try to lower a shuffle node into a simple blend instruction.
5696static SDValue
5697LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5698                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
5699  SDValue V1 = SVOp->getOperand(0);
5700  SDValue V2 = SVOp->getOperand(1);
5701  DebugLoc dl = SVOp->getDebugLoc();
5702  MVT VT = SVOp->getValueType(0).getSimpleVT();
5703  MVT EltVT = VT.getVectorElementType();
5704  unsigned NumElems = VT.getVectorNumElements();
5705
5706  if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
5707    return SDValue();
5708  if (!Subtarget->hasInt256() && VT == MVT::v16i16)
5709    return SDValue();
5710
5711  // Check the mask for BLEND and build the value.
5712  unsigned MaskValue = 0;
5713  // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
5714  unsigned NumLanes = (NumElems-1)/8 + 1;
5715  unsigned NumElemsInLane = NumElems / NumLanes;
5716
5717  // Blend for v16i16 should be symetric for the both lanes.
5718  for (unsigned i = 0; i < NumElemsInLane; ++i) {
5719
5720    int SndLaneEltIdx = (NumLanes == 2) ?
5721      SVOp->getMaskElt(i + NumElemsInLane) : -1;
5722    int EltIdx = SVOp->getMaskElt(i);
5723
5724    if ((EltIdx < 0 || EltIdx == (int)i) &&
5725        (SndLaneEltIdx < 0 || SndLaneEltIdx == (int)(i + NumElemsInLane)))
5726      continue;
5727
5728    if (((unsigned)EltIdx == (i + NumElems)) &&
5729        (SndLaneEltIdx < 0 ||
5730         (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane))
5731      MaskValue |= (1<<i);
5732    else
5733      return SDValue();
5734  }
5735
5736  // Convert i32 vectors to floating point if it is not AVX2.
5737  // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
5738  MVT BlendVT = VT;
5739  if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
5740    BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()),
5741                               NumElems);
5742    V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1);
5743    V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2);
5744  }
5745
5746  SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2,
5747                            DAG.getConstant(MaskValue, MVT::i32));
5748  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5749}
5750
5751// v8i16 shuffles - Prefer shuffles in the following order:
5752// 1. [all]   pshuflw, pshufhw, optional move
5753// 2. [ssse3] 1 x pshufb
5754// 3. [ssse3] 2 x pshufb + 1 x por
5755// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5756static SDValue
5757LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
5758                         SelectionDAG &DAG) {
5759  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5760  SDValue V1 = SVOp->getOperand(0);
5761  SDValue V2 = SVOp->getOperand(1);
5762  DebugLoc dl = SVOp->getDebugLoc();
5763  SmallVector<int, 8> MaskVals;
5764
5765  // Determine if more than 1 of the words in each of the low and high quadwords
5766  // of the result come from the same quadword of one of the two inputs.  Undef
5767  // mask values count as coming from any quadword, for better codegen.
5768  unsigned LoQuad[] = { 0, 0, 0, 0 };
5769  unsigned HiQuad[] = { 0, 0, 0, 0 };
5770  std::bitset<4> InputQuads;
5771  for (unsigned i = 0; i < 8; ++i) {
5772    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5773    int EltIdx = SVOp->getMaskElt(i);
5774    MaskVals.push_back(EltIdx);
5775    if (EltIdx < 0) {
5776      ++Quad[0];
5777      ++Quad[1];
5778      ++Quad[2];
5779      ++Quad[3];
5780      continue;
5781    }
5782    ++Quad[EltIdx / 4];
5783    InputQuads.set(EltIdx / 4);
5784  }
5785
5786  int BestLoQuad = -1;
5787  unsigned MaxQuad = 1;
5788  for (unsigned i = 0; i < 4; ++i) {
5789    if (LoQuad[i] > MaxQuad) {
5790      BestLoQuad = i;
5791      MaxQuad = LoQuad[i];
5792    }
5793  }
5794
5795  int BestHiQuad = -1;
5796  MaxQuad = 1;
5797  for (unsigned i = 0; i < 4; ++i) {
5798    if (HiQuad[i] > MaxQuad) {
5799      BestHiQuad = i;
5800      MaxQuad = HiQuad[i];
5801    }
5802  }
5803
5804  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5805  // of the two input vectors, shuffle them into one input vector so only a
5806  // single pshufb instruction is necessary. If There are more than 2 input
5807  // quads, disable the next transformation since it does not help SSSE3.
5808  bool V1Used = InputQuads[0] || InputQuads[1];
5809  bool V2Used = InputQuads[2] || InputQuads[3];
5810  if (Subtarget->hasSSSE3()) {
5811    if (InputQuads.count() == 2 && V1Used && V2Used) {
5812      BestLoQuad = InputQuads[0] ? 0 : 1;
5813      BestHiQuad = InputQuads[2] ? 2 : 3;
5814    }
5815    if (InputQuads.count() > 2) {
5816      BestLoQuad = -1;
5817      BestHiQuad = -1;
5818    }
5819  }
5820
5821  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5822  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5823  // words from all 4 input quadwords.
5824  SDValue NewV;
5825  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5826    int MaskV[] = {
5827      BestLoQuad < 0 ? 0 : BestLoQuad,
5828      BestHiQuad < 0 ? 1 : BestHiQuad
5829    };
5830    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5831                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5832                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5833    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5834
5835    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5836    // source words for the shuffle, to aid later transformations.
5837    bool AllWordsInNewV = true;
5838    bool InOrder[2] = { true, true };
5839    for (unsigned i = 0; i != 8; ++i) {
5840      int idx = MaskVals[i];
5841      if (idx != (int)i)
5842        InOrder[i/4] = false;
5843      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5844        continue;
5845      AllWordsInNewV = false;
5846      break;
5847    }
5848
5849    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5850    if (AllWordsInNewV) {
5851      for (int i = 0; i != 8; ++i) {
5852        int idx = MaskVals[i];
5853        if (idx < 0)
5854          continue;
5855        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5856        if ((idx != i) && idx < 4)
5857          pshufhw = false;
5858        if ((idx != i) && idx > 3)
5859          pshuflw = false;
5860      }
5861      V1 = NewV;
5862      V2Used = false;
5863      BestLoQuad = 0;
5864      BestHiQuad = 1;
5865    }
5866
5867    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5868    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5869    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5870      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5871      unsigned TargetMask = 0;
5872      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5873                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5874      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5875      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5876                             getShufflePSHUFLWImmediate(SVOp);
5877      V1 = NewV.getOperand(0);
5878      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5879    }
5880  }
5881
5882  // Promote splats to a larger type which usually leads to more efficient code.
5883  // FIXME: Is this true if pshufb is available?
5884  if (SVOp->isSplat())
5885    return PromoteSplat(SVOp, DAG);
5886
5887  // If we have SSSE3, and all words of the result are from 1 input vector,
5888  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5889  // is present, fall back to case 4.
5890  if (Subtarget->hasSSSE3()) {
5891    SmallVector<SDValue,16> pshufbMask;
5892
5893    // If we have elements from both input vectors, set the high bit of the
5894    // shuffle mask element to zero out elements that come from V2 in the V1
5895    // mask, and elements that come from V1 in the V2 mask, so that the two
5896    // results can be OR'd together.
5897    bool TwoInputs = V1Used && V2Used;
5898    for (unsigned i = 0; i != 8; ++i) {
5899      int EltIdx = MaskVals[i] * 2;
5900      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
5901      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
5902      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5903      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5904    }
5905    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5906    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5907                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5908                                 MVT::v16i8, &pshufbMask[0], 16));
5909    if (!TwoInputs)
5910      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5911
5912    // Calculate the shuffle mask for the second input, shuffle it, and
5913    // OR it with the first shuffled input.
5914    pshufbMask.clear();
5915    for (unsigned i = 0; i != 8; ++i) {
5916      int EltIdx = MaskVals[i] * 2;
5917      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5918      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
5919      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5920      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5921    }
5922    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5923    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5924                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5925                                 MVT::v16i8, &pshufbMask[0], 16));
5926    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5927    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5928  }
5929
5930  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5931  // and update MaskVals with new element order.
5932  std::bitset<8> InOrder;
5933  if (BestLoQuad >= 0) {
5934    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5935    for (int i = 0; i != 4; ++i) {
5936      int idx = MaskVals[i];
5937      if (idx < 0) {
5938        InOrder.set(i);
5939      } else if ((idx / 4) == BestLoQuad) {
5940        MaskV[i] = idx & 3;
5941        InOrder.set(i);
5942      }
5943    }
5944    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5945                                &MaskV[0]);
5946
5947    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5948      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5949      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5950                                  NewV.getOperand(0),
5951                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5952    }
5953  }
5954
5955  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5956  // and update MaskVals with the new element order.
5957  if (BestHiQuad >= 0) {
5958    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5959    for (unsigned i = 4; i != 8; ++i) {
5960      int idx = MaskVals[i];
5961      if (idx < 0) {
5962        InOrder.set(i);
5963      } else if ((idx / 4) == BestHiQuad) {
5964        MaskV[i] = (idx & 3) + 4;
5965        InOrder.set(i);
5966      }
5967    }
5968    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5969                                &MaskV[0]);
5970
5971    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5972      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5973      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5974                                  NewV.getOperand(0),
5975                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5976    }
5977  }
5978
5979  // In case BestHi & BestLo were both -1, which means each quadword has a word
5980  // from each of the four input quadwords, calculate the InOrder bitvector now
5981  // before falling through to the insert/extract cleanup.
5982  if (BestLoQuad == -1 && BestHiQuad == -1) {
5983    NewV = V1;
5984    for (int i = 0; i != 8; ++i)
5985      if (MaskVals[i] < 0 || MaskVals[i] == i)
5986        InOrder.set(i);
5987  }
5988
5989  // The other elements are put in the right place using pextrw and pinsrw.
5990  for (unsigned i = 0; i != 8; ++i) {
5991    if (InOrder[i])
5992      continue;
5993    int EltIdx = MaskVals[i];
5994    if (EltIdx < 0)
5995      continue;
5996    SDValue ExtOp = (EltIdx < 8) ?
5997      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5998                  DAG.getIntPtrConstant(EltIdx)) :
5999      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
6000                  DAG.getIntPtrConstant(EltIdx - 8));
6001    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
6002                       DAG.getIntPtrConstant(i));
6003  }
6004  return NewV;
6005}
6006
6007// v16i8 shuffles - Prefer shuffles in the following order:
6008// 1. [ssse3] 1 x pshufb
6009// 2. [ssse3] 2 x pshufb + 1 x por
6010// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
6011static
6012SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
6013                                 SelectionDAG &DAG,
6014                                 const X86TargetLowering &TLI) {
6015  SDValue V1 = SVOp->getOperand(0);
6016  SDValue V2 = SVOp->getOperand(1);
6017  DebugLoc dl = SVOp->getDebugLoc();
6018  ArrayRef<int> MaskVals = SVOp->getMask();
6019
6020  // Promote splats to a larger type which usually leads to more efficient code.
6021  // FIXME: Is this true if pshufb is available?
6022  if (SVOp->isSplat())
6023    return PromoteSplat(SVOp, DAG);
6024
6025  // If we have SSSE3, case 1 is generated when all result bytes come from
6026  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
6027  // present, fall back to case 3.
6028
6029  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
6030  if (TLI.getSubtarget()->hasSSSE3()) {
6031    SmallVector<SDValue,16> pshufbMask;
6032
6033    // If all result elements are from one input vector, then only translate
6034    // undef mask values to 0x80 (zero out result) in the pshufb mask.
6035    //
6036    // Otherwise, we have elements from both input vectors, and must zero out
6037    // elements that come from V2 in the first mask, and V1 in the second mask
6038    // so that we can OR them together.
6039    for (unsigned i = 0; i != 16; ++i) {
6040      int EltIdx = MaskVals[i];
6041      if (EltIdx < 0 || EltIdx >= 16)
6042        EltIdx = 0x80;
6043      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6044    }
6045    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
6046                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6047                                 MVT::v16i8, &pshufbMask[0], 16));
6048
6049    // As PSHUFB will zero elements with negative indices, it's safe to ignore
6050    // the 2nd operand if it's undefined or zero.
6051    if (V2.getOpcode() == ISD::UNDEF ||
6052        ISD::isBuildVectorAllZeros(V2.getNode()))
6053      return V1;
6054
6055    // Calculate the shuffle mask for the second input, shuffle it, and
6056    // OR it with the first shuffled input.
6057    pshufbMask.clear();
6058    for (unsigned i = 0; i != 16; ++i) {
6059      int EltIdx = MaskVals[i];
6060      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
6061      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6062    }
6063    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
6064                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6065                                 MVT::v16i8, &pshufbMask[0], 16));
6066    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
6067  }
6068
6069  // No SSSE3 - Calculate in place words and then fix all out of place words
6070  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
6071  // the 16 different words that comprise the two doublequadword input vectors.
6072  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6073  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
6074  SDValue NewV = V1;
6075  for (int i = 0; i != 8; ++i) {
6076    int Elt0 = MaskVals[i*2];
6077    int Elt1 = MaskVals[i*2+1];
6078
6079    // This word of the result is all undef, skip it.
6080    if (Elt0 < 0 && Elt1 < 0)
6081      continue;
6082
6083    // This word of the result is already in the correct place, skip it.
6084    if ((Elt0 == i*2) && (Elt1 == i*2+1))
6085      continue;
6086
6087    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
6088    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
6089    SDValue InsElt;
6090
6091    // If Elt0 and Elt1 are defined, are consecutive, and can be load
6092    // using a single extract together, load it and store it.
6093    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
6094      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6095                           DAG.getIntPtrConstant(Elt1 / 2));
6096      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6097                        DAG.getIntPtrConstant(i));
6098      continue;
6099    }
6100
6101    // If Elt1 is defined, extract it from the appropriate source.  If the
6102    // source byte is not also odd, shift the extracted word left 8 bits
6103    // otherwise clear the bottom 8 bits if we need to do an or.
6104    if (Elt1 >= 0) {
6105      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6106                           DAG.getIntPtrConstant(Elt1 / 2));
6107      if ((Elt1 & 1) == 0)
6108        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
6109                             DAG.getConstant(8,
6110                                  TLI.getShiftAmountTy(InsElt.getValueType())));
6111      else if (Elt0 >= 0)
6112        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
6113                             DAG.getConstant(0xFF00, MVT::i16));
6114    }
6115    // If Elt0 is defined, extract it from the appropriate source.  If the
6116    // source byte is not also even, shift the extracted word right 8 bits. If
6117    // Elt1 was also defined, OR the extracted values together before
6118    // inserting them in the result.
6119    if (Elt0 >= 0) {
6120      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
6121                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
6122      if ((Elt0 & 1) != 0)
6123        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
6124                              DAG.getConstant(8,
6125                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
6126      else if (Elt1 >= 0)
6127        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
6128                             DAG.getConstant(0x00FF, MVT::i16));
6129      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
6130                         : InsElt0;
6131    }
6132    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6133                       DAG.getIntPtrConstant(i));
6134  }
6135  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
6136}
6137
6138// v32i8 shuffles - Translate to VPSHUFB if possible.
6139static
6140SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
6141                                 const X86Subtarget *Subtarget,
6142                                 SelectionDAG &DAG) {
6143  MVT VT = SVOp->getValueType(0).getSimpleVT();
6144  SDValue V1 = SVOp->getOperand(0);
6145  SDValue V2 = SVOp->getOperand(1);
6146  DebugLoc dl = SVOp->getDebugLoc();
6147  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
6148
6149  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6150  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
6151  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
6152
6153  // VPSHUFB may be generated if
6154  // (1) one of input vector is undefined or zeroinitializer.
6155  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
6156  // And (2) the mask indexes don't cross the 128-bit lane.
6157  if (VT != MVT::v32i8 || !Subtarget->hasInt256() ||
6158      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
6159    return SDValue();
6160
6161  if (V1IsAllZero && !V2IsAllZero) {
6162    CommuteVectorShuffleMask(MaskVals, 32);
6163    V1 = V2;
6164  }
6165  SmallVector<SDValue, 32> pshufbMask;
6166  for (unsigned i = 0; i != 32; i++) {
6167    int EltIdx = MaskVals[i];
6168    if (EltIdx < 0 || EltIdx >= 32)
6169      EltIdx = 0x80;
6170    else {
6171      if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
6172        // Cross lane is not allowed.
6173        return SDValue();
6174      EltIdx &= 0xf;
6175    }
6176    pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6177  }
6178  return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
6179                      DAG.getNode(ISD::BUILD_VECTOR, dl,
6180                                  MVT::v32i8, &pshufbMask[0], 32));
6181}
6182
6183/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6184/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6185/// done when every pair / quad of shuffle mask elements point to elements in
6186/// the right sequence. e.g.
6187/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6188static
6189SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6190                                 SelectionDAG &DAG) {
6191  MVT VT = SVOp->getValueType(0).getSimpleVT();
6192  DebugLoc dl = SVOp->getDebugLoc();
6193  unsigned NumElems = VT.getVectorNumElements();
6194  MVT NewVT;
6195  unsigned Scale;
6196  switch (VT.SimpleTy) {
6197  default: llvm_unreachable("Unexpected!");
6198  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6199  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6200  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6201  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6202  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6203  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6204  }
6205
6206  SmallVector<int, 8> MaskVec;
6207  for (unsigned i = 0; i != NumElems; i += Scale) {
6208    int StartIdx = -1;
6209    for (unsigned j = 0; j != Scale; ++j) {
6210      int EltIdx = SVOp->getMaskElt(i+j);
6211      if (EltIdx < 0)
6212        continue;
6213      if (StartIdx < 0)
6214        StartIdx = (EltIdx / Scale);
6215      if (EltIdx != (int)(StartIdx*Scale + j))
6216        return SDValue();
6217    }
6218    MaskVec.push_back(StartIdx);
6219  }
6220
6221  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6222  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6223  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6224}
6225
6226/// getVZextMovL - Return a zero-extending vector move low node.
6227///
6228static SDValue getVZextMovL(MVT VT, EVT OpVT,
6229                            SDValue SrcOp, SelectionDAG &DAG,
6230                            const X86Subtarget *Subtarget, DebugLoc dl) {
6231  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6232    LoadSDNode *LD = NULL;
6233    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6234      LD = dyn_cast<LoadSDNode>(SrcOp);
6235    if (!LD) {
6236      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6237      // instead.
6238      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6239      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6240          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6241          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6242          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6243        // PR2108
6244        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6245        return DAG.getNode(ISD::BITCAST, dl, VT,
6246                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6247                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6248                                                   OpVT,
6249                                                   SrcOp.getOperand(0)
6250                                                          .getOperand(0))));
6251      }
6252    }
6253  }
6254
6255  return DAG.getNode(ISD::BITCAST, dl, VT,
6256                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6257                                 DAG.getNode(ISD::BITCAST, dl,
6258                                             OpVT, SrcOp)));
6259}
6260
6261/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6262/// which could not be matched by any known target speficic shuffle
6263static SDValue
6264LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6265
6266  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6267  if (NewOp.getNode())
6268    return NewOp;
6269
6270  MVT VT = SVOp->getValueType(0).getSimpleVT();
6271
6272  unsigned NumElems = VT.getVectorNumElements();
6273  unsigned NumLaneElems = NumElems / 2;
6274
6275  DebugLoc dl = SVOp->getDebugLoc();
6276  MVT EltVT = VT.getVectorElementType();
6277  MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6278  SDValue Output[2];
6279
6280  SmallVector<int, 16> Mask;
6281  for (unsigned l = 0; l < 2; ++l) {
6282    // Build a shuffle mask for the output, discovering on the fly which
6283    // input vectors to use as shuffle operands (recorded in InputUsed).
6284    // If building a suitable shuffle vector proves too hard, then bail
6285    // out with UseBuildVector set.
6286    bool UseBuildVector = false;
6287    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6288    unsigned LaneStart = l * NumLaneElems;
6289    for (unsigned i = 0; i != NumLaneElems; ++i) {
6290      // The mask element.  This indexes into the input.
6291      int Idx = SVOp->getMaskElt(i+LaneStart);
6292      if (Idx < 0) {
6293        // the mask element does not index into any input vector.
6294        Mask.push_back(-1);
6295        continue;
6296      }
6297
6298      // The input vector this mask element indexes into.
6299      int Input = Idx / NumLaneElems;
6300
6301      // Turn the index into an offset from the start of the input vector.
6302      Idx -= Input * NumLaneElems;
6303
6304      // Find or create a shuffle vector operand to hold this input.
6305      unsigned OpNo;
6306      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6307        if (InputUsed[OpNo] == Input)
6308          // This input vector is already an operand.
6309          break;
6310        if (InputUsed[OpNo] < 0) {
6311          // Create a new operand for this input vector.
6312          InputUsed[OpNo] = Input;
6313          break;
6314        }
6315      }
6316
6317      if (OpNo >= array_lengthof(InputUsed)) {
6318        // More than two input vectors used!  Give up on trying to create a
6319        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6320        UseBuildVector = true;
6321        break;
6322      }
6323
6324      // Add the mask index for the new shuffle vector.
6325      Mask.push_back(Idx + OpNo * NumLaneElems);
6326    }
6327
6328    if (UseBuildVector) {
6329      SmallVector<SDValue, 16> SVOps;
6330      for (unsigned i = 0; i != NumLaneElems; ++i) {
6331        // The mask element.  This indexes into the input.
6332        int Idx = SVOp->getMaskElt(i+LaneStart);
6333        if (Idx < 0) {
6334          SVOps.push_back(DAG.getUNDEF(EltVT));
6335          continue;
6336        }
6337
6338        // The input vector this mask element indexes into.
6339        int Input = Idx / NumElems;
6340
6341        // Turn the index into an offset from the start of the input vector.
6342        Idx -= Input * NumElems;
6343
6344        // Extract the vector element by hand.
6345        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6346                                    SVOp->getOperand(Input),
6347                                    DAG.getIntPtrConstant(Idx)));
6348      }
6349
6350      // Construct the output using a BUILD_VECTOR.
6351      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6352                              SVOps.size());
6353    } else if (InputUsed[0] < 0) {
6354      // No input vectors were used! The result is undefined.
6355      Output[l] = DAG.getUNDEF(NVT);
6356    } else {
6357      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6358                                        (InputUsed[0] % 2) * NumLaneElems,
6359                                        DAG, dl);
6360      // If only one input was used, use an undefined vector for the other.
6361      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6362        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6363                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6364      // At least one input vector was used. Create a new shuffle vector.
6365      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6366    }
6367
6368    Mask.clear();
6369  }
6370
6371  // Concatenate the result back
6372  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6373}
6374
6375/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6376/// 4 elements, and match them with several different shuffle types.
6377static SDValue
6378LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6379  SDValue V1 = SVOp->getOperand(0);
6380  SDValue V2 = SVOp->getOperand(1);
6381  DebugLoc dl = SVOp->getDebugLoc();
6382  MVT VT = SVOp->getValueType(0).getSimpleVT();
6383
6384  assert(VT.is128BitVector() && "Unsupported vector size");
6385
6386  std::pair<int, int> Locs[4];
6387  int Mask1[] = { -1, -1, -1, -1 };
6388  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6389
6390  unsigned NumHi = 0;
6391  unsigned NumLo = 0;
6392  for (unsigned i = 0; i != 4; ++i) {
6393    int Idx = PermMask[i];
6394    if (Idx < 0) {
6395      Locs[i] = std::make_pair(-1, -1);
6396    } else {
6397      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6398      if (Idx < 4) {
6399        Locs[i] = std::make_pair(0, NumLo);
6400        Mask1[NumLo] = Idx;
6401        NumLo++;
6402      } else {
6403        Locs[i] = std::make_pair(1, NumHi);
6404        if (2+NumHi < 4)
6405          Mask1[2+NumHi] = Idx;
6406        NumHi++;
6407      }
6408    }
6409  }
6410
6411  if (NumLo <= 2 && NumHi <= 2) {
6412    // If no more than two elements come from either vector. This can be
6413    // implemented with two shuffles. First shuffle gather the elements.
6414    // The second shuffle, which takes the first shuffle as both of its
6415    // vector operands, put the elements into the right order.
6416    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6417
6418    int Mask2[] = { -1, -1, -1, -1 };
6419
6420    for (unsigned i = 0; i != 4; ++i)
6421      if (Locs[i].first != -1) {
6422        unsigned Idx = (i < 2) ? 0 : 4;
6423        Idx += Locs[i].first * 2 + Locs[i].second;
6424        Mask2[i] = Idx;
6425      }
6426
6427    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6428  }
6429
6430  if (NumLo == 3 || NumHi == 3) {
6431    // Otherwise, we must have three elements from one vector, call it X, and
6432    // one element from the other, call it Y.  First, use a shufps to build an
6433    // intermediate vector with the one element from Y and the element from X
6434    // that will be in the same half in the final destination (the indexes don't
6435    // matter). Then, use a shufps to build the final vector, taking the half
6436    // containing the element from Y from the intermediate, and the other half
6437    // from X.
6438    if (NumHi == 3) {
6439      // Normalize it so the 3 elements come from V1.
6440      CommuteVectorShuffleMask(PermMask, 4);
6441      std::swap(V1, V2);
6442    }
6443
6444    // Find the element from V2.
6445    unsigned HiIndex;
6446    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6447      int Val = PermMask[HiIndex];
6448      if (Val < 0)
6449        continue;
6450      if (Val >= 4)
6451        break;
6452    }
6453
6454    Mask1[0] = PermMask[HiIndex];
6455    Mask1[1] = -1;
6456    Mask1[2] = PermMask[HiIndex^1];
6457    Mask1[3] = -1;
6458    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6459
6460    if (HiIndex >= 2) {
6461      Mask1[0] = PermMask[0];
6462      Mask1[1] = PermMask[1];
6463      Mask1[2] = HiIndex & 1 ? 6 : 4;
6464      Mask1[3] = HiIndex & 1 ? 4 : 6;
6465      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6466    }
6467
6468    Mask1[0] = HiIndex & 1 ? 2 : 0;
6469    Mask1[1] = HiIndex & 1 ? 0 : 2;
6470    Mask1[2] = PermMask[2];
6471    Mask1[3] = PermMask[3];
6472    if (Mask1[2] >= 0)
6473      Mask1[2] += 4;
6474    if (Mask1[3] >= 0)
6475      Mask1[3] += 4;
6476    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6477  }
6478
6479  // Break it into (shuffle shuffle_hi, shuffle_lo).
6480  int LoMask[] = { -1, -1, -1, -1 };
6481  int HiMask[] = { -1, -1, -1, -1 };
6482
6483  int *MaskPtr = LoMask;
6484  unsigned MaskIdx = 0;
6485  unsigned LoIdx = 0;
6486  unsigned HiIdx = 2;
6487  for (unsigned i = 0; i != 4; ++i) {
6488    if (i == 2) {
6489      MaskPtr = HiMask;
6490      MaskIdx = 1;
6491      LoIdx = 0;
6492      HiIdx = 2;
6493    }
6494    int Idx = PermMask[i];
6495    if (Idx < 0) {
6496      Locs[i] = std::make_pair(-1, -1);
6497    } else if (Idx < 4) {
6498      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6499      MaskPtr[LoIdx] = Idx;
6500      LoIdx++;
6501    } else {
6502      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6503      MaskPtr[HiIdx] = Idx;
6504      HiIdx++;
6505    }
6506  }
6507
6508  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6509  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6510  int MaskOps[] = { -1, -1, -1, -1 };
6511  for (unsigned i = 0; i != 4; ++i)
6512    if (Locs[i].first != -1)
6513      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6514  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6515}
6516
6517static bool MayFoldVectorLoad(SDValue V) {
6518  while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6519    V = V.getOperand(0);
6520
6521  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6522    V = V.getOperand(0);
6523  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6524      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6525    // BUILD_VECTOR (load), undef
6526    V = V.getOperand(0);
6527
6528  return MayFoldLoad(V);
6529}
6530
6531static
6532SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6533  EVT VT = Op.getValueType();
6534
6535  // Canonizalize to v2f64.
6536  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6537  return DAG.getNode(ISD::BITCAST, dl, VT,
6538                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6539                                          V1, DAG));
6540}
6541
6542static
6543SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6544                        bool HasSSE2) {
6545  SDValue V1 = Op.getOperand(0);
6546  SDValue V2 = Op.getOperand(1);
6547  EVT VT = Op.getValueType();
6548
6549  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6550
6551  if (HasSSE2 && VT == MVT::v2f64)
6552    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6553
6554  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6555  return DAG.getNode(ISD::BITCAST, dl, VT,
6556                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6557                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6558                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6559}
6560
6561static
6562SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6563  SDValue V1 = Op.getOperand(0);
6564  SDValue V2 = Op.getOperand(1);
6565  EVT VT = Op.getValueType();
6566
6567  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6568         "unsupported shuffle type");
6569
6570  if (V2.getOpcode() == ISD::UNDEF)
6571    V2 = V1;
6572
6573  // v4i32 or v4f32
6574  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6575}
6576
6577static
6578SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6579  SDValue V1 = Op.getOperand(0);
6580  SDValue V2 = Op.getOperand(1);
6581  EVT VT = Op.getValueType();
6582  unsigned NumElems = VT.getVectorNumElements();
6583
6584  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6585  // operand of these instructions is only memory, so check if there's a
6586  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6587  // same masks.
6588  bool CanFoldLoad = false;
6589
6590  // Trivial case, when V2 comes from a load.
6591  if (MayFoldVectorLoad(V2))
6592    CanFoldLoad = true;
6593
6594  // When V1 is a load, it can be folded later into a store in isel, example:
6595  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6596  //    turns into:
6597  //  (MOVLPSmr addr:$src1, VR128:$src2)
6598  // So, recognize this potential and also use MOVLPS or MOVLPD
6599  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6600    CanFoldLoad = true;
6601
6602  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6603  if (CanFoldLoad) {
6604    if (HasSSE2 && NumElems == 2)
6605      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6606
6607    if (NumElems == 4)
6608      // If we don't care about the second element, proceed to use movss.
6609      if (SVOp->getMaskElt(1) != -1)
6610        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6611  }
6612
6613  // movl and movlp will both match v2i64, but v2i64 is never matched by
6614  // movl earlier because we make it strict to avoid messing with the movlp load
6615  // folding logic (see the code above getMOVLP call). Match it here then,
6616  // this is horrible, but will stay like this until we move all shuffle
6617  // matching to x86 specific nodes. Note that for the 1st condition all
6618  // types are matched with movsd.
6619  if (HasSSE2) {
6620    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6621    // as to remove this logic from here, as much as possible
6622    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6623      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6624    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6625  }
6626
6627  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6628
6629  // Invert the operand order and use SHUFPS to match it.
6630  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6631                              getShuffleSHUFImmediate(SVOp), DAG);
6632}
6633
6634// Reduce a vector shuffle to zext.
6635SDValue
6636X86TargetLowering::LowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const {
6637  // PMOVZX is only available from SSE41.
6638  if (!Subtarget->hasSSE41())
6639    return SDValue();
6640
6641  EVT VT = Op.getValueType();
6642
6643  // Only AVX2 support 256-bit vector integer extending.
6644  if (!Subtarget->hasInt256() && VT.is256BitVector())
6645    return SDValue();
6646
6647  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6648  DebugLoc DL = Op.getDebugLoc();
6649  SDValue V1 = Op.getOperand(0);
6650  SDValue V2 = Op.getOperand(1);
6651  unsigned NumElems = VT.getVectorNumElements();
6652
6653  // Extending is an unary operation and the element type of the source vector
6654  // won't be equal to or larger than i64.
6655  if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
6656      VT.getVectorElementType() == MVT::i64)
6657    return SDValue();
6658
6659  // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
6660  unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
6661  while ((1U << Shift) < NumElems) {
6662    if (SVOp->getMaskElt(1U << Shift) == 1)
6663      break;
6664    Shift += 1;
6665    // The maximal ratio is 8, i.e. from i8 to i64.
6666    if (Shift > 3)
6667      return SDValue();
6668  }
6669
6670  // Check the shuffle mask.
6671  unsigned Mask = (1U << Shift) - 1;
6672  for (unsigned i = 0; i != NumElems; ++i) {
6673    int EltIdx = SVOp->getMaskElt(i);
6674    if ((i & Mask) != 0 && EltIdx != -1)
6675      return SDValue();
6676    if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
6677      return SDValue();
6678  }
6679
6680  LLVMContext *Context = DAG.getContext();
6681  unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
6682  EVT NeVT = EVT::getIntegerVT(*Context, NBits);
6683  EVT NVT = EVT::getVectorVT(*Context, NeVT, NumElems >> Shift);
6684
6685  if (!isTypeLegal(NVT))
6686    return SDValue();
6687
6688  // Simplify the operand as it's prepared to be fed into shuffle.
6689  unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
6690  if (V1.getOpcode() == ISD::BITCAST &&
6691      V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
6692      V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6693      V1.getOperand(0)
6694        .getOperand(0).getValueType().getSizeInBits() == SignificantBits) {
6695    // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
6696    SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
6697    ConstantSDNode *CIdx =
6698      dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
6699    // If it's foldable, i.e. normal load with single use, we will let code
6700    // selection to fold it. Otherwise, we will short the conversion sequence.
6701    if (CIdx && CIdx->getZExtValue() == 0 &&
6702        (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) {
6703      if (V.getValueSizeInBits() > V1.getValueSizeInBits()) {
6704        // The "ext_vec_elt" node is wider than the result node.
6705        // In this case we should extract subvector from V.
6706        // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast (extract_subvector x)).
6707        unsigned Ratio = V.getValueSizeInBits() / V1.getValueSizeInBits();
6708        EVT FullVT = V.getValueType();
6709        EVT SubVecVT = EVT::getVectorVT(*Context,
6710                                        FullVT.getVectorElementType(),
6711                                        FullVT.getVectorNumElements()/Ratio);
6712        V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V,
6713                        DAG.getIntPtrConstant(0));
6714      }
6715      V1 = DAG.getNode(ISD::BITCAST, DL, V1.getValueType(), V);
6716    }
6717  }
6718
6719  return DAG.getNode(ISD::BITCAST, DL, VT,
6720                     DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
6721}
6722
6723SDValue
6724X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6725  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6726  MVT VT = Op.getValueType().getSimpleVT();
6727  DebugLoc dl = Op.getDebugLoc();
6728  SDValue V1 = Op.getOperand(0);
6729  SDValue V2 = Op.getOperand(1);
6730
6731  if (isZeroShuffle(SVOp))
6732    return getZeroVector(VT, Subtarget, DAG, dl);
6733
6734  // Handle splat operations
6735  if (SVOp->isSplat()) {
6736    // Use vbroadcast whenever the splat comes from a foldable load
6737    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6738    if (Broadcast.getNode())
6739      return Broadcast;
6740  }
6741
6742  // Check integer expanding shuffles.
6743  SDValue NewOp = LowerVectorIntExtend(Op, DAG);
6744  if (NewOp.getNode())
6745    return NewOp;
6746
6747  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6748  // do it!
6749  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6750      VT == MVT::v16i16 || VT == MVT::v32i8) {
6751    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
6752    if (NewOp.getNode())
6753      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6754  } else if ((VT == MVT::v4i32 ||
6755             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6756    // FIXME: Figure out a cleaner way to do this.
6757    // Try to make use of movq to zero out the top part.
6758    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6759      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
6760      if (NewOp.getNode()) {
6761        MVT NewVT = NewOp.getValueType().getSimpleVT();
6762        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6763                               NewVT, true, false))
6764          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6765                              DAG, Subtarget, dl);
6766      }
6767    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6768      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
6769      if (NewOp.getNode()) {
6770        MVT NewVT = NewOp.getValueType().getSimpleVT();
6771        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6772          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6773                              DAG, Subtarget, dl);
6774      }
6775    }
6776  }
6777  return SDValue();
6778}
6779
6780SDValue
6781X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6782  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6783  SDValue V1 = Op.getOperand(0);
6784  SDValue V2 = Op.getOperand(1);
6785  MVT VT = Op.getValueType().getSimpleVT();
6786  DebugLoc dl = Op.getDebugLoc();
6787  unsigned NumElems = VT.getVectorNumElements();
6788  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6789  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6790  bool V1IsSplat = false;
6791  bool V2IsSplat = false;
6792  bool HasSSE2 = Subtarget->hasSSE2();
6793  bool HasFp256    = Subtarget->hasFp256();
6794  bool HasInt256   = Subtarget->hasInt256();
6795  MachineFunction &MF = DAG.getMachineFunction();
6796  bool OptForSize = MF.getFunction()->getAttributes().
6797    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
6798
6799  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6800
6801  if (V1IsUndef && V2IsUndef)
6802    return DAG.getUNDEF(VT);
6803
6804  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6805
6806  // Vector shuffle lowering takes 3 steps:
6807  //
6808  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6809  //    narrowing and commutation of operands should be handled.
6810  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6811  //    shuffle nodes.
6812  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6813  //    so the shuffle can be broken into other shuffles and the legalizer can
6814  //    try the lowering again.
6815  //
6816  // The general idea is that no vector_shuffle operation should be left to
6817  // be matched during isel, all of them must be converted to a target specific
6818  // node here.
6819
6820  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6821  // narrowing and commutation of operands should be handled. The actual code
6822  // doesn't include all of those, work in progress...
6823  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6824  if (NewOp.getNode())
6825    return NewOp;
6826
6827  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6828
6829  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6830  // unpckh_undef). Only use pshufd if speed is more important than size.
6831  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256))
6832    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6833  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256))
6834    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6835
6836  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6837      V2IsUndef && MayFoldVectorLoad(V1))
6838    return getMOVDDup(Op, dl, V1, DAG);
6839
6840  if (isMOVHLPS_v_undef_Mask(M, VT))
6841    return getMOVHighToLow(Op, dl, DAG);
6842
6843  // Use to match splats
6844  if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef &&
6845      (VT == MVT::v2f64 || VT == MVT::v2i64))
6846    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6847
6848  if (isPSHUFDMask(M, VT)) {
6849    // The actual implementation will match the mask in the if above and then
6850    // during isel it can match several different instructions, not only pshufd
6851    // as its name says, sad but true, emulate the behavior for now...
6852    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6853      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6854
6855    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6856
6857    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6858      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6859
6860    if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64))
6861      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask,
6862                                  DAG);
6863
6864    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6865                                TargetMask, DAG);
6866  }
6867
6868  // Check if this can be converted into a logical shift.
6869  bool isLeft = false;
6870  unsigned ShAmt = 0;
6871  SDValue ShVal;
6872  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6873  if (isShift && ShVal.hasOneUse()) {
6874    // If the shifted value has multiple uses, it may be cheaper to use
6875    // v_set0 + movlhps or movhlps, etc.
6876    MVT EltVT = VT.getVectorElementType();
6877    ShAmt *= EltVT.getSizeInBits();
6878    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6879  }
6880
6881  if (isMOVLMask(M, VT)) {
6882    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6883      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6884    if (!isMOVLPMask(M, VT)) {
6885      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6886        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6887
6888      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6889        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6890    }
6891  }
6892
6893  // FIXME: fold these into legal mask.
6894  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256))
6895    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6896
6897  if (isMOVHLPSMask(M, VT))
6898    return getMOVHighToLow(Op, dl, DAG);
6899
6900  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6901    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6902
6903  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6904    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6905
6906  if (isMOVLPMask(M, VT))
6907    return getMOVLP(Op, dl, DAG, HasSSE2);
6908
6909  if (ShouldXformToMOVHLPS(M, VT) ||
6910      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6911    return CommuteVectorShuffle(SVOp, DAG);
6912
6913  if (isShift) {
6914    // No better options. Use a vshldq / vsrldq.
6915    MVT EltVT = VT.getVectorElementType();
6916    ShAmt *= EltVT.getSizeInBits();
6917    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6918  }
6919
6920  bool Commuted = false;
6921  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6922  // 1,1,1,1 -> v8i16 though.
6923  V1IsSplat = isSplatVector(V1.getNode());
6924  V2IsSplat = isSplatVector(V2.getNode());
6925
6926  // Canonicalize the splat or undef, if present, to be on the RHS.
6927  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6928    CommuteVectorShuffleMask(M, NumElems);
6929    std::swap(V1, V2);
6930    std::swap(V1IsSplat, V2IsSplat);
6931    Commuted = true;
6932  }
6933
6934  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6935    // Shuffling low element of v1 into undef, just return v1.
6936    if (V2IsUndef)
6937      return V1;
6938    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6939    // the instruction selector will not match, so get a canonical MOVL with
6940    // swapped operands to undo the commute.
6941    return getMOVL(DAG, dl, VT, V2, V1);
6942  }
6943
6944  if (isUNPCKLMask(M, VT, HasInt256))
6945    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6946
6947  if (isUNPCKHMask(M, VT, HasInt256))
6948    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6949
6950  if (V2IsSplat) {
6951    // Normalize mask so all entries that point to V2 points to its first
6952    // element then try to match unpck{h|l} again. If match, return a
6953    // new vector_shuffle with the corrected mask.p
6954    SmallVector<int, 8> NewMask(M.begin(), M.end());
6955    NormalizeMask(NewMask, NumElems);
6956    if (isUNPCKLMask(NewMask, VT, HasInt256, true))
6957      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6958    if (isUNPCKHMask(NewMask, VT, HasInt256, true))
6959      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6960  }
6961
6962  if (Commuted) {
6963    // Commute is back and try unpck* again.
6964    // FIXME: this seems wrong.
6965    CommuteVectorShuffleMask(M, NumElems);
6966    std::swap(V1, V2);
6967    std::swap(V1IsSplat, V2IsSplat);
6968    Commuted = false;
6969
6970    if (isUNPCKLMask(M, VT, HasInt256))
6971      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6972
6973    if (isUNPCKHMask(M, VT, HasInt256))
6974      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6975  }
6976
6977  // Normalize the node to match x86 shuffle ops if needed
6978  if (!V2IsUndef && (isSHUFPMask(M, VT, HasFp256, /* Commuted */ true)))
6979    return CommuteVectorShuffle(SVOp, DAG);
6980
6981  // The checks below are all present in isShuffleMaskLegal, but they are
6982  // inlined here right now to enable us to directly emit target specific
6983  // nodes, and remove one by one until they don't return Op anymore.
6984
6985  if (isPALIGNRMask(M, VT, Subtarget))
6986    return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2,
6987                                getShufflePALIGNRImmediate(SVOp),
6988                                DAG);
6989
6990  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6991      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6992    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6993      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6994  }
6995
6996  if (isPSHUFHWMask(M, VT, HasInt256))
6997    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6998                                getShufflePSHUFHWImmediate(SVOp),
6999                                DAG);
7000
7001  if (isPSHUFLWMask(M, VT, HasInt256))
7002    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
7003                                getShufflePSHUFLWImmediate(SVOp),
7004                                DAG);
7005
7006  if (isSHUFPMask(M, VT, HasFp256))
7007    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
7008                                getShuffleSHUFImmediate(SVOp), DAG);
7009
7010  if (isUNPCKL_v_undef_Mask(M, VT, HasInt256))
7011    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7012  if (isUNPCKH_v_undef_Mask(M, VT, HasInt256))
7013    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7014
7015  //===--------------------------------------------------------------------===//
7016  // Generate target specific nodes for 128 or 256-bit shuffles only
7017  // supported in the AVX instruction set.
7018  //
7019
7020  // Handle VMOVDDUPY permutations
7021  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256))
7022    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
7023
7024  // Handle VPERMILPS/D* permutations
7025  if (isVPERMILPMask(M, VT, HasFp256)) {
7026    if (HasInt256 && VT == MVT::v8i32)
7027      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
7028                                  getShuffleSHUFImmediate(SVOp), DAG);
7029    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
7030                                getShuffleSHUFImmediate(SVOp), DAG);
7031  }
7032
7033  // Handle VPERM2F128/VPERM2I128 permutations
7034  if (isVPERM2X128Mask(M, VT, HasFp256))
7035    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
7036                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
7037
7038  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
7039  if (BlendOp.getNode())
7040    return BlendOp;
7041
7042  if (V2IsUndef && HasInt256 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
7043    SmallVector<SDValue, 8> permclMask;
7044    for (unsigned i = 0; i != 8; ++i) {
7045      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
7046    }
7047    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
7048                               &permclMask[0], 8);
7049    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
7050    return DAG.getNode(X86ISD::VPERMV, dl, VT,
7051                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
7052  }
7053
7054  if (V2IsUndef && HasInt256 && (VT == MVT::v4i64 || VT == MVT::v4f64))
7055    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
7056                                getShuffleCLImmediate(SVOp), DAG);
7057
7058  //===--------------------------------------------------------------------===//
7059  // Since no target specific shuffle was selected for this generic one,
7060  // lower it into other known shuffles. FIXME: this isn't true yet, but
7061  // this is the plan.
7062  //
7063
7064  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
7065  if (VT == MVT::v8i16) {
7066    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
7067    if (NewOp.getNode())
7068      return NewOp;
7069  }
7070
7071  if (VT == MVT::v16i8) {
7072    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
7073    if (NewOp.getNode())
7074      return NewOp;
7075  }
7076
7077  if (VT == MVT::v32i8) {
7078    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
7079    if (NewOp.getNode())
7080      return NewOp;
7081  }
7082
7083  // Handle all 128-bit wide vectors with 4 elements, and match them with
7084  // several different shuffle types.
7085  if (NumElems == 4 && VT.is128BitVector())
7086    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
7087
7088  // Handle general 256-bit shuffles
7089  if (VT.is256BitVector())
7090    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
7091
7092  return SDValue();
7093}
7094
7095static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7096  MVT VT = Op.getValueType().getSimpleVT();
7097  DebugLoc dl = Op.getDebugLoc();
7098
7099  if (!Op.getOperand(0).getValueType().getSimpleVT().is128BitVector())
7100    return SDValue();
7101
7102  if (VT.getSizeInBits() == 8) {
7103    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
7104                                  Op.getOperand(0), Op.getOperand(1));
7105    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7106                                  DAG.getValueType(VT));
7107    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7108  }
7109
7110  if (VT.getSizeInBits() == 16) {
7111    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7112    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
7113    if (Idx == 0)
7114      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7115                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7116                                     DAG.getNode(ISD::BITCAST, dl,
7117                                                 MVT::v4i32,
7118                                                 Op.getOperand(0)),
7119                                     Op.getOperand(1)));
7120    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
7121                                  Op.getOperand(0), Op.getOperand(1));
7122    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7123                                  DAG.getValueType(VT));
7124    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7125  }
7126
7127  if (VT == MVT::f32) {
7128    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
7129    // the result back to FR32 register. It's only worth matching if the
7130    // result has a single use which is a store or a bitcast to i32.  And in
7131    // the case of a store, it's not worth it if the index is a constant 0,
7132    // because a MOVSSmr can be used instead, which is smaller and faster.
7133    if (!Op.hasOneUse())
7134      return SDValue();
7135    SDNode *User = *Op.getNode()->use_begin();
7136    if ((User->getOpcode() != ISD::STORE ||
7137         (isa<ConstantSDNode>(Op.getOperand(1)) &&
7138          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
7139        (User->getOpcode() != ISD::BITCAST ||
7140         User->getValueType(0) != MVT::i32))
7141      return SDValue();
7142    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7143                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
7144                                              Op.getOperand(0)),
7145                                              Op.getOperand(1));
7146    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
7147  }
7148
7149  if (VT == MVT::i32 || VT == MVT::i64) {
7150    // ExtractPS/pextrq works with constant index.
7151    if (isa<ConstantSDNode>(Op.getOperand(1)))
7152      return Op;
7153  }
7154  return SDValue();
7155}
7156
7157SDValue
7158X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7159                                           SelectionDAG &DAG) const {
7160  if (!isa<ConstantSDNode>(Op.getOperand(1)))
7161    return SDValue();
7162
7163  SDValue Vec = Op.getOperand(0);
7164  MVT VecVT = Vec.getValueType().getSimpleVT();
7165
7166  // If this is a 256-bit vector result, first extract the 128-bit vector and
7167  // then extract the element from the 128-bit vector.
7168  if (VecVT.is256BitVector()) {
7169    DebugLoc dl = Op.getNode()->getDebugLoc();
7170    unsigned NumElems = VecVT.getVectorNumElements();
7171    SDValue Idx = Op.getOperand(1);
7172    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7173
7174    // Get the 128-bit vector.
7175    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
7176
7177    if (IdxVal >= NumElems/2)
7178      IdxVal -= NumElems/2;
7179    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
7180                       DAG.getConstant(IdxVal, MVT::i32));
7181  }
7182
7183  assert(VecVT.is128BitVector() && "Unexpected vector length");
7184
7185  if (Subtarget->hasSSE41()) {
7186    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7187    if (Res.getNode())
7188      return Res;
7189  }
7190
7191  MVT VT = Op.getValueType().getSimpleVT();
7192  DebugLoc dl = Op.getDebugLoc();
7193  // TODO: handle v16i8.
7194  if (VT.getSizeInBits() == 16) {
7195    SDValue Vec = Op.getOperand(0);
7196    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7197    if (Idx == 0)
7198      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7199                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7200                                     DAG.getNode(ISD::BITCAST, dl,
7201                                                 MVT::v4i32, Vec),
7202                                     Op.getOperand(1)));
7203    // Transform it so it match pextrw which produces a 32-bit result.
7204    MVT EltVT = MVT::i32;
7205    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7206                                  Op.getOperand(0), Op.getOperand(1));
7207    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7208                                  DAG.getValueType(VT));
7209    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7210  }
7211
7212  if (VT.getSizeInBits() == 32) {
7213    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7214    if (Idx == 0)
7215      return Op;
7216
7217    // SHUFPS the element to the lowest double word, then movss.
7218    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7219    MVT VVT = Op.getOperand(0).getValueType().getSimpleVT();
7220    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7221                                       DAG.getUNDEF(VVT), Mask);
7222    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7223                       DAG.getIntPtrConstant(0));
7224  }
7225
7226  if (VT.getSizeInBits() == 64) {
7227    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7228    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7229    //        to match extract_elt for f64.
7230    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7231    if (Idx == 0)
7232      return Op;
7233
7234    // UNPCKHPD the element to the lowest double word, then movsd.
7235    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7236    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7237    int Mask[2] = { 1, -1 };
7238    MVT VVT = Op.getOperand(0).getValueType().getSimpleVT();
7239    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7240                                       DAG.getUNDEF(VVT), Mask);
7241    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7242                       DAG.getIntPtrConstant(0));
7243  }
7244
7245  return SDValue();
7246}
7247
7248static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7249  MVT VT = Op.getValueType().getSimpleVT();
7250  MVT EltVT = VT.getVectorElementType();
7251  DebugLoc dl = Op.getDebugLoc();
7252
7253  SDValue N0 = Op.getOperand(0);
7254  SDValue N1 = Op.getOperand(1);
7255  SDValue N2 = Op.getOperand(2);
7256
7257  if (!VT.is128BitVector())
7258    return SDValue();
7259
7260  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7261      isa<ConstantSDNode>(N2)) {
7262    unsigned Opc;
7263    if (VT == MVT::v8i16)
7264      Opc = X86ISD::PINSRW;
7265    else if (VT == MVT::v16i8)
7266      Opc = X86ISD::PINSRB;
7267    else
7268      Opc = X86ISD::PINSRB;
7269
7270    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7271    // argument.
7272    if (N1.getValueType() != MVT::i32)
7273      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7274    if (N2.getValueType() != MVT::i32)
7275      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7276    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7277  }
7278
7279  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7280    // Bits [7:6] of the constant are the source select.  This will always be
7281    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7282    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7283    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7284    // Bits [5:4] of the constant are the destination select.  This is the
7285    //  value of the incoming immediate.
7286    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7287    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7288    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7289    // Create this as a scalar to vector..
7290    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7291    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7292  }
7293
7294  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7295    // PINSR* works with constant index.
7296    return Op;
7297  }
7298  return SDValue();
7299}
7300
7301SDValue
7302X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7303  MVT VT = Op.getValueType().getSimpleVT();
7304  MVT EltVT = VT.getVectorElementType();
7305
7306  DebugLoc dl = Op.getDebugLoc();
7307  SDValue N0 = Op.getOperand(0);
7308  SDValue N1 = Op.getOperand(1);
7309  SDValue N2 = Op.getOperand(2);
7310
7311  // If this is a 256-bit vector result, first extract the 128-bit vector,
7312  // insert the element into the extracted half and then place it back.
