X86ISelLowering.cpp revision 4c5e43da7792f75567b693105cc53e3f1992ad98
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86ISelLowering.h"
16#include "Utils/X86ShuffleDecode.h"
17#include "X86CallingConv.h"
18#include "X86FrameLowering.h"
19#include "X86InstrBuilder.h"
20#include "X86MachineFunctionInfo.h"
21#include "X86TargetMachine.h"
22#include "X86TargetObjectFile.h"
23#include "llvm/ADT/SmallBitVector.h"
24#include "llvm/ADT/SmallSet.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/ADT/StringSwitch.h"
28#include "llvm/CodeGen/IntrinsicLowering.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/IR/CallSite.h"
36#include "llvm/IR/CallingConv.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/DerivedTypes.h"
39#include "llvm/IR/Function.h"
40#include "llvm/IR/GlobalAlias.h"
41#include "llvm/IR/GlobalVariable.h"
42#include "llvm/IR/Instructions.h"
43#include "llvm/IR/Intrinsics.h"
44#include "llvm/MC/MCAsmInfo.h"
45#include "llvm/MC/MCContext.h"
46#include "llvm/MC/MCExpr.h"
47#include "llvm/MC/MCSymbol.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Target/TargetOptions.h"
53#include "X86IntrinsicsInfo.h"
54#include <bitset>
55#include <numeric>
56#include <cctype>
57using namespace llvm;
58
59#define DEBUG_TYPE "x86-isel"
60
61STATISTIC(NumTailCalls, "Number of tail calls");
62
63static cl::opt<bool> ExperimentalVectorWideningLegalization(
64    "x86-experimental-vector-widening-legalization", cl::init(false),
65    cl::desc("Enable an experimental vector type legalization through widening "
66             "rather than promotion."),
67    cl::Hidden);
68
69static cl::opt<int> ReciprocalEstimateRefinementSteps(
70    "x86-recip-refinement-steps", cl::init(1),
71    cl::desc("Specify the number of Newton-Raphson iterations applied to the "
72             "result of the hardware reciprocal estimate instruction."),
73    cl::NotHidden);
74
75// Forward declarations.
76static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
77                       SDValue V2);
78
79X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
80                                     const X86Subtarget &STI)
81    : TargetLowering(TM), Subtarget(&STI) {
82  X86ScalarSSEf64 = Subtarget->hasSSE2();
83  X86ScalarSSEf32 = Subtarget->hasSSE1();
84  TD = getDataLayout();
85
86  // Set up the TargetLowering object.
87  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
88
89  // X86 is weird. It always uses i8 for shift amounts and setcc results.
90  setBooleanContents(ZeroOrOneBooleanContent);
91  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
92  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
93
94  // For 64-bit, since we have so many registers, use the ILP scheduler.
95  // For 32-bit, use the register pressure specific scheduling.
96  // For Atom, always use ILP scheduling.
97  if (Subtarget->isAtom())
98    setSchedulingPreference(Sched::ILP);
99  else if (Subtarget->is64Bit())
100    setSchedulingPreference(Sched::ILP);
101  else
102    setSchedulingPreference(Sched::RegPressure);
103  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
104  setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
105
106  // Bypass expensive divides on Atom when compiling with O2.
107  if (TM.getOptLevel() >= CodeGenOpt::Default) {
108    if (Subtarget->hasSlowDivide32())
109      addBypassSlowDiv(32, 8);
110    if (Subtarget->hasSlowDivide64() && Subtarget->is64Bit())
111      addBypassSlowDiv(64, 16);
112  }
113
114  if (Subtarget->isTargetKnownWindowsMSVC()) {
115    // Setup Windows compiler runtime calls.
116    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
117    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
118    setLibcallName(RTLIB::SREM_I64, "_allrem");
119    setLibcallName(RTLIB::UREM_I64, "_aullrem");
120    setLibcallName(RTLIB::MUL_I64, "_allmul");
121    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
122    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
123    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
124    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
125    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
126
127    // The _ftol2 runtime function has an unusual calling conv, which
128    // is modeled by a special pseudo-instruction.
