X86ISelLowering.cpp revision 4c2454623841f05c6c665659b34c214950d12d7e
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/VectorExtras.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/PseudoSourceValue.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/StringExtras.h"
41#include "llvm/Support/CommandLine.h"
42using namespace llvm;
43
44static cl::opt<bool>
45DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
46
47// Forward declarations.
48static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG);
49
50X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
51  : TargetLowering(TM) {
52  Subtarget = &TM.getSubtarget<X86Subtarget>();
53  X86ScalarSSEf64 = Subtarget->hasSSE2();
54  X86ScalarSSEf32 = Subtarget->hasSSE1();
55  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
56
57  bool Fast = false;
58
59  RegInfo = TM.getRegisterInfo();
60  TD = getTargetData();
61
62  // Set up the TargetLowering object.
63
64  // X86 is weird, it always uses i8 for shift amounts and setcc results.
65  setShiftAmountType(MVT::i8);
66  setBooleanContents(ZeroOrOneBooleanContent);
67  setSchedulingPreference(SchedulingForRegPressure);
68  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
69  setStackPointerRegisterToSaveRestore(X86StackPtr);
70
71  if (Subtarget->isTargetDarwin()) {
72    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
73    setUseUnderscoreSetJmp(false);
74    setUseUnderscoreLongJmp(false);
75  } else if (Subtarget->isTargetMingw()) {
76    // MS runtime is weird: it exports _setjmp, but longjmp!
77    setUseUnderscoreSetJmp(true);
78    setUseUnderscoreLongJmp(false);
79  } else {
80    setUseUnderscoreSetJmp(true);
81    setUseUnderscoreLongJmp(true);
82  }
83
84  // Set up the register classes.
85  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
86  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
87  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
88  if (Subtarget->is64Bit())
89    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
90
91  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
92
93  // We don't accept any truncstore of integer registers.
94  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
95  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
96  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
97  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
98  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
99  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
100
101  // SETOEQ and SETUNE require checking two conditions.
102  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
103  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
104  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
105  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
106  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
107  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
108
109  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
110  // operation.
111  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
112  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
113  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
114
115  if (Subtarget->is64Bit()) {
116    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
117    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
118  } else {
119    if (X86ScalarSSEf64) {
120      // We have an impenetrably clever algorithm for ui64->double only.
121      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
122
123      // We have faster algorithm for ui32->single only.
124      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
125    } else
126      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
127  }
128
129  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
130  // this operation.
131  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
132  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
133  // SSE has no i16 to fp conversion, only i32
134  if (X86ScalarSSEf32) {
135    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
136    // f32 and f64 cases are Legal, f80 case is not
137    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
138  } else {
139    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
140    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
141  }
142
143  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
144  // are Legal, f80 is custom lowered.
145  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
146  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
147
148  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
149  // this operation.
150  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
151  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
152
153  if (X86ScalarSSEf32) {
154    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
155    // f32 and f64 cases are Legal, f80 case is not
156    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
157  } else {
158    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
159    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
160  }
161
162  // Handle FP_TO_UINT by promoting the destination to a larger signed
163  // conversion.
164  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
165  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
166  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
167
168  if (Subtarget->is64Bit()) {
169    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
170    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
171  } else {
172    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
173      // Expand FP_TO_UINT into a select.
174      // FIXME: We would like to use a Custom expander here eventually to do
175      // the optimal thing for SSE vs. the default expansion in the legalizer.
176      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
177    else
178      // With SSE3 we can use fisttpll to convert to a signed i64.
179      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
180  }
181
182  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
183  if (!X86ScalarSSEf64) {
184    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
185    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
186  }
187
188  // Scalar integer divide and remainder are lowered to use operations that
189  // produce two results, to match the available instructions. This exposes
190  // the two-result form to trivial CSE, which is able to combine x/y and x%y
191  // into a single instruction.
192  //
193  // Scalar integer multiply-high is also lowered to use two-result
194  // operations, to match the available instructions. However, plain multiply
195  // (low) operations are left as Legal, as there are single-result
196  // instructions for this in x86. Using the two-result multiply instructions
197  // when both high and low results are needed must be arranged by dagcombine.
198  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
199  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
200  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
201  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
202  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
203  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
204  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
205  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
206  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
207  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
208  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
209  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
210  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
211  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
212  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
213  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
214  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
215  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
216  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
217  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
218  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
219  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
220  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
221  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
222
223  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
224  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
225  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
226  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
227  if (Subtarget->is64Bit())
228    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
229  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
230  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
231  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
232  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
233  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
234  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
235  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
236  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
237
238  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
239  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
240  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
241  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
242  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
243  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
244  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
245  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
246  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
247  if (Subtarget->is64Bit()) {
248    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
249    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
250    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
251  }
252
253  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
254  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
255
256  // These should be promoted to a larger select which is supported.
257  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
258  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
259  // X86 wants to expand cmov itself.
260  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
261  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
262  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
263  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
264  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
265  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
266  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
267  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
268  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
269  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
270  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
271  if (Subtarget->is64Bit()) {
272    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
273    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
274  }
275  // X86 ret instruction may pop stack.
276  setOperationAction(ISD::RET             , MVT::Other, Custom);
277  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
278
279  // Darwin ABI issue.
280  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
281  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
282  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
283  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
284  if (Subtarget->is64Bit())
285    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
286  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
287  if (Subtarget->is64Bit()) {
288    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
289    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
290    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
291    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
292  }
293  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
294  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
295  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
296  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
297  if (Subtarget->is64Bit()) {
298    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
299    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
300    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
301  }
302
303  if (Subtarget->hasSSE1())
304    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
305
306  if (!Subtarget->hasSSE2())
307    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
308
309  // Expand certain atomics
310  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
311  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
312  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
313  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
314
315  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
316  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
317  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
318  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
319
320  if (!Subtarget->is64Bit()) {
321    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
322    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
323    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
324    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
325    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
326    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
327    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
328  }
329
330  // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
331  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
332  // FIXME - use subtarget debug flags
333  if (!Subtarget->isTargetDarwin() &&
334      !Subtarget->isTargetELF() &&
335      !Subtarget->isTargetCygMing()) {
336    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
337    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
338  }
339
340  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
341  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
342  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
343  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
344  if (Subtarget->is64Bit()) {
345    setExceptionPointerRegister(X86::RAX);
346    setExceptionSelectorRegister(X86::RDX);
347  } else {
348    setExceptionPointerRegister(X86::EAX);
349    setExceptionSelectorRegister(X86::EDX);
350  }
351  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
352  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
353
354  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
355
356  setOperationAction(ISD::TRAP, MVT::Other, Legal);
357
358  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
359  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
360  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
361  if (Subtarget->is64Bit()) {
362    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
363    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
364  } else {
365    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
366    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
367  }
368
369  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
370  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
371  if (Subtarget->is64Bit())
372    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
373  if (Subtarget->isTargetCygMing())
374    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
375  else
376    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
377
378  if (X86ScalarSSEf64) {
379    // f32 and f64 use SSE.
380    // Set up the FP register classes.
381    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
382    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
383
384    // Use ANDPD to simulate FABS.
385    setOperationAction(ISD::FABS , MVT::f64, Custom);
386    setOperationAction(ISD::FABS , MVT::f32, Custom);
387
388    // Use XORP to simulate FNEG.
389    setOperationAction(ISD::FNEG , MVT::f64, Custom);
390    setOperationAction(ISD::FNEG , MVT::f32, Custom);
391
392    // Use ANDPD and ORPD to simulate FCOPYSIGN.
393    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
394    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
395
396    // We don't support sin/cos/fmod
397    setOperationAction(ISD::FSIN , MVT::f64, Expand);
398    setOperationAction(ISD::FCOS , MVT::f64, Expand);
399    setOperationAction(ISD::FSIN , MVT::f32, Expand);
400    setOperationAction(ISD::FCOS , MVT::f32, Expand);
401
402    // Expand FP immediates into loads from the stack, except for the special
403    // cases we handle.
404    addLegalFPImmediate(APFloat(+0.0)); // xorpd
405    addLegalFPImmediate(APFloat(+0.0f)); // xorps
406
407    // Floating truncations from f80 and extensions to f80 go through memory.
408    // If optimizing, we lie about this though and handle it in
409    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
410    if (Fast) {
411      setConvertAction(MVT::f32, MVT::f80, Expand);
412      setConvertAction(MVT::f64, MVT::f80, Expand);
413      setConvertAction(MVT::f80, MVT::f32, Expand);
414      setConvertAction(MVT::f80, MVT::f64, Expand);
415    }
416  } else if (X86ScalarSSEf32) {
417    // Use SSE for f32, x87 for f64.
418    // Set up the FP register classes.
419    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
420    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
421
422    // Use ANDPS to simulate FABS.
423    setOperationAction(ISD::FABS , MVT::f32, Custom);
424
425    // Use XORP to simulate FNEG.
426    setOperationAction(ISD::FNEG , MVT::f32, Custom);
427
428    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
429
430    // Use ANDPS and ORPS to simulate FCOPYSIGN.
431    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
432    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
433
434    // We don't support sin/cos/fmod
435    setOperationAction(ISD::FSIN , MVT::f32, Expand);
436    setOperationAction(ISD::FCOS , MVT::f32, Expand);
437
438    // Special cases we handle for FP constants.
439    addLegalFPImmediate(APFloat(+0.0f)); // xorps
440    addLegalFPImmediate(APFloat(+0.0)); // FLD0
441    addLegalFPImmediate(APFloat(+1.0)); // FLD1
442    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
443    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
444
445    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
446    // this though and handle it in InstructionSelectPreprocess so that
447    // dagcombine2 can hack on these.
448    if (Fast) {
449      setConvertAction(MVT::f32, MVT::f64, Expand);
450      setConvertAction(MVT::f32, MVT::f80, Expand);
451      setConvertAction(MVT::f80, MVT::f32, Expand);
452      setConvertAction(MVT::f64, MVT::f32, Expand);
453      // And x87->x87 truncations also.
454      setConvertAction(MVT::f80, MVT::f64, Expand);
455    }
456
457    if (!UnsafeFPMath) {
458      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
459      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
460    }
461  } else {
462    // f32 and f64 in x87.
463    // Set up the FP register classes.
464    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
465    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
466
467    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
468    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
469    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
470    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
471
472    // Floating truncations go through memory.  If optimizing, we lie about
473    // this though and handle it in InstructionSelectPreprocess so that
474    // dagcombine2 can hack on these.
475    if (Fast) {
476      setConvertAction(MVT::f80, MVT::f32, Expand);
477      setConvertAction(MVT::f64, MVT::f32, Expand);
478      setConvertAction(MVT::f80, MVT::f64, Expand);
479    }
480
481    if (!UnsafeFPMath) {
482      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
483      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
484    }
485    addLegalFPImmediate(APFloat(+0.0)); // FLD0
486    addLegalFPImmediate(APFloat(+1.0)); // FLD1
487    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
488    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
489    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
490    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
491    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
492    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
493  }
494
495  // Long double always uses X87.
496  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
497  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
498  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
499  {
500    bool ignored;
501    APFloat TmpFlt(+0.0);
502    TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
503                   &ignored);
504    addLegalFPImmediate(TmpFlt);  // FLD0
505    TmpFlt.changeSign();
506    addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
507    APFloat TmpFlt2(+1.0);
508    TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
509                    &ignored);
510    addLegalFPImmediate(TmpFlt2);  // FLD1
511    TmpFlt2.changeSign();
512    addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
513  }
514
515  if (!UnsafeFPMath) {
516    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
517    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
518  }
519
520  // Always use a library call for pow.
521  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
522  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
523  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
524
525  setOperationAction(ISD::FLOG, MVT::f80, Expand);
526  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
527  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
528  setOperationAction(ISD::FEXP, MVT::f80, Expand);
529  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
530
531  // First set operation action for all vector types to either promote
532  // (for widening) or expand (for scalarization). Then we will selectively
533  // turn on ones that can be effectively codegen'd.
534  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
535       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
536    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
537    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
538    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
539    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
540    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
541    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
542    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
543    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
544    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
545    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
546    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
547    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
548    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
549    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
550    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
551    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
579  }
580
581  if (!DisableMMX && Subtarget->hasMMX()) {
582    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
583    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
584    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
585    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
586    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
587
588    // FIXME: add MMX packed arithmetics
589
590    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
591    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
592    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
593    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
594
595    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
596    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
597    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
598    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
599
600    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
601    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
602
603    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
604    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
605    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
606    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
607    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
608    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
609    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
610
611    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
612    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
613    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
614    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
615    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
616    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
617    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
618
619    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
620    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
621    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
622    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
623    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
624    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
625    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
626
627    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
628    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
629    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
630    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
631    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
632    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
633    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
634    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
635    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
636
637    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
638    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
639    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
640    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
641    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
642
643    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
644    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
645    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
646    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
647
648    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
649    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
650    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
651    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
652
653    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
654
655    setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
656    setOperationAction(ISD::TRUNCATE,           MVT::v8i8, Expand);
657    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
658    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
659    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
660    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
661  }
662
663  if (Subtarget->hasSSE1()) {
664    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
665
666    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
667    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
668    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
669    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
670    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
671    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
672    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
673    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
674    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
675    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
676    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
677    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
678  }
679
680  if (Subtarget->hasSSE2()) {
681    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
682    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
683    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
684    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
685    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
686
687    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
688    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
689    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
690    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
691    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
692    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
693    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
694    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
695    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
696    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
697    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
698    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
699    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
700    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
701    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
702    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
703
704    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
705    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
706    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
707    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
708
709    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
710    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
711    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
712    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
713    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
714
715    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
716    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
717      MVT VT = (MVT::SimpleValueType)i;
718      // Do not attempt to custom lower non-power-of-2 vectors
719      if (!isPowerOf2_32(VT.getVectorNumElements()))
720        continue;
721      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
722      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
723      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
724    }
725    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
726    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
727    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
728    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
729    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
730    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
731    if (Subtarget->is64Bit()) {
732      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
733      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
734    }
735
736    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
737    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
738      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
739      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v2i64);
740      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
741      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v2i64);
742      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
743      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v2i64);
744      setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
745      AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v2i64);
746      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
747      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64);
748    }
749
750    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
751
752    // Custom lower v2i64 and v2f64 selects.
753    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
754    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
755    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
756    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
757
758  }
759
760  if (Subtarget->hasSSE41()) {
761    // FIXME: Do we need to handle scalar-to-vector here?
762    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
763
764    // i8 and i16 vectors are custom , because the source register and source
765    // source memory operand types are not the same width.  f32 vectors are
766    // custom since the immediate controlling the insert encodes additional
767    // information.
768    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
769    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
770    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
771    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
772
773    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
774    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
775    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
776    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
777
778    if (Subtarget->is64Bit()) {
779      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
780      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
781    }
782  }
783
784  if (Subtarget->hasSSE42()) {
785    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
786  }
787
788  // We want to custom lower some of our intrinsics.
789  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
790
791  // Add/Sub/Mul with overflow operations are custom lowered.
792  setOperationAction(ISD::SADDO, MVT::i32, Custom);
793  setOperationAction(ISD::SADDO, MVT::i64, Custom);
794  setOperationAction(ISD::UADDO, MVT::i32, Custom);
795  setOperationAction(ISD::UADDO, MVT::i64, Custom);
796  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
797  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
798  setOperationAction(ISD::USUBO, MVT::i32, Custom);
799  setOperationAction(ISD::USUBO, MVT::i64, Custom);
800  setOperationAction(ISD::SMULO, MVT::i32, Custom);
801  setOperationAction(ISD::SMULO, MVT::i64, Custom);
802  setOperationAction(ISD::UMULO, MVT::i32, Custom);
803  setOperationAction(ISD::UMULO, MVT::i64, Custom);
804
805  // We have target-specific dag combine patterns for the following nodes:
806  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
807  setTargetDAGCombine(ISD::BUILD_VECTOR);
808  setTargetDAGCombine(ISD::SELECT);
809  setTargetDAGCombine(ISD::STORE);
810
811  computeRegisterProperties();
812
813  // FIXME: These should be based on subtarget info. Plus, the values should
814  // be smaller when we are in optimizing for size mode.
815  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
816  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
817  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
818  allowUnalignedMemoryAccesses = true; // x86 supports it!
819  setPrefLoopAlignment(16);
820}
821
822
823MVT X86TargetLowering::getSetCCResultType(MVT VT) const {
824  return MVT::i8;
825}
826
827
828/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
829/// the desired ByVal argument alignment.
830static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
831  if (MaxAlign == 16)
832    return;
833  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
834    if (VTy->getBitWidth() == 128)
835      MaxAlign = 16;
836  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
837    unsigned EltAlign = 0;
838    getMaxByValAlign(ATy->getElementType(), EltAlign);
839    if (EltAlign > MaxAlign)
840      MaxAlign = EltAlign;
841  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
842    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
843      unsigned EltAlign = 0;
844      getMaxByValAlign(STy->getElementType(i), EltAlign);
845      if (EltAlign > MaxAlign)
846        MaxAlign = EltAlign;
847      if (MaxAlign == 16)
848        break;
849    }
850  }
851  return;
852}
853
854/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
855/// function arguments in the caller parameter area. For X86, aggregates
856/// that contain SSE vectors are placed at 16-byte boundaries while the rest
857/// are at 4-byte boundaries.
858unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
859  if (Subtarget->is64Bit()) {
860    // Max of 8 and alignment of type.
861    unsigned TyAlign = TD->getABITypeAlignment(Ty);
862    if (TyAlign > 8)
863      return TyAlign;
864    return 8;
865  }
866
867  unsigned Align = 4;
868  if (Subtarget->hasSSE1())
869    getMaxByValAlign(Ty, Align);
870  return Align;
871}
872
873/// getOptimalMemOpType - Returns the target specific optimal type for load
874/// and store operations as a result of memset, memcpy, and memmove
875/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
876/// determining it.
877MVT
878X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
879                                       bool isSrcConst, bool isSrcStr) const {
880  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
881  // linux.  This is because the stack realignment code can't handle certain
882  // cases like PR2962.  This should be removed when PR2962 is fixed.
883  if (Subtarget->getStackAlignment() >= 16) {
884    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
885      return MVT::v4i32;
886    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
887      return MVT::v4f32;
888  }
889  if (Subtarget->is64Bit() && Size >= 8)
890    return MVT::i64;
891  return MVT::i32;
892}
893
894
895/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
896/// jumptable.
897SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
898                                                      SelectionDAG &DAG) const {
899  if (usesGlobalOffsetTable())
900    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
901  if (!Subtarget->isPICStyleRIPRel())
902    return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
903  return Table;
904}
905
906//===----------------------------------------------------------------------===//
907//               Return Value Calling Convention Implementation
908//===----------------------------------------------------------------------===//
909
910#include "X86GenCallingConv.inc"
911
912/// LowerRET - Lower an ISD::RET node.
913SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
914  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
915
916  SmallVector<CCValAssign, 16> RVLocs;
917  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
918  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
919  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
920  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86);
921
922  // If this is the first return lowered for this function, add the regs to the
923  // liveout set for the function.
924  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
925    for (unsigned i = 0; i != RVLocs.size(); ++i)
926      if (RVLocs[i].isRegLoc())
927        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
928  }
929  SDValue Chain = Op.getOperand(0);
930
931  // Handle tail call return.
932  Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
933  if (Chain.getOpcode() == X86ISD::TAILCALL) {
934    SDValue TailCall = Chain;
935    SDValue TargetAddress = TailCall.getOperand(1);
936    SDValue StackAdjustment = TailCall.getOperand(2);
937    assert(((TargetAddress.getOpcode() == ISD::Register &&
938               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX ||
939                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
940              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
941              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
942             "Expecting an global address, external symbol, or register");
943    assert(StackAdjustment.getOpcode() == ISD::Constant &&
944           "Expecting a const value");
945
946    SmallVector<SDValue,8> Operands;
947    Operands.push_back(Chain.getOperand(0));
948    Operands.push_back(TargetAddress);
949    Operands.push_back(StackAdjustment);
950    // Copy registers used by the call. Last operand is a flag so it is not
951    // copied.
952    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
953      Operands.push_back(Chain.getOperand(i));
954    }
955    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
956                       Operands.size());
957  }
958
959  // Regular return.
960  SDValue Flag;
961
962  SmallVector<SDValue, 6> RetOps;
963  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
964  // Operand #1 = Bytes To Pop
965  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
966
967  // Copy the result values into the output registers.
968  for (unsigned i = 0; i != RVLocs.size(); ++i) {
969    CCValAssign &VA = RVLocs[i];
970    assert(VA.isRegLoc() && "Can only return in registers!");
971    SDValue ValToCopy = Op.getOperand(i*2+1);
972
973    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
974    // the RET instruction and handled by the FP Stackifier.
975    if (RVLocs[i].getLocReg() == X86::ST0 ||
976        RVLocs[i].getLocReg() == X86::ST1) {
977      // If this is a copy from an xmm register to ST(0), use an FPExtend to
978      // change the value to the FP stack register class.
979      if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT()))
980        ValToCopy = DAG.getNode(ISD::FP_EXTEND, MVT::f80, ValToCopy);
981      RetOps.push_back(ValToCopy);
982      // Don't emit a copytoreg.
983      continue;
984    }
985
986    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), ValToCopy, Flag);
987    Flag = Chain.getValue(1);
988  }
989
990  // The x86-64 ABI for returning structs by value requires that we copy
991  // the sret argument into %rax for the return. We saved the argument into
992  // a virtual register in the entry block, so now we copy the value out
993  // and into %rax.
994  if (Subtarget->is64Bit() &&
995      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
996    MachineFunction &MF = DAG.getMachineFunction();
997    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
998    unsigned Reg = FuncInfo->getSRetReturnReg();
999    if (!Reg) {
1000      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1001      FuncInfo->setSRetReturnReg(Reg);
1002    }
1003    SDValue Val = DAG.getCopyFromReg(Chain, Reg, getPointerTy());
1004
1005    Chain = DAG.getCopyToReg(Chain, X86::RAX, Val, Flag);
1006    Flag = Chain.getValue(1);
1007  }
1008
1009  RetOps[0] = Chain;  // Update chain.
1010
1011  // Add the flag if we have it.
1012  if (Flag.getNode())
1013    RetOps.push_back(Flag);
1014
1015  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, &RetOps[0], RetOps.size());
1016}
1017
1018
1019/// LowerCallResult - Lower the result values of an ISD::CALL into the
1020/// appropriate copies out of appropriate physical registers.  This assumes that
1021/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
1022/// being lowered.  The returns a SDNode with the same number of values as the
1023/// ISD::CALL.
1024SDNode *X86TargetLowering::
1025LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
1026                unsigned CallingConv, SelectionDAG &DAG) {
1027
1028  // Assign locations to each value returned by this call.
1029  SmallVector<CCValAssign, 16> RVLocs;
1030  bool isVarArg = TheCall->isVarArg();
1031  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
1032  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
1033
1034  SmallVector<SDValue, 8> ResultVals;
1035
1036  // Copy all of the result registers out of their specified physreg.
1037  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1038    MVT CopyVT = RVLocs[i].getValVT();
1039
1040    // If this is a call to a function that returns an fp value on the floating
1041    // point stack, but where we prefer to use the value in xmm registers, copy
1042    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1043    if ((RVLocs[i].getLocReg() == X86::ST0 ||
1044         RVLocs[i].getLocReg() == X86::ST1) &&
1045        isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
1046      CopyVT = MVT::f80;
1047    }
1048
1049    Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
1050                               CopyVT, InFlag).getValue(1);
1051    SDValue Val = Chain.getValue(0);
1052    InFlag = Chain.getValue(2);
1053
1054    if (CopyVT != RVLocs[i].getValVT()) {
1055      // Round the F80 the right size, which also moves to the appropriate xmm
1056      // register.
1057      Val = DAG.getNode(ISD::FP_ROUND, RVLocs[i].getValVT(), Val,
1058                        // This truncation won't change the value.
1059                        DAG.getIntPtrConstant(1));
1060    }
1061
1062    ResultVals.push_back(Val);
1063  }
1064
1065  // Merge everything together with a MERGE_VALUES node.
1066  ResultVals.push_back(Chain);
1067  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(), &ResultVals[0],
1068                     ResultVals.size()).getNode();
1069}
1070
1071
1072//===----------------------------------------------------------------------===//
1073//                C & StdCall & Fast Calling Convention implementation
1074//===----------------------------------------------------------------------===//
1075//  StdCall calling convention seems to be standard for many Windows' API
1076//  routines and around. It differs from C calling convention just a little:
1077//  callee should clean up the stack, not caller. Symbols should be also
1078//  decorated in some fancy way :) It doesn't support any vector arguments.
1079//  For info on fast calling convention see Fast Calling Convention (tail call)
1080//  implementation LowerX86_32FastCCCallTo.
1081
1082/// AddLiveIn - This helper function adds the specified physical register to the
1083/// MachineFunction as a live in value.  It also creates a corresponding virtual
1084/// register for it.
1085static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
1086                          const TargetRegisterClass *RC) {
1087  assert(RC->contains(PReg) && "Not the correct regclass!");
1088  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1089  MF.getRegInfo().addLiveIn(PReg, VReg);
1090  return VReg;
1091}
1092
1093/// CallIsStructReturn - Determines whether a CALL node uses struct return
1094/// semantics.
1095static bool CallIsStructReturn(CallSDNode *TheCall) {
1096  unsigned NumOps = TheCall->getNumArgs();
1097  if (!NumOps)
1098    return false;
1099
1100  return TheCall->getArgFlags(0).isSRet();
1101}
1102
1103/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1104/// return semantics.
1105static bool ArgsAreStructReturn(SDValue Op) {
1106  unsigned NumArgs = Op.getNode()->getNumValues() - 1;
1107  if (!NumArgs)
1108    return false;
1109
1110  return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
1111}
1112
1113/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1114/// the callee to pop its own arguments. Callee pop is necessary to support tail
1115/// calls.
1116bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
1117  if (IsVarArg)
1118    return false;
1119
1120  switch (CallingConv) {
1121  default:
1122    return false;
1123  case CallingConv::X86_StdCall:
1124    return !Subtarget->is64Bit();
1125  case CallingConv::X86_FastCall:
1126    return !Subtarget->is64Bit();
1127  case CallingConv::Fast:
1128    return PerformTailCallOpt;
1129  }
1130}
1131
1132/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1133/// given CallingConvention value.
1134CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
1135  if (Subtarget->is64Bit()) {
1136    if (Subtarget->isTargetWin64())
1137      return CC_X86_Win64_C;
1138    else if (CC == CallingConv::Fast && PerformTailCallOpt)
1139      return CC_X86_64_TailCall;
1140    else
1141      return CC_X86_64_C;
1142  }
1143
1144  if (CC == CallingConv::X86_FastCall)
1145    return CC_X86_32_FastCall;
1146  else if (CC == CallingConv::Fast)
1147    return CC_X86_32_FastCC;
1148  else
1149    return CC_X86_32_C;
1150}
1151
1152/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1153/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1154NameDecorationStyle
1155X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) {
1156  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1157  if (CC == CallingConv::X86_FastCall)
1158    return FastCall;
1159  else if (CC == CallingConv::X86_StdCall)
1160    return StdCall;
1161  return None;
1162}
1163
1164
1165/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1166/// in a register before calling.
1167bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1168  return !IsTailCall && !Is64Bit &&
1169    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1170    Subtarget->isPICStyleGOT();
1171}
1172
1173/// CallRequiresFnAddressInReg - Check whether the call requires the function
1174/// address to be loaded in a register.
1175bool
1176X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1177  return !Is64Bit && IsTailCall &&
1178    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1179    Subtarget->isPICStyleGOT();
1180}
1181
1182/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1183/// by "Src" to address "Dst" with size and alignment information specified by
1184/// the specific parameter attribute. The copy will be passed as a byval
1185/// function parameter.
1186static SDValue
1187CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1188                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG) {
1189  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1190  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(),
1191                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1192}
1193
1194SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG,
1195                                              const CCValAssign &VA,
1196                                              MachineFrameInfo *MFI,
1197                                              unsigned CC,
1198                                              SDValue Root, unsigned i) {
1199  // Create the nodes corresponding to a load from this parameter slot.
1200  ISD::ArgFlagsTy Flags =
1201    cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1202  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1203  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1204
1205  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1206  // changed with more analysis.
1207  // In case of tail call optimization mark all arguments mutable. Since they
1208  // could be overwritten by lowering of arguments in case of a tail call.
1209  int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1210                                  VA.getLocMemOffset(), isImmutable);
1211  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1212  if (Flags.isByVal())
1213    return FIN;
1214  return DAG.getLoad(VA.getValVT(), Root, FIN,
1215                     PseudoSourceValue::getFixedStack(FI), 0);
1216}
1217
1218SDValue
1219X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1220  MachineFunction &MF = DAG.getMachineFunction();
1221  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1222
1223  const Function* Fn = MF.getFunction();
1224  if (Fn->hasExternalLinkage() &&
1225      Subtarget->isTargetCygMing() &&
1226      Fn->getName() == "main")
1227    FuncInfo->setForceFramePointer(true);
1228
1229  // Decorate the function name.
1230  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1231
1232  MachineFrameInfo *MFI = MF.getFrameInfo();
1233  SDValue Root = Op.getOperand(0);
1234  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1235  unsigned CC = MF.getFunction()->getCallingConv();
1236  bool Is64Bit = Subtarget->is64Bit();
1237  bool IsWin64 = Subtarget->isTargetWin64();
1238
1239  assert(!(isVarArg && CC == CallingConv::Fast) &&
1240         "Var args not supported with calling convention fastcc");
1241
1242  // Assign locations to all of the incoming arguments.
1243  SmallVector<CCValAssign, 16> ArgLocs;
1244  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1245  CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC));
1246
1247  SmallVector<SDValue, 8> ArgValues;
1248  unsigned LastVal = ~0U;
1249  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1250    CCValAssign &VA = ArgLocs[i];
1251    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1252    // places.
1253    assert(VA.getValNo() != LastVal &&
1254           "Don't support value assigned to multiple locs yet");
1255    LastVal = VA.getValNo();
1256
1257    if (VA.isRegLoc()) {
1258      MVT RegVT = VA.getLocVT();
1259      TargetRegisterClass *RC = NULL;
1260      if (RegVT == MVT::i32)
1261        RC = X86::GR32RegisterClass;
1262      else if (Is64Bit && RegVT == MVT::i64)
1263        RC = X86::GR64RegisterClass;
1264      else if (RegVT == MVT::f32)
1265        RC = X86::FR32RegisterClass;
1266      else if (RegVT == MVT::f64)
1267        RC = X86::FR64RegisterClass;
1268      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1269        RC = X86::VR128RegisterClass;
1270      else if (RegVT.isVector()) {
1271        assert(RegVT.getSizeInBits() == 64);
1272        if (!Is64Bit)
1273          RC = X86::VR64RegisterClass;     // MMX values are passed in MMXs.
1274        else {
1275          // Darwin calling convention passes MMX values in either GPRs or
1276          // XMMs in x86-64. Other targets pass them in memory.
1277          if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
1278            RC = X86::VR128RegisterClass;  // MMX values are passed in XMMs.
1279            RegVT = MVT::v2i64;
1280          } else {
1281            RC = X86::GR64RegisterClass;   // v1i64 values are passed in GPRs.
1282            RegVT = MVT::i64;
1283          }
1284        }
1285      } else {
1286        assert(0 && "Unknown argument type!");
1287      }
1288
1289      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1290      SDValue ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1291
1292      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1293      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1294      // right size.
1295      if (VA.getLocInfo() == CCValAssign::SExt)
1296        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1297                               DAG.getValueType(VA.getValVT()));
1298      else if (VA.getLocInfo() == CCValAssign::ZExt)
1299        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1300                               DAG.getValueType(VA.getValVT()));
1301
1302      if (VA.getLocInfo() != CCValAssign::Full)
1303        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1304
1305      // Handle MMX values passed in GPRs.
1306      if (Is64Bit && RegVT != VA.getLocVT()) {
1307        if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
1308          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1309        else if (RC == X86::VR128RegisterClass) {
1310          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i64, ArgValue,
1311                                 DAG.getConstant(0, MVT::i64));
1312          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1313        }
1314      }
1315
1316      ArgValues.push_back(ArgValue);
1317    } else {
1318      assert(VA.isMemLoc());
1319      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1320    }
1321  }
1322
1323  // The x86-64 ABI for returning structs by value requires that we copy
1324  // the sret argument into %rax for the return. Save the argument into
1325  // a virtual register so that we can access it from the return points.