7313  if (VT.is256BitVector()) {
7314    if (!isa<ConstantSDNode>(N2))
7315      return SDValue();
7316
7317    // Get the desired 128-bit vector half.
7318    unsigned NumElems = VT.getVectorNumElements();
7319    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7320    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7321
7322    // Insert the element into the desired half.
7323    bool Upper = IdxVal >= NumElems/2;
7324    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7325                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
7326
7327    // Insert the changed part back to the 256-bit vector
7328    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7329  }
7330
7331  if (Subtarget->hasSSE41())
7332    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7333
7334  if (EltVT == MVT::i8)
7335    return SDValue();
7336
7337  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7338    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7339    // as its second argument.
7340    if (N1.getValueType() != MVT::i32)
7341      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7342    if (N2.getValueType() != MVT::i32)
7343      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7344    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7345  }
7346  return SDValue();
7347}
7348
7349static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
7350  LLVMContext *Context = DAG.getContext();
7351  DebugLoc dl = Op.getDebugLoc();
7352  MVT OpVT = Op.getValueType().getSimpleVT();
7353
7354  // If this is a 256-bit vector result, first insert into a 128-bit
7355  // vector and then insert into the 256-bit vector.
7356  if (!OpVT.is128BitVector()) {
7357    // Insert into a 128-bit vector.
7358    EVT VT128 = EVT::getVectorVT(*Context,
7359                                 OpVT.getVectorElementType(),
7360                                 OpVT.getVectorNumElements() / 2);
7361
7362    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7363
7364    // Insert the 128-bit vector.
7365    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7366  }
7367
7368  if (OpVT == MVT::v1i64 &&
7369      Op.getOperand(0).getValueType() == MVT::i64)
7370    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7371
7372  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7373  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7374  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7375                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7376}
7377
7378// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7379// a simple subregister reference or explicit instructions to grab
7380// upper bits of a vector.
7381static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7382                                      SelectionDAG &DAG) {
7383  if (Subtarget->hasFp256()) {
7384    DebugLoc dl = Op.getNode()->getDebugLoc();
7385    SDValue Vec = Op.getNode()->getOperand(0);
7386    SDValue Idx = Op.getNode()->getOperand(1);
7387
7388    if (Op.getNode()->getValueType(0).is128BitVector() &&
7389        Vec.getNode()->getValueType(0).is256BitVector() &&
7390        isa<ConstantSDNode>(Idx)) {
7391      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7392      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7393    }
7394  }
7395  return SDValue();
7396}
7397
7398// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7399// simple superregister reference or explicit instructions to insert
7400// the upper bits of a vector.
7401static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7402                                     SelectionDAG &DAG) {
7403  if (Subtarget->hasFp256()) {
7404    DebugLoc dl = Op.getNode()->getDebugLoc();
7405    SDValue Vec = Op.getNode()->getOperand(0);
7406    SDValue SubVec = Op.getNode()->getOperand(1);
7407    SDValue Idx = Op.getNode()->getOperand(2);
7408
7409    if (Op.getNode()->getValueType(0).is256BitVector() &&
7410        SubVec.getNode()->getValueType(0).is128BitVector() &&
7411        isa<ConstantSDNode>(Idx)) {
7412      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7413      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7414    }
7415  }
7416  return SDValue();
7417}
7418
7419// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7420// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7421// one of the above mentioned nodes. It has to be wrapped because otherwise
7422// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7423// be used to form addressing mode. These wrapped nodes will be selected
7424// into MOV32ri.
7425SDValue
7426X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7427  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7428
7429  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7430  // global base reg.
7431  unsigned char OpFlag = 0;
7432  unsigned WrapperKind = X86ISD::Wrapper;
7433  CodeModel::Model M = getTargetMachine().getCodeModel();
7434
7435  if (Subtarget->isPICStyleRIPRel() &&
7436      (M == CodeModel::Small || M == CodeModel::Kernel))
7437    WrapperKind = X86ISD::WrapperRIP;
7438  else if (Subtarget->isPICStyleGOT())
7439    OpFlag = X86II::MO_GOTOFF;
7440  else if (Subtarget->isPICStyleStubPIC())
7441    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7442
7443  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7444                                             CP->getAlignment(),
7445                                             CP->getOffset(), OpFlag);
7446  DebugLoc DL = CP->getDebugLoc();
7447  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7448  // With PIC, the address is actually $g + Offset.
7449  if (OpFlag) {
7450    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7451                         DAG.getNode(X86ISD::GlobalBaseReg,
7452                                     DebugLoc(), getPointerTy()),
7453                         Result);
7454  }
7455
7456  return Result;
7457}
7458
7459SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7460  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7461
7462  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7463  // global base reg.
7464  unsigned char OpFlag = 0;
7465  unsigned WrapperKind = X86ISD::Wrapper;
7466  CodeModel::Model M = getTargetMachine().getCodeModel();
7467
7468  if (Subtarget->isPICStyleRIPRel() &&
7469      (M == CodeModel::Small || M == CodeModel::Kernel))
7470    WrapperKind = X86ISD::WrapperRIP;
7471  else if (Subtarget->isPICStyleGOT())
7472    OpFlag = X86II::MO_GOTOFF;
7473  else if (Subtarget->isPICStyleStubPIC())
7474    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7475
7476  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7477                                          OpFlag);
7478  DebugLoc DL = JT->getDebugLoc();
7479  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7480
7481  // With PIC, the address is actually $g + Offset.
7482  if (OpFlag)
7483    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7484                         DAG.getNode(X86ISD::GlobalBaseReg,
7485                                     DebugLoc(), getPointerTy()),
7486                         Result);
7487
7488  return Result;
7489}
7490
7491SDValue
7492X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7493  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7494
7495  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7496  // global base reg.
7497  unsigned char OpFlag = 0;
7498  unsigned WrapperKind = X86ISD::Wrapper;
7499  CodeModel::Model M = getTargetMachine().getCodeModel();
7500
7501  if (Subtarget->isPICStyleRIPRel() &&
7502      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7503    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7504      OpFlag = X86II::MO_GOTPCREL;
7505    WrapperKind = X86ISD::WrapperRIP;
7506  } else if (Subtarget->isPICStyleGOT()) {
7507    OpFlag = X86II::MO_GOT;
7508  } else if (Subtarget->isPICStyleStubPIC()) {
7509    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7510  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7511    OpFlag = X86II::MO_DARWIN_NONLAZY;
7512  }
7513
7514  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7515
7516  DebugLoc DL = Op.getDebugLoc();
7517  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7518
7519  // With PIC, the address is actually $g + Offset.
7520  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7521      !Subtarget->is64Bit()) {
7522    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7523                         DAG.getNode(X86ISD::GlobalBaseReg,
7524                                     DebugLoc(), getPointerTy()),
7525                         Result);
7526  }
7527
7528  // For symbols that require a load from a stub to get the address, emit the
7529  // load.
7530  if (isGlobalStubReference(OpFlag))
7531    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7532                         MachinePointerInfo::getGOT(), false, false, false, 0);
7533
7534  return Result;
7535}
7536
7537SDValue
7538X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7539  // Create the TargetBlockAddressAddress node.
7540  unsigned char OpFlags =
7541    Subtarget->ClassifyBlockAddressReference();
7542  CodeModel::Model M = getTargetMachine().getCodeModel();
7543  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7544  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
7545  DebugLoc dl = Op.getDebugLoc();
7546  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
7547                                             OpFlags);
7548
7549  if (Subtarget->isPICStyleRIPRel() &&
7550      (M == CodeModel::Small || M == CodeModel::Kernel))
7551    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7552  else
7553    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7554
7555  // With PIC, the address is actually $g + Offset.
7556  if (isGlobalRelativeToPICBase(OpFlags)) {
7557    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7558                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7559                         Result);
7560  }
7561
7562  return Result;
7563}
7564
7565SDValue
7566X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7567                                      int64_t Offset, SelectionDAG &DAG) const {
7568  // Create the TargetGlobalAddress node, folding in the constant
7569  // offset if it is legal.
7570  unsigned char OpFlags =
7571    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7572  CodeModel::Model M = getTargetMachine().getCodeModel();
7573  SDValue Result;
7574  if (OpFlags == X86II::MO_NO_FLAG &&
7575      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7576    // A direct static reference to a global.
7577    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7578    Offset = 0;
7579  } else {
7580    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7581  }
7582
7583  if (Subtarget->isPICStyleRIPRel() &&
7584      (M == CodeModel::Small || M == CodeModel::Kernel))
7585    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7586  else
7587    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7588
7589  // With PIC, the address is actually $g + Offset.
7590  if (isGlobalRelativeToPICBase(OpFlags)) {
7591    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7592                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7593                         Result);
7594  }
7595
7596  // For globals that require a load from a stub to get the address, emit the
7597  // load.
7598  if (isGlobalStubReference(OpFlags))
7599    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7600                         MachinePointerInfo::getGOT(), false, false, false, 0);
7601
7602  // If there was a non-zero offset that we didn't fold, create an explicit
7603  // addition for it.
7604  if (Offset != 0)
7605    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7606                         DAG.getConstant(Offset, getPointerTy()));
7607
7608  return Result;
7609}
7610
7611SDValue
7612X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7613  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7614  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7615  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7616}
7617
7618static SDValue
7619GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7620           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7621           unsigned char OperandFlags, bool LocalDynamic = false) {
7622  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7623  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7624  DebugLoc dl = GA->getDebugLoc();
7625  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7626                                           GA->getValueType(0),
7627                                           GA->getOffset(),
7628                                           OperandFlags);
7629
7630  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
7631                                           : X86ISD::TLSADDR;
7632
7633  if (InFlag) {
7634    SDValue Ops[] = { Chain,  TGA, *InFlag };
7635    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 3);
7636  } else {
7637    SDValue Ops[]  = { Chain, TGA };
7638    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 2);
7639  }
7640
7641  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7642  MFI->setAdjustsStack(true);
7643
7644  SDValue Flag = Chain.getValue(1);
7645  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7646}
7647
7648// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7649static SDValue
7650LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7651                                const EVT PtrVT) {
7652  SDValue InFlag;
7653  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7654  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7655                                   DAG.getNode(X86ISD::GlobalBaseReg,
7656                                               DebugLoc(), PtrVT), InFlag);
7657  InFlag = Chain.getValue(1);
7658
7659  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7660}
7661
7662// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7663static SDValue
7664LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7665                                const EVT PtrVT) {
7666  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7667                    X86::RAX, X86II::MO_TLSGD);
7668}
7669
7670static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
7671                                           SelectionDAG &DAG,
7672                                           const EVT PtrVT,
7673                                           bool is64Bit) {
7674  DebugLoc dl = GA->getDebugLoc();
7675
7676  // Get the start address of the TLS block for this module.
7677  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
7678      .getInfo<X86MachineFunctionInfo>();
7679  MFI->incNumLocalDynamicTLSAccesses();
7680
7681  SDValue Base;
7682  if (is64Bit) {
7683    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
7684                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
7685  } else {
7686    SDValue InFlag;
7687    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7688        DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
7689    InFlag = Chain.getValue(1);
7690    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
7691                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
7692  }
7693
7694  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
7695  // of Base.
7696
7697  // Build x@dtpoff.
7698  unsigned char OperandFlags = X86II::MO_DTPOFF;
7699  unsigned WrapperKind = X86ISD::Wrapper;
7700  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7701                                           GA->getValueType(0),
7702                                           GA->getOffset(), OperandFlags);
7703  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7704
7705  // Add x@dtpoff with the base.
7706  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
7707}
7708
7709// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7710static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7711                                   const EVT PtrVT, TLSModel::Model model,
7712                                   bool is64Bit, bool isPIC) {
7713  DebugLoc dl = GA->getDebugLoc();
7714
7715  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7716  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7717                                                         is64Bit ? 257 : 256));
7718
7719  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7720                                      DAG.getIntPtrConstant(0),
7721                                      MachinePointerInfo(Ptr),
7722                                      false, false, false, 0);
7723
7724  unsigned char OperandFlags = 0;
7725  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7726  // initialexec.
7727  unsigned WrapperKind = X86ISD::Wrapper;
7728  if (model == TLSModel::LocalExec) {
7729    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7730  } else if (model == TLSModel::InitialExec) {
7731    if (is64Bit) {
7732      OperandFlags = X86II::MO_GOTTPOFF;
7733      WrapperKind = X86ISD::WrapperRIP;
7734    } else {
7735      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7736    }
7737  } else {
7738    llvm_unreachable("Unexpected model");
7739  }
7740
7741  // emit "addl x@ntpoff,%eax" (local exec)
7742  // or "addl x@indntpoff,%eax" (initial exec)
7743  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7744  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7745                                           GA->getValueType(0),
7746                                           GA->getOffset(), OperandFlags);
7747  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7748
7749  if (model == TLSModel::InitialExec) {
7750    if (isPIC && !is64Bit) {
7751      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7752                          DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
7753                           Offset);
7754    }
7755
7756    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7757                         MachinePointerInfo::getGOT(), false, false, false,
7758                         0);
7759  }
7760
7761  // The address of the thread local variable is the add of the thread
7762  // pointer with the offset of the variable.
7763  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7764}
7765
7766SDValue
7767X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7768
7769  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7770  const GlobalValue *GV = GA->getGlobal();
7771
7772  if (Subtarget->isTargetELF()) {
7773    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7774
7775    switch (model) {
7776      case TLSModel::GeneralDynamic:
7777        if (Subtarget->is64Bit())
7778          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7779        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7780      case TLSModel::LocalDynamic:
7781        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
7782                                           Subtarget->is64Bit());
7783      case TLSModel::InitialExec:
7784      case TLSModel::LocalExec:
7785        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7786                                   Subtarget->is64Bit(),
7787                        getTargetMachine().getRelocationModel() == Reloc::PIC_);
7788    }
7789    llvm_unreachable("Unknown TLS model.");
7790  }
7791
7792  if (Subtarget->isTargetDarwin()) {
7793    // Darwin only has one model of TLS.  Lower to that.
7794    unsigned char OpFlag = 0;
7795    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7796                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7797
7798    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7799    // global base reg.
7800    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7801                  !Subtarget->is64Bit();
7802    if (PIC32)
7803      OpFlag = X86II::MO_TLVP_PIC_BASE;
7804    else
7805      OpFlag = X86II::MO_TLVP;
7806    DebugLoc DL = Op.getDebugLoc();
7807    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7808                                                GA->getValueType(0),
7809                                                GA->getOffset(), OpFlag);
7810    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7811
7812    // With PIC32, the address is actually $g + Offset.
7813    if (PIC32)
7814      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7815                           DAG.getNode(X86ISD::GlobalBaseReg,
7816                                       DebugLoc(), getPointerTy()),
7817                           Offset);
7818
7819    // Lowering the machine isd will make sure everything is in the right
7820    // location.
7821    SDValue Chain = DAG.getEntryNode();
7822    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7823    SDValue Args[] = { Chain, Offset };
7824    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7825
7826    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7827    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7828    MFI->setAdjustsStack(true);
7829
7830    // And our return value (tls address) is in the standard call return value
7831    // location.
7832    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7833    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7834                              Chain.getValue(1));
7835  }
7836
7837  if (Subtarget->isTargetWindows() || Subtarget->isTargetMingw()) {
7838    // Just use the implicit TLS architecture
7839    // Need to generate someting similar to:
7840    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7841    //                                  ; from TEB
7842    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7843    //   mov     rcx, qword [rdx+rcx*8]
7844    //   mov     eax, .tls$:tlsvar
7845    //   [rax+rcx] contains the address
7846    // Windows 64bit: gs:0x58
7847    // Windows 32bit: fs:__tls_array
7848
7849    // If GV is an alias then use the aliasee for determining
7850    // thread-localness.
7851    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7852      GV = GA->resolveAliasedGlobal(false);
7853    DebugLoc dl = GA->getDebugLoc();
7854    SDValue Chain = DAG.getEntryNode();
7855
7856    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7857    // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
7858    // use its literal value of 0x2C.
7859    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7860                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7861                                                             256)
7862                                        : Type::getInt32PtrTy(*DAG.getContext(),
7863                                                              257));
7864
7865    SDValue TlsArray = Subtarget->is64Bit() ? DAG.getIntPtrConstant(0x58) :
7866      (Subtarget->isTargetMingw() ? DAG.getIntPtrConstant(0x2C) :
7867        DAG.getExternalSymbol("_tls_array", getPointerTy()));
7868
7869    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain, TlsArray,
7870                                        MachinePointerInfo(Ptr),
7871                                        false, false, false, 0);
7872
7873    // Load the _tls_index variable
7874    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7875    if (Subtarget->is64Bit())
7876      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7877                           IDX, MachinePointerInfo(), MVT::i32,
7878                           false, false, 0);
7879    else
7880      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7881                        false, false, false, 0);
7882
7883    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7884                                    getPointerTy());
7885    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7886
7887    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7888    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7889                      false, false, false, 0);
7890
7891    // Get the offset of start of .tls section
7892    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7893                                             GA->getValueType(0),
7894                                             GA->getOffset(), X86II::MO_SECREL);
7895    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7896
7897    // The address of the thread local variable is the add of the thread
7898    // pointer with the offset of the variable.
7899    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7900  }
7901
7902  llvm_unreachable("TLS not implemented for this target.");
7903}
7904
7905/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7906/// and take a 2 x i32 value to shift plus a shift amount.
7907SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7908  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7909  EVT VT = Op.getValueType();
7910  unsigned VTBits = VT.getSizeInBits();
7911  DebugLoc dl = Op.getDebugLoc();
7912  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7913  SDValue ShOpLo = Op.getOperand(0);
7914  SDValue ShOpHi = Op.getOperand(1);
7915  SDValue ShAmt  = Op.getOperand(2);
7916  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7917                                     DAG.getConstant(VTBits - 1, MVT::i8))
7918                       : DAG.getConstant(0, VT);
7919
7920  SDValue Tmp2, Tmp3;
7921  if (Op.getOpcode() == ISD::SHL_PARTS) {
7922    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7923    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7924  } else {
7925    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7926    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7927  }
7928
7929  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7930                                DAG.getConstant(VTBits, MVT::i8));
7931  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7932                             AndNode, DAG.getConstant(0, MVT::i8));
7933
7934  SDValue Hi, Lo;
7935  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7936  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7937  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7938
7939  if (Op.getOpcode() == ISD::SHL_PARTS) {
7940    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7941    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7942  } else {
7943    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7944    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7945  }
7946
7947  SDValue Ops[2] = { Lo, Hi };
7948  return DAG.getMergeValues(Ops, 2, dl);
7949}
7950
7951SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7952                                           SelectionDAG &DAG) const {
7953  EVT SrcVT = Op.getOperand(0).getValueType();
7954
7955  if (SrcVT.isVector())
7956    return SDValue();
7957
7958  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7959         "Unknown SINT_TO_FP to lower!");
7960
7961  // These are really Legal; return the operand so the caller accepts it as
7962  // Legal.
7963  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7964    return Op;
7965  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7966      Subtarget->is64Bit()) {
7967    return Op;
7968  }
7969
7970  DebugLoc dl = Op.getDebugLoc();
7971  unsigned Size = SrcVT.getSizeInBits()/8;
7972  MachineFunction &MF = DAG.getMachineFunction();
7973  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7974  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7975  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7976                               StackSlot,
7977                               MachinePointerInfo::getFixedStack(SSFI),
7978                               false, false, 0);
7979  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7980}
7981
7982SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7983                                     SDValue StackSlot,
7984                                     SelectionDAG &DAG) const {
7985  // Build the FILD
7986  DebugLoc DL = Op.getDebugLoc();
7987  SDVTList Tys;
7988  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7989  if (useSSE)
7990    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7991  else
7992    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7993
7994  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7995
7996  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7997  MachineMemOperand *MMO;
7998  if (FI) {
7999    int SSFI = FI->getIndex();
8000    MMO =
8001      DAG.getMachineFunction()
8002      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8003                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
8004  } else {
8005    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
8006    StackSlot = StackSlot.getOperand(1);
8007  }
8008  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
8009  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
8010                                           X86ISD::FILD, DL,
8011                                           Tys, Ops, array_lengthof(Ops),
8012                                           SrcVT, MMO);
8013
8014  if (useSSE) {
8015    Chain = Result.getValue(1);
8016    SDValue InFlag = Result.getValue(2);
8017
8018    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
8019    // shouldn't be necessary except that RFP cannot be live across
8020    // multiple blocks. When stackifier is fixed, they can be uncoupled.
8021    MachineFunction &MF = DAG.getMachineFunction();
8022    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
8023    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
8024    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8025    Tys = DAG.getVTList(MVT::Other);
8026    SDValue Ops[] = {
8027      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
8028    };
8029    MachineMemOperand *MMO =
8030      DAG.getMachineFunction()
8031      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8032                            MachineMemOperand::MOStore, SSFISize, SSFISize);
8033
8034    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
8035                                    Ops, array_lengthof(Ops),
8036                                    Op.getValueType(), MMO);
8037    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
8038                         MachinePointerInfo::getFixedStack(SSFI),
8039                         false, false, false, 0);
8040  }
8041
8042  return Result;
8043}
8044
8045// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
8046SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
8047                                               SelectionDAG &DAG) const {
8048  // This algorithm is not obvious. Here it is what we're trying to output:
8049  /*
8050     movq       %rax,  %xmm0
8051     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
8052     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
8053     #ifdef __SSE3__
8054       haddpd   %xmm0, %xmm0
8055     #else
8056       pshufd   $0x4e, %xmm0, %xmm1
8057       addpd    %xmm1, %xmm0
8058     #endif
8059  */
8060
8061  DebugLoc dl = Op.getDebugLoc();
8062  LLVMContext *Context = DAG.getContext();
8063
8064  // Build some magic constants.
8065  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
8066  Constant *C0 = ConstantDataVector::get(*Context, CV0);
8067  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
8068
8069  SmallVector<Constant*,2> CV1;
8070  CV1.push_back(
8071    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8072                                      APInt(64, 0x4330000000000000ULL))));
8073  CV1.push_back(
8074    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8075                                      APInt(64, 0x4530000000000000ULL))));
8076  Constant *C1 = ConstantVector::get(CV1);
8077  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
8078
8079  // Load the 64-bit value into an XMM register.
8080  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
8081                            Op.getOperand(0));
8082  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
8083                              MachinePointerInfo::getConstantPool(),
8084                              false, false, false, 16);
8085  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
8086                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
8087                              CLod0);
8088
8089  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
8090                              MachinePointerInfo::getConstantPool(),
8091                              false, false, false, 16);
8092  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
8093  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
8094  SDValue Result;
8095
8096  if (Subtarget->hasSSE3()) {
8097    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
8098    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
8099  } else {
8100    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
8101    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
8102                                           S2F, 0x4E, DAG);
8103    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
8104                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
8105                         Sub);
8106  }
8107
8108  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
8109                     DAG.getIntPtrConstant(0));
8110}
8111
8112// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
8113SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
8114                                               SelectionDAG &DAG) const {
8115  DebugLoc dl = Op.getDebugLoc();
8116  // FP constant to bias correct the final result.
8117  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
8118                                   MVT::f64);
8119
8120  // Load the 32-bit value into an XMM register.
8121  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
8122                             Op.getOperand(0));
8123
8124  // Zero out the upper parts of the register.
8125  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
8126
8127  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8128                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
8129                     DAG.getIntPtrConstant(0));
8130
8131  // Or the load with the bias.
8132  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
8133                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8134                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8135                                                   MVT::v2f64, Load)),
8136                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8137                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8138                                                   MVT::v2f64, Bias)));
8139  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8140                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
8141                   DAG.getIntPtrConstant(0));
8142
8143  // Subtract the bias.
8144  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
8145
8146  // Handle final rounding.
8147  EVT DestVT = Op.getValueType();
8148
8149  if (DestVT.bitsLT(MVT::f64))
8150    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
8151                       DAG.getIntPtrConstant(0));
8152  if (DestVT.bitsGT(MVT::f64))
8153    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
8154
8155  // Handle final rounding.
8156  return Sub;
8157}
8158
8159SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
8160                                               SelectionDAG &DAG) const {
8161  SDValue N0 = Op.getOperand(0);
8162  EVT SVT = N0.getValueType();
8163  DebugLoc dl = Op.getDebugLoc();
8164
8165  assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
8166          SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
8167         "Custom UINT_TO_FP is not supported!");
8168
8169  EVT NVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
8170                             SVT.getVectorNumElements());
8171  return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
8172                     DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
8173}
8174
8175SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
8176                                           SelectionDAG &DAG) const {
8177  SDValue N0 = Op.getOperand(0);
8178  DebugLoc dl = Op.getDebugLoc();
8179
8180  if (Op.getValueType().isVector())
8181    return lowerUINT_TO_FP_vec(Op, DAG);
8182
8183  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
8184  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
8185  // the optimization here.
8186  if (DAG.SignBitIsZero(N0))
8187    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
8188
8189  EVT SrcVT = N0.getValueType();
8190  EVT DstVT = Op.getValueType();
8191  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
8192    return LowerUINT_TO_FP_i64(Op, DAG);
8193  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
8194    return LowerUINT_TO_FP_i32(Op, DAG);
8195  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
8196    return SDValue();
8197
8198  // Make a 64-bit buffer, and use it to build an FILD.
8199  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
8200  if (SrcVT == MVT::i32) {
8201    SDValue WordOff = DAG.getConstant(4, getPointerTy());
8202    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
8203                                     getPointerTy(), StackSlot, WordOff);
8204    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8205                                  StackSlot, MachinePointerInfo(),
8206                                  false, false, 0);
8207    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
8208                                  OffsetSlot, MachinePointerInfo(),
8209                                  false, false, 0);
8210    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
8211    return Fild;
8212  }
8213
8214  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
8215  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8216                               StackSlot, MachinePointerInfo(),
8217                               false, false, 0);
8218  // For i64 source, we need to add the appropriate power of 2 if the input
8219  // was negative.  This is the same as the optimization in
8220  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
8221  // we must be careful to do the computation in x87 extended precision, not
8222  // in SSE. (The generic code can't know it's OK to do this, or how to.)
8223  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
8224  MachineMemOperand *MMO =
8225    DAG.getMachineFunction()
8226    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8227                          MachineMemOperand::MOLoad, 8, 8);
8228
8229  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
8230  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
8231  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
8232                                         MVT::i64, MMO);
8233
8234  APInt FF(32, 0x5F800000ULL);
8235
8236  // Check whether the sign bit is set.
8237  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
8238                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
8239                                 ISD::SETLT);
8240
8241  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
8242  SDValue FudgePtr = DAG.getConstantPool(
8243                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
8244                                         getPointerTy());
8245
8246  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
8247  SDValue Zero = DAG.getIntPtrConstant(0);
8248  SDValue Four = DAG.getIntPtrConstant(4);
8249  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
8250                               Zero, Four);
8251  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
8252
8253  // Load the value out, extending it from f32 to f80.
8254  // FIXME: Avoid the extend by constructing the right constant pool?
8255  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
8256                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8257                                 MVT::f32, false, false, 4);
8258  // Extend everything to 80 bits to force it to be done on x87.
8259  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8260  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8261}
8262
8263std::pair<SDValue,SDValue>
8264X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
8265                                    bool IsSigned, bool IsReplace) const {
8266  DebugLoc DL = Op.getDebugLoc();
8267
8268  EVT DstTy = Op.getValueType();
8269
8270  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
8271    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8272    DstTy = MVT::i64;
8273  }
8274
8275  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8276         DstTy.getSimpleVT() >= MVT::i16 &&
8277         "Unknown FP_TO_INT to lower!");
8278
8279  // These are really Legal.
8280  if (DstTy == MVT::i32 &&
8281      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8282    return std::make_pair(SDValue(), SDValue());
8283  if (Subtarget->is64Bit() &&
8284      DstTy == MVT::i64 &&
8285      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8286    return std::make_pair(SDValue(), SDValue());
8287
8288  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8289  // stack slot, or into the FTOL runtime function.
8290  MachineFunction &MF = DAG.getMachineFunction();
8291  unsigned MemSize = DstTy.getSizeInBits()/8;
8292  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8293  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8294
8295  unsigned Opc;
8296  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8297    Opc = X86ISD::WIN_FTOL;
8298  else
8299    switch (DstTy.getSimpleVT().SimpleTy) {
8300    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8301    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8302    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8303    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8304    }
8305
8306  SDValue Chain = DAG.getEntryNode();
8307  SDValue Value = Op.getOperand(0);
8308  EVT TheVT = Op.getOperand(0).getValueType();
8309  // FIXME This causes a redundant load/store if the SSE-class value is already
8310  // in memory, such as if it is on the callstack.
8311  if (isScalarFPTypeInSSEReg(TheVT)) {
8312    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8313    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8314                         MachinePointerInfo::getFixedStack(SSFI),
8315                         false, false, 0);
8316    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8317    SDValue Ops[] = {
8318      Chain, StackSlot, DAG.getValueType(TheVT)
8319    };
8320
8321    MachineMemOperand *MMO =
8322      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8323                              MachineMemOperand::MOLoad, MemSize, MemSize);
8324    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
8325                                    DstTy, MMO);
8326    Chain = Value.getValue(1);
8327    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8328    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8329  }
8330
8331  MachineMemOperand *MMO =
8332    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8333                            MachineMemOperand::MOStore, MemSize, MemSize);
8334
8335  if (Opc != X86ISD::WIN_FTOL) {
8336    // Build the FP_TO_INT*_IN_MEM
8337    SDValue Ops[] = { Chain, Value, StackSlot };
8338    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8339                                           Ops, 3, DstTy, MMO);
8340    return std::make_pair(FIST, StackSlot);
8341  } else {
8342    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8343      DAG.getVTList(MVT::Other, MVT::Glue),
8344      Chain, Value);
8345    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8346      MVT::i32, ftol.getValue(1));
8347    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8348      MVT::i32, eax.getValue(2));
8349    SDValue Ops[] = { eax, edx };
8350    SDValue pair = IsReplace
8351      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
8352      : DAG.getMergeValues(Ops, 2, DL);
8353    return std::make_pair(pair, SDValue());
8354  }
8355}
8356
8357static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
8358                              const X86Subtarget *Subtarget) {
8359  MVT VT = Op->getValueType(0).getSimpleVT();
8360  SDValue In = Op->getOperand(0);
8361  MVT InVT = In.getValueType().getSimpleVT();
8362  DebugLoc dl = Op->getDebugLoc();
8363
8364  // Optimize vectors in AVX mode:
8365  //
8366  //   v8i16 -> v8i32
8367  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
8368  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
8369  //   Concat upper and lower parts.
8370  //
8371  //   v4i32 -> v4i64
8372  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
8373  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
8374  //   Concat upper and lower parts.
8375  //
8376
8377  if (((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
8378      ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
8379    return SDValue();
8380
8381  if (Subtarget->hasInt256())
8382    return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, In);
8383
8384  SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
8385  SDValue Undef = DAG.getUNDEF(InVT);
8386  bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
8387  SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8388  SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8389
8390  MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
8391                             VT.getVectorNumElements()/2);
8392
8393  OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
8394  OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
8395
8396  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
8397}
8398
8399SDValue X86TargetLowering::LowerANY_EXTEND(SDValue Op,
8400                                           SelectionDAG &DAG) const {
8401  if (Subtarget->hasFp256()) {
8402    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8403    if (Res.getNode())
8404      return Res;
8405  }
8406
8407  return SDValue();
8408}
8409SDValue X86TargetLowering::LowerZERO_EXTEND(SDValue Op,
8410                                            SelectionDAG &DAG) const {
8411  DebugLoc DL = Op.getDebugLoc();
8412  MVT VT = Op.getValueType().getSimpleVT();
8413  SDValue In = Op.getOperand(0);
8414  MVT SVT = In.getValueType().getSimpleVT();
8415
8416  if (Subtarget->hasFp256()) {
8417    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8418    if (Res.getNode())
8419      return Res;
8420  }
8421
8422  if (!VT.is256BitVector() || !SVT.is128BitVector() ||
8423      VT.getVectorNumElements() != SVT.getVectorNumElements())
8424    return SDValue();
8425
8426  assert(Subtarget->hasFp256() && "256-bit vector is observed without AVX!");
8427
8428  // AVX2 has better support of integer extending.
8429  if (Subtarget->hasInt256())
8430    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
8431
8432  SDValue Lo = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32, In);
8433  static const int Mask[] = {4, 5, 6, 7, -1, -1, -1, -1};
8434  SDValue Hi = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32,
8435                           DAG.getVectorShuffle(MVT::v8i16, DL, In,
8436                                                DAG.getUNDEF(MVT::v8i16),
8437                                                &Mask[0]));
8438
8439  return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i32, Lo, Hi);
8440}
8441
8442SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
8443  DebugLoc DL = Op.getDebugLoc();
8444  MVT VT = Op.getValueType().getSimpleVT();
8445  SDValue In = Op.getOperand(0);
8446  MVT SVT = In.getValueType().getSimpleVT();
8447
8448  if ((VT == MVT::v4i32) && (SVT == MVT::v4i64)) {
8449    // On AVX2, v4i64 -> v4i32 becomes VPERMD.
8450    if (Subtarget->hasInt256()) {
8451      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
8452      In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
8453      In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
8454                                ShufMask);
8455      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
8456                         DAG.getIntPtrConstant(0));
8457    }
8458
8459    // On AVX, v4i64 -> v4i32 becomes a sequence that uses PSHUFD and MOVLHPS.
8460    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8461                               DAG.getIntPtrConstant(0));
8462    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8463                               DAG.getIntPtrConstant(2));
8464
8465    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
8466    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
8467
8468    // The PSHUFD mask:
8469    static const int ShufMask1[] = {0, 2, 0, 0};
8470    SDValue Undef = DAG.getUNDEF(VT);
8471    OpLo = DAG.getVectorShuffle(VT, DL, OpLo, Undef, ShufMask1);
8472    OpHi = DAG.getVectorShuffle(VT, DL, OpHi, Undef, ShufMask1);
8473
8474    // The MOVLHPS mask:
8475    static const int ShufMask2[] = {0, 1, 4, 5};
8476    return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask2);
8477  }
8478
8479  if ((VT == MVT::v8i16) && (SVT == MVT::v8i32)) {
8480    // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
8481    if (Subtarget->hasInt256()) {
8482      In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
8483
8484      SmallVector<SDValue,32> pshufbMask;
8485      for (unsigned i = 0; i < 2; ++i) {
8486        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
8487        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
8488        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
8489        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
8490        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
8491        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
8492        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
8493        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
8494        for (unsigned j = 0; j < 8; ++j)
8495          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
8496      }
8497      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8,
8498                               &pshufbMask[0], 32);
8499      In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
8500      In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
8501
8502      static const int ShufMask[] = {0,  2,  -1,  -1};
8503      In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64),
8504                                &ShufMask[0]);
8505      In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8506                       DAG.getIntPtrConstant(0));
8507      return DAG.getNode(ISD::BITCAST, DL, VT, In);
8508    }
8509
8510    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
8511                               DAG.getIntPtrConstant(0));
8512
8513    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
8514                               DAG.getIntPtrConstant(4));
8515
8516    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
8517    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
8518
8519    // The PSHUFB mask:
8520    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
8521                                   -1, -1, -1, -1, -1, -1, -1, -1};
8522
8523    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
8524    OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
8525    OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
8526
8527    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
8528    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
8529
8530    // The MOVLHPS Mask:
8531    static const int ShufMask2[] = {0, 1, 4, 5};
8532    SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
8533    return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
8534  }
8535
8536  // Handle truncation of V256 to V128 using shuffles.
8537  if (!VT.is128BitVector() || !SVT.is256BitVector())
8538    return SDValue();
8539
8540  assert(VT.getVectorNumElements() != SVT.getVectorNumElements() &&
8541         "Invalid op");
8542  assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
8543
8544  unsigned NumElems = VT.getVectorNumElements();
8545  EVT NVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8546                             NumElems * 2);
8547
8548  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
8549  // Prepare truncation shuffle mask
8550  for (unsigned i = 0; i != NumElems; ++i)
8551    MaskVec[i] = i * 2;
8552  SDValue V = DAG.getVectorShuffle(NVT, DL,
8553                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
8554                                   DAG.getUNDEF(NVT), &MaskVec[0]);
8555  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
8556                     DAG.getIntPtrConstant(0));
8557}
8558
8559SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8560                                           SelectionDAG &DAG) const {
8561  MVT VT = Op.getValueType().getSimpleVT();
8562  if (VT.isVector()) {
8563    if (VT == MVT::v8i16)
8564      return DAG.getNode(ISD::TRUNCATE, Op.getDebugLoc(), VT,
8565                         DAG.getNode(ISD::FP_TO_SINT, Op.getDebugLoc(),
8566                                     MVT::v8i32, Op.getOperand(0)));
8567    return SDValue();
8568  }
8569
8570  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8571    /*IsSigned=*/ true, /*IsReplace=*/ false);
8572  SDValue FIST = Vals.first, StackSlot = Vals.second;
8573  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8574  if (FIST.getNode() == 0) return Op;
8575
8576  if (StackSlot.getNode())
8577    // Load the result.
8578    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8579                       FIST, StackSlot, MachinePointerInfo(),
8580                       false, false, false, 0);
8581
8582  // The node is the result.
8583  return FIST;
8584}
8585
8586SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8587                                           SelectionDAG &DAG) const {
8588  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8589    /*IsSigned=*/ false, /*IsReplace=*/ false);
8590  SDValue FIST = Vals.first, StackSlot = Vals.second;
8591  assert(FIST.getNode() && "Unexpected failure");
8592
8593  if (StackSlot.getNode())
8594    // Load the result.
8595    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8596                       FIST, StackSlot, MachinePointerInfo(),
8597                       false, false, false, 0);
8598
8599  // The node is the result.
8600  return FIST;
8601}
8602
8603static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
8604  DebugLoc DL = Op.getDebugLoc();
8605  MVT VT = Op.getValueType().getSimpleVT();
8606  SDValue In = Op.getOperand(0);
8607  MVT SVT = In.getValueType().getSimpleVT();
8608
8609  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
8610
8611  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
8612                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
8613                                 In, DAG.getUNDEF(SVT)));
8614}
8615
8616SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
8617  LLVMContext *Context = DAG.getContext();
8618  DebugLoc dl = Op.getDebugLoc();
8619  MVT VT = Op.getValueType().getSimpleVT();
8620  MVT EltVT = VT;
8621  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8622  if (VT.isVector()) {
8623    EltVT = VT.getVectorElementType();
8624    NumElts = VT.getVectorNumElements();
8625  }
8626  Constant *C;
8627  if (EltVT == MVT::f64)
8628    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8629                                          APInt(64, ~(1ULL << 63))));
8630  else
8631    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
8632                                          APInt(32, ~(1U << 31))));
8633  C = ConstantVector::getSplat(NumElts, C);
8634  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8635  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8636  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8637                             MachinePointerInfo::getConstantPool(),
8638                             false, false, false, Alignment);
8639  if (VT.isVector()) {
8640    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8641    return DAG.getNode(ISD::BITCAST, dl, VT,
8642                       DAG.getNode(ISD::AND, dl, ANDVT,
8643                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
8644                                               Op.getOperand(0)),
8645                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
8646  }
8647  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8648}
8649
8650SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8651  LLVMContext *Context = DAG.getContext();
8652  DebugLoc dl = Op.getDebugLoc();
8653  MVT VT = Op.getValueType().getSimpleVT();
8654  MVT EltVT = VT;
8655  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8656  if (VT.isVector()) {
8657    EltVT = VT.getVectorElementType();
8658    NumElts = VT.getVectorNumElements();
8659  }
8660  Constant *C;
8661  if (EltVT == MVT::f64)
8662    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8663                                          APInt(64, 1ULL << 63)));
8664  else
8665    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
8666                                          APInt(32, 1U << 31)));
8667  C = ConstantVector::getSplat(NumElts, C);
8668  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8669  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8670  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8671                             MachinePointerInfo::getConstantPool(),
8672                             false, false, false, Alignment);
8673  if (VT.isVector()) {
8674    MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8675    return DAG.getNode(ISD::BITCAST, dl, VT,
8676                       DAG.getNode(ISD::XOR, dl, XORVT,
8677                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8678                                               Op.getOperand(0)),
8679                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8680  }
8681
8682  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8683}
8684
8685SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8686  LLVMContext *Context = DAG.getContext();
8687  SDValue Op0 = Op.getOperand(0);
8688  SDValue Op1 = Op.getOperand(1);
8689  DebugLoc dl = Op.getDebugLoc();
8690  MVT VT = Op.getValueType().getSimpleVT();
8691  MVT SrcVT = Op1.getValueType().getSimpleVT();
8692
8693  // If second operand is smaller, extend it first.
8694  if (SrcVT.bitsLT(VT)) {
8695    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8696    SrcVT = VT;
8697  }
8698  // And if it is bigger, shrink it first.
8699  if (SrcVT.bitsGT(VT)) {
8700    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8701    SrcVT = VT;
8702  }
8703
8704  // At this point the operands and the result should have the same
8705  // type, and that won't be f80 since that is not custom lowered.
8706
8707  // First get the sign bit of second operand.
8708  SmallVector<Constant*,4> CV;
8709  if (SrcVT == MVT::f64) {
8710    const fltSemantics &Sem = APFloat::IEEEdouble;
8711    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63))));
8712    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
8713  } else {
8714    const fltSemantics &Sem = APFloat::IEEEsingle;
8715    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31))));
8716    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8717    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8718    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8719  }
8720  Constant *C = ConstantVector::get(CV);
8721  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8722  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8723                              MachinePointerInfo::getConstantPool(),
8724                              false, false, false, 16);
8725  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8726
8727  // Shift sign bit right or left if the two operands have different types.
8728  if (SrcVT.bitsGT(VT)) {
8729    // Op0 is MVT::f32, Op1 is MVT::f64.
8730    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8731    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8732                          DAG.getConstant(32, MVT::i32));
8733    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8734    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8735                          DAG.getIntPtrConstant(0));
8736  }
8737
8738  // Clear first operand sign bit.
8739  CV.clear();
8740  if (VT == MVT::f64) {
8741    const fltSemantics &Sem = APFloat::IEEEdouble;
8742    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
8743                                                   APInt(64, ~(1ULL << 63)))));
8744    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
8745  } else {
8746    const fltSemantics &Sem = APFloat::IEEEsingle;
8747    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
8748                                                   APInt(32, ~(1U << 31)))));
8749    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8750    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8751    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8752  }
8753  C = ConstantVector::get(CV);
8754  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8755  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8756                              MachinePointerInfo::getConstantPool(),
8757                              false, false, false, 16);
8758  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8759
8760  // Or the value with the sign bit.
8761  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8762}
8763
8764static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
8765  SDValue N0 = Op.getOperand(0);
8766  DebugLoc dl = Op.getDebugLoc();
8767  MVT VT = Op.getValueType().getSimpleVT();
8768
8769  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8770  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8771                                  DAG.getConstant(1, VT));
8772  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8773}
8774
8775// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
8776//
8777SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op,
8778                                                  SelectionDAG &DAG) const {
8779  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
8780
8781  if (!Subtarget->hasSSE41())
8782    return SDValue();
8783
8784  if (!Op->hasOneUse())
8785    return SDValue();
8786
8787  SDNode *N = Op.getNode();
8788  DebugLoc DL = N->getDebugLoc();
8789
8790  SmallVector<SDValue, 8> Opnds;
8791  DenseMap<SDValue, unsigned> VecInMap;
8792  EVT VT = MVT::Other;
8793
8794  // Recognize a special case where a vector is casted into wide integer to
8795  // test all 0s.
8796  Opnds.push_back(N->getOperand(0));
8797  Opnds.push_back(N->getOperand(1));
8798
8799  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
8800    SmallVector<SDValue, 8>::const_iterator I = Opnds.begin() + Slot;
8801    // BFS traverse all OR'd operands.
8802    if (I->getOpcode() == ISD::OR) {
8803      Opnds.push_back(I->getOperand(0));
8804      Opnds.push_back(I->getOperand(1));
8805      // Re-evaluate the number of nodes to be traversed.
8806      e += 2; // 2 more nodes (LHS and RHS) are pushed.
8807      continue;
8808    }
8809
8810    // Quit if a non-EXTRACT_VECTOR_ELT
8811    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8812      return SDValue();
8813
8814    // Quit if without a constant index.
8815    SDValue Idx = I->getOperand(1);
8816    if (!isa<ConstantSDNode>(Idx))
8817      return SDValue();
8818
8819    SDValue ExtractedFromVec = I->getOperand(0);
8820    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
8821    if (M == VecInMap.end()) {
8822      VT = ExtractedFromVec.getValueType();
8823      // Quit if not 128/256-bit vector.
8824      if (!VT.is128BitVector() && !VT.is256BitVector())
8825        return SDValue();
8826      // Quit if not the same type.
8827      if (VecInMap.begin() != VecInMap.end() &&
8828          VT != VecInMap.begin()->first.getValueType())
8829        return SDValue();
8830      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
8831    }
8832    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
8833  }
8834
8835  assert((VT.is128BitVector() || VT.is256BitVector()) &&
8836         "Not extracted from 128-/256-bit vector.");
8837
8838  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
8839  SmallVector<SDValue, 8> VecIns;
8840
8841  for (DenseMap<SDValue, unsigned>::const_iterator
8842        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
8843    // Quit if not all elements are used.
8844    if (I->second != FullMask)
8845      return SDValue();
8846    VecIns.push_back(I->first);
8847  }
8848
8849  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8850
8851  // Cast all vectors into TestVT for PTEST.
8852  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
8853    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
8854
8855  // If more than one full vectors are evaluated, OR them first before PTEST.
8856  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
8857    // Each iteration will OR 2 nodes and append the result until there is only
8858    // 1 node left, i.e. the final OR'd value of all vectors.
8859    SDValue LHS = VecIns[Slot];
8860    SDValue RHS = VecIns[Slot + 1];
8861    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
8862  }
8863
8864  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
8865                     VecIns.back(), VecIns.back());
8866}
8867
8868/// Emit nodes that will be selected as "test Op0,Op0", or something
8869/// equivalent.
8870SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8871                                    SelectionDAG &DAG) const {
8872  DebugLoc dl = Op.getDebugLoc();
8873
8874  // CF and OF aren't always set the way we want. Determine which
8875  // of these we need.
8876  bool NeedCF = false;
8877  bool NeedOF = false;
8878  switch (X86CC) {
8879  default: break;
8880  case X86::COND_A: case X86::COND_AE:
8881  case X86::COND_B: case X86::COND_BE:
8882    NeedCF = true;
8883    break;
8884  case X86::COND_G: case X86::COND_GE:
8885  case X86::COND_L: case X86::COND_LE:
8886  case X86::COND_O: case X86::COND_NO:
8887    NeedOF = true;
8888    break;
8889  }
8890
8891  // See if we can use the EFLAGS value from the operand instead of
8892  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8893  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8894  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8895    // Emit a CMP with 0, which is the TEST pattern.
8896    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8897                       DAG.getConstant(0, Op.getValueType()));
8898
8899  unsigned Opcode = 0;
8900  unsigned NumOperands = 0;
8901
8902  // Truncate operations may prevent the merge of the SETCC instruction
8903  // and the arithmetic intruction before it. Attempt to truncate the operands
8904  // of the arithmetic instruction and use a reduced bit-width instruction.
8905  bool NeedTruncation = false;
8906  SDValue ArithOp = Op;
8907  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
8908    SDValue Arith = Op->getOperand(0);
8909    // Both the trunc and the arithmetic op need to have one user each.
8910    if (Arith->hasOneUse())
8911      switch (Arith.getOpcode()) {
8912        default: break;
8913        case ISD::ADD:
8914        case ISD::SUB:
8915        case ISD::AND:
8916        case ISD::OR:
8917        case ISD::XOR: {
8918          NeedTruncation = true;
8919          ArithOp = Arith;
8920        }
8921      }
8922  }
8923
8924  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
8925  // which may be the result of a CAST.  We use the variable 'Op', which is the
8926  // non-casted variable when we check for possible users.
8927  switch (ArithOp.getOpcode()) {
8928  case ISD::ADD:
8929    // Due to an isel shortcoming, be conservative if this add is likely to be
8930    // selected as part of a load-modify-store instruction. When the root node
8931    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8932    // uses of other nodes in the match, such as the ADD in this case. This
8933    // leads to the ADD being left around and reselected, with the result being
8934    // two adds in the output.  Alas, even if none our users are stores, that
8935    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8936    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8937    // climbing the DAG back to the root, and it doesn't seem to be worth the
8938    // effort.
8939    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8940         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8941      if (UI->getOpcode() != ISD::CopyToReg &&
8942          UI->getOpcode() != ISD::SETCC &&
8943          UI->getOpcode() != ISD::STORE)
8944        goto default_case;
8945
8946    if (ConstantSDNode *C =
8947        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
8948      // An add of one will be selected as an INC.
8949      if (C->getAPIntValue() == 1) {
8950        Opcode = X86ISD::INC;
8951        NumOperands = 1;
8952        break;
8953      }
8954
8955      // An add of negative one (subtract of one) will be selected as a DEC.
8956      if (C->getAPIntValue().isAllOnesValue()) {
8957        Opcode = X86ISD::DEC;
8958        NumOperands = 1;
8959        break;
8960      }
8961    }
8962
8963    // Otherwise use a regular EFLAGS-setting add.
8964    Opcode = X86ISD::ADD;
8965    NumOperands = 2;
8966    break;
8967  case ISD::AND: {
8968    // If the primary and result isn't used, don't bother using X86ISD::AND,
8969    // because a TEST instruction will be better.
8970    bool NonFlagUse = false;
8971    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8972           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8973      SDNode *User = *UI;
8974      unsigned UOpNo = UI.getOperandNo();
8975      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8976        // Look pass truncate.
8977        UOpNo = User->use_begin().getOperandNo();
8978        User = *User->use_begin();
8979      }
8980
8981      if (User->getOpcode() != ISD::BRCOND &&
8982          User->getOpcode() != ISD::SETCC &&
8983          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
8984        NonFlagUse = true;
8985        break;
8986      }
8987    }
8988
8989    if (!NonFlagUse)
8990      break;
8991  }
8992    // FALL THROUGH
8993  case ISD::SUB:
8994  case ISD::OR:
8995  case ISD::XOR:
8996    // Due to the ISEL shortcoming noted above, be conservative if this op is
8997    // likely to be selected as part of a load-modify-store instruction.
8998    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8999           UE = Op.getNode()->use_end(); UI != UE; ++UI)
9000      if (UI->getOpcode() == ISD::STORE)
9001        goto default_case;
9002
9003    // Otherwise use a regular EFLAGS-setting instruction.
9004    switch (ArithOp.getOpcode()) {
9005    default: llvm_unreachable("unexpected operator!");
9006    case ISD::SUB: Opcode = X86ISD::SUB; break;
9007    case ISD::XOR: Opcode = X86ISD::XOR; break;
9008    case ISD::AND: Opcode = X86ISD::AND; break;
9009    case ISD::OR: {
9010      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
9011        SDValue EFLAGS = LowerVectorAllZeroTest(Op, DAG);
9012        if (EFLAGS.getNode())
9013          return EFLAGS;
9014      }
9015      Opcode = X86ISD::OR;
9016      break;
9017    }
9018    }
9019
9020    NumOperands = 2;
9021    break;
9022  case X86ISD::ADD:
9023  case X86ISD::SUB:
9024  case X86ISD::INC:
9025  case X86ISD::DEC:
9026  case X86ISD::OR:
9027  case X86ISD::XOR:
9028  case X86ISD::AND:
9029    return SDValue(Op.getNode(), 1);
9030  default:
9031  default_case:
9032    break;
9033  }
9034
9035  // If we found that truncation is beneficial, perform the truncation and
9036  // update 'Op'.
9037  if (NeedTruncation) {
9038    EVT VT = Op.getValueType();
9039    SDValue WideVal = Op->getOperand(0);
9040    EVT WideVT = WideVal.getValueType();
9041    unsigned ConvertedOp = 0;
9042    // Use a target machine opcode to prevent further DAGCombine
9043    // optimizations that may separate the arithmetic operations
9044    // from the setcc node.