129    setLibcallName(RTLIB::FPTOUINT_F64_I64, nullptr);
130    setLibcallName(RTLIB::FPTOUINT_F32_I64, nullptr);
131    setLibcallName(RTLIB::FPTOUINT_F64_I32, nullptr);
132    setLibcallName(RTLIB::FPTOUINT_F32_I32, nullptr);
133  }
134
135  if (Subtarget->isTargetDarwin()) {
136    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
137    setUseUnderscoreSetJmp(false);
138    setUseUnderscoreLongJmp(false);
139  } else if (Subtarget->isTargetWindowsGNU()) {
140    // MS runtime is weird: it exports _setjmp, but longjmp!
141    setUseUnderscoreSetJmp(true);
142    setUseUnderscoreLongJmp(false);
143  } else {
144    setUseUnderscoreSetJmp(true);
145    setUseUnderscoreLongJmp(true);
146  }
147
148  // Set up the register classes.
149  addRegisterClass(MVT::i8, &X86::GR8RegClass);
150  addRegisterClass(MVT::i16, &X86::GR16RegClass);
151  addRegisterClass(MVT::i32, &X86::GR32RegClass);
152  if (Subtarget->is64Bit())
153    addRegisterClass(MVT::i64, &X86::GR64RegClass);
154
155  for (MVT VT : MVT::integer_valuetypes())
156    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
157
158  // We don't accept any truncstore of integer registers.
159  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
160  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
161  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
162  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
163  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
164  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
165
166  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
167
168  // SETOEQ and SETUNE require checking two conditions.
169  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
170  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
171  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
172  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
173  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
174  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
175
176  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
177  // operation.
178  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
179  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
180  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
181
182  if (Subtarget->is64Bit()) {
183    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
184    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
185  } else if (!TM.Options.UseSoftFloat) {
186    // We have an algorithm for SSE2->double, and we turn this into a
187    // 64-bit FILD followed by conditional FADD for other targets.
188    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
189    // We have an algorithm for SSE2, and we turn this into a 64-bit
190    // FILD for other targets.
191    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
192  }
193
194  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
195  // this operation.
196  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
197  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
198
199  if (!TM.Options.UseSoftFloat) {
200    // SSE has no i16 to fp conversion, only i32
201    if (X86ScalarSSEf32) {
202      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
203      // f32 and f64 cases are Legal, f80 case is not
204      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
205    } else {
206      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
207      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
208    }
209  } else {
210    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
211    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
212  }
213
214  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
215  // are Legal, f80 is custom lowered.
216  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
217  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
218
219  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
220  // this operation.
221  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
222  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
223
224  if (X86ScalarSSEf32) {
225    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
226    // f32 and f64 cases are Legal, f80 case is not
227    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
228  } else {
229    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
230    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
231  }
232
233  // Handle FP_TO_UINT by promoting the destination to a larger signed
234  // conversion.
235  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
236  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
237  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
238
239  if (Subtarget->is64Bit()) {
240    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
241    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
242  } else if (!TM.Options.UseSoftFloat) {
243    // Since AVX is a superset of SSE3, only check for SSE here.
244    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
245      // Expand FP_TO_UINT into a select.
246      // FIXME: We would like to use a Custom expander here eventually to do
247      // the optimal thing for SSE vs. the default expansion in the legalizer.
248      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
249    else
250      // With SSE3 we can use fisttpll to convert to a signed i64; without
251      // SSE, we're stuck with a fistpll.
252      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
253  }
254
255  if (isTargetFTOL()) {
256    // Use the _ftol2 runtime function, which has a pseudo-instruction
257    // to handle its weird calling convention.
258    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
259  }
260
261  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
262  if (!X86ScalarSSEf64) {
263    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
264    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
265    if (Subtarget->is64Bit()) {
266      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
267      // Without SSE, i64->f64 goes through memory.
268      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
269    }
270  }
271
272  // Scalar integer divide and remainder are lowered to use operations that
273  // produce two results, to match the available instructions. This exposes
274  // the two-result form to trivial CSE, which is able to combine x/y and x%y
275  // into a single instruction.
276  //
277  // Scalar integer multiply-high is also lowered to use two-result
278  // operations, to match the available instructions. However, plain multiply
279  // (low) operations are left as Legal, as there are single-result
280  // instructions for this in x86. Using the two-result multiply instructions
281  // when both high and low results are needed must be arranged by dagcombine.