1326  if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1327    MachineFunction &MF = DAG.getMachineFunction();
1328    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1329    unsigned Reg = FuncInfo->getSRetReturnReg();
1330    if (!Reg) {
1331      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1332      FuncInfo->setSRetReturnReg(Reg);
1333    }
1334    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), Reg, ArgValues[0]);
1335    Root = DAG.getNode(ISD::TokenFactor, MVT::Other, Copy, Root);
1336  }
1337
1338  unsigned StackSize = CCInfo.getNextStackOffset();
1339  // align stack specially for tail calls
1340  if (PerformTailCallOpt && CC == CallingConv::Fast)
1341    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1342
1343  // If the function takes variable number of arguments, make a frame index for
1344  // the start of the first vararg value... for expansion of llvm.va_start.
1345  if (isVarArg) {
1346    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1347      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1348    }
1349    if (Is64Bit) {
1350      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1351
1352      // FIXME: We should really autogenerate these arrays
1353      static const unsigned GPR64ArgRegsWin64[] = {
1354        X86::RCX, X86::RDX, X86::R8,  X86::R9
1355      };
1356      static const unsigned XMMArgRegsWin64[] = {
1357        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1358      };
1359      static const unsigned GPR64ArgRegs64Bit[] = {
1360        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1361      };
1362      static const unsigned XMMArgRegs64Bit[] = {
1363        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1364        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1365      };
1366      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1367
1368      if (IsWin64) {
1369        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1370        GPR64ArgRegs = GPR64ArgRegsWin64;
1371        XMMArgRegs = XMMArgRegsWin64;
1372      } else {
1373        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1374        GPR64ArgRegs = GPR64ArgRegs64Bit;
1375        XMMArgRegs = XMMArgRegs64Bit;
1376      }
1377      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1378                                                       TotalNumIntRegs);
1379      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1380                                                       TotalNumXMMRegs);
1381
1382      // For X86-64, if there are vararg parameters that are passed via
1383      // registers, then we must store them to their spots on the stack so they
1384      // may be loaded by deferencing the result of va_next.
1385      VarArgsGPOffset = NumIntRegs * 8;
1386      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1387      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1388                                                 TotalNumXMMRegs * 16, 16);
1389
1390      // Store the integer parameter registers.
1391      SmallVector<SDValue, 8> MemOps;
1392      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1393      SDValue FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1394                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1395      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1396        unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1397                                  X86::GR64RegisterClass);
1398        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1399        SDValue Store =
1400          DAG.getStore(Val.getValue(1), Val, FIN,
1401                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1402        MemOps.push_back(Store);
1403        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1404                          DAG.getIntPtrConstant(8));
1405      }
1406
1407      // Now store the XMM (fp + vector) parameter registers.
1408      FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1409                        DAG.getIntPtrConstant(VarArgsFPOffset));
1410      for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1411        unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1412                                  X86::VR128RegisterClass);
1413        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1414        SDValue Store =
1415          DAG.getStore(Val.getValue(1), Val, FIN,
1416                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1417        MemOps.push_back(Store);
1418        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1419                          DAG.getIntPtrConstant(16));
1420      }
1421      if (!MemOps.empty())
1422          Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1423                             &MemOps[0], MemOps.size());
1424    }
1425  }
1426
1427  ArgValues.push_back(Root);
1428
1429  // Some CCs need callee pop.
1430  if (IsCalleePop(isVarArg, CC)) {
1431    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1432    BytesCallerReserves = 0;
1433  } else {
1434    BytesToPopOnReturn  = 0; // Callee pops nothing.
1435    // If this is an sret function, the return should pop the hidden pointer.
1436    if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op))
1437      BytesToPopOnReturn = 4;
1438    BytesCallerReserves = StackSize;
1439  }
1440
1441  if (!Is64Bit) {
1442    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1443    if (CC == CallingConv::X86_FastCall)
1444      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1445  }
1446
1447  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1448
1449  // Return the new list of results.
1450  return DAG.getNode(ISD::MERGE_VALUES, Op.getNode()->getVTList(),
1451                     &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
1452}
1453
1454SDValue
1455X86TargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
1456                                    const SDValue &StackPtr,
1457                                    const CCValAssign &VA,
1458                                    SDValue Chain,
1459                                    SDValue Arg, ISD::ArgFlagsTy Flags) {
1460  unsigned LocMemOffset = VA.getLocMemOffset();
1461  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1462  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1463  if (Flags.isByVal()) {
1464    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG);
1465  }
1466  return DAG.getStore(Chain, Arg, PtrOff,
1467                      PseudoSourceValue::getStack(), LocMemOffset);
1468}
1469
1470/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1471/// optimization is performed and it is required.
1472SDValue
1473X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1474                                           SDValue &OutRetAddr,
1475                                           SDValue Chain,
1476                                           bool IsTailCall,
1477                                           bool Is64Bit,
1478                                           int FPDiff) {
1479  if (!IsTailCall || FPDiff==0) return Chain;
1480
1481  // Adjust the Return address stack slot.
1482  MVT VT = getPointerTy();
1483  OutRetAddr = getReturnAddressFrameIndex(DAG);
1484
1485  // Load the "old" Return address.
1486  OutRetAddr = DAG.getLoad(VT, Chain, OutRetAddr, NULL, 0);
1487  return SDValue(OutRetAddr.getNode(), 1);
1488}
1489
1490/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1491/// optimization is performed and it is required (FPDiff!=0).
1492static SDValue
1493EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1494                         SDValue Chain, SDValue RetAddrFrIdx,
1495                         bool Is64Bit, int FPDiff) {
1496  // Store the return address to the appropriate stack slot.
1497  if (!FPDiff) return Chain;
1498  // Calculate the new stack slot for the return address.
1499  int SlotSize = Is64Bit ? 8 : 4;
1500  int NewReturnAddrFI =
1501    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1502  MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1503  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1504  Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx,
1505                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1506  return Chain;
1507}
1508
1509SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
1510  MachineFunction &MF = DAG.getMachineFunction();
1511  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
1512  SDValue Chain       = TheCall->getChain();
1513  unsigned CC         = TheCall->getCallingConv();
1514  bool isVarArg       = TheCall->isVarArg();
1515  bool IsTailCall     = TheCall->isTailCall() &&
1516                        CC == CallingConv::Fast && PerformTailCallOpt;
1517  SDValue Callee      = TheCall->getCallee();
1518  bool Is64Bit        = Subtarget->is64Bit();
1519  bool IsStructRet    = CallIsStructReturn(TheCall);
1520
1521  assert(!(isVarArg && CC == CallingConv::Fast) &&
1522         "Var args not supported with calling convention fastcc");
1523
1524  // Analyze operands of the call, assigning locations to each operand.
1525  SmallVector<CCValAssign, 16> ArgLocs;
1526  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1527  CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC));
1528
1529  // Get a count of how many bytes are to be pushed on the stack.
1530  unsigned NumBytes = CCInfo.getNextStackOffset();
1531  if (PerformTailCallOpt && CC == CallingConv::Fast)
1532    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1533
1534  int FPDiff = 0;
1535  if (IsTailCall) {
1536    // Lower arguments at fp - stackoffset + fpdiff.
1537    unsigned NumBytesCallerPushed =
1538      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1539    FPDiff = NumBytesCallerPushed - NumBytes;
1540
1541    // Set the delta of movement of the returnaddr stackslot.
1542    // But only set if delta is greater than previous delta.
1543    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1544      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1545  }
1546
1547  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1548
1549  SDValue RetAddrFrIdx;
1550  // Load return adress for tail calls.
1551  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1552                                  FPDiff);
1553
1554  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1555  SmallVector<SDValue, 8> MemOpChains;
1556  SDValue StackPtr;
1557
1558  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1559  // of tail call optimization arguments are handle later.
1560  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1561    CCValAssign &VA = ArgLocs[i];
1562    SDValue Arg = TheCall->getArg(i);
1563    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1564    bool isByVal = Flags.isByVal();
1565
1566    // Promote the value if needed.
1567    switch (VA.getLocInfo()) {
1568    default: assert(0 && "Unknown loc info!");
1569    case CCValAssign::Full: break;
1570    case CCValAssign::SExt:
1571      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1572      break;
1573    case CCValAssign::ZExt:
1574      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1575      break;
1576    case CCValAssign::AExt:
1577      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1578      break;
1579    }
1580
1581    if (VA.isRegLoc()) {
1582      if (Is64Bit) {
1583        MVT RegVT = VA.getLocVT();
1584        if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1585          switch (VA.getLocReg()) {
1586          default:
1587            break;
1588          case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
1589          case X86::R8: {
1590            // Special case: passing MMX values in GPR registers.
1591            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1592            break;
1593          }
1594          case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
1595          case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
1596            // Special case: passing MMX values in XMM registers.
1597            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1598            Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Arg);
1599            Arg = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
1600                              DAG.getNode(ISD::UNDEF, MVT::v2i64), Arg,
1601                              getMOVLMask(2, DAG));
1602            break;
1603          }
1604          }
1605      }
1606      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1607    } else {
1608      if (!IsTailCall || (IsTailCall && isByVal)) {
1609        assert(VA.isMemLoc());
1610        if (StackPtr.getNode() == 0)
1611          StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1612
1613        MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
1614                                               Chain, Arg, Flags));
1615      }
1616    }
1617  }
1618
1619  if (!MemOpChains.empty())
1620    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1621                        &MemOpChains[0], MemOpChains.size());
1622
1623  // Build a sequence of copy-to-reg nodes chained together with token chain
1624  // and flag operands which copy the outgoing args into registers.
1625  SDValue InFlag;
1626  // Tail call byval lowering might overwrite argument registers so in case of
1627  // tail call optimization the copies to registers are lowered later.
1628  if (!IsTailCall)
1629    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1630      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1631                               InFlag);
1632      InFlag = Chain.getValue(1);
1633    }
1634
1635  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1636  // GOT pointer.
1637  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1638    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1639                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1640                             InFlag);
1641    InFlag = Chain.getValue(1);
1642  }
1643  // If we are tail calling and generating PIC/GOT style code load the address
1644  // of the callee into ecx. The value in ecx is used as target of the tail
1645  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1646  // calls on PIC/GOT architectures. Normally we would just put the address of
1647  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1648  // restored (since ebx is callee saved) before jumping to the target@PLT.
1649  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1650    // Note: The actual moving to ecx is done further down.
1651    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1652    if (G && !G->getGlobal()->hasHiddenVisibility() &&
1653        !G->getGlobal()->hasProtectedVisibility())
1654      Callee =  LowerGlobalAddress(Callee, DAG);
1655    else if (isa<ExternalSymbolSDNode>(Callee))
1656      Callee = LowerExternalSymbol(Callee,DAG);
1657  }
1658
1659  if (Is64Bit && isVarArg) {
1660    // From AMD64 ABI document:
1661    // For calls that may call functions that use varargs or stdargs
1662    // (prototype-less calls or calls to functions containing ellipsis (...) in
1663    // the declaration) %al is used as hidden argument to specify the number
1664    // of SSE registers used. The contents of %al do not need to match exactly
1665    // the number of registers, but must be an ubound on the number of SSE
1666    // registers used and is in the range 0 - 8 inclusive.
1667
1668    // FIXME: Verify this on Win64
1669    // Count the number of XMM registers allocated.
1670    static const unsigned XMMArgRegs[] = {
1671      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1672      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1673    };
1674    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1675
1676    Chain = DAG.getCopyToReg(Chain, X86::AL,
1677                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1678    InFlag = Chain.getValue(1);
1679  }
1680
1681
1682  // For tail calls lower the arguments to the 'real' stack slot.
1683  if (IsTailCall) {
1684    SmallVector<SDValue, 8> MemOpChains2;
1685    SDValue FIN;
1686    int FI = 0;
1687    // Do not flag preceeding copytoreg stuff together with the following stuff.
1688    InFlag = SDValue();
1689    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1690      CCValAssign &VA = ArgLocs[i];
1691      if (!VA.isRegLoc()) {
1692        assert(VA.isMemLoc());
1693        SDValue Arg = TheCall->getArg(i);
1694        ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1695        // Create frame index.
1696        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1697        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1698        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1699        FIN = DAG.getFrameIndex(FI, getPointerTy());
1700
1701        if (Flags.isByVal()) {
1702          // Copy relative to framepointer.
1703          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1704          if (StackPtr.getNode() == 0)
1705            StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1706          Source = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, Source);
1707
1708          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1709                                                           Flags, DAG));
1710        } else {
1711          // Store relative to framepointer.
1712          MemOpChains2.push_back(
1713            DAG.getStore(Chain, Arg, FIN,
1714                         PseudoSourceValue::getFixedStack(FI), 0));
1715        }
1716      }
1717    }
1718
1719    if (!MemOpChains2.empty())
1720      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1721                          &MemOpChains2[0], MemOpChains2.size());
1722
1723    // Copy arguments to their registers.
1724    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1725      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1726                               InFlag);
1727      InFlag = Chain.getValue(1);
1728    }
1729    InFlag =SDValue();
1730
1731    // Store the return address to the appropriate stack slot.
1732    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1733                                     FPDiff);
1734  }
1735
1736  // If the callee is a GlobalAddress node (quite common, every direct call is)
1737  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1738  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1739    // We should use extra load for direct calls to dllimported functions in
1740    // non-JIT mode.
1741    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1742                                        getTargetMachine(), true))
1743      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy(),
1744                                          G->getOffset());
1745  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1746    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1747  } else if (IsTailCall) {
1748    unsigned Opc = Is64Bit ? X86::R9 : X86::EAX;
1749
1750    Chain = DAG.getCopyToReg(Chain,
1751                             DAG.getRegister(Opc, getPointerTy()),
1752                             Callee,InFlag);
1753    Callee = DAG.getRegister(Opc, getPointerTy());
1754    // Add register as live out.
1755    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1756  }
1757
1758  // Returns a chain & a flag for retval copy to use.
1759  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1760  SmallVector<SDValue, 8> Ops;
1761
1762  if (IsTailCall) {
1763    Ops.push_back(Chain);
1764    Ops.push_back(DAG.getIntPtrConstant(NumBytes, true));
1765    Ops.push_back(DAG.getIntPtrConstant(0, true));
1766    if (InFlag.getNode())
1767      Ops.push_back(InFlag);
1768    Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1769    InFlag = Chain.getValue(1);
1770
1771    // Returns a chain & a flag for retval copy to use.
1772    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1773    Ops.clear();
1774  }
1775
1776  Ops.push_back(Chain);
1777  Ops.push_back(Callee);
1778
1779  if (IsTailCall)
1780    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1781
1782  // Add argument registers to the end of the list so that they are known live
1783  // into the call.
1784  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1785    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1786                                  RegsToPass[i].second.getValueType()));
1787
1788  // Add an implicit use GOT pointer in EBX.
1789  if (!IsTailCall && !Is64Bit &&
1790      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1791      Subtarget->isPICStyleGOT())
1792    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1793
1794  // Add an implicit use of AL for x86 vararg functions.
1795  if (Is64Bit && isVarArg)
1796    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1797
1798  if (InFlag.getNode())
1799    Ops.push_back(InFlag);
1800
1801  if (IsTailCall) {
1802    assert(InFlag.getNode() &&
1803           "Flag must be set. Depend on flag being set in LowerRET");
1804    Chain = DAG.getNode(X86ISD::TAILCALL,
1805                        TheCall->getVTList(), &Ops[0], Ops.size());
1806
1807    return SDValue(Chain.getNode(), Op.getResNo());
1808  }
1809
1810  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1811  InFlag = Chain.getValue(1);
1812
1813  // Create the CALLSEQ_END node.
1814  unsigned NumBytesForCalleeToPush;
1815  if (IsCalleePop(isVarArg, CC))
1816    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1817  else if (!Is64Bit && CC != CallingConv::Fast && IsStructRet)
1818    // If this is is a call to a struct-return function, the callee
1819    // pops the hidden struct pointer, so we have to push it back.
1820    // This is common for Darwin/X86, Linux & Mingw32 targets.
1821    NumBytesForCalleeToPush = 4;
1822  else
1823    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1824
1825  // Returns a flag for retval copy to use.
1826  Chain = DAG.getCALLSEQ_END(Chain,
1827                             DAG.getIntPtrConstant(NumBytes, true),
1828                             DAG.getIntPtrConstant(NumBytesForCalleeToPush,
1829                                                   true),
1830                             InFlag);
1831  InFlag = Chain.getValue(1);
1832
1833  // Handle result values, copying them out of physregs into vregs that we
1834  // return.
1835  return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
1836                 Op.getResNo());
1837}
1838
1839
1840//===----------------------------------------------------------------------===//
1841//                Fast Calling Convention (tail call) implementation
1842//===----------------------------------------------------------------------===//
1843
1844//  Like std call, callee cleans arguments, convention except that ECX is
1845//  reserved for storing the tail called function address. Only 2 registers are
1846//  free for argument passing (inreg). Tail call optimization is performed
1847//  provided:
1848//                * tailcallopt is enabled
1849//                * caller/callee are fastcc
1850//  On X86_64 architecture with GOT-style position independent code only local
1851//  (within module) calls are supported at the moment.
1852//  To keep the stack aligned according to platform abi the function
1853//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1854//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1855//  If a tail called function callee has more arguments than the caller the
1856//  caller needs to make sure that there is room to move the RETADDR to. This is
1857//  achieved by reserving an area the size of the argument delta right after the
1858//  original REtADDR, but before the saved framepointer or the spilled registers
1859//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1860//  stack layout:
1861//    arg1
1862//    arg2
1863//    RETADDR
1864//    [ new RETADDR
1865//      move area ]
1866//    (possible EBP)
1867//    ESI
1868//    EDI
1869//    local1 ..
1870
1871/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1872/// for a 16 byte align requirement.
1873unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1874                                                        SelectionDAG& DAG) {
1875  MachineFunction &MF = DAG.getMachineFunction();
1876  const TargetMachine &TM = MF.getTarget();
1877  const TargetFrameInfo &TFI = *TM.getFrameInfo();
1878  unsigned StackAlignment = TFI.getStackAlignment();
1879  uint64_t AlignMask = StackAlignment - 1;
1880  int64_t Offset = StackSize;
1881  uint64_t SlotSize = TD->getPointerSize();
1882  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1883    // Number smaller than 12 so just add the difference.
1884    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1885  } else {
1886    // Mask out lower bits, add stackalignment once plus the 12 bytes.
1887    Offset = ((~AlignMask) & Offset) + StackAlignment +
1888      (StackAlignment-SlotSize);
1889  }
1890  return Offset;
1891}
1892
1893/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1894/// following the call is a return. A function is eligible if caller/callee
1895/// calling conventions match, currently only fastcc supports tail calls, and
1896/// the function CALL is immediatly followed by a RET.
1897bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
1898                                                      SDValue Ret,
1899                                                      SelectionDAG& DAG) const {
1900  if (!PerformTailCallOpt)
1901    return false;
1902
1903  if (CheckTailCallReturnConstraints(TheCall, Ret)) {
1904    MachineFunction &MF = DAG.getMachineFunction();
1905    unsigned CallerCC = MF.getFunction()->getCallingConv();
1906    unsigned CalleeCC= TheCall->getCallingConv();
1907    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1908      SDValue Callee = TheCall->getCallee();
1909      // On x86/32Bit PIC/GOT  tail calls are supported.
1910      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1911          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1912        return true;
1913
1914      // Can only do local tail calls (in same module, hidden or protected) on
1915      // x86_64 PIC/GOT at the moment.
1916      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1917        return G->getGlobal()->hasHiddenVisibility()
1918            || G->getGlobal()->hasProtectedVisibility();
1919    }
1920  }
1921
1922  return false;
1923}
1924
1925FastISel *
1926X86TargetLowering::createFastISel(MachineFunction &mf,
1927                                  MachineModuleInfo *mmo,
1928                                  DwarfWriter *dw,
1929                                  DenseMap<const Value *, unsigned> &vm,
1930                                  DenseMap<const BasicBlock *,
1931                                           MachineBasicBlock *> &bm,
1932                                  DenseMap<const AllocaInst *, int> &am
1933#ifndef NDEBUG
1934                                  , SmallSet<Instruction*, 8> &cil
1935#endif
1936                                  ) {
1937  return X86::createFastISel(mf, mmo, dw, vm, bm, am
1938#ifndef NDEBUG
1939                             , cil
1940#endif
1941                             );
1942}
1943
1944
1945//===----------------------------------------------------------------------===//
1946//                           Other Lowering Hooks
1947//===----------------------------------------------------------------------===//
1948
1949
1950SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1951  MachineFunction &MF = DAG.getMachineFunction();
1952  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1953  int ReturnAddrIndex = FuncInfo->getRAIndex();
1954
1955  if (ReturnAddrIndex == 0) {
1956    // Set up a frame object for the return address.
1957    uint64_t SlotSize = TD->getPointerSize();
1958    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
1959    FuncInfo->setRAIndex(ReturnAddrIndex);
1960  }
1961
1962  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1963}
1964
1965
1966/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
1967/// specific condition code, returning the condition code and the LHS/RHS of the
1968/// comparison to make.
1969static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1970                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
1971  if (!isFP) {
1972    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1973      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1974        // X > -1   -> X == 0, jump !sign.
1975        RHS = DAG.getConstant(0, RHS.getValueType());
1976        return X86::COND_NS;
1977      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1978        // X < 0   -> X == 0, jump on sign.
1979        return X86::COND_S;
1980      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
1981        // X < 1   -> X <= 0
1982        RHS = DAG.getConstant(0, RHS.getValueType());
1983        return X86::COND_LE;
1984      }
1985    }
1986
1987    switch (SetCCOpcode) {
1988    default: assert(0 && "Invalid integer condition!");
1989    case ISD::SETEQ:  return X86::COND_E;
1990    case ISD::SETGT:  return X86::COND_G;
1991    case ISD::SETGE:  return X86::COND_GE;
1992    case ISD::SETLT:  return X86::COND_L;
1993    case ISD::SETLE:  return X86::COND_LE;
1994    case ISD::SETNE:  return X86::COND_NE;
1995    case ISD::SETULT: return X86::COND_B;
1996    case ISD::SETUGT: return X86::COND_A;
1997    case ISD::SETULE: return X86::COND_BE;
1998    case ISD::SETUGE: return X86::COND_AE;
1999    }
2000  }
2001
2002  // First determine if it is required or is profitable to flip the operands.
2003
2004  // If LHS is a foldable load, but RHS is not, flip the condition.
2005  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2006      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2007    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2008    std::swap(LHS, RHS);
2009  }
2010
2011  switch (SetCCOpcode) {
2012  default: break;
2013  case ISD::SETOLT:
2014  case ISD::SETOLE:
2015  case ISD::SETUGT:
2016  case ISD::SETUGE:
2017    std::swap(LHS, RHS);
2018    break;
2019  }
2020
2021  // On a floating point condition, the flags are set as follows:
2022  // ZF  PF  CF   op
2023  //  0 | 0 | 0 | X > Y
2024  //  0 | 0 | 1 | X < Y
2025  //  1 | 0 | 0 | X == Y
2026  //  1 | 1 | 1 | unordered
2027  switch (SetCCOpcode) {
2028  default: assert(0 && "Condcode should be pre-legalized away");
2029  case ISD::SETUEQ:
2030  case ISD::SETEQ:   return X86::COND_E;
2031  case ISD::SETOLT:              // flipped
2032  case ISD::SETOGT:
2033  case ISD::SETGT:   return X86::COND_A;
2034  case ISD::SETOLE:              // flipped
2035  case ISD::SETOGE:
2036  case ISD::SETGE:   return X86::COND_AE;
2037  case ISD::SETUGT:              // flipped
2038  case ISD::SETULT:
2039  case ISD::SETLT:   return X86::COND_B;
2040  case ISD::SETUGE:              // flipped
2041  case ISD::SETULE:
2042  case ISD::SETLE:   return X86::COND_BE;
2043  case ISD::SETONE:
2044  case ISD::SETNE:   return X86::COND_NE;
2045  case ISD::SETUO:   return X86::COND_P;
2046  case ISD::SETO:    return X86::COND_NP;
2047  }
2048}
2049
2050/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2051/// code. Current x86 isa includes the following FP cmov instructions:
2052/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2053static bool hasFPCMov(unsigned X86CC) {
2054  switch (X86CC) {
2055  default:
2056    return false;
2057  case X86::COND_B:
2058  case X86::COND_BE:
2059  case X86::COND_E:
2060  case X86::COND_P:
2061  case X86::COND_A:
2062  case X86::COND_AE:
2063  case X86::COND_NE:
2064  case X86::COND_NP:
2065    return true;
2066  }
2067}
2068
2069/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2070/// true if Op is undef or if its value falls within the specified range (L, H].
2071static bool isUndefOrInRange(SDValue Op, unsigned Low, unsigned Hi) {
2072  if (Op.getOpcode() == ISD::UNDEF)
2073    return true;
2074
2075  unsigned Val = cast<ConstantSDNode>(Op)->getZExtValue();
2076  return (Val >= Low && Val < Hi);
2077}
2078
2079/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2080/// true if Op is undef or if its value equal to the specified value.
2081static bool isUndefOrEqual(SDValue Op, unsigned Val) {
2082  if (Op.getOpcode() == ISD::UNDEF)
2083    return true;
2084  return cast<ConstantSDNode>(Op)->getZExtValue() == Val;
2085}
2086
2087/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2088/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2089bool X86::isPSHUFDMask(SDNode *N) {
2090  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2091
2092  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
2093    return false;
2094
2095  // Check if the value doesn't reference the second vector.
2096  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2097    SDValue Arg = N->getOperand(i);
2098    if (Arg.getOpcode() == ISD::UNDEF) continue;
2099    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2100    if (cast<ConstantSDNode>(Arg)->getZExtValue() >= e)
2101      return false;
2102  }
2103
2104  return true;
2105}
2106
2107/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2108/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2109bool X86::isPSHUFHWMask(SDNode *N) {
2110  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2111
2112  if (N->getNumOperands() != 8)
2113    return false;
2114
2115  // Lower quadword copied in order.
2116  for (unsigned i = 0; i != 4; ++i) {
2117    SDValue Arg = N->getOperand(i);
2118    if (Arg.getOpcode() == ISD::UNDEF) continue;
2119    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2120    if (cast<ConstantSDNode>(Arg)->getZExtValue() != i)
2121      return false;
2122  }
2123
2124  // Upper quadword shuffled.
2125  for (unsigned i = 4; i != 8; ++i) {
2126    SDValue Arg = N->getOperand(i);
2127    if (Arg.getOpcode() == ISD::UNDEF) continue;
2128    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2129    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2130    if (Val < 4 || Val > 7)
2131      return false;
2132  }
2133
2134  return true;
2135}
2136
2137/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2138/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2139bool X86::isPSHUFLWMask(SDNode *N) {
2140  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2141
2142  if (N->getNumOperands() != 8)
2143    return false;
2144
2145  // Upper quadword copied in order.
2146  for (unsigned i = 4; i != 8; ++i)
2147    if (!isUndefOrEqual(N->getOperand(i), i))
2148      return false;
2149
2150  // Lower quadword shuffled.
2151  for (unsigned i = 0; i != 4; ++i)
2152    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2153      return false;
2154
2155  return true;
2156}
2157
2158/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2159/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2160static bool isSHUFPMask(SDOperandPtr Elems, unsigned NumElems) {
2161  if (NumElems != 2 && NumElems != 4) return false;
2162
2163  unsigned Half = NumElems / 2;
2164  for (unsigned i = 0; i < Half; ++i)
2165    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2166      return false;
2167  for (unsigned i = Half; i < NumElems; ++i)
2168    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2169      return false;
2170
2171  return true;
2172}
2173
2174bool X86::isSHUFPMask(SDNode *N) {
2175  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2176  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2177}
2178
2179/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2180/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2181/// half elements to come from vector 1 (which would equal the dest.) and
2182/// the upper half to come from vector 2.
2183static bool isCommutedSHUFP(SDOperandPtr Ops, unsigned NumOps) {
2184  if (NumOps != 2 && NumOps != 4) return false;
2185
2186  unsigned Half = NumOps / 2;
2187  for (unsigned i = 0; i < Half; ++i)
2188    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2189      return false;
2190  for (unsigned i = Half; i < NumOps; ++i)
2191    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2192      return false;
2193  return true;
2194}
2195
2196static bool isCommutedSHUFP(SDNode *N) {
2197  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2198  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2199}
2200
2201/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2202/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2203bool X86::isMOVHLPSMask(SDNode *N) {
2204  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2205
2206  if (N->getNumOperands() != 4)
2207    return false;
2208
2209  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2210  return isUndefOrEqual(N->getOperand(0), 6) &&
2211         isUndefOrEqual(N->getOperand(1), 7) &&
2212         isUndefOrEqual(N->getOperand(2), 2) &&
2213         isUndefOrEqual(N->getOperand(3), 3);
2214}
2215
2216/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2217/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2218/// <2, 3, 2, 3>
2219bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2220  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2221
2222  if (N->getNumOperands() != 4)
2223    return false;
2224
2225  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2226  return isUndefOrEqual(N->getOperand(0), 2) &&
2227         isUndefOrEqual(N->getOperand(1), 3) &&
2228         isUndefOrEqual(N->getOperand(2), 2) &&
2229         isUndefOrEqual(N->getOperand(3), 3);
2230}
2231
2232/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2233/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2234bool X86::isMOVLPMask(SDNode *N) {
2235  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2236
2237  unsigned NumElems = N->getNumOperands();
2238  if (NumElems != 2 && NumElems != 4)
2239    return false;
2240
2241  for (unsigned i = 0; i < NumElems/2; ++i)
2242    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2243      return false;
2244
2245  for (unsigned i = NumElems/2; i < NumElems; ++i)
2246    if (!isUndefOrEqual(N->getOperand(i), i))
2247      return false;
2248
2249  return true;
2250}
2251
2252/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2253/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2254/// and MOVLHPS.
2255bool X86::isMOVHPMask(SDNode *N) {
2256  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2257
2258  unsigned NumElems = N->getNumOperands();
2259  if (NumElems != 2 && NumElems != 4)
2260    return false;
2261
2262  for (unsigned i = 0; i < NumElems/2; ++i)
2263    if (!isUndefOrEqual(N->getOperand(i), i))
2264      return false;
2265
2266  for (unsigned i = 0; i < NumElems/2; ++i) {
2267    SDValue Arg = N->getOperand(i + NumElems/2);
2268    if (!isUndefOrEqual(Arg, i + NumElems))
2269      return false;
2270  }
2271
2272  return true;
2273}
2274
2275/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2276/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2277bool static isUNPCKLMask(SDOperandPtr Elts, unsigned NumElts,
2278                         bool V2IsSplat = false) {
2279  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2280    return false;
2281
2282  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2283    SDValue BitI  = Elts[i];
2284    SDValue BitI1 = Elts[i+1];
2285    if (!isUndefOrEqual(BitI, j))
2286      return false;
2287    if (V2IsSplat) {
2288      if (isUndefOrEqual(BitI1, NumElts))
2289        return false;
2290    } else {
2291      if (!isUndefOrEqual(BitI1, j + NumElts))
2292        return false;
2293    }
2294  }
2295
2296  return true;
2297}
2298
2299bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2300  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2301  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2302}
2303
2304/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2305/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2306bool static isUNPCKHMask(SDOperandPtr Elts, unsigned NumElts,
2307                         bool V2IsSplat = false) {
2308  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2309    return false;
2310
2311  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2312    SDValue BitI  = Elts[i];
2313    SDValue BitI1 = Elts[i+1];
2314    if (!isUndefOrEqual(BitI, j + NumElts/2))
2315      return false;
2316    if (V2IsSplat) {
2317      if (isUndefOrEqual(BitI1, NumElts))
2318        return false;
2319    } else {
2320      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2321        return false;
2322    }
2323  }
2324
2325  return true;
2326}
2327
2328bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2329  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2330  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2331}
2332
2333/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2334/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2335/// <0, 0, 1, 1>
2336bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2337  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2338
2339  unsigned NumElems = N->getNumOperands();
2340  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2341    return false;
2342
2343  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2344    SDValue BitI  = N->getOperand(i);
2345    SDValue BitI1 = N->getOperand(i+1);
2346
2347    if (!isUndefOrEqual(BitI, j))
2348      return false;
2349    if (!isUndefOrEqual(BitI1, j))
2350      return false;
2351  }
2352
2353  return true;
2354}
2355
2356/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2357/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2358/// <2, 2, 3, 3>
2359bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2360  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2361
2362  unsigned NumElems = N->getNumOperands();
2363  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2364    return false;
2365
2366  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2367    SDValue BitI  = N->getOperand(i);
2368    SDValue BitI1 = N->getOperand(i + 1);
2369
2370    if (!isUndefOrEqual(BitI, j))
2371      return false;
2372    if (!isUndefOrEqual(BitI1, j))
2373      return false;
2374  }
2375
2376  return true;
2377}
2378
2379/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2380/// specifies a shuffle of elements that is suitable for input to MOVSS,
2381/// MOVSD, and MOVD, i.e. setting the lowest element.