9045    switch (WideVal.getOpcode()) {
9046      default: break;
9047      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
9048      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
9049      case ISD::AND: ConvertedOp = X86ISD::AND; break;
9050      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
9051      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
9052    }
9053
9054    if (ConvertedOp) {
9055      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9056      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
9057        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
9058        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
9059        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
9060      }
9061    }
9062  }
9063
9064  if (Opcode == 0)
9065    // Emit a CMP with 0, which is the TEST pattern.
9066    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
9067                       DAG.getConstant(0, Op.getValueType()));
9068
9069  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
9070  SmallVector<SDValue, 4> Ops;
9071  for (unsigned i = 0; i != NumOperands; ++i)
9072    Ops.push_back(Op.getOperand(i));
9073
9074  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
9075  DAG.ReplaceAllUsesWith(Op, New);
9076  return SDValue(New.getNode(), 1);
9077}
9078
9079/// Emit nodes that will be selected as "cmp Op0,Op1", or something
9080/// equivalent.
9081SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
9082                                   SelectionDAG &DAG) const {
9083  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
9084    if (C->getAPIntValue() == 0)
9085      return EmitTest(Op0, X86CC, DAG);
9086
9087  DebugLoc dl = Op0.getDebugLoc();
9088  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
9089       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
9090    // Use SUB instead of CMP to enable CSE between SUB and CMP.
9091    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
9092    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
9093                              Op0, Op1);
9094    return SDValue(Sub.getNode(), 1);
9095  }
9096  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
9097}
9098
9099/// Convert a comparison if required by the subtarget.
9100SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
9101                                                 SelectionDAG &DAG) const {
9102  // If the subtarget does not support the FUCOMI instruction, floating-point
9103  // comparisons have to be converted.
9104  if (Subtarget->hasCMov() ||
9105      Cmp.getOpcode() != X86ISD::CMP ||
9106      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
9107      !Cmp.getOperand(1).getValueType().isFloatingPoint())
9108    return Cmp;
9109
9110  // The instruction selector will select an FUCOM instruction instead of
9111  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
9112  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
9113  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
9114  DebugLoc dl = Cmp.getDebugLoc();
9115  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
9116  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
9117  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
9118                            DAG.getConstant(8, MVT::i8));
9119  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
9120  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
9121}
9122
9123static bool isAllOnes(SDValue V) {
9124  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9125  return C && C->isAllOnesValue();
9126}
9127
9128/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
9129/// if it's possible.
9130SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
9131                                     DebugLoc dl, SelectionDAG &DAG) const {
9132  SDValue Op0 = And.getOperand(0);
9133  SDValue Op1 = And.getOperand(1);
9134  if (Op0.getOpcode() == ISD::TRUNCATE)
9135    Op0 = Op0.getOperand(0);
9136  if (Op1.getOpcode() == ISD::TRUNCATE)
9137    Op1 = Op1.getOperand(0);
9138
9139  SDValue LHS, RHS;
9140  if (Op1.getOpcode() == ISD::SHL)
9141    std::swap(Op0, Op1);
9142  if (Op0.getOpcode() == ISD::SHL) {
9143    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
9144      if (And00C->getZExtValue() == 1) {
9145        // If we looked past a truncate, check that it's only truncating away
9146        // known zeros.
9147        unsigned BitWidth = Op0.getValueSizeInBits();
9148        unsigned AndBitWidth = And.getValueSizeInBits();
9149        if (BitWidth > AndBitWidth) {
9150          APInt Zeros, Ones;
9151          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
9152          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
9153            return SDValue();
9154        }
9155        LHS = Op1;
9156        RHS = Op0.getOperand(1);
9157      }
9158  } else if (Op1.getOpcode() == ISD::Constant) {
9159    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
9160    uint64_t AndRHSVal = AndRHS->getZExtValue();
9161    SDValue AndLHS = Op0;
9162
9163    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
9164      LHS = AndLHS.getOperand(0);
9165      RHS = AndLHS.getOperand(1);
9166    }
9167
9168    // Use BT if the immediate can't be encoded in a TEST instruction.
9169    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
9170      LHS = AndLHS;
9171      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
9172    }
9173  }
9174
9175  if (LHS.getNode()) {
9176    // If the LHS is of the form (x ^ -1) then replace the LHS with x and flip
9177    // the condition code later.
9178    bool Invert = false;
9179    if (LHS.getOpcode() == ISD::XOR && isAllOnes(LHS.getOperand(1))) {
9180      Invert = true;
9181      LHS = LHS.getOperand(0);
9182    }
9183
9184    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
9185    // instruction.  Since the shift amount is in-range-or-undefined, we know
9186    // that doing a bittest on the i32 value is ok.  We extend to i32 because
9187    // the encoding for the i16 version is larger than the i32 version.
9188    // Also promote i16 to i32 for performance / code size reason.
9189    if (LHS.getValueType() == MVT::i8 ||
9190        LHS.getValueType() == MVT::i16)
9191      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
9192
9193    // If the operand types disagree, extend the shift amount to match.  Since
9194    // BT ignores high bits (like shifts) we can use anyextend.
9195    if (LHS.getValueType() != RHS.getValueType())
9196      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
9197
9198    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
9199    X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
9200    // Flip the condition if the LHS was a not instruction
9201    if (Invert)
9202      Cond = X86::GetOppositeBranchCondition(Cond);
9203    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9204                       DAG.getConstant(Cond, MVT::i8), BT);
9205  }
9206
9207  return SDValue();
9208}
9209
9210// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
9211// ones, and then concatenate the result back.
9212static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
9213  MVT VT = Op.getValueType().getSimpleVT();
9214
9215  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
9216         "Unsupported value type for operation");
9217
9218  unsigned NumElems = VT.getVectorNumElements();
9219  DebugLoc dl = Op.getDebugLoc();
9220  SDValue CC = Op.getOperand(2);
9221
9222  // Extract the LHS vectors
9223  SDValue LHS = Op.getOperand(0);
9224  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
9225  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
9226
9227  // Extract the RHS vectors
9228  SDValue RHS = Op.getOperand(1);
9229  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
9230  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
9231
9232  // Issue the operation on the smaller types and concatenate the result back
9233  MVT EltVT = VT.getVectorElementType();
9234  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9235  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9236                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
9237                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
9238}
9239
9240static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
9241                           SelectionDAG &DAG) {
9242  SDValue Cond;
9243  SDValue Op0 = Op.getOperand(0);
9244  SDValue Op1 = Op.getOperand(1);
9245  SDValue CC = Op.getOperand(2);
9246  MVT VT = Op.getValueType().getSimpleVT();
9247  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
9248  bool isFP = Op.getOperand(1).getValueType().getSimpleVT().isFloatingPoint();
9249  DebugLoc dl = Op.getDebugLoc();
9250
9251  if (isFP) {
9252#ifndef NDEBUG
9253    MVT EltVT = Op0.getValueType().getVectorElementType().getSimpleVT();
9254    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
9255#endif
9256
9257    unsigned SSECC;
9258    bool Swap = false;
9259
9260    // SSE Condition code mapping:
9261    //  0 - EQ
9262    //  1 - LT
9263    //  2 - LE
9264    //  3 - UNORD
9265    //  4 - NEQ
9266    //  5 - NLT
9267    //  6 - NLE
9268    //  7 - ORD
9269    switch (SetCCOpcode) {
9270    default: llvm_unreachable("Unexpected SETCC condition");
9271    case ISD::SETOEQ:
9272    case ISD::SETEQ:  SSECC = 0; break;
9273    case ISD::SETOGT:
9274    case ISD::SETGT: Swap = true; // Fallthrough
9275    case ISD::SETLT:
9276    case ISD::SETOLT: SSECC = 1; break;
9277    case ISD::SETOGE:
9278    case ISD::SETGE: Swap = true; // Fallthrough
9279    case ISD::SETLE:
9280    case ISD::SETOLE: SSECC = 2; break;
9281    case ISD::SETUO:  SSECC = 3; break;
9282    case ISD::SETUNE:
9283    case ISD::SETNE:  SSECC = 4; break;
9284    case ISD::SETULE: Swap = true; // Fallthrough
9285    case ISD::SETUGE: SSECC = 5; break;
9286    case ISD::SETULT: Swap = true; // Fallthrough
9287    case ISD::SETUGT: SSECC = 6; break;
9288    case ISD::SETO:   SSECC = 7; break;
9289    case ISD::SETUEQ:
9290    case ISD::SETONE: SSECC = 8; break;
9291    }
9292    if (Swap)
9293      std::swap(Op0, Op1);
9294
9295    // In the two special cases we can't handle, emit two comparisons.
9296    if (SSECC == 8) {
9297      unsigned CC0, CC1;
9298      unsigned CombineOpc;
9299      if (SetCCOpcode == ISD::SETUEQ) {
9300        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
9301      } else {
9302        assert(SetCCOpcode == ISD::SETONE);
9303        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
9304      }
9305
9306      SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9307                                 DAG.getConstant(CC0, MVT::i8));
9308      SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9309                                 DAG.getConstant(CC1, MVT::i8));
9310      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
9311    }
9312    // Handle all other FP comparisons here.
9313    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9314                       DAG.getConstant(SSECC, MVT::i8));
9315  }
9316
9317  // Break 256-bit integer vector compare into smaller ones.
9318  if (VT.is256BitVector() && !Subtarget->hasInt256())
9319    return Lower256IntVSETCC(Op, DAG);
9320
9321  // We are handling one of the integer comparisons here.  Since SSE only has
9322  // GT and EQ comparisons for integer, swapping operands and multiple
9323  // operations may be required for some comparisons.
9324  unsigned Opc;
9325  bool Swap = false, Invert = false, FlipSigns = false;
9326
9327  switch (SetCCOpcode) {
9328  default: llvm_unreachable("Unexpected SETCC condition");
9329  case ISD::SETNE:  Invert = true;
9330  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
9331  case ISD::SETLT:  Swap = true;
9332  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
9333  case ISD::SETGE:  Swap = true;
9334  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
9335  case ISD::SETULT: Swap = true;
9336  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
9337  case ISD::SETUGE: Swap = true;
9338  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
9339  }
9340  if (Swap)
9341    std::swap(Op0, Op1);
9342
9343  // Check that the operation in question is available (most are plain SSE2,
9344  // but PCMPGTQ and PCMPEQQ have different requirements).
9345  if (VT == MVT::v2i64) {
9346    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42())
9347      return SDValue();
9348    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
9349      // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
9350      // pcmpeqd + pshufd + pand.
9351      assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
9352
9353      // First cast everything to the right type,
9354      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
9355      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
9356
9357      // Do the compare.
9358      SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
9359
9360      // Make sure the lower and upper halves are both all-ones.
9361      const int Mask[] = { 1, 0, 3, 2 };
9362      SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
9363      Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
9364
9365      if (Invert)
9366        Result = DAG.getNOT(dl, Result, MVT::v4i32);
9367
9368      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
9369    }
9370  }
9371
9372  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
9373  // bits of the inputs before performing those operations.
9374  if (FlipSigns) {
9375    EVT EltVT = VT.getVectorElementType();
9376    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
9377                                      EltVT);
9378    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
9379    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
9380                                    SignBits.size());
9381    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
9382    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
9383  }
9384
9385  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
9386
9387  // If the logical-not of the result is required, perform that now.
9388  if (Invert)
9389    Result = DAG.getNOT(dl, Result, VT);
9390
9391  return Result;
9392}
9393
9394SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
9395
9396  MVT VT = Op.getValueType().getSimpleVT();
9397
9398  if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
9399
9400  assert(VT == MVT::i8 && "SetCC type must be 8-bit integer");
9401  SDValue Op0 = Op.getOperand(0);
9402  SDValue Op1 = Op.getOperand(1);
9403  DebugLoc dl = Op.getDebugLoc();
9404  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
9405
9406  // Optimize to BT if possible.
9407  // Lower (X & (1 << N)) == 0 to BT(X, N).
9408  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
9409  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
9410  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
9411      Op1.getOpcode() == ISD::Constant &&
9412      cast<ConstantSDNode>(Op1)->isNullValue() &&
9413      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
9414    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
9415    if (NewSetCC.getNode())
9416      return NewSetCC;
9417  }
9418
9419  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
9420  // these.
9421  if (Op1.getOpcode() == ISD::Constant &&
9422      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
9423       cast<ConstantSDNode>(Op1)->isNullValue()) &&
9424      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
9425
9426    // If the input is a setcc, then reuse the input setcc or use a new one with
9427    // the inverted condition.
9428    if (Op0.getOpcode() == X86ISD::SETCC) {
9429      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
9430      bool Invert = (CC == ISD::SETNE) ^
9431        cast<ConstantSDNode>(Op1)->isNullValue();
9432      if (!Invert) return Op0;
9433
9434      CCode = X86::GetOppositeBranchCondition(CCode);
9435      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9436                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
9437    }
9438  }
9439
9440  bool isFP = Op1.getValueType().getSimpleVT().isFloatingPoint();
9441  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
9442  if (X86CC == X86::COND_INVALID)
9443    return SDValue();
9444
9445  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
9446  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
9447  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9448                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
9449}
9450
9451// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
9452static bool isX86LogicalCmp(SDValue Op) {
9453  unsigned Opc = Op.getNode()->getOpcode();
9454  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
9455      Opc == X86ISD::SAHF)
9456    return true;
9457  if (Op.getResNo() == 1 &&
9458      (Opc == X86ISD::ADD ||
9459       Opc == X86ISD::SUB ||
9460       Opc == X86ISD::ADC ||
9461       Opc == X86ISD::SBB ||
9462       Opc == X86ISD::SMUL ||
9463       Opc == X86ISD::UMUL ||
9464       Opc == X86ISD::INC ||
9465       Opc == X86ISD::DEC ||
9466       Opc == X86ISD::OR ||
9467       Opc == X86ISD::XOR ||
9468       Opc == X86ISD::AND))
9469    return true;
9470
9471  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
9472    return true;
9473
9474  return false;
9475}
9476
9477static bool isZero(SDValue V) {
9478  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9479  return C && C->isNullValue();
9480}
9481
9482static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
9483  if (V.getOpcode() != ISD::TRUNCATE)
9484    return false;
9485
9486  SDValue VOp0 = V.getOperand(0);
9487  unsigned InBits = VOp0.getValueSizeInBits();
9488  unsigned Bits = V.getValueSizeInBits();
9489  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
9490}
9491
9492SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
9493  bool addTest = true;
9494  SDValue Cond  = Op.getOperand(0);
9495  SDValue Op1 = Op.getOperand(1);
9496  SDValue Op2 = Op.getOperand(2);
9497  DebugLoc DL = Op.getDebugLoc();
9498  SDValue CC;
9499
9500  if (Cond.getOpcode() == ISD::SETCC) {
9501    SDValue NewCond = LowerSETCC(Cond, DAG);
9502    if (NewCond.getNode())
9503      Cond = NewCond;
9504  }
9505
9506  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
9507  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
9508  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
9509  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
9510  if (Cond.getOpcode() == X86ISD::SETCC &&
9511      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
9512      isZero(Cond.getOperand(1).getOperand(1))) {
9513    SDValue Cmp = Cond.getOperand(1);
9514
9515    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
9516
9517    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
9518        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
9519      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
9520
9521      SDValue CmpOp0 = Cmp.getOperand(0);
9522      // Apply further optimizations for special cases
9523      // (select (x != 0), -1, 0) -> neg & sbb
9524      // (select (x == 0), 0, -1) -> neg & sbb
9525      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
9526        if (YC->isNullValue() &&
9527            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
9528          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
9529          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
9530                                    DAG.getConstant(0, CmpOp0.getValueType()),
9531                                    CmpOp0);
9532          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9533                                    DAG.getConstant(X86::COND_B, MVT::i8),
9534                                    SDValue(Neg.getNode(), 1));
9535          return Res;
9536        }
9537
9538      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
9539                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
9540      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9541
9542      SDValue Res =   // Res = 0 or -1.
9543        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9544                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
9545
9546      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
9547        Res = DAG.getNOT(DL, Res, Res.getValueType());
9548
9549      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
9550      if (N2C == 0 || !N2C->isNullValue())
9551        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
9552      return Res;
9553    }
9554  }
9555
9556  // Look past (and (setcc_carry (cmp ...)), 1).
9557  if (Cond.getOpcode() == ISD::AND &&
9558      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9559    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9560    if (C && C->getAPIntValue() == 1)
9561      Cond = Cond.getOperand(0);
9562  }
9563
9564  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9565  // setting operand in place of the X86ISD::SETCC.
9566  unsigned CondOpcode = Cond.getOpcode();
9567  if (CondOpcode == X86ISD::SETCC ||
9568      CondOpcode == X86ISD::SETCC_CARRY) {
9569    CC = Cond.getOperand(0);
9570
9571    SDValue Cmp = Cond.getOperand(1);
9572    unsigned Opc = Cmp.getOpcode();
9573    MVT VT = Op.getValueType().getSimpleVT();
9574
9575    bool IllegalFPCMov = false;
9576    if (VT.isFloatingPoint() && !VT.isVector() &&
9577        !isScalarFPTypeInSSEReg(VT))  // FPStack?
9578      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
9579
9580    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
9581        Opc == X86ISD::BT) { // FIXME
9582      Cond = Cmp;
9583      addTest = false;
9584    }
9585  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9586             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9587             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9588              Cond.getOperand(0).getValueType() != MVT::i8)) {
9589    SDValue LHS = Cond.getOperand(0);
9590    SDValue RHS = Cond.getOperand(1);
9591    unsigned X86Opcode;
9592    unsigned X86Cond;
9593    SDVTList VTs;
9594    switch (CondOpcode) {
9595    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9596    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9597    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9598    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9599    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9600    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9601    default: llvm_unreachable("unexpected overflowing operator");
9602    }
9603    if (CondOpcode == ISD::UMULO)
9604      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9605                          MVT::i32);
9606    else
9607      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9608
9609    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
9610
9611    if (CondOpcode == ISD::UMULO)
9612      Cond = X86Op.getValue(2);
9613    else
9614      Cond = X86Op.getValue(1);
9615
9616    CC = DAG.getConstant(X86Cond, MVT::i8);
9617    addTest = false;
9618  }
9619
9620  if (addTest) {
9621    // Look pass the truncate if the high bits are known zero.
9622    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9623        Cond = Cond.getOperand(0);
9624
9625    // We know the result of AND is compared against zero. Try to match
9626    // it to BT.
9627    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9628      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
9629      if (NewSetCC.getNode()) {
9630        CC = NewSetCC.getOperand(0);
9631        Cond = NewSetCC.getOperand(1);
9632        addTest = false;
9633      }
9634    }
9635  }
9636
9637  if (addTest) {
9638    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9639    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9640  }
9641
9642  // a <  b ? -1 :  0 -> RES = ~setcc_carry
9643  // a <  b ?  0 : -1 -> RES = setcc_carry
9644  // a >= b ? -1 :  0 -> RES = setcc_carry
9645  // a >= b ?  0 : -1 -> RES = ~setcc_carry
9646  if (Cond.getOpcode() == X86ISD::SUB) {
9647    Cond = ConvertCmpIfNecessary(Cond, DAG);
9648    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
9649
9650    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
9651        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
9652      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9653                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
9654      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
9655        return DAG.getNOT(DL, Res, Res.getValueType());
9656      return Res;
9657    }
9658  }
9659
9660  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
9661  // widen the cmov and push the truncate through. This avoids introducing a new
9662  // branch during isel and doesn't add any extensions.
9663  if (Op.getValueType() == MVT::i8 &&
9664      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
9665    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
9666    if (T1.getValueType() == T2.getValueType() &&
9667        // Blacklist CopyFromReg to avoid partial register stalls.
9668        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
9669      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
9670      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
9671      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
9672    }
9673  }
9674
9675  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
9676  // condition is true.
9677  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
9678  SDValue Ops[] = { Op2, Op1, CC, Cond };
9679  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
9680}
9681
9682SDValue X86TargetLowering::LowerSIGN_EXTEND(SDValue Op,
9683                                            SelectionDAG &DAG) const {
9684  MVT VT = Op->getValueType(0).getSimpleVT();
9685  SDValue In = Op->getOperand(0);
9686  MVT InVT = In.getValueType().getSimpleVT();
9687  DebugLoc dl = Op->getDebugLoc();
9688
9689  if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
9690      (VT != MVT::v8i32 || InVT != MVT::v8i16))
9691    return SDValue();
9692
9693  if (Subtarget->hasInt256())
9694    return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, In);
9695
9696  // Optimize vectors in AVX mode
9697  // Sign extend  v8i16 to v8i32 and
9698  //              v4i32 to v4i64
9699  //
9700  // Divide input vector into two parts
9701  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
9702  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
9703  // concat the vectors to original VT
9704
9705  unsigned NumElems = InVT.getVectorNumElements();
9706  SDValue Undef = DAG.getUNDEF(InVT);
9707
9708  SmallVector<int,8> ShufMask1(NumElems, -1);
9709  for (unsigned i = 0; i != NumElems/2; ++i)
9710    ShufMask1[i] = i;
9711
9712  SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
9713
9714  SmallVector<int,8> ShufMask2(NumElems, -1);
9715  for (unsigned i = 0; i != NumElems/2; ++i)
9716    ShufMask2[i] = i + NumElems/2;
9717
9718  SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
9719
9720  MVT HalfVT = MVT::getVectorVT(VT.getScalarType(),
9721                                VT.getVectorNumElements()/2);
9722
9723  OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
9724  OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
9725
9726  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
9727}
9728
9729// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
9730// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
9731// from the AND / OR.
9732static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
9733  Opc = Op.getOpcode();
9734  if (Opc != ISD::OR && Opc != ISD::AND)
9735    return false;
9736  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9737          Op.getOperand(0).hasOneUse() &&
9738          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
9739          Op.getOperand(1).hasOneUse());
9740}
9741
9742// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
9743// 1 and that the SETCC node has a single use.
9744static bool isXor1OfSetCC(SDValue Op) {
9745  if (Op.getOpcode() != ISD::XOR)
9746    return false;
9747  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9748  if (N1C && N1C->getAPIntValue() == 1) {
9749    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9750      Op.getOperand(0).hasOneUse();
9751  }
9752  return false;
9753}
9754
9755SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
9756  bool addTest = true;
9757  SDValue Chain = Op.getOperand(0);
9758  SDValue Cond  = Op.getOperand(1);
9759  SDValue Dest  = Op.getOperand(2);
9760  DebugLoc dl = Op.getDebugLoc();
9761  SDValue CC;
9762  bool Inverted = false;
9763
9764  if (Cond.getOpcode() == ISD::SETCC) {
9765    // Check for setcc([su]{add,sub,mul}o == 0).
9766    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
9767        isa<ConstantSDNode>(Cond.getOperand(1)) &&
9768        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
9769        Cond.getOperand(0).getResNo() == 1 &&
9770        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
9771         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
9772         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
9773         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
9774         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
9775         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
9776      Inverted = true;
9777      Cond = Cond.getOperand(0);
9778    } else {
9779      SDValue NewCond = LowerSETCC(Cond, DAG);
9780      if (NewCond.getNode())
9781        Cond = NewCond;
9782    }
9783  }
9784#if 0
9785  // FIXME: LowerXALUO doesn't handle these!!
9786  else if (Cond.getOpcode() == X86ISD::ADD  ||
9787           Cond.getOpcode() == X86ISD::SUB  ||
9788           Cond.getOpcode() == X86ISD::SMUL ||
9789           Cond.getOpcode() == X86ISD::UMUL)
9790    Cond = LowerXALUO(Cond, DAG);
9791#endif
9792
9793  // Look pass (and (setcc_carry (cmp ...)), 1).
9794  if (Cond.getOpcode() == ISD::AND &&
9795      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9796    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9797    if (C && C->getAPIntValue() == 1)
9798      Cond = Cond.getOperand(0);
9799  }
9800
9801  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9802  // setting operand in place of the X86ISD::SETCC.
9803  unsigned CondOpcode = Cond.getOpcode();
9804  if (CondOpcode == X86ISD::SETCC ||
9805      CondOpcode == X86ISD::SETCC_CARRY) {
9806    CC = Cond.getOperand(0);
9807
9808    SDValue Cmp = Cond.getOperand(1);
9809    unsigned Opc = Cmp.getOpcode();
9810    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9811    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9812      Cond = Cmp;
9813      addTest = false;
9814    } else {
9815      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9816      default: break;
9817      case X86::COND_O:
9818      case X86::COND_B:
9819        // These can only come from an arithmetic instruction with overflow,
9820        // e.g. SADDO, UADDO.
9821        Cond = Cond.getNode()->getOperand(1);
9822        addTest = false;
9823        break;
9824      }
9825    }
9826  }
9827  CondOpcode = Cond.getOpcode();
9828  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9829      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9830      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9831       Cond.getOperand(0).getValueType() != MVT::i8)) {
9832    SDValue LHS = Cond.getOperand(0);
9833    SDValue RHS = Cond.getOperand(1);
9834    unsigned X86Opcode;
9835    unsigned X86Cond;
9836    SDVTList VTs;
9837    switch (CondOpcode) {
9838    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9839    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9840    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9841    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9842    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9843    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9844    default: llvm_unreachable("unexpected overflowing operator");
9845    }
9846    if (Inverted)
9847      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9848    if (CondOpcode == ISD::UMULO)
9849      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9850                          MVT::i32);
9851    else
9852      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9853
9854    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9855
9856    if (CondOpcode == ISD::UMULO)
9857      Cond = X86Op.getValue(2);
9858    else
9859      Cond = X86Op.getValue(1);
9860
9861    CC = DAG.getConstant(X86Cond, MVT::i8);
9862    addTest = false;
9863  } else {
9864    unsigned CondOpc;
9865    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9866      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9867      if (CondOpc == ISD::OR) {
9868        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9869        // two branches instead of an explicit OR instruction with a
9870        // separate test.
9871        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9872            isX86LogicalCmp(Cmp)) {
9873          CC = Cond.getOperand(0).getOperand(0);
9874          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9875                              Chain, Dest, CC, Cmp);
9876          CC = Cond.getOperand(1).getOperand(0);
9877          Cond = Cmp;
9878          addTest = false;
9879        }
9880      } else { // ISD::AND
9881        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9882        // two branches instead of an explicit AND instruction with a
9883        // separate test. However, we only do this if this block doesn't
9884        // have a fall-through edge, because this requires an explicit
9885        // jmp when the condition is false.
9886        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9887            isX86LogicalCmp(Cmp) &&
9888            Op.getNode()->hasOneUse()) {
9889          X86::CondCode CCode =
9890            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9891          CCode = X86::GetOppositeBranchCondition(CCode);
9892          CC = DAG.getConstant(CCode, MVT::i8);
9893          SDNode *User = *Op.getNode()->use_begin();
9894          // Look for an unconditional branch following this conditional branch.
9895          // We need this because we need to reverse the successors in order
9896          // to implement FCMP_OEQ.
9897          if (User->getOpcode() == ISD::BR) {
9898            SDValue FalseBB = User->getOperand(1);
9899            SDNode *NewBR =
9900              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9901            assert(NewBR == User);
9902            (void)NewBR;
9903            Dest = FalseBB;
9904
9905            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9906                                Chain, Dest, CC, Cmp);
9907            X86::CondCode CCode =
9908              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9909            CCode = X86::GetOppositeBranchCondition(CCode);
9910            CC = DAG.getConstant(CCode, MVT::i8);
9911            Cond = Cmp;
9912            addTest = false;
9913          }
9914        }
9915      }
9916    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9917      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9918      // It should be transformed during dag combiner except when the condition
9919      // is set by a arithmetics with overflow node.
9920      X86::CondCode CCode =
9921        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9922      CCode = X86::GetOppositeBranchCondition(CCode);
9923      CC = DAG.getConstant(CCode, MVT::i8);
9924      Cond = Cond.getOperand(0).getOperand(1);
9925      addTest = false;
9926    } else if (Cond.getOpcode() == ISD::SETCC &&
9927               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9928      // For FCMP_OEQ, we can emit
9929      // two branches instead of an explicit AND instruction with a
9930      // separate test. However, we only do this if this block doesn't
9931      // have a fall-through edge, because this requires an explicit
9932      // jmp when the condition is false.
9933      if (Op.getNode()->hasOneUse()) {
9934        SDNode *User = *Op.getNode()->use_begin();
9935        // Look for an unconditional branch following this conditional branch.
9936        // We need this because we need to reverse the successors in order
9937        // to implement FCMP_OEQ.
9938        if (User->getOpcode() == ISD::BR) {
9939          SDValue FalseBB = User->getOperand(1);
9940          SDNode *NewBR =
9941            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9942          assert(NewBR == User);
9943          (void)NewBR;
9944          Dest = FalseBB;
9945
9946          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9947                                    Cond.getOperand(0), Cond.getOperand(1));
9948          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9949          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9950          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9951                              Chain, Dest, CC, Cmp);
9952          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9953          Cond = Cmp;
9954          addTest = false;
9955        }
9956      }
9957    } else if (Cond.getOpcode() == ISD::SETCC &&
9958               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9959      // For FCMP_UNE, we can emit
9960      // two branches instead of an explicit AND instruction with a
9961      // separate test. However, we only do this if this block doesn't
9962      // have a fall-through edge, because this requires an explicit
9963      // jmp when the condition is false.
9964      if (Op.getNode()->hasOneUse()) {
9965        SDNode *User = *Op.getNode()->use_begin();
9966        // Look for an unconditional branch following this conditional branch.
9967        // We need this because we need to reverse the successors in order
9968        // to implement FCMP_UNE.
9969        if (User->getOpcode() == ISD::BR) {
9970          SDValue FalseBB = User->getOperand(1);
9971          SDNode *NewBR =
9972            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9973          assert(NewBR == User);
9974          (void)NewBR;
9975
9976          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9977                                    Cond.getOperand(0), Cond.getOperand(1));
9978          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9979          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9980          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9981                              Chain, Dest, CC, Cmp);
9982          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9983          Cond = Cmp;
9984          addTest = false;
9985          Dest = FalseBB;
9986        }
9987      }
9988    }
9989  }
9990
9991  if (addTest) {
9992    // Look pass the truncate if the high bits are known zero.
9993    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9994        Cond = Cond.getOperand(0);
9995
9996    // We know the result of AND is compared against zero. Try to match
9997    // it to BT.
9998    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9999      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
10000      if (NewSetCC.getNode()) {
10001        CC = NewSetCC.getOperand(0);
10002        Cond = NewSetCC.getOperand(1);
10003        addTest = false;
10004      }
10005    }
10006  }
10007
10008  if (addTest) {
10009    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10010    Cond = EmitTest(Cond, X86::COND_NE, DAG);
10011  }
10012  Cond = ConvertCmpIfNecessary(Cond, DAG);
10013  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10014                     Chain, Dest, CC, Cond);
10015}
10016
10017// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
10018// Calls to _alloca is needed to probe the stack when allocating more than 4k
10019// bytes in one go. Touching the stack at 4K increments is necessary to ensure
10020// that the guard pages used by the OS virtual memory manager are allocated in
10021// correct sequence.
10022SDValue
10023X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
10024                                           SelectionDAG &DAG) const {
10025  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
10026          getTargetMachine().Options.EnableSegmentedStacks) &&
10027         "This should be used only on Windows targets or when segmented stacks "
10028         "are being used");
10029  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
10030  DebugLoc dl = Op.getDebugLoc();
10031
10032  // Get the inputs.
10033  SDValue Chain = Op.getOperand(0);
10034  SDValue Size  = Op.getOperand(1);
10035  // FIXME: Ensure alignment here
10036
10037  bool Is64Bit = Subtarget->is64Bit();
10038  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
10039
10040  if (getTargetMachine().Options.EnableSegmentedStacks) {
10041    MachineFunction &MF = DAG.getMachineFunction();
10042    MachineRegisterInfo &MRI = MF.getRegInfo();
10043
10044    if (Is64Bit) {
10045      // The 64 bit implementation of segmented stacks needs to clobber both r10
10046      // r11. This makes it impossible to use it along with nested parameters.
10047      const Function *F = MF.getFunction();
10048
10049      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
10050           I != E; ++I)
10051        if (I->hasNestAttr())
10052          report_fatal_error("Cannot use segmented stacks with functions that "
10053                             "have nested arguments.");
10054    }
10055
10056    const TargetRegisterClass *AddrRegClass =
10057      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
10058    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
10059    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
10060    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
10061                                DAG.getRegister(Vreg, SPTy));
10062    SDValue Ops1[2] = { Value, Chain };
10063    return DAG.getMergeValues(Ops1, 2, dl);
10064  } else {
10065    SDValue Flag;
10066    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
10067
10068    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
10069    Flag = Chain.getValue(1);
10070    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10071
10072    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
10073    Flag = Chain.getValue(1);
10074
10075    Chain = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
10076                               SPTy).getValue(1);
10077
10078    SDValue Ops1[2] = { Chain.getValue(0), Chain };
10079    return DAG.getMergeValues(Ops1, 2, dl);
10080  }
10081}
10082
10083SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
10084  MachineFunction &MF = DAG.getMachineFunction();
10085  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
10086
10087  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10088  DebugLoc DL = Op.getDebugLoc();
10089
10090  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
10091    // vastart just stores the address of the VarArgsFrameIndex slot into the
10092    // memory location argument.
10093    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10094                                   getPointerTy());
10095    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
10096                        MachinePointerInfo(SV), false, false, 0);
10097  }
10098
10099  // __va_list_tag:
10100  //   gp_offset         (0 - 6 * 8)
10101  //   fp_offset         (48 - 48 + 8 * 16)
10102  //   overflow_arg_area (point to parameters coming in memory).
10103  //   reg_save_area
10104  SmallVector<SDValue, 8> MemOps;
10105  SDValue FIN = Op.getOperand(1);
10106  // Store gp_offset
10107  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
10108                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
10109                                               MVT::i32),
10110                               FIN, MachinePointerInfo(SV), false, false, 0);
10111  MemOps.push_back(Store);
10112
10113  // Store fp_offset
10114  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10115                    FIN, DAG.getIntPtrConstant(4));
10116  Store = DAG.getStore(Op.getOperand(0), DL,
10117                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
10118                                       MVT::i32),
10119                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
10120  MemOps.push_back(Store);
10121
10122  // Store ptr to overflow_arg_area
10123  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10124                    FIN, DAG.getIntPtrConstant(4));
10125  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10126                                    getPointerTy());
10127  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
10128                       MachinePointerInfo(SV, 8),
10129                       false, false, 0);
10130  MemOps.push_back(Store);
10131
10132  // Store ptr to reg_save_area.
10133  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10134                    FIN, DAG.getIntPtrConstant(8));
10135  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
10136                                    getPointerTy());
10137  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
10138                       MachinePointerInfo(SV, 16), false, false, 0);
10139  MemOps.push_back(Store);
10140  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
10141                     &MemOps[0], MemOps.size());
10142}
10143
10144SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
10145  assert(Subtarget->is64Bit() &&
10146         "LowerVAARG only handles 64-bit va_arg!");
10147  assert((Subtarget->isTargetLinux() ||
10148          Subtarget->isTargetDarwin()) &&
10149          "Unhandled target in LowerVAARG");
10150  assert(Op.getNode()->getNumOperands() == 4);
10151  SDValue Chain = Op.getOperand(0);
10152  SDValue SrcPtr = Op.getOperand(1);
10153  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10154  unsigned Align = Op.getConstantOperandVal(3);
10155  DebugLoc dl = Op.getDebugLoc();
10156
10157  EVT ArgVT = Op.getNode()->getValueType(0);
10158  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
10159  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
10160  uint8_t ArgMode;
10161
10162  // Decide which area this value should be read from.
10163  // TODO: Implement the AMD64 ABI in its entirety. This simple
10164  // selection mechanism works only for the basic types.
10165  if (ArgVT == MVT::f80) {
10166    llvm_unreachable("va_arg for f80 not yet implemented");
10167  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
10168    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
10169  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
10170    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
10171  } else {
10172    llvm_unreachable("Unhandled argument type in LowerVAARG");
10173  }
10174
10175  if (ArgMode == 2) {
10176    // Sanity Check: Make sure using fp_offset makes sense.
10177    assert(!getTargetMachine().Options.UseSoftFloat &&
10178           !(DAG.getMachineFunction()
10179                .getFunction()->getAttributes()
10180                .hasAttribute(AttributeSet::FunctionIndex,
10181                              Attribute::NoImplicitFloat)) &&
10182           Subtarget->hasSSE1());
10183  }
10184
10185  // Insert VAARG_64 node into the DAG
10186  // VAARG_64 returns two values: Variable Argument Address, Chain
10187  SmallVector<SDValue, 11> InstOps;
10188  InstOps.push_back(Chain);
10189  InstOps.push_back(SrcPtr);
10190  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
10191  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
10192  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
10193  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
10194  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
10195                                          VTs, &InstOps[0], InstOps.size(),
10196                                          MVT::i64,
10197                                          MachinePointerInfo(SV),
10198                                          /*Align=*/0,
10199                                          /*Volatile=*/false,
10200                                          /*ReadMem=*/true,
10201                                          /*WriteMem=*/true);
10202  Chain = VAARG.getValue(1);
10203
10204  // Load the next argument and return it
10205  return DAG.getLoad(ArgVT, dl,
10206                     Chain,
10207                     VAARG,
10208                     MachinePointerInfo(),
10209                     false, false, false, 0);
10210}
10211
10212static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
10213                           SelectionDAG &DAG) {
10214  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
10215  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
10216  SDValue Chain = Op.getOperand(0);
10217  SDValue DstPtr = Op.getOperand(1);
10218  SDValue SrcPtr = Op.getOperand(2);
10219  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
10220  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10221  DebugLoc DL = Op.getDebugLoc();
10222
10223  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
10224                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
10225                       false,
10226                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
10227}
10228
10229// getTargetVShiftNode - Handle vector element shifts where the shift amount
10230// may or may not be a constant. Takes immediate version of shift as input.
10231static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
10232                                   SDValue SrcOp, SDValue ShAmt,
10233                                   SelectionDAG &DAG) {
10234  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
10235
10236  if (isa<ConstantSDNode>(ShAmt)) {
10237    // Constant may be a TargetConstant. Use a regular constant.
10238    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
10239    switch (Opc) {
10240      default: llvm_unreachable("Unknown target vector shift node");
10241      case X86ISD::VSHLI:
10242      case X86ISD::VSRLI:
10243      case X86ISD::VSRAI:
10244        return DAG.getNode(Opc, dl, VT, SrcOp,
10245                           DAG.getConstant(ShiftAmt, MVT::i32));
10246    }
10247  }
10248
10249  // Change opcode to non-immediate version
10250  switch (Opc) {
10251    default: llvm_unreachable("Unknown target vector shift node");
10252    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
10253    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
10254    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
10255  }
10256
10257  // Need to build a vector containing shift amount
10258  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
10259  SDValue ShOps[4];
10260  ShOps[0] = ShAmt;
10261  ShOps[1] = DAG.getConstant(0, MVT::i32);
10262  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
10263  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
10264
10265  // The return type has to be a 128-bit type with the same element
10266  // type as the input type.
10267  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10268  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
10269
10270  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
10271  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
10272}
10273
10274static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
10275  DebugLoc dl = Op.getDebugLoc();
10276  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10277  switch (IntNo) {
10278  default: return SDValue();    // Don't custom lower most intrinsics.
10279  // Comparison intrinsics.
10280  case Intrinsic::x86_sse_comieq_ss:
10281  case Intrinsic::x86_sse_comilt_ss:
10282  case Intrinsic::x86_sse_comile_ss:
10283  case Intrinsic::x86_sse_comigt_ss:
10284  case Intrinsic::x86_sse_comige_ss:
10285  case Intrinsic::x86_sse_comineq_ss:
10286  case Intrinsic::x86_sse_ucomieq_ss:
10287  case Intrinsic::x86_sse_ucomilt_ss:
10288  case Intrinsic::x86_sse_ucomile_ss:
10289  case Intrinsic::x86_sse_ucomigt_ss:
10290  case Intrinsic::x86_sse_ucomige_ss:
10291  case Intrinsic::x86_sse_ucomineq_ss:
10292  case Intrinsic::x86_sse2_comieq_sd:
10293  case Intrinsic::x86_sse2_comilt_sd:
10294  case Intrinsic::x86_sse2_comile_sd:
10295  case Intrinsic::x86_sse2_comigt_sd:
10296  case Intrinsic::x86_sse2_comige_sd:
10297  case Intrinsic::x86_sse2_comineq_sd:
10298  case Intrinsic::x86_sse2_ucomieq_sd:
10299  case Intrinsic::x86_sse2_ucomilt_sd:
10300  case Intrinsic::x86_sse2_ucomile_sd:
10301  case Intrinsic::x86_sse2_ucomigt_sd:
10302  case Intrinsic::x86_sse2_ucomige_sd:
10303  case Intrinsic::x86_sse2_ucomineq_sd: {
10304    unsigned Opc;
10305    ISD::CondCode CC;
10306    switch (IntNo) {
10307    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10308    case Intrinsic::x86_sse_comieq_ss:
10309    case Intrinsic::x86_sse2_comieq_sd:
10310      Opc = X86ISD::COMI;
10311      CC = ISD::SETEQ;
10312      break;
10313    case Intrinsic::x86_sse_comilt_ss:
10314    case Intrinsic::x86_sse2_comilt_sd:
10315      Opc = X86ISD::COMI;
10316      CC = ISD::SETLT;
10317      break;
10318    case Intrinsic::x86_sse_comile_ss:
10319    case Intrinsic::x86_sse2_comile_sd:
10320      Opc = X86ISD::COMI;
10321      CC = ISD::SETLE;
10322      break;
10323    case Intrinsic::x86_sse_comigt_ss:
10324    case Intrinsic::x86_sse2_comigt_sd:
10325      Opc = X86ISD::COMI;
10326      CC = ISD::SETGT;
10327      break;
10328    case Intrinsic::x86_sse_comige_ss:
10329    case Intrinsic::x86_sse2_comige_sd:
10330      Opc = X86ISD::COMI;
10331      CC = ISD::SETGE;
10332      break;
10333    case Intrinsic::x86_sse_comineq_ss:
10334    case Intrinsic::x86_sse2_comineq_sd:
10335      Opc = X86ISD::COMI;
10336      CC = ISD::SETNE;
10337      break;
10338    case Intrinsic::x86_sse_ucomieq_ss:
10339    case Intrinsic::x86_sse2_ucomieq_sd:
10340      Opc = X86ISD::UCOMI;
10341      CC = ISD::SETEQ;
10342      break;
10343    case Intrinsic::x86_sse_ucomilt_ss:
10344    case Intrinsic::x86_sse2_ucomilt_sd:
10345      Opc = X86ISD::UCOMI;
10346      CC = ISD::SETLT;
10347      break;
10348    case Intrinsic::x86_sse_ucomile_ss:
10349    case Intrinsic::x86_sse2_ucomile_sd:
10350      Opc = X86ISD::UCOMI;
10351      CC = ISD::SETLE;
10352      break;
10353    case Intrinsic::x86_sse_ucomigt_ss:
10354    case Intrinsic::x86_sse2_ucomigt_sd:
10355      Opc = X86ISD::UCOMI;
10356      CC = ISD::SETGT;
10357      break;
10358    case Intrinsic::x86_sse_ucomige_ss:
10359    case Intrinsic::x86_sse2_ucomige_sd:
10360      Opc = X86ISD::UCOMI;
10361      CC = ISD::SETGE;
10362      break;
10363    case Intrinsic::x86_sse_ucomineq_ss:
10364    case Intrinsic::x86_sse2_ucomineq_sd:
10365      Opc = X86ISD::UCOMI;
10366      CC = ISD::SETNE;
10367      break;
10368    }
10369
10370    SDValue LHS = Op.getOperand(1);
10371    SDValue RHS = Op.getOperand(2);
10372    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
10373    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
10374    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
10375    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10376                                DAG.getConstant(X86CC, MVT::i8), Cond);
10377    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10378  }
10379
10380  // Arithmetic intrinsics.
10381  case Intrinsic::x86_sse2_pmulu_dq:
10382  case Intrinsic::x86_avx2_pmulu_dq:
10383    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
10384                       Op.getOperand(1), Op.getOperand(2));
10385
10386  // SSE2/AVX2 sub with unsigned saturation intrinsics
10387  case Intrinsic::x86_sse2_psubus_b:
10388  case Intrinsic::x86_sse2_psubus_w:
10389  case Intrinsic::x86_avx2_psubus_b:
10390  case Intrinsic::x86_avx2_psubus_w:
10391    return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(),
10392                       Op.getOperand(1), Op.getOperand(2));
10393
10394  // SSE3/AVX horizontal add/sub intrinsics
10395  case Intrinsic::x86_sse3_hadd_ps:
10396  case Intrinsic::x86_sse3_hadd_pd:
10397  case Intrinsic::x86_avx_hadd_ps_256:
10398  case Intrinsic::x86_avx_hadd_pd_256:
10399  case Intrinsic::x86_sse3_hsub_ps:
10400  case Intrinsic::x86_sse3_hsub_pd:
10401  case Intrinsic::x86_avx_hsub_ps_256:
10402  case Intrinsic::x86_avx_hsub_pd_256:
10403  case Intrinsic::x86_ssse3_phadd_w_128:
10404  case Intrinsic::x86_ssse3_phadd_d_128:
10405  case Intrinsic::x86_avx2_phadd_w:
10406  case Intrinsic::x86_avx2_phadd_d:
10407  case Intrinsic::x86_ssse3_phsub_w_128:
10408  case Intrinsic::x86_ssse3_phsub_d_128:
10409  case Intrinsic::x86_avx2_phsub_w:
10410  case Intrinsic::x86_avx2_phsub_d: {
10411    unsigned Opcode;
10412    switch (IntNo) {
10413    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10414    case Intrinsic::x86_sse3_hadd_ps:
10415    case Intrinsic::x86_sse3_hadd_pd:
10416    case Intrinsic::x86_avx_hadd_ps_256:
10417    case Intrinsic::x86_avx_hadd_pd_256:
10418      Opcode = X86ISD::FHADD;
10419      break;
10420    case Intrinsic::x86_sse3_hsub_ps:
10421    case Intrinsic::x86_sse3_hsub_pd:
10422    case Intrinsic::x86_avx_hsub_ps_256:
10423    case Intrinsic::x86_avx_hsub_pd_256:
10424      Opcode = X86ISD::FHSUB;
10425      break;
10426    case Intrinsic::x86_ssse3_phadd_w_128:
10427    case Intrinsic::x86_ssse3_phadd_d_128:
10428    case Intrinsic::x86_avx2_phadd_w:
10429    case Intrinsic::x86_avx2_phadd_d:
10430      Opcode = X86ISD::HADD;
10431      break;
10432    case Intrinsic::x86_ssse3_phsub_w_128:
10433    case Intrinsic::x86_ssse3_phsub_d_128:
10434    case Intrinsic::x86_avx2_phsub_w:
10435    case Intrinsic::x86_avx2_phsub_d:
10436      Opcode = X86ISD::HSUB;
10437      break;
10438    }
10439    return DAG.getNode(Opcode, dl, Op.getValueType(),
10440                       Op.getOperand(1), Op.getOperand(2));
10441  }
10442
10443  // SSE2/SSE41/AVX2 integer max/min intrinsics.
10444  case Intrinsic::x86_sse2_pmaxu_b:
10445  case Intrinsic::x86_sse41_pmaxuw:
10446  case Intrinsic::x86_sse41_pmaxud:
10447  case Intrinsic::x86_avx2_pmaxu_b:
10448  case Intrinsic::x86_avx2_pmaxu_w:
10449  case Intrinsic::x86_avx2_pmaxu_d:
10450  case Intrinsic::x86_sse2_pminu_b:
10451  case Intrinsic::x86_sse41_pminuw:
10452  case Intrinsic::x86_sse41_pminud:
10453  case Intrinsic::x86_avx2_pminu_b:
10454  case Intrinsic::x86_avx2_pminu_w:
10455  case Intrinsic::x86_avx2_pminu_d:
10456  case Intrinsic::x86_sse41_pmaxsb:
10457  case Intrinsic::x86_sse2_pmaxs_w:
10458  case Intrinsic::x86_sse41_pmaxsd:
10459  case Intrinsic::x86_avx2_pmaxs_b:
10460  case Intrinsic::x86_avx2_pmaxs_w:
10461  case Intrinsic::x86_avx2_pmaxs_d:
10462  case Intrinsic::x86_sse41_pminsb:
10463  case Intrinsic::x86_sse2_pmins_w:
10464  case Intrinsic::x86_sse41_pminsd:
10465  case Intrinsic::x86_avx2_pmins_b:
10466  case Intrinsic::x86_avx2_pmins_w:
10467  case Intrinsic::x86_avx2_pmins_d: {
10468    unsigned Opcode;
10469    switch (IntNo) {
10470    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10471    case Intrinsic::x86_sse2_pmaxu_b:
10472    case Intrinsic::x86_sse41_pmaxuw:
10473    case Intrinsic::x86_sse41_pmaxud:
10474    case Intrinsic::x86_avx2_pmaxu_b:
10475    case Intrinsic::x86_avx2_pmaxu_w:
10476    case Intrinsic::x86_avx2_pmaxu_d:
10477      Opcode = X86ISD::UMAX;
10478      break;
10479    case Intrinsic::x86_sse2_pminu_b:
10480    case Intrinsic::x86_sse41_pminuw:
10481    case Intrinsic::x86_sse41_pminud:
10482    case Intrinsic::x86_avx2_pminu_b:
10483    case Intrinsic::x86_avx2_pminu_w:
10484    case Intrinsic::x86_avx2_pminu_d:
10485      Opcode = X86ISD::UMIN;
10486      break;
10487    case Intrinsic::x86_sse41_pmaxsb:
10488    case Intrinsic::x86_sse2_pmaxs_w:
10489    case Intrinsic::x86_sse41_pmaxsd:
10490    case Intrinsic::x86_avx2_pmaxs_b:
10491    case Intrinsic::x86_avx2_pmaxs_w:
10492    case Intrinsic::x86_avx2_pmaxs_d:
10493      Opcode = X86ISD::SMAX;
10494      break;
10495    case Intrinsic::x86_sse41_pminsb:
10496    case Intrinsic::x86_sse2_pmins_w:
10497    case Intrinsic::x86_sse41_pminsd:
10498    case Intrinsic::x86_avx2_pmins_b:
10499    case Intrinsic::x86_avx2_pmins_w:
10500    case Intrinsic::x86_avx2_pmins_d:
10501      Opcode = X86ISD::SMIN;
10502      break;
10503    }
10504    return DAG.getNode(Opcode, dl, Op.getValueType(),
10505                       Op.getOperand(1), Op.getOperand(2));
10506  }
10507
10508  // SSE/SSE2/AVX floating point max/min intrinsics.