282  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
283    MVT VT = IntVTs[i];
284    setOperationAction(ISD::MULHS, VT, Expand);
285    setOperationAction(ISD::MULHU, VT, Expand);
286    setOperationAction(ISD::SDIV, VT, Expand);
287    setOperationAction(ISD::UDIV, VT, Expand);
288    setOperationAction(ISD::SREM, VT, Expand);
289    setOperationAction(ISD::UREM, VT, Expand);
290
291    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
292    setOperationAction(ISD::ADDC, VT, Custom);
293    setOperationAction(ISD::ADDE, VT, Custom);
294    setOperationAction(ISD::SUBC, VT, Custom);
295    setOperationAction(ISD::SUBE, VT, Custom);
296  }
297
298  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
299  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
300  setOperationAction(ISD::BR_CC            , MVT::f32,   Expand);
301  setOperationAction(ISD::BR_CC            , MVT::f64,   Expand);
302  setOperationAction(ISD::BR_CC            , MVT::f80,   Expand);
303  setOperationAction(ISD::BR_CC            , MVT::i8,    Expand);
304  setOperationAction(ISD::BR_CC            , MVT::i16,   Expand);
305  setOperationAction(ISD::BR_CC            , MVT::i32,   Expand);
306  setOperationAction(ISD::BR_CC            , MVT::i64,   Expand);
307  setOperationAction(ISD::SELECT_CC        , MVT::f32,   Expand);
308  setOperationAction(ISD::SELECT_CC        , MVT::f64,   Expand);
309  setOperationAction(ISD::SELECT_CC        , MVT::f80,   Expand);
310  setOperationAction(ISD::SELECT_CC        , MVT::i8,    Expand);
311  setOperationAction(ISD::SELECT_CC        , MVT::i16,   Expand);
312  setOperationAction(ISD::SELECT_CC        , MVT::i32,   Expand);
313  setOperationAction(ISD::SELECT_CC        , MVT::i64,   Expand);
314  if (Subtarget->is64Bit())
315    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
316  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
317  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
318  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
319  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
320  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
321  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
322  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
323  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
324
325  // Promote the i8 variants and force them on up to i32 which has a shorter
326  // encoding.
327  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
328  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
329  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
330  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
331  if (Subtarget->hasBMI()) {
332    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
333    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
334    if (Subtarget->is64Bit())
335      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
336  } else {
337    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
338    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
339    if (Subtarget->is64Bit())
340      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
341  }
342
343  if (Subtarget->hasLZCNT()) {
344    // When promoting the i8 variants, force them to i32 for a shorter
345    // encoding.
346    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
347    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
348    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
349    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
350    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
351    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
352    if (Subtarget->is64Bit())
353      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
354  } else {
355    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
356    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
357    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
358    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
359    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
360    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
361    if (Subtarget->is64Bit()) {
362      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
363      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
364    }
365  }
366
367  // Special handling for half-precision floating point conversions.
368  // If we don't have F16C support, then lower half float conversions
369  // into library calls.
370  if (TM.Options.UseSoftFloat || !Subtarget->hasF16C()) {
371    setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
372    setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
373  }
374
375  // There's never any support for operations beyond MVT::f32.
376  setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
377  setOperationAction(ISD::FP16_TO_FP, MVT::f80, Expand);
378  setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
379  setOperationAction(ISD::FP_TO_FP16, MVT::f80, Expand);
380
381  setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
382  setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
383  setLoadExtAction(ISD::EXTLOAD, MVT::f80, MVT::f16, Expand);
384  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
385  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
386  setTruncStoreAction(MVT::f80, MVT::f16, Expand);
387
388  if (Subtarget->hasPOPCNT()) {
389    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
390  } else {
391    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
392    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
393    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
394    if (Subtarget->is64Bit())
395      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
396  }
397
398  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
399
400  if (!Subtarget->hasMOVBE())
401    setOperationAction(ISD::BSWAP          , MVT::i16  , Expand);
402
403  // These should be promoted to a larger select which is supported.
404  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
405  // X86 wants to expand cmov itself.
406  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
407  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
408  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
409  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
410  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
411  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
412  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
413  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
414  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
415  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
416  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
417  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
418  if (Subtarget->is64Bit()) {
419    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
420    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
421  }
422  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
423  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
424  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
425  // support continuation, user-level threading, and etc.. As a result, no
426  // other SjLj exception interfaces are implemented and please don't build
427  // your own exception handling based on them.
428  // LLVM/Clang supports zero-cost DWARF exception handling.