2382static bool isMOVLMask(SDOperandPtr Elts, unsigned NumElts) {
2383  if (NumElts != 2 && NumElts != 4)
2384    return false;
2385
2386  if (!isUndefOrEqual(Elts[0], NumElts))
2387    return false;
2388
2389  for (unsigned i = 1; i < NumElts; ++i) {
2390    if (!isUndefOrEqual(Elts[i], i))
2391      return false;
2392  }
2393
2394  return true;
2395}
2396
2397bool X86::isMOVLMask(SDNode *N) {
2398  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2399  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2400}
2401
2402/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2403/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2404/// element of vector 2 and the other elements to come from vector 1 in order.
2405static bool isCommutedMOVL(SDOperandPtr Ops, unsigned NumOps,
2406                           bool V2IsSplat = false,
2407                           bool V2IsUndef = false) {
2408  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2409    return false;
2410
2411  if (!isUndefOrEqual(Ops[0], 0))
2412    return false;
2413
2414  for (unsigned i = 1; i < NumOps; ++i) {
2415    SDValue Arg = Ops[i];
2416    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2417          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2418          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2419      return false;
2420  }
2421
2422  return true;
2423}
2424
2425static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2426                           bool V2IsUndef = false) {
2427  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2428  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2429                        V2IsSplat, V2IsUndef);
2430}
2431
2432/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2433/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2434bool X86::isMOVSHDUPMask(SDNode *N) {
2435  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2436
2437  if (N->getNumOperands() != 4)
2438    return false;
2439
2440  // Expect 1, 1, 3, 3
2441  for (unsigned i = 0; i < 2; ++i) {
2442    SDValue Arg = N->getOperand(i);
2443    if (Arg.getOpcode() == ISD::UNDEF) continue;
2444    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2445    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2446    if (Val != 1) return false;
2447  }
2448
2449  bool HasHi = false;
2450  for (unsigned i = 2; i < 4; ++i) {
2451    SDValue Arg = N->getOperand(i);
2452    if (Arg.getOpcode() == ISD::UNDEF) continue;
2453    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2454    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2455    if (Val != 3) return false;
2456    HasHi = true;
2457  }
2458
2459  // Don't use movshdup if it can be done with a shufps.
2460  return HasHi;
2461}
2462
2463/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2464/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2465bool X86::isMOVSLDUPMask(SDNode *N) {
2466  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2467
2468  if (N->getNumOperands() != 4)
2469    return false;
2470
2471  // Expect 0, 0, 2, 2
2472  for (unsigned i = 0; i < 2; ++i) {
2473    SDValue Arg = N->getOperand(i);
2474    if (Arg.getOpcode() == ISD::UNDEF) continue;
2475    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2476    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2477    if (Val != 0) return false;
2478  }
2479
2480  bool HasHi = false;
2481  for (unsigned i = 2; i < 4; ++i) {
2482    SDValue Arg = N->getOperand(i);
2483    if (Arg.getOpcode() == ISD::UNDEF) continue;
2484    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2485    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2486    if (Val != 2) return false;
2487    HasHi = true;
2488  }
2489
2490  // Don't use movshdup if it can be done with a shufps.
2491  return HasHi;
2492}
2493
2494/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2495/// specifies a identity operation on the LHS or RHS.
2496static bool isIdentityMask(SDNode *N, bool RHS = false) {
2497  unsigned NumElems = N->getNumOperands();
2498  for (unsigned i = 0; i < NumElems; ++i)
2499    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2500      return false;
2501  return true;
2502}
2503
2504/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2505/// a splat of a single element.
2506static bool isSplatMask(SDNode *N) {
2507  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2508
2509  // This is a splat operation if each element of the permute is the same, and
2510  // if the value doesn't reference the second vector.
2511  unsigned NumElems = N->getNumOperands();
2512  SDValue ElementBase;
2513  unsigned i = 0;
2514  for (; i != NumElems; ++i) {
2515    SDValue Elt = N->getOperand(i);
2516    if (isa<ConstantSDNode>(Elt)) {
2517      ElementBase = Elt;
2518      break;
2519    }
2520  }
2521
2522  if (!ElementBase.getNode())
2523    return false;
2524
2525  for (; i != NumElems; ++i) {
2526    SDValue Arg = N->getOperand(i);
2527    if (Arg.getOpcode() == ISD::UNDEF) continue;
2528    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2529    if (Arg != ElementBase) return false;
2530  }
2531
2532  // Make sure it is a splat of the first vector operand.
2533  return cast<ConstantSDNode>(ElementBase)->getZExtValue() < NumElems;
2534}
2535
2536/// getSplatMaskEltNo - Given a splat mask, return the index to the element
2537/// we want to splat.
2538static SDValue getSplatMaskEltNo(SDNode *N) {
2539  assert(isSplatMask(N) && "Not a splat mask");
2540  unsigned NumElems = N->getNumOperands();
2541  SDValue ElementBase;
2542  unsigned i = 0;
2543  for (; i != NumElems; ++i) {
2544    SDValue Elt = N->getOperand(i);
2545    if (isa<ConstantSDNode>(Elt))
2546      return Elt;
2547  }
2548  assert(0 && " No splat value found!");
2549  return SDValue();
2550}
2551
2552
2553/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2554/// a splat of a single element and it's a 2 or 4 element mask.
2555bool X86::isSplatMask(SDNode *N) {
2556  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2557
2558  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2559  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2560    return false;
2561  return ::isSplatMask(N);
2562}
2563
2564/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2565/// specifies a splat of zero element.
2566bool X86::isSplatLoMask(SDNode *N) {
2567  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2568
2569  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2570    if (!isUndefOrEqual(N->getOperand(i), 0))
2571      return false;
2572  return true;
2573}
2574
2575/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2576/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2577bool X86::isMOVDDUPMask(SDNode *N) {
2578  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2579
2580  unsigned e = N->getNumOperands() / 2;
2581  for (unsigned i = 0; i < e; ++i)
2582    if (!isUndefOrEqual(N->getOperand(i), i))
2583      return false;
2584  for (unsigned i = 0; i < e; ++i)
2585    if (!isUndefOrEqual(N->getOperand(e+i), i))
2586      return false;
2587  return true;
2588}
2589
2590/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2591/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2592/// instructions.
2593unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2594  unsigned NumOperands = N->getNumOperands();
2595  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2596  unsigned Mask = 0;
2597  for (unsigned i = 0; i < NumOperands; ++i) {
2598    unsigned Val = 0;
2599    SDValue Arg = N->getOperand(NumOperands-i-1);
2600    if (Arg.getOpcode() != ISD::UNDEF)
2601      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2602    if (Val >= NumOperands) Val -= NumOperands;
2603    Mask |= Val;
2604    if (i != NumOperands - 1)
2605      Mask <<= Shift;
2606  }
2607
2608  return Mask;
2609}
2610
2611/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2612/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2613/// instructions.
2614unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2615  unsigned Mask = 0;
2616  // 8 nodes, but we only care about the last 4.
2617  for (unsigned i = 7; i >= 4; --i) {
2618    unsigned Val = 0;
2619    SDValue Arg = N->getOperand(i);
2620    if (Arg.getOpcode() != ISD::UNDEF)
2621      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2622    Mask |= (Val - 4);
2623    if (i != 4)
2624      Mask <<= 2;
2625  }
2626
2627  return Mask;
2628}
2629
2630/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2631/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2632/// instructions.
2633unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2634  unsigned Mask = 0;
2635  // 8 nodes, but we only care about the first 4.
2636  for (int i = 3; i >= 0; --i) {
2637    unsigned Val = 0;
2638    SDValue Arg = N->getOperand(i);
2639    if (Arg.getOpcode() != ISD::UNDEF)
2640      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2641    Mask |= Val;
2642    if (i != 0)
2643      Mask <<= 2;
2644  }
2645
2646  return Mask;
2647}
2648
2649/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2650/// specifies a 8 element shuffle that can be broken into a pair of
2651/// PSHUFHW and PSHUFLW.
2652static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2653  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2654
2655  if (N->getNumOperands() != 8)
2656    return false;
2657
2658  // Lower quadword shuffled.
2659  for (unsigned i = 0; i != 4; ++i) {
2660    SDValue Arg = N->getOperand(i);
2661    if (Arg.getOpcode() == ISD::UNDEF) continue;
2662    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2663    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2664    if (Val >= 4)
2665      return false;
2666  }
2667
2668  // Upper quadword shuffled.
2669  for (unsigned i = 4; i != 8; ++i) {
2670    SDValue Arg = N->getOperand(i);
2671    if (Arg.getOpcode() == ISD::UNDEF) continue;
2672    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2673    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2674    if (Val < 4 || Val > 7)
2675      return false;
2676  }
2677
2678  return true;
2679}
2680
2681/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2682/// values in ther permute mask.
2683static SDValue CommuteVectorShuffle(SDValue Op, SDValue &V1,
2684                                      SDValue &V2, SDValue &Mask,
2685                                      SelectionDAG &DAG) {
2686  MVT VT = Op.getValueType();
2687  MVT MaskVT = Mask.getValueType();
2688  MVT EltVT = MaskVT.getVectorElementType();
2689  unsigned NumElems = Mask.getNumOperands();
2690  SmallVector<SDValue, 8> MaskVec;
2691
2692  for (unsigned i = 0; i != NumElems; ++i) {
2693    SDValue Arg = Mask.getOperand(i);
2694    if (Arg.getOpcode() == ISD::UNDEF) {
2695      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2696      continue;
2697    }
2698    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2699    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2700    if (Val < NumElems)
2701      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2702    else
2703      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2704  }
2705
2706  std::swap(V1, V2);
2707  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2708  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2709}
2710
2711/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2712/// the two vector operands have swapped position.
2713static
2714SDValue CommuteVectorShuffleMask(SDValue Mask, SelectionDAG &DAG) {
2715  MVT MaskVT = Mask.getValueType();
2716  MVT EltVT = MaskVT.getVectorElementType();
2717  unsigned NumElems = Mask.getNumOperands();
2718  SmallVector<SDValue, 8> MaskVec;
2719  for (unsigned i = 0; i != NumElems; ++i) {
2720    SDValue Arg = Mask.getOperand(i);
2721    if (Arg.getOpcode() == ISD::UNDEF) {
2722      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2723      continue;
2724    }
2725    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2726    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2727    if (Val < NumElems)
2728      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2729    else
2730      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2731  }
2732  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2733}
2734
2735
2736/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2737/// match movhlps. The lower half elements should come from upper half of
2738/// V1 (and in order), and the upper half elements should come from the upper
2739/// half of V2 (and in order).
2740static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2741  unsigned NumElems = Mask->getNumOperands();
2742  if (NumElems != 4)
2743    return false;
2744  for (unsigned i = 0, e = 2; i != e; ++i)
2745    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2746      return false;
2747  for (unsigned i = 2; i != 4; ++i)
2748    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2749      return false;
2750  return true;
2751}
2752
2753/// isScalarLoadToVector - Returns true if the node is a scalar load that
2754/// is promoted to a vector. It also returns the LoadSDNode by reference if
2755/// required.
2756static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2757  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2758    return false;
2759  N = N->getOperand(0).getNode();
2760  if (!ISD::isNON_EXTLoad(N))
2761    return false;
2762  if (LD)
2763    *LD = cast<LoadSDNode>(N);
2764  return true;
2765}
2766
2767/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2768/// match movlp{s|d}. The lower half elements should come from lower half of
2769/// V1 (and in order), and the upper half elements should come from the upper
2770/// half of V2 (and in order). And since V1 will become the source of the
2771/// MOVLP, it must be either a vector load or a scalar load to vector.
2772static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2773  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2774    return false;
2775  // Is V2 is a vector load, don't do this transformation. We will try to use
2776  // load folding shufps op.
2777  if (ISD::isNON_EXTLoad(V2))
2778    return false;
2779
2780  unsigned NumElems = Mask->getNumOperands();
2781  if (NumElems != 2 && NumElems != 4)
2782    return false;
2783  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2784    if (!isUndefOrEqual(Mask->getOperand(i), i))
2785      return false;
2786  for (unsigned i = NumElems/2; i != NumElems; ++i)
2787    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2788      return false;
2789  return true;
2790}
2791
2792/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2793/// all the same.
2794static bool isSplatVector(SDNode *N) {
2795  if (N->getOpcode() != ISD::BUILD_VECTOR)
2796    return false;
2797
2798  SDValue SplatValue = N->getOperand(0);
2799  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2800    if (N->getOperand(i) != SplatValue)
2801      return false;
2802  return true;
2803}
2804
2805/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2806/// to an undef.
2807static bool isUndefShuffle(SDNode *N) {
2808  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2809    return false;
2810
2811  SDValue V1 = N->getOperand(0);
2812  SDValue V2 = N->getOperand(1);
2813  SDValue Mask = N->getOperand(2);
2814  unsigned NumElems = Mask.getNumOperands();
2815  for (unsigned i = 0; i != NumElems; ++i) {
2816    SDValue Arg = Mask.getOperand(i);
2817    if (Arg.getOpcode() != ISD::UNDEF) {
2818      unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2819      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2820        return false;
2821      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2822        return false;
2823    }
2824  }
2825  return true;
2826}
2827
2828/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2829/// constant +0.0.
2830static inline bool isZeroNode(SDValue Elt) {
2831  return ((isa<ConstantSDNode>(Elt) &&
2832           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2833          (isa<ConstantFPSDNode>(Elt) &&
2834           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2835}
2836
2837/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2838/// to an zero vector.
2839static bool isZeroShuffle(SDNode *N) {
2840  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2841    return false;
2842
2843  SDValue V1 = N->getOperand(0);
2844  SDValue V2 = N->getOperand(1);
2845  SDValue Mask = N->getOperand(2);
2846  unsigned NumElems = Mask.getNumOperands();
2847  for (unsigned i = 0; i != NumElems; ++i) {
2848    SDValue Arg = Mask.getOperand(i);
2849    if (Arg.getOpcode() == ISD::UNDEF)
2850      continue;
2851
2852    unsigned Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
2853    if (Idx < NumElems) {
2854      unsigned Opc = V1.getNode()->getOpcode();
2855      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
2856        continue;
2857      if (Opc != ISD::BUILD_VECTOR ||
2858          !isZeroNode(V1.getNode()->getOperand(Idx)))
2859        return false;
2860    } else if (Idx >= NumElems) {
2861      unsigned Opc = V2.getNode()->getOpcode();
2862      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2863        continue;
2864      if (Opc != ISD::BUILD_VECTOR ||
2865          !isZeroNode(V2.getNode()->getOperand(Idx - NumElems)))
2866        return false;
2867    }
2868  }
2869  return true;
2870}
2871
2872/// getZeroVector - Returns a vector of specified type with all zero elements.
2873///
2874static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG) {
2875  assert(VT.isVector() && "Expected a vector type");
2876
2877  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2878  // type.  This ensures they get CSE'd.
2879  SDValue Vec;
2880  if (VT.getSizeInBits() == 64) { // MMX
2881    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2882    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2883  } else if (HasSSE2) {  // SSE2
2884    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2885    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2886  } else { // SSE1
2887    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2888    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4f32, Cst, Cst, Cst, Cst);
2889  }
2890  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2891}
2892
2893/// getOnesVector - Returns a vector of specified type with all bits set.
2894///
2895static SDValue getOnesVector(MVT VT, SelectionDAG &DAG) {
2896  assert(VT.isVector() && "Expected a vector type");
2897
2898  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2899  // type.  This ensures they get CSE'd.
2900  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2901  SDValue Vec;
2902  if (VT.getSizeInBits() == 64)  // MMX
2903    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2904  else                                              // SSE
2905    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2906  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2907}
2908
2909
2910/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2911/// that point to V2 points to its first element.
2912static SDValue NormalizeMask(SDValue Mask, SelectionDAG &DAG) {
2913  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2914
2915  bool Changed = false;
2916  SmallVector<SDValue, 8> MaskVec;
2917  unsigned NumElems = Mask.getNumOperands();
2918  for (unsigned i = 0; i != NumElems; ++i) {
2919    SDValue Arg = Mask.getOperand(i);
2920    if (Arg.getOpcode() != ISD::UNDEF) {
2921      unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2922      if (Val > NumElems) {
2923        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2924        Changed = true;
2925      }
2926    }
2927    MaskVec.push_back(Arg);
2928  }
2929
2930  if (Changed)
2931    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2932                       &MaskVec[0], MaskVec.size());
2933  return Mask;
2934}
2935
2936/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2937/// operation of specified width.
2938static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2939  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2940  MVT BaseVT = MaskVT.getVectorElementType();
2941
2942  SmallVector<SDValue, 8> MaskVec;
2943  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2944  for (unsigned i = 1; i != NumElems; ++i)
2945    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2946  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2947}
2948
2949/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2950/// of specified width.
2951static SDValue getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2952  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2953  MVT BaseVT = MaskVT.getVectorElementType();
2954  SmallVector<SDValue, 8> MaskVec;
2955  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2956    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2957    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2958  }
2959  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2960}
2961
2962/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2963/// of specified width.
2964static SDValue getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2965  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2966  MVT BaseVT = MaskVT.getVectorElementType();
2967  unsigned Half = NumElems/2;
2968  SmallVector<SDValue, 8> MaskVec;
2969  for (unsigned i = 0; i != Half; ++i) {
2970    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2971    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2972  }
2973  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2974}
2975
2976/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps
2977/// element #0 of a vector with the specified index, leaving the rest of the
2978/// elements in place.
2979static SDValue getSwapEltZeroMask(unsigned NumElems, unsigned DestElt,
2980                                   SelectionDAG &DAG) {
2981  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2982  MVT BaseVT = MaskVT.getVectorElementType();
2983  SmallVector<SDValue, 8> MaskVec;
2984  // Element #0 of the result gets the elt we are replacing.
2985  MaskVec.push_back(DAG.getConstant(DestElt, BaseVT));
2986  for (unsigned i = 1; i != NumElems; ++i)
2987    MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT));
2988  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2989}
2990
2991/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2992static SDValue PromoteSplat(SDValue Op, SelectionDAG &DAG, bool HasSSE2) {
2993  MVT PVT = HasSSE2 ? MVT::v4i32 : MVT::v4f32;
2994  MVT VT = Op.getValueType();
2995  if (PVT == VT)
2996    return Op;
2997  SDValue V1 = Op.getOperand(0);
2998  SDValue Mask = Op.getOperand(2);
2999  unsigned MaskNumElems = Mask.getNumOperands();
3000  unsigned NumElems = MaskNumElems;
3001  // Special handling of v4f32 -> v4i32.
3002  if (VT != MVT::v4f32) {
3003    // Find which element we want to splat.
3004    SDNode* EltNoNode = getSplatMaskEltNo(Mask.getNode()).getNode();
3005    unsigned EltNo = cast<ConstantSDNode>(EltNoNode)->getZExtValue();
3006    // unpack elements to the correct location
3007    while (NumElems > 4) {
3008      if (EltNo < NumElems/2) {
3009        Mask = getUnpacklMask(MaskNumElems, DAG);
3010      } else {
3011        Mask = getUnpackhMask(MaskNumElems, DAG);
3012        EltNo -= NumElems/2;
3013      }
3014      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
3015      NumElems >>= 1;
3016    }
3017    SDValue Cst = DAG.getConstant(EltNo, MVT::i32);
3018    Mask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
3019  }
3020
3021  V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
3022  SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1,
3023                                  DAG.getNode(ISD::UNDEF, PVT), Mask);
3024  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
3025}
3026
3027/// isVectorLoad - Returns true if the node is a vector load, a scalar
3028/// load that's promoted to vector, or a load bitcasted.
3029static bool isVectorLoad(SDValue Op) {
3030  assert(Op.getValueType().isVector() && "Expected a vector type");
3031  if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR ||
3032      Op.getOpcode() == ISD::BIT_CONVERT) {
3033    return isa<LoadSDNode>(Op.getOperand(0));
3034  }
3035  return isa<LoadSDNode>(Op);
3036}
3037
3038
3039/// CanonicalizeMovddup - Cannonicalize movddup shuffle to v2f64.
3040///
3041static SDValue CanonicalizeMovddup(SDValue Op, SDValue V1, SDValue Mask,
3042                                   SelectionDAG &DAG, bool HasSSE3) {
3043  // If we have sse3 and shuffle has more than one use or input is a load, then
3044  // use movddup. Otherwise, use movlhps.
3045  bool UseMovddup = HasSSE3 && (!Op.hasOneUse() || isVectorLoad(V1));
3046  MVT PVT = UseMovddup ? MVT::v2f64 : MVT::v4f32;
3047  MVT VT = Op.getValueType();
3048  if (VT == PVT)
3049    return Op;
3050  unsigned NumElems = PVT.getVectorNumElements();
3051  if (NumElems == 2) {
3052    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3053    Mask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
3054  } else {
3055    assert(NumElems == 4);
3056    SDValue Cst0 = DAG.getTargetConstant(0, MVT::i32);
3057    SDValue Cst1 = DAG.getTargetConstant(1, MVT::i32);
3058    Mask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst0, Cst1, Cst0, Cst1);
3059  }
3060
3061  V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
3062  SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1,
3063                                DAG.getNode(ISD::UNDEF, PVT), Mask);
3064  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
3065}
3066
3067/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3068/// vector of zero or undef vector.  This produces a shuffle where the low
3069/// element of V2 is swizzled into the zero/undef vector, landing at element
3070/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3071static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3072                                             bool isZero, bool HasSSE2,
3073                                             SelectionDAG &DAG) {
3074  MVT VT = V2.getValueType();
3075  SDValue V1 = isZero
3076    ? getZeroVector(VT, HasSSE2, DAG) : DAG.getNode(ISD::UNDEF, VT);
3077  unsigned NumElems = V2.getValueType().getVectorNumElements();
3078  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3079  MVT EVT = MaskVT.getVectorElementType();
3080  SmallVector<SDValue, 16> MaskVec;
3081  for (unsigned i = 0; i != NumElems; ++i)
3082    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
3083      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
3084    else
3085      MaskVec.push_back(DAG.getConstant(i, EVT));
3086  SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3087                               &MaskVec[0], MaskVec.size());
3088  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3089}
3090
3091/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3092/// a shuffle that is zero.
3093static
3094unsigned getNumOfConsecutiveZeros(SDValue Op, SDValue Mask,
3095                                  unsigned NumElems, bool Low,
3096                                  SelectionDAG &DAG) {
3097  unsigned NumZeros = 0;
3098  for (unsigned i = 0; i < NumElems; ++i) {
3099    unsigned Index = Low ? i : NumElems-i-1;
3100    SDValue Idx = Mask.getOperand(Index);
3101    if (Idx.getOpcode() == ISD::UNDEF) {
3102      ++NumZeros;
3103      continue;
3104    }
3105    SDValue Elt = DAG.getShuffleScalarElt(Op.getNode(), Index);
3106    if (Elt.getNode() && isZeroNode(Elt))
3107      ++NumZeros;
3108    else
3109      break;
3110  }
3111  return NumZeros;
3112}
3113
3114/// isVectorShift - Returns true if the shuffle can be implemented as a
3115/// logical left or right shift of a vector.
3116static bool isVectorShift(SDValue Op, SDValue Mask, SelectionDAG &DAG,
3117                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3118  unsigned NumElems = Mask.getNumOperands();
3119
3120  isLeft = true;
3121  unsigned NumZeros= getNumOfConsecutiveZeros(Op, Mask, NumElems, true, DAG);
3122  if (!NumZeros) {
3123    isLeft = false;
3124    NumZeros = getNumOfConsecutiveZeros(Op, Mask, NumElems, false, DAG);
3125    if (!NumZeros)
3126      return false;
3127  }
3128
3129  bool SeenV1 = false;
3130  bool SeenV2 = false;
3131  for (unsigned i = NumZeros; i < NumElems; ++i) {
3132    unsigned Val = isLeft ? (i - NumZeros) : i;
3133    SDValue Idx = Mask.getOperand(isLeft ? i : (i - NumZeros));
3134    if (Idx.getOpcode() == ISD::UNDEF)
3135      continue;
3136    unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
3137    if (Index < NumElems)
3138      SeenV1 = true;
3139    else {
3140      Index -= NumElems;
3141      SeenV2 = true;
3142    }
3143    if (Index != Val)
3144      return false;
3145  }
3146  if (SeenV1 && SeenV2)
3147    return false;
3148
3149  ShVal = SeenV1 ? Op.getOperand(0) : Op.getOperand(1);
3150  ShAmt = NumZeros;
3151  return true;
3152}
3153
3154
3155/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3156///
3157static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3158                                       unsigned NumNonZero, unsigned NumZero,
3159                                       SelectionDAG &DAG, TargetLowering &TLI) {
3160  if (NumNonZero > 8)
3161    return SDValue();
3162
3163  SDValue V(0, 0);
3164  bool First = true;
3165  for (unsigned i = 0; i < 16; ++i) {
3166    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3167    if (ThisIsNonZero && First) {
3168      if (NumZero)
3169        V = getZeroVector(MVT::v8i16, true, DAG);
3170      else
3171        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3172      First = false;
3173    }
3174
3175    if ((i & 1) != 0) {
3176      SDValue ThisElt(0, 0), LastElt(0, 0);
3177      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3178      if (LastIsNonZero) {
3179        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3180      }
3181      if (ThisIsNonZero) {
3182        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3183        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3184                              ThisElt, DAG.getConstant(8, MVT::i8));
3185        if (LastIsNonZero)
3186          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3187      } else
3188        ThisElt = LastElt;
3189
3190      if (ThisElt.getNode())
3191        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3192                        DAG.getIntPtrConstant(i/2));
3193    }
3194  }
3195
3196  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3197}
3198
3199/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3200///
3201static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3202                                       unsigned NumNonZero, unsigned NumZero,
3203                                       SelectionDAG &DAG, TargetLowering &TLI) {
3204  if (NumNonZero > 4)
3205    return SDValue();
3206
3207  SDValue V(0, 0);
3208  bool First = true;
3209  for (unsigned i = 0; i < 8; ++i) {
3210    bool isNonZero = (NonZeros & (1 << i)) != 0;
3211    if (isNonZero) {
3212      if (First) {
3213        if (NumZero)
3214          V = getZeroVector(MVT::v8i16, true, DAG);
3215        else
3216          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3217        First = false;
3218      }
3219      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3220                      DAG.getIntPtrConstant(i));
3221    }
3222  }
3223
3224  return V;
3225}
3226
3227/// getVShift - Return a vector logical shift node.
3228///
3229static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp,
3230                           unsigned NumBits, SelectionDAG &DAG,
3231                           const TargetLowering &TLI) {
3232  bool isMMX = VT.getSizeInBits() == 64;
3233  MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3234  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3235  SrcOp = DAG.getNode(ISD::BIT_CONVERT, ShVT, SrcOp);
3236  return DAG.getNode(ISD::BIT_CONVERT, VT,
3237                     DAG.getNode(Opc, ShVT, SrcOp,
3238                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3239}
3240
3241SDValue
3242X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3243  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3244  if (ISD::isBuildVectorAllZeros(Op.getNode())
3245      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3246    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3247    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3248    // eliminated on x86-32 hosts.
3249    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3250      return Op;
3251
3252    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3253      return getOnesVector(Op.getValueType(), DAG);
3254    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG);
3255  }
3256
3257  MVT VT = Op.getValueType();
3258  MVT EVT = VT.getVectorElementType();
3259  unsigned EVTBits = EVT.getSizeInBits();
3260
3261  unsigned NumElems = Op.getNumOperands();
3262  unsigned NumZero  = 0;
3263  unsigned NumNonZero = 0;
3264  unsigned NonZeros = 0;
3265  bool IsAllConstants = true;
3266  SmallSet<SDValue, 8> Values;
3267  for (unsigned i = 0; i < NumElems; ++i) {
3268    SDValue Elt = Op.getOperand(i);
3269    if (Elt.getOpcode() == ISD::UNDEF)
3270      continue;
3271    Values.insert(Elt);
3272    if (Elt.getOpcode() != ISD::Constant &&
3273        Elt.getOpcode() != ISD::ConstantFP)
3274      IsAllConstants = false;
3275    if (isZeroNode(Elt))
3276      NumZero++;
3277    else {
3278      NonZeros |= (1 << i);
3279      NumNonZero++;
3280    }
3281  }
3282
3283  if (NumNonZero == 0) {
3284    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3285    return DAG.getNode(ISD::UNDEF, VT);
3286  }
3287
3288  // Special case for single non-zero, non-undef, element.
3289  if (NumNonZero == 1 && NumElems <= 4) {
3290    unsigned Idx = CountTrailingZeros_32(NonZeros);
3291    SDValue Item = Op.getOperand(Idx);
3292
3293    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3294    // the value are obviously zero, truncate the value to i32 and do the
3295    // insertion that way.  Only do this if the value is non-constant or if the
3296    // value is a constant being inserted into element 0.  It is cheaper to do
3297    // a constant pool load than it is to do a movd + shuffle.
3298    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3299        (!IsAllConstants || Idx == 0)) {
3300      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3301        // Handle MMX and SSE both.
3302        MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3303        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3304
3305        // Truncate the value (which may itself be a constant) to i32, and
3306        // convert it to a vector with movd (S2V+shuffle to zero extend).
3307        Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item);
3308        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item);
3309        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3310                                           Subtarget->hasSSE2(), DAG);
3311
3312        // Now we have our 32-bit value zero extended in the low element of
3313        // a vector.  If Idx != 0, swizzle it into place.
3314        if (Idx != 0) {
3315          SDValue Ops[] = {
3316            Item, DAG.getNode(ISD::UNDEF, Item.getValueType()),
3317            getSwapEltZeroMask(VecElts, Idx, DAG)
3318          };
3319          Item = DAG.getNode(ISD::VECTOR_SHUFFLE, VecVT, Ops, 3);
3320        }
3321        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Item);
3322      }
3323    }
3324
3325    // If we have a constant or non-constant insertion into the low element of
3326    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3327    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3328    // depending on what the source datatype is.  Because we can only get here
3329    // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
3330    if (Idx == 0 &&
3331        // Don't do this for i64 values on x86-32.
3332        (EVT != MVT::i64 || Subtarget->is64Bit())) {
3333      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3334      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3335      return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3336                                         Subtarget->hasSSE2(), DAG);
3337    }
3338
3339    // Is it a vector logical left shift?
3340    if (NumElems == 2 && Idx == 1 &&
3341        isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
3342      unsigned NumBits = VT.getSizeInBits();
3343      return getVShift(true, VT,
3344                       DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(1)),
3345                       NumBits/2, DAG, *this);
3346    }
3347
3348    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3349      return SDValue();
3350
3351    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3352    // is a non-constant being inserted into an element other than the low one,
3353    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3354    // movd/movss) to move this into the low element, then shuffle it into
3355    // place.
3356    if (EVTBits == 32) {
3357      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3358
3359      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3360      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3361                                         Subtarget->hasSSE2(), DAG);
3362      MVT MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3363      MVT MaskEVT = MaskVT.getVectorElementType();
3364      SmallVector<SDValue, 8> MaskVec;
3365      for (unsigned i = 0; i < NumElems; i++)
3366        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3367      SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3368                                   &MaskVec[0], MaskVec.size());
3369      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3370                         DAG.getNode(ISD::UNDEF, VT), Mask);
3371    }
3372  }
3373
3374  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3375  if (Values.size() == 1)
3376    return SDValue();
3377
3378  // A vector full of immediates; various special cases are already
3379  // handled, so this is best done with a single constant-pool load.
3380  if (IsAllConstants)
3381    return SDValue();
3382
3383  // Let legalizer expand 2-wide build_vectors.
3384  if (EVTBits == 64) {
3385    if (NumNonZero == 1) {
3386      // One half is zero or undef.
3387      unsigned Idx = CountTrailingZeros_32(NonZeros);
3388      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT,
3389                                 Op.getOperand(Idx));
3390      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3391                                         Subtarget->hasSSE2(), DAG);
3392    }
3393    return SDValue();
3394  }
3395
3396  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3397  if (EVTBits == 8 && NumElems == 16) {
3398    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3399                                        *this);
3400    if (V.getNode()) return V;
3401  }
3402
3403  if (EVTBits == 16 && NumElems == 8) {
3404    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3405                                        *this);
3406    if (V.getNode()) return V;
3407  }
3408
3409  // If element VT is == 32 bits, turn it into a number of shuffles.