10509  case Intrinsic::x86_sse_max_ps:
10510  case Intrinsic::x86_sse2_max_pd:
10511  case Intrinsic::x86_avx_max_ps_256:
10512  case Intrinsic::x86_avx_max_pd_256:
10513  case Intrinsic::x86_sse_min_ps:
10514  case Intrinsic::x86_sse2_min_pd:
10515  case Intrinsic::x86_avx_min_ps_256:
10516  case Intrinsic::x86_avx_min_pd_256: {
10517    unsigned Opcode;
10518    switch (IntNo) {
10519    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10520    case Intrinsic::x86_sse_max_ps:
10521    case Intrinsic::x86_sse2_max_pd:
10522    case Intrinsic::x86_avx_max_ps_256:
10523    case Intrinsic::x86_avx_max_pd_256:
10524      Opcode = X86ISD::FMAX;
10525      break;
10526    case Intrinsic::x86_sse_min_ps:
10527    case Intrinsic::x86_sse2_min_pd:
10528    case Intrinsic::x86_avx_min_ps_256:
10529    case Intrinsic::x86_avx_min_pd_256:
10530      Opcode = X86ISD::FMIN;
10531      break;
10532    }
10533    return DAG.getNode(Opcode, dl, Op.getValueType(),
10534                       Op.getOperand(1), Op.getOperand(2));
10535  }
10536
10537  // AVX2 variable shift intrinsics
10538  case Intrinsic::x86_avx2_psllv_d:
10539  case Intrinsic::x86_avx2_psllv_q:
10540  case Intrinsic::x86_avx2_psllv_d_256:
10541  case Intrinsic::x86_avx2_psllv_q_256:
10542  case Intrinsic::x86_avx2_psrlv_d:
10543  case Intrinsic::x86_avx2_psrlv_q:
10544  case Intrinsic::x86_avx2_psrlv_d_256:
10545  case Intrinsic::x86_avx2_psrlv_q_256:
10546  case Intrinsic::x86_avx2_psrav_d:
10547  case Intrinsic::x86_avx2_psrav_d_256: {
10548    unsigned Opcode;
10549    switch (IntNo) {
10550    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10551    case Intrinsic::x86_avx2_psllv_d:
10552    case Intrinsic::x86_avx2_psllv_q:
10553    case Intrinsic::x86_avx2_psllv_d_256:
10554    case Intrinsic::x86_avx2_psllv_q_256:
10555      Opcode = ISD::SHL;
10556      break;
10557    case Intrinsic::x86_avx2_psrlv_d:
10558    case Intrinsic::x86_avx2_psrlv_q:
10559    case Intrinsic::x86_avx2_psrlv_d_256:
10560    case Intrinsic::x86_avx2_psrlv_q_256:
10561      Opcode = ISD::SRL;
10562      break;
10563    case Intrinsic::x86_avx2_psrav_d:
10564    case Intrinsic::x86_avx2_psrav_d_256:
10565      Opcode = ISD::SRA;
10566      break;
10567    }
10568    return DAG.getNode(Opcode, dl, Op.getValueType(),
10569                       Op.getOperand(1), Op.getOperand(2));
10570  }
10571
10572  case Intrinsic::x86_ssse3_pshuf_b_128:
10573  case Intrinsic::x86_avx2_pshuf_b:
10574    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
10575                       Op.getOperand(1), Op.getOperand(2));
10576
10577  case Intrinsic::x86_ssse3_psign_b_128:
10578  case Intrinsic::x86_ssse3_psign_w_128:
10579  case Intrinsic::x86_ssse3_psign_d_128:
10580  case Intrinsic::x86_avx2_psign_b:
10581  case Intrinsic::x86_avx2_psign_w:
10582  case Intrinsic::x86_avx2_psign_d:
10583    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
10584                       Op.getOperand(1), Op.getOperand(2));
10585
10586  case Intrinsic::x86_sse41_insertps:
10587    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
10588                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10589
10590  case Intrinsic::x86_avx_vperm2f128_ps_256:
10591  case Intrinsic::x86_avx_vperm2f128_pd_256:
10592  case Intrinsic::x86_avx_vperm2f128_si_256:
10593  case Intrinsic::x86_avx2_vperm2i128:
10594    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
10595                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10596
10597  case Intrinsic::x86_avx2_permd:
10598  case Intrinsic::x86_avx2_permps:
10599    // Operands intentionally swapped. Mask is last operand to intrinsic,
10600    // but second operand for node/intruction.
10601    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
10602                       Op.getOperand(2), Op.getOperand(1));
10603
10604  case Intrinsic::x86_sse_sqrt_ps:
10605  case Intrinsic::x86_sse2_sqrt_pd:
10606  case Intrinsic::x86_avx_sqrt_ps_256:
10607  case Intrinsic::x86_avx_sqrt_pd_256:
10608    return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1));
10609
10610  // ptest and testp intrinsics. The intrinsic these come from are designed to
10611  // return an integer value, not just an instruction so lower it to the ptest
10612  // or testp pattern and a setcc for the result.
10613  case Intrinsic::x86_sse41_ptestz:
10614  case Intrinsic::x86_sse41_ptestc:
10615  case Intrinsic::x86_sse41_ptestnzc:
10616  case Intrinsic::x86_avx_ptestz_256:
10617  case Intrinsic::x86_avx_ptestc_256:
10618  case Intrinsic::x86_avx_ptestnzc_256:
10619  case Intrinsic::x86_avx_vtestz_ps:
10620  case Intrinsic::x86_avx_vtestc_ps:
10621  case Intrinsic::x86_avx_vtestnzc_ps:
10622  case Intrinsic::x86_avx_vtestz_pd:
10623  case Intrinsic::x86_avx_vtestc_pd:
10624  case Intrinsic::x86_avx_vtestnzc_pd:
10625  case Intrinsic::x86_avx_vtestz_ps_256:
10626  case Intrinsic::x86_avx_vtestc_ps_256:
10627  case Intrinsic::x86_avx_vtestnzc_ps_256:
10628  case Intrinsic::x86_avx_vtestz_pd_256:
10629  case Intrinsic::x86_avx_vtestc_pd_256:
10630  case Intrinsic::x86_avx_vtestnzc_pd_256: {
10631    bool IsTestPacked = false;
10632    unsigned X86CC;
10633    switch (IntNo) {
10634    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
10635    case Intrinsic::x86_avx_vtestz_ps:
10636    case Intrinsic::x86_avx_vtestz_pd:
10637    case Intrinsic::x86_avx_vtestz_ps_256:
10638    case Intrinsic::x86_avx_vtestz_pd_256:
10639      IsTestPacked = true; // Fallthrough
10640    case Intrinsic::x86_sse41_ptestz:
10641    case Intrinsic::x86_avx_ptestz_256:
10642      // ZF = 1
10643      X86CC = X86::COND_E;
10644      break;
10645    case Intrinsic::x86_avx_vtestc_ps:
10646    case Intrinsic::x86_avx_vtestc_pd:
10647    case Intrinsic::x86_avx_vtestc_ps_256:
10648    case Intrinsic::x86_avx_vtestc_pd_256:
10649      IsTestPacked = true; // Fallthrough
10650    case Intrinsic::x86_sse41_ptestc:
10651    case Intrinsic::x86_avx_ptestc_256:
10652      // CF = 1
10653      X86CC = X86::COND_B;
10654      break;
10655    case Intrinsic::x86_avx_vtestnzc_ps:
10656    case Intrinsic::x86_avx_vtestnzc_pd:
10657    case Intrinsic::x86_avx_vtestnzc_ps_256:
10658    case Intrinsic::x86_avx_vtestnzc_pd_256:
10659      IsTestPacked = true; // Fallthrough
10660    case Intrinsic::x86_sse41_ptestnzc:
10661    case Intrinsic::x86_avx_ptestnzc_256:
10662      // ZF and CF = 0
10663      X86CC = X86::COND_A;
10664      break;
10665    }
10666
10667    SDValue LHS = Op.getOperand(1);
10668    SDValue RHS = Op.getOperand(2);
10669    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
10670    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
10671    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
10672    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
10673    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10674  }
10675
10676  // SSE/AVX shift intrinsics
10677  case Intrinsic::x86_sse2_psll_w:
10678  case Intrinsic::x86_sse2_psll_d:
10679  case Intrinsic::x86_sse2_psll_q:
10680  case Intrinsic::x86_avx2_psll_w:
10681  case Intrinsic::x86_avx2_psll_d:
10682  case Intrinsic::x86_avx2_psll_q:
10683  case Intrinsic::x86_sse2_psrl_w:
10684  case Intrinsic::x86_sse2_psrl_d:
10685  case Intrinsic::x86_sse2_psrl_q:
10686  case Intrinsic::x86_avx2_psrl_w:
10687  case Intrinsic::x86_avx2_psrl_d:
10688  case Intrinsic::x86_avx2_psrl_q:
10689  case Intrinsic::x86_sse2_psra_w:
10690  case Intrinsic::x86_sse2_psra_d:
10691  case Intrinsic::x86_avx2_psra_w:
10692  case Intrinsic::x86_avx2_psra_d: {
10693    unsigned Opcode;
10694    switch (IntNo) {
10695    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10696    case Intrinsic::x86_sse2_psll_w:
10697    case Intrinsic::x86_sse2_psll_d:
10698    case Intrinsic::x86_sse2_psll_q:
10699    case Intrinsic::x86_avx2_psll_w:
10700    case Intrinsic::x86_avx2_psll_d:
10701    case Intrinsic::x86_avx2_psll_q:
10702      Opcode = X86ISD::VSHL;
10703      break;
10704    case Intrinsic::x86_sse2_psrl_w:
10705    case Intrinsic::x86_sse2_psrl_d:
10706    case Intrinsic::x86_sse2_psrl_q:
10707    case Intrinsic::x86_avx2_psrl_w:
10708    case Intrinsic::x86_avx2_psrl_d:
10709    case Intrinsic::x86_avx2_psrl_q:
10710      Opcode = X86ISD::VSRL;
10711      break;
10712    case Intrinsic::x86_sse2_psra_w:
10713    case Intrinsic::x86_sse2_psra_d:
10714    case Intrinsic::x86_avx2_psra_w:
10715    case Intrinsic::x86_avx2_psra_d:
10716      Opcode = X86ISD::VSRA;
10717      break;
10718    }
10719    return DAG.getNode(Opcode, dl, Op.getValueType(),
10720                       Op.getOperand(1), Op.getOperand(2));
10721  }
10722
10723  // SSE/AVX immediate shift intrinsics
10724  case Intrinsic::x86_sse2_pslli_w:
10725  case Intrinsic::x86_sse2_pslli_d:
10726  case Intrinsic::x86_sse2_pslli_q:
10727  case Intrinsic::x86_avx2_pslli_w:
10728  case Intrinsic::x86_avx2_pslli_d:
10729  case Intrinsic::x86_avx2_pslli_q:
10730  case Intrinsic::x86_sse2_psrli_w:
10731  case Intrinsic::x86_sse2_psrli_d:
10732  case Intrinsic::x86_sse2_psrli_q:
10733  case Intrinsic::x86_avx2_psrli_w:
10734  case Intrinsic::x86_avx2_psrli_d:
10735  case Intrinsic::x86_avx2_psrli_q:
10736  case Intrinsic::x86_sse2_psrai_w:
10737  case Intrinsic::x86_sse2_psrai_d:
10738  case Intrinsic::x86_avx2_psrai_w:
10739  case Intrinsic::x86_avx2_psrai_d: {
10740    unsigned Opcode;
10741    switch (IntNo) {
10742    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10743    case Intrinsic::x86_sse2_pslli_w:
10744    case Intrinsic::x86_sse2_pslli_d:
10745    case Intrinsic::x86_sse2_pslli_q:
10746    case Intrinsic::x86_avx2_pslli_w:
10747    case Intrinsic::x86_avx2_pslli_d:
10748    case Intrinsic::x86_avx2_pslli_q:
10749      Opcode = X86ISD::VSHLI;
10750      break;
10751    case Intrinsic::x86_sse2_psrli_w:
10752    case Intrinsic::x86_sse2_psrli_d:
10753    case Intrinsic::x86_sse2_psrli_q:
10754    case Intrinsic::x86_avx2_psrli_w:
10755    case Intrinsic::x86_avx2_psrli_d:
10756    case Intrinsic::x86_avx2_psrli_q:
10757      Opcode = X86ISD::VSRLI;
10758      break;
10759    case Intrinsic::x86_sse2_psrai_w:
10760    case Intrinsic::x86_sse2_psrai_d:
10761    case Intrinsic::x86_avx2_psrai_w:
10762    case Intrinsic::x86_avx2_psrai_d:
10763      Opcode = X86ISD::VSRAI;
10764      break;
10765    }
10766    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
10767                               Op.getOperand(1), Op.getOperand(2), DAG);
10768  }
10769
10770  case Intrinsic::x86_sse42_pcmpistria128:
10771  case Intrinsic::x86_sse42_pcmpestria128:
10772  case Intrinsic::x86_sse42_pcmpistric128:
10773  case Intrinsic::x86_sse42_pcmpestric128:
10774  case Intrinsic::x86_sse42_pcmpistrio128:
10775  case Intrinsic::x86_sse42_pcmpestrio128:
10776  case Intrinsic::x86_sse42_pcmpistris128:
10777  case Intrinsic::x86_sse42_pcmpestris128:
10778  case Intrinsic::x86_sse42_pcmpistriz128:
10779  case Intrinsic::x86_sse42_pcmpestriz128: {
10780    unsigned Opcode;
10781    unsigned X86CC;
10782    switch (IntNo) {
10783    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10784    case Intrinsic::x86_sse42_pcmpistria128:
10785      Opcode = X86ISD::PCMPISTRI;
10786      X86CC = X86::COND_A;
10787      break;
10788    case Intrinsic::x86_sse42_pcmpestria128:
10789      Opcode = X86ISD::PCMPESTRI;
10790      X86CC = X86::COND_A;
10791      break;
10792    case Intrinsic::x86_sse42_pcmpistric128:
10793      Opcode = X86ISD::PCMPISTRI;
10794      X86CC = X86::COND_B;
10795      break;
10796    case Intrinsic::x86_sse42_pcmpestric128:
10797      Opcode = X86ISD::PCMPESTRI;
10798      X86CC = X86::COND_B;
10799      break;
10800    case Intrinsic::x86_sse42_pcmpistrio128:
10801      Opcode = X86ISD::PCMPISTRI;
10802      X86CC = X86::COND_O;
10803      break;
10804    case Intrinsic::x86_sse42_pcmpestrio128:
10805      Opcode = X86ISD::PCMPESTRI;
10806      X86CC = X86::COND_O;
10807      break;
10808    case Intrinsic::x86_sse42_pcmpistris128:
10809      Opcode = X86ISD::PCMPISTRI;
10810      X86CC = X86::COND_S;
10811      break;
10812    case Intrinsic::x86_sse42_pcmpestris128:
10813      Opcode = X86ISD::PCMPESTRI;
10814      X86CC = X86::COND_S;
10815      break;
10816    case Intrinsic::x86_sse42_pcmpistriz128:
10817      Opcode = X86ISD::PCMPISTRI;
10818      X86CC = X86::COND_E;
10819      break;
10820    case Intrinsic::x86_sse42_pcmpestriz128:
10821      Opcode = X86ISD::PCMPESTRI;
10822      X86CC = X86::COND_E;
10823      break;
10824    }
10825    SmallVector<SDValue, 5> NewOps;
10826    NewOps.append(Op->op_begin()+1, Op->op_end());
10827    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10828    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10829    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10830                                DAG.getConstant(X86CC, MVT::i8),
10831                                SDValue(PCMP.getNode(), 1));
10832    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10833  }
10834
10835  case Intrinsic::x86_sse42_pcmpistri128:
10836  case Intrinsic::x86_sse42_pcmpestri128: {
10837    unsigned Opcode;
10838    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
10839      Opcode = X86ISD::PCMPISTRI;
10840    else
10841      Opcode = X86ISD::PCMPESTRI;
10842
10843    SmallVector<SDValue, 5> NewOps;
10844    NewOps.append(Op->op_begin()+1, Op->op_end());
10845    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10846    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10847  }
10848  case Intrinsic::x86_fma_vfmadd_ps:
10849  case Intrinsic::x86_fma_vfmadd_pd:
10850  case Intrinsic::x86_fma_vfmsub_ps:
10851  case Intrinsic::x86_fma_vfmsub_pd:
10852  case Intrinsic::x86_fma_vfnmadd_ps:
10853  case Intrinsic::x86_fma_vfnmadd_pd:
10854  case Intrinsic::x86_fma_vfnmsub_ps:
10855  case Intrinsic::x86_fma_vfnmsub_pd:
10856  case Intrinsic::x86_fma_vfmaddsub_ps:
10857  case Intrinsic::x86_fma_vfmaddsub_pd:
10858  case Intrinsic::x86_fma_vfmsubadd_ps:
10859  case Intrinsic::x86_fma_vfmsubadd_pd:
10860  case Intrinsic::x86_fma_vfmadd_ps_256:
10861  case Intrinsic::x86_fma_vfmadd_pd_256:
10862  case Intrinsic::x86_fma_vfmsub_ps_256:
10863  case Intrinsic::x86_fma_vfmsub_pd_256:
10864  case Intrinsic::x86_fma_vfnmadd_ps_256:
10865  case Intrinsic::x86_fma_vfnmadd_pd_256:
10866  case Intrinsic::x86_fma_vfnmsub_ps_256:
10867  case Intrinsic::x86_fma_vfnmsub_pd_256:
10868  case Intrinsic::x86_fma_vfmaddsub_ps_256:
10869  case Intrinsic::x86_fma_vfmaddsub_pd_256:
10870  case Intrinsic::x86_fma_vfmsubadd_ps_256:
10871  case Intrinsic::x86_fma_vfmsubadd_pd_256: {
10872    unsigned Opc;
10873    switch (IntNo) {
10874    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10875    case Intrinsic::x86_fma_vfmadd_ps:
10876    case Intrinsic::x86_fma_vfmadd_pd:
10877    case Intrinsic::x86_fma_vfmadd_ps_256:
10878    case Intrinsic::x86_fma_vfmadd_pd_256:
10879      Opc = X86ISD::FMADD;
10880      break;
10881    case Intrinsic::x86_fma_vfmsub_ps:
10882    case Intrinsic::x86_fma_vfmsub_pd:
10883    case Intrinsic::x86_fma_vfmsub_ps_256:
10884    case Intrinsic::x86_fma_vfmsub_pd_256:
10885      Opc = X86ISD::FMSUB;
10886      break;
10887    case Intrinsic::x86_fma_vfnmadd_ps:
10888    case Intrinsic::x86_fma_vfnmadd_pd:
10889    case Intrinsic::x86_fma_vfnmadd_ps_256:
10890    case Intrinsic::x86_fma_vfnmadd_pd_256:
10891      Opc = X86ISD::FNMADD;
10892      break;
10893    case Intrinsic::x86_fma_vfnmsub_ps:
10894    case Intrinsic::x86_fma_vfnmsub_pd:
10895    case Intrinsic::x86_fma_vfnmsub_ps_256:
10896    case Intrinsic::x86_fma_vfnmsub_pd_256:
10897      Opc = X86ISD::FNMSUB;
10898      break;
10899    case Intrinsic::x86_fma_vfmaddsub_ps:
10900    case Intrinsic::x86_fma_vfmaddsub_pd:
10901    case Intrinsic::x86_fma_vfmaddsub_ps_256:
10902    case Intrinsic::x86_fma_vfmaddsub_pd_256:
10903      Opc = X86ISD::FMADDSUB;
10904      break;
10905    case Intrinsic::x86_fma_vfmsubadd_ps:
10906    case Intrinsic::x86_fma_vfmsubadd_pd:
10907    case Intrinsic::x86_fma_vfmsubadd_ps_256:
10908    case Intrinsic::x86_fma_vfmsubadd_pd_256:
10909      Opc = X86ISD::FMSUBADD;
10910      break;
10911    }
10912
10913    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
10914                       Op.getOperand(2), Op.getOperand(3));
10915  }
10916  }
10917}
10918
10919static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
10920  DebugLoc dl = Op.getDebugLoc();
10921  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10922  switch (IntNo) {
10923  default: return SDValue();    // Don't custom lower most intrinsics.
10924
10925  // RDRAND intrinsics.
10926  case Intrinsic::x86_rdrand_16:
10927  case Intrinsic::x86_rdrand_32:
10928  case Intrinsic::x86_rdrand_64: {
10929    // Emit the node with the right value type.
10930    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
10931    SDValue Result = DAG.getNode(X86ISD::RDRAND, dl, VTs, Op.getOperand(0));
10932
10933    // If the value returned by RDRAND was valid (CF=1), return 1. Otherwise
10934    // return the value from Rand, which is always 0, casted to i32.
10935    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
10936                      DAG.getConstant(1, Op->getValueType(1)),
10937                      DAG.getConstant(X86::COND_B, MVT::i32),
10938                      SDValue(Result.getNode(), 1) };
10939    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
10940                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
10941                                  Ops, 4);
10942
10943    // Return { result, isValid, chain }.
10944    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
10945                       SDValue(Result.getNode(), 2));
10946  }
10947  }
10948}
10949
10950SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
10951                                           SelectionDAG &DAG) const {
10952  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10953  MFI->setReturnAddressIsTaken(true);
10954
10955  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10956  DebugLoc dl = Op.getDebugLoc();
10957  EVT PtrVT = getPointerTy();
10958
10959  if (Depth > 0) {
10960    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
10961    SDValue Offset =
10962      DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
10963    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
10964                       DAG.getNode(ISD::ADD, dl, PtrVT,
10965                                   FrameAddr, Offset),
10966                       MachinePointerInfo(), false, false, false, 0);
10967  }
10968
10969  // Just load the return address.
10970  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
10971  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
10972                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
10973}
10974
10975SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
10976  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10977  MFI->setFrameAddressIsTaken(true);
10978
10979  EVT VT = Op.getValueType();
10980  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
10981  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10982  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
10983  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
10984  while (Depth--)
10985    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
10986                            MachinePointerInfo(),
10987                            false, false, false, 0);
10988  return FrameAddr;
10989}
10990
10991SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
10992                                                     SelectionDAG &DAG) const {
10993  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
10994}
10995
10996SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
10997  SDValue Chain     = Op.getOperand(0);
10998  SDValue Offset    = Op.getOperand(1);
10999  SDValue Handler   = Op.getOperand(2);
11000  DebugLoc dl       = Op.getDebugLoc();
11001
11002  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
11003                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
11004                                     getPointerTy());
11005  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
11006
11007  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
11008                                  DAG.getIntPtrConstant(RegInfo->getSlotSize()));
11009  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
11010  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
11011                       false, false, 0);
11012  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
11013
11014  return DAG.getNode(X86ISD::EH_RETURN, dl,
11015                     MVT::Other,
11016                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
11017}
11018
11019SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
11020                                               SelectionDAG &DAG) const {
11021  DebugLoc DL = Op.getDebugLoc();
11022  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
11023                     DAG.getVTList(MVT::i32, MVT::Other),
11024                     Op.getOperand(0), Op.getOperand(1));
11025}
11026
11027SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
11028                                                SelectionDAG &DAG) const {
11029  DebugLoc DL = Op.getDebugLoc();
11030  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
11031                     Op.getOperand(0), Op.getOperand(1));
11032}
11033
11034static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
11035  return Op.getOperand(0);
11036}
11037
11038SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
11039                                                SelectionDAG &DAG) const {
11040  SDValue Root = Op.getOperand(0);
11041  SDValue Trmp = Op.getOperand(1); // trampoline
11042  SDValue FPtr = Op.getOperand(2); // nested function
11043  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
11044  DebugLoc dl  = Op.getDebugLoc();
11045
11046  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
11047  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
11048
11049  if (Subtarget->is64Bit()) {
11050    SDValue OutChains[6];
11051
11052    // Large code-model.
11053    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
11054    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
11055
11056    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
11057    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
11058
11059    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
11060
11061    // Load the pointer to the nested function into R11.
11062    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
11063    SDValue Addr = Trmp;
11064    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11065                                Addr, MachinePointerInfo(TrmpAddr),
11066                                false, false, 0);
11067
11068    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11069                       DAG.getConstant(2, MVT::i64));
11070    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
11071                                MachinePointerInfo(TrmpAddr, 2),
11072                                false, false, 2);
11073
11074    // Load the 'nest' parameter value into R10.
11075    // R10 is specified in X86CallingConv.td
11076    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
11077    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11078                       DAG.getConstant(10, MVT::i64));
11079    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11080                                Addr, MachinePointerInfo(TrmpAddr, 10),
11081                                false, false, 0);
11082
11083    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11084                       DAG.getConstant(12, MVT::i64));
11085    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
11086                                MachinePointerInfo(TrmpAddr, 12),
11087                                false, false, 2);
11088
11089    // Jump to the nested function.
11090    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
11091    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11092                       DAG.getConstant(20, MVT::i64));
11093    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11094                                Addr, MachinePointerInfo(TrmpAddr, 20),
11095                                false, false, 0);
11096
11097    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
11098    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11099                       DAG.getConstant(22, MVT::i64));
11100    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
11101                                MachinePointerInfo(TrmpAddr, 22),
11102                                false, false, 0);
11103
11104    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
11105  } else {
11106    const Function *Func =
11107      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
11108    CallingConv::ID CC = Func->getCallingConv();
11109    unsigned NestReg;
11110
11111    switch (CC) {
11112    default:
11113      llvm_unreachable("Unsupported calling convention");
11114    case CallingConv::C:
11115    case CallingConv::X86_StdCall: {
11116      // Pass 'nest' parameter in ECX.
11117      // Must be kept in sync with X86CallingConv.td
11118      NestReg = X86::ECX;
11119
11120      // Check that ECX wasn't needed by an 'inreg' parameter.
11121      FunctionType *FTy = Func->getFunctionType();
11122      const AttributeSet &Attrs = Func->getAttributes();
11123
11124      if (!Attrs.isEmpty() && !Func->isVarArg()) {
11125        unsigned InRegCount = 0;
11126        unsigned Idx = 1;
11127
11128        for (FunctionType::param_iterator I = FTy->param_begin(),
11129             E = FTy->param_end(); I != E; ++I, ++Idx)
11130          if (Attrs.hasAttribute(Idx, Attribute::InReg))
11131            // FIXME: should only count parameters that are lowered to integers.
11132            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
11133
11134        if (InRegCount > 2) {
11135          report_fatal_error("Nest register in use - reduce number of inreg"
11136                             " parameters!");
11137        }
11138      }
11139      break;
11140    }
11141    case CallingConv::X86_FastCall:
11142    case CallingConv::X86_ThisCall:
11143    case CallingConv::Fast:
11144      // Pass 'nest' parameter in EAX.
11145      // Must be kept in sync with X86CallingConv.td
11146      NestReg = X86::EAX;
11147      break;
11148    }
11149
11150    SDValue OutChains[4];
11151    SDValue Addr, Disp;
11152
11153    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11154                       DAG.getConstant(10, MVT::i32));
11155    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
11156
11157    // This is storing the opcode for MOV32ri.
11158    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
11159    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
11160    OutChains[0] = DAG.getStore(Root, dl,
11161                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
11162                                Trmp, MachinePointerInfo(TrmpAddr),
11163                                false, false, 0);
11164
11165    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11166                       DAG.getConstant(1, MVT::i32));
11167    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
11168                                MachinePointerInfo(TrmpAddr, 1),
11169                                false, false, 1);
11170
11171    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
11172    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11173                       DAG.getConstant(5, MVT::i32));
11174    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
11175                                MachinePointerInfo(TrmpAddr, 5),
11176                                false, false, 1);
11177
11178    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11179                       DAG.getConstant(6, MVT::i32));
11180    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
11181                                MachinePointerInfo(TrmpAddr, 6),
11182                                false, false, 1);
11183
11184    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
11185  }
11186}
11187
11188SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
11189                                            SelectionDAG &DAG) const {
11190  /*
11191   The rounding mode is in bits 11:10 of FPSR, and has the following
11192   settings:
11193     00 Round to nearest
11194     01 Round to -inf
11195     10 Round to +inf
11196     11 Round to 0
11197
11198  FLT_ROUNDS, on the other hand, expects the following:
11199    -1 Undefined
11200     0 Round to 0
11201     1 Round to nearest
11202     2 Round to +inf
11203     3 Round to -inf
11204
11205  To perform the conversion, we do:
11206    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
11207  */
11208
11209  MachineFunction &MF = DAG.getMachineFunction();
11210  const TargetMachine &TM = MF.getTarget();
11211  const TargetFrameLowering &TFI = *TM.getFrameLowering();
11212  unsigned StackAlignment = TFI.getStackAlignment();
11213  EVT VT = Op.getValueType();
11214  DebugLoc DL = Op.getDebugLoc();
11215
11216  // Save FP Control Word to stack slot
11217  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
11218  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
11219
11220  MachineMemOperand *MMO =
11221   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
11222                           MachineMemOperand::MOStore, 2, 2);
11223
11224  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
11225  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
11226                                          DAG.getVTList(MVT::Other),
11227                                          Ops, 2, MVT::i16, MMO);
11228
11229  // Load FP Control Word from stack slot
11230  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
11231                            MachinePointerInfo(), false, false, false, 0);
11232
11233  // Transform as necessary
11234  SDValue CWD1 =
11235    DAG.getNode(ISD::SRL, DL, MVT::i16,
11236                DAG.getNode(ISD::AND, DL, MVT::i16,
11237                            CWD, DAG.getConstant(0x800, MVT::i16)),
11238                DAG.getConstant(11, MVT::i8));
11239  SDValue CWD2 =
11240    DAG.getNode(ISD::SRL, DL, MVT::i16,
11241                DAG.getNode(ISD::AND, DL, MVT::i16,
11242                            CWD, DAG.getConstant(0x400, MVT::i16)),
11243                DAG.getConstant(9, MVT::i8));
11244
11245  SDValue RetVal =
11246    DAG.getNode(ISD::AND, DL, MVT::i16,
11247                DAG.getNode(ISD::ADD, DL, MVT::i16,
11248                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
11249                            DAG.getConstant(1, MVT::i16)),
11250                DAG.getConstant(3, MVT::i16));
11251
11252  return DAG.getNode((VT.getSizeInBits() < 16 ?
11253                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
11254}
11255
11256static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
11257  EVT VT = Op.getValueType();
11258  EVT OpVT = VT;
11259  unsigned NumBits = VT.getSizeInBits();
11260  DebugLoc dl = Op.getDebugLoc();
11261
11262  Op = Op.getOperand(0);
11263  if (VT == MVT::i8) {
11264    // Zero extend to i32 since there is not an i8 bsr.
11265    OpVT = MVT::i32;
11266    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
11267  }
11268
11269  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
11270  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
11271  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
11272
11273  // If src is zero (i.e. bsr sets ZF), returns NumBits.
11274  SDValue Ops[] = {
11275    Op,
11276    DAG.getConstant(NumBits+NumBits-1, OpVT),
11277    DAG.getConstant(X86::COND_E, MVT::i8),
11278    Op.getValue(1)
11279  };
11280  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
11281
11282  // Finally xor with NumBits-1.
11283  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
11284
11285  if (VT == MVT::i8)
11286    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
11287  return Op;
11288}
11289
11290static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
11291  EVT VT = Op.getValueType();
11292  EVT OpVT = VT;
11293  unsigned NumBits = VT.getSizeInBits();
11294  DebugLoc dl = Op.getDebugLoc();
11295
11296  Op = Op.getOperand(0);
11297  if (VT == MVT::i8) {
11298    // Zero extend to i32 since there is not an i8 bsr.
11299    OpVT = MVT::i32;
11300    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
11301  }
11302
11303  // Issue a bsr (scan bits in reverse).
11304  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
11305  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
11306
11307  // And xor with NumBits-1.
11308  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
11309
11310  if (VT == MVT::i8)
11311    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
11312  return Op;
11313}
11314
11315static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
11316  EVT VT = Op.getValueType();
11317  unsigned NumBits = VT.getSizeInBits();
11318  DebugLoc dl = Op.getDebugLoc();
11319  Op = Op.getOperand(0);
11320
11321  // Issue a bsf (scan bits forward) which also sets EFLAGS.
11322  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
11323  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
11324
11325  // If src is zero (i.e. bsf sets ZF), returns NumBits.
11326  SDValue Ops[] = {
11327    Op,
11328    DAG.getConstant(NumBits, VT),
11329    DAG.getConstant(X86::COND_E, MVT::i8),
11330    Op.getValue(1)
11331  };
11332  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
11333}
11334
11335// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
11336// ones, and then concatenate the result back.
11337static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
11338  EVT VT = Op.getValueType();
11339
11340  assert(VT.is256BitVector() && VT.isInteger() &&
11341         "Unsupported value type for operation");
11342
11343  unsigned NumElems = VT.getVectorNumElements();
11344  DebugLoc dl = Op.getDebugLoc();
11345
11346  // Extract the LHS vectors
11347  SDValue LHS = Op.getOperand(0);
11348  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
11349  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
11350
11351  // Extract the RHS vectors
11352  SDValue RHS = Op.getOperand(1);
11353  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
11354  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
11355
11356  MVT EltVT = VT.getVectorElementType().getSimpleVT();
11357  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11358
11359  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
11360                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
11361                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
11362}
11363
11364static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
11365  assert(Op.getValueType().is256BitVector() &&
11366         Op.getValueType().isInteger() &&
11367         "Only handle AVX 256-bit vector integer operation");
11368  return Lower256IntArith(Op, DAG);
11369}
11370
11371static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
11372  assert(Op.getValueType().is256BitVector() &&
11373         Op.getValueType().isInteger() &&
11374         "Only handle AVX 256-bit vector integer operation");
11375  return Lower256IntArith(Op, DAG);
11376}
11377
11378static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
11379                        SelectionDAG &DAG) {
11380  DebugLoc dl = Op.getDebugLoc();
11381  EVT VT = Op.getValueType();
11382
11383  // Decompose 256-bit ops into smaller 128-bit ops.
11384  if (VT.is256BitVector() && !Subtarget->hasInt256())
11385    return Lower256IntArith(Op, DAG);
11386
11387  SDValue A = Op.getOperand(0);
11388  SDValue B = Op.getOperand(1);
11389
11390  // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
11391  if (VT == MVT::v4i32) {
11392    assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
11393           "Should not custom lower when pmuldq is available!");
11394
11395    // Extract the odd parts.
11396    const int UnpackMask[] = { 1, -1, 3, -1 };
11397    SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
11398    SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
11399
11400    // Multiply the even parts.
11401    SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
11402    // Now multiply odd parts.
11403    SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
11404
11405    Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
11406    Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
11407
11408    // Merge the two vectors back together with a shuffle. This expands into 2
11409    // shuffles.
11410    const int ShufMask[] = { 0, 4, 2, 6 };
11411    return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
11412  }
11413
11414  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
11415         "Only know how to lower V2I64/V4I64 multiply");
11416
11417  //  Ahi = psrlqi(a, 32);
11418  //  Bhi = psrlqi(b, 32);
11419  //
11420  //  AloBlo = pmuludq(a, b);
11421  //  AloBhi = pmuludq(a, Bhi);
11422  //  AhiBlo = pmuludq(Ahi, b);
11423
11424  //  AloBhi = psllqi(AloBhi, 32);
11425  //  AhiBlo = psllqi(AhiBlo, 32);
11426  //  return AloBlo + AloBhi + AhiBlo;
11427
11428  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
11429
11430  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
11431  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
11432
11433  // Bit cast to 32-bit vectors for MULUDQ
11434  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
11435  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
11436  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
11437  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
11438  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
11439
11440  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
11441  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
11442  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
11443
11444  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
11445  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
11446
11447  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
11448  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
11449}
11450
11451SDValue X86TargetLowering::LowerSDIV(SDValue Op, SelectionDAG &DAG) const {
11452  EVT VT = Op.getValueType();
11453  EVT EltTy = VT.getVectorElementType();
11454  unsigned NumElts = VT.getVectorNumElements();
11455  SDValue N0 = Op.getOperand(0);
11456  DebugLoc dl = Op.getDebugLoc();
11457
11458  // Lower sdiv X, pow2-const.
11459  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(Op.getOperand(1));
11460  if (!C)
11461    return SDValue();
11462
11463  APInt SplatValue, SplatUndef;
11464  unsigned MinSplatBits;
11465  bool HasAnyUndefs;
11466  if (!C->isConstantSplat(SplatValue, SplatUndef, MinSplatBits, HasAnyUndefs))
11467    return SDValue();
11468
11469  if ((SplatValue != 0) &&
11470      (SplatValue.isPowerOf2() || (-SplatValue).isPowerOf2())) {
11471    unsigned lg2 = SplatValue.countTrailingZeros();
11472    // Splat the sign bit.
11473    SDValue Sz = DAG.getConstant(EltTy.getSizeInBits()-1, MVT::i32);
11474    SDValue SGN = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, N0, Sz, DAG);
11475    // Add (N0 < 0) ? abs2 - 1 : 0;
11476    SDValue Amt = DAG.getConstant(EltTy.getSizeInBits() - lg2, MVT::i32);
11477    SDValue SRL = getTargetVShiftNode(X86ISD::VSRLI, dl, VT, SGN, Amt, DAG);
11478    SDValue ADD = DAG.getNode(ISD::ADD, dl, VT, N0, SRL);
11479    SDValue Lg2Amt = DAG.getConstant(lg2, MVT::i32);
11480    SDValue SRA = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, ADD, Lg2Amt, DAG);
11481
11482    // If we're dividing by a positive value, we're done.  Otherwise, we must
11483    // negate the result.
11484    if (SplatValue.isNonNegative())
11485      return SRA;
11486
11487    SmallVector<SDValue, 16> V(NumElts, DAG.getConstant(0, EltTy));
11488    SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], NumElts);
11489    return DAG.getNode(ISD::SUB, dl, VT, Zero, SRA);
11490  }
11491  return SDValue();
11492}
11493
11494static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
11495                                         const X86Subtarget *Subtarget) {
11496  EVT VT = Op.getValueType();
11497  DebugLoc dl = Op.getDebugLoc();
11498  SDValue R = Op.getOperand(0);
11499  SDValue Amt = Op.getOperand(1);
11500
11501  // Optimize shl/srl/sra with constant shift amount.
11502  if (isSplatVector(Amt.getNode())) {
11503    SDValue SclrAmt = Amt->getOperand(0);
11504    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
11505      uint64_t ShiftAmt = C->getZExtValue();
11506
11507      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
11508          (Subtarget->hasInt256() &&
11509           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
11510        if (Op.getOpcode() == ISD::SHL)
11511          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
11512                             DAG.getConstant(ShiftAmt, MVT::i32));
11513        if (Op.getOpcode() == ISD::SRL)
11514          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
11515                             DAG.getConstant(ShiftAmt, MVT::i32));
11516        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
11517          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
11518                             DAG.getConstant(ShiftAmt, MVT::i32));
11519      }
11520
11521      if (VT == MVT::v16i8) {
11522        if (Op.getOpcode() == ISD::SHL) {
11523          // Make a large shift.
11524          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
11525                                    DAG.getConstant(ShiftAmt, MVT::i32));
11526          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11527          // Zero out the rightmost bits.
11528          SmallVector<SDValue, 16> V(16,
11529                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11530                                                     MVT::i8));
11531          return DAG.getNode(ISD::AND, dl, VT, SHL,
11532                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11533        }
11534        if (Op.getOpcode() == ISD::SRL) {
11535          // Make a large shift.
11536          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
11537                                    DAG.getConstant(ShiftAmt, MVT::i32));
11538          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11539          // Zero out the leftmost bits.
11540          SmallVector<SDValue, 16> V(16,
11541                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11542                                                     MVT::i8));
11543          return DAG.getNode(ISD::AND, dl, VT, SRL,
11544                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11545        }
11546        if (Op.getOpcode() == ISD::SRA) {
11547          if (ShiftAmt == 7) {
11548            // R s>> 7  ===  R s< 0
11549            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11550            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11551          }
11552
11553          // R s>> a === ((R u>> a) ^ m) - m
11554          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11555          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
11556                                                         MVT::i8));
11557          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
11558          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11559          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11560          return Res;
11561        }
11562        llvm_unreachable("Unknown shift opcode.");
11563      }
11564
11565      if (Subtarget->hasInt256() && VT == MVT::v32i8) {
11566        if (Op.getOpcode() == ISD::SHL) {
11567          // Make a large shift.
11568          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
11569                                    DAG.getConstant(ShiftAmt, MVT::i32));
11570          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11571          // Zero out the rightmost bits.
11572          SmallVector<SDValue, 32> V(32,
11573                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11574                                                     MVT::i8));
11575          return DAG.getNode(ISD::AND, dl, VT, SHL,
11576                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11577        }
11578        if (Op.getOpcode() == ISD::SRL) {
11579          // Make a large shift.
11580          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
11581                                    DAG.getConstant(ShiftAmt, MVT::i32));
11582          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11583          // Zero out the leftmost bits.
11584          SmallVector<SDValue, 32> V(32,
11585                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11586                                                     MVT::i8));
11587          return DAG.getNode(ISD::AND, dl, VT, SRL,
11588                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11589        }
11590        if (Op.getOpcode() == ISD::SRA) {
11591          if (ShiftAmt == 7) {
11592            // R s>> 7  ===  R s< 0
11593            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11594            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11595          }
11596
11597          // R s>> a === ((R u>> a) ^ m) - m
11598          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11599          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
11600                                                         MVT::i8));
11601          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
11602          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11603          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11604          return Res;
11605        }
11606        llvm_unreachable("Unknown shift opcode.");
11607      }
11608    }
11609  }
11610
11611  return SDValue();
11612}
11613
11614SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
11615
11616  EVT VT = Op.getValueType();
11617  DebugLoc dl = Op.getDebugLoc();
11618  SDValue R = Op.getOperand(0);
11619  SDValue Amt = Op.getOperand(1);
11620  SDValue V;
11621
11622  if (!Subtarget->hasSSE2())
11623    return SDValue();
11624
11625  V = LowerScalarImmediateShift(Op, DAG, Subtarget);
11626  if (V.getNode())
11627    return V;
11628
11629  // Lower SHL with variable shift amount.
11630  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
11631    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT));
11632
11633    Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT));
11634    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
11635    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
11636    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
11637  }
11638  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
11639    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
11640
11641    // a = a << 5;
11642    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT));
11643    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
11644
11645    // Turn 'a' into a mask suitable for VSELECT
11646    SDValue VSelM = DAG.getConstant(0x80, VT);
11647    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11648    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11649
11650    SDValue CM1 = DAG.getConstant(0x0f, VT);
11651    SDValue CM2 = DAG.getConstant(0x3f, VT);
11652
11653    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
11654    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
11655    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11656                            DAG.getConstant(4, MVT::i32), DAG);
11657    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11658    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11659
11660    // a += a
11661    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11662    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11663    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11664
11665    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
11666    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
11667    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11668                            DAG.getConstant(2, MVT::i32), DAG);
11669    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11670    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11671
11672    // a += a
11673    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11674    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11675    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11676
11677    // return VSELECT(r, r+r, a);
11678    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
11679                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
11680    return R;
11681  }
11682
11683  // Decompose 256-bit shifts into smaller 128-bit shifts.
11684  if (VT.is256BitVector()) {
11685    unsigned NumElems = VT.getVectorNumElements();
11686    MVT EltVT = VT.getVectorElementType().getSimpleVT();
11687    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11688
11689    // Extract the two vectors
11690    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
11691    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
11692
11693    // Recreate the shift amount vectors
11694    SDValue Amt1, Amt2;
11695    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
11696      // Constant shift amount
11697      SmallVector<SDValue, 4> Amt1Csts;
11698      SmallVector<SDValue, 4> Amt2Csts;
11699      for (unsigned i = 0; i != NumElems/2; ++i)
11700        Amt1Csts.push_back(Amt->getOperand(i));
11701      for (unsigned i = NumElems/2; i != NumElems; ++i)
11702        Amt2Csts.push_back(Amt->getOperand(i));
11703
11704      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11705                                 &Amt1Csts[0], NumElems/2);
11706      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11707                                 &Amt2Csts[0], NumElems/2);
11708    } else {
11709      // Variable shift amount
11710      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
11711      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
11712    }
11713
11714    // Issue new vector shifts for the smaller types
11715    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
11716    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
11717
11718    // Concatenate the result back
11719    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
11720  }
11721
11722  return SDValue();
11723}
11724
11725static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
11726  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
11727  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
11728  // looks for this combo and may remove the "setcc" instruction if the "setcc"
11729  // has only one use.
11730  SDNode *N = Op.getNode();
11731  SDValue LHS = N->getOperand(0);
11732  SDValue RHS = N->getOperand(1);
11733  unsigned BaseOp = 0;
11734  unsigned Cond = 0;
11735  DebugLoc DL = Op.getDebugLoc();
11736  switch (Op.getOpcode()) {
11737  default: llvm_unreachable("Unknown ovf instruction!");
11738  case ISD::SADDO:
11739    // A subtract of one will be selected as a INC. Note that INC doesn't
11740    // set CF, so we can't do this for UADDO.
11741    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11742      if (C->isOne()) {
11743        BaseOp = X86ISD::INC;
11744        Cond = X86::COND_O;
11745        break;
11746      }
11747    BaseOp = X86ISD::ADD;
11748    Cond = X86::COND_O;
11749    break;
11750  case ISD::UADDO:
11751    BaseOp = X86ISD::ADD;
11752    Cond = X86::COND_B;
11753    break;
11754  case ISD::SSUBO:
11755    // A subtract of one will be selected as a DEC. Note that DEC doesn't
11756    // set CF, so we can't do this for USUBO.
11757    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11758      if (C->isOne()) {
11759        BaseOp = X86ISD::DEC;
11760        Cond = X86::COND_O;
11761        break;
11762      }
11763    BaseOp = X86ISD::SUB;
11764    Cond = X86::COND_O;
11765    break;
11766  case ISD::USUBO:
11767    BaseOp = X86ISD::SUB;
11768    Cond = X86::COND_B;
11769    break;
11770  case ISD::SMULO:
11771    BaseOp = X86ISD::SMUL;
11772    Cond = X86::COND_O;
11773    break;
11774  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
11775    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
11776                                 MVT::i32);
11777    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
11778
11779    SDValue SetCC =
11780      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11781                  DAG.getConstant(X86::COND_O, MVT::i32),
11782                  SDValue(Sum.getNode(), 2));
11783
11784    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11785  }
11786  }
11787
11788  // Also sets EFLAGS.
11789  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
11790  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
11791
11792  SDValue SetCC =
11793    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
11794                DAG.getConstant(Cond, MVT::i32),
11795                SDValue(Sum.getNode(), 1));
11796
11797  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11798}
11799
11800SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
11801                                                  SelectionDAG &DAG) const {
11802  DebugLoc dl = Op.getDebugLoc();
11803  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
11804  EVT VT = Op.getValueType();
11805
11806  if (!Subtarget->hasSSE2() || !VT.isVector())
11807    return SDValue();
11808
11809  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
11810                      ExtraVT.getScalarType().getSizeInBits();
11811  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
11812
11813  switch (VT.getSimpleVT().SimpleTy) {
11814    default: return SDValue();
11815    case MVT::v8i32:
11816    case MVT::v16i16:
11817      if (!Subtarget->hasFp256())
11818        return SDValue();
11819      if (!Subtarget->hasInt256()) {
11820        // needs to be split
11821        unsigned NumElems = VT.getVectorNumElements();
11822
11823        // Extract the LHS vectors
11824        SDValue LHS = Op.getOperand(0);
11825        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
11826        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
11827
11828        MVT EltVT = VT.getVectorElementType().getSimpleVT();
11829        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11830
11831        EVT ExtraEltVT = ExtraVT.getVectorElementType();
11832        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
11833        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
11834                                   ExtraNumElems/2);
11835        SDValue Extra = DAG.getValueType(ExtraVT);
11836
11837        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
11838        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
11839
11840        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
11841      }
11842      // fall through
11843    case MVT::v4i32:
11844    case MVT::v8i16: {
11845      // (sext (vzext x)) -> (vsext x)
11846      SDValue Op0 = Op.getOperand(0);
11847      SDValue Op00 = Op0.getOperand(0);
11848      SDValue Tmp1;
11849      // Hopefully, this VECTOR_SHUFFLE is just a VZEXT.
11850      if (Op0.getOpcode() == ISD::BITCAST &&
11851          Op00.getOpcode() == ISD::VECTOR_SHUFFLE)
11852        Tmp1 = LowerVectorIntExtend(Op00, DAG);
11853      if (Tmp1.getNode()) {
11854        SDValue Tmp1Op0 = Tmp1.getOperand(0);
11855        assert(Tmp1Op0.getOpcode() == X86ISD::VZEXT &&
11856               "This optimization is invalid without a VZEXT.");
11857        return DAG.getNode(X86ISD::VSEXT, dl, VT, Tmp1Op0.getOperand(0));
11858      }
11859
11860      // If the above didn't work, then just use Shift-Left + Shift-Right.
11861      Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT, Op0, ShAmt, DAG);
11862      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
11863    }
11864  }
11865}
11866
11867static SDValue LowerMEMBARRIER(SDValue Op, const X86Subtarget *Subtarget,
11868                              SelectionDAG &DAG) {
11869  DebugLoc dl = Op.getDebugLoc();
11870
11871  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
11872  // There isn't any reason to disable it if the target processor supports it.
11873  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
11874    SDValue Chain = Op.getOperand(0);
11875    SDValue Zero = DAG.getConstant(0, MVT::i32);
11876    SDValue Ops[] = {
11877      DAG.getRegister(X86::ESP, MVT::i32), // Base
11878      DAG.getTargetConstant(1, MVT::i8),   // Scale
11879      DAG.getRegister(0, MVT::i32),        // Index
11880      DAG.getTargetConstant(0, MVT::i32),  // Disp
11881      DAG.getRegister(0, MVT::i32),        // Segment.
11882      Zero,
11883      Chain
11884    };
11885    SDNode *Res =
11886      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11887                          array_lengthof(Ops));
11888    return SDValue(Res, 0);
11889  }
11890
11891  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
11892  if (!isDev)
11893    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11894
11895  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11896  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
11897  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
11898  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
11899
11900  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
11901  if (!Op1 && !Op2 && !Op3 && Op4)
11902    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
11903
11904  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
11905  if (Op1 && !Op2 && !Op3 && !Op4)
11906    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
11907
11908  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
11909  //           (MFENCE)>;
11910  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11911}
11912
11913static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
11914                                 SelectionDAG &DAG) {
11915  DebugLoc dl = Op.getDebugLoc();
11916  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
11917    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
11918  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
11919    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
11920
11921  // The only fence that needs an instruction is a sequentially-consistent
11922  // cross-thread fence.
11923  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
11924    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
11925    // no-sse2). There isn't any reason to disable it if the target processor
11926    // supports it.
11927    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
11928      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11929
11930    SDValue Chain = Op.getOperand(0);
11931    SDValue Zero = DAG.getConstant(0, MVT::i32);
11932    SDValue Ops[] = {
11933      DAG.getRegister(X86::ESP, MVT::i32), // Base
11934      DAG.getTargetConstant(1, MVT::i8),   // Scale
11935      DAG.getRegister(0, MVT::i32),        // Index
11936      DAG.getTargetConstant(0, MVT::i32),  // Disp
11937      DAG.getRegister(0, MVT::i32),        // Segment.
11938      Zero,
11939      Chain
11940    };
11941    SDNode *Res =
11942      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11943                         array_lengthof(Ops));
11944    return SDValue(Res, 0);
11945  }
11946
11947  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
11948  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11949}
11950
11951static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
11952                             SelectionDAG &DAG) {
11953  EVT T = Op.getValueType();
11954  DebugLoc DL = Op.getDebugLoc();
11955  unsigned Reg = 0;
11956  unsigned size = 0;
11957  switch(T.getSimpleVT().SimpleTy) {
11958  default: llvm_unreachable("Invalid value type!");
11959  case MVT::i8:  Reg = X86::AL;  size = 1; break;
11960  case MVT::i16: Reg = X86::AX;  size = 2; break;
11961  case MVT::i32: Reg = X86::EAX; size = 4; break;
11962  case MVT::i64:
11963    assert(Subtarget->is64Bit() && "Node not type legal!");
11964    Reg = X86::RAX; size = 8;
11965    break;
11966  }
11967  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
11968                                    Op.getOperand(2), SDValue());
11969  SDValue Ops[] = { cpIn.getValue(0),
11970                    Op.getOperand(1),
11971                    Op.getOperand(3),
11972                    DAG.getTargetConstant(size, MVT::i8),
11973                    cpIn.getValue(1) };
11974  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11975  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
11976  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
11977                                           Ops, 5, T, MMO);
11978  SDValue cpOut =
11979    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
11980  return cpOut;
11981}
11982
11983static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
11984                                     SelectionDAG &DAG) {
11985  assert(Subtarget->is64Bit() && "Result not type legalized?");
11986  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11987  SDValue TheChain = Op.getOperand(0);
11988  DebugLoc dl = Op.getDebugLoc();
11989  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11990  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
11991  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
11992                                   rax.getValue(2));
11993  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
11994                            DAG.getConstant(32, MVT::i8));
11995  SDValue Ops[] = {
11996    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
11997    rdx.getValue(1)
11998  };
11999  return DAG.getMergeValues(Ops, 2, dl);
12000}
12001
12002SDValue X86TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
12003  EVT SrcVT = Op.getOperand(0).getValueType();
12004  EVT DstVT = Op.getValueType();
12005  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
12006         Subtarget->hasMMX() && "Unexpected custom BITCAST");
12007  assert((DstVT == MVT::i64 ||
12008          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
12009         "Unexpected custom BITCAST");
12010  // i64 <=> MMX conversions are Legal.
12011  if (SrcVT==MVT::i64 && DstVT.isVector())
12012    return Op;
12013  if (DstVT==MVT::i64 && SrcVT.isVector())
12014    return Op;
12015  // MMX <=> MMX conversions are Legal.