429  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
430  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
431
432  // Darwin ABI issue.
433  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
434  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
435  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
436  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
437  if (Subtarget->is64Bit())
438    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
439  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
440  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
441  if (Subtarget->is64Bit()) {
442    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
443    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
444    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
445    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
446    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
447  }
448  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
449  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
450  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
451  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
452  if (Subtarget->is64Bit()) {
453    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
454    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
455    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
456  }
457
458  if (Subtarget->hasSSE1())
459    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
460
461  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
462
463  // Expand certain atomics
464  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
465    MVT VT = IntVTs[i];
466    setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom);
467    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
468    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
469  }
470
471  if (Subtarget->hasCmpxchg16b()) {
472    setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
473  }
474
475  // FIXME - use subtarget debug flags
476  if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetELF() &&
477      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWin64()) {
478    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
479  }
480
481  if (Subtarget->is64Bit()) {
482    setExceptionPointerRegister(X86::RAX);
483    setExceptionSelectorRegister(X86::RDX);
484  } else {
485    setExceptionPointerRegister(X86::EAX);
486    setExceptionSelectorRegister(X86::EDX);
487  }
488  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
489  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
490
491  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
492  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
493
494  setOperationAction(ISD::TRAP, MVT::Other, Legal);
495  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
496
497  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
498  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
499  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
500  if (Subtarget->is64Bit() && !Subtarget->isTargetWin64()) {
501    // TargetInfo::X86_64ABIBuiltinVaList
502    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
503    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
504  } else {
505    // TargetInfo::CharPtrBuiltinVaList
506    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
507    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
508  }
509
510  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
511  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
512
513  setOperationAction(ISD::DYNAMIC_STACKALLOC, getPointerTy(), Custom);
514
515  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
516    // f32 and f64 use SSE.
517    // Set up the FP register classes.
518    addRegisterClass(MVT::f32, &X86::FR32RegClass);
519    addRegisterClass(MVT::f64, &X86::FR64RegClass);
520
521    // Use ANDPD to simulate FABS.
522    setOperationAction(ISD::FABS , MVT::f64, Custom);
523    setOperationAction(ISD::FABS , MVT::f32, Custom);
524
525    // Use XORP to simulate FNEG.
526    setOperationAction(ISD::FNEG , MVT::f64, Custom);
527    setOperationAction(ISD::FNEG , MVT::f32, Custom);
528
529    // Use ANDPD and ORPD to simulate FCOPYSIGN.
530    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
531    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
532
533    // Lower this to FGETSIGNx86 plus an AND.
534    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
535    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
536
537    // We don't support sin/cos/fmod
538    setOperationAction(ISD::FSIN   , MVT::f64, Expand);
539    setOperationAction(ISD::FCOS   , MVT::f64, Expand);
540    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
541    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
542    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
543    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
544
545    // Expand FP immediates into loads from the stack, except for the special
546    // cases we handle.
547    addLegalFPImmediate(APFloat(+0.0)); // xorpd
548    addLegalFPImmediate(APFloat(+0.0f)); // xorps
549  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
550    // Use SSE for f32, x87 for f64.
551    // Set up the FP register classes.
552    addRegisterClass(MVT::f32, &X86::FR32RegClass);
553    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
554
555    // Use ANDPS to simulate FABS.
556    setOperationAction(ISD::FABS , MVT::f32, Custom);
557
558    // Use XORP to simulate FNEG.
559    setOperationAction(ISD::FNEG , MVT::f32, Custom);
560
561    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
562
563    // Use ANDPS and ORPS to simulate FCOPYSIGN.
564    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
565    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
566
567    // We don't support sin/cos/fmod
568    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
569    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
570    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
571
572    // Special cases we handle for FP constants.
573    addLegalFPImmediate(APFloat(+0.0f)); // xorps
574    addLegalFPImmediate(APFloat(+0.0)); // FLD0
575    addLegalFPImmediate(APFloat(+1.0)); // FLD1
576    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
577    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
578
579    if (!TM.Options.UnsafeFPMath) {
580      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
581      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
582      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
583    }
584  } else if (!TM.Options.UseSoftFloat) {
585    // f32 and f64 in x87.
586    // Set up the FP register classes.