3410  SmallVector<SDValue, 8> V;
3411  V.resize(NumElems);
3412  if (NumElems == 4 && NumZero > 0) {
3413    for (unsigned i = 0; i < 4; ++i) {
3414      bool isZero = !(NonZeros & (1 << i));
3415      if (isZero)
3416        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG);
3417      else
3418        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3419    }
3420
3421    for (unsigned i = 0; i < 2; ++i) {
3422      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3423        default: break;
3424        case 0:
3425          V[i] = V[i*2];  // Must be a zero vector.
3426          break;
3427        case 1:
3428          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3429                             getMOVLMask(NumElems, DAG));
3430          break;
3431        case 2:
3432          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3433                             getMOVLMask(NumElems, DAG));
3434          break;
3435        case 3:
3436          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3437                             getUnpacklMask(NumElems, DAG));
3438          break;
3439      }
3440    }
3441
3442    MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3443    MVT EVT = MaskVT.getVectorElementType();
3444    SmallVector<SDValue, 8> MaskVec;
3445    bool Reverse = (NonZeros & 0x3) == 2;
3446    for (unsigned i = 0; i < 2; ++i)
3447      if (Reverse)
3448        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3449      else
3450        MaskVec.push_back(DAG.getConstant(i, EVT));
3451    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3452    for (unsigned i = 0; i < 2; ++i)
3453      if (Reverse)
3454        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3455      else
3456        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3457    SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3458                                     &MaskVec[0], MaskVec.size());
3459    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3460  }
3461
3462  if (Values.size() > 2) {
3463    // Expand into a number of unpckl*.
3464    // e.g. for v4f32
3465    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3466    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3467    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3468    SDValue UnpckMask = getUnpacklMask(NumElems, DAG);
3469    for (unsigned i = 0; i < NumElems; ++i)
3470      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3471    NumElems >>= 1;
3472    while (NumElems != 0) {
3473      for (unsigned i = 0; i < NumElems; ++i)
3474        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3475                           UnpckMask);
3476      NumElems >>= 1;
3477    }
3478    return V[0];
3479  }
3480
3481  return SDValue();
3482}
3483
3484static
3485SDValue LowerVECTOR_SHUFFLEv8i16(SDValue V1, SDValue V2,
3486                                 SDValue PermMask, SelectionDAG &DAG,
3487                                 TargetLowering &TLI) {
3488  SDValue NewV;
3489  MVT MaskVT = MVT::getIntVectorWithNumElements(8);
3490  MVT MaskEVT = MaskVT.getVectorElementType();
3491  MVT PtrVT = TLI.getPointerTy();
3492  SmallVector<SDValue, 8> MaskElts(PermMask.getNode()->op_begin(),
3493                                   PermMask.getNode()->op_end());
3494
3495  // First record which half of which vector the low elements come from.
3496  SmallVector<unsigned, 4> LowQuad(4);
3497  for (unsigned i = 0; i < 4; ++i) {
3498    SDValue Elt = MaskElts[i];
3499    if (Elt.getOpcode() == ISD::UNDEF)
3500      continue;
3501    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3502    int QuadIdx = EltIdx / 4;
3503    ++LowQuad[QuadIdx];
3504  }
3505
3506  int BestLowQuad = -1;
3507  unsigned MaxQuad = 1;
3508  for (unsigned i = 0; i < 4; ++i) {
3509    if (LowQuad[i] > MaxQuad) {
3510      BestLowQuad = i;
3511      MaxQuad = LowQuad[i];
3512    }
3513  }
3514
3515  // Record which half of which vector the high elements come from.
3516  SmallVector<unsigned, 4> HighQuad(4);
3517  for (unsigned i = 4; i < 8; ++i) {
3518    SDValue Elt = MaskElts[i];
3519    if (Elt.getOpcode() == ISD::UNDEF)
3520      continue;
3521    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3522    int QuadIdx = EltIdx / 4;
3523    ++HighQuad[QuadIdx];
3524  }
3525
3526  int BestHighQuad = -1;
3527  MaxQuad = 1;
3528  for (unsigned i = 0; i < 4; ++i) {
3529    if (HighQuad[i] > MaxQuad) {
3530      BestHighQuad = i;
3531      MaxQuad = HighQuad[i];
3532    }
3533  }
3534
3535  // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
3536  if (BestLowQuad != -1 || BestHighQuad != -1) {
3537    // First sort the 4 chunks in order using shufpd.
3538    SmallVector<SDValue, 8> MaskVec;
3539
3540    if (BestLowQuad != -1)
3541      MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
3542    else
3543      MaskVec.push_back(DAG.getConstant(0, MVT::i32));
3544
3545    if (BestHighQuad != -1)
3546      MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
3547    else
3548      MaskVec.push_back(DAG.getConstant(1, MVT::i32));
3549
3550    SDValue Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
3551    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
3552                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
3553                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
3554    NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
3555
3556    // Now sort high and low parts separately.
3557    BitVector InOrder(8);
3558    if (BestLowQuad != -1) {
3559      // Sort lower half in order using PSHUFLW.
3560      MaskVec.clear();
3561      bool AnyOutOrder = false;
3562
3563      for (unsigned i = 0; i != 4; ++i) {
3564        SDValue Elt = MaskElts[i];
3565        if (Elt.getOpcode() == ISD::UNDEF) {
3566          MaskVec.push_back(Elt);
3567          InOrder.set(i);
3568        } else {
3569          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3570          if (EltIdx != i)
3571            AnyOutOrder = true;
3572
3573          MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
3574
3575          // If this element is in the right place after this shuffle, then
3576          // remember it.
3577          if ((int)(EltIdx / 4) == BestLowQuad)
3578            InOrder.set(i);
3579        }
3580      }
3581      if (AnyOutOrder) {
3582        for (unsigned i = 4; i != 8; ++i)
3583          MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3584        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3585        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3586      }
3587    }
3588
3589    if (BestHighQuad != -1) {
3590      // Sort high half in order using PSHUFHW if possible.
3591      MaskVec.clear();
3592
3593      for (unsigned i = 0; i != 4; ++i)
3594        MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3595
3596      bool AnyOutOrder = false;
3597      for (unsigned i = 4; i != 8; ++i) {
3598        SDValue Elt = MaskElts[i];
3599        if (Elt.getOpcode() == ISD::UNDEF) {
3600          MaskVec.push_back(Elt);
3601          InOrder.set(i);
3602        } else {
3603          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3604          if (EltIdx != i)
3605            AnyOutOrder = true;
3606
3607          MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
3608
3609          // If this element is in the right place after this shuffle, then
3610          // remember it.
3611          if ((int)(EltIdx / 4) == BestHighQuad)
3612            InOrder.set(i);
3613        }
3614      }
3615
3616      if (AnyOutOrder) {
3617        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3618        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3619      }
3620    }
3621
3622    // The other elements are put in the right place using pextrw and pinsrw.
3623    for (unsigned i = 0; i != 8; ++i) {
3624      if (InOrder[i])
3625        continue;
3626      SDValue Elt = MaskElts[i];
3627      if (Elt.getOpcode() == ISD::UNDEF)
3628        continue;
3629      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3630      SDValue ExtOp = (EltIdx < 8)
3631        ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3632                      DAG.getConstant(EltIdx, PtrVT))
3633        : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3634                      DAG.getConstant(EltIdx - 8, PtrVT));
3635      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3636                         DAG.getConstant(i, PtrVT));
3637    }
3638
3639    return NewV;
3640  }
3641
3642  // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use as
3643  // few as possible. First, let's find out how many elements are already in the
3644  // right order.
3645  unsigned V1InOrder = 0;
3646  unsigned V1FromV1 = 0;
3647  unsigned V2InOrder = 0;
3648  unsigned V2FromV2 = 0;
3649  SmallVector<SDValue, 8> V1Elts;
3650  SmallVector<SDValue, 8> V2Elts;
3651  for (unsigned i = 0; i < 8; ++i) {
3652    SDValue Elt = MaskElts[i];
3653    if (Elt.getOpcode() == ISD::UNDEF) {
3654      V1Elts.push_back(Elt);
3655      V2Elts.push_back(Elt);
3656      ++V1InOrder;
3657      ++V2InOrder;
3658      continue;
3659    }
3660    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3661    if (EltIdx == i) {
3662      V1Elts.push_back(Elt);
3663      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3664      ++V1InOrder;
3665    } else if (EltIdx == i+8) {
3666      V1Elts.push_back(Elt);
3667      V2Elts.push_back(DAG.getConstant(i, MaskEVT));
3668      ++V2InOrder;
3669    } else if (EltIdx < 8) {
3670      V1Elts.push_back(Elt);
3671      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3672      ++V1FromV1;
3673    } else {
3674      V1Elts.push_back(Elt);
3675      V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
3676      ++V2FromV2;
3677    }
3678  }
3679
3680  if (V2InOrder > V1InOrder) {
3681    PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3682    std::swap(V1, V2);
3683    std::swap(V1Elts, V2Elts);
3684    std::swap(V1FromV1, V2FromV2);
3685  }
3686
3687  if ((V1FromV1 + V1InOrder) != 8) {
3688    // Some elements are from V2.
3689    if (V1FromV1) {
3690      // If there are elements that are from V1 but out of place,
3691      // then first sort them in place
3692      SmallVector<SDValue, 8> MaskVec;
3693      for (unsigned i = 0; i < 8; ++i) {
3694        SDValue Elt = V1Elts[i];
3695        if (Elt.getOpcode() == ISD::UNDEF) {
3696          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3697          continue;
3698        }
3699        unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3700        if (EltIdx >= 8)
3701          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3702        else
3703          MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
3704      }
3705      SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3706      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
3707    }
3708
3709    NewV = V1;
3710    for (unsigned i = 0; i < 8; ++i) {
3711      SDValue Elt = V1Elts[i];
3712      if (Elt.getOpcode() == ISD::UNDEF)
3713        continue;
3714      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3715      if (EltIdx < 8)
3716        continue;
3717      SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3718                                    DAG.getConstant(EltIdx - 8, PtrVT));
3719      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3720                         DAG.getConstant(i, PtrVT));
3721    }
3722    return NewV;
3723  } else {
3724    // All elements are from V1.
3725    NewV = V1;
3726    for (unsigned i = 0; i < 8; ++i) {
3727      SDValue Elt = V1Elts[i];
3728      if (Elt.getOpcode() == ISD::UNDEF)
3729        continue;
3730      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3731      SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3732                                    DAG.getConstant(EltIdx, PtrVT));
3733      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3734                         DAG.getConstant(i, PtrVT));
3735    }
3736    return NewV;
3737  }
3738}
3739
3740/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3741/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3742/// done when every pair / quad of shuffle mask elements point to elements in
3743/// the right sequence. e.g.
3744/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3745static
3746SDValue RewriteAsNarrowerShuffle(SDValue V1, SDValue V2,
3747                                MVT VT,
3748                                SDValue PermMask, SelectionDAG &DAG,
3749                                TargetLowering &TLI) {
3750  unsigned NumElems = PermMask.getNumOperands();
3751  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3752  MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3753  MVT MaskEltVT = MaskVT.getVectorElementType();
3754  MVT NewVT = MaskVT;
3755  switch (VT.getSimpleVT()) {
3756  default: assert(false && "Unexpected!");
3757  case MVT::v4f32: NewVT = MVT::v2f64; break;
3758  case MVT::v4i32: NewVT = MVT::v2i64; break;
3759  case MVT::v8i16: NewVT = MVT::v4i32; break;
3760  case MVT::v16i8: NewVT = MVT::v4i32; break;
3761  }
3762
3763  if (NewWidth == 2) {
3764    if (VT.isInteger())
3765      NewVT = MVT::v2i64;
3766    else
3767      NewVT = MVT::v2f64;
3768  }
3769  unsigned Scale = NumElems / NewWidth;
3770  SmallVector<SDValue, 8> MaskVec;
3771  for (unsigned i = 0; i < NumElems; i += Scale) {
3772    unsigned StartIdx = ~0U;
3773    for (unsigned j = 0; j < Scale; ++j) {
3774      SDValue Elt = PermMask.getOperand(i+j);
3775      if (Elt.getOpcode() == ISD::UNDEF)
3776        continue;
3777      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3778      if (StartIdx == ~0U)
3779        StartIdx = EltIdx - (EltIdx % Scale);
3780      if (EltIdx != StartIdx + j)
3781        return SDValue();
3782    }
3783    if (StartIdx == ~0U)
3784      MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEltVT));
3785    else
3786      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MaskEltVT));
3787  }
3788
3789  V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
3790  V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
3791  return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
3792                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3793                                 &MaskVec[0], MaskVec.size()));
3794}
3795
3796/// getVZextMovL - Return a zero-extending vector move low node.
3797///
3798static SDValue getVZextMovL(MVT VT, MVT OpVT,
3799                              SDValue SrcOp, SelectionDAG &DAG,
3800                              const X86Subtarget *Subtarget) {
3801  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3802    LoadSDNode *LD = NULL;
3803    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
3804      LD = dyn_cast<LoadSDNode>(SrcOp);
3805    if (!LD) {
3806      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3807      // instead.
3808      MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3809      if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
3810          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3811          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3812          SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
3813        // PR2108
3814        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3815        return DAG.getNode(ISD::BIT_CONVERT, VT,
3816                           DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3817                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, OpVT,
3818                                                   SrcOp.getOperand(0)
3819                                                          .getOperand(0))));
3820      }
3821    }
3822  }
3823
3824  return DAG.getNode(ISD::BIT_CONVERT, VT,
3825                     DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3826                                 DAG.getNode(ISD::BIT_CONVERT, OpVT, SrcOp)));
3827}
3828
3829/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3830/// shuffles.
3831static SDValue
3832LowerVECTOR_SHUFFLE_4wide(SDValue V1, SDValue V2,
3833                          SDValue PermMask, MVT VT, SelectionDAG &DAG) {
3834  MVT MaskVT = PermMask.getValueType();
3835  MVT MaskEVT = MaskVT.getVectorElementType();
3836  SmallVector<std::pair<int, int>, 8> Locs;
3837  Locs.resize(4);
3838  SmallVector<SDValue, 8> Mask1(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3839  unsigned NumHi = 0;
3840  unsigned NumLo = 0;
3841  for (unsigned i = 0; i != 4; ++i) {
3842    SDValue Elt = PermMask.getOperand(i);
3843    if (Elt.getOpcode() == ISD::UNDEF) {
3844      Locs[i] = std::make_pair(-1, -1);
3845    } else {
3846      unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue();
3847      assert(Val < 8 && "Invalid VECTOR_SHUFFLE index!");
3848      if (Val < 4) {
3849        Locs[i] = std::make_pair(0, NumLo);
3850        Mask1[NumLo] = Elt;
3851        NumLo++;
3852      } else {
3853        Locs[i] = std::make_pair(1, NumHi);
3854        if (2+NumHi < 4)
3855          Mask1[2+NumHi] = Elt;
3856        NumHi++;
3857      }
3858    }
3859  }
3860
3861  if (NumLo <= 2 && NumHi <= 2) {
3862    // If no more than two elements come from either vector. This can be
3863    // implemented with two shuffles. First shuffle gather the elements.
3864    // The second shuffle, which takes the first shuffle as both of its
3865    // vector operands, put the elements into the right order.
3866    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3867                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3868                                 &Mask1[0], Mask1.size()));
3869
3870    SmallVector<SDValue, 8> Mask2(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3871    for (unsigned i = 0; i != 4; ++i) {
3872      if (Locs[i].first == -1)
3873        continue;
3874      else {
3875        unsigned Idx = (i < 2) ? 0 : 4;
3876        Idx += Locs[i].first * 2 + Locs[i].second;
3877        Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3878      }
3879    }
3880
3881    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3882                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3883                                   &Mask2[0], Mask2.size()));
3884  } else if (NumLo == 3 || NumHi == 3) {
3885    // Otherwise, we must have three elements from one vector, call it X, and
3886    // one element from the other, call it Y.  First, use a shufps to build an
3887    // intermediate vector with the one element from Y and the element from X
3888    // that will be in the same half in the final destination (the indexes don't
3889    // matter). Then, use a shufps to build the final vector, taking the half
3890    // containing the element from Y from the intermediate, and the other half
3891    // from X.
3892    if (NumHi == 3) {
3893      // Normalize it so the 3 elements come from V1.
3894      PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3895      std::swap(V1, V2);
3896    }
3897
3898    // Find the element from V2.
3899    unsigned HiIndex;
3900    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
3901      SDValue Elt = PermMask.getOperand(HiIndex);
3902      if (Elt.getOpcode() == ISD::UNDEF)
3903        continue;
3904      unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue();
3905      if (Val >= 4)
3906        break;
3907    }
3908
3909    Mask1[0] = PermMask.getOperand(HiIndex);
3910    Mask1[1] = DAG.getNode(ISD::UNDEF, MaskEVT);
3911    Mask1[2] = PermMask.getOperand(HiIndex^1);
3912    Mask1[3] = DAG.getNode(ISD::UNDEF, MaskEVT);
3913    V2 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3914                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3915
3916    if (HiIndex >= 2) {
3917      Mask1[0] = PermMask.getOperand(0);
3918      Mask1[1] = PermMask.getOperand(1);
3919      Mask1[2] = DAG.getConstant(HiIndex & 1 ? 6 : 4, MaskEVT);
3920      Mask1[3] = DAG.getConstant(HiIndex & 1 ? 4 : 6, MaskEVT);
3921      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3922                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3923    } else {
3924      Mask1[0] = DAG.getConstant(HiIndex & 1 ? 2 : 0, MaskEVT);
3925      Mask1[1] = DAG.getConstant(HiIndex & 1 ? 0 : 2, MaskEVT);
3926      Mask1[2] = PermMask.getOperand(2);
3927      Mask1[3] = PermMask.getOperand(3);
3928      if (Mask1[2].getOpcode() != ISD::UNDEF)
3929        Mask1[2] =
3930          DAG.getConstant(cast<ConstantSDNode>(Mask1[2])->getZExtValue()+4,
3931                          MaskEVT);
3932      if (Mask1[3].getOpcode() != ISD::UNDEF)
3933        Mask1[3] =
3934          DAG.getConstant(cast<ConstantSDNode>(Mask1[3])->getZExtValue()+4,
3935                          MaskEVT);
3936      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V2, V1,
3937                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3938    }
3939  }
3940
3941  // Break it into (shuffle shuffle_hi, shuffle_lo).
3942  Locs.clear();
3943  SmallVector<SDValue,8> LoMask(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3944  SmallVector<SDValue,8> HiMask(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3945  SmallVector<SDValue,8> *MaskPtr = &LoMask;
3946  unsigned MaskIdx = 0;
3947  unsigned LoIdx = 0;
3948  unsigned HiIdx = 2;
3949  for (unsigned i = 0; i != 4; ++i) {
3950    if (i == 2) {
3951      MaskPtr = &HiMask;
3952      MaskIdx = 1;
3953      LoIdx = 0;
3954      HiIdx = 2;
3955    }
3956    SDValue Elt = PermMask.getOperand(i);
3957    if (Elt.getOpcode() == ISD::UNDEF) {
3958      Locs[i] = std::make_pair(-1, -1);
3959    } else if (cast<ConstantSDNode>(Elt)->getZExtValue() < 4) {
3960      Locs[i] = std::make_pair(MaskIdx, LoIdx);
3961      (*MaskPtr)[LoIdx] = Elt;
3962      LoIdx++;
3963    } else {
3964      Locs[i] = std::make_pair(MaskIdx, HiIdx);
3965      (*MaskPtr)[HiIdx] = Elt;
3966      HiIdx++;
3967    }
3968  }
3969
3970  SDValue LoShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3971                                    DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3972                                                &LoMask[0], LoMask.size()));
3973  SDValue HiShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3974                                    DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3975                                                &HiMask[0], HiMask.size()));
3976  SmallVector<SDValue, 8> MaskOps;
3977  for (unsigned i = 0; i != 4; ++i) {
3978    if (Locs[i].first == -1) {
3979      MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3980    } else {
3981      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
3982      MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3983    }
3984  }
3985  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3986                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3987                                 &MaskOps[0], MaskOps.size()));
3988}
3989
3990SDValue
3991X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3992  SDValue V1 = Op.getOperand(0);
3993  SDValue V2 = Op.getOperand(1);
3994  SDValue PermMask = Op.getOperand(2);
3995  MVT VT = Op.getValueType();
3996  unsigned NumElems = PermMask.getNumOperands();
3997  bool isMMX = VT.getSizeInBits() == 64;
3998  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3999  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4000  bool V1IsSplat = false;
4001  bool V2IsSplat = false;
4002
4003  if (isUndefShuffle(Op.getNode()))
4004    return DAG.getNode(ISD::UNDEF, VT);
4005
4006  if (isZeroShuffle(Op.getNode()))
4007    return getZeroVector(VT, Subtarget->hasSSE2(), DAG);
4008
4009  if (isIdentityMask(PermMask.getNode()))
4010    return V1;
4011  else if (isIdentityMask(PermMask.getNode(), true))
4012    return V2;
4013
4014  // Canonicalize movddup shuffles.
4015  if (V2IsUndef && Subtarget->hasSSE2() &&
4016      VT.getSizeInBits() == 128 &&
4017      X86::isMOVDDUPMask(PermMask.getNode()))
4018    return CanonicalizeMovddup(Op, V1, PermMask, DAG, Subtarget->hasSSE3());
4019
4020  if (isSplatMask(PermMask.getNode())) {
4021    if (isMMX || NumElems < 4) return Op;
4022    // Promote it to a v4{if}32 splat.
4023    return PromoteSplat(Op, DAG, Subtarget->hasSSE2());
4024  }
4025
4026  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4027  // do it!
4028  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4029    SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
4030    if (NewOp.getNode())
4031      return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
4032  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4033    // FIXME: Figure out a cleaner way to do this.
4034    // Try to make use of movq to zero out the top part.
4035    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4036      SDValue NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
4037                                                 DAG, *this);
4038      if (NewOp.getNode()) {
4039        SDValue NewV1 = NewOp.getOperand(0);
4040        SDValue NewV2 = NewOp.getOperand(1);
4041        SDValue NewMask = NewOp.getOperand(2);
4042        if (isCommutedMOVL(NewMask.getNode(), true, false)) {
4043          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
4044          return getVZextMovL(VT, NewOp.getValueType(), NewV2, DAG, Subtarget);
4045        }
4046      }
4047    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4048      SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
4049                                                DAG, *this);
4050      if (NewOp.getNode() && X86::isMOVLMask(NewOp.getOperand(2).getNode()))
4051        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4052                             DAG, Subtarget);
4053    }
4054  }
4055
4056  // Check if this can be converted into a logical shift.
4057  bool isLeft = false;
4058  unsigned ShAmt = 0;
4059  SDValue ShVal;
4060  bool isShift = isVectorShift(Op, PermMask, DAG, isLeft, ShVal, ShAmt);
4061  if (isShift && ShVal.hasOneUse()) {
4062    // If the shifted value has multiple uses, it may be cheaper to use
4063    // v_set0 + movlhps or movhlps, etc.
4064    MVT EVT = VT.getVectorElementType();
4065    ShAmt *= EVT.getSizeInBits();
4066    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
4067  }
4068
4069  if (X86::isMOVLMask(PermMask.getNode())) {
4070    if (V1IsUndef)
4071      return V2;
4072    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4073      return getVZextMovL(VT, VT, V2, DAG, Subtarget);
4074    if (!isMMX)
4075      return Op;
4076  }
4077
4078  if (!isMMX && (X86::isMOVSHDUPMask(PermMask.getNode()) ||
4079                 X86::isMOVSLDUPMask(PermMask.getNode()) ||
4080                 X86::isMOVHLPSMask(PermMask.getNode()) ||
4081                 X86::isMOVHPMask(PermMask.getNode()) ||
4082                 X86::isMOVLPMask(PermMask.getNode())))
4083    return Op;
4084
4085  if (ShouldXformToMOVHLPS(PermMask.getNode()) ||
4086      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), PermMask.getNode()))
4087    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4088
4089  if (isShift) {
4090    // No better options. Use a vshl / vsrl.
4091    MVT EVT = VT.getVectorElementType();
4092    ShAmt *= EVT.getSizeInBits();
4093    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
4094  }
4095
4096  bool Commuted = false;
4097  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4098  // 1,1,1,1 -> v8i16 though.
4099  V1IsSplat = isSplatVector(V1.getNode());
4100  V2IsSplat = isSplatVector(V2.getNode());
4101
4102  // Canonicalize the splat or undef, if present, to be on the RHS.
4103  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4104    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4105    std::swap(V1IsSplat, V2IsSplat);
4106    std::swap(V1IsUndef, V2IsUndef);
4107    Commuted = true;
4108  }
4109
4110  // FIXME: Figure out a cleaner way to do this.
4111  if (isCommutedMOVL(PermMask.getNode(), V2IsSplat, V2IsUndef)) {
4112    if (V2IsUndef) return V1;
4113    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4114    if (V2IsSplat) {
4115      // V2 is a splat, so the mask may be malformed. That is, it may point
4116      // to any V2 element. The instruction selectior won't like this. Get
4117      // a corrected mask and commute to form a proper MOVS{S|D}.
4118      SDValue NewMask = getMOVLMask(NumElems, DAG);
4119      if (NewMask.getNode() != PermMask.getNode())
4120        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
4121    }
4122    return Op;
4123  }
4124
4125  if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) ||
4126      X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) ||
4127      X86::isUNPCKLMask(PermMask.getNode()) ||
4128      X86::isUNPCKHMask(PermMask.getNode()))
4129    return Op;
4130
4131  if (V2IsSplat) {
4132    // Normalize mask so all entries that point to V2 points to its first
4133    // element then try to match unpck{h|l} again. If match, return a
4134    // new vector_shuffle with the corrected mask.
4135    SDValue NewMask = NormalizeMask(PermMask, DAG);
4136    if (NewMask.getNode() != PermMask.getNode()) {
4137      if (X86::isUNPCKLMask(PermMask.getNode(), true)) {
4138        SDValue NewMask = getUnpacklMask(NumElems, DAG);
4139        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
4140      } else if (X86::isUNPCKHMask(PermMask.getNode(), true)) {
4141        SDValue NewMask = getUnpackhMask(NumElems, DAG);
4142        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
4143      }
4144    }
4145  }
4146
4147  // Normalize the node to match x86 shuffle ops if needed
4148  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.getNode()))
4149      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4150
4151  if (Commuted) {
4152    // Commute is back and try unpck* again.
4153    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4154    if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) ||
4155        X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) ||
4156        X86::isUNPCKLMask(PermMask.getNode()) ||
4157        X86::isUNPCKHMask(PermMask.getNode()))
4158      return Op;
4159  }
4160
4161  // Try PSHUF* first, then SHUFP*.
4162  // MMX doesn't have PSHUFD but it does have PSHUFW. While it's theoretically
4163  // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
4164  if (isMMX && NumElems == 4 && X86::isPSHUFDMask(PermMask.getNode())) {
4165    if (V2.getOpcode() != ISD::UNDEF)
4166      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
4167                         DAG.getNode(ISD::UNDEF, VT), PermMask);
4168    return Op;
4169  }
4170
4171  if (!isMMX) {
4172    if (Subtarget->hasSSE2() &&
4173        (X86::isPSHUFDMask(PermMask.getNode()) ||
4174         X86::isPSHUFHWMask(PermMask.getNode()) ||
4175         X86::isPSHUFLWMask(PermMask.getNode()))) {
4176      MVT RVT = VT;
4177      if (VT == MVT::v4f32) {
4178        RVT = MVT::v4i32;
4179        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT,
4180                         DAG.getNode(ISD::BIT_CONVERT, RVT, V1),
4181                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
4182      } else if (V2.getOpcode() != ISD::UNDEF)
4183        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT, V1,
4184                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
4185      if (RVT != VT)
4186        Op = DAG.getNode(ISD::BIT_CONVERT, VT, Op);
4187      return Op;
4188    }
4189
4190    // Binary or unary shufps.
4191    if (X86::isSHUFPMask(PermMask.getNode()) ||
4192        (V2.getOpcode() == ISD::UNDEF && X86::isPSHUFDMask(PermMask.getNode())))
4193      return Op;
4194  }
4195
4196  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4197  if (VT == MVT::v8i16) {
4198    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
4199    if (NewOp.getNode())
4200      return NewOp;
4201  }
4202
4203  // Handle all 4 wide cases with a number of shuffles except for MMX.
4204  if (NumElems == 4 && !isMMX)
4205    return LowerVECTOR_SHUFFLE_4wide(V1, V2, PermMask, VT, DAG);
4206
4207  return SDValue();
4208}
4209
4210SDValue
4211X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4212                                                SelectionDAG &DAG) {
4213  MVT VT = Op.getValueType();
4214  if (VT.getSizeInBits() == 8) {
4215    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32,
4216                                    Op.getOperand(0), Op.getOperand(1));
4217    SDValue Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
4218                                    DAG.getValueType(VT));
4219    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4220  } else if (VT.getSizeInBits() == 16) {
4221    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4222    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4223    if (Idx == 0)
4224      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
4225                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4226                                     DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32,
4227                                                 Op.getOperand(0)),
4228                                     Op.getOperand(1)));
4229    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32,
4230                                    Op.getOperand(0), Op.getOperand(1));
4231    SDValue Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
4232                                    DAG.getValueType(VT));
4233    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4234  } else if (VT == MVT::f32) {
4235    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4236    // the result back to FR32 register. It's only worth matching if the
4237    // result has a single use which is a store or a bitcast to i32.  And in
4238    // the case of a store, it's not worth it if the index is a constant 0,
4239    // because a MOVSSmr can be used instead, which is smaller and faster.
4240    if (!Op.hasOneUse())
4241      return SDValue();
4242    SDNode *User = *Op.getNode()->use_begin();
4243    if ((User->getOpcode() != ISD::STORE ||
4244         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4245          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4246        (User->getOpcode() != ISD::BIT_CONVERT ||
4247         User->getValueType(0) != MVT::i32))
4248      return SDValue();
4249    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4250                    DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Op.getOperand(0)),
4251                                    Op.getOperand(1));
4252    return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Extract);
4253  } else if (VT == MVT::i32) {
4254    // ExtractPS works with constant index.
4255    if (isa<ConstantSDNode>(Op.getOperand(1)))
4256      return Op;
4257  }
4258  return SDValue();
4259}
4260
4261
4262SDValue
4263X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4264  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4265    return SDValue();
4266
4267  if (Subtarget->hasSSE41()) {
4268    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4269    if (Res.getNode())
4270      return Res;
4271  }
4272
4273  MVT VT = Op.getValueType();
4274  // TODO: handle v16i8.
4275  if (VT.getSizeInBits() == 16) {
4276    SDValue Vec = Op.getOperand(0);
4277    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4278    if (Idx == 0)
4279      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
4280                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4281                                 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
4282                                     Op.getOperand(1)));
4283    // Transform it so it match pextrw which produces a 32-bit result.
4284    MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
4285    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
4286                                    Op.getOperand(0), Op.getOperand(1));
4287    SDValue Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
4288                                    DAG.getValueType(VT));
4289    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4290  } else if (VT.getSizeInBits() == 32) {
4291    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4292    if (Idx == 0)
4293      return Op;
4294    // SHUFPS the element to the lowest double word, then movss.
4295    MVT MaskVT = MVT::getIntVectorWithNumElements(4);
4296    SmallVector<SDValue, 8> IdxVec;
4297    IdxVec.
4298      push_back(DAG.getConstant(Idx, MaskVT.getVectorElementType()));
4299    IdxVec.
4300      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4301    IdxVec.
4302      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4303    IdxVec.
4304      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4305    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4306                                 &IdxVec[0], IdxVec.size());
4307    SDValue Vec = Op.getOperand(0);
4308    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4309                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4310    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4311                       DAG.getIntPtrConstant(0));
4312  } else if (VT.getSizeInBits() == 64) {
4313    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4314    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4315    //        to match extract_elt for f64.
4316    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4317    if (Idx == 0)
4318      return Op;
4319
4320    // UNPCKHPD the element to the lowest double word, then movsd.
4321    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4322    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4323    MVT MaskVT = MVT::getIntVectorWithNumElements(2);
4324    SmallVector<SDValue, 8> IdxVec;
4325    IdxVec.push_back(DAG.getConstant(1, MaskVT.getVectorElementType()));
4326    IdxVec.
4327      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4328    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4329                                 &IdxVec[0], IdxVec.size());
4330    SDValue Vec = Op.getOperand(0);
4331    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4332                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4333    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4334                       DAG.getIntPtrConstant(0));
4335  }
4336
4337  return SDValue();
4338}
4339
4340SDValue
4341X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4342  MVT VT = Op.getValueType();
4343  MVT EVT = VT.getVectorElementType();
4344
4345  SDValue N0 = Op.getOperand(0);
4346  SDValue N1 = Op.getOperand(1);
4347  SDValue N2 = Op.getOperand(2);
4348
4349  if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4350      isa<ConstantSDNode>(N2)) {
4351    unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4352                                                  : X86ISD::PINSRW;
4353    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4354    // argument.