12016  if (SrcVT.isVector() && DstVT.isVector())
12017    return Op;
12018  // All other conversions need to be expanded.
12019  return SDValue();
12020}
12021
12022static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
12023  SDNode *Node = Op.getNode();
12024  DebugLoc dl = Node->getDebugLoc();
12025  EVT T = Node->getValueType(0);
12026  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
12027                              DAG.getConstant(0, T), Node->getOperand(2));
12028  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
12029                       cast<AtomicSDNode>(Node)->getMemoryVT(),
12030                       Node->getOperand(0),
12031                       Node->getOperand(1), negOp,
12032                       cast<AtomicSDNode>(Node)->getSrcValue(),
12033                       cast<AtomicSDNode>(Node)->getAlignment(),
12034                       cast<AtomicSDNode>(Node)->getOrdering(),
12035                       cast<AtomicSDNode>(Node)->getSynchScope());
12036}
12037
12038static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
12039  SDNode *Node = Op.getNode();
12040  DebugLoc dl = Node->getDebugLoc();
12041  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
12042
12043  // Convert seq_cst store -> xchg
12044  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
12045  // FIXME: On 32-bit, store -> fist or movq would be more efficient
12046  //        (The only way to get a 16-byte store is cmpxchg16b)
12047  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
12048  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
12049      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
12050    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
12051                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
12052                                 Node->getOperand(0),
12053                                 Node->getOperand(1), Node->getOperand(2),
12054                                 cast<AtomicSDNode>(Node)->getMemOperand(),
12055                                 cast<AtomicSDNode>(Node)->getOrdering(),
12056                                 cast<AtomicSDNode>(Node)->getSynchScope());
12057    return Swap.getValue(1);
12058  }
12059  // Other atomic stores have a simple pattern.
12060  return Op;
12061}
12062
12063static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
12064  EVT VT = Op.getNode()->getValueType(0);
12065
12066  // Let legalize expand this if it isn't a legal type yet.
12067  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
12068    return SDValue();
12069
12070  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12071
12072  unsigned Opc;
12073  bool ExtraOp = false;
12074  switch (Op.getOpcode()) {
12075  default: llvm_unreachable("Invalid code");
12076  case ISD::ADDC: Opc = X86ISD::ADD; break;
12077  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
12078  case ISD::SUBC: Opc = X86ISD::SUB; break;
12079  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
12080  }
12081
12082  if (!ExtraOp)
12083    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
12084                       Op.getOperand(1));
12085  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
12086                     Op.getOperand(1), Op.getOperand(2));
12087}
12088
12089SDValue X86TargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
12090  assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit());
12091
12092  // For MacOSX, we want to call an alternative entry point: __sincos_stret,
12093  // which returns the values in two XMM registers.
12094  DebugLoc dl = Op.getDebugLoc();
12095  SDValue Arg = Op.getOperand(0);
12096  EVT ArgVT = Arg.getValueType();
12097  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
12098
12099  ArgListTy Args;
12100  ArgListEntry Entry;
12101
12102  Entry.Node = Arg;
12103  Entry.Ty = ArgTy;
12104  Entry.isSExt = false;
12105  Entry.isZExt = false;
12106  Args.push_back(Entry);
12107
12108  // Only optimize x86_64 for now. i386 is a bit messy. For f32,
12109  // the small struct {f32, f32} is returned in (eax, edx). For f64,
12110  // the results are returned via SRet in memory.
12111  const char *LibcallName = (ArgVT == MVT::f64)
12112    ? "__sincos_stret" : "__sincosf_stret";
12113  SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
12114
12115  StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL);
12116  TargetLowering::
12117    CallLoweringInfo CLI(DAG.getEntryNode(), RetTy,
12118                         false, false, false, false, 0,
12119                         CallingConv::C, /*isTaillCall=*/false,
12120                         /*doesNotRet=*/false, /*isReturnValueUsed*/true,
12121                         Callee, Args, DAG, dl);
12122  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
12123  return CallResult.first;
12124}
12125
12126/// LowerOperation - Provide custom lowering hooks for some operations.
12127///
12128SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
12129  switch (Op.getOpcode()) {
12130  default: llvm_unreachable("Should not custom lower this!");
12131  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
12132  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, Subtarget, DAG);
12133  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
12134  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
12135  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
12136  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
12137  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
12138  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
12139  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
12140  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
12141  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
12142  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
12143  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
12144  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
12145  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
12146  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
12147  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
12148  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
12149  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
12150  case ISD::SHL_PARTS:
12151  case ISD::SRA_PARTS:
12152  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
12153  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
12154  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
12155  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
12156  case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, DAG);
12157  case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, DAG);
12158  case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, DAG);
12159  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
12160  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
12161  case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
12162  case ISD::FABS:               return LowerFABS(Op, DAG);
12163  case ISD::FNEG:               return LowerFNEG(Op, DAG);
12164  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
12165  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
12166  case ISD::SETCC:              return LowerSETCC(Op, DAG);
12167  case ISD::SELECT:             return LowerSELECT(Op, DAG);
12168  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
12169  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
12170  case ISD::VASTART:            return LowerVASTART(Op, DAG);
12171  case ISD::VAARG:              return LowerVAARG(Op, DAG);
12172  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
12173  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
12174  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
12175  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
12176  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
12177  case ISD::FRAME_TO_ARGS_OFFSET:
12178                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
12179  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
12180  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
12181  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
12182  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
12183  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
12184  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
12185  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
12186  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
12187  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
12188  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
12189  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
12190  case ISD::SRA:
12191  case ISD::SRL:
12192  case ISD::SHL:                return LowerShift(Op, DAG);
12193  case ISD::SADDO:
12194  case ISD::UADDO:
12195  case ISD::SSUBO:
12196  case ISD::USUBO:
12197  case ISD::SMULO:
12198  case ISD::UMULO:              return LowerXALUO(Op, DAG);
12199  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
12200  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
12201  case ISD::ADDC:
12202  case ISD::ADDE:
12203  case ISD::SUBC:
12204  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
12205  case ISD::ADD:                return LowerADD(Op, DAG);
12206  case ISD::SUB:                return LowerSUB(Op, DAG);
12207  case ISD::SDIV:               return LowerSDIV(Op, DAG);
12208  case ISD::FSINCOS:            return LowerFSINCOS(Op, DAG);
12209  }
12210}
12211
12212static void ReplaceATOMIC_LOAD(SDNode *Node,
12213                                  SmallVectorImpl<SDValue> &Results,
12214                                  SelectionDAG &DAG) {
12215  DebugLoc dl = Node->getDebugLoc();
12216  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
12217
12218  // Convert wide load -> cmpxchg8b/cmpxchg16b
12219  // FIXME: On 32-bit, load -> fild or movq would be more efficient
12220  //        (The only way to get a 16-byte load is cmpxchg16b)
12221  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
12222  SDValue Zero = DAG.getConstant(0, VT);
12223  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
12224                               Node->getOperand(0),
12225                               Node->getOperand(1), Zero, Zero,
12226                               cast<AtomicSDNode>(Node)->getMemOperand(),
12227                               cast<AtomicSDNode>(Node)->getOrdering(),
12228                               cast<AtomicSDNode>(Node)->getSynchScope());
12229  Results.push_back(Swap.getValue(0));
12230  Results.push_back(Swap.getValue(1));
12231}
12232
12233static void
12234ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
12235                        SelectionDAG &DAG, unsigned NewOp) {
12236  DebugLoc dl = Node->getDebugLoc();
12237  assert (Node->getValueType(0) == MVT::i64 &&
12238          "Only know how to expand i64 atomics");
12239
12240  SDValue Chain = Node->getOperand(0);
12241  SDValue In1 = Node->getOperand(1);
12242  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
12243                             Node->getOperand(2), DAG.getIntPtrConstant(0));
12244  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
12245                             Node->getOperand(2), DAG.getIntPtrConstant(1));
12246  SDValue Ops[] = { Chain, In1, In2L, In2H };
12247  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
12248  SDValue Result =
12249    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
12250                            cast<MemSDNode>(Node)->getMemOperand());
12251  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
12252  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
12253  Results.push_back(Result.getValue(2));
12254}
12255
12256/// ReplaceNodeResults - Replace a node with an illegal result type
12257/// with a new node built out of custom code.
12258void X86TargetLowering::ReplaceNodeResults(SDNode *N,
12259                                           SmallVectorImpl<SDValue>&Results,
12260                                           SelectionDAG &DAG) const {
12261  DebugLoc dl = N->getDebugLoc();
12262  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12263  switch (N->getOpcode()) {
12264  default:
12265    llvm_unreachable("Do not know how to custom type legalize this operation!");
12266  case ISD::SIGN_EXTEND_INREG:
12267  case ISD::ADDC:
12268  case ISD::ADDE:
12269  case ISD::SUBC:
12270  case ISD::SUBE:
12271    // We don't want to expand or promote these.
12272    return;
12273  case ISD::FP_TO_SINT:
12274  case ISD::FP_TO_UINT: {
12275    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
12276
12277    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
12278      return;
12279
12280    std::pair<SDValue,SDValue> Vals =
12281        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
12282    SDValue FIST = Vals.first, StackSlot = Vals.second;
12283    if (FIST.getNode() != 0) {
12284      EVT VT = N->getValueType(0);
12285      // Return a load from the stack slot.
12286      if (StackSlot.getNode() != 0)
12287        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
12288                                      MachinePointerInfo(),
12289                                      false, false, false, 0));
12290      else
12291        Results.push_back(FIST);
12292    }
12293    return;
12294  }
12295  case ISD::UINT_TO_FP: {
12296    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
12297    if (N->getOperand(0).getValueType() != MVT::v2i32 ||
12298        N->getValueType(0) != MVT::v2f32)
12299      return;
12300    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
12301                                 N->getOperand(0));
12302    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
12303                                     MVT::f64);
12304    SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
12305    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
12306                             DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
12307    Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
12308    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
12309    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
12310    return;
12311  }
12312  case ISD::FP_ROUND: {
12313    if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
12314        return;
12315    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
12316    Results.push_back(V);
12317    return;
12318  }
12319  case ISD::READCYCLECOUNTER: {
12320    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12321    SDValue TheChain = N->getOperand(0);
12322    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
12323    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
12324                                     rd.getValue(1));
12325    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
12326                                     eax.getValue(2));
12327    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
12328    SDValue Ops[] = { eax, edx };
12329    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
12330    Results.push_back(edx.getValue(1));
12331    return;
12332  }
12333  case ISD::ATOMIC_CMP_SWAP: {
12334    EVT T = N->getValueType(0);
12335    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
12336    bool Regs64bit = T == MVT::i128;
12337    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
12338    SDValue cpInL, cpInH;
12339    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
12340                        DAG.getConstant(0, HalfT));
12341    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
12342                        DAG.getConstant(1, HalfT));
12343    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
12344                             Regs64bit ? X86::RAX : X86::EAX,
12345                             cpInL, SDValue());
12346    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
12347                             Regs64bit ? X86::RDX : X86::EDX,
12348                             cpInH, cpInL.getValue(1));
12349    SDValue swapInL, swapInH;
12350    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
12351                          DAG.getConstant(0, HalfT));
12352    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
12353                          DAG.getConstant(1, HalfT));
12354    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
12355                               Regs64bit ? X86::RBX : X86::EBX,
12356                               swapInL, cpInH.getValue(1));
12357    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
12358                               Regs64bit ? X86::RCX : X86::ECX,
12359                               swapInH, swapInL.getValue(1));
12360    SDValue Ops[] = { swapInH.getValue(0),
12361                      N->getOperand(1),
12362                      swapInH.getValue(1) };
12363    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12364    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
12365    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
12366                                  X86ISD::LCMPXCHG8_DAG;
12367    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
12368                                             Ops, 3, T, MMO);
12369    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
12370                                        Regs64bit ? X86::RAX : X86::EAX,
12371                                        HalfT, Result.getValue(1));
12372    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
12373                                        Regs64bit ? X86::RDX : X86::EDX,
12374                                        HalfT, cpOutL.getValue(2));
12375    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
12376    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
12377    Results.push_back(cpOutH.getValue(1));
12378    return;
12379  }
12380  case ISD::ATOMIC_LOAD_ADD:
12381  case ISD::ATOMIC_LOAD_AND:
12382  case ISD::ATOMIC_LOAD_NAND:
12383  case ISD::ATOMIC_LOAD_OR:
12384  case ISD::ATOMIC_LOAD_SUB:
12385  case ISD::ATOMIC_LOAD_XOR:
12386  case ISD::ATOMIC_LOAD_MAX:
12387  case ISD::ATOMIC_LOAD_MIN:
12388  case ISD::ATOMIC_LOAD_UMAX:
12389  case ISD::ATOMIC_LOAD_UMIN:
12390  case ISD::ATOMIC_SWAP: {
12391    unsigned Opc;
12392    switch (N->getOpcode()) {
12393    default: llvm_unreachable("Unexpected opcode");
12394    case ISD::ATOMIC_LOAD_ADD:
12395      Opc = X86ISD::ATOMADD64_DAG;
12396      break;
12397    case ISD::ATOMIC_LOAD_AND:
12398      Opc = X86ISD::ATOMAND64_DAG;
12399      break;
12400    case ISD::ATOMIC_LOAD_NAND:
12401      Opc = X86ISD::ATOMNAND64_DAG;
12402      break;
12403    case ISD::ATOMIC_LOAD_OR:
12404      Opc = X86ISD::ATOMOR64_DAG;
12405      break;
12406    case ISD::ATOMIC_LOAD_SUB:
12407      Opc = X86ISD::ATOMSUB64_DAG;
12408      break;
12409    case ISD::ATOMIC_LOAD_XOR:
12410      Opc = X86ISD::ATOMXOR64_DAG;
12411      break;
12412    case ISD::ATOMIC_LOAD_MAX:
12413      Opc = X86ISD::ATOMMAX64_DAG;
12414      break;
12415    case ISD::ATOMIC_LOAD_MIN:
12416      Opc = X86ISD::ATOMMIN64_DAG;
12417      break;
12418    case ISD::ATOMIC_LOAD_UMAX:
12419      Opc = X86ISD::ATOMUMAX64_DAG;
12420      break;
12421    case ISD::ATOMIC_LOAD_UMIN:
12422      Opc = X86ISD::ATOMUMIN64_DAG;
12423      break;
12424    case ISD::ATOMIC_SWAP:
12425      Opc = X86ISD::ATOMSWAP64_DAG;
12426      break;
12427    }
12428    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
12429    return;
12430  }
12431  case ISD::ATOMIC_LOAD:
12432    ReplaceATOMIC_LOAD(N, Results, DAG);
12433  }
12434}
12435
12436const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
12437  switch (Opcode) {
12438  default: return NULL;
12439  case X86ISD::BSF:                return "X86ISD::BSF";
12440  case X86ISD::BSR:                return "X86ISD::BSR";
12441  case X86ISD::SHLD:               return "X86ISD::SHLD";
12442  case X86ISD::SHRD:               return "X86ISD::SHRD";
12443  case X86ISD::FAND:               return "X86ISD::FAND";
12444  case X86ISD::FOR:                return "X86ISD::FOR";
12445  case X86ISD::FXOR:               return "X86ISD::FXOR";
12446  case X86ISD::FSRL:               return "X86ISD::FSRL";
12447  case X86ISD::FILD:               return "X86ISD::FILD";
12448  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
12449  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
12450  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
12451  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
12452  case X86ISD::FLD:                return "X86ISD::FLD";
12453  case X86ISD::FST:                return "X86ISD::FST";
12454  case X86ISD::CALL:               return "X86ISD::CALL";
12455  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
12456  case X86ISD::BT:                 return "X86ISD::BT";
12457  case X86ISD::CMP:                return "X86ISD::CMP";
12458  case X86ISD::COMI:               return "X86ISD::COMI";
12459  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
12460  case X86ISD::SETCC:              return "X86ISD::SETCC";
12461  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
12462  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
12463  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
12464  case X86ISD::CMOV:               return "X86ISD::CMOV";
12465  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
12466  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
12467  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
12468  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
12469  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
12470  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
12471  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
12472  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
12473  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
12474  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
12475  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
12476  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
12477  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
12478  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
12479  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
12480  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
12481  case X86ISD::BLENDI:             return "X86ISD::BLENDI";
12482  case X86ISD::SUBUS:              return "X86ISD::SUBUS";
12483  case X86ISD::HADD:               return "X86ISD::HADD";
12484  case X86ISD::HSUB:               return "X86ISD::HSUB";
12485  case X86ISD::FHADD:              return "X86ISD::FHADD";
12486  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
12487  case X86ISD::UMAX:               return "X86ISD::UMAX";
12488  case X86ISD::UMIN:               return "X86ISD::UMIN";
12489  case X86ISD::SMAX:               return "X86ISD::SMAX";
12490  case X86ISD::SMIN:               return "X86ISD::SMIN";
12491  case X86ISD::FMAX:               return "X86ISD::FMAX";
12492  case X86ISD::FMIN:               return "X86ISD::FMIN";
12493  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
12494  case X86ISD::FMINC:              return "X86ISD::FMINC";
12495  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
12496  case X86ISD::FRCP:               return "X86ISD::FRCP";
12497  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
12498  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
12499  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
12500  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
12501  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
12502  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
12503  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
12504  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
12505  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
12506  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
12507  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
12508  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
12509  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
12510  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
12511  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
12512  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
12513  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
12514  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
12515  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
12516  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
12517  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
12518  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
12519  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
12520  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
12521  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
12522  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
12523  case X86ISD::VSHL:               return "X86ISD::VSHL";
12524  case X86ISD::VSRL:               return "X86ISD::VSRL";
12525  case X86ISD::VSRA:               return "X86ISD::VSRA";
12526  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
12527  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
12528  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
12529  case X86ISD::CMPP:               return "X86ISD::CMPP";
12530  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
12531  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
12532  case X86ISD::ADD:                return "X86ISD::ADD";
12533  case X86ISD::SUB:                return "X86ISD::SUB";
12534  case X86ISD::ADC:                return "X86ISD::ADC";
12535  case X86ISD::SBB:                return "X86ISD::SBB";
12536  case X86ISD::SMUL:               return "X86ISD::SMUL";
12537  case X86ISD::UMUL:               return "X86ISD::UMUL";
12538  case X86ISD::INC:                return "X86ISD::INC";
12539  case X86ISD::DEC:                return "X86ISD::DEC";
12540  case X86ISD::OR:                 return "X86ISD::OR";
12541  case X86ISD::XOR:                return "X86ISD::XOR";
12542  case X86ISD::AND:                return "X86ISD::AND";
12543  case X86ISD::BLSI:               return "X86ISD::BLSI";
12544  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
12545  case X86ISD::BLSR:               return "X86ISD::BLSR";
12546  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
12547  case X86ISD::PTEST:              return "X86ISD::PTEST";
12548  case X86ISD::TESTP:              return "X86ISD::TESTP";
12549  case X86ISD::PALIGNR:            return "X86ISD::PALIGNR";
12550  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
12551  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
12552  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
12553  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
12554  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
12555  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
12556  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
12557  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
12558  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
12559  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
12560  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
12561  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
12562  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
12563  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
12564  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
12565  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
12566  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
12567  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
12568  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
12569  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
12570  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
12571  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
12572  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
12573  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
12574  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
12575  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
12576  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
12577  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
12578  case X86ISD::SAHF:               return "X86ISD::SAHF";
12579  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
12580  case X86ISD::FMADD:              return "X86ISD::FMADD";
12581  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
12582  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
12583  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
12584  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
12585  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
12586  case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
12587  case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
12588  }
12589}
12590
12591// isLegalAddressingMode - Return true if the addressing mode represented
12592// by AM is legal for this target, for a load/store of the specified type.
12593bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
12594                                              Type *Ty) const {
12595  // X86 supports extremely general addressing modes.
12596  CodeModel::Model M = getTargetMachine().getCodeModel();
12597  Reloc::Model R = getTargetMachine().getRelocationModel();
12598
12599  // X86 allows a sign-extended 32-bit immediate field as a displacement.
12600  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
12601    return false;
12602
12603  if (AM.BaseGV) {
12604    unsigned GVFlags =
12605      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
12606
12607    // If a reference to this global requires an extra load, we can't fold it.
12608    if (isGlobalStubReference(GVFlags))
12609      return false;
12610
12611    // If BaseGV requires a register for the PIC base, we cannot also have a
12612    // BaseReg specified.
12613    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
12614      return false;
12615
12616    // If lower 4G is not available, then we must use rip-relative addressing.
12617    if ((M != CodeModel::Small || R != Reloc::Static) &&
12618        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
12619      return false;
12620  }
12621
12622  switch (AM.Scale) {
12623  case 0:
12624  case 1:
12625  case 2:
12626  case 4:
12627  case 8:
12628    // These scales always work.
12629    break;
12630  case 3:
12631  case 5:
12632  case 9:
12633    // These scales are formed with basereg+scalereg.  Only accept if there is
12634    // no basereg yet.
12635    if (AM.HasBaseReg)
12636      return false;
12637    break;
12638  default:  // Other stuff never works.
12639    return false;
12640  }
12641
12642  return true;
12643}
12644
12645bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
12646  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
12647    return false;
12648  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
12649  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
12650  return NumBits1 > NumBits2;
12651}
12652
12653bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
12654  return isInt<32>(Imm);
12655}
12656
12657bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
12658  // Can also use sub to handle negated immediates.
12659  return isInt<32>(Imm);
12660}
12661
12662bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
12663  if (!VT1.isInteger() || !VT2.isInteger())
12664    return false;
12665  unsigned NumBits1 = VT1.getSizeInBits();
12666  unsigned NumBits2 = VT2.getSizeInBits();
12667  return NumBits1 > NumBits2;
12668}
12669
12670bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
12671  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12672  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
12673}
12674
12675bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
12676  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12677  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
12678}
12679
12680bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
12681  EVT VT1 = Val.getValueType();
12682  if (isZExtFree(VT1, VT2))
12683    return true;
12684
12685  if (Val.getOpcode() != ISD::LOAD)
12686    return false;
12687
12688  if (!VT1.isSimple() || !VT1.isInteger() ||
12689      !VT2.isSimple() || !VT2.isInteger())
12690    return false;
12691
12692  switch (VT1.getSimpleVT().SimpleTy) {
12693  default: break;
12694  case MVT::i8:
12695  case MVT::i16:
12696  case MVT::i32:
12697    // X86 has 8, 16, and 32-bit zero-extending loads.
12698    return true;
12699  }
12700
12701  return false;
12702}
12703
12704bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
12705  // i16 instructions are longer (0x66 prefix) and potentially slower.
12706  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
12707}
12708
12709/// isShuffleMaskLegal - Targets can use this to indicate that they only
12710/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
12711/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
12712/// are assumed to be legal.
12713bool
12714X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
12715                                      EVT VT) const {
12716  // Very little shuffling can be done for 64-bit vectors right now.
12717  if (VT.getSizeInBits() == 64)
12718    return false;
12719
12720  // FIXME: pshufb, blends, shifts.
12721  return (VT.getVectorNumElements() == 2 ||
12722          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
12723          isMOVLMask(M, VT) ||
12724          isSHUFPMask(M, VT, Subtarget->hasFp256()) ||
12725          isPSHUFDMask(M, VT) ||
12726          isPSHUFHWMask(M, VT, Subtarget->hasInt256()) ||
12727          isPSHUFLWMask(M, VT, Subtarget->hasInt256()) ||
12728          isPALIGNRMask(M, VT, Subtarget) ||
12729          isUNPCKLMask(M, VT, Subtarget->hasInt256()) ||
12730          isUNPCKHMask(M, VT, Subtarget->hasInt256()) ||
12731          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasInt256()) ||
12732          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasInt256()));
12733}
12734
12735bool
12736X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
12737                                          EVT VT) const {
12738  unsigned NumElts = VT.getVectorNumElements();
12739  // FIXME: This collection of masks seems suspect.
12740  if (NumElts == 2)
12741    return true;
12742  if (NumElts == 4 && VT.is128BitVector()) {
12743    return (isMOVLMask(Mask, VT)  ||
12744            isCommutedMOVLMask(Mask, VT, true) ||
12745            isSHUFPMask(Mask, VT, Subtarget->hasFp256()) ||
12746            isSHUFPMask(Mask, VT, Subtarget->hasFp256(), /* Commuted */ true));
12747  }
12748  return false;
12749}
12750
12751//===----------------------------------------------------------------------===//
12752//                           X86 Scheduler Hooks
12753//===----------------------------------------------------------------------===//
12754
12755/// Utility function to emit xbegin specifying the start of an RTM region.
12756static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
12757                                     const TargetInstrInfo *TII) {
12758  DebugLoc DL = MI->getDebugLoc();
12759
12760  const BasicBlock *BB = MBB->getBasicBlock();
12761  MachineFunction::iterator I = MBB;
12762  ++I;
12763
12764  // For the v = xbegin(), we generate
12765  //
12766  // thisMBB:
12767  //  xbegin sinkMBB
12768  //
12769  // mainMBB:
12770  //  eax = -1
12771  //
12772  // sinkMBB:
12773  //  v = eax
12774
12775  MachineBasicBlock *thisMBB = MBB;
12776  MachineFunction *MF = MBB->getParent();
12777  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12778  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12779  MF->insert(I, mainMBB);
12780  MF->insert(I, sinkMBB);
12781
12782  // Transfer the remainder of BB and its successor edges to sinkMBB.
12783  sinkMBB->splice(sinkMBB->begin(), MBB,
12784                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12785  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12786
12787  // thisMBB:
12788  //  xbegin sinkMBB
12789  //  # fallthrough to mainMBB
12790  //  # abortion to sinkMBB
12791  BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
12792  thisMBB->addSuccessor(mainMBB);
12793  thisMBB->addSuccessor(sinkMBB);
12794
12795  // mainMBB:
12796  //  EAX = -1
12797  BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
12798  mainMBB->addSuccessor(sinkMBB);
12799
12800  // sinkMBB:
12801  // EAX is live into the sinkMBB
12802  sinkMBB->addLiveIn(X86::EAX);
12803  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12804          TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
12805    .addReg(X86::EAX);
12806
12807  MI->eraseFromParent();
12808  return sinkMBB;
12809}
12810
12811// Get CMPXCHG opcode for the specified data type.
12812static unsigned getCmpXChgOpcode(EVT VT) {
12813  switch (VT.getSimpleVT().SimpleTy) {
12814  case MVT::i8:  return X86::LCMPXCHG8;
12815  case MVT::i16: return X86::LCMPXCHG16;
12816  case MVT::i32: return X86::LCMPXCHG32;
12817  case MVT::i64: return X86::LCMPXCHG64;
12818  default:
12819    break;
12820  }
12821  llvm_unreachable("Invalid operand size!");
12822}
12823
12824// Get LOAD opcode for the specified data type.
12825static unsigned getLoadOpcode(EVT VT) {
12826  switch (VT.getSimpleVT().SimpleTy) {
12827  case MVT::i8:  return X86::MOV8rm;
12828  case MVT::i16: return X86::MOV16rm;
12829  case MVT::i32: return X86::MOV32rm;
12830  case MVT::i64: return X86::MOV64rm;
12831  default:
12832    break;
12833  }
12834  llvm_unreachable("Invalid operand size!");
12835}
12836
12837// Get opcode of the non-atomic one from the specified atomic instruction.
12838static unsigned getNonAtomicOpcode(unsigned Opc) {
12839  switch (Opc) {
12840  case X86::ATOMAND8:  return X86::AND8rr;
12841  case X86::ATOMAND16: return X86::AND16rr;
12842  case X86::ATOMAND32: return X86::AND32rr;
12843  case X86::ATOMAND64: return X86::AND64rr;
12844  case X86::ATOMOR8:   return X86::OR8rr;
12845  case X86::ATOMOR16:  return X86::OR16rr;
12846  case X86::ATOMOR32:  return X86::OR32rr;
12847  case X86::ATOMOR64:  return X86::OR64rr;
12848  case X86::ATOMXOR8:  return X86::XOR8rr;
12849  case X86::ATOMXOR16: return X86::XOR16rr;
12850  case X86::ATOMXOR32: return X86::XOR32rr;
12851  case X86::ATOMXOR64: return X86::XOR64rr;
12852  }
12853  llvm_unreachable("Unhandled atomic-load-op opcode!");
12854}
12855
12856// Get opcode of the non-atomic one from the specified atomic instruction with
12857// extra opcode.
12858static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
12859                                               unsigned &ExtraOpc) {
12860  switch (Opc) {
12861  case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
12862  case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
12863  case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
12864  case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
12865  case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
12866  case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
12867  case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
12868  case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
12869  case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
12870  case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
12871  case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
12872  case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
12873  case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
12874  case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
12875  case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
12876  case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
12877  case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
12878  case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
12879  case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
12880  case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
12881  }
12882  llvm_unreachable("Unhandled atomic-load-op opcode!");
12883}
12884
12885// Get opcode of the non-atomic one from the specified atomic instruction for
12886// 64-bit data type on 32-bit target.
12887static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
12888  switch (Opc) {
12889  case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
12890  case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
12891  case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
12892  case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
12893  case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
12894  case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
12895  case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr;
12896  case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr;
12897  case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr;
12898  case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr;
12899  }
12900  llvm_unreachable("Unhandled atomic-load-op opcode!");
12901}
12902
12903// Get opcode of the non-atomic one from the specified atomic instruction for
12904// 64-bit data type on 32-bit target with extra opcode.
12905static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
12906                                                   unsigned &HiOpc,
12907                                                   unsigned &ExtraOpc) {
12908  switch (Opc) {
12909  case X86::ATOMNAND6432:
12910    ExtraOpc = X86::NOT32r;
12911    HiOpc = X86::AND32rr;
12912    return X86::AND32rr;
12913  }
12914  llvm_unreachable("Unhandled atomic-load-op opcode!");
12915}
12916
12917// Get pseudo CMOV opcode from the specified data type.
12918static unsigned getPseudoCMOVOpc(EVT VT) {
12919  switch (VT.getSimpleVT().SimpleTy) {
12920  case MVT::i8:  return X86::CMOV_GR8;
12921  case MVT::i16: return X86::CMOV_GR16;
12922  case MVT::i32: return X86::CMOV_GR32;
12923  default:
12924    break;
12925  }
12926  llvm_unreachable("Unknown CMOV opcode!");
12927}
12928
12929// EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
12930// They will be translated into a spin-loop or compare-exchange loop from
12931//
12932//    ...
12933//    dst = atomic-fetch-op MI.addr, MI.val
12934//    ...
12935//
12936// to
12937//
12938//    ...
12939//    t1 = LOAD MI.addr
12940// loop:
12941//    t4 = phi(t1, t3 / loop)
12942//    t2 = OP MI.val, t4
12943//    EAX = t4
12944//    LCMPXCHG [MI.addr], t2, [EAX is implicitly used & defined]
12945//    t3 = EAX
12946//    JNE loop
12947// sink:
12948//    dst = t3
12949//    ...
12950MachineBasicBlock *
12951X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
12952                                       MachineBasicBlock *MBB) const {
12953  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12954  DebugLoc DL = MI->getDebugLoc();
12955
12956  MachineFunction *MF = MBB->getParent();
12957  MachineRegisterInfo &MRI = MF->getRegInfo();
12958
12959  const BasicBlock *BB = MBB->getBasicBlock();
12960  MachineFunction::iterator I = MBB;
12961  ++I;
12962
12963  assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
12964         "Unexpected number of operands");
12965
12966  assert(MI->hasOneMemOperand() &&
12967         "Expected atomic-load-op to have one memoperand");
12968
12969  // Memory Reference
12970  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12971  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12972
12973  unsigned DstReg, SrcReg;
12974  unsigned MemOpndSlot;
12975
12976  unsigned CurOp = 0;
12977
12978  DstReg = MI->getOperand(CurOp++).getReg();
12979  MemOpndSlot = CurOp;
12980  CurOp += X86::AddrNumOperands;
12981  SrcReg = MI->getOperand(CurOp++).getReg();
12982
12983  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
12984  MVT::SimpleValueType VT = *RC->vt_begin();
12985  unsigned t1 = MRI.createVirtualRegister(RC);
12986  unsigned t2 = MRI.createVirtualRegister(RC);
12987  unsigned t3 = MRI.createVirtualRegister(RC);
12988  unsigned t4 = MRI.createVirtualRegister(RC);
12989  unsigned PhyReg = getX86SubSuperRegister(X86::EAX, VT);
12990
12991  unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
12992  unsigned LOADOpc = getLoadOpcode(VT);
12993
12994  // For the atomic load-arith operator, we generate
12995  //
12996  //  thisMBB:
12997  //    t1 = LOAD [MI.addr]
12998  //  mainMBB:
12999  //    t4 = phi(t1 / thisMBB, t3 / mainMBB)
13000  //    t1 = OP MI.val, EAX
13001  //    EAX = t4
13002  //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
13003  //    t3 = EAX
13004  //    JNE mainMBB
13005  //  sinkMBB:
13006  //    dst = t3
13007
13008  MachineBasicBlock *thisMBB = MBB;
13009  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13010  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13011  MF->insert(I, mainMBB);
13012  MF->insert(I, sinkMBB);
13013
13014  MachineInstrBuilder MIB;
13015
13016  // Transfer the remainder of BB and its successor edges to sinkMBB.
13017  sinkMBB->splice(sinkMBB->begin(), MBB,
13018                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
13019  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
13020
13021  // thisMBB:
13022  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1);
13023  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13024    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13025    if (NewMO.isReg())
13026      NewMO.setIsKill(false);
13027    MIB.addOperand(NewMO);
13028  }
13029  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
13030    unsigned flags = (*MMOI)->getFlags();
13031    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
13032    MachineMemOperand *MMO =
13033      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
13034                               (*MMOI)->getSize(),
13035                               (*MMOI)->getBaseAlignment(),
13036                               (*MMOI)->getTBAAInfo(),
13037                               (*MMOI)->getRanges());
13038    MIB.addMemOperand(MMO);
13039  }
13040
13041  thisMBB->addSuccessor(mainMBB);
13042
13043  // mainMBB:
13044  MachineBasicBlock *origMainMBB = mainMBB;
13045
13046  // Add a PHI.
13047  MachineInstr *Phi = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4)
13048                        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
13049
13050  unsigned Opc = MI->getOpcode();
13051  switch (Opc) {
13052  default:
13053    llvm_unreachable("Unhandled atomic-load-op opcode!");
13054  case X86::ATOMAND8:
13055  case X86::ATOMAND16:
13056  case X86::ATOMAND32:
13057  case X86::ATOMAND64:
13058  case X86::ATOMOR8:
13059  case X86::ATOMOR16:
13060  case X86::ATOMOR32:
13061  case X86::ATOMOR64:
13062  case X86::ATOMXOR8:
13063  case X86::ATOMXOR16:
13064  case X86::ATOMXOR32:
13065  case X86::ATOMXOR64: {
13066    unsigned ARITHOpc = getNonAtomicOpcode(Opc);
13067    BuildMI(mainMBB, DL, TII->get(ARITHOpc), t2).addReg(SrcReg)
13068      .addReg(t4);
13069    break;
13070  }
13071  case X86::ATOMNAND8:
13072  case X86::ATOMNAND16:
13073  case X86::ATOMNAND32:
13074  case X86::ATOMNAND64: {
13075    unsigned Tmp = MRI.createVirtualRegister(RC);
13076    unsigned NOTOpc;
13077    unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
13078    BuildMI(mainMBB, DL, TII->get(ANDOpc), Tmp).addReg(SrcReg)
13079      .addReg(t4);
13080    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2).addReg(Tmp);
13081    break;
13082  }
13083  case X86::ATOMMAX8:
13084  case X86::ATOMMAX16:
13085  case X86::ATOMMAX32:
13086  case X86::ATOMMAX64:
13087  case X86::ATOMMIN8:
13088  case X86::ATOMMIN16:
13089  case X86::ATOMMIN32:
13090  case X86::ATOMMIN64:
13091  case X86::ATOMUMAX8:
13092  case X86::ATOMUMAX16:
13093  case X86::ATOMUMAX32:
13094  case X86::ATOMUMAX64:
13095  case X86::ATOMUMIN8:
13096  case X86::ATOMUMIN16:
13097  case X86::ATOMUMIN32:
13098  case X86::ATOMUMIN64: {
13099    unsigned CMPOpc;
13100    unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
13101
13102    BuildMI(mainMBB, DL, TII->get(CMPOpc))
13103      .addReg(SrcReg)
13104      .addReg(t4);
13105
13106    if (Subtarget->hasCMov()) {
13107      if (VT != MVT::i8) {
13108        // Native support
13109        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
13110          .addReg(SrcReg)
13111          .addReg(t4);
13112      } else {
13113        // Promote i8 to i32 to use CMOV32
13114        const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
13115        const TargetRegisterClass *RC32 =
13116          TRI->getSubClassWithSubReg(getRegClassFor(MVT::i32), X86::sub_8bit);
13117        unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
13118        unsigned AccReg32 = MRI.createVirtualRegister(RC32);
13119        unsigned Tmp = MRI.createVirtualRegister(RC32);
13120
13121        unsigned Undef = MRI.createVirtualRegister(RC32);
13122        BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
13123
13124        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
13125          .addReg(Undef)
13126          .addReg(SrcReg)
13127          .addImm(X86::sub_8bit);
13128        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
13129          .addReg(Undef)
13130          .addReg(t4)
13131          .addImm(X86::sub_8bit);
13132
13133        BuildMI(mainMBB, DL, TII->get(CMOVOpc), Tmp)
13134          .addReg(SrcReg32)
13135          .addReg(AccReg32);
13136
13137        BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t2)
13138          .addReg(Tmp, 0, X86::sub_8bit);
13139      }
13140    } else {
13141      // Use pseudo select and lower them.
13142      assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
13143             "Invalid atomic-load-op transformation!");
13144      unsigned SelOpc = getPseudoCMOVOpc(VT);
13145      X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
13146      assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
13147      MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t2)
13148              .addReg(SrcReg).addReg(t4)
13149              .addImm(CC);
13150      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13151      // Replace the original PHI node as mainMBB is changed after CMOV
13152      // lowering.
13153      BuildMI(*origMainMBB, Phi, DL, TII->get(X86::PHI), t4)
13154        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
13155      Phi->eraseFromParent();
13156    }
13157    break;
13158  }
13159  }
13160
13161  // Copy PhyReg back from virtual register.
13162  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), PhyReg)
13163    .addReg(t4);
13164
13165  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
13166  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13167    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13168    if (NewMO.isReg())
13169      NewMO.setIsKill(false);
13170    MIB.addOperand(NewMO);
13171  }
13172  MIB.addReg(t2);
13173  MIB.setMemRefs(MMOBegin, MMOEnd);
13174
13175  // Copy PhyReg back to virtual register.
13176  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3)
13177    .addReg(PhyReg);
13178
13179  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
13180
13181  mainMBB->addSuccessor(origMainMBB);
13182  mainMBB->addSuccessor(sinkMBB);
13183
13184  // sinkMBB:
13185  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13186          TII->get(TargetOpcode::COPY), DstReg)
13187    .addReg(t3);
13188
13189  MI->eraseFromParent();
13190  return sinkMBB;
13191}
13192
13193// EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
13194// instructions. They will be translated into a spin-loop or compare-exchange
13195// loop from
13196//
13197//    ...
13198//    dst = atomic-fetch-op MI.addr, MI.val
13199//    ...
13200//
13201// to
13202//
13203//    ...
13204//    t1L = LOAD [MI.addr + 0]
13205//    t1H = LOAD [MI.addr + 4]
13206// loop:
13207//    t4L = phi(t1L, t3L / loop)
13208//    t4H = phi(t1H, t3H / loop)
13209//    t2L = OP MI.val.lo, t4L
13210//    t2H = OP MI.val.hi, t4H
13211//    EAX = t4L
13212//    EDX = t4H
13213//    EBX = t2L
13214//    ECX = t2H
13215//    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
13216//    t3L = EAX
13217//    t3H = EDX
13218//    JNE loop
13219// sink:
13220//    dstL = t3L
13221//    dstH = t3H
13222//    ...
13223MachineBasicBlock *
13224X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
13225                                           MachineBasicBlock *MBB) const {
13226  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13227  DebugLoc DL = MI->getDebugLoc();
13228
13229  MachineFunction *MF = MBB->getParent();
13230  MachineRegisterInfo &MRI = MF->getRegInfo();
13231
13232  const BasicBlock *BB = MBB->getBasicBlock();
13233  MachineFunction::iterator I = MBB;
13234  ++I;
13235
13236  assert(MI->getNumOperands() <= X86::AddrNumOperands + 7 &&
13237         "Unexpected number of operands");
13238
13239  assert(MI->hasOneMemOperand() &&
13240         "Expected atomic-load-op32 to have one memoperand");
13241
13242  // Memory Reference
13243  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13244  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13245
13246  unsigned DstLoReg, DstHiReg;
13247  unsigned SrcLoReg, SrcHiReg;
13248  unsigned MemOpndSlot;
13249
13250  unsigned CurOp = 0;
13251
13252  DstLoReg = MI->getOperand(CurOp++).getReg();
13253  DstHiReg = MI->getOperand(CurOp++).getReg();
13254  MemOpndSlot = CurOp;
13255  CurOp += X86::AddrNumOperands;
13256  SrcLoReg = MI->getOperand(CurOp++).getReg();
13257  SrcHiReg = MI->getOperand(CurOp++).getReg();
13258
13259  const TargetRegisterClass *RC = &X86::GR32RegClass;
13260  const TargetRegisterClass *RC8 = &X86::GR8RegClass;
13261
13262  unsigned t1L = MRI.createVirtualRegister(RC);
13263  unsigned t1H = MRI.createVirtualRegister(RC);
13264  unsigned t2L = MRI.createVirtualRegister(RC);
13265  unsigned t2H = MRI.createVirtualRegister(RC);
13266  unsigned t3L = MRI.createVirtualRegister(RC);
13267  unsigned t3H = MRI.createVirtualRegister(RC);
13268  unsigned t4L = MRI.createVirtualRegister(RC);
13269  unsigned t4H = MRI.createVirtualRegister(RC);
13270
13271  unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
13272  unsigned LOADOpc = X86::MOV32rm;
13273
13274  // For the atomic load-arith operator, we generate
13275  //
13276  //  thisMBB:
13277  //    t1L = LOAD [MI.addr + 0]
13278  //    t1H = LOAD [MI.addr + 4]
13279  //  mainMBB:
13280  //    t4L = phi(t1L / thisMBB, t3L / mainMBB)
13281  //    t4H = phi(t1H / thisMBB, t3H / mainMBB)
13282  //    t2L = OP MI.val.lo, t4L
13283  //    t2H = OP MI.val.hi, t4H
13284  //    EBX = t2L
13285  //    ECX = t2H
13286  //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
13287  //    t3L = EAX
13288  //    t3H = EDX
13289  //    JNE loop
13290  //  sinkMBB:
13291  //    dstL = t3L
13292  //    dstH = t3H
13293
13294  MachineBasicBlock *thisMBB = MBB;
13295  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13296  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13297  MF->insert(I, mainMBB);
13298  MF->insert(I, sinkMBB);
13299
13300  MachineInstrBuilder MIB;
13301
13302  // Transfer the remainder of BB and its successor edges to sinkMBB.
13303  sinkMBB->splice(sinkMBB->begin(), MBB,
13304                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
13305  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
13306
13307  // thisMBB:
13308  // Lo
13309  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1L);
13310  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13311    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13312    if (NewMO.isReg())
13313      NewMO.setIsKill(false);
13314    MIB.addOperand(NewMO);
13315  }
13316  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
13317    unsigned flags = (*MMOI)->getFlags();
13318    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
13319    MachineMemOperand *MMO =
13320      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
13321                               (*MMOI)->getSize(),
13322                               (*MMOI)->getBaseAlignment(),
13323                               (*MMOI)->getTBAAInfo(),
13324                               (*MMOI)->getRanges());
13325    MIB.addMemOperand(MMO);
13326  };
13327  MachineInstr *LowMI = MIB;
13328
13329  // Hi
13330  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1H);
13331  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13332    if (i == X86::AddrDisp) {
13333      MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
13334    } else {
13335      MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13336      if (NewMO.isReg())
13337        NewMO.setIsKill(false);
13338      MIB.addOperand(NewMO);
13339    }
13340  }
13341  MIB.setMemRefs(LowMI->memoperands_begin(), LowMI->memoperands_end());
13342
13343  thisMBB->addSuccessor(mainMBB);
13344
13345  // mainMBB:
13346  MachineBasicBlock *origMainMBB = mainMBB;
13347
13348  // Add PHIs.
13349  MachineInstr *PhiL = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4L)
13350                        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
13351  MachineInstr *PhiH = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4H)
13352                        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
13353
13354  unsigned Opc = MI->getOpcode();
13355  switch (Opc) {
13356  default:
13357    llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
13358  case X86::ATOMAND6432:
13359  case X86::ATOMOR6432:
13360  case X86::ATOMXOR6432:
13361  case X86::ATOMADD6432:
13362  case X86::ATOMSUB6432: {
13363    unsigned HiOpc;
13364    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13365    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(t4L)
13366      .addReg(SrcLoReg);
13367    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(t4H)
13368      .addReg(SrcHiReg);
13369    break;
13370  }
13371  case X86::ATOMNAND6432: {
13372    unsigned HiOpc, NOTOpc;
13373    unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
13374    unsigned TmpL = MRI.createVirtualRegister(RC);
13375    unsigned TmpH = MRI.createVirtualRegister(RC);
13376    BuildMI(mainMBB, DL, TII->get(LoOpc), TmpL).addReg(SrcLoReg)
13377      .addReg(t4L);
13378    BuildMI(mainMBB, DL, TII->get(HiOpc), TmpH).addReg(SrcHiReg)
13379      .addReg(t4H);
13380    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2L).addReg(TmpL);
13381    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2H).addReg(TmpH);
13382    break;
13383  }
13384  case X86::ATOMMAX6432:
13385  case X86::ATOMMIN6432:
13386  case X86::ATOMUMAX6432:
13387  case X86::ATOMUMIN6432: {
13388    unsigned HiOpc;
13389    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13390    unsigned cL = MRI.createVirtualRegister(RC8);
13391    unsigned cH = MRI.createVirtualRegister(RC8);
13392    unsigned cL32 = MRI.createVirtualRegister(RC);
13393    unsigned cH32 = MRI.createVirtualRegister(RC);
13394    unsigned cc = MRI.createVirtualRegister(RC);
13395    // cl := cmp src_lo, lo
13396    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
13397      .addReg(SrcLoReg).addReg(t4L);
13398    BuildMI(mainMBB, DL, TII->get(LoOpc), cL);
13399    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL);
13400    // ch := cmp src_hi, hi
13401    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
13402      .addReg(SrcHiReg).addReg(t4H);
13403    BuildMI(mainMBB, DL, TII->get(HiOpc), cH);
13404    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH);
13405    // cc := if (src_hi == hi) ? cl : ch;
13406    if (Subtarget->hasCMov()) {
13407      BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc)
13408        .addReg(cH32).addReg(cL32);
13409    } else {
13410      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc)
13411              .addReg(cH32).addReg(cL32)
13412              .addImm(X86::COND_E);
13413      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13414    }
13415    BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc);
13416    if (Subtarget->hasCMov()) {
13417      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2L)
13418        .addReg(SrcLoReg).addReg(t4L);
13419      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2H)
13420        .addReg(SrcHiReg).addReg(t4H);
13421    } else {
13422      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2L)
13423              .addReg(SrcLoReg).addReg(t4L)
13424              .addImm(X86::COND_NE);
13425      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13426      // As the lowered CMOV won't clobber EFLAGS, we could reuse it for the
13427      // 2nd CMOV lowering.
13428      mainMBB->addLiveIn(X86::EFLAGS);
13429      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2H)
13430              .addReg(SrcHiReg).addReg(t4H)
13431              .addImm(X86::COND_NE);
13432      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13433      // Replace the original PHI node as mainMBB is changed after CMOV
13434      // lowering.
13435      BuildMI(*origMainMBB, PhiL, DL, TII->get(X86::PHI), t4L)
13436        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
13437      BuildMI(*origMainMBB, PhiH, DL, TII->get(X86::PHI), t4H)
13438        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
13439      PhiL->eraseFromParent();
13440      PhiH->eraseFromParent();
13441    }
13442    break;
13443  }
13444  case X86::ATOMSWAP6432: {
13445    unsigned HiOpc;
13446    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13447    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg);
13448    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg);
13449    break;
13450  }
13451  }
13452
13453  // Copy EDX:EAX back from HiReg:LoReg
13454  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(t4L);
13455  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(t4H);
13456  // Copy ECX:EBX from t1H:t1L
13457  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t2L);
13458  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t2H);
13459
13460  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
13461  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13462    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13463    if (NewMO.isReg())
13464      NewMO.setIsKill(false);
13465    MIB.addOperand(NewMO);
13466  }
13467  MIB.setMemRefs(MMOBegin, MMOEnd);
13468
13469  // Copy EDX:EAX back to t3H:t3L
13470  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3L).addReg(X86::EAX);
13471  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3H).addReg(X86::EDX);
13472
13473  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
13474
13475  mainMBB->addSuccessor(origMainMBB);
13476  mainMBB->addSuccessor(sinkMBB);
13477
13478  // sinkMBB:
13479  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13480          TII->get(TargetOpcode::COPY), DstLoReg)
13481    .addReg(t3L);
13482  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13483          TII->get(TargetOpcode::COPY), DstHiReg)
13484    .addReg(t3H);
13485
13486  MI->eraseFromParent();
13487  return sinkMBB;
13488}
13489
13490// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
13491// or XMM0_V32I8 in AVX all of this code can be replaced with that
13492// in the .td file.
13493static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
13494                                       const TargetInstrInfo *TII) {
13495  unsigned Opc;
13496  switch (MI->getOpcode()) {
13497  default: llvm_unreachable("illegal opcode!");
13498  case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break;
13499  case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
13500  case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break;
13501  case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
13502  case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break;
13503  case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
13504  case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break;
13505  case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
13506  }
13507
13508  DebugLoc dl = MI->getDebugLoc();
13509  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
13510
13511  unsigned NumArgs = MI->getNumOperands();
13512  for (unsigned i = 1; i < NumArgs; ++i) {
13513    MachineOperand &Op = MI->getOperand(i);
13514    if (!(Op.isReg() && Op.isImplicit()))
13515      MIB.addOperand(Op);
13516  }
13517  if (MI->hasOneMemOperand())
13518    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
13519
13520  BuildMI(*BB, MI, dl,
13521    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13522    .addReg(X86::XMM0);
13523
13524  MI->eraseFromParent();
13525  return BB;
13526}
13527
13528// FIXME: Custom handling because TableGen doesn't support multiple implicit
13529// defs in an instruction pattern
13530static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
13531                                       const TargetInstrInfo *TII) {
13532  unsigned Opc;
13533  switch (MI->getOpcode()) {
13534  default: llvm_unreachable("illegal opcode!");
13535  case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break;
13536  case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
13537  case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break;
13538  case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
13539  case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break;
13540  case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
13541  case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break;
13542  case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
13543  }
13544
13545  DebugLoc dl = MI->getDebugLoc();
13546  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
13547
13548  unsigned NumArgs = MI->getNumOperands(); // remove the results
13549  for (unsigned i = 1; i < NumArgs; ++i) {
13550    MachineOperand &Op = MI->getOperand(i);
13551    if (!(Op.isReg() && Op.isImplicit()))
13552      MIB.addOperand(Op);
13553  }
13554  if (MI->hasOneMemOperand())
13555    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
13556
13557  BuildMI(*BB, MI, dl,
13558    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13559    .addReg(X86::ECX);
13560
13561  MI->eraseFromParent();
13562  return BB;
13563}
13564
13565static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
13566                                       const TargetInstrInfo *TII,
13567                                       const X86Subtarget* Subtarget) {
13568  DebugLoc dl = MI->getDebugLoc();
13569
13570  // Address into RAX/EAX, other two args into ECX, EDX.
13571  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
13572  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
13573  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
13574  for (int i = 0; i < X86::AddrNumOperands; ++i)
13575    MIB.addOperand(MI->getOperand(i));
13576
13577  unsigned ValOps = X86::AddrNumOperands;
13578  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
13579    .addReg(MI->getOperand(ValOps).getReg());
13580  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
13581    .addReg(MI->getOperand(ValOps+1).getReg());
13582
13583  // The instruction doesn't actually take any operands though.