587    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
588    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
589
590    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
591    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
592    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
593    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
594
595    if (!TM.Options.UnsafeFPMath) {
596      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
597      setOperationAction(ISD::FSIN   , MVT::f32, Expand);
598      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
599      setOperationAction(ISD::FCOS   , MVT::f32, Expand);
600      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
601      setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
602    }
603    addLegalFPImmediate(APFloat(+0.0)); // FLD0
604    addLegalFPImmediate(APFloat(+1.0)); // FLD1
605    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
606    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
607    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
608    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
609    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
610    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
611  }
612
613  // We don't support FMA.
614  setOperationAction(ISD::FMA, MVT::f64, Expand);
615  setOperationAction(ISD::FMA, MVT::f32, Expand);
616
617  // Long double always uses X87.
618  if (!TM.Options.UseSoftFloat) {
619    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
620    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
621    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
622    {
623      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
624      addLegalFPImmediate(TmpFlt);  // FLD0
625      TmpFlt.changeSign();
626      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
627
628      bool ignored;
629      APFloat TmpFlt2(+1.0);
630      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
631                      &ignored);
632      addLegalFPImmediate(TmpFlt2);  // FLD1
633      TmpFlt2.changeSign();
634      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
635    }
636
637    if (!TM.Options.UnsafeFPMath) {
638      setOperationAction(ISD::FSIN   , MVT::f80, Expand);
639      setOperationAction(ISD::FCOS   , MVT::f80, Expand);
640      setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
641    }
642
643    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
644    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
645    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
646    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
647    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
648    setOperationAction(ISD::FMA, MVT::f80, Expand);
649  }
650
651  // Always use a library call for pow.
652  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
653  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
654  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
655
656  setOperationAction(ISD::FLOG, MVT::f80, Expand);
657  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
658  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
659  setOperationAction(ISD::FEXP, MVT::f80, Expand);
660  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
661  setOperationAction(ISD::FMINNUM, MVT::f80, Expand);
662  setOperationAction(ISD::FMAXNUM, MVT::f80, Expand);
663
664  // First set operation action for all vector types to either promote
665  // (for widening) or expand (for scalarization). Then we will selectively
666  // turn on ones that can be effectively codegen'd.
667  for (MVT VT : MVT::vector_valuetypes()) {
668    setOperationAction(ISD::ADD , VT, Expand);
669    setOperationAction(ISD::SUB , VT, Expand);
670    setOperationAction(ISD::FADD, VT, Expand);
671    setOperationAction(ISD::FNEG, VT, Expand);
672    setOperationAction(ISD::FSUB, VT, Expand);
673    setOperationAction(ISD::MUL , VT, Expand);
674    setOperationAction(ISD::FMUL, VT, Expand);
675    setOperationAction(ISD::SDIV, VT, Expand);
676    setOperationAction(ISD::UDIV, VT, Expand);
677    setOperationAction(ISD::FDIV, VT, Expand);
678    setOperationAction(ISD::SREM, VT, Expand);
679    setOperationAction(ISD::UREM, VT, Expand);
680    setOperationAction(ISD::LOAD, VT, Expand);
681    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
682    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
683    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
684    setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
685    setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
686    setOperationAction(ISD::FABS, VT, Expand);
687    setOperationAction(ISD::FSIN, VT, Expand);
688    setOperationAction(ISD::FSINCOS, VT, Expand);
689    setOperationAction(ISD::FCOS, VT, Expand);
690    setOperationAction(ISD::FSINCOS, VT, Expand);
691    setOperationAction(ISD::FREM, VT, Expand);
692    setOperationAction(ISD::FMA,  VT, Expand);
693    setOperationAction(ISD::FPOWI, VT, Expand);
694    setOperationAction(ISD::FSQRT, VT, Expand);
695    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
696    setOperationAction(ISD::FFLOOR, VT, Expand);
697    setOperationAction(ISD::FCEIL, VT, Expand);
698    setOperationAction(ISD::FTRUNC, VT, Expand);
699    setOperationAction(ISD::FRINT, VT, Expand);
700    setOperationAction(ISD::FNEARBYINT, VT, Expand);
701    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
702    setOperationAction(ISD::MULHS, VT, Expand);
703    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
704    setOperationAction(ISD::MULHU, VT, Expand);
705    setOperationAction(ISD::SDIVREM, VT, Expand);
706    setOperationAction(ISD::UDIVREM, VT, Expand);
707    setOperationAction(ISD::FPOW, VT, Expand);
708    setOperationAction(ISD::CTPOP, VT, Expand);
709    setOperationAction(ISD::CTTZ, VT, Expand);
710    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
711    setOperationAction(ISD::CTLZ, VT, Expand);
712    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
713    setOperationAction(ISD::SHL, VT, Expand);
714    setOperationAction(ISD::SRA, VT, Expand);
715    setOperationAction(ISD::SRL, VT, Expand);
716    setOperationAction(ISD::ROTL, VT, Expand);
717    setOperationAction(ISD::ROTR, VT, Expand);
718    setOperationAction(ISD::BSWAP, VT, Expand);