4355    if (N1.getValueType() != MVT::i32)
4356      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4357    if (N2.getValueType() != MVT::i32)
4358      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4359    return DAG.getNode(Opc, VT, N0, N1, N2);
4360  } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4361    // Bits [7:6] of the constant are the source select.  This will always be
4362    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4363    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4364    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4365    // Bits [5:4] of the constant are the destination select.  This is the
4366    //  value of the incoming immediate.
4367    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4368    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4369    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4370    return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2);
4371  } else if (EVT == MVT::i32) {
4372    // InsertPS works with constant index.
4373    if (isa<ConstantSDNode>(N2))
4374      return Op;
4375  }
4376  return SDValue();
4377}
4378
4379SDValue
4380X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4381  MVT VT = Op.getValueType();
4382  MVT EVT = VT.getVectorElementType();
4383
4384  if (Subtarget->hasSSE41())
4385    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4386
4387  if (EVT == MVT::i8)
4388    return SDValue();
4389
4390  SDValue N0 = Op.getOperand(0);
4391  SDValue N1 = Op.getOperand(1);
4392  SDValue N2 = Op.getOperand(2);
4393
4394  if (EVT.getSizeInBits() == 16) {
4395    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4396    // as its second argument.
4397    if (N1.getValueType() != MVT::i32)
4398      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4399    if (N2.getValueType() != MVT::i32)
4400      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4401    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
4402  }
4403  return SDValue();
4404}
4405
4406SDValue
4407X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4408  if (Op.getValueType() == MVT::v2f32)
4409    return DAG.getNode(ISD::BIT_CONVERT, MVT::v2f32,
4410                       DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i32,
4411                                   DAG.getNode(ISD::BIT_CONVERT, MVT::i32,
4412                                               Op.getOperand(0))));
4413
4414  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
4415  MVT VT = MVT::v2i32;
4416  switch (Op.getValueType().getSimpleVT()) {
4417  default: break;
4418  case MVT::v16i8:
4419  case MVT::v8i16:
4420    VT = MVT::v4i32;
4421    break;
4422  }
4423  return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(),
4424                     DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt));
4425}
4426
4427// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4428// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4429// one of the above mentioned nodes. It has to be wrapped because otherwise
4430// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4431// be used to form addressing mode. These wrapped nodes will be selected
4432// into MOV32ri.
4433SDValue
4434X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4435  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4436  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(),
4437                                               getPointerTy(),
4438                                               CP->getAlignment());
4439  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4440  // With PIC, the address is actually $g + Offset.
4441  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4442      !Subtarget->isPICStyleRIPRel()) {
4443    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4444                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4445                         Result);
4446  }
4447
4448  return Result;
4449}
4450
4451SDValue
4452X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV,
4453                                      int64_t Offset,
4454                                      SelectionDAG &DAG) const {
4455  bool IsPic = getTargetMachine().getRelocationModel() == Reloc::PIC_;
4456  bool ExtraLoadRequired =
4457    Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false);
4458
4459  // Create the TargetGlobalAddress node, folding in the constant
4460  // offset if it is legal.
4461  SDValue Result;
4462  if (!IsPic && !ExtraLoadRequired && isInt32(Offset)) {
4463    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4464    Offset = 0;
4465  } else
4466    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0);
4467  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4468
4469  // With PIC, the address is actually $g + Offset.
4470  if (IsPic && !Subtarget->isPICStyleRIPRel()) {
4471    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4472                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4473                         Result);
4474  }
4475
4476  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4477  // load the value at address GV, not the value of GV itself. This means that
4478  // the GlobalAddress must be in the base or index register of the address, not
4479  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4480  // The same applies for external symbols during PIC codegen
4481  if (ExtraLoadRequired)
4482    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result,
4483                         PseudoSourceValue::getGOT(), 0);
4484
4485  // If there was a non-zero offset that we didn't fold, create an explicit
4486  // addition for it.
4487  if (Offset != 0)
4488    Result = DAG.getNode(ISD::ADD, getPointerTy(), Result,
4489                         DAG.getConstant(Offset, getPointerTy()));
4490
4491  return Result;
4492}
4493
4494SDValue
4495X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4496  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4497  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4498  return LowerGlobalAddress(GV, Offset, DAG);
4499}
4500
4501// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4502static SDValue
4503LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4504                                const MVT PtrVT) {
4505  SDValue InFlag;
4506  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
4507                                     DAG.getNode(X86ISD::GlobalBaseReg,
4508                                                 PtrVT), InFlag);
4509  InFlag = Chain.getValue(1);
4510
4511  // emit leal symbol@TLSGD(,%ebx,1), %eax
4512  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4513  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4514                                             GA->getValueType(0),
4515                                             GA->getOffset());
4516  SDValue Ops[] = { Chain,  TGA, InFlag };
4517  SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
4518  InFlag = Result.getValue(2);
4519  Chain = Result.getValue(1);
4520
4521  // call ___tls_get_addr. This function receives its argument in
4522  // the register EAX.
4523  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
4524  InFlag = Chain.getValue(1);
4525
4526  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4527  SDValue Ops1[] = { Chain,
4528                      DAG.getTargetExternalSymbol("___tls_get_addr",
4529                                                  PtrVT),
4530                      DAG.getRegister(X86::EAX, PtrVT),
4531                      DAG.getRegister(X86::EBX, PtrVT),
4532                      InFlag };
4533  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
4534  InFlag = Chain.getValue(1);
4535
4536  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
4537}
4538
4539// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4540static SDValue
4541LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4542                                const MVT PtrVT) {
4543  SDValue InFlag, Chain;
4544
4545  // emit leaq symbol@TLSGD(%rip), %rdi
4546  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4547  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4548                                             GA->getValueType(0),
4549                                             GA->getOffset());
4550  SDValue Ops[]  = { DAG.getEntryNode(), TGA};
4551  SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 2);
4552  Chain  = Result.getValue(1);
4553  InFlag = Result.getValue(2);
4554
4555  // call __tls_get_addr. This function receives its argument in
4556  // the register RDI.
4557  Chain = DAG.getCopyToReg(Chain, X86::RDI, Result, InFlag);
4558  InFlag = Chain.getValue(1);
4559
4560  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4561  SDValue Ops1[] = { Chain,
4562                      DAG.getTargetExternalSymbol("__tls_get_addr",
4563                                                  PtrVT),
4564                      DAG.getRegister(X86::RDI, PtrVT),
4565                      InFlag };
4566  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 4);
4567  InFlag = Chain.getValue(1);
4568
4569  return DAG.getCopyFromReg(Chain, X86::RAX, PtrVT, InFlag);
4570}
4571
4572// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4573// "local exec" model.
4574static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4575                                     const MVT PtrVT) {
4576  // Get the Thread Pointer
4577  SDValue ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
4578  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4579  // exec)
4580  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4581                                             GA->getValueType(0),
4582                                             GA->getOffset());
4583  SDValue Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
4584
4585  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
4586    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset,
4587                         PseudoSourceValue::getGOT(), 0);
4588
4589  // The address of the thread local variable is the add of the thread
4590  // pointer with the offset of the variable.
4591  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
4592}
4593
4594SDValue
4595X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4596  // TODO: implement the "local dynamic" model
4597  // TODO: implement the "initial exec"model for pic executables
4598  assert(Subtarget->isTargetELF() &&
4599         "TLS not implemented for non-ELF targets");
4600  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4601  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
4602  // otherwise use the "Local Exec"TLS Model
4603  if (Subtarget->is64Bit()) {
4604    return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4605  } else {
4606    if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4607      return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4608    else
4609      return LowerToTLSExecModel(GA, DAG, getPointerTy());
4610  }
4611}
4612
4613SDValue
4614X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4615  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4616  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4617  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4618  // With PIC, the address is actually $g + Offset.
4619  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4620      !Subtarget->isPICStyleRIPRel()) {
4621    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4622                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4623                         Result);
4624  }
4625
4626  return Result;
4627}
4628
4629SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4630  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4631  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4632  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4633  // With PIC, the address is actually $g + Offset.
4634  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4635      !Subtarget->isPICStyleRIPRel()) {
4636    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4637                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4638                         Result);
4639  }
4640
4641  return Result;
4642}
4643
4644/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4645/// take a 2 x i32 value to shift plus a shift amount.
4646SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4647  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4648  MVT VT = Op.getValueType();
4649  unsigned VTBits = VT.getSizeInBits();
4650  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4651  SDValue ShOpLo = Op.getOperand(0);
4652  SDValue ShOpHi = Op.getOperand(1);
4653  SDValue ShAmt  = Op.getOperand(2);
4654  SDValue Tmp1 = isSRA ?
4655    DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) :
4656    DAG.getConstant(0, VT);
4657
4658  SDValue Tmp2, Tmp3;
4659  if (Op.getOpcode() == ISD::SHL_PARTS) {
4660    Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt);
4661    Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt);
4662  } else {
4663    Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt);
4664    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt);
4665  }
4666
4667  SDValue AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
4668                                  DAG.getConstant(VTBits, MVT::i8));
4669  SDValue Cond = DAG.getNode(X86ISD::CMP, VT,
4670                               AndNode, DAG.getConstant(0, MVT::i8));
4671
4672  SDValue Hi, Lo;
4673  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4674  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4675  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4676
4677  if (Op.getOpcode() == ISD::SHL_PARTS) {
4678    Hi = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
4679    Lo = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
4680  } else {
4681    Lo = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
4682    Hi = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
4683  }
4684
4685  SDValue Ops[2] = { Lo, Hi };
4686  return DAG.getMergeValues(Ops, 2);
4687}
4688
4689SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4690  MVT SrcVT = Op.getOperand(0).getValueType();
4691  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4692         "Unknown SINT_TO_FP to lower!");
4693
4694  // These are really Legal; caller falls through into that case.
4695  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4696    return SDValue();
4697  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
4698      Subtarget->is64Bit())
4699    return SDValue();
4700
4701  unsigned Size = SrcVT.getSizeInBits()/8;
4702  MachineFunction &MF = DAG.getMachineFunction();
4703  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4704  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4705  SDValue Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
4706                                 StackSlot,
4707                                 PseudoSourceValue::getFixedStack(SSFI), 0);
4708
4709  // Build the FILD
4710  SDVTList Tys;
4711  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4712  if (useSSE)
4713    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4714  else
4715    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4716  SmallVector<SDValue, 8> Ops;
4717  Ops.push_back(Chain);
4718  Ops.push_back(StackSlot);
4719  Ops.push_back(DAG.getValueType(SrcVT));
4720  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD,
4721                                 Tys, &Ops[0], Ops.size());
4722
4723  if (useSSE) {
4724    Chain = Result.getValue(1);
4725    SDValue InFlag = Result.getValue(2);
4726
4727    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4728    // shouldn't be necessary except that RFP cannot be live across
4729    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4730    MachineFunction &MF = DAG.getMachineFunction();
4731    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4732    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4733    Tys = DAG.getVTList(MVT::Other);
4734    SmallVector<SDValue, 8> Ops;
4735    Ops.push_back(Chain);
4736    Ops.push_back(Result);
4737    Ops.push_back(StackSlot);
4738    Ops.push_back(DAG.getValueType(Op.getValueType()));
4739    Ops.push_back(InFlag);
4740    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4741    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
4742                         PseudoSourceValue::getFixedStack(SSFI), 0);
4743  }
4744
4745  return Result;
4746}
4747
4748// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
4749SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
4750  // This algorithm is not obvious. Here it is in C code, more or less:
4751  /*
4752    double uint64_to_double( uint32_t hi, uint32_t lo ) {
4753      static const __m128i exp = { 0x4330000045300000ULL, 0 };
4754      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4755
4756      // Copy ints to xmm registers.
4757      __m128i xh = _mm_cvtsi32_si128( hi );
4758      __m128i xl = _mm_cvtsi32_si128( lo );
4759
4760      // Combine into low half of a single xmm register.
4761      __m128i x = _mm_unpacklo_epi32( xh, xl );
4762      __m128d d;
4763      double sd;
4764
4765      // Merge in appropriate exponents to give the integer bits the right
4766      // magnitude.
4767      x = _mm_unpacklo_epi32( x, exp );
4768
4769      // Subtract away the biases to deal with the IEEE-754 double precision
4770      // implicit 1.
4771      d = _mm_sub_pd( (__m128d) x, bias );
4772
4773      // All conversions up to here are exact. The correctly rounded result is
4774      // calculated using the current rounding mode using the following
4775      // horizontal add.
4776      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4777      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
4778                                // store doesn't really need to be here (except
4779                                // maybe to zero the other double)
4780      return sd;
4781    }
4782  */
4783
4784  // Build some magic constants.
4785  std::vector<Constant*> CV0;
4786  CV0.push_back(ConstantInt::get(APInt(32, 0x45300000)));
4787  CV0.push_back(ConstantInt::get(APInt(32, 0x43300000)));
4788  CV0.push_back(ConstantInt::get(APInt(32, 0)));
4789  CV0.push_back(ConstantInt::get(APInt(32, 0)));
4790  Constant *C0 = ConstantVector::get(CV0);
4791  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 4);
4792
4793  std::vector<Constant*> CV1;
4794  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4530000000000000ULL))));
4795  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4330000000000000ULL))));
4796  Constant *C1 = ConstantVector::get(CV1);
4797  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 4);
4798
4799  SmallVector<SDValue, 4> MaskVec;
4800  MaskVec.push_back(DAG.getConstant(0, MVT::i32));
4801  MaskVec.push_back(DAG.getConstant(4, MVT::i32));
4802  MaskVec.push_back(DAG.getConstant(1, MVT::i32));
4803  MaskVec.push_back(DAG.getConstant(5, MVT::i32));
4804  SDValue UnpcklMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, &MaskVec[0],
4805                                   MaskVec.size());
4806  SmallVector<SDValue, 4> MaskVec2;
4807  MaskVec2.push_back(DAG.getConstant(1, MVT::i32));
4808  MaskVec2.push_back(DAG.getConstant(0, MVT::i32));
4809  SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec2[0],
4810                                 MaskVec2.size());
4811
4812  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4i32,
4813                            DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
4814                                        Op.getOperand(0),
4815                                        DAG.getIntPtrConstant(1)));
4816  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4i32,
4817                            DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
4818                                        Op.getOperand(0),
4819                                        DAG.getIntPtrConstant(0)));
4820  SDValue Unpck1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32,
4821                                XR1, XR2, UnpcklMask);
4822  SDValue CLod0 = DAG.getLoad(MVT::v4i32, DAG.getEntryNode(), CPIdx0,
4823                              PseudoSourceValue::getConstantPool(), 0,
4824                              false, 16);
4825  SDValue Unpck2 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32,
4826                               Unpck1, CLod0, UnpcklMask);
4827  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, MVT::v2f64, Unpck2);
4828  SDValue CLod1 = DAG.getLoad(MVT::v2f64, CLod0.getValue(1), CPIdx1,
4829                              PseudoSourceValue::getConstantPool(), 0,
4830                              false, 16);
4831  SDValue Sub = DAG.getNode(ISD::FSUB, MVT::v2f64, XR2F, CLod1);
4832
4833  // Add the halves; easiest way is to swap them into another reg first.
4834  SDValue Shuf = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2f64,
4835                             Sub, Sub, ShufMask);
4836  SDValue Add = DAG.getNode(ISD::FADD, MVT::v2f64, Shuf, Sub);
4837  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f64, Add,
4838                     DAG.getIntPtrConstant(0));
4839}
4840
4841// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
4842SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
4843  // FP constant to bias correct the final result.
4844  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
4845                                   MVT::f64);
4846
4847  // Load the 32-bit value into an XMM register.
4848  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4i32,
4849                             DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
4850                                         Op.getOperand(0),
4851                                         DAG.getIntPtrConstant(0)));
4852
4853  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f64,
4854                     DAG.getNode(ISD::BIT_CONVERT, MVT::v2f64, Load),
4855                     DAG.getIntPtrConstant(0));
4856
4857  // Or the load with the bias.
4858  SDValue Or = DAG.getNode(ISD::OR, MVT::v2i64,
4859                           DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64,
4860                                       DAG.getNode(ISD::SCALAR_TO_VECTOR,
4861                                                   MVT::v2f64, Load)),
4862                           DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64,
4863                                       DAG.getNode(ISD::SCALAR_TO_VECTOR,
4864                                                   MVT::v2f64, Bias)));
4865  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f64,
4866                   DAG.getNode(ISD::BIT_CONVERT, MVT::v2f64, Or),
4867                   DAG.getIntPtrConstant(0));
4868
4869  // Subtract the bias.
4870  SDValue Sub = DAG.getNode(ISD::FSUB, MVT::f64, Or, Bias);
4871
4872  // Handle final rounding.
4873  MVT DestVT = Op.getValueType();
4874
4875  if (DestVT.bitsLT(MVT::f64)) {
4876    return DAG.getNode(ISD::FP_ROUND, DestVT, Sub,
4877                       DAG.getIntPtrConstant(0));
4878  } else if (DestVT.bitsGT(MVT::f64)) {
4879    return DAG.getNode(ISD::FP_EXTEND, DestVT, Sub);
4880  }
4881
4882  // Handle final rounding.
4883  return Sub;
4884}
4885
4886SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4887  SDValue N0 = Op.getOperand(0);
4888
4889  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
4890  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
4891  // the optimization here.
4892  if (DAG.SignBitIsZero(N0))
4893    return DAG.getNode(ISD::SINT_TO_FP, Op.getValueType(), N0);
4894
4895  MVT SrcVT = N0.getValueType();
4896  if (SrcVT == MVT::i64) {
4897    // We only handle SSE2 f64 target here; caller can handle the rest.
4898    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
4899      return SDValue();
4900
4901    return LowerUINT_TO_FP_i64(Op, DAG);
4902  } else if (SrcVT == MVT::i32) {
4903    return LowerUINT_TO_FP_i32(Op, DAG);
4904  }
4905
4906  assert(0 && "Unknown UINT_TO_FP to lower!");
4907  return SDValue();
4908}
4909
4910std::pair<SDValue,SDValue> X86TargetLowering::
4911FP_TO_SINTHelper(SDValue Op, SelectionDAG &DAG) {
4912  assert(Op.getValueType().getSimpleVT() <= MVT::i64 &&
4913         Op.getValueType().getSimpleVT() >= MVT::i16 &&
4914         "Unknown FP_TO_SINT to lower!");
4915
4916  // These are really Legal.
4917  if (Op.getValueType() == MVT::i32 &&
4918      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4919    return std::make_pair(SDValue(), SDValue());
4920  if (Subtarget->is64Bit() &&
4921      Op.getValueType() == MVT::i64 &&
4922      Op.getOperand(0).getValueType() != MVT::f80)
4923    return std::make_pair(SDValue(), SDValue());
4924
4925  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4926  // stack slot.
4927  MachineFunction &MF = DAG.getMachineFunction();
4928  unsigned MemSize = Op.getValueType().getSizeInBits()/8;
4929  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4930  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4931  unsigned Opc;
4932  switch (Op.getValueType().getSimpleVT()) {
4933  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4934  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4935  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4936  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4937  }
4938
4939  SDValue Chain = DAG.getEntryNode();
4940  SDValue Value = Op.getOperand(0);
4941  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
4942    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4943    Chain = DAG.getStore(Chain, Value, StackSlot,
4944                         PseudoSourceValue::getFixedStack(SSFI), 0);
4945    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4946    SDValue Ops[] = {
4947      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4948    };
4949    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
4950    Chain = Value.getValue(1);
4951    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4952    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4953  }
4954
4955  // Build the FP_TO_INT*_IN_MEM
4956  SDValue Ops[] = { Chain, Value, StackSlot };
4957  SDValue FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
4958
4959  return std::make_pair(FIST, StackSlot);
4960}
4961
4962SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
4963  std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(Op, DAG);
4964  SDValue FIST = Vals.first, StackSlot = Vals.second;
4965  if (FIST.getNode() == 0) return SDValue();
4966
4967  // Load the result.
4968  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4969}
4970
4971SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
4972  MVT VT = Op.getValueType();
4973  MVT EltVT = VT;
4974  if (VT.isVector())
4975    EltVT = VT.getVectorElementType();
4976  std::vector<Constant*> CV;
4977  if (EltVT == MVT::f64) {
4978    Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
4979    CV.push_back(C);
4980    CV.push_back(C);
4981  } else {
4982    Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
4983    CV.push_back(C);
4984    CV.push_back(C);
4985    CV.push_back(C);
4986    CV.push_back(C);
4987  }
4988  Constant *C = ConstantVector::get(CV);
4989  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4990  SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4991                               PseudoSourceValue::getConstantPool(), 0,
4992                               false, 16);
4993  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4994}
4995
4996SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
4997  MVT VT = Op.getValueType();
4998  MVT EltVT = VT;
4999  unsigned EltNum = 1;
5000  if (VT.isVector()) {
5001    EltVT = VT.getVectorElementType();
5002    EltNum = VT.getVectorNumElements();
5003  }
5004  std::vector<Constant*> CV;
5005  if (EltVT == MVT::f64) {
5006    Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
5007    CV.push_back(C);
5008    CV.push_back(C);
5009  } else {
5010    Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
5011    CV.push_back(C);
5012    CV.push_back(C);
5013    CV.push_back(C);
5014    CV.push_back(C);
5015  }
5016  Constant *C = ConstantVector::get(CV);
5017  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
5018  SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
5019                               PseudoSourceValue::getConstantPool(), 0,
5020                               false, 16);
5021  if (VT.isVector()) {
5022    return DAG.getNode(ISD::BIT_CONVERT, VT,
5023                       DAG.getNode(ISD::XOR, MVT::v2i64,
5024                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
5025                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
5026  } else {
5027    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
5028  }
5029}
5030
5031SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5032  SDValue Op0 = Op.getOperand(0);
5033  SDValue Op1 = Op.getOperand(1);
5034  MVT VT = Op.getValueType();
5035  MVT SrcVT = Op1.getValueType();
5036
5037  // If second operand is smaller, extend it first.
5038  if (SrcVT.bitsLT(VT)) {
5039    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
5040    SrcVT = VT;
5041  }
5042  // And if it is bigger, shrink it first.
5043  if (SrcVT.bitsGT(VT)) {
5044    Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1));
5045    SrcVT = VT;
5046  }
5047
5048  // At this point the operands and the result should have the same
5049  // type, and that won't be f80 since that is not custom lowered.
5050
5051  // First get the sign bit of second operand.
5052  std::vector<Constant*> CV;
5053  if (SrcVT == MVT::f64) {
5054    CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
5055    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
5056  } else {
5057    CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
5058    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5059    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5060    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5061  }
5062  Constant *C = ConstantVector::get(CV);
5063  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
5064  SDValue Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx,
5065                                PseudoSourceValue::getConstantPool(), 0,
5066                                false, 16);
5067  SDValue SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
5068
5069  // Shift sign bit right or left if the two operands have different types.
5070  if (SrcVT.bitsGT(VT)) {
5071    // Op0 is MVT::f32, Op1 is MVT::f64.
5072    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
5073    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
5074                          DAG.getConstant(32, MVT::i32));
5075    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
5076    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
5077                          DAG.getIntPtrConstant(0));
5078  }
5079
5080  // Clear first operand sign bit.
5081  CV.clear();
5082  if (VT == MVT::f64) {
5083    CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
5084    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
5085  } else {
5086    CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
5087    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5088    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5089    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5090  }
5091  C = ConstantVector::get(CV);
5092  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
5093  SDValue Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
5094                                PseudoSourceValue::getConstantPool(), 0,
5095                                false, 16);
5096  SDValue Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
5097
5098  // Or the value with the sign bit.
5099  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
5100}
5101
5102SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5103  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5104  SDValue Op0 = Op.getOperand(0);
5105  SDValue Op1 = Op.getOperand(1);
5106  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5107
5108  // Lower (X & (1 << N)) == 0 to BT.
5109  // Lower ((X >>u N) & 1) != 0 to BT.
5110  // Lower ((X >>s N) & 1) != 0 to BT.
5111  if (Op0.getOpcode() == ISD::AND &&
5112      Op0.hasOneUse() &&
5113      Op1.getOpcode() == ISD::Constant &&
5114      Op0.getOperand(1).getOpcode() == ISD::Constant &&
5115      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5116    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5117    ConstantSDNode *CmpRHS = cast<ConstantSDNode>(Op1);
5118    SDValue AndLHS = Op0.getOperand(0);
5119    if (CmpRHS->getZExtValue() == 0 && AndRHS->getZExtValue() == 1 &&
5120        AndLHS.getOpcode() == ISD::SRL) {
5121      SDValue LHS = AndLHS.getOperand(0);
5122      SDValue RHS = AndLHS.getOperand(1);
5123
5124      // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5125      // instruction.  Since the shift amount is in-range-or-undefined, we know
5126      // that doing a bittest on the i16 value is ok.  We extend to i32 because
5127      // the encoding for the i16 version is larger than the i32 version.
5128      if (LHS.getValueType() == MVT::i8)
5129        LHS = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, LHS);
5130
5131      // If the operand types disagree, extend the shift amount to match.  Since
5132      // BT ignores high bits (like shifts) we can use anyextend.
5133      if (LHS.getValueType() != RHS.getValueType())
5134        RHS = DAG.getNode(ISD::ANY_EXTEND, LHS.getValueType(), RHS);
5135
5136      SDValue BT = DAG.getNode(X86ISD::BT, MVT::i32, LHS, RHS);
5137      unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5138      return DAG.getNode(X86ISD::SETCC, MVT::i8,
5139                         DAG.getConstant(Cond, MVT::i8), BT);
5140    }
5141  }
5142
5143  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5144  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5145
5146  SDValue Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
5147  return DAG.getNode(X86ISD::SETCC, MVT::i8,
5148                     DAG.getConstant(X86CC, MVT::i8), Cond);
5149}
5150
5151SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5152  SDValue Cond;
5153  SDValue Op0 = Op.getOperand(0);
5154  SDValue Op1 = Op.getOperand(1);
5155  SDValue CC = Op.getOperand(2);
5156  MVT VT = Op.getValueType();
5157  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5158  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5159
5160  if (isFP) {
5161    unsigned SSECC = 8;
5162    MVT VT0 = Op0.getValueType();
5163    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5164    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5165    bool Swap = false;
5166
5167    switch (SetCCOpcode) {
5168    default: break;
5169    case ISD::SETOEQ:
5170    case ISD::SETEQ:  SSECC = 0; break;
5171    case ISD::SETOGT:
5172    case ISD::SETGT: Swap = true; // Fallthrough
5173    case ISD::SETLT:
5174    case ISD::SETOLT: SSECC = 1; break;
5175    case ISD::SETOGE:
5176    case ISD::SETGE: Swap = true; // Fallthrough
5177    case ISD::SETLE:
5178    case ISD::SETOLE: SSECC = 2; break;
5179    case ISD::SETUO:  SSECC = 3; break;
5180    case ISD::SETUNE:
5181    case ISD::SETNE:  SSECC = 4; break;
5182    case ISD::SETULE: Swap = true;
5183    case ISD::SETUGE: SSECC = 5; break;
5184    case ISD::SETULT: Swap = true;
5185    case ISD::SETUGT: SSECC = 6; break;
5186    case ISD::SETO:   SSECC = 7; break;
5187    }
5188    if (Swap)
5189      std::swap(Op0, Op1);
5190
5191    // In the two special cases we can't handle, emit two comparisons.
5192    if (SSECC == 8) {
5193      if (SetCCOpcode == ISD::SETUEQ) {
5194        SDValue UNORD, EQ;
5195        UNORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5196        EQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5197        return DAG.getNode(ISD::OR, VT, UNORD, EQ);
5198      }
5199      else if (SetCCOpcode == ISD::SETONE) {
5200        SDValue ORD, NEQ;
5201        ORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5202        NEQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5203        return DAG.getNode(ISD::AND, VT, ORD, NEQ);
5204      }
5205      assert(0 && "Illegal FP comparison");
5206    }
5207    // Handle all other FP comparisons here.
5208    return DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5209  }
5210
5211  // We are handling one of the integer comparisons here.  Since SSE only has
5212  // GT and EQ comparisons for integer, swapping operands and multiple
5213  // operations may be required for some comparisons.
5214  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5215  bool Swap = false, Invert = false, FlipSigns = false;
5216
5217  switch (VT.getSimpleVT()) {
5218  default: break;
5219  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5220  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5221  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5222  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5223  }
5224
5225  switch (SetCCOpcode) {
5226  default: break;
5227  case ISD::SETNE:  Invert = true;
5228  case ISD::SETEQ:  Opc = EQOpc; break;
5229  case ISD::SETLT:  Swap = true;
5230  case ISD::SETGT:  Opc = GTOpc; break;
5231  case ISD::SETGE:  Swap = true;
5232  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
5233  case ISD::SETULT: Swap = true;
5234  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5235  case ISD::SETUGE: Swap = true;
5236  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5237  }
5238  if (Swap)
5239    std::swap(Op0, Op1);
5240
5241  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
5242  // bits of the inputs before performing those operations.
5243  if (FlipSigns) {
5244    MVT EltVT = VT.getVectorElementType();
5245    SDValue SignBit = DAG.getConstant(EltVT.getIntegerVTSignBit(), EltVT);
5246    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5247    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, VT, &SignBits[0],
5248                                    SignBits.size());
5249    Op0 = DAG.getNode(ISD::XOR, VT, Op0, SignVec);
5250    Op1 = DAG.getNode(ISD::XOR, VT, Op1, SignVec);
5251  }
5252
5253  SDValue Result = DAG.getNode(Opc, VT, Op0, Op1);
5254
5255  // If the logical-not of the result is required, perform that now.
5256  if (Invert)
5257    Result = DAG.getNOT(Result, VT);
5258
5259  return Result;
5260}
5261
5262// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5263static bool isX86LogicalCmp(unsigned Opc) {
5264  return Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI;
5265}
5266
5267SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5268  bool addTest = true;
5269  SDValue Cond  = Op.getOperand(0);
5270  SDValue CC;
5271
5272  if (Cond.getOpcode() == ISD::SETCC)
5273    Cond = LowerSETCC(Cond, DAG);
5274
5275  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5276  // setting operand in place of the X86ISD::SETCC.
5277  if (Cond.getOpcode() == X86ISD::SETCC) {
5278    CC = Cond.getOperand(0);
5279
5280    SDValue Cmp = Cond.getOperand(1);
5281    unsigned Opc = Cmp.getOpcode();
5282    MVT VT = Op.getValueType();
5283
5284    bool IllegalFPCMov = false;
5285    if (VT.isFloatingPoint() && !VT.isVector() &&
5286        !isScalarFPTypeInSSEReg(VT))  // FPStack?
5287      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5288
5289    if (isX86LogicalCmp(Opc) && !IllegalFPCMov) {
5290      Cond = Cmp;
5291      addTest = false;
5292    }
5293  }
5294
5295  if (addTest) {
5296    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5297    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
5298  }
5299
5300  const MVT *VTs = DAG.getNodeValueTypes(Op.getValueType(),
5301                                                    MVT::Flag);
5302  SmallVector<SDValue, 4> Ops;
5303  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5304  // condition is true.
5305  Ops.push_back(Op.getOperand(2));
5306  Ops.push_back(Op.getOperand(1));
5307  Ops.push_back(CC);
5308  Ops.push_back(Cond);
5309  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
5310}
5311
5312// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5313// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5314// from the AND / OR.
5315static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5316  Opc = Op.getOpcode();
5317  if (Opc != ISD::OR && Opc != ISD::AND)
5318    return false;
5319  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5320          Op.getOperand(0).hasOneUse() &&
5321          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5322          Op.getOperand(1).hasOneUse());
5323}
5324
5325SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5326  bool addTest = true;
5327  SDValue Chain = Op.getOperand(0);
5328  SDValue Cond  = Op.getOperand(1);
5329  SDValue Dest  = Op.getOperand(2);
5330  SDValue CC;
5331
5332  if (Cond.getOpcode() == ISD::SETCC)
5333    Cond = LowerSETCC(Cond, DAG);
5334#if 0
5335  // FIXME: LowerXALUO doesn't handle these!!
5336  else if (Cond.getOpcode() == X86ISD::ADD  ||
5337           Cond.getOpcode() == X86ISD::SUB  ||
5338           Cond.getOpcode() == X86ISD::SMUL ||
5339           Cond.getOpcode() == X86ISD::UMUL)
5340    Cond = LowerXALUO(Cond, DAG);
5341#endif
5342
5343  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5344  // setting operand in place of the X86ISD::SETCC.