13584  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
13585
13586  MI->eraseFromParent(); // The pseudo is gone now.
13587  return BB;
13588}
13589
13590MachineBasicBlock *
13591X86TargetLowering::EmitVAARG64WithCustomInserter(
13592                   MachineInstr *MI,
13593                   MachineBasicBlock *MBB) const {
13594  // Emit va_arg instruction on X86-64.
13595
13596  // Operands to this pseudo-instruction:
13597  // 0  ) Output        : destination address (reg)
13598  // 1-5) Input         : va_list address (addr, i64mem)
13599  // 6  ) ArgSize       : Size (in bytes) of vararg type
13600  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
13601  // 8  ) Align         : Alignment of type
13602  // 9  ) EFLAGS (implicit-def)
13603
13604  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
13605  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
13606
13607  unsigned DestReg = MI->getOperand(0).getReg();
13608  MachineOperand &Base = MI->getOperand(1);
13609  MachineOperand &Scale = MI->getOperand(2);
13610  MachineOperand &Index = MI->getOperand(3);
13611  MachineOperand &Disp = MI->getOperand(4);
13612  MachineOperand &Segment = MI->getOperand(5);
13613  unsigned ArgSize = MI->getOperand(6).getImm();
13614  unsigned ArgMode = MI->getOperand(7).getImm();
13615  unsigned Align = MI->getOperand(8).getImm();
13616
13617  // Memory Reference
13618  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
13619  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13620  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13621
13622  // Machine Information
13623  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13624  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
13625  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
13626  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
13627  DebugLoc DL = MI->getDebugLoc();
13628
13629  // struct va_list {
13630  //   i32   gp_offset
13631  //   i32   fp_offset
13632  //   i64   overflow_area (address)
13633  //   i64   reg_save_area (address)
13634  // }
13635  // sizeof(va_list) = 24
13636  // alignment(va_list) = 8
13637
13638  unsigned TotalNumIntRegs = 6;
13639  unsigned TotalNumXMMRegs = 8;
13640  bool UseGPOffset = (ArgMode == 1);
13641  bool UseFPOffset = (ArgMode == 2);
13642  unsigned MaxOffset = TotalNumIntRegs * 8 +
13643                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
13644
13645  /* Align ArgSize to a multiple of 8 */
13646  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
13647  bool NeedsAlign = (Align > 8);
13648
13649  MachineBasicBlock *thisMBB = MBB;
13650  MachineBasicBlock *overflowMBB;
13651  MachineBasicBlock *offsetMBB;
13652  MachineBasicBlock *endMBB;
13653
13654  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
13655  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
13656  unsigned OffsetReg = 0;
13657
13658  if (!UseGPOffset && !UseFPOffset) {
13659    // If we only pull from the overflow region, we don't create a branch.
13660    // We don't need to alter control flow.
13661    OffsetDestReg = 0; // unused
13662    OverflowDestReg = DestReg;
13663
13664    offsetMBB = NULL;
13665    overflowMBB = thisMBB;
13666    endMBB = thisMBB;
13667  } else {
13668    // First emit code to check if gp_offset (or fp_offset) is below the bound.
13669    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
13670    // If not, pull from overflow_area. (branch to overflowMBB)
13671    //
13672    //       thisMBB
13673    //         |     .
13674    //         |        .
13675    //     offsetMBB   overflowMBB
13676    //         |        .
13677    //         |     .
13678    //        endMBB
13679
13680    // Registers for the PHI in endMBB
13681    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
13682    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
13683
13684    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
13685    MachineFunction *MF = MBB->getParent();
13686    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13687    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13688    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13689
13690    MachineFunction::iterator MBBIter = MBB;
13691    ++MBBIter;
13692
13693    // Insert the new basic blocks
13694    MF->insert(MBBIter, offsetMBB);
13695    MF->insert(MBBIter, overflowMBB);
13696    MF->insert(MBBIter, endMBB);
13697
13698    // Transfer the remainder of MBB and its successor edges to endMBB.
13699    endMBB->splice(endMBB->begin(), thisMBB,
13700                    llvm::next(MachineBasicBlock::iterator(MI)),
13701                    thisMBB->end());
13702    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
13703
13704    // Make offsetMBB and overflowMBB successors of thisMBB
13705    thisMBB->addSuccessor(offsetMBB);
13706    thisMBB->addSuccessor(overflowMBB);
13707
13708    // endMBB is a successor of both offsetMBB and overflowMBB
13709    offsetMBB->addSuccessor(endMBB);
13710    overflowMBB->addSuccessor(endMBB);
13711
13712    // Load the offset value into a register
13713    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
13714    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
13715      .addOperand(Base)
13716      .addOperand(Scale)
13717      .addOperand(Index)
13718      .addDisp(Disp, UseFPOffset ? 4 : 0)
13719      .addOperand(Segment)
13720      .setMemRefs(MMOBegin, MMOEnd);
13721
13722    // Check if there is enough room left to pull this argument.
13723    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
13724      .addReg(OffsetReg)
13725      .addImm(MaxOffset + 8 - ArgSizeA8);
13726
13727    // Branch to "overflowMBB" if offset >= max
13728    // Fall through to "offsetMBB" otherwise
13729    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
13730      .addMBB(overflowMBB);
13731  }
13732
13733  // In offsetMBB, emit code to use the reg_save_area.
13734  if (offsetMBB) {
13735    assert(OffsetReg != 0);
13736
13737    // Read the reg_save_area address.
13738    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
13739    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
13740      .addOperand(Base)
13741      .addOperand(Scale)
13742      .addOperand(Index)
13743      .addDisp(Disp, 16)
13744      .addOperand(Segment)
13745      .setMemRefs(MMOBegin, MMOEnd);
13746
13747    // Zero-extend the offset
13748    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
13749      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
13750        .addImm(0)
13751        .addReg(OffsetReg)
13752        .addImm(X86::sub_32bit);
13753
13754    // Add the offset to the reg_save_area to get the final address.
13755    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
13756      .addReg(OffsetReg64)
13757      .addReg(RegSaveReg);
13758
13759    // Compute the offset for the next argument
13760    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
13761    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
13762      .addReg(OffsetReg)
13763      .addImm(UseFPOffset ? 16 : 8);
13764
13765    // Store it back into the va_list.
13766    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
13767      .addOperand(Base)
13768      .addOperand(Scale)
13769      .addOperand(Index)
13770      .addDisp(Disp, UseFPOffset ? 4 : 0)
13771      .addOperand(Segment)
13772      .addReg(NextOffsetReg)
13773      .setMemRefs(MMOBegin, MMOEnd);
13774
13775    // Jump to endMBB
13776    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
13777      .addMBB(endMBB);
13778  }
13779
13780  //
13781  // Emit code to use overflow area
13782  //
13783
13784  // Load the overflow_area address into a register.
13785  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
13786  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
13787    .addOperand(Base)
13788    .addOperand(Scale)
13789    .addOperand(Index)
13790    .addDisp(Disp, 8)
13791    .addOperand(Segment)
13792    .setMemRefs(MMOBegin, MMOEnd);
13793
13794  // If we need to align it, do so. Otherwise, just copy the address
13795  // to OverflowDestReg.
13796  if (NeedsAlign) {
13797    // Align the overflow address
13798    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
13799    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
13800
13801    // aligned_addr = (addr + (align-1)) & ~(align-1)
13802    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
13803      .addReg(OverflowAddrReg)
13804      .addImm(Align-1);
13805
13806    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
13807      .addReg(TmpReg)
13808      .addImm(~(uint64_t)(Align-1));
13809  } else {
13810    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
13811      .addReg(OverflowAddrReg);
13812  }
13813
13814  // Compute the next overflow address after this argument.
13815  // (the overflow address should be kept 8-byte aligned)
13816  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
13817  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
13818    .addReg(OverflowDestReg)
13819    .addImm(ArgSizeA8);
13820
13821  // Store the new overflow address.
13822  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
13823    .addOperand(Base)
13824    .addOperand(Scale)
13825    .addOperand(Index)
13826    .addDisp(Disp, 8)
13827    .addOperand(Segment)
13828    .addReg(NextAddrReg)
13829    .setMemRefs(MMOBegin, MMOEnd);
13830
13831  // If we branched, emit the PHI to the front of endMBB.
13832  if (offsetMBB) {
13833    BuildMI(*endMBB, endMBB->begin(), DL,
13834            TII->get(X86::PHI), DestReg)
13835      .addReg(OffsetDestReg).addMBB(offsetMBB)
13836      .addReg(OverflowDestReg).addMBB(overflowMBB);
13837  }
13838
13839  // Erase the pseudo instruction
13840  MI->eraseFromParent();
13841
13842  return endMBB;
13843}
13844
13845MachineBasicBlock *
13846X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
13847                                                 MachineInstr *MI,
13848                                                 MachineBasicBlock *MBB) const {
13849  // Emit code to save XMM registers to the stack. The ABI says that the
13850  // number of registers to save is given in %al, so it's theoretically
13851  // possible to do an indirect jump trick to avoid saving all of them,
13852  // however this code takes a simpler approach and just executes all
13853  // of the stores if %al is non-zero. It's less code, and it's probably
13854  // easier on the hardware branch predictor, and stores aren't all that
13855  // expensive anyway.
13856
13857  // Create the new basic blocks. One block contains all the XMM stores,
13858  // and one block is the final destination regardless of whether any
13859  // stores were performed.
13860  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
13861  MachineFunction *F = MBB->getParent();
13862  MachineFunction::iterator MBBIter = MBB;
13863  ++MBBIter;
13864  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
13865  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
13866  F->insert(MBBIter, XMMSaveMBB);
13867  F->insert(MBBIter, EndMBB);
13868
13869  // Transfer the remainder of MBB and its successor edges to EndMBB.
13870  EndMBB->splice(EndMBB->begin(), MBB,
13871                 llvm::next(MachineBasicBlock::iterator(MI)),
13872                 MBB->end());
13873  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
13874
13875  // The original block will now fall through to the XMM save block.
13876  MBB->addSuccessor(XMMSaveMBB);
13877  // The XMMSaveMBB will fall through to the end block.
13878  XMMSaveMBB->addSuccessor(EndMBB);
13879
13880  // Now add the instructions.
13881  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13882  DebugLoc DL = MI->getDebugLoc();
13883
13884  unsigned CountReg = MI->getOperand(0).getReg();
13885  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
13886  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
13887
13888  if (!Subtarget->isTargetWin64()) {
13889    // If %al is 0, branch around the XMM save block.
13890    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
13891    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
13892    MBB->addSuccessor(EndMBB);
13893  }
13894
13895  unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
13896  // In the XMM save block, save all the XMM argument registers.
13897  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
13898    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
13899    MachineMemOperand *MMO =
13900      F->getMachineMemOperand(
13901          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
13902        MachineMemOperand::MOStore,
13903        /*Size=*/16, /*Align=*/16);
13904    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
13905      .addFrameIndex(RegSaveFrameIndex)
13906      .addImm(/*Scale=*/1)
13907      .addReg(/*IndexReg=*/0)
13908      .addImm(/*Disp=*/Offset)
13909      .addReg(/*Segment=*/0)
13910      .addReg(MI->getOperand(i).getReg())
13911      .addMemOperand(MMO);
13912  }
13913
13914  MI->eraseFromParent();   // The pseudo instruction is gone now.
13915
13916  return EndMBB;
13917}
13918
13919// The EFLAGS operand of SelectItr might be missing a kill marker
13920// because there were multiple uses of EFLAGS, and ISel didn't know
13921// which to mark. Figure out whether SelectItr should have had a
13922// kill marker, and set it if it should. Returns the correct kill
13923// marker value.
13924static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
13925                                     MachineBasicBlock* BB,
13926                                     const TargetRegisterInfo* TRI) {
13927  // Scan forward through BB for a use/def of EFLAGS.
13928  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
13929  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
13930    const MachineInstr& mi = *miI;
13931    if (mi.readsRegister(X86::EFLAGS))
13932      return false;
13933    if (mi.definesRegister(X86::EFLAGS))
13934      break; // Should have kill-flag - update below.
13935  }
13936
13937  // If we hit the end of the block, check whether EFLAGS is live into a
13938  // successor.
13939  if (miI == BB->end()) {
13940    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
13941                                          sEnd = BB->succ_end();
13942         sItr != sEnd; ++sItr) {
13943      MachineBasicBlock* succ = *sItr;
13944      if (succ->isLiveIn(X86::EFLAGS))
13945        return false;
13946    }
13947  }
13948
13949  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
13950  // out. SelectMI should have a kill flag on EFLAGS.
13951  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
13952  return true;
13953}
13954
13955MachineBasicBlock *
13956X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
13957                                     MachineBasicBlock *BB) const {
13958  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13959  DebugLoc DL = MI->getDebugLoc();
13960
13961  // To "insert" a SELECT_CC instruction, we actually have to insert the
13962  // diamond control-flow pattern.  The incoming instruction knows the
13963  // destination vreg to set, the condition code register to branch on, the
13964  // true/false values to select between, and a branch opcode to use.
13965  const BasicBlock *LLVM_BB = BB->getBasicBlock();
13966  MachineFunction::iterator It = BB;
13967  ++It;
13968
13969  //  thisMBB:
13970  //  ...
13971  //   TrueVal = ...
13972  //   cmpTY ccX, r1, r2
13973  //   bCC copy1MBB
13974  //   fallthrough --> copy0MBB
13975  MachineBasicBlock *thisMBB = BB;
13976  MachineFunction *F = BB->getParent();
13977  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
13978  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
13979  F->insert(It, copy0MBB);
13980  F->insert(It, sinkMBB);
13981
13982  // If the EFLAGS register isn't dead in the terminator, then claim that it's
13983  // live into the sink and copy blocks.
13984  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
13985  if (!MI->killsRegister(X86::EFLAGS) &&
13986      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
13987    copy0MBB->addLiveIn(X86::EFLAGS);
13988    sinkMBB->addLiveIn(X86::EFLAGS);
13989  }
13990
13991  // Transfer the remainder of BB and its successor edges to sinkMBB.
13992  sinkMBB->splice(sinkMBB->begin(), BB,
13993                  llvm::next(MachineBasicBlock::iterator(MI)),
13994                  BB->end());
13995  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
13996
13997  // Add the true and fallthrough blocks as its successors.
13998  BB->addSuccessor(copy0MBB);
13999  BB->addSuccessor(sinkMBB);
14000
14001  // Create the conditional branch instruction.
14002  unsigned Opc =
14003    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
14004  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
14005
14006  //  copy0MBB:
14007  //   %FalseValue = ...
14008  //   # fallthrough to sinkMBB
14009  copy0MBB->addSuccessor(sinkMBB);
14010
14011  //  sinkMBB:
14012  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
14013  //  ...
14014  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14015          TII->get(X86::PHI), MI->getOperand(0).getReg())
14016    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
14017    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
14018
14019  MI->eraseFromParent();   // The pseudo instruction is gone now.
14020  return sinkMBB;
14021}
14022
14023MachineBasicBlock *
14024X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
14025                                        bool Is64Bit) const {
14026  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14027  DebugLoc DL = MI->getDebugLoc();
14028  MachineFunction *MF = BB->getParent();
14029  const BasicBlock *LLVM_BB = BB->getBasicBlock();
14030
14031  assert(getTargetMachine().Options.EnableSegmentedStacks);
14032
14033  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
14034  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
14035
14036  // BB:
14037  //  ... [Till the alloca]
14038  // If stacklet is not large enough, jump to mallocMBB
14039  //
14040  // bumpMBB:
14041  //  Allocate by subtracting from RSP
14042  //  Jump to continueMBB
14043  //
14044  // mallocMBB:
14045  //  Allocate by call to runtime
14046  //
14047  // continueMBB:
14048  //  ...
14049  //  [rest of original BB]
14050  //
14051
14052  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14053  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14054  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14055
14056  MachineRegisterInfo &MRI = MF->getRegInfo();
14057  const TargetRegisterClass *AddrRegClass =
14058    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
14059
14060  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
14061    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
14062    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
14063    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
14064    sizeVReg = MI->getOperand(1).getReg(),
14065    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
14066
14067  MachineFunction::iterator MBBIter = BB;
14068  ++MBBIter;
14069
14070  MF->insert(MBBIter, bumpMBB);
14071  MF->insert(MBBIter, mallocMBB);
14072  MF->insert(MBBIter, continueMBB);
14073
14074  continueMBB->splice(continueMBB->begin(), BB, llvm::next
14075                      (MachineBasicBlock::iterator(MI)), BB->end());
14076  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
14077
14078  // Add code to the main basic block to check if the stack limit has been hit,
14079  // and if so, jump to mallocMBB otherwise to bumpMBB.
14080  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
14081  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
14082    .addReg(tmpSPVReg).addReg(sizeVReg);
14083  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
14084    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
14085    .addReg(SPLimitVReg);
14086  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
14087
14088  // bumpMBB simply decreases the stack pointer, since we know the current
14089  // stacklet has enough space.
14090  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
14091    .addReg(SPLimitVReg);
14092  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
14093    .addReg(SPLimitVReg);
14094  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
14095
14096  // Calls into a routine in libgcc to allocate more space from the heap.
14097  const uint32_t *RegMask =
14098    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
14099  if (Is64Bit) {
14100    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
14101      .addReg(sizeVReg);
14102    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
14103      .addExternalSymbol("__morestack_allocate_stack_space")
14104      .addRegMask(RegMask)
14105      .addReg(X86::RDI, RegState::Implicit)
14106      .addReg(X86::RAX, RegState::ImplicitDefine);
14107  } else {
14108    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
14109      .addImm(12);
14110    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
14111    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
14112      .addExternalSymbol("__morestack_allocate_stack_space")
14113      .addRegMask(RegMask)
14114      .addReg(X86::EAX, RegState::ImplicitDefine);
14115  }
14116
14117  if (!Is64Bit)
14118    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
14119      .addImm(16);
14120
14121  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
14122    .addReg(Is64Bit ? X86::RAX : X86::EAX);
14123  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
14124
14125  // Set up the CFG correctly.
14126  BB->addSuccessor(bumpMBB);
14127  BB->addSuccessor(mallocMBB);
14128  mallocMBB->addSuccessor(continueMBB);
14129  bumpMBB->addSuccessor(continueMBB);
14130
14131  // Take care of the PHI nodes.
14132  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
14133          MI->getOperand(0).getReg())
14134    .addReg(mallocPtrVReg).addMBB(mallocMBB)
14135    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
14136
14137  // Delete the original pseudo instruction.
14138  MI->eraseFromParent();
14139
14140  // And we're done.
14141  return continueMBB;
14142}
14143
14144MachineBasicBlock *
14145X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
14146                                          MachineBasicBlock *BB) const {
14147  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14148  DebugLoc DL = MI->getDebugLoc();
14149
14150  assert(!Subtarget->isTargetEnvMacho());
14151
14152  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
14153  // non-trivial part is impdef of ESP.
14154
14155  if (Subtarget->isTargetWin64()) {
14156    if (Subtarget->isTargetCygMing()) {
14157      // ___chkstk(Mingw64):
14158      // Clobbers R10, R11, RAX and EFLAGS.
14159      // Updates RSP.
14160      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
14161        .addExternalSymbol("___chkstk")
14162        .addReg(X86::RAX, RegState::Implicit)
14163        .addReg(X86::RSP, RegState::Implicit)
14164        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
14165        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
14166        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
14167    } else {
14168      // __chkstk(MSVCRT): does not update stack pointer.
14169      // Clobbers R10, R11 and EFLAGS.
14170      // FIXME: RAX(allocated size) might be reused and not killed.
14171      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
14172        .addExternalSymbol("__chkstk")
14173        .addReg(X86::RAX, RegState::Implicit)
14174        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
14175      // RAX has the offset to subtracted from RSP.
14176      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
14177        .addReg(X86::RSP)
14178        .addReg(X86::RAX);
14179    }
14180  } else {
14181    const char *StackProbeSymbol =
14182      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
14183
14184    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
14185      .addExternalSymbol(StackProbeSymbol)
14186      .addReg(X86::EAX, RegState::Implicit)
14187      .addReg(X86::ESP, RegState::Implicit)
14188      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
14189      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
14190      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
14191  }
14192
14193  MI->eraseFromParent();   // The pseudo instruction is gone now.
14194  return BB;
14195}
14196
14197MachineBasicBlock *
14198X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
14199                                      MachineBasicBlock *BB) const {
14200  // This is pretty easy.  We're taking the value that we received from
14201  // our load from the relocation, sticking it in either RDI (x86-64)
14202  // or EAX and doing an indirect call.  The return value will then
14203  // be in the normal return register.
14204  const X86InstrInfo *TII
14205    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
14206  DebugLoc DL = MI->getDebugLoc();
14207  MachineFunction *F = BB->getParent();
14208
14209  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
14210  assert(MI->getOperand(3).isGlobal() && "This should be a global");
14211
14212  // Get a register mask for the lowered call.
14213  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
14214  // proper register mask.
14215  const uint32_t *RegMask =
14216    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
14217  if (Subtarget->is64Bit()) {
14218    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14219                                      TII->get(X86::MOV64rm), X86::RDI)
14220    .addReg(X86::RIP)
14221    .addImm(0).addReg(0)
14222    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14223                      MI->getOperand(3).getTargetFlags())
14224    .addReg(0);
14225    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
14226    addDirectMem(MIB, X86::RDI);
14227    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
14228  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
14229    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14230                                      TII->get(X86::MOV32rm), X86::EAX)
14231    .addReg(0)
14232    .addImm(0).addReg(0)
14233    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14234                      MI->getOperand(3).getTargetFlags())
14235    .addReg(0);
14236    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
14237    addDirectMem(MIB, X86::EAX);
14238    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
14239  } else {
14240    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14241                                      TII->get(X86::MOV32rm), X86::EAX)
14242    .addReg(TII->getGlobalBaseReg(F))
14243    .addImm(0).addReg(0)
14244    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14245                      MI->getOperand(3).getTargetFlags())
14246    .addReg(0);
14247    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
14248    addDirectMem(MIB, X86::EAX);
14249    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
14250  }
14251
14252  MI->eraseFromParent(); // The pseudo instruction is gone now.
14253  return BB;
14254}
14255
14256MachineBasicBlock *
14257X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
14258                                    MachineBasicBlock *MBB) const {
14259  DebugLoc DL = MI->getDebugLoc();
14260  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14261
14262  MachineFunction *MF = MBB->getParent();
14263  MachineRegisterInfo &MRI = MF->getRegInfo();
14264
14265  const BasicBlock *BB = MBB->getBasicBlock();
14266  MachineFunction::iterator I = MBB;
14267  ++I;
14268
14269  // Memory Reference
14270  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14271  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14272
14273  unsigned DstReg;
14274  unsigned MemOpndSlot = 0;
14275
14276  unsigned CurOp = 0;
14277
14278  DstReg = MI->getOperand(CurOp++).getReg();
14279  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
14280  assert(RC->hasType(MVT::i32) && "Invalid destination!");
14281  unsigned mainDstReg = MRI.createVirtualRegister(RC);
14282  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
14283
14284  MemOpndSlot = CurOp;
14285
14286  MVT PVT = getPointerTy();
14287  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
14288         "Invalid Pointer Size!");
14289
14290  // For v = setjmp(buf), we generate
14291  //
14292  // thisMBB:
14293  //  buf[LabelOffset] = restoreMBB
14294  //  SjLjSetup restoreMBB
14295  //
14296  // mainMBB:
14297  //  v_main = 0
14298  //
14299  // sinkMBB:
14300  //  v = phi(main, restore)
14301  //
14302  // restoreMBB:
14303  //  v_restore = 1
14304
14305  MachineBasicBlock *thisMBB = MBB;
14306  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
14307  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
14308  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
14309  MF->insert(I, mainMBB);
14310  MF->insert(I, sinkMBB);
14311  MF->push_back(restoreMBB);
14312
14313  MachineInstrBuilder MIB;
14314
14315  // Transfer the remainder of BB and its successor edges to sinkMBB.
14316  sinkMBB->splice(sinkMBB->begin(), MBB,
14317                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14318  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14319
14320  // thisMBB:
14321  unsigned PtrStoreOpc = 0;
14322  unsigned LabelReg = 0;
14323  const int64_t LabelOffset = 1 * PVT.getStoreSize();
14324  Reloc::Model RM = getTargetMachine().getRelocationModel();
14325  bool UseImmLabel = (getTargetMachine().getCodeModel() == CodeModel::Small) &&
14326                     (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
14327
14328  // Prepare IP either in reg or imm.
14329  if (!UseImmLabel) {
14330    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
14331    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
14332    LabelReg = MRI.createVirtualRegister(PtrRC);
14333    if (Subtarget->is64Bit()) {
14334      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
14335              .addReg(X86::RIP)
14336              .addImm(0)
14337              .addReg(0)
14338              .addMBB(restoreMBB)
14339              .addReg(0);
14340    } else {
14341      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
14342      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
14343              .addReg(XII->getGlobalBaseReg(MF))
14344              .addImm(0)
14345              .addReg(0)
14346              .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
14347              .addReg(0);
14348    }
14349  } else
14350    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
14351  // Store IP
14352  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
14353  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14354    if (i == X86::AddrDisp)
14355      MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
14356    else
14357      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
14358  }
14359  if (!UseImmLabel)
14360    MIB.addReg(LabelReg);
14361  else
14362    MIB.addMBB(restoreMBB);
14363  MIB.setMemRefs(MMOBegin, MMOEnd);
14364  // Setup
14365  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
14366          .addMBB(restoreMBB);
14367  MIB.addRegMask(RegInfo->getNoPreservedMask());
14368  thisMBB->addSuccessor(mainMBB);
14369  thisMBB->addSuccessor(restoreMBB);
14370
14371  // mainMBB:
14372  //  EAX = 0
14373  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
14374  mainMBB->addSuccessor(sinkMBB);
14375
14376  // sinkMBB:
14377  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14378          TII->get(X86::PHI), DstReg)
14379    .addReg(mainDstReg).addMBB(mainMBB)
14380    .addReg(restoreDstReg).addMBB(restoreMBB);
14381
14382  // restoreMBB:
14383  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
14384  BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
14385  restoreMBB->addSuccessor(sinkMBB);
14386
14387  MI->eraseFromParent();
14388  return sinkMBB;
14389}
14390
14391MachineBasicBlock *
14392X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
14393                                     MachineBasicBlock *MBB) const {
14394  DebugLoc DL = MI->getDebugLoc();
14395  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14396
14397  MachineFunction *MF = MBB->getParent();
14398  MachineRegisterInfo &MRI = MF->getRegInfo();
14399
14400  // Memory Reference
14401  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14402  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14403
14404  MVT PVT = getPointerTy();
14405  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
14406         "Invalid Pointer Size!");
14407
14408  const TargetRegisterClass *RC =
14409    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
14410  unsigned Tmp = MRI.createVirtualRegister(RC);
14411  // Since FP is only updated here but NOT referenced, it's treated as GPR.
14412  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
14413  unsigned SP = RegInfo->getStackRegister();
14414
14415  MachineInstrBuilder MIB;
14416
14417  const int64_t LabelOffset = 1 * PVT.getStoreSize();
14418  const int64_t SPOffset = 2 * PVT.getStoreSize();
14419
14420  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
14421  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
14422
14423  // Reload FP
14424  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
14425  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
14426    MIB.addOperand(MI->getOperand(i));
14427  MIB.setMemRefs(MMOBegin, MMOEnd);
14428  // Reload IP
14429  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
14430  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14431    if (i == X86::AddrDisp)
14432      MIB.addDisp(MI->getOperand(i), LabelOffset);
14433    else
14434      MIB.addOperand(MI->getOperand(i));
14435  }
14436  MIB.setMemRefs(MMOBegin, MMOEnd);
14437  // Reload SP
14438  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
14439  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14440    if (i == X86::AddrDisp)
14441      MIB.addDisp(MI->getOperand(i), SPOffset);
14442    else
14443      MIB.addOperand(MI->getOperand(i));
14444  }
14445  MIB.setMemRefs(MMOBegin, MMOEnd);
14446  // Jump
14447  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
14448
14449  MI->eraseFromParent();
14450  return MBB;
14451}
14452
14453MachineBasicBlock *
14454X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
14455                                               MachineBasicBlock *BB) const {
14456  switch (MI->getOpcode()) {
14457  default: llvm_unreachable("Unexpected instr type to insert");
14458  case X86::TAILJMPd64:
14459  case X86::TAILJMPr64:
14460  case X86::TAILJMPm64:
14461    llvm_unreachable("TAILJMP64 would not be touched here.");
14462  case X86::TCRETURNdi64:
14463  case X86::TCRETURNri64:
14464  case X86::TCRETURNmi64:
14465    return BB;
14466  case X86::WIN_ALLOCA:
14467    return EmitLoweredWinAlloca(MI, BB);
14468  case X86::SEG_ALLOCA_32:
14469    return EmitLoweredSegAlloca(MI, BB, false);
14470  case X86::SEG_ALLOCA_64:
14471    return EmitLoweredSegAlloca(MI, BB, true);
14472  case X86::TLSCall_32:
14473  case X86::TLSCall_64:
14474    return EmitLoweredTLSCall(MI, BB);
14475  case X86::CMOV_GR8:
14476  case X86::CMOV_FR32:
14477  case X86::CMOV_FR64:
14478  case X86::CMOV_V4F32:
14479  case X86::CMOV_V2F64:
14480  case X86::CMOV_V2I64:
14481  case X86::CMOV_V8F32:
14482  case X86::CMOV_V4F64:
14483  case X86::CMOV_V4I64:
14484  case X86::CMOV_GR16:
14485  case X86::CMOV_GR32:
14486  case X86::CMOV_RFP32:
14487  case X86::CMOV_RFP64:
14488  case X86::CMOV_RFP80:
14489    return EmitLoweredSelect(MI, BB);
14490
14491  case X86::FP32_TO_INT16_IN_MEM:
14492  case X86::FP32_TO_INT32_IN_MEM:
14493  case X86::FP32_TO_INT64_IN_MEM:
14494  case X86::FP64_TO_INT16_IN_MEM:
14495  case X86::FP64_TO_INT32_IN_MEM:
14496  case X86::FP64_TO_INT64_IN_MEM:
14497  case X86::FP80_TO_INT16_IN_MEM:
14498  case X86::FP80_TO_INT32_IN_MEM:
14499  case X86::FP80_TO_INT64_IN_MEM: {
14500    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14501    DebugLoc DL = MI->getDebugLoc();
14502
14503    // Change the floating point control register to use "round towards zero"
14504    // mode when truncating to an integer value.
14505    MachineFunction *F = BB->getParent();
14506    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
14507    addFrameReference(BuildMI(*BB, MI, DL,
14508                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
14509
14510    // Load the old value of the high byte of the control word...
14511    unsigned OldCW =
14512      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
14513    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
14514                      CWFrameIdx);
14515
14516    // Set the high part to be round to zero...
14517    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
14518      .addImm(0xC7F);
14519
14520    // Reload the modified control word now...
14521    addFrameReference(BuildMI(*BB, MI, DL,
14522                              TII->get(X86::FLDCW16m)), CWFrameIdx);
14523
14524    // Restore the memory image of control word to original value
14525    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
14526      .addReg(OldCW);
14527
14528    // Get the X86 opcode to use.
14529    unsigned Opc;
14530    switch (MI->getOpcode()) {
14531    default: llvm_unreachable("illegal opcode!");
14532    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
14533    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
14534    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
14535    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
14536    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
14537    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
14538    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
14539    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
14540    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
14541    }
14542
14543    X86AddressMode AM;
14544    MachineOperand &Op = MI->getOperand(0);
14545    if (Op.isReg()) {
14546      AM.BaseType = X86AddressMode::RegBase;
14547      AM.Base.Reg = Op.getReg();
14548    } else {
14549      AM.BaseType = X86AddressMode::FrameIndexBase;
14550      AM.Base.FrameIndex = Op.getIndex();
14551    }
14552    Op = MI->getOperand(1);
14553    if (Op.isImm())
14554      AM.Scale = Op.getImm();
14555    Op = MI->getOperand(2);
14556    if (Op.isImm())
14557      AM.IndexReg = Op.getImm();
14558    Op = MI->getOperand(3);
14559    if (Op.isGlobal()) {
14560      AM.GV = Op.getGlobal();
14561    } else {
14562      AM.Disp = Op.getImm();
14563    }
14564    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
14565                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
14566
14567    // Reload the original control word now.
14568    addFrameReference(BuildMI(*BB, MI, DL,
14569                              TII->get(X86::FLDCW16m)), CWFrameIdx);
14570
14571    MI->eraseFromParent();   // The pseudo instruction is gone now.
14572    return BB;
14573  }
14574    // String/text processing lowering.
14575  case X86::PCMPISTRM128REG:
14576  case X86::VPCMPISTRM128REG:
14577  case X86::PCMPISTRM128MEM:
14578  case X86::VPCMPISTRM128MEM:
14579  case X86::PCMPESTRM128REG:
14580  case X86::VPCMPESTRM128REG:
14581  case X86::PCMPESTRM128MEM:
14582  case X86::VPCMPESTRM128MEM:
14583    assert(Subtarget->hasSSE42() &&
14584           "Target must have SSE4.2 or AVX features enabled");
14585    return EmitPCMPSTRM(MI, BB, getTargetMachine().getInstrInfo());
14586
14587  // String/text processing lowering.
14588  case X86::PCMPISTRIREG:
14589  case X86::VPCMPISTRIREG:
14590  case X86::PCMPISTRIMEM:
14591  case X86::VPCMPISTRIMEM:
14592  case X86::PCMPESTRIREG:
14593  case X86::VPCMPESTRIREG:
14594  case X86::PCMPESTRIMEM:
14595  case X86::VPCMPESTRIMEM:
14596    assert(Subtarget->hasSSE42() &&
14597           "Target must have SSE4.2 or AVX features enabled");
14598    return EmitPCMPSTRI(MI, BB, getTargetMachine().getInstrInfo());
14599
14600  // Thread synchronization.
14601  case X86::MONITOR:
14602    return EmitMonitor(MI, BB, getTargetMachine().getInstrInfo(), Subtarget);
14603
14604  // xbegin
14605  case X86::XBEGIN:
14606    return EmitXBegin(MI, BB, getTargetMachine().getInstrInfo());
14607
14608  // Atomic Lowering.
14609  case X86::ATOMAND8:
14610  case X86::ATOMAND16:
14611  case X86::ATOMAND32:
14612  case X86::ATOMAND64:
14613    // Fall through
14614  case X86::ATOMOR8:
14615  case X86::ATOMOR16:
14616  case X86::ATOMOR32:
14617  case X86::ATOMOR64:
14618    // Fall through
14619  case X86::ATOMXOR16:
14620  case X86::ATOMXOR8:
14621  case X86::ATOMXOR32:
14622  case X86::ATOMXOR64:
14623    // Fall through
14624  case X86::ATOMNAND8:
14625  case X86::ATOMNAND16:
14626  case X86::ATOMNAND32:
14627  case X86::ATOMNAND64:
14628    // Fall through
14629  case X86::ATOMMAX8:
14630  case X86::ATOMMAX16:
14631  case X86::ATOMMAX32:
14632  case X86::ATOMMAX64:
14633    // Fall through
14634  case X86::ATOMMIN8:
14635  case X86::ATOMMIN16:
14636  case X86::ATOMMIN32:
14637  case X86::ATOMMIN64:
14638    // Fall through
14639  case X86::ATOMUMAX8:
14640  case X86::ATOMUMAX16:
14641  case X86::ATOMUMAX32:
14642  case X86::ATOMUMAX64:
14643    // Fall through
14644  case X86::ATOMUMIN8:
14645  case X86::ATOMUMIN16:
14646  case X86::ATOMUMIN32:
14647  case X86::ATOMUMIN64:
14648    return EmitAtomicLoadArith(MI, BB);
14649
14650  // This group does 64-bit operations on a 32-bit host.
14651  case X86::ATOMAND6432:
14652  case X86::ATOMOR6432:
14653  case X86::ATOMXOR6432:
14654  case X86::ATOMNAND6432:
14655  case X86::ATOMADD6432:
14656  case X86::ATOMSUB6432:
14657  case X86::ATOMMAX6432:
14658  case X86::ATOMMIN6432:
14659  case X86::ATOMUMAX6432:
14660  case X86::ATOMUMIN6432:
14661  case X86::ATOMSWAP6432:
14662    return EmitAtomicLoadArith6432(MI, BB);
14663
14664  case X86::VASTART_SAVE_XMM_REGS:
14665    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
14666
14667  case X86::VAARG_64:
14668    return EmitVAARG64WithCustomInserter(MI, BB);
14669
14670  case X86::EH_SjLj_SetJmp32:
14671  case X86::EH_SjLj_SetJmp64:
14672    return emitEHSjLjSetJmp(MI, BB);
14673
14674  case X86::EH_SjLj_LongJmp32:
14675  case X86::EH_SjLj_LongJmp64:
14676    return emitEHSjLjLongJmp(MI, BB);
14677  }
14678}
14679
14680//===----------------------------------------------------------------------===//
14681//                           X86 Optimization Hooks
14682//===----------------------------------------------------------------------===//
14683
14684void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
14685                                                       APInt &KnownZero,
14686                                                       APInt &KnownOne,
14687                                                       const SelectionDAG &DAG,
14688                                                       unsigned Depth) const {
14689  unsigned BitWidth = KnownZero.getBitWidth();
14690  unsigned Opc = Op.getOpcode();
14691  assert((Opc >= ISD::BUILTIN_OP_END ||
14692          Opc == ISD::INTRINSIC_WO_CHAIN ||
14693          Opc == ISD::INTRINSIC_W_CHAIN ||
14694          Opc == ISD::INTRINSIC_VOID) &&
14695         "Should use MaskedValueIsZero if you don't know whether Op"
14696         " is a target node!");
14697
14698  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
14699  switch (Opc) {
14700  default: break;
14701  case X86ISD::ADD:
14702  case X86ISD::SUB:
14703  case X86ISD::ADC:
14704  case X86ISD::SBB:
14705  case X86ISD::SMUL:
14706  case X86ISD::UMUL:
14707  case X86ISD::INC:
14708  case X86ISD::DEC:
14709  case X86ISD::OR:
14710  case X86ISD::XOR:
14711  case X86ISD::AND:
14712    // These nodes' second result is a boolean.
14713    if (Op.getResNo() == 0)
14714      break;
14715    // Fallthrough
14716  case X86ISD::SETCC:
14717    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
14718    break;
14719  case ISD::INTRINSIC_WO_CHAIN: {
14720    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14721    unsigned NumLoBits = 0;
14722    switch (IntId) {
14723    default: break;
14724    case Intrinsic::x86_sse_movmsk_ps:
14725    case Intrinsic::x86_avx_movmsk_ps_256:
14726    case Intrinsic::x86_sse2_movmsk_pd:
14727    case Intrinsic::x86_avx_movmsk_pd_256:
14728    case Intrinsic::x86_mmx_pmovmskb:
14729    case Intrinsic::x86_sse2_pmovmskb_128:
14730    case Intrinsic::x86_avx2_pmovmskb: {
14731      // High bits of movmskp{s|d}, pmovmskb are known zero.
14732      switch (IntId) {
14733        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
14734        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
14735        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
14736        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
14737        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
14738        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
14739        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
14740        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
14741      }
14742      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
14743      break;
14744    }
14745    }
14746    break;
14747  }
14748  }
14749}
14750
14751unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
14752                                                         unsigned Depth) const {
14753  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
14754  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
14755    return Op.getValueType().getScalarType().getSizeInBits();
14756
14757  // Fallback case.
14758  return 1;
14759}
14760
14761/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
14762/// node is a GlobalAddress + offset.
14763bool X86TargetLowering::isGAPlusOffset(SDNode *N,
14764                                       const GlobalValue* &GA,
14765                                       int64_t &Offset) const {
14766  if (N->getOpcode() == X86ISD::Wrapper) {
14767    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
14768      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
14769      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
14770      return true;
14771    }
14772  }
14773  return TargetLowering::isGAPlusOffset(N, GA, Offset);
14774}
14775
14776/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
14777/// same as extracting the high 128-bit part of 256-bit vector and then
14778/// inserting the result into the low part of a new 256-bit vector
14779static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
14780  EVT VT = SVOp->getValueType(0);
14781  unsigned NumElems = VT.getVectorNumElements();
14782
14783  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
14784  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
14785    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
14786        SVOp->getMaskElt(j) >= 0)
14787      return false;
14788
14789  return true;
14790}
14791
14792/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
14793/// same as extracting the low 128-bit part of 256-bit vector and then
14794/// inserting the result into the high part of a new 256-bit vector
14795static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
14796  EVT VT = SVOp->getValueType(0);
14797  unsigned NumElems = VT.getVectorNumElements();
14798
14799  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
14800  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
14801    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
14802        SVOp->getMaskElt(j) >= 0)
14803      return false;
14804
14805  return true;
14806}
14807
14808/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
14809static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
14810                                        TargetLowering::DAGCombinerInfo &DCI,
14811                                        const X86Subtarget* Subtarget) {
14812  DebugLoc dl = N->getDebugLoc();
14813  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
14814  SDValue V1 = SVOp->getOperand(0);
14815  SDValue V2 = SVOp->getOperand(1);
14816  EVT VT = SVOp->getValueType(0);
14817  unsigned NumElems = VT.getVectorNumElements();
14818
14819  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
14820      V2.getOpcode() == ISD::CONCAT_VECTORS) {
14821    //
14822    //                   0,0,0,...
14823    //                      |
14824    //    V      UNDEF    BUILD_VECTOR    UNDEF
14825    //     \      /           \           /
14826    //  CONCAT_VECTOR         CONCAT_VECTOR
14827    //         \                  /
14828    //          \                /
14829    //          RESULT: V + zero extended
14830    //
14831    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
14832        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
14833        V1.getOperand(1).getOpcode() != ISD::UNDEF)
14834      return SDValue();
14835
14836    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
14837      return SDValue();
14838
14839    // To match the shuffle mask, the first half of the mask should
14840    // be exactly the first vector, and all the rest a splat with the
14841    // first element of the second one.
14842    for (unsigned i = 0; i != NumElems/2; ++i)
14843      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
14844          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
14845        return SDValue();
14846
14847    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
14848    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
14849      if (Ld->hasNUsesOfValue(1, 0)) {
14850        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
14851        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
14852        SDValue ResNode =
14853          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
14854                                  Ld->getMemoryVT(),
14855                                  Ld->getPointerInfo(),
14856                                  Ld->getAlignment(),
14857                                  false/*isVolatile*/, true/*ReadMem*/,
14858                                  false/*WriteMem*/);
14859
14860        // Make sure the newly-created LOAD is in the same position as Ld in
14861        // terms of dependency. We create a TokenFactor for Ld and ResNode,
14862        // and update uses of Ld's output chain to use the TokenFactor.
14863        if (Ld->hasAnyUseOfValue(1)) {
14864          SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14865                             SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
14866          DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
14867          DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
14868                                 SDValue(ResNode.getNode(), 1));
14869        }
14870
14871        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
14872      }
14873    }
14874
14875    // Emit a zeroed vector and insert the desired subvector on its
14876    // first half.
14877    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
14878    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
14879    return DCI.CombineTo(N, InsV);
14880  }
14881
14882  //===--------------------------------------------------------------------===//
14883  // Combine some shuffles into subvector extracts and inserts:
14884  //
14885
14886  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
14887  if (isShuffleHigh128VectorInsertLow(SVOp)) {
14888    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
14889    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
14890    return DCI.CombineTo(N, InsV);
14891  }
14892
14893  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
14894  if (isShuffleLow128VectorInsertHigh(SVOp)) {
14895    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
14896    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
14897    return DCI.CombineTo(N, InsV);
14898  }
14899
14900  return SDValue();
14901}
14902
14903/// PerformShuffleCombine - Performs several different shuffle combines.
14904static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
14905                                     TargetLowering::DAGCombinerInfo &DCI,
14906                                     const X86Subtarget *Subtarget) {
14907  DebugLoc dl = N->getDebugLoc();
14908  EVT VT = N->getValueType(0);
14909
14910  // Don't create instructions with illegal types after legalize types has run.
14911  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14912  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
14913    return SDValue();
14914
14915  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
14916  if (Subtarget->hasFp256() && VT.is256BitVector() &&
14917      N->getOpcode() == ISD::VECTOR_SHUFFLE)
14918    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
14919
14920  // Only handle 128 wide vector from here on.
14921  if (!VT.is128BitVector())
14922    return SDValue();
14923
14924  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
14925  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
14926  // consecutive, non-overlapping, and in the right order.
14927  SmallVector<SDValue, 16> Elts;
14928  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
14929    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
14930
14931  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
14932}
14933
14934/// PerformTruncateCombine - Converts truncate operation to
14935/// a sequence of vector shuffle operations.
14936/// It is possible when we truncate 256-bit vector to 128-bit vector
14937static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
14938                                      TargetLowering::DAGCombinerInfo &DCI,
14939                                      const X86Subtarget *Subtarget)  {
14940  return SDValue();
14941}
14942
14943/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
14944/// specific shuffle of a load can be folded into a single element load.
14945/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
14946/// shuffles have been customed lowered so we need to handle those here.
14947static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
14948                                         TargetLowering::DAGCombinerInfo &DCI) {
14949  if (DCI.isBeforeLegalizeOps())
14950    return SDValue();
14951
14952  SDValue InVec = N->getOperand(0);
14953  SDValue EltNo = N->getOperand(1);
14954
14955  if (!isa<ConstantSDNode>(EltNo))
14956    return SDValue();
14957
14958  EVT VT = InVec.getValueType();
14959
14960  bool HasShuffleIntoBitcast = false;
14961  if (InVec.getOpcode() == ISD::BITCAST) {
14962    // Don't duplicate a load with other uses.
14963    if (!InVec.hasOneUse())
14964      return SDValue();
14965    EVT BCVT = InVec.getOperand(0).getValueType();
14966    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
14967      return SDValue();
14968    InVec = InVec.getOperand(0);
14969    HasShuffleIntoBitcast = true;
14970  }
14971
14972  if (!isTargetShuffle(InVec.getOpcode()))
14973    return SDValue();
14974
14975  // Don't duplicate a load with other uses.
14976  if (!InVec.hasOneUse())
14977    return SDValue();
14978
14979  SmallVector<int, 16> ShuffleMask;
14980  bool UnaryShuffle;
14981  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
14982                            UnaryShuffle))
14983    return SDValue();
14984
14985  // Select the input vector, guarding against out of range extract vector.
14986  unsigned NumElems = VT.getVectorNumElements();
14987  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
14988  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
14989  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
14990                                         : InVec.getOperand(1);
14991
14992  // If inputs to shuffle are the same for both ops, then allow 2 uses
14993  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
14994
14995  if (LdNode.getOpcode() == ISD::BITCAST) {
14996    // Don't duplicate a load with other uses.
14997    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
14998      return SDValue();
14999
15000    AllowedUses = 1; // only allow 1 load use if we have a bitcast
15001    LdNode = LdNode.getOperand(0);
15002  }
15003
15004  if (!ISD::isNormalLoad(LdNode.getNode()))
15005    return SDValue();
15006
15007  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
15008
15009  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
15010    return SDValue();
15011
15012  if (HasShuffleIntoBitcast) {
15013    // If there's a bitcast before the shuffle, check if the load type and
15014    // alignment is valid.
15015    unsigned Align = LN0->getAlignment();
15016    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15017    unsigned NewAlign = TLI.getDataLayout()->
15018      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
15019
15020    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
15021      return SDValue();
15022  }
15023
15024  // All checks match so transform back to vector_shuffle so that DAG combiner
15025  // can finish the job
15026  DebugLoc dl = N->getDebugLoc();
15027
15028  // Create shuffle node taking into account the case that its a unary shuffle
15029  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
15030  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
15031                                 InVec.getOperand(0), Shuffle,
15032                                 &ShuffleMask[0]);
15033  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
15034  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
15035                     EltNo);
15036}
15037
15038/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
15039/// generation and convert it from being a bunch of shuffles and extracts
15040/// to a simple store and scalar loads to extract the elements.
15041static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
15042                                         TargetLowering::DAGCombinerInfo &DCI) {
15043  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
15044  if (NewOp.getNode())
15045    return NewOp;
15046
15047  SDValue InputVector = N->getOperand(0);
15048  // Detect whether we are trying to convert from mmx to i32 and the bitcast
15049  // from mmx to v2i32 has a single usage.
15050  if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
15051      InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
15052      InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
15053    return DAG.getNode(X86ISD::MMX_MOVD2W, InputVector.getDebugLoc(),
15054                       N->getValueType(0),
15055                       InputVector.getNode()->getOperand(0));
15056
15057  // Only operate on vectors of 4 elements, where the alternative shuffling
15058  // gets to be more expensive.
15059  if (InputVector.getValueType() != MVT::v4i32)
15060    return SDValue();
15061
15062  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
15063  // single use which is a sign-extend or zero-extend, and all elements are
15064  // used.
15065  SmallVector<SDNode *, 4> Uses;
15066  unsigned ExtractedElements = 0;
15067  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
15068       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
15069    if (UI.getUse().getResNo() != InputVector.getResNo())
15070      return SDValue();
15071
15072    SDNode *Extract = *UI;
15073    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
15074      return SDValue();
15075
15076    if (Extract->getValueType(0) != MVT::i32)
15077      return SDValue();
15078    if (!Extract->hasOneUse())
15079      return SDValue();
15080    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
15081        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
15082      return SDValue();
15083    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
15084      return SDValue();
15085
15086    // Record which element was extracted.
15087    ExtractedElements |=
15088      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
15089
15090    Uses.push_back(Extract);
15091  }
15092
15093  // If not all the elements were used, this may not be worthwhile.
15094  if (ExtractedElements != 15)
15095    return SDValue();
15096
15097  // Ok, we've now decided to do the transformation.
15098  DebugLoc dl = InputVector.getDebugLoc();
15099
15100  // Store the value to a temporary stack slot.
15101  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
15102  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
15103                            MachinePointerInfo(), false, false, 0);
15104
15105  // Replace each use (extract) with a load of the appropriate element.
15106  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
15107       UE = Uses.end(); UI != UE; ++UI) {
15108    SDNode *Extract = *UI;
15109
15110    // cOMpute the element's address.
15111    SDValue Idx = Extract->getOperand(1);
15112    unsigned EltSize =
15113        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
15114    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
15115    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15116    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
15117
15118    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
15119                                     StackPtr, OffsetVal);
15120
15121    // Load the scalar.
15122    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
15123                                     ScalarAddr, MachinePointerInfo(),
15124                                     false, false, false, 0);
15125
15126    // Replace the exact with the load.
15127    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
15128  }
15129
15130  // The replacement was made in place; don't return anything.
15131  return SDValue();
15132}
15133
15134/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
15135static unsigned matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS,
15136                                   SDValue RHS, SelectionDAG &DAG,
15137                                   const X86Subtarget *Subtarget) {
15138  if (!VT.isVector())
15139    return 0;
15140
15141  switch (VT.getSimpleVT().SimpleTy) {
15142  default: return 0;
15143  case MVT::v32i8:
15144  case MVT::v16i16:
15145  case MVT::v8i32:
15146    if (!Subtarget->hasAVX2())
15147      return 0;
15148  case MVT::v16i8:
15149  case MVT::v8i16:
15150  case MVT::v4i32:
15151    if (!Subtarget->hasSSE2())
15152      return 0;
15153  }
15154
15155  // SSE2 has only a small subset of the operations.
15156  bool hasUnsigned = Subtarget->hasSSE41() ||
15157                     (Subtarget->hasSSE2() && VT == MVT::v16i8);
15158  bool hasSigned = Subtarget->hasSSE41() ||
15159                   (Subtarget->hasSSE2() && VT == MVT::v8i16);
15160
15161  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15162
15163  // Check for x CC y ? x : y.