719    setOperationAction(ISD::SETCC, VT, Expand);
720    setOperationAction(ISD::FLOG, VT, Expand);
721    setOperationAction(ISD::FLOG2, VT, Expand);
722    setOperationAction(ISD::FLOG10, VT, Expand);
723    setOperationAction(ISD::FEXP, VT, Expand);
724    setOperationAction(ISD::FEXP2, VT, Expand);
725    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
726    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
727    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
728    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
729    setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
730    setOperationAction(ISD::TRUNCATE, VT, Expand);
731    setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
732    setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
733    setOperationAction(ISD::ANY_EXTEND, VT, Expand);
734    setOperationAction(ISD::VSELECT, VT, Expand);
735    setOperationAction(ISD::SELECT_CC, VT, Expand);
736    for (MVT InnerVT : MVT::vector_valuetypes()) {
737      setTruncStoreAction(InnerVT, VT, Expand);
738
739      setLoadExtAction(ISD::SEXTLOAD, InnerVT, VT, Expand);
740      setLoadExtAction(ISD::ZEXTLOAD, InnerVT, VT, Expand);
741
742      // N.b. ISD::EXTLOAD legality is basically ignored except for i1-like
743      // types, we have to deal with them whether we ask for Expansion or not.
744      // Setting Expand causes its own optimisation problems though, so leave
745      // them legal.
746      if (VT.getVectorElementType() == MVT::i1)
747        setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
748    }
749  }
750
751  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
752  // with -msoft-float, disable use of MMX as well.
753  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
754    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
755    // No operations on x86mmx supported, everything uses intrinsics.
756  }
757
758  // MMX-sized vectors (other than x86mmx) are expected to be expanded
759  // into smaller operations.
760  for (MVT MMXTy : {MVT::v8i8, MVT::v4i16, MVT::v2i32, MVT::v1i64}) {
761    setOperationAction(ISD::MULHS,              MMXTy,      Expand);
762    setOperationAction(ISD::AND,                MMXTy,      Expand);
763    setOperationAction(ISD::OR,                 MMXTy,      Expand);
764    setOperationAction(ISD::XOR,                MMXTy,      Expand);
765    setOperationAction(ISD::SCALAR_TO_VECTOR,   MMXTy,      Expand);
766    setOperationAction(ISD::SELECT,             MMXTy,      Expand);
767    setOperationAction(ISD::BITCAST,            MMXTy,      Expand);
768  }
769  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
770
771  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
772    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
773
774    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
775    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
776    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
777    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
778    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
779    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
780    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
781    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
782    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
783    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
784    setOperationAction(ISD::VSELECT,            MVT::v4f32, Custom);
785    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
786    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
787    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i32, Custom);
788  }
789
790  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
791    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
792
793    // FIXME: Unfortunately, -soft-float and -no-implicit-float mean XMM
794    // registers cannot be used even for integer operations.
795    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
796    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
797    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
798    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
799
800    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
801    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
802    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
803    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
804    setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
805    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
806    setOperationAction(ISD::UMUL_LOHI,          MVT::v4i32, Custom);
807    setOperationAction(ISD::SMUL_LOHI,          MVT::v4i32, Custom);
808    setOperationAction(ISD::MULHU,              MVT::v8i16, Legal);
809    setOperationAction(ISD::MULHS,              MVT::v8i16, Legal);
810    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
811    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
812    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
813    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
814    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
815    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
816    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
817    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
818    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
819    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
820    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
821    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
822
823    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
824    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
825    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
826    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
827
828    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
829    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
830    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
831    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
832    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
833
834    // Only provide customized ctpop vector bit twiddling for vector types we
835    // know to perform better than using the popcnt instructions on each vector
836    // element. If popcnt isn't supported, always provide the custom version.