5345  if (Cond.getOpcode() == X86ISD::SETCC) {
5346    CC = Cond.getOperand(0);
5347
5348    SDValue Cmp = Cond.getOperand(1);
5349    unsigned Opc = Cmp.getOpcode();
5350    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5351    if (isX86LogicalCmp(Opc) || Opc == X86ISD::BT) {
5352      Cond = Cmp;
5353      addTest = false;
5354    } else {
5355      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5356      default: break;
5357      case X86::COND_O:
5358      case X86::COND_B:
5359        // These can only come from an arithmetic instruction with overflow,
5360        // e.g. SADDO, UADDO.
5361        Cond = Cond.getNode()->getOperand(1);
5362        addTest = false;
5363        break;
5364      }
5365    }
5366  } else {
5367    unsigned CondOpc;
5368    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5369      SDValue Cmp = Cond.getOperand(0).getOperand(1);
5370      unsigned Opc = Cmp.getOpcode();
5371      if (CondOpc == ISD::OR) {
5372        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5373        // two branches instead of an explicit OR instruction with a
5374        // separate test.
5375        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5376            isX86LogicalCmp(Opc)) {
5377          CC = Cond.getOperand(0).getOperand(0);
5378          Chain = DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
5379                              Chain, Dest, CC, Cmp);
5380          CC = Cond.getOperand(1).getOperand(0);
5381          Cond = Cmp;
5382          addTest = false;
5383        }
5384      } else { // ISD::AND
5385        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5386        // two branches instead of an explicit AND instruction with a
5387        // separate test. However, we only do this if this block doesn't
5388        // have a fall-through edge, because this requires an explicit
5389        // jmp when the condition is false.
5390        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5391            isX86LogicalCmp(Opc) &&
5392            Op.getNode()->hasOneUse()) {
5393          X86::CondCode CCode =
5394            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5395          CCode = X86::GetOppositeBranchCondition(CCode);
5396          CC = DAG.getConstant(CCode, MVT::i8);
5397          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5398          // Look for an unconditional branch following this conditional branch.
5399          // We need this because we need to reverse the successors in order
5400          // to implement FCMP_OEQ.
5401          if (User.getOpcode() == ISD::BR) {
5402            SDValue FalseBB = User.getOperand(1);
5403            SDValue NewBR =
5404              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5405            assert(NewBR == User);
5406            Dest = FalseBB;
5407
5408            Chain = DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
5409                                Chain, Dest, CC, Cmp);
5410            X86::CondCode CCode =
5411              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5412            CCode = X86::GetOppositeBranchCondition(CCode);
5413            CC = DAG.getConstant(CCode, MVT::i8);
5414            Cond = Cmp;
5415            addTest = false;
5416          }
5417        }
5418      }
5419    }
5420  }
5421
5422  if (addTest) {
5423    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5424    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
5425  }
5426  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
5427                     Chain, Dest, CC, Cond);
5428}
5429
5430
5431// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5432// Calls to _alloca is needed to probe the stack when allocating more than 4k
5433// bytes in one go. Touching the stack at 4K increments is necessary to ensure
5434// that the guard pages used by the OS virtual memory manager are allocated in
5435// correct sequence.
5436SDValue
5437X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5438                                           SelectionDAG &DAG) {
5439  assert(Subtarget->isTargetCygMing() &&
5440         "This should be used only on Cygwin/Mingw targets");
5441
5442  // Get the inputs.
5443  SDValue Chain = Op.getOperand(0);
5444  SDValue Size  = Op.getOperand(1);
5445  // FIXME: Ensure alignment here
5446
5447  SDValue Flag;
5448
5449  MVT IntPtr = getPointerTy();
5450  MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5451
5452  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5453
5454  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
5455  Flag = Chain.getValue(1);
5456
5457  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5458  SDValue Ops[] = { Chain,
5459                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
5460                      DAG.getRegister(X86::EAX, IntPtr),
5461                      DAG.getRegister(X86StackPtr, SPTy),
5462                      Flag };
5463  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 5);
5464  Flag = Chain.getValue(1);
5465
5466  Chain = DAG.getCALLSEQ_END(Chain,
5467                             DAG.getIntPtrConstant(0, true),
5468                             DAG.getIntPtrConstant(0, true),
5469                             Flag);
5470
5471  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
5472
5473  SDValue Ops1[2] = { Chain.getValue(0), Chain };
5474  return DAG.getMergeValues(Ops1, 2);
5475}
5476
5477SDValue
5478X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG,
5479                                           SDValue Chain,
5480                                           SDValue Dst, SDValue Src,
5481                                           SDValue Size, unsigned Align,
5482                                           const Value *DstSV,
5483                                           uint64_t DstSVOff) {
5484  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5485
5486  // If not DWORD aligned or size is more than the threshold, call the library.
5487  // The libc version is likely to be faster for these cases. It can use the
5488  // address value and run time information about the CPU.
5489  if ((Align & 3) != 0 ||
5490      !ConstantSize ||
5491      ConstantSize->getZExtValue() >
5492        getSubtarget()->getMaxInlineSizeThreshold()) {
5493    SDValue InFlag(0, 0);
5494
5495    // Check to see if there is a specialized entry-point for memory zeroing.
5496    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5497
5498    if (const char *bzeroEntry =  V &&
5499        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5500      MVT IntPtr = getPointerTy();
5501      const Type *IntPtrTy = TD->getIntPtrType();
5502      TargetLowering::ArgListTy Args;
5503      TargetLowering::ArgListEntry Entry;
5504      Entry.Node = Dst;
5505      Entry.Ty = IntPtrTy;
5506      Args.push_back(Entry);
5507      Entry.Node = Size;
5508      Args.push_back(Entry);
5509      std::pair<SDValue,SDValue> CallResult =
5510        LowerCallTo(Chain, Type::VoidTy, false, false, false, false,
5511                    CallingConv::C, false,
5512                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG);
5513      return CallResult.second;
5514    }
5515
5516    // Otherwise have the target-independent code call memset.
5517    return SDValue();
5518  }
5519
5520  uint64_t SizeVal = ConstantSize->getZExtValue();
5521  SDValue InFlag(0, 0);
5522  MVT AVT;
5523  SDValue Count;
5524  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5525  unsigned BytesLeft = 0;
5526  bool TwoRepStos = false;
5527  if (ValC) {
5528    unsigned ValReg;
5529    uint64_t Val = ValC->getZExtValue() & 255;
5530
5531    // If the value is a constant, then we can potentially use larger sets.
5532    switch (Align & 3) {
5533    case 2:   // WORD aligned
5534      AVT = MVT::i16;
5535      ValReg = X86::AX;
5536      Val = (Val << 8) | Val;
5537      break;
5538    case 0:  // DWORD aligned
5539      AVT = MVT::i32;
5540      ValReg = X86::EAX;
5541      Val = (Val << 8)  | Val;
5542      Val = (Val << 16) | Val;
5543      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
5544        AVT = MVT::i64;
5545        ValReg = X86::RAX;
5546        Val = (Val << 32) | Val;
5547      }
5548      break;
5549    default:  // Byte aligned
5550      AVT = MVT::i8;
5551      ValReg = X86::AL;
5552      Count = DAG.getIntPtrConstant(SizeVal);
5553      break;
5554    }
5555
5556    if (AVT.bitsGT(MVT::i8)) {
5557      unsigned UBytes = AVT.getSizeInBits() / 8;
5558      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5559      BytesLeft = SizeVal % UBytes;
5560    }
5561
5562    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
5563                              InFlag);
5564    InFlag = Chain.getValue(1);
5565  } else {
5566    AVT = MVT::i8;
5567    Count  = DAG.getIntPtrConstant(SizeVal);
5568    Chain  = DAG.getCopyToReg(Chain, X86::AL, Src, InFlag);
5569    InFlag = Chain.getValue(1);
5570  }
5571
5572  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
5573                            Count, InFlag);
5574  InFlag = Chain.getValue(1);
5575  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
5576                            Dst, InFlag);
5577  InFlag = Chain.getValue(1);
5578
5579  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5580  SmallVector<SDValue, 8> Ops;
5581  Ops.push_back(Chain);
5582  Ops.push_back(DAG.getValueType(AVT));
5583  Ops.push_back(InFlag);
5584  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
5585
5586  if (TwoRepStos) {
5587    InFlag = Chain.getValue(1);
5588    Count  = Size;
5589    MVT CVT = Count.getValueType();
5590    SDValue Left = DAG.getNode(ISD::AND, CVT, Count,
5591                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
5592    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
5593                              Left, InFlag);
5594    InFlag = Chain.getValue(1);
5595    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5596    Ops.clear();
5597    Ops.push_back(Chain);
5598    Ops.push_back(DAG.getValueType(MVT::i8));
5599    Ops.push_back(InFlag);
5600    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
5601  } else if (BytesLeft) {
5602    // Handle the last 1 - 7 bytes.
5603    unsigned Offset = SizeVal - BytesLeft;
5604    MVT AddrVT = Dst.getValueType();
5605    MVT SizeVT = Size.getValueType();
5606
5607    Chain = DAG.getMemset(Chain,
5608                          DAG.getNode(ISD::ADD, AddrVT, Dst,
5609                                      DAG.getConstant(Offset, AddrVT)),
5610                          Src,
5611                          DAG.getConstant(BytesLeft, SizeVT),
5612                          Align, DstSV, DstSVOff + Offset);
5613  }
5614
5615  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5616  return Chain;
5617}
5618
5619SDValue
5620X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG,
5621                                      SDValue Chain, SDValue Dst, SDValue Src,
5622                                      SDValue Size, unsigned Align,
5623                                      bool AlwaysInline,
5624                                      const Value *DstSV, uint64_t DstSVOff,
5625                                      const Value *SrcSV, uint64_t SrcSVOff) {
5626  // This requires the copy size to be a constant, preferrably
5627  // within a subtarget-specific limit.
5628  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5629  if (!ConstantSize)
5630    return SDValue();
5631  uint64_t SizeVal = ConstantSize->getZExtValue();
5632  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
5633    return SDValue();
5634
5635  /// If not DWORD aligned, call the library.
5636  if ((Align & 3) != 0)
5637    return SDValue();
5638
5639  // DWORD aligned
5640  MVT AVT = MVT::i32;
5641  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
5642    AVT = MVT::i64;
5643
5644  unsigned UBytes = AVT.getSizeInBits() / 8;
5645  unsigned CountVal = SizeVal / UBytes;
5646  SDValue Count = DAG.getIntPtrConstant(CountVal);
5647  unsigned BytesLeft = SizeVal % UBytes;
5648
5649  SDValue InFlag(0, 0);
5650  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
5651                            Count, InFlag);
5652  InFlag = Chain.getValue(1);
5653  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
5654                            Dst, InFlag);
5655  InFlag = Chain.getValue(1);
5656  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
5657                            Src, InFlag);
5658  InFlag = Chain.getValue(1);
5659
5660  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5661  SmallVector<SDValue, 8> Ops;
5662  Ops.push_back(Chain);
5663  Ops.push_back(DAG.getValueType(AVT));
5664  Ops.push_back(InFlag);
5665  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
5666
5667  SmallVector<SDValue, 4> Results;
5668  Results.push_back(RepMovs);
5669  if (BytesLeft) {
5670    // Handle the last 1 - 7 bytes.
5671    unsigned Offset = SizeVal - BytesLeft;
5672    MVT DstVT = Dst.getValueType();
5673    MVT SrcVT = Src.getValueType();
5674    MVT SizeVT = Size.getValueType();
5675    Results.push_back(DAG.getMemcpy(Chain,
5676                                    DAG.getNode(ISD::ADD, DstVT, Dst,
5677                                                DAG.getConstant(Offset, DstVT)),
5678                                    DAG.getNode(ISD::ADD, SrcVT, Src,
5679                                                DAG.getConstant(Offset, SrcVT)),
5680                                    DAG.getConstant(BytesLeft, SizeVT),
5681                                    Align, AlwaysInline,
5682                                    DstSV, DstSVOff + Offset,
5683                                    SrcSV, SrcSVOff + Offset));
5684  }
5685
5686  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Results[0], Results.size());
5687}
5688
5689SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
5690  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5691
5692  if (!Subtarget->is64Bit()) {
5693    // vastart just stores the address of the VarArgsFrameIndex slot into the
5694    // memory location argument.
5695    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5696    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0);
5697  }
5698
5699  // __va_list_tag:
5700  //   gp_offset         (0 - 6 * 8)
5701  //   fp_offset         (48 - 48 + 8 * 16)
5702  //   overflow_arg_area (point to parameters coming in memory).
5703  //   reg_save_area
5704  SmallVector<SDValue, 8> MemOps;
5705  SDValue FIN = Op.getOperand(1);
5706  // Store gp_offset
5707  SDValue Store = DAG.getStore(Op.getOperand(0),
5708                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
5709                                 FIN, SV, 0);
5710  MemOps.push_back(Store);
5711
5712  // Store fp_offset
5713  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
5714  Store = DAG.getStore(Op.getOperand(0),
5715                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
5716                       FIN, SV, 0);
5717  MemOps.push_back(Store);
5718
5719  // Store ptr to overflow_arg_area
5720  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
5721  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5722  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0);
5723  MemOps.push_back(Store);
5724
5725  // Store ptr to reg_save_area.
5726  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
5727  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
5728  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0);
5729  MemOps.push_back(Store);
5730  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
5731}
5732
5733SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
5734  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5735  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
5736  SDValue Chain = Op.getOperand(0);
5737  SDValue SrcPtr = Op.getOperand(1);
5738  SDValue SrcSV = Op.getOperand(2);
5739
5740  assert(0 && "VAArgInst is not yet implemented for x86-64!");
5741  abort();
5742  return SDValue();
5743}
5744
5745SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
5746  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5747  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
5748  SDValue Chain = Op.getOperand(0);
5749  SDValue DstPtr = Op.getOperand(1);
5750  SDValue SrcPtr = Op.getOperand(2);
5751  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
5752  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5753
5754  return DAG.getMemcpy(Chain, DstPtr, SrcPtr,
5755                       DAG.getIntPtrConstant(24), 8, false,
5756                       DstSV, 0, SrcSV, 0);
5757}
5758
5759SDValue
5760X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
5761  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5762  switch (IntNo) {
5763  default: return SDValue();    // Don't custom lower most intrinsics.
5764  // Comparison intrinsics.
5765  case Intrinsic::x86_sse_comieq_ss:
5766  case Intrinsic::x86_sse_comilt_ss:
5767  case Intrinsic::x86_sse_comile_ss:
5768  case Intrinsic::x86_sse_comigt_ss:
5769  case Intrinsic::x86_sse_comige_ss:
5770  case Intrinsic::x86_sse_comineq_ss:
5771  case Intrinsic::x86_sse_ucomieq_ss:
5772  case Intrinsic::x86_sse_ucomilt_ss:
5773  case Intrinsic::x86_sse_ucomile_ss:
5774  case Intrinsic::x86_sse_ucomigt_ss:
5775  case Intrinsic::x86_sse_ucomige_ss:
5776  case Intrinsic::x86_sse_ucomineq_ss:
5777  case Intrinsic::x86_sse2_comieq_sd:
5778  case Intrinsic::x86_sse2_comilt_sd:
5779  case Intrinsic::x86_sse2_comile_sd:
5780  case Intrinsic::x86_sse2_comigt_sd:
5781  case Intrinsic::x86_sse2_comige_sd:
5782  case Intrinsic::x86_sse2_comineq_sd:
5783  case Intrinsic::x86_sse2_ucomieq_sd:
5784  case Intrinsic::x86_sse2_ucomilt_sd:
5785  case Intrinsic::x86_sse2_ucomile_sd:
5786  case Intrinsic::x86_sse2_ucomigt_sd:
5787  case Intrinsic::x86_sse2_ucomige_sd:
5788  case Intrinsic::x86_sse2_ucomineq_sd: {
5789    unsigned Opc = 0;
5790    ISD::CondCode CC = ISD::SETCC_INVALID;
5791    switch (IntNo) {
5792    default: break;
5793    case Intrinsic::x86_sse_comieq_ss:
5794    case Intrinsic::x86_sse2_comieq_sd:
5795      Opc = X86ISD::COMI;
5796      CC = ISD::SETEQ;
5797      break;
5798    case Intrinsic::x86_sse_comilt_ss:
5799    case Intrinsic::x86_sse2_comilt_sd:
5800      Opc = X86ISD::COMI;
5801      CC = ISD::SETLT;
5802      break;
5803    case Intrinsic::x86_sse_comile_ss:
5804    case Intrinsic::x86_sse2_comile_sd:
5805      Opc = X86ISD::COMI;
5806      CC = ISD::SETLE;
5807      break;
5808    case Intrinsic::x86_sse_comigt_ss:
5809    case Intrinsic::x86_sse2_comigt_sd:
5810      Opc = X86ISD::COMI;
5811      CC = ISD::SETGT;
5812      break;
5813    case Intrinsic::x86_sse_comige_ss:
5814    case Intrinsic::x86_sse2_comige_sd:
5815      Opc = X86ISD::COMI;
5816      CC = ISD::SETGE;
5817      break;
5818    case Intrinsic::x86_sse_comineq_ss:
5819    case Intrinsic::x86_sse2_comineq_sd:
5820      Opc = X86ISD::COMI;
5821      CC = ISD::SETNE;
5822      break;
5823    case Intrinsic::x86_sse_ucomieq_ss:
5824    case Intrinsic::x86_sse2_ucomieq_sd:
5825      Opc = X86ISD::UCOMI;
5826      CC = ISD::SETEQ;
5827      break;
5828    case Intrinsic::x86_sse_ucomilt_ss:
5829    case Intrinsic::x86_sse2_ucomilt_sd:
5830      Opc = X86ISD::UCOMI;
5831      CC = ISD::SETLT;
5832      break;
5833    case Intrinsic::x86_sse_ucomile_ss:
5834    case Intrinsic::x86_sse2_ucomile_sd:
5835      Opc = X86ISD::UCOMI;
5836      CC = ISD::SETLE;
5837      break;
5838    case Intrinsic::x86_sse_ucomigt_ss:
5839    case Intrinsic::x86_sse2_ucomigt_sd:
5840      Opc = X86ISD::UCOMI;
5841      CC = ISD::SETGT;
5842      break;
5843    case Intrinsic::x86_sse_ucomige_ss:
5844    case Intrinsic::x86_sse2_ucomige_sd:
5845      Opc = X86ISD::UCOMI;
5846      CC = ISD::SETGE;
5847      break;
5848    case Intrinsic::x86_sse_ucomineq_ss:
5849    case Intrinsic::x86_sse2_ucomineq_sd:
5850      Opc = X86ISD::UCOMI;
5851      CC = ISD::SETNE;
5852      break;
5853    }
5854
5855    SDValue LHS = Op.getOperand(1);
5856    SDValue RHS = Op.getOperand(2);
5857    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
5858    SDValue Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
5859    SDValue SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
5860                                DAG.getConstant(X86CC, MVT::i8), Cond);
5861    return DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, SetCC);
5862  }
5863
5864  // Fix vector shift instructions where the last operand is a non-immediate
5865  // i32 value.
5866  case Intrinsic::x86_sse2_pslli_w:
5867  case Intrinsic::x86_sse2_pslli_d:
5868  case Intrinsic::x86_sse2_pslli_q:
5869  case Intrinsic::x86_sse2_psrli_w:
5870  case Intrinsic::x86_sse2_psrli_d:
5871  case Intrinsic::x86_sse2_psrli_q:
5872  case Intrinsic::x86_sse2_psrai_w:
5873  case Intrinsic::x86_sse2_psrai_d:
5874  case Intrinsic::x86_mmx_pslli_w:
5875  case Intrinsic::x86_mmx_pslli_d:
5876  case Intrinsic::x86_mmx_pslli_q:
5877  case Intrinsic::x86_mmx_psrli_w:
5878  case Intrinsic::x86_mmx_psrli_d:
5879  case Intrinsic::x86_mmx_psrli_q:
5880  case Intrinsic::x86_mmx_psrai_w:
5881  case Intrinsic::x86_mmx_psrai_d: {
5882    SDValue ShAmt = Op.getOperand(2);
5883    if (isa<ConstantSDNode>(ShAmt))
5884      return SDValue();
5885
5886    unsigned NewIntNo = 0;
5887    MVT ShAmtVT = MVT::v4i32;
5888    switch (IntNo) {
5889    case Intrinsic::x86_sse2_pslli_w:
5890      NewIntNo = Intrinsic::x86_sse2_psll_w;
5891      break;
5892    case Intrinsic::x86_sse2_pslli_d:
5893      NewIntNo = Intrinsic::x86_sse2_psll_d;
5894      break;
5895    case Intrinsic::x86_sse2_pslli_q:
5896      NewIntNo = Intrinsic::x86_sse2_psll_q;
5897      break;
5898    case Intrinsic::x86_sse2_psrli_w:
5899      NewIntNo = Intrinsic::x86_sse2_psrl_w;
5900      break;
5901    case Intrinsic::x86_sse2_psrli_d:
5902      NewIntNo = Intrinsic::x86_sse2_psrl_d;
5903      break;
5904    case Intrinsic::x86_sse2_psrli_q:
5905      NewIntNo = Intrinsic::x86_sse2_psrl_q;
5906      break;
5907    case Intrinsic::x86_sse2_psrai_w:
5908      NewIntNo = Intrinsic::x86_sse2_psra_w;
5909      break;
5910    case Intrinsic::x86_sse2_psrai_d:
5911      NewIntNo = Intrinsic::x86_sse2_psra_d;
5912      break;
5913    default: {
5914      ShAmtVT = MVT::v2i32;
5915      switch (IntNo) {
5916      case Intrinsic::x86_mmx_pslli_w:
5917        NewIntNo = Intrinsic::x86_mmx_psll_w;
5918        break;
5919      case Intrinsic::x86_mmx_pslli_d:
5920        NewIntNo = Intrinsic::x86_mmx_psll_d;
5921        break;
5922      case Intrinsic::x86_mmx_pslli_q:
5923        NewIntNo = Intrinsic::x86_mmx_psll_q;
5924        break;
5925      case Intrinsic::x86_mmx_psrli_w:
5926        NewIntNo = Intrinsic::x86_mmx_psrl_w;
5927        break;
5928      case Intrinsic::x86_mmx_psrli_d:
5929        NewIntNo = Intrinsic::x86_mmx_psrl_d;
5930        break;
5931      case Intrinsic::x86_mmx_psrli_q:
5932        NewIntNo = Intrinsic::x86_mmx_psrl_q;
5933        break;
5934      case Intrinsic::x86_mmx_psrai_w:
5935        NewIntNo = Intrinsic::x86_mmx_psra_w;
5936        break;
5937      case Intrinsic::x86_mmx_psrai_d:
5938        NewIntNo = Intrinsic::x86_mmx_psra_d;
5939        break;
5940      default: abort();  // Can't reach here.
5941      }
5942      break;
5943    }
5944    }
5945    MVT VT = Op.getValueType();
5946    ShAmt = DAG.getNode(ISD::BIT_CONVERT, VT,
5947                        DAG.getNode(ISD::SCALAR_TO_VECTOR, ShAmtVT, ShAmt));
5948    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
5949                       DAG.getConstant(NewIntNo, MVT::i32),
5950                       Op.getOperand(1), ShAmt);
5951  }
5952  }
5953}
5954
5955SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
5956  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5957
5958  if (Depth > 0) {
5959    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5960    SDValue Offset =
5961      DAG.getConstant(TD->getPointerSize(),
5962                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
5963    return DAG.getLoad(getPointerTy(), DAG.getEntryNode(),
5964                       DAG.getNode(ISD::ADD, getPointerTy(), FrameAddr, Offset),
5965                       NULL, 0);
5966  }
5967
5968  // Just load the return address.
5969  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
5970  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
5971}
5972
5973SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
5974  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5975  MFI->setFrameAddressIsTaken(true);
5976  MVT VT = Op.getValueType();
5977  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5978  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
5979  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), FrameReg, VT);
5980  while (Depth--)
5981    FrameAddr = DAG.getLoad(VT, DAG.getEntryNode(), FrameAddr, NULL, 0);
5982  return FrameAddr;
5983}
5984
5985SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
5986                                                     SelectionDAG &DAG) {
5987  return DAG.getIntPtrConstant(2*TD->getPointerSize());
5988}
5989
5990SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
5991{
5992  MachineFunction &MF = DAG.getMachineFunction();
5993  SDValue Chain     = Op.getOperand(0);
5994  SDValue Offset    = Op.getOperand(1);
5995  SDValue Handler   = Op.getOperand(2);
5996
5997  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
5998                                  getPointerTy());
5999  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6000
6001  SDValue StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
6002                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
6003  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
6004  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
6005  Chain = DAG.getCopyToReg(Chain, StoreAddrReg, StoreAddr);
6006  MF.getRegInfo().addLiveOut(StoreAddrReg);
6007
6008  return DAG.getNode(X86ISD::EH_RETURN,
6009                     MVT::Other,
6010                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
6011}
6012
6013SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
6014                                             SelectionDAG &DAG) {
6015  SDValue Root = Op.getOperand(0);
6016  SDValue Trmp = Op.getOperand(1); // trampoline
6017  SDValue FPtr = Op.getOperand(2); // nested function
6018  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
6019
6020  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6021
6022  const X86InstrInfo *TII =
6023    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
6024
6025  if (Subtarget->is64Bit()) {
6026    SDValue OutChains[6];
6027
6028    // Large code-model.
6029
6030    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
6031    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
6032
6033    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
6034    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
6035
6036    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
6037
6038    // Load the pointer to the nested function into R11.
6039    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
6040    SDValue Addr = Trmp;
6041    OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
6042                                TrmpAddr, 0);
6043
6044    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64));
6045    OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2);
6046
6047    // Load the 'nest' parameter value into R10.
6048    // R10 is specified in X86CallingConv.td
6049    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
6050    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64));
6051    OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
6052                                TrmpAddr, 10);
6053
6054    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64));
6055    OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2);
6056
6057    // Jump to the nested function.
6058    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
6059    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64));
6060    OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
6061                                TrmpAddr, 20);
6062
6063    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
6064    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64));
6065    OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr,
6066                                TrmpAddr, 22);
6067
6068    SDValue Ops[] =
6069      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) };
6070    return DAG.getMergeValues(Ops, 2);
6071  } else {
6072    const Function *Func =
6073      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
6074    unsigned CC = Func->getCallingConv();
6075    unsigned NestReg;
6076
6077    switch (CC) {
6078    default:
6079      assert(0 && "Unsupported calling convention");
6080    case CallingConv::C:
6081    case CallingConv::X86_StdCall: {
6082      // Pass 'nest' parameter in ECX.
6083      // Must be kept in sync with X86CallingConv.td
6084      NestReg = X86::ECX;
6085
6086      // Check that ECX wasn't needed by an 'inreg' parameter.
6087      const FunctionType *FTy = Func->getFunctionType();
6088      const AttrListPtr &Attrs = Func->getAttributes();
6089
6090      if (!Attrs.isEmpty() && !Func->isVarArg()) {
6091        unsigned InRegCount = 0;
6092        unsigned Idx = 1;
6093
6094        for (FunctionType::param_iterator I = FTy->param_begin(),
6095             E = FTy->param_end(); I != E; ++I, ++Idx)
6096          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
6097            // FIXME: should only count parameters that are lowered to integers.
6098            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
6099
6100        if (InRegCount > 2) {
6101          cerr << "Nest register in use - reduce number of inreg parameters!\n";
6102          abort();
6103        }
6104      }
6105      break;
6106    }
6107    case CallingConv::X86_FastCall:
6108    case CallingConv::Fast:
6109      // Pass 'nest' parameter in EAX.
6110      // Must be kept in sync with X86CallingConv.td
6111      NestReg = X86::EAX;
6112      break;
6113    }
6114
6115    SDValue OutChains[4];
6116    SDValue Addr, Disp;
6117
6118    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
6119    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
6120
6121    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
6122    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
6123    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6124                                Trmp, TrmpAddr, 0);
6125
6126    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
6127    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1);
6128
6129    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6130    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
6131    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
6132                                TrmpAddr, 5, false, 1);
6133
6134    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
6135    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1);
6136
6137    SDValue Ops[] =
6138      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
6139    return DAG.getMergeValues(Ops, 2);
6140  }
6141}
6142
6143SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6144  /*
6145   The rounding mode is in bits 11:10 of FPSR, and has the following
6146   settings:
6147     00 Round to nearest
6148     01 Round to -inf
6149     10 Round to +inf
6150     11 Round to 0
6151
6152  FLT_ROUNDS, on the other hand, expects the following:
6153    -1 Undefined
6154     0 Round to 0
6155     1 Round to nearest
6156     2 Round to +inf
6157     3 Round to -inf
6158
6159  To perform the conversion, we do:
6160    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6161  */
6162
6163  MachineFunction &MF = DAG.getMachineFunction();
6164  const TargetMachine &TM = MF.getTarget();
6165  const TargetFrameInfo &TFI = *TM.getFrameInfo();
6166  unsigned StackAlignment = TFI.getStackAlignment();
6167  MVT VT = Op.getValueType();
6168
6169  // Save FP Control Word to stack slot
6170  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
6171  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6172
6173  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
6174                              DAG.getEntryNode(), StackSlot);
6175
6176  // Load FP Control Word from stack slot
6177  SDValue CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
6178
6179  // Transform as necessary
6180  SDValue CWD1 =
6181    DAG.getNode(ISD::SRL, MVT::i16,
6182                DAG.getNode(ISD::AND, MVT::i16,
6183                            CWD, DAG.getConstant(0x800, MVT::i16)),
6184                DAG.getConstant(11, MVT::i8));
6185  SDValue CWD2 =
6186    DAG.getNode(ISD::SRL, MVT::i16,
6187                DAG.getNode(ISD::AND, MVT::i16,
6188                            CWD, DAG.getConstant(0x400, MVT::i16)),
6189                DAG.getConstant(9, MVT::i8));
6190
6191  SDValue RetVal =
6192    DAG.getNode(ISD::AND, MVT::i16,
6193                DAG.getNode(ISD::ADD, MVT::i16,
6194                            DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
6195                            DAG.getConstant(1, MVT::i16)),
6196                DAG.getConstant(3, MVT::i16));
6197
6198
6199  return DAG.getNode((VT.getSizeInBits() < 16 ?
6200                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
6201}
6202
6203SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6204  MVT VT = Op.getValueType();
6205  MVT OpVT = VT;
6206  unsigned NumBits = VT.getSizeInBits();
6207
6208  Op = Op.getOperand(0);
6209  if (VT == MVT::i8) {
6210    // Zero extend to i32 since there is not an i8 bsr.
6211    OpVT = MVT::i32;
6212    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
6213  }
6214
6215  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6216  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6217  Op = DAG.getNode(X86ISD::BSR, VTs, Op);
6218
6219  // If src is zero (i.e. bsr sets ZF), returns NumBits.
6220  SmallVector<SDValue, 4> Ops;
6221  Ops.push_back(Op);
6222  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6223  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6224  Ops.push_back(Op.getValue(1));
6225  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
6226
6227  // Finally xor with NumBits-1.
6228  Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6229
6230  if (VT == MVT::i8)
6231    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
6232  return Op;
6233}
6234
6235SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6236  MVT VT = Op.getValueType();
6237  MVT OpVT = VT;
6238  unsigned NumBits = VT.getSizeInBits();
6239
6240  Op = Op.getOperand(0);
6241  if (VT == MVT::i8) {
6242    OpVT = MVT::i32;
6243    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
6244  }
6245
6246  // Issue a bsf (scan bits forward) which also sets EFLAGS.
6247  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6248  Op = DAG.getNode(X86ISD::BSF, VTs, Op);
6249
6250  // If src is zero (i.e. bsf sets ZF), returns NumBits.
6251  SmallVector<SDValue, 4> Ops;
6252  Ops.push_back(Op);
6253  Ops.push_back(DAG.getConstant(NumBits, OpVT));
6254  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6255  Ops.push_back(Op.getValue(1));
6256  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
6257
6258  if (VT == MVT::i8)
6259    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
6260  return Op;
6261}
6262
6263SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6264  MVT VT = Op.getValueType();
6265  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6266
6267  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6268  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6269  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6270  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6271  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6272  //
6273  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6274  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6275  //  return AloBlo + AloBhi + AhiBlo;
6276
6277  SDValue A = Op.getOperand(0);
6278  SDValue B = Op.getOperand(1);
6279
6280  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6281                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6282                       A, DAG.getConstant(32, MVT::i32));
6283  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6284                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6285                       B, DAG.getConstant(32, MVT::i32));
6286  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6287                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6288                       A, B);
6289  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6290                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6291                       A, Bhi);
6292  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6293                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6294                       Ahi, B);
6295  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6296                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6297                       AloBhi, DAG.getConstant(32, MVT::i32));
6298  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6299                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6300                       AhiBlo, DAG.getConstant(32, MVT::i32));
6301  SDValue Res = DAG.getNode(ISD::ADD, VT, AloBlo, AloBhi);
6302  Res = DAG.getNode(ISD::ADD, VT, Res, AhiBlo);
6303  return Res;
6304}
6305
6306
6307SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6308  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6309  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6310  // looks for this combo and may remove the "setcc" instruction if the "setcc"
6311  // has only one use.