15164  if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15165      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15166    switch (CC) {
15167    default: break;
15168    case ISD::SETULT:
15169    case ISD::SETULE:
15170      return hasUnsigned ? X86ISD::UMIN : 0;
15171    case ISD::SETUGT:
15172    case ISD::SETUGE:
15173      return hasUnsigned ? X86ISD::UMAX : 0;
15174    case ISD::SETLT:
15175    case ISD::SETLE:
15176      return hasSigned ? X86ISD::SMIN : 0;
15177    case ISD::SETGT:
15178    case ISD::SETGE:
15179      return hasSigned ? X86ISD::SMAX : 0;
15180    }
15181  // Check for x CC y ? y : x -- a min/max with reversed arms.
15182  } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
15183             DAG.isEqualTo(RHS, Cond.getOperand(0))) {
15184    switch (CC) {
15185    default: break;
15186    case ISD::SETULT:
15187    case ISD::SETULE:
15188      return hasUnsigned ? X86ISD::UMAX : 0;
15189    case ISD::SETUGT:
15190    case ISD::SETUGE:
15191      return hasUnsigned ? X86ISD::UMIN : 0;
15192    case ISD::SETLT:
15193    case ISD::SETLE:
15194      return hasSigned ? X86ISD::SMAX : 0;
15195    case ISD::SETGT:
15196    case ISD::SETGE:
15197      return hasSigned ? X86ISD::SMIN : 0;
15198    }
15199  }
15200
15201  return 0;
15202}
15203
15204/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
15205/// nodes.
15206static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
15207                                    TargetLowering::DAGCombinerInfo &DCI,
15208                                    const X86Subtarget *Subtarget) {
15209  DebugLoc DL = N->getDebugLoc();
15210  SDValue Cond = N->getOperand(0);
15211  // Get the LHS/RHS of the select.
15212  SDValue LHS = N->getOperand(1);
15213  SDValue RHS = N->getOperand(2);
15214  EVT VT = LHS.getValueType();
15215
15216  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
15217  // instructions match the semantics of the common C idiom x<y?x:y but not
15218  // x<=y?x:y, because of how they handle negative zero (which can be
15219  // ignored in unsafe-math mode).
15220  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
15221      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
15222      (Subtarget->hasSSE2() ||
15223       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
15224    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15225
15226    unsigned Opcode = 0;
15227    // Check for x CC y ? x : y.
15228    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15229        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15230      switch (CC) {
15231      default: break;
15232      case ISD::SETULT:
15233        // Converting this to a min would handle NaNs incorrectly, and swapping
15234        // the operands would cause it to handle comparisons between positive
15235        // and negative zero incorrectly.
15236        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
15237          if (!DAG.getTarget().Options.UnsafeFPMath &&
15238              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
15239            break;
15240          std::swap(LHS, RHS);
15241        }
15242        Opcode = X86ISD::FMIN;
15243        break;
15244      case ISD::SETOLE:
15245        // Converting this to a min would handle comparisons between positive
15246        // and negative zero incorrectly.
15247        if (!DAG.getTarget().Options.UnsafeFPMath &&
15248            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
15249          break;
15250        Opcode = X86ISD::FMIN;
15251        break;
15252      case ISD::SETULE:
15253        // Converting this to a min would handle both negative zeros and NaNs
15254        // incorrectly, but we can swap the operands to fix both.
15255        std::swap(LHS, RHS);
15256      case ISD::SETOLT:
15257      case ISD::SETLT:
15258      case ISD::SETLE:
15259        Opcode = X86ISD::FMIN;
15260        break;
15261
15262      case ISD::SETOGE:
15263        // Converting this to a max would handle comparisons between positive
15264        // and negative zero incorrectly.
15265        if (!DAG.getTarget().Options.UnsafeFPMath &&
15266            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
15267          break;
15268        Opcode = X86ISD::FMAX;
15269        break;
15270      case ISD::SETUGT:
15271        // Converting this to a max would handle NaNs incorrectly, and swapping
15272        // the operands would cause it to handle comparisons between positive
15273        // and negative zero incorrectly.
15274        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
15275          if (!DAG.getTarget().Options.UnsafeFPMath &&
15276              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
15277            break;
15278          std::swap(LHS, RHS);
15279        }
15280        Opcode = X86ISD::FMAX;
15281        break;
15282      case ISD::SETUGE:
15283        // Converting this to a max would handle both negative zeros and NaNs
15284        // incorrectly, but we can swap the operands to fix both.
15285        std::swap(LHS, RHS);
15286      case ISD::SETOGT:
15287      case ISD::SETGT:
15288      case ISD::SETGE:
15289        Opcode = X86ISD::FMAX;
15290        break;
15291      }
15292    // Check for x CC y ? y : x -- a min/max with reversed arms.
15293    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
15294               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
15295      switch (CC) {
15296      default: break;
15297      case ISD::SETOGE:
15298        // Converting this to a min would handle comparisons between positive
15299        // and negative zero incorrectly, and swapping the operands would
15300        // cause it to handle NaNs incorrectly.
15301        if (!DAG.getTarget().Options.UnsafeFPMath &&
15302            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
15303          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15304            break;
15305          std::swap(LHS, RHS);
15306        }
15307        Opcode = X86ISD::FMIN;
15308        break;
15309      case ISD::SETUGT:
15310        // Converting this to a min would handle NaNs incorrectly.
15311        if (!DAG.getTarget().Options.UnsafeFPMath &&
15312            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
15313          break;
15314        Opcode = X86ISD::FMIN;
15315        break;
15316      case ISD::SETUGE:
15317        // Converting this to a min would handle both negative zeros and NaNs
15318        // incorrectly, but we can swap the operands to fix both.
15319        std::swap(LHS, RHS);
15320      case ISD::SETOGT:
15321      case ISD::SETGT:
15322      case ISD::SETGE:
15323        Opcode = X86ISD::FMIN;
15324        break;
15325
15326      case ISD::SETULT:
15327        // Converting this to a max would handle NaNs incorrectly.
15328        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15329          break;
15330        Opcode = X86ISD::FMAX;
15331        break;
15332      case ISD::SETOLE:
15333        // Converting this to a max would handle comparisons between positive
15334        // and negative zero incorrectly, and swapping the operands would
15335        // cause it to handle NaNs incorrectly.
15336        if (!DAG.getTarget().Options.UnsafeFPMath &&
15337            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
15338          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15339            break;
15340          std::swap(LHS, RHS);
15341        }
15342        Opcode = X86ISD::FMAX;
15343        break;
15344      case ISD::SETULE:
15345        // Converting this to a max would handle both negative zeros and NaNs
15346        // incorrectly, but we can swap the operands to fix both.
15347        std::swap(LHS, RHS);
15348      case ISD::SETOLT:
15349      case ISD::SETLT:
15350      case ISD::SETLE:
15351        Opcode = X86ISD::FMAX;
15352        break;
15353      }
15354    }
15355
15356    if (Opcode)
15357      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
15358  }
15359
15360  // If this is a select between two integer constants, try to do some
15361  // optimizations.
15362  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
15363    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
15364      // Don't do this for crazy integer types.
15365      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
15366        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
15367        // so that TrueC (the true value) is larger than FalseC.
15368        bool NeedsCondInvert = false;
15369
15370        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
15371            // Efficiently invertible.
15372            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
15373             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
15374              isa<ConstantSDNode>(Cond.getOperand(1))))) {
15375          NeedsCondInvert = true;
15376          std::swap(TrueC, FalseC);
15377        }
15378
15379        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
15380        if (FalseC->getAPIntValue() == 0 &&
15381            TrueC->getAPIntValue().isPowerOf2()) {
15382          if (NeedsCondInvert) // Invert the condition if needed.
15383            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15384                               DAG.getConstant(1, Cond.getValueType()));
15385
15386          // Zero extend the condition if needed.
15387          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
15388
15389          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
15390          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
15391                             DAG.getConstant(ShAmt, MVT::i8));
15392        }
15393
15394        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
15395        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
15396          if (NeedsCondInvert) // Invert the condition if needed.
15397            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15398                               DAG.getConstant(1, Cond.getValueType()));
15399
15400          // Zero extend the condition if needed.
15401          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
15402                             FalseC->getValueType(0), Cond);
15403          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15404                             SDValue(FalseC, 0));
15405        }
15406
15407        // Optimize cases that will turn into an LEA instruction.  This requires
15408        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
15409        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
15410          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
15411          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
15412
15413          bool isFastMultiplier = false;
15414          if (Diff < 10) {
15415            switch ((unsigned char)Diff) {
15416              default: break;
15417              case 1:  // result = add base, cond
15418              case 2:  // result = lea base(    , cond*2)
15419              case 3:  // result = lea base(cond, cond*2)
15420              case 4:  // result = lea base(    , cond*4)
15421              case 5:  // result = lea base(cond, cond*4)
15422              case 8:  // result = lea base(    , cond*8)
15423              case 9:  // result = lea base(cond, cond*8)
15424                isFastMultiplier = true;
15425                break;
15426            }
15427          }
15428
15429          if (isFastMultiplier) {
15430            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
15431            if (NeedsCondInvert) // Invert the condition if needed.
15432              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15433                                 DAG.getConstant(1, Cond.getValueType()));
15434
15435            // Zero extend the condition if needed.
15436            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
15437                               Cond);
15438            // Scale the condition by the difference.
15439            if (Diff != 1)
15440              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
15441                                 DAG.getConstant(Diff, Cond.getValueType()));
15442
15443            // Add the base if non-zero.
15444            if (FalseC->getAPIntValue() != 0)
15445              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15446                                 SDValue(FalseC, 0));
15447            return Cond;
15448          }
15449        }
15450      }
15451  }
15452
15453  // Canonicalize max and min:
15454  // (x > y) ? x : y -> (x >= y) ? x : y
15455  // (x < y) ? x : y -> (x <= y) ? x : y
15456  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
15457  // the need for an extra compare
15458  // against zero. e.g.
15459  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
15460  // subl   %esi, %edi
15461  // testl  %edi, %edi
15462  // movl   $0, %eax
15463  // cmovgl %edi, %eax
15464  // =>
15465  // xorl   %eax, %eax
15466  // subl   %esi, $edi
15467  // cmovsl %eax, %edi
15468  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
15469      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15470      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15471    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15472    switch (CC) {
15473    default: break;
15474    case ISD::SETLT:
15475    case ISD::SETGT: {
15476      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
15477      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
15478                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
15479      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
15480    }
15481    }
15482  }
15483
15484  // Match VSELECTs into subs with unsigned saturation.
15485  if (!DCI.isBeforeLegalize() &&
15486      N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
15487      // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
15488      ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
15489       (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
15490    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15491
15492    // Check if one of the arms of the VSELECT is a zero vector. If it's on the
15493    // left side invert the predicate to simplify logic below.
15494    SDValue Other;
15495    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
15496      Other = RHS;
15497      CC = ISD::getSetCCInverse(CC, true);
15498    } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
15499      Other = LHS;
15500    }
15501
15502    if (Other.getNode() && Other->getNumOperands() == 2 &&
15503        DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
15504      SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
15505      SDValue CondRHS = Cond->getOperand(1);
15506
15507      // Look for a general sub with unsigned saturation first.
15508      // x >= y ? x-y : 0 --> subus x, y
15509      // x >  y ? x-y : 0 --> subus x, y
15510      if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
15511          Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
15512        return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
15513
15514      // If the RHS is a constant we have to reverse the const canonicalization.
15515      // x > C-1 ? x+-C : 0 --> subus x, C
15516      if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
15517          isSplatVector(CondRHS.getNode()) && isSplatVector(OpRHS.getNode())) {
15518        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
15519        if (CondRHS.getConstantOperandVal(0) == -A-1)
15520          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS,
15521                             DAG.getConstant(-A, VT));
15522      }
15523
15524      // Another special case: If C was a sign bit, the sub has been
15525      // canonicalized into a xor.
15526      // FIXME: Would it be better to use ComputeMaskedBits to determine whether
15527      //        it's safe to decanonicalize the xor?
15528      // x s< 0 ? x^C : 0 --> subus x, C
15529      if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
15530          ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
15531          isSplatVector(OpRHS.getNode())) {
15532        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
15533        if (A.isSignBit())
15534          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
15535      }
15536    }
15537  }
15538
15539  // Try to match a min/max vector operation.
15540  if (!DCI.isBeforeLegalize() &&
15541      N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC)
15542    if (unsigned Op = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget))
15543      return DAG.getNode(Op, DL, N->getValueType(0), LHS, RHS);
15544
15545  // If we know that this node is legal then we know that it is going to be
15546  // matched by one of the SSE/AVX BLEND instructions. These instructions only
15547  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
15548  // to simplify previous instructions.
15549  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15550  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
15551      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
15552    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
15553
15554    // Don't optimize vector selects that map to mask-registers.
15555    if (BitWidth == 1)
15556      return SDValue();
15557
15558    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
15559    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
15560
15561    APInt KnownZero, KnownOne;
15562    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
15563                                          DCI.isBeforeLegalizeOps());
15564    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
15565        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
15566      DCI.CommitTargetLoweringOpt(TLO);
15567  }
15568
15569  return SDValue();
15570}
15571
15572// Check whether a boolean test is testing a boolean value generated by
15573// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
15574// code.
15575//
15576// Simplify the following patterns:
15577// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
15578// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
15579// to (Op EFLAGS Cond)
15580//
15581// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
15582// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
15583// to (Op EFLAGS !Cond)
15584//
15585// where Op could be BRCOND or CMOV.
15586//
15587static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
15588  // Quit if not CMP and SUB with its value result used.
15589  if (Cmp.getOpcode() != X86ISD::CMP &&
15590      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
15591      return SDValue();
15592
15593  // Quit if not used as a boolean value.
15594  if (CC != X86::COND_E && CC != X86::COND_NE)
15595    return SDValue();
15596
15597  // Check CMP operands. One of them should be 0 or 1 and the other should be
15598  // an SetCC or extended from it.
15599  SDValue Op1 = Cmp.getOperand(0);
15600  SDValue Op2 = Cmp.getOperand(1);
15601
15602  SDValue SetCC;
15603  const ConstantSDNode* C = 0;
15604  bool needOppositeCond = (CC == X86::COND_E);
15605
15606  if ((C = dyn_cast<ConstantSDNode>(Op1)))
15607    SetCC = Op2;
15608  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
15609    SetCC = Op1;
15610  else // Quit if all operands are not constants.
15611    return SDValue();
15612
15613  if (C->getZExtValue() == 1)
15614    needOppositeCond = !needOppositeCond;
15615  else if (C->getZExtValue() != 0)
15616    // Quit if the constant is neither 0 or 1.
15617    return SDValue();
15618
15619  // Skip 'zext' node.
15620  if (SetCC.getOpcode() == ISD::ZERO_EXTEND)
15621    SetCC = SetCC.getOperand(0);
15622
15623  switch (SetCC.getOpcode()) {
15624  case X86ISD::SETCC:
15625    // Set the condition code or opposite one if necessary.
15626    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
15627    if (needOppositeCond)
15628      CC = X86::GetOppositeBranchCondition(CC);
15629    return SetCC.getOperand(1);
15630  case X86ISD::CMOV: {
15631    // Check whether false/true value has canonical one, i.e. 0 or 1.
15632    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
15633    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
15634    // Quit if true value is not a constant.
15635    if (!TVal)
15636      return SDValue();
15637    // Quit if false value is not a constant.
15638    if (!FVal) {
15639      // A special case for rdrand, where 0 is set if false cond is found.
15640      SDValue Op = SetCC.getOperand(0);
15641      if (Op.getOpcode() != X86ISD::RDRAND)
15642        return SDValue();
15643    }
15644    // Quit if false value is not the constant 0 or 1.
15645    bool FValIsFalse = true;
15646    if (FVal && FVal->getZExtValue() != 0) {
15647      if (FVal->getZExtValue() != 1)
15648        return SDValue();
15649      // If FVal is 1, opposite cond is needed.
15650      needOppositeCond = !needOppositeCond;
15651      FValIsFalse = false;
15652    }
15653    // Quit if TVal is not the constant opposite of FVal.
15654    if (FValIsFalse && TVal->getZExtValue() != 1)
15655      return SDValue();
15656    if (!FValIsFalse && TVal->getZExtValue() != 0)
15657      return SDValue();
15658    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
15659    if (needOppositeCond)
15660      CC = X86::GetOppositeBranchCondition(CC);
15661    return SetCC.getOperand(3);
15662  }
15663  }
15664
15665  return SDValue();
15666}
15667
15668/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
15669static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
15670                                  TargetLowering::DAGCombinerInfo &DCI,
15671                                  const X86Subtarget *Subtarget) {
15672  DebugLoc DL = N->getDebugLoc();
15673
15674  // If the flag operand isn't dead, don't touch this CMOV.
15675  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
15676    return SDValue();
15677
15678  SDValue FalseOp = N->getOperand(0);
15679  SDValue TrueOp = N->getOperand(1);
15680  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
15681  SDValue Cond = N->getOperand(3);
15682
15683  if (CC == X86::COND_E || CC == X86::COND_NE) {
15684    switch (Cond.getOpcode()) {
15685    default: break;
15686    case X86ISD::BSR:
15687    case X86ISD::BSF:
15688      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
15689      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
15690        return (CC == X86::COND_E) ? FalseOp : TrueOp;
15691    }
15692  }
15693
15694  SDValue Flags;
15695
15696  Flags = checkBoolTestSetCCCombine(Cond, CC);
15697  if (Flags.getNode() &&
15698      // Extra check as FCMOV only supports a subset of X86 cond.
15699      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
15700    SDValue Ops[] = { FalseOp, TrueOp,
15701                      DAG.getConstant(CC, MVT::i8), Flags };
15702    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
15703                       Ops, array_lengthof(Ops));
15704  }
15705
15706  // If this is a select between two integer constants, try to do some
15707  // optimizations.  Note that the operands are ordered the opposite of SELECT
15708  // operands.
15709  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
15710    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
15711      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
15712      // larger than FalseC (the false value).
15713      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
15714        CC = X86::GetOppositeBranchCondition(CC);
15715        std::swap(TrueC, FalseC);
15716        std::swap(TrueOp, FalseOp);
15717      }
15718
15719      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
15720      // This is efficient for any integer data type (including i8/i16) and
15721      // shift amount.
15722      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
15723        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
15724                           DAG.getConstant(CC, MVT::i8), Cond);
15725
15726        // Zero extend the condition if needed.
15727        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
15728
15729        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
15730        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
15731                           DAG.getConstant(ShAmt, MVT::i8));
15732        if (N->getNumValues() == 2)  // Dead flag value?
15733          return DCI.CombineTo(N, Cond, SDValue());
15734        return Cond;
15735      }
15736
15737      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
15738      // for any integer data type, including i8/i16.
15739      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
15740        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
15741                           DAG.getConstant(CC, MVT::i8), Cond);
15742
15743        // Zero extend the condition if needed.
15744        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
15745                           FalseC->getValueType(0), Cond);
15746        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15747                           SDValue(FalseC, 0));
15748
15749        if (N->getNumValues() == 2)  // Dead flag value?
15750          return DCI.CombineTo(N, Cond, SDValue());
15751        return Cond;
15752      }
15753
15754      // Optimize cases that will turn into an LEA instruction.  This requires
15755      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
15756      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
15757        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
15758        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
15759
15760        bool isFastMultiplier = false;
15761        if (Diff < 10) {
15762          switch ((unsigned char)Diff) {
15763          default: break;
15764          case 1:  // result = add base, cond
15765          case 2:  // result = lea base(    , cond*2)
15766          case 3:  // result = lea base(cond, cond*2)
15767          case 4:  // result = lea base(    , cond*4)
15768          case 5:  // result = lea base(cond, cond*4)
15769          case 8:  // result = lea base(    , cond*8)
15770          case 9:  // result = lea base(cond, cond*8)
15771            isFastMultiplier = true;
15772            break;
15773          }
15774        }
15775
15776        if (isFastMultiplier) {
15777          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
15778          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
15779                             DAG.getConstant(CC, MVT::i8), Cond);
15780          // Zero extend the condition if needed.
15781          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
15782                             Cond);
15783          // Scale the condition by the difference.
15784          if (Diff != 1)
15785            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
15786                               DAG.getConstant(Diff, Cond.getValueType()));
15787
15788          // Add the base if non-zero.
15789          if (FalseC->getAPIntValue() != 0)
15790            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15791                               SDValue(FalseC, 0));
15792          if (N->getNumValues() == 2)  // Dead flag value?
15793            return DCI.CombineTo(N, Cond, SDValue());
15794          return Cond;
15795        }
15796      }
15797    }
15798  }
15799
15800  // Handle these cases:
15801  //   (select (x != c), e, c) -> select (x != c), e, x),
15802  //   (select (x == c), c, e) -> select (x == c), x, e)
15803  // where the c is an integer constant, and the "select" is the combination
15804  // of CMOV and CMP.
15805  //
15806  // The rationale for this change is that the conditional-move from a constant
15807  // needs two instructions, however, conditional-move from a register needs
15808  // only one instruction.
15809  //
15810  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
15811  //  some instruction-combining opportunities. This opt needs to be
15812  //  postponed as late as possible.
15813  //
15814  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
15815    // the DCI.xxxx conditions are provided to postpone the optimization as
15816    // late as possible.
15817
15818    ConstantSDNode *CmpAgainst = 0;
15819    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
15820        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
15821        !isa<ConstantSDNode>(Cond.getOperand(0))) {
15822
15823      if (CC == X86::COND_NE &&
15824          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
15825        CC = X86::GetOppositeBranchCondition(CC);
15826        std::swap(TrueOp, FalseOp);
15827      }
15828
15829      if (CC == X86::COND_E &&
15830          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
15831        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
15832                          DAG.getConstant(CC, MVT::i8), Cond };
15833        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops,
15834                           array_lengthof(Ops));
15835      }
15836    }
15837  }
15838
15839  return SDValue();
15840}
15841
15842/// PerformMulCombine - Optimize a single multiply with constant into two
15843/// in order to implement it with two cheaper instructions, e.g.
15844/// LEA + SHL, LEA + LEA.
15845static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
15846                                 TargetLowering::DAGCombinerInfo &DCI) {
15847  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
15848    return SDValue();
15849
15850  EVT VT = N->getValueType(0);
15851  if (VT != MVT::i64)
15852    return SDValue();
15853
15854  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
15855  if (!C)
15856    return SDValue();
15857  uint64_t MulAmt = C->getZExtValue();
15858  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
15859    return SDValue();
15860
15861  uint64_t MulAmt1 = 0;
15862  uint64_t MulAmt2 = 0;
15863  if ((MulAmt % 9) == 0) {
15864    MulAmt1 = 9;
15865    MulAmt2 = MulAmt / 9;
15866  } else if ((MulAmt % 5) == 0) {
15867    MulAmt1 = 5;
15868    MulAmt2 = MulAmt / 5;
15869  } else if ((MulAmt % 3) == 0) {
15870    MulAmt1 = 3;
15871    MulAmt2 = MulAmt / 3;
15872  }
15873  if (MulAmt2 &&
15874      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
15875    DebugLoc DL = N->getDebugLoc();
15876
15877    if (isPowerOf2_64(MulAmt2) &&
15878        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
15879      // If second multiplifer is pow2, issue it first. We want the multiply by
15880      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
15881      // is an add.
15882      std::swap(MulAmt1, MulAmt2);
15883
15884    SDValue NewMul;
15885    if (isPowerOf2_64(MulAmt1))
15886      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15887                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
15888    else
15889      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
15890                           DAG.getConstant(MulAmt1, VT));
15891
15892    if (isPowerOf2_64(MulAmt2))
15893      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
15894                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
15895    else
15896      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
15897                           DAG.getConstant(MulAmt2, VT));
15898
15899    // Do not add new nodes to DAG combiner worklist.
15900    DCI.CombineTo(N, NewMul, false);
15901  }
15902  return SDValue();
15903}
15904
15905static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
15906  SDValue N0 = N->getOperand(0);
15907  SDValue N1 = N->getOperand(1);
15908  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
15909  EVT VT = N0.getValueType();
15910
15911  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
15912  // since the result of setcc_c is all zero's or all ones.
15913  if (VT.isInteger() && !VT.isVector() &&
15914      N1C && N0.getOpcode() == ISD::AND &&
15915      N0.getOperand(1).getOpcode() == ISD::Constant) {
15916    SDValue N00 = N0.getOperand(0);
15917    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
15918        ((N00.getOpcode() == ISD::ANY_EXTEND ||
15919          N00.getOpcode() == ISD::ZERO_EXTEND) &&
15920         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
15921      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
15922      APInt ShAmt = N1C->getAPIntValue();
15923      Mask = Mask.shl(ShAmt);
15924      if (Mask != 0)
15925        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
15926                           N00, DAG.getConstant(Mask, VT));
15927    }
15928  }
15929
15930  // Hardware support for vector shifts is sparse which makes us scalarize the
15931  // vector operations in many cases. Also, on sandybridge ADD is faster than
15932  // shl.
15933  // (shl V, 1) -> add V,V
15934  if (isSplatVector(N1.getNode())) {
15935    assert(N0.getValueType().isVector() && "Invalid vector shift type");
15936    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
15937    // We shift all of the values by one. In many cases we do not have
15938    // hardware support for this operation. This is better expressed as an ADD
15939    // of two values.
15940    if (N1C && (1 == N1C->getZExtValue())) {
15941      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
15942    }
15943  }
15944
15945  return SDValue();
15946}
15947
15948/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
15949///                       when possible.
15950static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
15951                                   TargetLowering::DAGCombinerInfo &DCI,
15952                                   const X86Subtarget *Subtarget) {
15953  EVT VT = N->getValueType(0);
15954  if (N->getOpcode() == ISD::SHL) {
15955    SDValue V = PerformSHLCombine(N, DAG);
15956    if (V.getNode()) return V;
15957  }
15958
15959  // On X86 with SSE2 support, we can transform this to a vector shift if
15960  // all elements are shifted by the same amount.  We can't do this in legalize
15961  // because the a constant vector is typically transformed to a constant pool
15962  // so we have no knowledge of the shift amount.
15963  if (!Subtarget->hasSSE2())
15964    return SDValue();
15965
15966  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
15967      (!Subtarget->hasInt256() ||
15968       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
15969    return SDValue();
15970
15971  SDValue ShAmtOp = N->getOperand(1);
15972  EVT EltVT = VT.getVectorElementType();
15973  DebugLoc DL = N->getDebugLoc();
15974  SDValue BaseShAmt = SDValue();
15975  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
15976    unsigned NumElts = VT.getVectorNumElements();
15977    unsigned i = 0;
15978    for (; i != NumElts; ++i) {
15979      SDValue Arg = ShAmtOp.getOperand(i);
15980      if (Arg.getOpcode() == ISD::UNDEF) continue;
15981      BaseShAmt = Arg;
15982      break;
15983    }
15984    // Handle the case where the build_vector is all undef
15985    // FIXME: Should DAG allow this?
15986    if (i == NumElts)
15987      return SDValue();
15988
15989    for (; i != NumElts; ++i) {
15990      SDValue Arg = ShAmtOp.getOperand(i);
15991      if (Arg.getOpcode() == ISD::UNDEF) continue;
15992      if (Arg != BaseShAmt) {
15993        return SDValue();
15994      }
15995    }
15996  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
15997             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
15998    SDValue InVec = ShAmtOp.getOperand(0);
15999    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
16000      unsigned NumElts = InVec.getValueType().getVectorNumElements();
16001      unsigned i = 0;
16002      for (; i != NumElts; ++i) {
16003        SDValue Arg = InVec.getOperand(i);
16004        if (Arg.getOpcode() == ISD::UNDEF) continue;
16005        BaseShAmt = Arg;
16006        break;
16007      }
16008    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
16009       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
16010         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
16011         if (C->getZExtValue() == SplatIdx)
16012           BaseShAmt = InVec.getOperand(1);
16013       }
16014    }
16015    if (BaseShAmt.getNode() == 0) {
16016      // Don't create instructions with illegal types after legalize
16017      // types has run.
16018      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
16019          !DCI.isBeforeLegalize())
16020        return SDValue();
16021
16022      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
16023                              DAG.getIntPtrConstant(0));
16024    }
16025  } else
16026    return SDValue();
16027
16028  // The shift amount is an i32.
16029  if (EltVT.bitsGT(MVT::i32))
16030    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
16031  else if (EltVT.bitsLT(MVT::i32))
16032    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
16033
16034  // The shift amount is identical so we can do a vector shift.
16035  SDValue  ValOp = N->getOperand(0);
16036  switch (N->getOpcode()) {
16037  default:
16038    llvm_unreachable("Unknown shift opcode!");
16039  case ISD::SHL:
16040    switch (VT.getSimpleVT().SimpleTy) {
16041    default: return SDValue();
16042    case MVT::v2i64:
16043    case MVT::v4i32:
16044    case MVT::v8i16:
16045    case MVT::v4i64:
16046    case MVT::v8i32:
16047    case MVT::v16i16:
16048      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
16049    }
16050  case ISD::SRA:
16051    switch (VT.getSimpleVT().SimpleTy) {
16052    default: return SDValue();
16053    case MVT::v4i32:
16054    case MVT::v8i16:
16055    case MVT::v8i32:
16056    case MVT::v16i16:
16057      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
16058    }
16059  case ISD::SRL:
16060    switch (VT.getSimpleVT().SimpleTy) {
16061    default: return SDValue();
16062    case MVT::v2i64:
16063    case MVT::v4i32:
16064    case MVT::v8i16:
16065    case MVT::v4i64:
16066    case MVT::v8i32:
16067    case MVT::v16i16:
16068      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
16069    }
16070  }
16071}
16072
16073// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
16074// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
16075// and friends.  Likewise for OR -> CMPNEQSS.
16076static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
16077                            TargetLowering::DAGCombinerInfo &DCI,
16078                            const X86Subtarget *Subtarget) {
16079  unsigned opcode;
16080
16081  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
16082  // we're requiring SSE2 for both.
16083  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
16084    SDValue N0 = N->getOperand(0);
16085    SDValue N1 = N->getOperand(1);
16086    SDValue CMP0 = N0->getOperand(1);
16087    SDValue CMP1 = N1->getOperand(1);
16088    DebugLoc DL = N->getDebugLoc();
16089
16090    // The SETCCs should both refer to the same CMP.
16091    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
16092      return SDValue();
16093
16094    SDValue CMP00 = CMP0->getOperand(0);
16095    SDValue CMP01 = CMP0->getOperand(1);
16096    EVT     VT    = CMP00.getValueType();
16097
16098    if (VT == MVT::f32 || VT == MVT::f64) {
16099      bool ExpectingFlags = false;
16100      // Check for any users that want flags:
16101      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
16102           !ExpectingFlags && UI != UE; ++UI)
16103        switch (UI->getOpcode()) {
16104        default:
16105        case ISD::BR_CC:
16106        case ISD::BRCOND:
16107        case ISD::SELECT:
16108          ExpectingFlags = true;
16109          break;
16110        case ISD::CopyToReg:
16111        case ISD::SIGN_EXTEND:
16112        case ISD::ZERO_EXTEND:
16113        case ISD::ANY_EXTEND:
16114          break;
16115        }
16116
16117      if (!ExpectingFlags) {
16118        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
16119        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
16120
16121        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
16122          X86::CondCode tmp = cc0;
16123          cc0 = cc1;
16124          cc1 = tmp;
16125        }
16126
16127        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
16128            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
16129          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
16130          X86ISD::NodeType NTOperator = is64BitFP ?
16131            X86ISD::FSETCCsd : X86ISD::FSETCCss;
16132          // FIXME: need symbolic constants for these magic numbers.
16133          // See X86ATTInstPrinter.cpp:printSSECC().
16134          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
16135          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
16136                                              DAG.getConstant(x86cc, MVT::i8));
16137          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
16138                                              OnesOrZeroesF);
16139          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
16140                                      DAG.getConstant(1, MVT::i32));
16141          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
16142          return OneBitOfTruth;
16143        }
16144      }
16145    }
16146  }
16147  return SDValue();
16148}
16149
16150/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
16151/// so it can be folded inside ANDNP.
16152static bool CanFoldXORWithAllOnes(const SDNode *N) {
16153  EVT VT = N->getValueType(0);
16154
16155  // Match direct AllOnes for 128 and 256-bit vectors
16156  if (ISD::isBuildVectorAllOnes(N))
16157    return true;
16158
16159  // Look through a bit convert.
16160  if (N->getOpcode() == ISD::BITCAST)
16161    N = N->getOperand(0).getNode();
16162
16163  // Sometimes the operand may come from a insert_subvector building a 256-bit
16164  // allones vector
16165  if (VT.is256BitVector() &&
16166      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
16167    SDValue V1 = N->getOperand(0);
16168    SDValue V2 = N->getOperand(1);
16169
16170    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
16171        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
16172        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
16173        ISD::isBuildVectorAllOnes(V2.getNode()))
16174      return true;
16175  }
16176
16177  return false;
16178}
16179
16180// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
16181// register. In most cases we actually compare or select YMM-sized registers
16182// and mixing the two types creates horrible code. This method optimizes
16183// some of the transition sequences.
16184static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
16185                                 TargetLowering::DAGCombinerInfo &DCI,
16186                                 const X86Subtarget *Subtarget) {
16187  EVT VT = N->getValueType(0);
16188  if (!VT.is256BitVector())
16189    return SDValue();
16190
16191  assert((N->getOpcode() == ISD::ANY_EXTEND ||
16192          N->getOpcode() == ISD::ZERO_EXTEND ||
16193          N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
16194
16195  SDValue Narrow = N->getOperand(0);
16196  EVT NarrowVT = Narrow->getValueType(0);
16197  if (!NarrowVT.is128BitVector())
16198    return SDValue();
16199
16200  if (Narrow->getOpcode() != ISD::XOR &&
16201      Narrow->getOpcode() != ISD::AND &&
16202      Narrow->getOpcode() != ISD::OR)
16203    return SDValue();
16204
16205  SDValue N0  = Narrow->getOperand(0);
16206  SDValue N1  = Narrow->getOperand(1);
16207  DebugLoc DL = Narrow->getDebugLoc();
16208
16209  // The Left side has to be a trunc.
16210  if (N0.getOpcode() != ISD::TRUNCATE)
16211    return SDValue();
16212
16213  // The type of the truncated inputs.
16214  EVT WideVT = N0->getOperand(0)->getValueType(0);
16215  if (WideVT != VT)
16216    return SDValue();
16217
16218  // The right side has to be a 'trunc' or a constant vector.
16219  bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
16220  bool RHSConst = (isSplatVector(N1.getNode()) &&
16221                   isa<ConstantSDNode>(N1->getOperand(0)));
16222  if (!RHSTrunc && !RHSConst)
16223    return SDValue();
16224
16225  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16226
16227  if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
16228    return SDValue();
16229
16230  // Set N0 and N1 to hold the inputs to the new wide operation.
16231  N0 = N0->getOperand(0);
16232  if (RHSConst) {
16233    N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(),
16234                     N1->getOperand(0));
16235    SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
16236    N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, &C[0], C.size());
16237  } else if (RHSTrunc) {
16238    N1 = N1->getOperand(0);
16239  }
16240
16241  // Generate the wide operation.
16242  SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
16243  unsigned Opcode = N->getOpcode();
16244  switch (Opcode) {
16245  case ISD::ANY_EXTEND:
16246    return Op;
16247  case ISD::ZERO_EXTEND: {
16248    unsigned InBits = NarrowVT.getScalarType().getSizeInBits();
16249    APInt Mask = APInt::getAllOnesValue(InBits);
16250    Mask = Mask.zext(VT.getScalarType().getSizeInBits());
16251    return DAG.getNode(ISD::AND, DL, VT,
16252                       Op, DAG.getConstant(Mask, VT));
16253  }
16254  case ISD::SIGN_EXTEND:
16255    return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
16256                       Op, DAG.getValueType(NarrowVT));
16257  default:
16258    llvm_unreachable("Unexpected opcode");
16259  }
16260}
16261
16262static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
16263                                 TargetLowering::DAGCombinerInfo &DCI,
16264                                 const X86Subtarget *Subtarget) {
16265  EVT VT = N->getValueType(0);
16266  if (DCI.isBeforeLegalizeOps())
16267    return SDValue();
16268
16269  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
16270  if (R.getNode())
16271    return R;
16272
16273  // Create BLSI, and BLSR instructions
16274  // BLSI is X & (-X)
16275  // BLSR is X & (X-1)
16276  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
16277    SDValue N0 = N->getOperand(0);
16278    SDValue N1 = N->getOperand(1);
16279    DebugLoc DL = N->getDebugLoc();
16280
16281    // Check LHS for neg
16282    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
16283        isZero(N0.getOperand(0)))
16284      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
16285
16286    // Check RHS for neg
16287    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
16288        isZero(N1.getOperand(0)))
16289      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
16290
16291    // Check LHS for X-1
16292    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
16293        isAllOnes(N0.getOperand(1)))
16294      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
16295
16296    // Check RHS for X-1
16297    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
16298        isAllOnes(N1.getOperand(1)))
16299      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
16300
16301    return SDValue();
16302  }
16303
16304  // Want to form ANDNP nodes:
16305  // 1) In the hopes of then easily combining them with OR and AND nodes
16306  //    to form PBLEND/PSIGN.
16307  // 2) To match ANDN packed intrinsics
16308  if (VT != MVT::v2i64 && VT != MVT::v4i64)
16309    return SDValue();
16310
16311  SDValue N0 = N->getOperand(0);
16312  SDValue N1 = N->getOperand(1);
16313  DebugLoc DL = N->getDebugLoc();
16314
16315  // Check LHS for vnot
16316  if (N0.getOpcode() == ISD::XOR &&
16317      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
16318      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
16319    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
16320
16321  // Check RHS for vnot
16322  if (N1.getOpcode() == ISD::XOR &&
16323      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
16324      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
16325    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
16326
16327  return SDValue();
16328}
16329
16330static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
16331                                TargetLowering::DAGCombinerInfo &DCI,
16332                                const X86Subtarget *Subtarget) {
16333  EVT VT = N->getValueType(0);
16334  if (DCI.isBeforeLegalizeOps())
16335    return SDValue();
16336
16337  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
16338  if (R.getNode())
16339    return R;
16340
16341  SDValue N0 = N->getOperand(0);
16342  SDValue N1 = N->getOperand(1);
16343
16344  // look for psign/blend
16345  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
16346    if (!Subtarget->hasSSSE3() ||
16347        (VT == MVT::v4i64 && !Subtarget->hasInt256()))
16348      return SDValue();
16349
16350    // Canonicalize pandn to RHS
16351    if (N0.getOpcode() == X86ISD::ANDNP)
16352      std::swap(N0, N1);
16353    // or (and (m, y), (pandn m, x))
16354    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
16355      SDValue Mask = N1.getOperand(0);
16356      SDValue X    = N1.getOperand(1);
16357      SDValue Y;
16358      if (N0.getOperand(0) == Mask)
16359        Y = N0.getOperand(1);
16360      if (N0.getOperand(1) == Mask)
16361        Y = N0.getOperand(0);
16362
16363      // Check to see if the mask appeared in both the AND and ANDNP and
16364      if (!Y.getNode())
16365        return SDValue();
16366
16367      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
16368      // Look through mask bitcast.
16369      if (Mask.getOpcode() == ISD::BITCAST)
16370        Mask = Mask.getOperand(0);
16371      if (X.getOpcode() == ISD::BITCAST)
16372        X = X.getOperand(0);
16373      if (Y.getOpcode() == ISD::BITCAST)
16374        Y = Y.getOperand(0);
16375
16376      EVT MaskVT = Mask.getValueType();
16377
16378      // Validate that the Mask operand is a vector sra node.
16379      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
16380      // there is no psrai.b
16381      if (Mask.getOpcode() != X86ISD::VSRAI)
16382        return SDValue();
16383
16384      // Check that the SRA is all signbits.
16385      SDValue SraC = Mask.getOperand(1);
16386      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
16387      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
16388      if ((SraAmt + 1) != EltBits)
16389        return SDValue();
16390
16391      DebugLoc DL = N->getDebugLoc();
16392
16393      // Now we know we at least have a plendvb with the mask val.  See if
16394      // we can form a psignb/w/d.
16395      // psign = x.type == y.type == mask.type && y = sub(0, x);
16396      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
16397          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
16398          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
16399        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
16400               "Unsupported VT for PSIGN");
16401        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
16402        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
16403      }
16404      // PBLENDVB only available on SSE 4.1
16405      if (!Subtarget->hasSSE41())
16406        return SDValue();
16407
16408      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
16409
16410      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
16411      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
16412      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
16413      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
16414      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
16415    }
16416  }
16417
16418  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
16419    return SDValue();
16420
16421  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
16422  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
16423    std::swap(N0, N1);
16424  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
16425    return SDValue();
16426  if (!N0.hasOneUse() || !N1.hasOneUse())
16427    return SDValue();
16428
16429  SDValue ShAmt0 = N0.getOperand(1);
16430  if (ShAmt0.getValueType() != MVT::i8)
16431    return SDValue();
16432  SDValue ShAmt1 = N1.getOperand(1);
16433  if (ShAmt1.getValueType() != MVT::i8)
16434    return SDValue();
16435  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
16436    ShAmt0 = ShAmt0.getOperand(0);
16437  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
16438    ShAmt1 = ShAmt1.getOperand(0);
16439
16440  DebugLoc DL = N->getDebugLoc();
16441  unsigned Opc = X86ISD::SHLD;
16442  SDValue Op0 = N0.getOperand(0);
16443  SDValue Op1 = N1.getOperand(0);
16444  if (ShAmt0.getOpcode() == ISD::SUB) {
16445    Opc = X86ISD::SHRD;
16446    std::swap(Op0, Op1);
16447    std::swap(ShAmt0, ShAmt1);
16448  }
16449
16450  unsigned Bits = VT.getSizeInBits();
16451  if (ShAmt1.getOpcode() == ISD::SUB) {
16452    SDValue Sum = ShAmt1.getOperand(0);
16453    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
16454      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
16455      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
16456        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
16457      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
16458        return DAG.getNode(Opc, DL, VT,
16459                           Op0, Op1,
16460                           DAG.getNode(ISD::TRUNCATE, DL,
16461                                       MVT::i8, ShAmt0));
16462    }
16463  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
16464    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
16465    if (ShAmt0C &&
16466        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
16467      return DAG.getNode(Opc, DL, VT,
16468                         N0.getOperand(0), N1.getOperand(0),
16469                         DAG.getNode(ISD::TRUNCATE, DL,
16470                                       MVT::i8, ShAmt0));
16471  }
16472
16473  return SDValue();
16474}
16475
16476// Generate NEG and CMOV for integer abs.
16477static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
16478  EVT VT = N->getValueType(0);
16479
16480  // Since X86 does not have CMOV for 8-bit integer, we don't convert
16481  // 8-bit integer abs to NEG and CMOV.
16482  if (VT.isInteger() && VT.getSizeInBits() == 8)
16483    return SDValue();
16484
16485  SDValue N0 = N->getOperand(0);
16486  SDValue N1 = N->getOperand(1);
16487  DebugLoc DL = N->getDebugLoc();
16488
16489  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
16490  // and change it to SUB and CMOV.
16491  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
16492      N0.getOpcode() == ISD::ADD &&
16493      N0.getOperand(1) == N1 &&
16494      N1.getOpcode() == ISD::SRA &&
16495      N1.getOperand(0) == N0.getOperand(0))
16496    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
16497      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
16498        // Generate SUB & CMOV.
16499        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
16500                                  DAG.getConstant(0, VT), N0.getOperand(0));
16501
16502        SDValue Ops[] = { N0.getOperand(0), Neg,
16503                          DAG.getConstant(X86::COND_GE, MVT::i8),
16504                          SDValue(Neg.getNode(), 1) };
16505        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
16506                           Ops, array_lengthof(Ops));
16507      }
16508  return SDValue();
16509}
16510
16511// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
16512static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
16513                                 TargetLowering::DAGCombinerInfo &DCI,
16514                                 const X86Subtarget *Subtarget) {
16515  EVT VT = N->getValueType(0);
16516  if (DCI.isBeforeLegalizeOps())
16517    return SDValue();
16518
16519  if (Subtarget->hasCMov()) {
16520    SDValue RV = performIntegerAbsCombine(N, DAG);
16521    if (RV.getNode())
16522      return RV;
16523  }
16524
16525  // Try forming BMI if it is available.
16526  if (!Subtarget->hasBMI())
16527    return SDValue();
16528
16529  if (VT != MVT::i32 && VT != MVT::i64)
16530    return SDValue();
16531
16532  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
16533
16534  // Create BLSMSK instructions by finding X ^ (X-1)
16535  SDValue N0 = N->getOperand(0);
16536  SDValue N1 = N->getOperand(1);
16537  DebugLoc DL = N->getDebugLoc();
16538
16539  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
16540      isAllOnes(N0.getOperand(1)))
16541    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
16542
16543  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
16544      isAllOnes(N1.getOperand(1)))
16545    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
16546
16547  return SDValue();
16548}
16549
16550/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
16551static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
16552                                  TargetLowering::DAGCombinerInfo &DCI,
16553                                  const X86Subtarget *Subtarget) {
16554  LoadSDNode *Ld = cast<LoadSDNode>(N);
16555  EVT RegVT = Ld->getValueType(0);
16556  EVT MemVT = Ld->getMemoryVT();
16557  DebugLoc dl = Ld->getDebugLoc();
16558  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16559  unsigned RegSz = RegVT.getSizeInBits();
16560
16561  ISD::LoadExtType Ext = Ld->getExtensionType();
16562  unsigned Alignment = Ld->getAlignment();
16563  bool IsAligned = Alignment == 0 || Alignment == MemVT.getSizeInBits()/8;
16564
16565  // On Sandybridge unaligned 256bit loads are inefficient.
16566  if (RegVT.is256BitVector() && !Subtarget->hasInt256() &&
16567      !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
16568    unsigned NumElems = RegVT.getVectorNumElements();
16569    if (NumElems < 2)
16570      return SDValue();
16571
16572    SDValue Ptr = Ld->getBasePtr();
16573    SDValue Increment = DAG.getConstant(16, TLI.getPointerTy());
16574
16575    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
16576                                  NumElems/2);
16577    SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
16578                                Ld->getPointerInfo(), Ld->isVolatile(),
16579                                Ld->isNonTemporal(), Ld->isInvariant(),
16580                                Alignment);
16581    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16582    SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
16583                                Ld->getPointerInfo(), Ld->isVolatile(),
16584                                Ld->isNonTemporal(), Ld->isInvariant(),
16585                                std::max(Alignment/2U, 1U));
16586    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
16587                             Load1.getValue(1),
16588                             Load2.getValue(1));
16589
16590    SDValue NewVec = DAG.getUNDEF(RegVT);
16591    NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
16592    NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
16593    return DCI.CombineTo(N, NewVec, TF, true);
16594  }
16595
16596  // If this is a vector EXT Load then attempt to optimize it using a
16597  // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the
16598  // expansion is still better than scalar code.
16599  // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll
16600  // emit a shuffle and a arithmetic shift.
16601  // TODO: It is possible to support ZExt by zeroing the undef values
16602  // during the shuffle phase or after the shuffle.
16603  if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() &&
16604      (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) {
16605    assert(MemVT != RegVT && "Cannot extend to the same type");
16606    assert(MemVT.isVector() && "Must load a vector from memory");
16607
16608    unsigned NumElems = RegVT.getVectorNumElements();
16609    unsigned MemSz = MemVT.getSizeInBits();
16610    assert(RegSz > MemSz && "Register size must be greater than the mem size");
16611
16612    if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256())
16613      return SDValue();
16614
16615    // All sizes must be a power of two.
16616    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
16617      return SDValue();
16618
16619    // Attempt to load the original value using scalar loads.
16620    // Find the largest scalar type that divides the total loaded size.
16621    MVT SclrLoadTy = MVT::i8;
16622    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
16623         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
16624      MVT Tp = (MVT::SimpleValueType)tp;
16625      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
16626        SclrLoadTy = Tp;
16627      }
16628    }
16629
16630    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
16631    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
16632        (64 <= MemSz))
16633      SclrLoadTy = MVT::f64;
16634
16635    // Calculate the number of scalar loads that we need to perform
16636    // in order to load our vector from memory.
16637    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
16638    if (Ext == ISD::SEXTLOAD && NumLoads > 1)
16639      return SDValue();
16640
16641    unsigned loadRegZize = RegSz;
16642    if (Ext == ISD::SEXTLOAD && RegSz == 256)
16643      loadRegZize /= 2;
16644
16645    // Represent our vector as a sequence of elements which are the
16646    // largest scalar that we can load.
16647    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
16648      loadRegZize/SclrLoadTy.getSizeInBits());
16649
16650    // Represent the data using the same element type that is stored in
16651    // memory. In practice, we ''widen'' MemVT.
16652    EVT WideVecVT =
16653          EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
16654                       loadRegZize/MemVT.getScalarType().getSizeInBits());
16655
16656    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
16657      "Invalid vector type");
16658
16659    // We can't shuffle using an illegal type.
16660    if (!TLI.isTypeLegal(WideVecVT))
16661      return SDValue();
16662
16663    SmallVector<SDValue, 8> Chains;
16664    SDValue Ptr = Ld->getBasePtr();
16665    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
16666                                        TLI.getPointerTy());
16667    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
16668
16669    for (unsigned i = 0; i < NumLoads; ++i) {
16670      // Perform a single load.
16671      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
16672                                       Ptr, Ld->getPointerInfo(),
16673                                       Ld->isVolatile(), Ld->isNonTemporal(),
16674                                       Ld->isInvariant(), Ld->getAlignment());
16675      Chains.push_back(ScalarLoad.getValue(1));
16676      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
16677      // another round of DAGCombining.
16678      if (i == 0)
16679        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
16680      else
16681        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
16682                          ScalarLoad, DAG.getIntPtrConstant(i));
16683
16684      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16685    }
16686
16687    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
16688                               Chains.size());
16689
16690    // Bitcast the loaded value to a vector of the original element type, in
16691    // the size of the target vector type.
16692    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
16693    unsigned SizeRatio = RegSz/MemSz;
16694
16695    if (Ext == ISD::SEXTLOAD) {
16696      // If we have SSE4.1 we can directly emit a VSEXT node.
16697      if (Subtarget->hasSSE41()) {
16698        SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
16699        return DCI.CombineTo(N, Sext, TF, true);
16700      }
16701
16702      // Otherwise we'll shuffle the small elements in the high bits of the
16703      // larger type and perform an arithmetic shift. If the shift is not legal
16704      // it's better to scalarize.
16705      if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT))
16706        return SDValue();
16707
16708      // Redistribute the loaded elements into the different locations.
16709      SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16710      for (unsigned i = 0; i != NumElems; ++i)
16711        ShuffleVec[i*SizeRatio + SizeRatio-1] = i;
16712
16713      SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
16714                                           DAG.getUNDEF(WideVecVT),
16715                                           &ShuffleVec[0]);
16716
16717      Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
16718
16719      // Build the arithmetic shift.
16720      unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
16721                     MemVT.getVectorElementType().getSizeInBits();
16722      Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff,
16723                          DAG.getConstant(Amt, RegVT));
16724
16725      return DCI.CombineTo(N, Shuff, TF, true);
16726    }
16727
16728    // Redistribute the loaded elements into the different locations.
16729    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16730    for (unsigned i = 0; i != NumElems; ++i)
16731      ShuffleVec[i*SizeRatio] = i;
16732
16733    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
16734                                         DAG.getUNDEF(WideVecVT),
16735                                         &ShuffleVec[0]);
16736
16737    // Bitcast to the requested type.
16738    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
16739    // Replace the original load with the new sequence
16740    // and return the new chain.
16741    return DCI.CombineTo(N, Shuff, TF, true);
16742  }
16743
16744  return SDValue();
16745}
16746
16747/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
16748static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
16749                                   const X86Subtarget *Subtarget) {
16750  StoreSDNode *St = cast<StoreSDNode>(N);
16751  EVT VT = St->getValue().getValueType();
16752  EVT StVT = St->getMemoryVT();
16753  DebugLoc dl = St->getDebugLoc();
16754  SDValue StoredVal = St->getOperand(1);
16755  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16756  unsigned Alignment = St->getAlignment();
16757  bool IsAligned = Alignment == 0 || Alignment == VT.getSizeInBits()/8;
16758
16759  // If we are saving a concatenation of two XMM registers, perform two stores.
16760  // On Sandy Bridge, 256-bit memory operations are executed by two
16761  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
16762  // memory  operation.