6312  SDNode *N = Op.getNode();
6313  SDValue LHS = N->getOperand(0);
6314  SDValue RHS = N->getOperand(1);
6315  unsigned BaseOp = 0;
6316  unsigned Cond = 0;
6317
6318  switch (Op.getOpcode()) {
6319  default: assert(0 && "Unknown ovf instruction!");
6320  case ISD::SADDO:
6321    BaseOp = X86ISD::ADD;
6322    Cond = X86::COND_O;
6323    break;
6324  case ISD::UADDO:
6325    BaseOp = X86ISD::ADD;
6326    Cond = X86::COND_B;
6327    break;
6328  case ISD::SSUBO:
6329    BaseOp = X86ISD::SUB;
6330    Cond = X86::COND_O;
6331    break;
6332  case ISD::USUBO:
6333    BaseOp = X86ISD::SUB;
6334    Cond = X86::COND_B;
6335    break;
6336  case ISD::SMULO:
6337    BaseOp = X86ISD::SMUL;
6338    Cond = X86::COND_O;
6339    break;
6340  case ISD::UMULO:
6341    BaseOp = X86ISD::UMUL;
6342    Cond = X86::COND_B;
6343    break;
6344  }
6345
6346  // Also sets EFLAGS.
6347  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6348  SDValue Sum = DAG.getNode(BaseOp, VTs, LHS, RHS);
6349
6350  SDValue SetCC =
6351    DAG.getNode(X86ISD::SETCC, N->getValueType(1),
6352                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
6353
6354  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
6355  return Sum;
6356}
6357
6358SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6359  MVT T = Op.getValueType();
6360  unsigned Reg = 0;
6361  unsigned size = 0;
6362  switch(T.getSimpleVT()) {
6363  default:
6364    assert(false && "Invalid value type!");
6365  case MVT::i8:  Reg = X86::AL;  size = 1; break;
6366  case MVT::i16: Reg = X86::AX;  size = 2; break;
6367  case MVT::i32: Reg = X86::EAX; size = 4; break;
6368  case MVT::i64:
6369    assert(Subtarget->is64Bit() && "Node not type legal!");
6370    Reg = X86::RAX; size = 8;
6371    break;
6372  }
6373  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg,
6374                                    Op.getOperand(2), SDValue());
6375  SDValue Ops[] = { cpIn.getValue(0),
6376                    Op.getOperand(1),
6377                    Op.getOperand(3),
6378                    DAG.getTargetConstant(size, MVT::i8),
6379                    cpIn.getValue(1) };
6380  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6381  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5);
6382  SDValue cpOut =
6383    DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1));
6384  return cpOut;
6385}
6386
6387SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
6388                                                 SelectionDAG &DAG) {
6389  assert(Subtarget->is64Bit() && "Result not type legalized?");
6390  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6391  SDValue TheChain = Op.getOperand(0);
6392  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
6393  SDValue rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
6394  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX, MVT::i64,
6395                                   rax.getValue(2));
6396  SDValue Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
6397                            DAG.getConstant(32, MVT::i8));
6398  SDValue Ops[] = {
6399    DAG.getNode(ISD::OR, MVT::i64, rax, Tmp),
6400    rdx.getValue(1)
6401  };
6402  return DAG.getMergeValues(Ops, 2);
6403}
6404
6405SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
6406  SDNode *Node = Op.getNode();
6407  MVT T = Node->getValueType(0);
6408  SDValue negOp = DAG.getNode(ISD::SUB, T,
6409                                DAG.getConstant(0, T), Node->getOperand(2));
6410  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD,
6411                       cast<AtomicSDNode>(Node)->getMemoryVT(),
6412                       Node->getOperand(0),
6413                       Node->getOperand(1), negOp,
6414                       cast<AtomicSDNode>(Node)->getSrcValue(),
6415                       cast<AtomicSDNode>(Node)->getAlignment());
6416}
6417
6418/// LowerOperation - Provide custom lowering hooks for some operations.
6419///
6420SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6421  switch (Op.getOpcode()) {
6422  default: assert(0 && "Should not custom lower this!");
6423  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
6424  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
6425  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
6426  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
6427  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6428  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
6429  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
6430  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
6431  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
6432  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
6433  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
6434  case ISD::SHL_PARTS:
6435  case ISD::SRA_PARTS:
6436  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
6437  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
6438  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
6439  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
6440  case ISD::FABS:               return LowerFABS(Op, DAG);
6441  case ISD::FNEG:               return LowerFNEG(Op, DAG);
6442  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
6443  case ISD::SETCC:              return LowerSETCC(Op, DAG);
6444  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
6445  case ISD::SELECT:             return LowerSELECT(Op, DAG);
6446  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
6447  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
6448  case ISD::CALL:               return LowerCALL(Op, DAG);
6449  case ISD::RET:                return LowerRET(Op, DAG);
6450  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
6451  case ISD::VASTART:            return LowerVASTART(Op, DAG);
6452  case ISD::VAARG:              return LowerVAARG(Op, DAG);
6453  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
6454  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6455  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
6456  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
6457  case ISD::FRAME_TO_ARGS_OFFSET:
6458                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
6459  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
6460  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
6461  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
6462  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
6463  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
6464  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
6465  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
6466  case ISD::SADDO:
6467  case ISD::UADDO:
6468  case ISD::SSUBO:
6469  case ISD::USUBO:
6470  case ISD::SMULO:
6471  case ISD::UMULO:              return LowerXALUO(Op, DAG);
6472  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
6473  }
6474}
6475
6476void X86TargetLowering::
6477ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
6478                        SelectionDAG &DAG, unsigned NewOp) {
6479  MVT T = Node->getValueType(0);
6480  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
6481
6482  SDValue Chain = Node->getOperand(0);
6483  SDValue In1 = Node->getOperand(1);
6484  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
6485                             Node->getOperand(2), DAG.getIntPtrConstant(0));
6486  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
6487                             Node->getOperand(2), DAG.getIntPtrConstant(1));
6488  // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6489  // have a MemOperand.  Pass the info through as a normal operand.
6490  SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
6491  SDValue Ops[] = { Chain, In1, In2L, In2H, LSI };
6492  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6493  SDValue Result = DAG.getNode(NewOp, Tys, Ops, 5);
6494  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
6495  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2));
6496  Results.push_back(Result.getValue(2));
6497}
6498
6499/// ReplaceNodeResults - Replace a node with an illegal result type
6500/// with a new node built out of custom code.
6501void X86TargetLowering::ReplaceNodeResults(SDNode *N,
6502                                           SmallVectorImpl<SDValue>&Results,
6503                                           SelectionDAG &DAG) {
6504  switch (N->getOpcode()) {
6505  default:
6506    assert(false && "Do not know how to custom type legalize this operation!");
6507    return;
6508  case ISD::FP_TO_SINT: {
6509    std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(SDValue(N, 0), DAG);
6510    SDValue FIST = Vals.first, StackSlot = Vals.second;
6511    if (FIST.getNode() != 0) {
6512      MVT VT = N->getValueType(0);
6513      // Return a load from the stack slot.
6514      Results.push_back(DAG.getLoad(VT, FIST, StackSlot, NULL, 0));
6515    }
6516    return;
6517  }
6518  case ISD::READCYCLECOUNTER: {
6519    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6520    SDValue TheChain = N->getOperand(0);
6521    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
6522    SDValue eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
6523    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX, MVT::i32,
6524                                     eax.getValue(2));
6525    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
6526    SDValue Ops[] = { eax, edx };
6527    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2));
6528    Results.push_back(edx.getValue(1));
6529    return;
6530  }
6531  case ISD::ATOMIC_CMP_SWAP: {
6532    MVT T = N->getValueType(0);
6533    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
6534    SDValue cpInL, cpInH;
6535    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, N->getOperand(2),
6536                        DAG.getConstant(0, MVT::i32));
6537    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, N->getOperand(2),
6538                        DAG.getConstant(1, MVT::i32));
6539    cpInL = DAG.getCopyToReg(N->getOperand(0), X86::EAX, cpInL, SDValue());
6540    cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX, cpInH,
6541                             cpInL.getValue(1));
6542    SDValue swapInL, swapInH;
6543    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, N->getOperand(3),
6544                          DAG.getConstant(0, MVT::i32));
6545    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, N->getOperand(3),
6546                          DAG.getConstant(1, MVT::i32));
6547    swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX, swapInL,
6548                               cpInH.getValue(1));
6549    swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX, swapInH,
6550                               swapInL.getValue(1));
6551    SDValue Ops[] = { swapInH.getValue(0),
6552                      N->getOperand(1),
6553                      swapInH.getValue(1) };
6554    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6555    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3);
6556    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32,
6557                                        Result.getValue(1));
6558    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32,
6559                                        cpOutL.getValue(2));
6560    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
6561    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2));
6562    Results.push_back(cpOutH.getValue(1));
6563    return;
6564  }
6565  case ISD::ATOMIC_LOAD_ADD:
6566    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
6567    return;
6568  case ISD::ATOMIC_LOAD_AND:
6569    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
6570    return;
6571  case ISD::ATOMIC_LOAD_NAND:
6572    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
6573    return;
6574  case ISD::ATOMIC_LOAD_OR:
6575    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
6576    return;
6577  case ISD::ATOMIC_LOAD_SUB:
6578    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
6579    return;
6580  case ISD::ATOMIC_LOAD_XOR:
6581    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
6582    return;
6583  case ISD::ATOMIC_SWAP:
6584    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
6585    return;
6586  }
6587}
6588
6589const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
6590  switch (Opcode) {
6591  default: return NULL;
6592  case X86ISD::BSF:                return "X86ISD::BSF";
6593  case X86ISD::BSR:                return "X86ISD::BSR";
6594  case X86ISD::SHLD:               return "X86ISD::SHLD";
6595  case X86ISD::SHRD:               return "X86ISD::SHRD";
6596  case X86ISD::FAND:               return "X86ISD::FAND";
6597  case X86ISD::FOR:                return "X86ISD::FOR";
6598  case X86ISD::FXOR:               return "X86ISD::FXOR";
6599  case X86ISD::FSRL:               return "X86ISD::FSRL";
6600  case X86ISD::FILD:               return "X86ISD::FILD";
6601  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
6602  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
6603  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
6604  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
6605  case X86ISD::FLD:                return "X86ISD::FLD";
6606  case X86ISD::FST:                return "X86ISD::FST";
6607  case X86ISD::CALL:               return "X86ISD::CALL";
6608  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
6609  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
6610  case X86ISD::BT:                 return "X86ISD::BT";
6611  case X86ISD::CMP:                return "X86ISD::CMP";
6612  case X86ISD::COMI:               return "X86ISD::COMI";
6613  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
6614  case X86ISD::SETCC:              return "X86ISD::SETCC";
6615  case X86ISD::CMOV:               return "X86ISD::CMOV";
6616  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
6617  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
6618  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
6619  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
6620  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
6621  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
6622  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
6623  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
6624  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
6625  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
6626  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
6627  case X86ISD::FMAX:               return "X86ISD::FMAX";
6628  case X86ISD::FMIN:               return "X86ISD::FMIN";
6629  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
6630  case X86ISD::FRCP:               return "X86ISD::FRCP";
6631  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
6632  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
6633  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
6634  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
6635  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
6636  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
6637  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
6638  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
6639  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
6640  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
6641  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
6642  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
6643  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
6644  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
6645  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
6646  case X86ISD::VSHL:               return "X86ISD::VSHL";
6647  case X86ISD::VSRL:               return "X86ISD::VSRL";
6648  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
6649  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
6650  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
6651  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
6652  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
6653  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
6654  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
6655  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
6656  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
6657  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
6658  case X86ISD::ADD:                return "X86ISD::ADD";
6659  case X86ISD::SUB:                return "X86ISD::SUB";
6660  case X86ISD::SMUL:               return "X86ISD::SMUL";
6661  case X86ISD::UMUL:               return "X86ISD::UMUL";
6662  }
6663}
6664
6665// isLegalAddressingMode - Return true if the addressing mode represented
6666// by AM is legal for this target, for a load/store of the specified type.
6667bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6668                                              const Type *Ty) const {
6669  // X86 supports extremely general addressing modes.
6670
6671  // X86 allows a sign-extended 32-bit immediate field as a displacement.
6672  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
6673    return false;
6674
6675  if (AM.BaseGV) {
6676    // We can only fold this if we don't need an extra load.
6677    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
6678      return false;
6679    // If BaseGV requires a register, we cannot also have a BaseReg.
6680    if (Subtarget->GVRequiresRegister(AM.BaseGV, getTargetMachine(), false) &&
6681        AM.HasBaseReg)
6682      return false;
6683
6684    // X86-64 only supports addr of globals in small code model.
6685    if (Subtarget->is64Bit()) {
6686      if (getTargetMachine().getCodeModel() != CodeModel::Small)
6687        return false;
6688      // If lower 4G is not available, then we must use rip-relative addressing.
6689      if (AM.BaseOffs || AM.Scale > 1)
6690        return false;
6691    }
6692  }
6693
6694  switch (AM.Scale) {
6695  case 0:
6696  case 1:
6697  case 2:
6698  case 4:
6699  case 8:
6700    // These scales always work.
6701    break;
6702  case 3:
6703  case 5:
6704  case 9:
6705    // These scales are formed with basereg+scalereg.  Only accept if there is
6706    // no basereg yet.
6707    if (AM.HasBaseReg)
6708      return false;
6709    break;
6710  default:  // Other stuff never works.
6711    return false;
6712  }
6713
6714  return true;
6715}
6716
6717
6718bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
6719  if (!Ty1->isInteger() || !Ty2->isInteger())
6720    return false;
6721  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6722  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6723  if (NumBits1 <= NumBits2)
6724    return false;
6725  return Subtarget->is64Bit() || NumBits1 < 64;
6726}
6727
6728bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
6729  if (!VT1.isInteger() || !VT2.isInteger())
6730    return false;
6731  unsigned NumBits1 = VT1.getSizeInBits();
6732  unsigned NumBits2 = VT2.getSizeInBits();
6733  if (NumBits1 <= NumBits2)
6734    return false;
6735  return Subtarget->is64Bit() || NumBits1 < 64;
6736}
6737
6738/// isShuffleMaskLegal - Targets can use this to indicate that they only
6739/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6740/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6741/// are assumed to be legal.
6742bool
6743X86TargetLowering::isShuffleMaskLegal(SDValue Mask, MVT VT) const {
6744  // Only do shuffles on 128-bit vector types for now.
6745  if (VT.getSizeInBits() == 64) return false;
6746  return (Mask.getNode()->getNumOperands() <= 4 ||
6747          isIdentityMask(Mask.getNode()) ||
6748          isIdentityMask(Mask.getNode(), true) ||
6749          isSplatMask(Mask.getNode())  ||
6750          isPSHUFHW_PSHUFLWMask(Mask.getNode()) ||
6751          X86::isUNPCKLMask(Mask.getNode()) ||
6752          X86::isUNPCKHMask(Mask.getNode()) ||
6753          X86::isUNPCKL_v_undef_Mask(Mask.getNode()) ||
6754          X86::isUNPCKH_v_undef_Mask(Mask.getNode()));
6755}
6756
6757bool
6758X86TargetLowering::isVectorClearMaskLegal(const std::vector<SDValue> &BVOps,
6759                                          MVT EVT, SelectionDAG &DAG) const {
6760  unsigned NumElts = BVOps.size();
6761  // Only do shuffles on 128-bit vector types for now.
6762  if (EVT.getSizeInBits() * NumElts == 64) return false;
6763  if (NumElts == 2) return true;
6764  if (NumElts == 4) {
6765    return (isMOVLMask(&BVOps[0], 4)  ||
6766            isCommutedMOVL(&BVOps[0], 4, true) ||
6767            isSHUFPMask(&BVOps[0], 4) ||
6768            isCommutedSHUFP(&BVOps[0], 4));
6769  }
6770  return false;
6771}
6772
6773//===----------------------------------------------------------------------===//
6774//                           X86 Scheduler Hooks
6775//===----------------------------------------------------------------------===//
6776
6777// private utility function
6778MachineBasicBlock *
6779X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
6780                                                       MachineBasicBlock *MBB,
6781                                                       unsigned regOpc,
6782                                                       unsigned immOpc,
6783                                                       unsigned LoadOpc,
6784                                                       unsigned CXchgOpc,
6785                                                       unsigned copyOpc,
6786                                                       unsigned notOpc,
6787                                                       unsigned EAXreg,
6788                                                       TargetRegisterClass *RC,
6789                                                       bool invSrc) {
6790  // For the atomic bitwise operator, we generate
6791  //   thisMBB:
6792  //   newMBB:
6793  //     ld  t1 = [bitinstr.addr]
6794  //     op  t2 = t1, [bitinstr.val]
6795  //     mov EAX = t1
6796  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
6797  //     bz  newMBB
6798  //     fallthrough -->nextMBB
6799  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6800  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6801  MachineFunction::iterator MBBIter = MBB;
6802  ++MBBIter;
6803
6804  /// First build the CFG
6805  MachineFunction *F = MBB->getParent();
6806  MachineBasicBlock *thisMBB = MBB;
6807  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6808  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6809  F->insert(MBBIter, newMBB);
6810  F->insert(MBBIter, nextMBB);
6811
6812  // Move all successors to thisMBB to nextMBB
6813  nextMBB->transferSuccessors(thisMBB);
6814
6815  // Update thisMBB to fall through to newMBB
6816  thisMBB->addSuccessor(newMBB);
6817
6818  // newMBB jumps to itself and fall through to nextMBB
6819  newMBB->addSuccessor(nextMBB);
6820  newMBB->addSuccessor(newMBB);
6821
6822  // Insert instructions into newMBB based on incoming instruction
6823  assert(bInstr->getNumOperands() < 8 && "unexpected number of operands");
6824  MachineOperand& destOper = bInstr->getOperand(0);
6825  MachineOperand* argOpers[6];
6826  int numArgs = bInstr->getNumOperands() - 1;
6827  for (int i=0; i < numArgs; ++i)
6828    argOpers[i] = &bInstr->getOperand(i+1);
6829
6830  // x86 address has 4 operands: base, index, scale, and displacement
6831  int lastAddrIndx = 3; // [0,3]
6832  int valArgIndx = 4;
6833
6834  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
6835  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(LoadOpc), t1);
6836  for (int i=0; i <= lastAddrIndx; ++i)
6837    (*MIB).addOperand(*argOpers[i]);
6838
6839  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
6840  if (invSrc) {
6841    MIB = BuildMI(newMBB, TII->get(notOpc), tt).addReg(t1);
6842  }
6843  else
6844    tt = t1;
6845
6846  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
6847  assert((argOpers[valArgIndx]->isReg() ||
6848          argOpers[valArgIndx]->isImm()) &&
6849         "invalid operand");
6850  if (argOpers[valArgIndx]->isReg())
6851    MIB = BuildMI(newMBB, TII->get(regOpc), t2);
6852  else
6853    MIB = BuildMI(newMBB, TII->get(immOpc), t2);
6854  MIB.addReg(tt);
6855  (*MIB).addOperand(*argOpers[valArgIndx]);
6856
6857  MIB = BuildMI(newMBB, TII->get(copyOpc), EAXreg);
6858  MIB.addReg(t1);
6859
6860  MIB = BuildMI(newMBB, TII->get(CXchgOpc));
6861  for (int i=0; i <= lastAddrIndx; ++i)
6862    (*MIB).addOperand(*argOpers[i]);
6863  MIB.addReg(t2);
6864  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6865  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
6866
6867  MIB = BuildMI(newMBB, TII->get(copyOpc), destOper.getReg());
6868  MIB.addReg(EAXreg);
6869
6870  // insert branch
6871  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6872
6873  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
6874  return nextMBB;
6875}
6876
6877// private utility function:  64 bit atomics on 32 bit host.
6878MachineBasicBlock *
6879X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
6880                                                       MachineBasicBlock *MBB,
6881                                                       unsigned regOpcL,
6882                                                       unsigned regOpcH,
6883                                                       unsigned immOpcL,
6884                                                       unsigned immOpcH,
6885                                                       bool invSrc) {
6886  // For the atomic bitwise operator, we generate
6887  //   thisMBB (instructions are in pairs, except cmpxchg8b)
6888  //     ld t1,t2 = [bitinstr.addr]
6889  //   newMBB:
6890  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
6891  //     op  t5, t6 <- out1, out2, [bitinstr.val]
6892  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
6893  //     mov ECX, EBX <- t5, t6
6894  //     mov EAX, EDX <- t1, t2
6895  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
6896  //     mov t3, t4 <- EAX, EDX
6897  //     bz  newMBB
6898  //     result in out1, out2
6899  //     fallthrough -->nextMBB
6900
6901  const TargetRegisterClass *RC = X86::GR32RegisterClass;
6902  const unsigned LoadOpc = X86::MOV32rm;
6903  const unsigned copyOpc = X86::MOV32rr;
6904  const unsigned NotOpc = X86::NOT32r;
6905  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6906  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6907  MachineFunction::iterator MBBIter = MBB;
6908  ++MBBIter;
6909
6910  /// First build the CFG
6911  MachineFunction *F = MBB->getParent();
6912  MachineBasicBlock *thisMBB = MBB;
6913  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6914  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6915  F->insert(MBBIter, newMBB);
6916  F->insert(MBBIter, nextMBB);
6917
6918  // Move all successors to thisMBB to nextMBB
6919  nextMBB->transferSuccessors(thisMBB);
6920
6921  // Update thisMBB to fall through to newMBB
6922  thisMBB->addSuccessor(newMBB);
6923
6924  // newMBB jumps to itself and fall through to nextMBB
6925  newMBB->addSuccessor(nextMBB);
6926  newMBB->addSuccessor(newMBB);
6927
6928  // Insert instructions into newMBB based on incoming instruction
6929  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
6930  assert(bInstr->getNumOperands() < 18 && "unexpected number of operands");
6931  MachineOperand& dest1Oper = bInstr->getOperand(0);
6932  MachineOperand& dest2Oper = bInstr->getOperand(1);
6933  MachineOperand* argOpers[6];
6934  for (int i=0; i < 6; ++i)
6935    argOpers[i] = &bInstr->getOperand(i+2);
6936
6937  // x86 address has 4 operands: base, index, scale, and displacement
6938  int lastAddrIndx = 3; // [0,3]
6939
6940  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
6941  MachineInstrBuilder MIB = BuildMI(thisMBB, TII->get(LoadOpc), t1);
6942  for (int i=0; i <= lastAddrIndx; ++i)
6943    (*MIB).addOperand(*argOpers[i]);
6944  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
6945  MIB = BuildMI(thisMBB, TII->get(LoadOpc), t2);
6946  // add 4 to displacement.
6947  for (int i=0; i <= lastAddrIndx-1; ++i)
6948    (*MIB).addOperand(*argOpers[i]);
6949  MachineOperand newOp3 = *(argOpers[3]);
6950  if (newOp3.isImm())
6951    newOp3.setImm(newOp3.getImm()+4);
6952  else
6953    newOp3.setOffset(newOp3.getOffset()+4);
6954  (*MIB).addOperand(newOp3);
6955
6956  // t3/4 are defined later, at the bottom of the loop
6957  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
6958  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
6959  BuildMI(newMBB, TII->get(X86::PHI), dest1Oper.getReg())
6960    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
6961  BuildMI(newMBB, TII->get(X86::PHI), dest2Oper.getReg())
6962    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
6963
6964  unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
6965  unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
6966  if (invSrc) {
6967    MIB = BuildMI(newMBB, TII->get(NotOpc), tt1).addReg(t1);
6968    MIB = BuildMI(newMBB, TII->get(NotOpc), tt2).addReg(t2);
6969  } else {
6970    tt1 = t1;
6971    tt2 = t2;
6972  }
6973
6974  assert((argOpers[4]->isReg() || argOpers[4]->isImm()) &&
6975         "invalid operand");
6976  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
6977  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
6978  if (argOpers[4]->isReg())
6979    MIB = BuildMI(newMBB, TII->get(regOpcL), t5);
6980  else
6981    MIB = BuildMI(newMBB, TII->get(immOpcL), t5);
6982  if (regOpcL != X86::MOV32rr)
6983    MIB.addReg(tt1);
6984  (*MIB).addOperand(*argOpers[4]);
6985  assert(argOpers[5]->isReg() == argOpers[4]->isReg());
6986  assert(argOpers[5]->isImm() == argOpers[4]->isImm());
6987  if (argOpers[5]->isReg())
6988    MIB = BuildMI(newMBB, TII->get(regOpcH), t6);
6989  else
6990    MIB = BuildMI(newMBB, TII->get(immOpcH), t6);
6991  if (regOpcH != X86::MOV32rr)
6992    MIB.addReg(tt2);
6993  (*MIB).addOperand(*argOpers[5]);
6994
6995  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::EAX);
6996  MIB.addReg(t1);
6997  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::EDX);
6998  MIB.addReg(t2);
6999
7000  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::EBX);
7001  MIB.addReg(t5);
7002  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::ECX);
7003  MIB.addReg(t6);
7004
7005  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG8B));
7006  for (int i=0; i <= lastAddrIndx; ++i)
7007    (*MIB).addOperand(*argOpers[i]);
7008
7009  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7010  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7011
7012  MIB = BuildMI(newMBB, TII->get(copyOpc), t3);
7013  MIB.addReg(X86::EAX);
7014  MIB = BuildMI(newMBB, TII->get(copyOpc), t4);
7015  MIB.addReg(X86::EDX);
7016
7017  // insert branch
7018  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
7019
7020  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7021  return nextMBB;
7022}
7023
7024// private utility function
7025MachineBasicBlock *
7026X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
7027                                                      MachineBasicBlock *MBB,
7028                                                      unsigned cmovOpc) {
7029  // For the atomic min/max operator, we generate
7030  //   thisMBB:
7031  //   newMBB:
7032  //     ld t1 = [min/max.addr]
7033  //     mov t2 = [min/max.val]
7034  //     cmp  t1, t2
7035  //     cmov[cond] t2 = t1
7036  //     mov EAX = t1
7037  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7038  //     bz   newMBB
7039  //     fallthrough -->nextMBB
7040  //
7041  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7042  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7043  MachineFunction::iterator MBBIter = MBB;
7044  ++MBBIter;
7045
7046  /// First build the CFG
7047  MachineFunction *F = MBB->getParent();
7048  MachineBasicBlock *thisMBB = MBB;
7049  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7050  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7051  F->insert(MBBIter, newMBB);
7052  F->insert(MBBIter, nextMBB);
7053
7054  // Move all successors to thisMBB to nextMBB
7055  nextMBB->transferSuccessors(thisMBB);
7056
7057  // Update thisMBB to fall through to newMBB
7058  thisMBB->addSuccessor(newMBB);
7059
7060  // newMBB jumps to newMBB and fall through to nextMBB
7061  newMBB->addSuccessor(nextMBB);
7062  newMBB->addSuccessor(newMBB);
7063
7064  // Insert instructions into newMBB based on incoming instruction
7065  assert(mInstr->getNumOperands() < 8 && "unexpected number of operands");
7066  MachineOperand& destOper = mInstr->getOperand(0);
7067  MachineOperand* argOpers[6];
7068  int numArgs = mInstr->getNumOperands() - 1;
7069  for (int i=0; i < numArgs; ++i)
7070    argOpers[i] = &mInstr->getOperand(i+1);
7071
7072  // x86 address has 4 operands: base, index, scale, and displacement
7073  int lastAddrIndx = 3; // [0,3]
7074  int valArgIndx = 4;
7075
7076  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7077  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1);
7078  for (int i=0; i <= lastAddrIndx; ++i)
7079    (*MIB).addOperand(*argOpers[i]);
7080
7081  // We only support register and immediate values
7082  assert((argOpers[valArgIndx]->isReg() ||
7083          argOpers[valArgIndx]->isImm()) &&
7084         "invalid operand");
7085
7086  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7087  if (argOpers[valArgIndx]->isReg())
7088    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
7089  else
7090    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
7091  (*MIB).addOperand(*argOpers[valArgIndx]);
7092
7093  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX);
7094  MIB.addReg(t1);
7095
7096  MIB = BuildMI(newMBB, TII->get(X86::CMP32rr));
7097  MIB.addReg(t1);
7098  MIB.addReg(t2);
7099
7100  // Generate movc
7101  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7102  MIB = BuildMI(newMBB, TII->get(cmovOpc),t3);
7103  MIB.addReg(t2);
7104  MIB.addReg(t1);
7105
7106  // Cmp and exchange if none has modified the memory location
7107  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32));
7108  for (int i=0; i <= lastAddrIndx; ++i)
7109    (*MIB).addOperand(*argOpers[i]);
7110  MIB.addReg(t3);
7111  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7112  (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
7113
7114  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg());
7115  MIB.addReg(X86::EAX);
7116
7117  // insert branch
7118  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
7119
7120  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
7121  return nextMBB;
7122}
7123
7124
7125MachineBasicBlock *
7126X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7127                                               MachineBasicBlock *BB) {
7128  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7129  switch (MI->getOpcode()) {
7130  default: assert(false && "Unexpected instr type to insert");
7131  case X86::CMOV_V1I64:
7132  case X86::CMOV_FR32:
7133  case X86::CMOV_FR64:
7134  case X86::CMOV_V4F32:
7135  case X86::CMOV_V2F64:
7136  case X86::CMOV_V2I64: {
7137    // To "insert" a SELECT_CC instruction, we actually have to insert the
7138    // diamond control-flow pattern.  The incoming instruction knows the
7139    // destination vreg to set, the condition code register to branch on, the
7140    // true/false values to select between, and a branch opcode to use.
7141    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7142    MachineFunction::iterator It = BB;
7143    ++It;
7144
7145    //  thisMBB:
7146    //  ...
7147    //   TrueVal = ...
7148    //   cmpTY ccX, r1, r2
7149    //   bCC copy1MBB
7150    //   fallthrough --> copy0MBB
7151    MachineBasicBlock *thisMBB = BB;
7152    MachineFunction *F = BB->getParent();
7153    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7154    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7155    unsigned Opc =
7156      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7157    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
7158    F->insert(It, copy0MBB);
7159    F->insert(It, sinkMBB);
7160    // Update machine-CFG edges by transferring all successors of the current
7161    // block to the new block which will contain the Phi node for the select.
7162    sinkMBB->transferSuccessors(BB);
7163
7164    // Add the true and fallthrough blocks as its successors.
7165    BB->addSuccessor(copy0MBB);
7166    BB->addSuccessor(sinkMBB);
7167
7168    //  copy0MBB:
7169    //   %FalseValue = ...
7170    //   # fallthrough to sinkMBB
7171    BB = copy0MBB;
7172
7173    // Update machine-CFG edges
7174    BB->addSuccessor(sinkMBB);
7175
7176    //  sinkMBB:
7177    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7178    //  ...
7179    BB = sinkMBB;
7180    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
7181      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7182      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7183
7184    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7185    return BB;
7186  }
7187
7188  case X86::FP32_TO_INT16_IN_MEM:
7189  case X86::FP32_TO_INT32_IN_MEM:
7190  case X86::FP32_TO_INT64_IN_MEM:
7191  case X86::FP64_TO_INT16_IN_MEM:
7192  case X86::FP64_TO_INT32_IN_MEM:
7193  case X86::FP64_TO_INT64_IN_MEM:
7194  case X86::FP80_TO_INT16_IN_MEM:
7195  case X86::FP80_TO_INT32_IN_MEM:
7196  case X86::FP80_TO_INT64_IN_MEM: {
7197    // Change the floating point control register to use "round towards zero"
7198    // mode when truncating to an integer value.
7199    MachineFunction *F = BB->getParent();
7200    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
7201    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
7202
7203    // Load the old value of the high byte of the control word...
7204    unsigned OldCW =
7205      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
7206    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
7207
7208    // Set the high part to be round to zero...
7209    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
7210      .addImm(0xC7F);
7211
7212    // Reload the modified control word now...
7213    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
7214
7215    // Restore the memory image of control word to original value
7216    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
7217      .addReg(OldCW);
7218
7219    // Get the X86 opcode to use.
7220    unsigned Opc;
7221    switch (MI->getOpcode()) {
7222    default: assert(0 && "illegal opcode!");
7223    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
7224    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
7225    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
7226    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
7227    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
7228    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
7229    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
7230    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
7231    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
7232    }
7233
7234    X86AddressMode AM;
7235    MachineOperand &Op = MI->getOperand(0);
7236    if (Op.isReg()) {
7237      AM.BaseType = X86AddressMode::RegBase;
7238      AM.Base.Reg = Op.getReg();
7239    } else {
7240      AM.BaseType = X86AddressMode::FrameIndexBase;
7241      AM.Base.FrameIndex = Op.getIndex();
7242    }
7243    Op = MI->getOperand(1);
7244    if (Op.isImm())
7245      AM.Scale = Op.getImm();
7246    Op = MI->getOperand(2);
7247    if (Op.isImm())
7248      AM.IndexReg = Op.getImm();
7249    Op = MI->getOperand(3);
7250    if (Op.isGlobal()) {
7251      AM.GV = Op.getGlobal();
7252    } else {
7253      AM.Disp = Op.getImm();
7254    }
7255    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
7256                      .addReg(MI->getOperand(4).getReg());
7257
7258    // Reload the original control word now.
7259    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
7260
7261    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7262    return BB;
7263  }
7264  case X86::ATOMAND32:
7265    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7266                                               X86::AND32ri, X86::MOV32rm,
7267                                               X86::LCMPXCHG32, X86::MOV32rr,
7268                                               X86::NOT32r, X86::EAX,
7269                                               X86::GR32RegisterClass);
7270  case X86::ATOMOR32:
7271    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
7272                                               X86::OR32ri, X86::MOV32rm,
7273                                               X86::LCMPXCHG32, X86::MOV32rr,
7274                                               X86::NOT32r, X86::EAX,
7275                                               X86::GR32RegisterClass);
7276  case X86::ATOMXOR32:
7277    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
7278                                               X86::XOR32ri, X86::MOV32rm,
7279                                               X86::LCMPXCHG32, X86::MOV32rr,
7280                                               X86::NOT32r, X86::EAX,
7281                                               X86::GR32RegisterClass);
7282  case X86::ATOMNAND32:
7283    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7284                                               X86::AND32ri, X86::MOV32rm,
7285                                               X86::LCMPXCHG32, X86::MOV32rr,
7286                                               X86::NOT32r, X86::EAX,
7287                                               X86::GR32RegisterClass, true);
7288  case X86::ATOMMIN32:
7289    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
7290  case X86::ATOMMAX32:
7291    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
7292  case X86::ATOMUMIN32:
7293    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
7294  case X86::ATOMUMAX32:
7295    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
7296
7297  case X86::ATOMAND16:
7298    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7299                                               X86::AND16ri, X86::MOV16rm,
7300                                               X86::LCMPXCHG16, X86::MOV16rr,
7301                                               X86::NOT16r, X86::AX,
7302                                               X86::GR16RegisterClass);
7303  case X86::ATOMOR16:
7304    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
7305                                               X86::OR16ri, X86::MOV16rm,
7306                                               X86::LCMPXCHG16, X86::MOV16rr,
7307                                               X86::NOT16r, X86::AX,
7308                                               X86::GR16RegisterClass);
7309  case X86::ATOMXOR16:
7310    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
7311                                               X86::XOR16ri, X86::MOV16rm,
7312                                               X86::LCMPXCHG16, X86::MOV16rr,
7313                                               X86::NOT16r, X86::AX,
7314                                               X86::GR16RegisterClass);
7315  case X86::ATOMNAND16:
7316    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7317                                               X86::AND16ri, X86::MOV16rm,
7318                                               X86::LCMPXCHG16, X86::MOV16rr,
7319                                               X86::NOT16r, X86::AX,
7320                                               X86::GR16RegisterClass, true);
7321  case X86::ATOMMIN16:
7322    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
7323  case X86::ATOMMAX16:
7324    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
7325  case X86::ATOMUMIN16:
7326    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
7327  case X86::ATOMUMAX16:
7328    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
7329
7330  case X86::ATOMAND8:
7331    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7332                                               X86::AND8ri, X86::MOV8rm,
7333                                               X86::LCMPXCHG8, X86::MOV8rr,
7334                                               X86::NOT8r, X86::AL,
7335                                               X86::GR8RegisterClass);
7336  case X86::ATOMOR8:
7337    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
7338                                               X86::OR8ri, X86::MOV8rm,
7339                                               X86::LCMPXCHG8, X86::MOV8rr,
7340                                               X86::NOT8r, X86::AL,
7341                                               X86::GR8RegisterClass);
7342  case X86::ATOMXOR8:
7343    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
7344                                               X86::XOR8ri, X86::MOV8rm,
7345                                               X86::LCMPXCHG8, X86::MOV8rr,
7346                                               X86::NOT8r, X86::AL,
7347                                               X86::GR8RegisterClass);
7348  case X86::ATOMNAND8:
7349    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7350                                               X86::AND8ri, X86::MOV8rm,
7351                                               X86::LCMPXCHG8, X86::MOV8rr,
7352                                               X86::NOT8r, X86::AL,
7353                                               X86::GR8RegisterClass, true);
7354  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7355  // This group is for 64-bit host.
7356  case X86::ATOMAND64:
7357    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7358                                               X86::AND64ri32, X86::MOV64rm,
7359                                               X86::LCMPXCHG64, X86::MOV64rr,
7360                                               X86::NOT64r, X86::RAX,
7361                                               X86::GR64RegisterClass);
7362  case X86::ATOMOR64:
7363    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
7364                                               X86::OR64ri32, X86::MOV64rm,
7365                                               X86::LCMPXCHG64, X86::MOV64rr,
7366                                               X86::NOT64r, X86::RAX,
7367                                               X86::GR64RegisterClass);
7368  case X86::ATOMXOR64:
7369    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
7370                                               X86::XOR64ri32, X86::MOV64rm,
7371                                               X86::LCMPXCHG64, X86::MOV64rr,
7372                                               X86::NOT64r, X86::RAX,
7373                                               X86::GR64RegisterClass);
7374  case X86::ATOMNAND64:
7375    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7376                                               X86::AND64ri32, X86::MOV64rm,
7377                                               X86::LCMPXCHG64, X86::MOV64rr,
7378                                               X86::NOT64r, X86::RAX,
7379                                               X86::GR64RegisterClass, true);
7380  case X86::ATOMMIN64:
7381    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
7382  case X86::ATOMMAX64:
7383    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
7384  case X86::ATOMUMIN64:
7385    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
7386  case X86::ATOMUMAX64:
7387    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
7388
7389  // This group does 64-bit operations on a 32-bit host.
7390  case X86::ATOMAND6432:
7391    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7392                                               X86::AND32rr, X86::AND32rr,
7393                                               X86::AND32ri, X86::AND32ri,
7394                                               false);
7395  case X86::ATOMOR6432:
7396    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7397                                               X86::OR32rr, X86::OR32rr,
7398                                               X86::OR32ri, X86::OR32ri,
7399                                               false);
7400  case X86::ATOMXOR6432:
7401    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7402                                               X86::XOR32rr, X86::XOR32rr,
7403                                               X86::XOR32ri, X86::XOR32ri,
7404                                               false);
7405  case X86::ATOMNAND6432:
7406    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7407                                               X86::AND32rr, X86::AND32rr,
7408                                               X86::AND32ri, X86::AND32ri,
7409                                               true);
7410  case X86::ATOMADD6432:
7411    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7412                                               X86::ADD32rr, X86::ADC32rr,
7413                                               X86::ADD32ri, X86::ADC32ri,
7414                                               false);
7415  case X86::ATOMSUB6432:
7416    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7417                                               X86::SUB32rr, X86::SBB32rr,
7418                                               X86::SUB32ri, X86::SBB32ri,
7419                                               false);
7420  case X86::ATOMSWAP6432:
7421    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7422                                               X86::MOV32rr, X86::MOV32rr,
7423                                               X86::MOV32ri, X86::MOV32ri,
7424                                               false);
7425  }
7426}
7427
7428//===----------------------------------------------------------------------===//
7429//                           X86 Optimization Hooks
7430//===----------------------------------------------------------------------===//
7431
7432void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7433                                                       const APInt &Mask,
7434                                                       APInt &KnownZero,
7435                                                       APInt &KnownOne,
7436                                                       const SelectionDAG &DAG,
7437                                                       unsigned Depth) const {
7438  unsigned Opc = Op.getOpcode();
7439  assert((Opc >= ISD::BUILTIN_OP_END ||
7440          Opc == ISD::INTRINSIC_WO_CHAIN ||
7441          Opc == ISD::INTRINSIC_W_CHAIN ||
7442          Opc == ISD::INTRINSIC_VOID) &&
7443         "Should use MaskedValueIsZero if you don't know whether Op"
7444         " is a target node!");
7445
7446  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
7447  switch (Opc) {
7448  default: break;
7449  case X86ISD::SETCC:
7450    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
7451                                       Mask.getBitWidth() - 1);
7452    break;
7453  }
7454}
7455
7456/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
7457/// node is a GlobalAddress + offset.
7458bool X86TargetLowering::isGAPlusOffset(SDNode *N,
7459                                       GlobalValue* &GA, int64_t &Offset) const{
7460  if (N->getOpcode() == X86ISD::Wrapper) {
7461    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
7462      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
7463      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
7464      return true;
7465    }
7466  }
7467  return TargetLowering::isGAPlusOffset(N, GA, Offset);
7468}
7469
7470static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
7471                               const TargetLowering &TLI) {
7472  GlobalValue *GV;
7473  int64_t Offset = 0;
7474  if (TLI.isGAPlusOffset(Base, GV, Offset))
7475    return (GV->getAlignment() >= N && (Offset % N) == 0);
7476  // DAG combine handles the stack object case.
7477  return false;
7478}
7479
7480static bool EltsFromConsecutiveLoads(SDNode *N, SDValue PermMask,
7481                                     unsigned NumElems, MVT EVT,
7482                                     SDNode *&Base,
7483                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
7484                                     const TargetLowering &TLI) {
7485  Base = NULL;
7486  for (unsigned i = 0; i < NumElems; ++i) {
7487    SDValue Idx = PermMask.getOperand(i);
7488    if (Idx.getOpcode() == ISD::UNDEF) {
7489      if (!Base)
7490        return false;
7491      continue;
7492    }
7493
7494    SDValue Elt = DAG.getShuffleScalarElt(N, i);
7495    if (!Elt.getNode() ||
7496        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
7497      return false;
7498    if (!Base) {
7499      Base = Elt.getNode();
7500      if (Base->getOpcode() == ISD::UNDEF)
7501        return false;
7502      continue;
7503    }
7504    if (Elt.getOpcode() == ISD::UNDEF)
7505      continue;
7506
7507    if (!TLI.isConsecutiveLoad(Elt.getNode(), Base,
7508                               EVT.getSizeInBits()/8, i, MFI))
7509      return false;
7510  }
7511  return true;
7512}
7513
7514/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
7515/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
7516/// if the load addresses are consecutive, non-overlapping, and in the right
7517/// order.
7518static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
7519                                       const TargetLowering &TLI) {
7520  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7521  MVT VT = N->getValueType(0);
7522  MVT EVT = VT.getVectorElementType();
7523  SDValue PermMask = N->getOperand(2);
7524  unsigned NumElems = PermMask.getNumOperands();
7525  SDNode *Base = NULL;
7526  if (!EltsFromConsecutiveLoads(N, PermMask, NumElems, EVT, Base,
7527                                DAG, MFI, TLI))
7528    return SDValue();
7529
7530  LoadSDNode *LD = cast<LoadSDNode>(Base);
7531  if (isBaseAlignmentOfN(16, Base->getOperand(1).getNode(), TLI))
7532    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
7533                       LD->getSrcValueOffset(), LD->isVolatile());
7534  return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
7535                     LD->getSrcValueOffset(), LD->isVolatile(),
7536                     LD->getAlignment());
7537}
7538
7539/// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd.
7540static SDValue PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG,
7541                                         const X86Subtarget *Subtarget,
7542                                         const TargetLowering &TLI) {
7543  unsigned NumOps = N->getNumOperands();
7544
7545  // Ignore single operand BUILD_VECTOR.
7546  if (NumOps == 1)
7547    return SDValue();
7548
7549  MVT VT = N->getValueType(0);
7550  MVT EVT = VT.getVectorElementType();
7551  if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit())
7552    // We are looking for load i64 and zero extend. We want to transform
7553    // it before legalizer has a chance to expand it. Also look for i64
7554    // BUILD_PAIR bit casted to f64.
7555    return SDValue();
7556  // This must be an insertion into a zero vector.
7557  SDValue HighElt = N->getOperand(1);
7558  if (!isZeroNode(HighElt))
7559    return SDValue();
7560
7561  // Value must be a load.
7562  SDNode *Base = N->getOperand(0).getNode();
7563  if (!isa<LoadSDNode>(Base)) {
7564    if (Base->getOpcode() != ISD::BIT_CONVERT)
7565      return SDValue();
7566    Base = Base->getOperand(0).getNode();
7567    if (!isa<LoadSDNode>(Base))
7568      return SDValue();
7569  }
7570
7571  // Transform it into VZEXT_LOAD addr.
7572  LoadSDNode *LD = cast<LoadSDNode>(Base);
7573
7574  // Load must not be an extload.
7575  if (LD->getExtensionType() != ISD::NON_EXTLOAD)
7576    return SDValue();
7577
7578  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
7579  SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
7580  SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, Tys, Ops, 2);
7581  DAG.ReplaceAllUsesOfValueWith(SDValue(Base, 1), ResNode.getValue(1));
7582  return ResNode;
7583}
7584
7585/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
7586static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
7587                                      const X86Subtarget *Subtarget) {
7588  SDValue Cond = N->getOperand(0);
7589
7590  // If we have SSE[12] support, try to form min/max nodes.
7591  if (Subtarget->hasSSE2() &&
7592      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
7593    if (Cond.getOpcode() == ISD::SETCC) {
7594      // Get the LHS/RHS of the select.
7595      SDValue LHS = N->getOperand(1);
7596      SDValue RHS = N->getOperand(2);
7597      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
7598
7599      unsigned Opcode = 0;
7600      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
7601        switch (CC) {
7602        default: break;
7603        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
7604        case ISD::SETULE:
7605        case ISD::SETLE:
7606          if (!UnsafeFPMath) break;
7607          // FALL THROUGH.
7608        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
7609        case ISD::SETLT:
7610          Opcode = X86ISD::FMIN;
7611          break;
7612
7613        case ISD::SETOGT: // (X > Y) ? X : Y -> max
7614        case ISD::SETUGT:
7615        case ISD::SETGT:
7616          if (!UnsafeFPMath) break;
7617          // FALL THROUGH.
7618        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
7619        case ISD::SETGE:
7620          Opcode = X86ISD::FMAX;
7621          break;
7622        }
7623      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
7624        switch (CC) {
7625        default: break;
7626        case ISD::SETOGT: // (X > Y) ? Y : X -> min
7627        case ISD::SETUGT:
7628        case ISD::SETGT:
7629          if (!UnsafeFPMath) break;
7630          // FALL THROUGH.
7631        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
7632        case ISD::SETGE:
7633          Opcode = X86ISD::FMIN;
7634          break;
7635
7636        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
7637        case ISD::SETULE:
7638        case ISD::SETLE:
7639          if (!UnsafeFPMath) break;
7640          // FALL THROUGH.
7641        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
7642        case ISD::SETLT:
7643          Opcode = X86ISD::FMAX;
7644          break;
7645        }
7646      }
7647
7648      if (Opcode)
7649        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
7650    }
7651
7652  }
7653
7654  return SDValue();
7655}
7656
7657/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
7658static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
7659                                     const X86Subtarget *Subtarget) {
7660  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
7661  // the FP state in cases where an emms may be missing.
7662  // A preferable solution to the general problem is to figure out the right
7663  // places to insert EMMS.  This qualifies as a quick hack.
7664  StoreSDNode *St = cast<StoreSDNode>(N);
7665  if (St->getValue().getValueType().isVector() &&
7666      St->getValue().getValueType().getSizeInBits() == 64 &&
7667      isa<LoadSDNode>(St->getValue()) &&
7668      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
7669      St->getChain().hasOneUse() && !St->isVolatile()) {
7670    SDNode* LdVal = St->getValue().getNode();
7671    LoadSDNode *Ld = 0;
7672    int TokenFactorIndex = -1;
7673    SmallVector<SDValue, 8> Ops;
7674    SDNode* ChainVal = St->getChain().getNode();
7675    // Must be a store of a load.  We currently handle two cases:  the load
7676    // is a direct child, and it's under an intervening TokenFactor.  It is
7677    // possible to dig deeper under nested TokenFactors.
7678    if (ChainVal == LdVal)
7679      Ld = cast<LoadSDNode>(St->getChain());
7680    else if (St->getValue().hasOneUse() &&
7681             ChainVal->getOpcode() == ISD::TokenFactor) {
7682      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
7683        if (ChainVal->getOperand(i).getNode() == LdVal) {
7684          TokenFactorIndex = i;
7685          Ld = cast<LoadSDNode>(St->getValue());
7686        } else
7687          Ops.push_back(ChainVal->getOperand(i));
7688      }
7689    }
7690    if (Ld) {
7691      // If we are a 64-bit capable x86, lower to a single movq load/store pair.
7692      if (Subtarget->is64Bit()) {
7693        SDValue NewLd = DAG.getLoad(MVT::i64, Ld->getChain(),
7694                                      Ld->getBasePtr(), Ld->getSrcValue(),
7695                                      Ld->getSrcValueOffset(), Ld->isVolatile(),
7696                                      Ld->getAlignment());
7697        SDValue NewChain = NewLd.getValue(1);
7698        if (TokenFactorIndex != -1) {
7699          Ops.push_back(NewChain);
7700          NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
7701                                 Ops.size());
7702        }
7703        return DAG.getStore(NewChain, NewLd, St->getBasePtr(),
7704                            St->getSrcValue(), St->getSrcValueOffset(),
7705                            St->isVolatile(), St->getAlignment());
7706      }
7707
7708      // Otherwise, lower to two 32-bit copies.
7709      SDValue LoAddr = Ld->getBasePtr();
7710      SDValue HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
7711                                     DAG.getConstant(4, MVT::i32));
7712
7713      SDValue LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr,
7714                                   Ld->getSrcValue(), Ld->getSrcValueOffset(),
7715                                   Ld->isVolatile(), Ld->getAlignment());
7716      SDValue HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr,
7717                                   Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
7718                                   Ld->isVolatile(),
7719                                   MinAlign(Ld->getAlignment(), 4));
7720
7721      SDValue NewChain = LoLd.getValue(1);
7722      if (TokenFactorIndex != -1) {
7723        Ops.push_back(LoLd);
7724        Ops.push_back(HiLd);
7725        NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
7726                               Ops.size());
7727      }
7728
7729      LoAddr = St->getBasePtr();
7730      HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
7731                           DAG.getConstant(4, MVT::i32));
7732
7733      SDValue LoSt = DAG.getStore(NewChain, LoLd, LoAddr,
7734                          St->getSrcValue(), St->getSrcValueOffset(),
7735                          St->isVolatile(), St->getAlignment());
7736      SDValue HiSt = DAG.getStore(NewChain, HiLd, HiAddr,
7737                                    St->getSrcValue(),
7738                                    St->getSrcValueOffset() + 4,
7739                                    St->isVolatile(),
7740                                    MinAlign(St->getAlignment(), 4));
7741      return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt);
7742    }
7743  }
7744  return SDValue();
7745}
7746
7747/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
7748/// X86ISD::FXOR nodes.
7749static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
7750  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
7751  // F[X]OR(0.0, x) -> x
7752  // F[X]OR(x, 0.0) -> x
7753  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
7754    if (C->getValueAPF().isPosZero())
7755      return N->getOperand(1);
7756  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
7757    if (C->getValueAPF().isPosZero())
7758      return N->getOperand(0);
7759  return SDValue();
7760}
7761
7762/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
7763static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
7764  // FAND(0.0, x) -> 0.0
7765  // FAND(x, 0.0) -> 0.0
7766  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
7767    if (C->getValueAPF().isPosZero())
7768      return N->getOperand(0);
7769  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
7770    if (C->getValueAPF().isPosZero())
7771      return N->getOperand(1);
7772  return SDValue();
7773}
7774
7775
7776SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
7777                                             DAGCombinerInfo &DCI) const {
7778  SelectionDAG &DAG = DCI.DAG;
7779  switch (N->getOpcode()) {
7780  default: break;
7781  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
7782  case ISD::BUILD_VECTOR:
7783    return PerformBuildVectorCombine(N, DAG, Subtarget, *this);
7784  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
7785  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
7786  case X86ISD::FXOR:
7787  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
7788  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
7789  }
7790
7791  return SDValue();
7792}
7793
7794//===----------------------------------------------------------------------===//
7795//                           X86 Inline Assembly Support
7796//===----------------------------------------------------------------------===//
7797
7798/// getConstraintType - Given a constraint letter, return the type of
7799/// constraint it is for this target.
7800X86TargetLowering::ConstraintType
7801X86TargetLowering::getConstraintType(const std::string &Constraint) const {
7802  if (Constraint.size() == 1) {
7803    switch (Constraint[0]) {
7804    case 'A':
7805      return C_Register;
7806    case 'f':
7807    case 'r':
7808    case 'R':
7809    case 'l':
7810    case 'q':
7811    case 'Q':
7812    case 'x':
7813    case 'y':
7814    case 'Y':
7815      return C_RegisterClass;
7816    default:
7817      break;
7818    }
7819  }
7820  return TargetLowering::getConstraintType(Constraint);
7821}
7822
7823/// LowerXConstraint - try to replace an X constraint, which matches anything,
7824/// with another that has more specific requirements based on the type of the
7825/// corresponding operand.
7826const char *X86TargetLowering::
7827LowerXConstraint(MVT ConstraintVT) const {
7828  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
7829  // 'f' like normal targets.
7830  if (ConstraintVT.isFloatingPoint()) {
7831    if (Subtarget->hasSSE2())
7832      return "Y";
7833    if (Subtarget->hasSSE1())
7834      return "x";
7835  }
7836
7837  return TargetLowering::LowerXConstraint(ConstraintVT);
7838}
7839
7840/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
7841/// vector.  If it is invalid, don't add anything to Ops.
7842void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
7843                                                     char Constraint,
7844                                                     bool hasMemory,
7845                                                     std::vector<SDValue>&Ops,
7846                                                     SelectionDAG &DAG) const {
7847  SDValue Result(0, 0);
7848
7849  switch (Constraint) {
7850  default: break;
7851  case 'I':
7852    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
7853      if (C->getZExtValue() <= 31) {
7854        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
7855        break;
7856      }
7857    }
7858    return;
7859  case 'J':
7860    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
7861      if (C->getZExtValue() <= 63) {
7862        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
7863        break;
7864      }
7865    }
7866    return;
7867  case 'N':
7868    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
7869      if (C->getZExtValue() <= 255) {
7870        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
7871        break;
7872      }
7873    }
7874    return;
7875  case 'i': {
7876    // Literal immediates are always ok.
7877    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
7878      Result = DAG.getTargetConstant(CST->getZExtValue(), Op.getValueType());
7879      break;
7880    }
7881
7882    // If we are in non-pic codegen mode, we allow the address of a global (with
7883    // an optional displacement) to be used with 'i'.
7884    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
7885    int64_t Offset = 0;
7886
7887    // Match either (GA) or (GA+C)
7888    if (GA) {
7889      Offset = GA->getOffset();
7890    } else if (Op.getOpcode() == ISD::ADD) {
7891      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7892      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
7893      if (C && GA) {
7894        Offset = GA->getOffset()+C->getZExtValue();
7895      } else {
7896        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7897        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
7898        if (C && GA)
7899          Offset = GA->getOffset()+C->getZExtValue();
7900        else
7901          C = 0, GA = 0;
7902      }
7903    }
7904
7905    if (GA) {
7906      if (hasMemory)
7907        Op = LowerGlobalAddress(GA->getGlobal(), Offset, DAG);
7908      else
7909        Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
7910                                        Offset);
7911      Result = Op;
7912      break;
7913    }
7914
7915    // Otherwise, not valid for this mode.
7916    return;
7917  }
7918  }
7919
7920  if (Result.getNode()) {
7921    Ops.push_back(Result);
7922    return;
7923  }
7924  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
7925                                                      Ops, DAG);
7926}
7927
7928std::vector<unsigned> X86TargetLowering::
7929getRegClassForInlineAsmConstraint(const std::string &Constraint,
7930                                  MVT VT) const {
7931  if (Constraint.size() == 1) {
7932    // FIXME: not handling fp-stack yet!
7933    switch (Constraint[0]) {      // GCC X86 Constraint Letters
7934    default: break;  // Unknown constraint letter
7935    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
7936    case 'Q':   // Q_REGS
7937      if (VT == MVT::i32)
7938        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
7939      else if (VT == MVT::i16)
7940        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
7941      else if (VT == MVT::i8)
7942        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
7943      else if (VT == MVT::i64)
7944        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
7945      break;
7946    }
7947  }
7948
7949  return std::vector<unsigned>();
7950}
7951
7952std::pair<unsigned, const TargetRegisterClass*>
7953X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
7954                                                MVT VT) const {
7955  // First, see if this is a constraint that directly corresponds to an LLVM
7956  // register class.
7957  if (Constraint.size() == 1) {
7958    // GCC Constraint Letters
7959    switch (Constraint[0]) {
7960    default: break;
7961    case 'r':   // GENERAL_REGS
7962    case 'R':   // LEGACY_REGS
7963    case 'l':   // INDEX_REGS
7964      if (VT == MVT::i8)
7965        return std::make_pair(0U, X86::GR8RegisterClass);
7966      if (VT == MVT::i16)
7967        return std::make_pair(0U, X86::GR16RegisterClass);
7968      if (VT == MVT::i32 || !Subtarget->is64Bit())
7969        return std::make_pair(0U, X86::GR32RegisterClass);
7970      return std::make_pair(0U, X86::GR64RegisterClass);
7971    case 'f':  // FP Stack registers.
7972      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
7973      // value to the correct fpstack register class.
7974      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
7975        return std::make_pair(0U, X86::RFP32RegisterClass);
7976      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
7977        return std::make_pair(0U, X86::RFP64RegisterClass);
7978      return std::make_pair(0U, X86::RFP80RegisterClass);
7979    case 'y':   // MMX_REGS if MMX allowed.
7980      if (!Subtarget->hasMMX()) break;
7981      return std::make_pair(0U, X86::VR64RegisterClass);
7982    case 'Y':   // SSE_REGS if SSE2 allowed
7983      if (!Subtarget->hasSSE2()) break;
7984      // FALL THROUGH.
7985    case 'x':   // SSE_REGS if SSE1 allowed
7986      if (!Subtarget->hasSSE1()) break;
7987
7988      switch (VT.getSimpleVT()) {
7989      default: break;
7990      // Scalar SSE types.
7991      case MVT::f32:
7992      case MVT::i32:
7993        return std::make_pair(0U, X86::FR32RegisterClass);
7994      case MVT::f64:
7995      case MVT::i64:
7996        return std::make_pair(0U, X86::FR64RegisterClass);
7997      // Vector types.
7998      case MVT::v16i8:
7999      case MVT::v8i16:
8000      case MVT::v4i32:
8001      case MVT::v2i64:
8002      case MVT::v4f32:
8003      case MVT::v2f64:
8004        return std::make_pair(0U, X86::VR128RegisterClass);
8005      }
8006      break;
8007    }
8008  }
8009
8010  // Use the default implementation in TargetLowering to convert the register
8011  // constraint into a member of a register class.
8012  std::pair<unsigned, const TargetRegisterClass*> Res;
8013  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8014
8015  // Not found as a standard register?
8016  if (Res.second == 0) {
8017    // GCC calls "st(0)" just plain "st".
8018    if (StringsEqualNoCase("{st}", Constraint)) {
8019      Res.first = X86::ST0;
8020      Res.second = X86::RFP80RegisterClass;
8021    }
8022    // 'A' means EAX + EDX.
8023    if (Constraint == "A") {
8024      Res.first = X86::EAX;
8025      Res.second = X86::GRADRegisterClass;
8026    }
8027    return Res;
8028  }
8029
8030  // Otherwise, check to see if this is a register class of the wrong value
8031  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
8032  // turn into {ax},{dx}.
8033  if (Res.second->hasType(VT))
8034    return Res;   // Correct type already, nothing to do.
8035
8036  // All of the single-register GCC register classes map their values onto
8037  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
8038  // really want an 8-bit or 32-bit register, map to the appropriate register
8039  // class and return the appropriate register.
8040  if (Res.second == X86::GR16RegisterClass) {
8041    if (VT == MVT::i8) {
8042      unsigned DestReg = 0;
8043      switch (Res.first) {
8044      default: break;
8045      case X86::AX: DestReg = X86::AL; break;
8046      case X86::DX: DestReg = X86::DL; break;
8047      case X86::CX: DestReg = X86::CL; break;
8048      case X86::BX: DestReg = X86::BL; break;
8049      }
8050      if (DestReg) {
8051        Res.first = DestReg;
8052        Res.second = Res.second = X86::GR8RegisterClass;
8053      }
8054    } else if (VT == MVT::i32) {
8055      unsigned DestReg = 0;
8056      switch (Res.first) {
8057      default: break;
8058      case X86::AX: DestReg = X86::EAX; break;
8059      case X86::DX: DestReg = X86::EDX; break;
8060      case X86::CX: DestReg = X86::ECX; break;
8061      case X86::BX: DestReg = X86::EBX; break;
8062      case X86::SI: DestReg = X86::ESI; break;
8063      case X86::DI: DestReg = X86::EDI; break;
8064      case X86::BP: DestReg = X86::EBP; break;
8065      case X86::SP: DestReg = X86::ESP; break;
8066      }
8067      if (DestReg) {
8068        Res.first = DestReg;
8069        Res.second = Res.second = X86::GR32RegisterClass;
8070      }
8071    } else if (VT == MVT::i64) {
8072      unsigned DestReg = 0;
8073      switch (Res.first) {
8074      default: break;
8075      case X86::AX: DestReg = X86::RAX; break;
8076      case X86::DX: DestReg = X86::RDX; break;
8077      case X86::CX: DestReg = X86::RCX; break;
8078      case X86::BX: DestReg = X86::RBX; break;
8079      case X86::SI: DestReg = X86::RSI; break;
8080      case X86::DI: DestReg = X86::RDI; break;
8081      case X86::BP: DestReg = X86::RBP; break;
8082      case X86::SP: DestReg = X86::RSP; break;
8083      }
8084      if (DestReg) {
8085        Res.first = DestReg;
8086        Res.second = Res.second = X86::GR64RegisterClass;
8087      }
8088    }
8089  } else if (Res.second == X86::FR32RegisterClass ||
8090             Res.second == X86::FR64RegisterClass ||
8091             Res.second == X86::VR128RegisterClass) {
8092    // Handle references to XMM physical registers that got mapped into the
8093    // wrong class.  This can happen with constraints like {xmm0} where the
8094    // target independent register mapper will just pick the first match it can
8095    // find, ignoring the required type.
8096    if (VT == MVT::f32)
8097      Res.second = X86::FR32RegisterClass;
8098    else if (VT == MVT::f64)
8099      Res.second = X86::FR64RegisterClass;
8100    else if (X86::VR128RegisterClass->hasType(VT))
8101      Res.second = X86::VR128RegisterClass;
8102  }
8103
8104  return Res;
8105}
8106
8107//===----------------------------------------------------------------------===//
8108//                           X86 Widen vector type
8109//===----------------------------------------------------------------------===//
8110
8111/// getWidenVectorType: given a vector type, returns the type to widen
8112/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
8113/// If there is no vector type that we want to widen to, returns MVT::Other
8114/// When and where to widen is target dependent based on the cost of
8115/// scalarizing vs using the wider vector type.
8116
8117MVT X86TargetLowering::getWidenVectorType(MVT VT) const {
8118  assert(VT.isVector());
8119  if (isTypeLegal(VT))
8120    return VT;
8121
8122  // TODO: In computeRegisterProperty, we can compute the list of legal vector
8123  //       type based on element type.  This would speed up our search (though
8124  //       it may not be worth it since the size of the list is relatively
8125  //       small).
8126  MVT EltVT = VT.getVectorElementType();
8127  unsigned NElts = VT.getVectorNumElements();
8128
8129  // On X86, it make sense to widen any vector wider than 1
8130  if (NElts <= 1)
8131    return MVT::Other;
8132
8133  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
8134       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
8135    MVT SVT = (MVT::SimpleValueType)nVT;
8136
8137    if (isTypeLegal(SVT) &&
8138        SVT.getVectorElementType() == EltVT &&
8139        SVT.getVectorNumElements() > NElts)
8140      return SVT;
8141  }
8142  return MVT::Other;
8143}
8144