16763  if (VT.is256BitVector() && !Subtarget->hasInt256() &&
16764      StVT == VT && !IsAligned) {
16765    unsigned NumElems = VT.getVectorNumElements();
16766    if (NumElems < 2)
16767      return SDValue();
16768
16769    SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
16770    SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
16771
16772    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
16773    SDValue Ptr0 = St->getBasePtr();
16774    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
16775
16776    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
16777                                St->getPointerInfo(), St->isVolatile(),
16778                                St->isNonTemporal(), Alignment);
16779    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
16780                                St->getPointerInfo(), St->isVolatile(),
16781                                St->isNonTemporal(),
16782                                std::max(Alignment/2U, 1U));
16783    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
16784  }
16785
16786  // Optimize trunc store (of multiple scalars) to shuffle and store.
16787  // First, pack all of the elements in one place. Next, store to memory
16788  // in fewer chunks.
16789  if (St->isTruncatingStore() && VT.isVector()) {
16790    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16791    unsigned NumElems = VT.getVectorNumElements();
16792    assert(StVT != VT && "Cannot truncate to the same type");
16793    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
16794    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
16795
16796    // From, To sizes and ElemCount must be pow of two
16797    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
16798    // We are going to use the original vector elt for storing.
16799    // Accumulated smaller vector elements must be a multiple of the store size.
16800    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
16801
16802    unsigned SizeRatio  = FromSz / ToSz;
16803
16804    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
16805
16806    // Create a type on which we perform the shuffle
16807    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
16808            StVT.getScalarType(), NumElems*SizeRatio);
16809
16810    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
16811
16812    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
16813    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16814    for (unsigned i = 0; i != NumElems; ++i)
16815      ShuffleVec[i] = i * SizeRatio;
16816
16817    // Can't shuffle using an illegal type.
16818    if (!TLI.isTypeLegal(WideVecVT))
16819      return SDValue();
16820
16821    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
16822                                         DAG.getUNDEF(WideVecVT),
16823                                         &ShuffleVec[0]);
16824    // At this point all of the data is stored at the bottom of the
16825    // register. We now need to save it to mem.
16826
16827    // Find the largest store unit
16828    MVT StoreType = MVT::i8;
16829    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
16830         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
16831      MVT Tp = (MVT::SimpleValueType)tp;
16832      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
16833        StoreType = Tp;
16834    }
16835
16836    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
16837    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
16838        (64 <= NumElems * ToSz))
16839      StoreType = MVT::f64;
16840
16841    // Bitcast the original vector into a vector of store-size units
16842    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
16843            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
16844    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
16845    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
16846    SmallVector<SDValue, 8> Chains;
16847    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
16848                                        TLI.getPointerTy());
16849    SDValue Ptr = St->getBasePtr();
16850
16851    // Perform one or more big stores into memory.
16852    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
16853      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
16854                                   StoreType, ShuffWide,
16855                                   DAG.getIntPtrConstant(i));
16856      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
16857                                St->getPointerInfo(), St->isVolatile(),
16858                                St->isNonTemporal(), St->getAlignment());
16859      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16860      Chains.push_back(Ch);
16861    }
16862
16863    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
16864                               Chains.size());
16865  }
16866
16867  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
16868  // the FP state in cases where an emms may be missing.
16869  // A preferable solution to the general problem is to figure out the right
16870  // places to insert EMMS.  This qualifies as a quick hack.
16871
16872  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
16873  if (VT.getSizeInBits() != 64)
16874    return SDValue();
16875
16876  const Function *F = DAG.getMachineFunction().getFunction();
16877  bool NoImplicitFloatOps = F->getAttributes().
16878    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
16879  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
16880                     && Subtarget->hasSSE2();
16881  if ((VT.isVector() ||
16882       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
16883      isa<LoadSDNode>(St->getValue()) &&
16884      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
16885      St->getChain().hasOneUse() && !St->isVolatile()) {
16886    SDNode* LdVal = St->getValue().getNode();
16887    LoadSDNode *Ld = 0;
16888    int TokenFactorIndex = -1;
16889    SmallVector<SDValue, 8> Ops;
16890    SDNode* ChainVal = St->getChain().getNode();
16891    // Must be a store of a load.  We currently handle two cases:  the load
16892    // is a direct child, and it's under an intervening TokenFactor.  It is
16893    // possible to dig deeper under nested TokenFactors.
16894    if (ChainVal == LdVal)
16895      Ld = cast<LoadSDNode>(St->getChain());
16896    else if (St->getValue().hasOneUse() &&
16897             ChainVal->getOpcode() == ISD::TokenFactor) {
16898      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
16899        if (ChainVal->getOperand(i).getNode() == LdVal) {
16900          TokenFactorIndex = i;
16901          Ld = cast<LoadSDNode>(St->getValue());
16902        } else
16903          Ops.push_back(ChainVal->getOperand(i));
16904      }
16905    }
16906
16907    if (!Ld || !ISD::isNormalLoad(Ld))
16908      return SDValue();
16909
16910    // If this is not the MMX case, i.e. we are just turning i64 load/store
16911    // into f64 load/store, avoid the transformation if there are multiple
16912    // uses of the loaded value.
16913    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
16914      return SDValue();
16915
16916    DebugLoc LdDL = Ld->getDebugLoc();
16917    DebugLoc StDL = N->getDebugLoc();
16918    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
16919    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
16920    // pair instead.
16921    if (Subtarget->is64Bit() || F64IsLegal) {
16922      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
16923      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
16924                                  Ld->getPointerInfo(), Ld->isVolatile(),
16925                                  Ld->isNonTemporal(), Ld->isInvariant(),
16926                                  Ld->getAlignment());
16927      SDValue NewChain = NewLd.getValue(1);
16928      if (TokenFactorIndex != -1) {
16929        Ops.push_back(NewChain);
16930        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
16931                               Ops.size());
16932      }
16933      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
16934                          St->getPointerInfo(),
16935                          St->isVolatile(), St->isNonTemporal(),
16936                          St->getAlignment());
16937    }
16938
16939    // Otherwise, lower to two pairs of 32-bit loads / stores.
16940    SDValue LoAddr = Ld->getBasePtr();
16941    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
16942                                 DAG.getConstant(4, MVT::i32));
16943
16944    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
16945                               Ld->getPointerInfo(),
16946                               Ld->isVolatile(), Ld->isNonTemporal(),
16947                               Ld->isInvariant(), Ld->getAlignment());
16948    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
16949                               Ld->getPointerInfo().getWithOffset(4),
16950                               Ld->isVolatile(), Ld->isNonTemporal(),
16951                               Ld->isInvariant(),
16952                               MinAlign(Ld->getAlignment(), 4));
16953
16954    SDValue NewChain = LoLd.getValue(1);
16955    if (TokenFactorIndex != -1) {
16956      Ops.push_back(LoLd);
16957      Ops.push_back(HiLd);
16958      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
16959                             Ops.size());
16960    }
16961
16962    LoAddr = St->getBasePtr();
16963    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
16964                         DAG.getConstant(4, MVT::i32));
16965
16966    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
16967                                St->getPointerInfo(),
16968                                St->isVolatile(), St->isNonTemporal(),
16969                                St->getAlignment());
16970    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
16971                                St->getPointerInfo().getWithOffset(4),
16972                                St->isVolatile(),
16973                                St->isNonTemporal(),
16974                                MinAlign(St->getAlignment(), 4));
16975    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
16976  }
16977  return SDValue();
16978}
16979
16980/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
16981/// and return the operands for the horizontal operation in LHS and RHS.  A
16982/// horizontal operation performs the binary operation on successive elements
16983/// of its first operand, then on successive elements of its second operand,
16984/// returning the resulting values in a vector.  For example, if
16985///   A = < float a0, float a1, float a2, float a3 >
16986/// and
16987///   B = < float b0, float b1, float b2, float b3 >
16988/// then the result of doing a horizontal operation on A and B is
16989///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
16990/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
16991/// A horizontal-op B, for some already available A and B, and if so then LHS is
16992/// set to A, RHS to B, and the routine returns 'true'.
16993/// Note that the binary operation should have the property that if one of the
16994/// operands is UNDEF then the result is UNDEF.
16995static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
16996  // Look for the following pattern: if
16997  //   A = < float a0, float a1, float a2, float a3 >
16998  //   B = < float b0, float b1, float b2, float b3 >
16999  // and
17000  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
17001  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
17002  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
17003  // which is A horizontal-op B.
17004
17005  // At least one of the operands should be a vector shuffle.
17006  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
17007      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
17008    return false;
17009
17010  EVT VT = LHS.getValueType();
17011
17012  assert((VT.is128BitVector() || VT.is256BitVector()) &&
17013         "Unsupported vector type for horizontal add/sub");
17014
17015  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
17016  // operate independently on 128-bit lanes.
17017  unsigned NumElts = VT.getVectorNumElements();
17018  unsigned NumLanes = VT.getSizeInBits()/128;
17019  unsigned NumLaneElts = NumElts / NumLanes;
17020  assert((NumLaneElts % 2 == 0) &&
17021         "Vector type should have an even number of elements in each lane");
17022  unsigned HalfLaneElts = NumLaneElts/2;
17023
17024  // View LHS in the form
17025  //   LHS = VECTOR_SHUFFLE A, B, LMask
17026  // If LHS is not a shuffle then pretend it is the shuffle
17027  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
17028  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
17029  // type VT.
17030  SDValue A, B;
17031  SmallVector<int, 16> LMask(NumElts);
17032  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
17033    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
17034      A = LHS.getOperand(0);
17035    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
17036      B = LHS.getOperand(1);
17037    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
17038    std::copy(Mask.begin(), Mask.end(), LMask.begin());
17039  } else {
17040    if (LHS.getOpcode() != ISD::UNDEF)
17041      A = LHS;
17042    for (unsigned i = 0; i != NumElts; ++i)
17043      LMask[i] = i;
17044  }
17045
17046  // Likewise, view RHS in the form
17047  //   RHS = VECTOR_SHUFFLE C, D, RMask
17048  SDValue C, D;
17049  SmallVector<int, 16> RMask(NumElts);
17050  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
17051    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
17052      C = RHS.getOperand(0);
17053    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
17054      D = RHS.getOperand(1);
17055    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
17056    std::copy(Mask.begin(), Mask.end(), RMask.begin());
17057  } else {
17058    if (RHS.getOpcode() != ISD::UNDEF)
17059      C = RHS;
17060    for (unsigned i = 0; i != NumElts; ++i)
17061      RMask[i] = i;
17062  }
17063
17064  // Check that the shuffles are both shuffling the same vectors.
17065  if (!(A == C && B == D) && !(A == D && B == C))
17066    return false;
17067
17068  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
17069  if (!A.getNode() && !B.getNode())
17070    return false;
17071
17072  // If A and B occur in reverse order in RHS, then "swap" them (which means
17073  // rewriting the mask).
17074  if (A != C)
17075    CommuteVectorShuffleMask(RMask, NumElts);
17076
17077  // At this point LHS and RHS are equivalent to
17078  //   LHS = VECTOR_SHUFFLE A, B, LMask
17079  //   RHS = VECTOR_SHUFFLE A, B, RMask
17080  // Check that the masks correspond to performing a horizontal operation.
17081  for (unsigned i = 0; i != NumElts; ++i) {
17082    int LIdx = LMask[i], RIdx = RMask[i];
17083
17084    // Ignore any UNDEF components.
17085    if (LIdx < 0 || RIdx < 0 ||
17086        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
17087        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
17088      continue;
17089
17090    // Check that successive elements are being operated on.  If not, this is
17091    // not a horizontal operation.
17092    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
17093    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
17094    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
17095    if (!(LIdx == Index && RIdx == Index + 1) &&
17096        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
17097      return false;
17098  }
17099
17100  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
17101  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
17102  return true;
17103}
17104
17105/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
17106static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
17107                                  const X86Subtarget *Subtarget) {
17108  EVT VT = N->getValueType(0);
17109  SDValue LHS = N->getOperand(0);
17110  SDValue RHS = N->getOperand(1);
17111
17112  // Try to synthesize horizontal adds from adds of shuffles.
17113  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
17114       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
17115      isHorizontalBinOp(LHS, RHS, true))
17116    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
17117  return SDValue();
17118}
17119
17120/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
17121static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
17122                                  const X86Subtarget *Subtarget) {
17123  EVT VT = N->getValueType(0);
17124  SDValue LHS = N->getOperand(0);
17125  SDValue RHS = N->getOperand(1);
17126
17127  // Try to synthesize horizontal subs from subs of shuffles.
17128  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
17129       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
17130      isHorizontalBinOp(LHS, RHS, false))
17131    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
17132  return SDValue();
17133}
17134
17135/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
17136/// X86ISD::FXOR nodes.
17137static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
17138  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
17139  // F[X]OR(0.0, x) -> x
17140  // F[X]OR(x, 0.0) -> x
17141  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
17142    if (C->getValueAPF().isPosZero())
17143      return N->getOperand(1);
17144  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
17145    if (C->getValueAPF().isPosZero())
17146      return N->getOperand(0);
17147  return SDValue();
17148}
17149
17150/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
17151/// X86ISD::FMAX nodes.
17152static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
17153  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
17154
17155  // Only perform optimizations if UnsafeMath is used.
17156  if (!DAG.getTarget().Options.UnsafeFPMath)
17157    return SDValue();
17158
17159  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
17160  // into FMINC and FMAXC, which are Commutative operations.
17161  unsigned NewOp = 0;
17162  switch (N->getOpcode()) {
17163    default: llvm_unreachable("unknown opcode");
17164    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
17165    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
17166  }
17167
17168  return DAG.getNode(NewOp, N->getDebugLoc(), N->getValueType(0),
17169                     N->getOperand(0), N->getOperand(1));
17170}
17171
17172/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
17173static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
17174  // FAND(0.0, x) -> 0.0
17175  // FAND(x, 0.0) -> 0.0
17176  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
17177    if (C->getValueAPF().isPosZero())
17178      return N->getOperand(0);
17179  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
17180    if (C->getValueAPF().isPosZero())
17181      return N->getOperand(1);
17182  return SDValue();
17183}
17184
17185static SDValue PerformBTCombine(SDNode *N,
17186                                SelectionDAG &DAG,
17187                                TargetLowering::DAGCombinerInfo &DCI) {
17188  // BT ignores high bits in the bit index operand.
17189  SDValue Op1 = N->getOperand(1);
17190  if (Op1.hasOneUse()) {
17191    unsigned BitWidth = Op1.getValueSizeInBits();
17192    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
17193    APInt KnownZero, KnownOne;
17194    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
17195                                          !DCI.isBeforeLegalizeOps());
17196    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17197    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
17198        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
17199      DCI.CommitTargetLoweringOpt(TLO);
17200  }
17201  return SDValue();
17202}
17203
17204static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
17205  SDValue Op = N->getOperand(0);
17206  if (Op.getOpcode() == ISD::BITCAST)
17207    Op = Op.getOperand(0);
17208  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
17209  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
17210      VT.getVectorElementType().getSizeInBits() ==
17211      OpVT.getVectorElementType().getSizeInBits()) {
17212    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
17213  }
17214  return SDValue();
17215}
17216
17217static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
17218                                               const X86Subtarget *Subtarget) {
17219  EVT VT = N->getValueType(0);
17220  if (!VT.isVector())
17221    return SDValue();
17222
17223  SDValue N0 = N->getOperand(0);
17224  SDValue N1 = N->getOperand(1);
17225  EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
17226  DebugLoc dl = N->getDebugLoc();
17227
17228  // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
17229  // both SSE and AVX2 since there is no sign-extended shift right
17230  // operation on a vector with 64-bit elements.
17231  //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
17232  // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
17233  if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
17234      N0.getOpcode() == ISD::SIGN_EXTEND)) {
17235    SDValue N00 = N0.getOperand(0);
17236
17237    // EXTLOAD has a better solution on AVX2,
17238    // it may be replaced with X86ISD::VSEXT node.
17239    if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256())
17240      if (!ISD::isNormalLoad(N00.getNode()))
17241        return SDValue();
17242
17243    if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
17244        SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
17245                                  N00, N1);
17246      return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
17247    }
17248  }
17249  return SDValue();
17250}
17251
17252static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
17253                                  TargetLowering::DAGCombinerInfo &DCI,
17254                                  const X86Subtarget *Subtarget) {
17255  if (!DCI.isBeforeLegalizeOps())
17256    return SDValue();
17257
17258  if (!Subtarget->hasFp256())
17259    return SDValue();
17260
17261  EVT VT = N->getValueType(0);
17262  if (VT.isVector() && VT.getSizeInBits() == 256) {
17263    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
17264    if (R.getNode())
17265      return R;
17266  }
17267
17268  return SDValue();
17269}
17270
17271static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
17272                                 const X86Subtarget* Subtarget) {
17273  DebugLoc dl = N->getDebugLoc();
17274  EVT VT = N->getValueType(0);
17275
17276  // Let legalize expand this if it isn't a legal type yet.
17277  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
17278    return SDValue();
17279
17280  EVT ScalarVT = VT.getScalarType();
17281  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
17282      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
17283    return SDValue();
17284
17285  SDValue A = N->getOperand(0);
17286  SDValue B = N->getOperand(1);
17287  SDValue C = N->getOperand(2);
17288
17289  bool NegA = (A.getOpcode() == ISD::FNEG);
17290  bool NegB = (B.getOpcode() == ISD::FNEG);
17291  bool NegC = (C.getOpcode() == ISD::FNEG);
17292
17293  // Negative multiplication when NegA xor NegB
17294  bool NegMul = (NegA != NegB);
17295  if (NegA)
17296    A = A.getOperand(0);
17297  if (NegB)
17298    B = B.getOperand(0);
17299  if (NegC)
17300    C = C.getOperand(0);
17301
17302  unsigned Opcode;
17303  if (!NegMul)
17304    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
17305  else
17306    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
17307
17308  return DAG.getNode(Opcode, dl, VT, A, B, C);
17309}
17310
17311static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
17312                                  TargetLowering::DAGCombinerInfo &DCI,
17313                                  const X86Subtarget *Subtarget) {
17314  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
17315  //           (and (i32 x86isd::setcc_carry), 1)
17316  // This eliminates the zext. This transformation is necessary because
17317  // ISD::SETCC is always legalized to i8.
17318  DebugLoc dl = N->getDebugLoc();
17319  SDValue N0 = N->getOperand(0);
17320  EVT VT = N->getValueType(0);
17321
17322  if (N0.getOpcode() == ISD::AND &&
17323      N0.hasOneUse() &&
17324      N0.getOperand(0).hasOneUse()) {
17325    SDValue N00 = N0.getOperand(0);
17326    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
17327      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
17328      if (!C || C->getZExtValue() != 1)
17329        return SDValue();
17330      return DAG.getNode(ISD::AND, dl, VT,
17331                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
17332                                     N00.getOperand(0), N00.getOperand(1)),
17333                         DAG.getConstant(1, VT));
17334    }
17335  }
17336
17337  if (VT.is256BitVector()) {
17338    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
17339    if (R.getNode())
17340      return R;
17341  }
17342
17343  return SDValue();
17344}
17345
17346// Optimize x == -y --> x+y == 0
17347//          x != -y --> x+y != 0
17348static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
17349  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
17350  SDValue LHS = N->getOperand(0);
17351  SDValue RHS = N->getOperand(1);
17352
17353  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
17354    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
17355      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
17356        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
17357                                   LHS.getValueType(), RHS, LHS.getOperand(1));
17358        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
17359                            addV, DAG.getConstant(0, addV.getValueType()), CC);
17360      }
17361  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
17362    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
17363      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
17364        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
17365                                   RHS.getValueType(), LHS, RHS.getOperand(1));
17366        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
17367                            addV, DAG.getConstant(0, addV.getValueType()), CC);
17368      }
17369  return SDValue();
17370}
17371
17372// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
17373// as "sbb reg,reg", since it can be extended without zext and produces
17374// an all-ones bit which is more useful than 0/1 in some cases.
17375static SDValue MaterializeSETB(DebugLoc DL, SDValue EFLAGS, SelectionDAG &DAG) {
17376  return DAG.getNode(ISD::AND, DL, MVT::i8,
17377                     DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
17378                                 DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
17379                     DAG.getConstant(1, MVT::i8));
17380}
17381
17382// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
17383static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
17384                                   TargetLowering::DAGCombinerInfo &DCI,
17385                                   const X86Subtarget *Subtarget) {
17386  DebugLoc DL = N->getDebugLoc();
17387  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
17388  SDValue EFLAGS = N->getOperand(1);
17389
17390  if (CC == X86::COND_A) {
17391    // Try to convert COND_A into COND_B in an attempt to facilitate
17392    // materializing "setb reg".
17393    //
17394    // Do not flip "e > c", where "c" is a constant, because Cmp instruction
17395    // cannot take an immediate as its first operand.
17396    //
17397    if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
17398        EFLAGS.getValueType().isInteger() &&
17399        !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
17400      SDValue NewSub = DAG.getNode(X86ISD::SUB, EFLAGS.getDebugLoc(),
17401                                   EFLAGS.getNode()->getVTList(),
17402                                   EFLAGS.getOperand(1), EFLAGS.getOperand(0));
17403      SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
17404      return MaterializeSETB(DL, NewEFLAGS, DAG);
17405    }
17406  }
17407
17408  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
17409  // a zext and produces an all-ones bit which is more useful than 0/1 in some
17410  // cases.
17411  if (CC == X86::COND_B)
17412    return MaterializeSETB(DL, EFLAGS, DAG);
17413
17414  SDValue Flags;
17415
17416  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
17417  if (Flags.getNode()) {
17418    SDValue Cond = DAG.getConstant(CC, MVT::i8);
17419    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
17420  }
17421
17422  return SDValue();
17423}
17424
17425// Optimize branch condition evaluation.
17426//
17427static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
17428                                    TargetLowering::DAGCombinerInfo &DCI,
17429                                    const X86Subtarget *Subtarget) {
17430  DebugLoc DL = N->getDebugLoc();
17431  SDValue Chain = N->getOperand(0);
17432  SDValue Dest = N->getOperand(1);
17433  SDValue EFLAGS = N->getOperand(3);
17434  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
17435
17436  SDValue Flags;
17437
17438  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
17439  if (Flags.getNode()) {
17440    SDValue Cond = DAG.getConstant(CC, MVT::i8);
17441    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
17442                       Flags);
17443  }
17444
17445  return SDValue();
17446}
17447
17448static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
17449                                        const X86TargetLowering *XTLI) {
17450  SDValue Op0 = N->getOperand(0);
17451  EVT InVT = Op0->getValueType(0);
17452
17453  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
17454  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
17455    DebugLoc dl = N->getDebugLoc();
17456    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
17457    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
17458    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
17459  }
17460
17461  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
17462  // a 32-bit target where SSE doesn't support i64->FP operations.
17463  if (Op0.getOpcode() == ISD::LOAD) {
17464    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
17465    EVT VT = Ld->getValueType(0);
17466    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
17467        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
17468        !XTLI->getSubtarget()->is64Bit() &&
17469        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
17470      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
17471                                          Ld->getChain(), Op0, DAG);
17472      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
17473      return FILDChain;
17474    }
17475  }
17476  return SDValue();
17477}
17478
17479// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
17480static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
17481                                 X86TargetLowering::DAGCombinerInfo &DCI) {
17482  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
17483  // the result is either zero or one (depending on the input carry bit).
17484  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
17485  if (X86::isZeroNode(N->getOperand(0)) &&
17486      X86::isZeroNode(N->getOperand(1)) &&
17487      // We don't have a good way to replace an EFLAGS use, so only do this when
17488      // dead right now.
17489      SDValue(N, 1).use_empty()) {
17490    DebugLoc DL = N->getDebugLoc();
17491    EVT VT = N->getValueType(0);
17492    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
17493    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
17494                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
17495                                           DAG.getConstant(X86::COND_B,MVT::i8),
17496                                           N->getOperand(2)),
17497                               DAG.getConstant(1, VT));
17498    return DCI.CombineTo(N, Res1, CarryOut);
17499  }
17500
17501  return SDValue();
17502}
17503
17504// fold (add Y, (sete  X, 0)) -> adc  0, Y
17505//      (add Y, (setne X, 0)) -> sbb -1, Y
17506//      (sub (sete  X, 0), Y) -> sbb  0, Y
17507//      (sub (setne X, 0), Y) -> adc -1, Y
17508static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
17509  DebugLoc DL = N->getDebugLoc();
17510
17511  // Look through ZExts.
17512  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
17513  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
17514    return SDValue();
17515
17516  SDValue SetCC = Ext.getOperand(0);
17517  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
17518    return SDValue();
17519
17520  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
17521  if (CC != X86::COND_E && CC != X86::COND_NE)
17522    return SDValue();
17523
17524  SDValue Cmp = SetCC.getOperand(1);
17525  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
17526      !X86::isZeroNode(Cmp.getOperand(1)) ||
17527      !Cmp.getOperand(0).getValueType().isInteger())
17528    return SDValue();
17529
17530  SDValue CmpOp0 = Cmp.getOperand(0);
17531  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
17532                               DAG.getConstant(1, CmpOp0.getValueType()));
17533
17534  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
17535  if (CC == X86::COND_NE)
17536    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
17537                       DL, OtherVal.getValueType(), OtherVal,
17538                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
17539  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
17540                     DL, OtherVal.getValueType(), OtherVal,
17541                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
17542}
17543
17544/// PerformADDCombine - Do target-specific dag combines on integer adds.
17545static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
17546                                 const X86Subtarget *Subtarget) {
17547  EVT VT = N->getValueType(0);
17548  SDValue Op0 = N->getOperand(0);
17549  SDValue Op1 = N->getOperand(1);
17550
17551  // Try to synthesize horizontal adds from adds of shuffles.
17552  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
17553       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
17554      isHorizontalBinOp(Op0, Op1, true))
17555    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
17556
17557  return OptimizeConditionalInDecrement(N, DAG);
17558}
17559
17560static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
17561                                 const X86Subtarget *Subtarget) {
17562  SDValue Op0 = N->getOperand(0);
17563  SDValue Op1 = N->getOperand(1);
17564
17565  // X86 can't encode an immediate LHS of a sub. See if we can push the
17566  // negation into a preceding instruction.
17567  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
17568    // If the RHS of the sub is a XOR with one use and a constant, invert the
17569    // immediate. Then add one to the LHS of the sub so we can turn
17570    // X-Y -> X+~Y+1, saving one register.
17571    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
17572        isa<ConstantSDNode>(Op1.getOperand(1))) {
17573      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
17574      EVT VT = Op0.getValueType();
17575      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
17576                                   Op1.getOperand(0),
17577                                   DAG.getConstant(~XorC, VT));
17578      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
17579                         DAG.getConstant(C->getAPIntValue()+1, VT));
17580    }
17581  }
17582
17583  // Try to synthesize horizontal adds from adds of shuffles.
17584  EVT VT = N->getValueType(0);
17585  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
17586       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
17587      isHorizontalBinOp(Op0, Op1, true))
17588    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
17589
17590  return OptimizeConditionalInDecrement(N, DAG);
17591}
17592
17593/// performVZEXTCombine - Performs build vector combines
17594static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
17595                                        TargetLowering::DAGCombinerInfo &DCI,
17596                                        const X86Subtarget *Subtarget) {
17597  // (vzext (bitcast (vzext (x)) -> (vzext x)
17598  SDValue In = N->getOperand(0);
17599  while (In.getOpcode() == ISD::BITCAST)
17600    In = In.getOperand(0);
17601
17602  if (In.getOpcode() != X86ISD::VZEXT)
17603    return SDValue();
17604
17605  return DAG.getNode(X86ISD::VZEXT, N->getDebugLoc(), N->getValueType(0),
17606                     In.getOperand(0));
17607}
17608
17609SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
17610                                             DAGCombinerInfo &DCI) const {
17611  SelectionDAG &DAG = DCI.DAG;
17612  switch (N->getOpcode()) {
17613  default: break;
17614  case ISD::EXTRACT_VECTOR_ELT:
17615    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
17616  case ISD::VSELECT:
17617  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
17618  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
17619  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
17620  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
17621  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
17622  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
17623  case ISD::SHL:
17624  case ISD::SRA:
17625  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
17626  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
17627  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
17628  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
17629  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
17630  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
17631  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
17632  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
17633  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
17634  case X86ISD::FXOR:
17635  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
17636  case X86ISD::FMIN:
17637  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
17638  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
17639  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
17640  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
17641  case ISD::ANY_EXTEND:
17642  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
17643  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
17644  case ISD::SIGN_EXTEND_INREG: return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
17645  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
17646  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
17647  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
17648  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
17649  case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
17650  case X86ISD::SHUFP:       // Handle all target specific shuffles
17651  case X86ISD::PALIGNR:
17652  case X86ISD::UNPCKH:
17653  case X86ISD::UNPCKL:
17654  case X86ISD::MOVHLPS:
17655  case X86ISD::MOVLHPS:
17656  case X86ISD::PSHUFD:
17657  case X86ISD::PSHUFHW:
17658  case X86ISD::PSHUFLW:
17659  case X86ISD::MOVSS:
17660  case X86ISD::MOVSD:
17661  case X86ISD::VPERMILP:
17662  case X86ISD::VPERM2X128:
17663  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
17664  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
17665  }
17666
17667  return SDValue();
17668}
17669
17670/// isTypeDesirableForOp - Return true if the target has native support for
17671/// the specified value type and it is 'desirable' to use the type for the
17672/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
17673/// instruction encodings are longer and some i16 instructions are slow.
17674bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
17675  if (!isTypeLegal(VT))
17676    return false;
17677  if (VT != MVT::i16)
17678    return true;
17679
17680  switch (Opc) {
17681  default:
17682    return true;
17683  case ISD::LOAD:
17684  case ISD::SIGN_EXTEND:
17685  case ISD::ZERO_EXTEND:
17686  case ISD::ANY_EXTEND:
17687  case ISD::SHL:
17688  case ISD::SRL:
17689  case ISD::SUB:
17690  case ISD::ADD:
17691  case ISD::MUL:
17692  case ISD::AND:
17693  case ISD::OR:
17694  case ISD::XOR:
17695    return false;
17696  }
17697}
17698
17699/// IsDesirableToPromoteOp - This method query the target whether it is
17700/// beneficial for dag combiner to promote the specified node. If true, it
17701/// should return the desired promotion type by reference.
17702bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
17703  EVT VT = Op.getValueType();
17704  if (VT != MVT::i16)
17705    return false;
17706
17707  bool Promote = false;
17708  bool Commute = false;
17709  switch (Op.getOpcode()) {
17710  default: break;
17711  case ISD::LOAD: {
17712    LoadSDNode *LD = cast<LoadSDNode>(Op);
17713    // If the non-extending load has a single use and it's not live out, then it
17714    // might be folded.
17715    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
17716                                                     Op.hasOneUse()*/) {
17717      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
17718             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
17719        // The only case where we'd want to promote LOAD (rather then it being
17720        // promoted as an operand is when it's only use is liveout.
17721        if (UI->getOpcode() != ISD::CopyToReg)
17722          return false;
17723      }
17724    }
17725    Promote = true;
17726    break;
17727  }
17728  case ISD::SIGN_EXTEND:
17729  case ISD::ZERO_EXTEND:
17730  case ISD::ANY_EXTEND:
17731    Promote = true;
17732    break;
17733  case ISD::SHL:
17734  case ISD::SRL: {
17735    SDValue N0 = Op.getOperand(0);
17736    // Look out for (store (shl (load), x)).
17737    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
17738      return false;
17739    Promote = true;
17740    break;
17741  }
17742  case ISD::ADD:
17743  case ISD::MUL:
17744  case ISD::AND:
17745  case ISD::OR:
17746  case ISD::XOR:
17747    Commute = true;
17748    // fallthrough
17749  case ISD::SUB: {
17750    SDValue N0 = Op.getOperand(0);
17751    SDValue N1 = Op.getOperand(1);
17752    if (!Commute && MayFoldLoad(N1))
17753      return false;
17754    // Avoid disabling potential load folding opportunities.
17755    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
17756      return false;
17757    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
17758      return false;
17759    Promote = true;
17760  }
17761  }
17762
17763  PVT = MVT::i32;
17764  return Promote;
17765}
17766
17767//===----------------------------------------------------------------------===//
17768//                           X86 Inline Assembly Support
17769//===----------------------------------------------------------------------===//
17770
17771namespace {
17772  // Helper to match a string separated by whitespace.
17773  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
17774    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
17775
17776    for (unsigned i = 0, e = args.size(); i != e; ++i) {
17777      StringRef piece(*args[i]);
17778      if (!s.startswith(piece)) // Check if the piece matches.
17779        return false;
17780
17781      s = s.substr(piece.size());
17782      StringRef::size_type pos = s.find_first_not_of(" \t");
17783      if (pos == 0) // We matched a prefix.
17784        return false;
17785
17786      s = s.substr(pos);
17787    }
17788
17789    return s.empty();
17790  }
17791  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
17792}
17793
17794bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
17795  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
17796
17797  std::string AsmStr = IA->getAsmString();
17798
17799  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
17800  if (!Ty || Ty->getBitWidth() % 16 != 0)
17801    return false;
17802
17803  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
17804  SmallVector<StringRef, 4> AsmPieces;
17805  SplitString(AsmStr, AsmPieces, ";\n");
17806
17807  switch (AsmPieces.size()) {
17808  default: return false;
17809  case 1:
17810    // FIXME: this should verify that we are targeting a 486 or better.  If not,
17811    // we will turn this bswap into something that will be lowered to logical
17812    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
17813    // lower so don't worry about this.
17814    // bswap $0
17815    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
17816        matchAsm(AsmPieces[0], "bswapl", "$0") ||
17817        matchAsm(AsmPieces[0], "bswapq", "$0") ||
17818        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
17819        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
17820        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
17821      // No need to check constraints, nothing other than the equivalent of
17822      // "=r,0" would be valid here.
17823      return IntrinsicLowering::LowerToByteSwap(CI);
17824    }
17825
17826    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
17827    if (CI->getType()->isIntegerTy(16) &&
17828        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
17829        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
17830         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
17831      AsmPieces.clear();
17832      const std::string &ConstraintsStr = IA->getConstraintString();
17833      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
17834      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
17835      if (AsmPieces.size() == 4 &&
17836          AsmPieces[0] == "~{cc}" &&
17837          AsmPieces[1] == "~{dirflag}" &&
17838          AsmPieces[2] == "~{flags}" &&
17839          AsmPieces[3] == "~{fpsr}")
17840      return IntrinsicLowering::LowerToByteSwap(CI);
17841    }
17842    break;
17843  case 3:
17844    if (CI->getType()->isIntegerTy(32) &&
17845        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
17846        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
17847        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
17848        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
17849      AsmPieces.clear();
17850      const std::string &ConstraintsStr = IA->getConstraintString();
17851      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
17852      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
17853      if (AsmPieces.size() == 4 &&
17854          AsmPieces[0] == "~{cc}" &&
17855          AsmPieces[1] == "~{dirflag}" &&
17856          AsmPieces[2] == "~{flags}" &&
17857          AsmPieces[3] == "~{fpsr}")
17858        return IntrinsicLowering::LowerToByteSwap(CI);
17859    }
17860
17861    if (CI->getType()->isIntegerTy(64)) {
17862      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
17863      if (Constraints.size() >= 2 &&
17864          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
17865          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
17866        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
17867        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
17868            matchAsm(AsmPieces[1], "bswap", "%edx") &&
17869            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
17870          return IntrinsicLowering::LowerToByteSwap(CI);
17871      }
17872    }
17873    break;
17874  }
17875  return false;
17876}
17877
17878/// getConstraintType - Given a constraint letter, return the type of
17879/// constraint it is for this target.
17880X86TargetLowering::ConstraintType
17881X86TargetLowering::getConstraintType(const std::string &Constraint) const {
17882  if (Constraint.size() == 1) {
17883    switch (Constraint[0]) {
17884    case 'R':
17885    case 'q':
17886    case 'Q':
17887    case 'f':
17888    case 't':
17889    case 'u':
17890    case 'y':
17891    case 'x':
17892    case 'Y':
17893    case 'l':
17894      return C_RegisterClass;
17895    case 'a':
17896    case 'b':
17897    case 'c':
17898    case 'd':
17899    case 'S':
17900    case 'D':
17901    case 'A':
17902      return C_Register;
17903    case 'I':
17904    case 'J':
17905    case 'K':
17906    case 'L':
17907    case 'M':
17908    case 'N':
17909    case 'G':
17910    case 'C':
17911    case 'e':
17912    case 'Z':
17913      return C_Other;
17914    default:
17915      break;
17916    }
17917  }
17918  return TargetLowering::getConstraintType(Constraint);
17919}
17920
17921/// Examine constraint type and operand type and determine a weight value.
17922/// This object must already have been set up with the operand type
17923/// and the current alternative constraint selected.
17924TargetLowering::ConstraintWeight
17925  X86TargetLowering::getSingleConstraintMatchWeight(
17926    AsmOperandInfo &info, const char *constraint) const {
17927  ConstraintWeight weight = CW_Invalid;
17928  Value *CallOperandVal = info.CallOperandVal;
17929    // If we don't have a value, we can't do a match,
17930    // but allow it at the lowest weight.
17931  if (CallOperandVal == NULL)
17932    return CW_Default;
17933  Type *type = CallOperandVal->getType();
17934  // Look at the constraint type.
17935  switch (*constraint) {
17936  default:
17937    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
17938  case 'R':
17939  case 'q':
17940  case 'Q':
17941  case 'a':
17942  case 'b':
17943  case 'c':
17944  case 'd':
17945  case 'S':
17946  case 'D':
17947  case 'A':
17948    if (CallOperandVal->getType()->isIntegerTy())
17949      weight = CW_SpecificReg;
17950    break;
17951  case 'f':
17952  case 't':
17953  case 'u':
17954    if (type->isFloatingPointTy())
17955      weight = CW_SpecificReg;
17956    break;
17957  case 'y':
17958    if (type->isX86_MMXTy() && Subtarget->hasMMX())
17959      weight = CW_SpecificReg;
17960    break;
17961  case 'x':
17962  case 'Y':
17963    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
17964        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
17965      weight = CW_Register;
17966    break;
17967  case 'I':
17968    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
17969      if (C->getZExtValue() <= 31)
17970        weight = CW_Constant;
17971    }
17972    break;
17973  case 'J':
17974    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17975      if (C->getZExtValue() <= 63)
17976        weight = CW_Constant;
17977    }
17978    break;
17979  case 'K':
17980    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17981      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
17982        weight = CW_Constant;
17983    }
17984    break;
17985  case 'L':
17986    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17987      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
17988        weight = CW_Constant;
17989    }
17990    break;
17991  case 'M':
17992    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17993      if (C->getZExtValue() <= 3)
17994        weight = CW_Constant;
17995    }
17996    break;
17997  case 'N':
17998    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17999      if (C->getZExtValue() <= 0xff)
18000        weight = CW_Constant;
18001    }
18002    break;
18003  case 'G':
18004  case 'C':
18005    if (dyn_cast<ConstantFP>(CallOperandVal)) {
18006      weight = CW_Constant;
18007    }
18008    break;
18009  case 'e':
18010    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18011      if ((C->getSExtValue() >= -0x80000000LL) &&
18012          (C->getSExtValue() <= 0x7fffffffLL))
18013        weight = CW_Constant;
18014    }
18015    break;
18016  case 'Z':
18017    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18018      if (C->getZExtValue() <= 0xffffffff)
18019        weight = CW_Constant;
18020    }
18021    break;
18022  }
18023  return weight;
18024}
18025
18026/// LowerXConstraint - try to replace an X constraint, which matches anything,
18027/// with another that has more specific requirements based on the type of the
18028/// corresponding operand.
18029const char *X86TargetLowering::
18030LowerXConstraint(EVT ConstraintVT) const {
18031  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
18032  // 'f' like normal targets.
18033  if (ConstraintVT.isFloatingPoint()) {
18034    if (Subtarget->hasSSE2())
18035      return "Y";
18036    if (Subtarget->hasSSE1())
18037      return "x";
18038  }
18039
18040  return TargetLowering::LowerXConstraint(ConstraintVT);
18041}
18042
18043/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
18044/// vector.  If it is invalid, don't add anything to Ops.
18045void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
18046                                                     std::string &Constraint,
18047                                                     std::vector<SDValue>&Ops,
18048                                                     SelectionDAG &DAG) const {
18049  SDValue Result(0, 0);
18050
18051  // Only support length 1 constraints for now.
18052  if (Constraint.length() > 1) return;
18053
18054  char ConstraintLetter = Constraint[0];
18055  switch (ConstraintLetter) {
18056  default: break;
18057  case 'I':
18058    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18059      if (C->getZExtValue() <= 31) {
18060        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18061        break;
18062      }
18063    }
18064    return;
18065  case 'J':
18066    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18067      if (C->getZExtValue() <= 63) {
18068        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18069        break;
18070      }
18071    }
18072    return;
18073  case 'K':
18074    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18075      if (isInt<8>(C->getSExtValue())) {
18076        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18077        break;
18078      }
18079    }
18080    return;
18081  case 'N':
18082    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18083      if (C->getZExtValue() <= 255) {
18084        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18085        break;
18086      }
18087    }
18088    return;
18089  case 'e': {
18090    // 32-bit signed value
18091    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18092      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
18093                                           C->getSExtValue())) {
18094        // Widen to 64 bits here to get it sign extended.
18095        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
18096        break;
18097      }
18098    // FIXME gcc accepts some relocatable values here too, but only in certain
18099    // memory models; it's complicated.
18100    }
18101    return;
18102  }
18103  case 'Z': {
18104    // 32-bit unsigned value
18105    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18106      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
18107                                           C->getZExtValue())) {
18108        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18109        break;
18110      }
18111    }
18112    // FIXME gcc accepts some relocatable values here too, but only in certain
18113    // memory models; it's complicated.
18114    return;
18115  }
18116  case 'i': {
18117    // Literal immediates are always ok.
18118    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
18119      // Widen to 64 bits here to get it sign extended.
18120      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
18121      break;
18122    }
18123
18124    // In any sort of PIC mode addresses need to be computed at runtime by
18125    // adding in a register or some sort of table lookup.  These can't
18126    // be used as immediates.
18127    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
18128      return;
18129
18130    // If we are in non-pic codegen mode, we allow the address of a global (with
18131    // an optional displacement) to be used with 'i'.
18132    GlobalAddressSDNode *GA = 0;
18133    int64_t Offset = 0;
18134
18135    // Match either (GA), (GA+C), (GA+C1+C2), etc.
18136    while (1) {
18137      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
18138        Offset += GA->getOffset();
18139        break;
18140      } else if (Op.getOpcode() == ISD::ADD) {
18141        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
18142          Offset += C->getZExtValue();
18143          Op = Op.getOperand(0);
18144          continue;
18145        }
18146      } else if (Op.getOpcode() == ISD::SUB) {
18147        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
18148          Offset += -C->getZExtValue();
18149          Op = Op.getOperand(0);
18150          continue;
18151        }
18152      }
18153
18154      // Otherwise, this isn't something we can handle, reject it.
18155      return;
18156    }
18157
18158    const GlobalValue *GV = GA->getGlobal();
18159    // If we require an extra load to get this address, as in PIC mode, we
18160    // can't accept it.
18161    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
18162                                                        getTargetMachine())))
18163      return;
18164
18165    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
18166                                        GA->getValueType(0), Offset);
18167    break;
18168  }
18169  }
18170
18171  if (Result.getNode()) {
18172    Ops.push_back(Result);
18173    return;
18174  }
18175  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
18176}
18177
18178std::pair<unsigned, const TargetRegisterClass*>
18179X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
18180                                                EVT VT) const {
18181  // First, see if this is a constraint that directly corresponds to an LLVM
18182  // register class.
18183  if (Constraint.size() == 1) {
18184    // GCC Constraint Letters
18185    switch (Constraint[0]) {
18186    default: break;
18187      // TODO: Slight differences here in allocation order and leaving
18188      // RIP in the class. Do they matter any more here than they do
18189      // in the normal allocation?
18190    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
18191      if (Subtarget->is64Bit()) {
18192        if (VT == MVT::i32 || VT == MVT::f32)
18193          return std::make_pair(0U, &X86::GR32RegClass);
18194        if (VT == MVT::i16)
18195          return std::make_pair(0U, &X86::GR16RegClass);
18196        if (VT == MVT::i8 || VT == MVT::i1)
18197          return std::make_pair(0U, &X86::GR8RegClass);
18198        if (VT == MVT::i64 || VT == MVT::f64)
18199          return std::make_pair(0U, &X86::GR64RegClass);
18200        break;
18201      }
18202      // 32-bit fallthrough
18203    case 'Q':   // Q_REGS
18204      if (VT == MVT::i32 || VT == MVT::f32)
18205        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
18206      if (VT == MVT::i16)
18207        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
18208      if (VT == MVT::i8 || VT == MVT::i1)
18209        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
18210      if (VT == MVT::i64)
18211        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
18212      break;
18213    case 'r':   // GENERAL_REGS
18214    case 'l':   // INDEX_REGS
18215      if (VT == MVT::i8 || VT == MVT::i1)
18216        return std::make_pair(0U, &X86::GR8RegClass);
18217      if (VT == MVT::i16)
18218        return std::make_pair(0U, &X86::GR16RegClass);
18219      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
18220        return std::make_pair(0U, &X86::GR32RegClass);
18221      return std::make_pair(0U, &X86::GR64RegClass);
18222    case 'R':   // LEGACY_REGS
18223      if (VT == MVT::i8 || VT == MVT::i1)
18224        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
18225      if (VT == MVT::i16)
18226        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
18227      if (VT == MVT::i32 || !Subtarget->is64Bit())
18228        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
18229      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
18230    case 'f':  // FP Stack registers.
18231      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
18232      // value to the correct fpstack register class.
18233      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
18234        return std::make_pair(0U, &X86::RFP32RegClass);
18235      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
18236        return std::make_pair(0U, &X86::RFP64RegClass);
18237      return std::make_pair(0U, &X86::RFP80RegClass);
18238    case 'y':   // MMX_REGS if MMX allowed.
18239      if (!Subtarget->hasMMX()) break;
18240      return std::make_pair(0U, &X86::VR64RegClass);
18241    case 'Y':   // SSE_REGS if SSE2 allowed
18242      if (!Subtarget->hasSSE2()) break;
18243      // FALL THROUGH.
18244    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
18245      if (!Subtarget->hasSSE1()) break;
18246
18247      switch (VT.getSimpleVT().SimpleTy) {
18248      default: break;
18249      // Scalar SSE types.
18250      case MVT::f32:
18251      case MVT::i32:
18252        return std::make_pair(0U, &X86::FR32RegClass);
18253      case MVT::f64:
18254      case MVT::i64:
18255        return std::make_pair(0U, &X86::FR64RegClass);
18256      // Vector types.
18257      case MVT::v16i8:
18258      case MVT::v8i16:
18259      case MVT::v4i32:
18260      case MVT::v2i64:
18261      case MVT::v4f32:
18262      case MVT::v2f64:
18263        return std::make_pair(0U, &X86::VR128RegClass);
18264      // AVX types.
18265      case MVT::v32i8:
18266      case MVT::v16i16:
18267      case MVT::v8i32:
18268      case MVT::v4i64:
18269      case MVT::v8f32:
18270      case MVT::v4f64:
18271        return std::make_pair(0U, &X86::VR256RegClass);
18272      }
18273      break;
18274    }
18275  }
18276
18277  // Use the default implementation in TargetLowering to convert the register
18278  // constraint into a member of a register class.
18279  std::pair<unsigned, const TargetRegisterClass*> Res;
18280  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
18281
18282  // Not found as a standard register?
18283  if (Res.second == 0) {
18284    // Map st(0) -> st(7) -> ST0
18285    if (Constraint.size() == 7 && Constraint[0] == '{' &&
18286        tolower(Constraint[1]) == 's' &&
18287        tolower(Constraint[2]) == 't' &&
18288        Constraint[3] == '(' &&
18289        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
18290        Constraint[5] == ')' &&
18291        Constraint[6] == '}') {
18292
18293      Res.first = X86::ST0+Constraint[4]-'0';
18294      Res.second = &X86::RFP80RegClass;
18295      return Res;
18296    }
18297
18298    // GCC allows "st(0)" to be called just plain "st".
18299    if (StringRef("{st}").equals_lower(Constraint)) {
18300      Res.first = X86::ST0;
18301      Res.second = &X86::RFP80RegClass;
18302      return Res;
18303    }
18304
18305    // flags -> EFLAGS
18306    if (StringRef("{flags}").equals_lower(Constraint)) {
18307      Res.first = X86::EFLAGS;
18308      Res.second = &X86::CCRRegClass;
18309      return Res;
18310    }
18311
18312    // 'A' means EAX + EDX.
18313    if (Constraint == "A") {
18314      Res.first = X86::EAX;
18315      Res.second = &X86::GR32_ADRegClass;
18316      return Res;
18317    }
18318    return Res;
18319  }
18320
18321  // Otherwise, check to see if this is a register class of the wrong value
18322  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
18323  // turn into {ax},{dx}.
18324  if (Res.second->hasType(VT))
18325    return Res;   // Correct type already, nothing to do.
18326
18327  // All of the single-register GCC register classes map their values onto
18328  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
18329  // really want an 8-bit or 32-bit register, map to the appropriate register
18330  // class and return the appropriate register.
18331  if (Res.second == &X86::GR16RegClass) {
18332    if (VT == MVT::i8 || VT == MVT::i1) {
18333      unsigned DestReg = 0;
18334      switch (Res.first) {
18335      default: break;
18336      case X86::AX: DestReg = X86::AL; break;
18337      case X86::DX: DestReg = X86::DL; break;
18338      case X86::CX: DestReg = X86::CL; break;
18339      case X86::BX: DestReg = X86::BL; break;
18340      }
18341      if (DestReg) {
18342        Res.first = DestReg;
18343        Res.second = &X86::GR8RegClass;
18344      }
18345    } else if (VT == MVT::i32 || VT == MVT::f32) {
18346      unsigned DestReg = 0;
18347      switch (Res.first) {
18348      default: break;
18349      case X86::AX: DestReg = X86::EAX; break;
18350      case X86::DX: DestReg = X86::EDX; break;
18351      case X86::CX: DestReg = X86::ECX; break;
18352      case X86::BX: DestReg = X86::EBX; break;
18353      case X86::SI: DestReg = X86::ESI; break;
18354      case X86::DI: DestReg = X86::EDI; break;
18355      case X86::BP: DestReg = X86::EBP; break;
18356      case X86::SP: DestReg = X86::ESP; break;
18357      }
18358      if (DestReg) {
18359        Res.first = DestReg;
18360        Res.second = &X86::GR32RegClass;
18361      }
18362    } else if (VT == MVT::i64 || VT == MVT::f64) {
18363      unsigned DestReg = 0;
18364      switch (Res.first) {
18365      default: break;
18366      case X86::AX: DestReg = X86::RAX; break;
18367      case X86::DX: DestReg = X86::RDX; break;
18368      case X86::CX: DestReg = X86::RCX; break;
18369      case X86::BX: DestReg = X86::RBX; break;
18370      case X86::SI: DestReg = X86::RSI; break;
18371      case X86::DI: DestReg = X86::RDI; break;
18372      case X86::BP: DestReg = X86::RBP; break;
18373      case X86::SP: DestReg = X86::RSP; break;
18374      }
18375      if (DestReg) {
18376        Res.first = DestReg;
18377        Res.second = &X86::GR64RegClass;
18378      }
18379    }
18380  } else if (Res.second == &X86::FR32RegClass ||
18381             Res.second == &X86::FR64RegClass ||
18382             Res.second == &X86::VR128RegClass) {
18383    // Handle references to XMM physical registers that got mapped into the
18384    // wrong class.  This can happen with constraints like {xmm0} where the
18385    // target independent register mapper will just pick the first match it can
18386    // find, ignoring the required type.
18387
18388    if (VT == MVT::f32 || VT == MVT::i32)
18389      Res.second = &X86::FR32RegClass;
18390    else if (VT == MVT::f64 || VT == MVT::i64)
18391      Res.second = &X86::FR64RegClass;
18392    else if (X86::VR128RegClass.hasType(VT))
18393      Res.second = &X86::VR128RegClass;
18394    else if (X86::VR256RegClass.hasType(VT))
18395      Res.second = &X86::VR256RegClass;
18396  }
18397
18398  return Res;
18399}
18400