837    if (!Subtarget->hasPOPCNT()) {
838      setOperationAction(ISD::CTPOP,            MVT::v4i32, Custom);
839      setOperationAction(ISD::CTPOP,            MVT::v2i64, Custom);
840    }
841
842    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
843    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
844      MVT VT = (MVT::SimpleValueType)i;
845      // Do not attempt to custom lower non-power-of-2 vectors
846      if (!isPowerOf2_32(VT.getVectorNumElements()))
847        continue;
848      // Do not attempt to custom lower non-128-bit vectors
849      if (!VT.is128BitVector())
850        continue;
851      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
852      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
853      setOperationAction(ISD::VSELECT,            VT, Custom);
854      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
855    }
856
857    // We support custom legalizing of sext and anyext loads for specific
858    // memory vector types which we can load as a scalar (or sequence of
859    // scalars) and extend in-register to a legal 128-bit vector type. For sext
860    // loads these must work with a single scalar load.
861    for (MVT VT : MVT::integer_vector_valuetypes()) {
862      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Custom);
863      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Custom);
864      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i8, Custom);
865      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Custom);
866      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Custom);
867      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Custom);
868      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Custom);
869      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Custom);
870      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8i8, Custom);
871    }
872
873    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
874    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
875    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
876    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
877    setOperationAction(ISD::VSELECT,            MVT::v2f64, Custom);
878    setOperationAction(ISD::VSELECT,            MVT::v2i64, Custom);
879    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
880    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
881
882    if (Subtarget->is64Bit()) {
883      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
884      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
885    }
886
887    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
888    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
889      MVT VT = (MVT::SimpleValueType)i;
890
891      // Do not attempt to promote non-128-bit vectors
892      if (!VT.is128BitVector())
893        continue;
894
895      setOperationAction(ISD::AND,    VT, Promote);
896      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
897      setOperationAction(ISD::OR,     VT, Promote);
898      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
899      setOperationAction(ISD::XOR,    VT, Promote);
900      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
901      setOperationAction(ISD::LOAD,   VT, Promote);
902      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
903      setOperationAction(ISD::SELECT, VT, Promote);
904      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
905    }
906
907    // Custom lower v2i64 and v2f64 selects.
908    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
909    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
910    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
911    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
912
913    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
914    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
915
916    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
917    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
918    // As there is no 64-bit GPR available, we need build a special custom
919    // sequence to convert from v2i32 to v2f32.
920    if (!Subtarget->is64Bit())
921      setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
922
923    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
924    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
925
926    for (MVT VT : MVT::fp_vector_valuetypes())
927      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2f32, Legal);
928
929    setOperationAction(ISD::BITCAST,            MVT::v2i32, Custom);
930    setOperationAction(ISD::BITCAST,            MVT::v4i16, Custom);
931    setOperationAction(ISD::BITCAST,            MVT::v8i8,  Custom);
932  }
933
934  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE41()) {
935    for (MVT RoundedTy : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
936      setOperationAction(ISD::FFLOOR,           RoundedTy,  Legal);
937      setOperationAction(ISD::FCEIL,            RoundedTy,  Legal);
938      setOperationAction(ISD::FTRUNC,           RoundedTy,  Legal);
939      setOperationAction(ISD::FRINT,            RoundedTy,  Legal);
940      setOperationAction(ISD::FNEARBYINT,       RoundedTy,  Legal);
941    }
942
943    // FIXME: Do we need to handle scalar-to-vector here?
944    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
945
946    // We directly match byte blends in the backend as they match the VSELECT
947    // condition form.
948    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
949
950    // SSE41 brings specific instructions for doing vector sign extend even in
951    // cases where we don't have SRA.
952    for (MVT VT : MVT::integer_vector_valuetypes()) {
953      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Custom);
954      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Custom);
955      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Custom);
956    }
957
958    // SSE41 also has vector sign/zero extending loads, PMOV[SZ]X
959    setLoadExtAction(ISD::SEXTLOAD, MVT::v8i16, MVT::v8i8,  Legal);
960    setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i8,  Legal);
961    setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i8,  Legal);
962    setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i16, Legal);
963    setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i16, Legal);
964    setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i32, Legal);
965
966    setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i16, MVT::v8i8,  Legal);
967    setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i8,  Legal);
968    setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i8,  Legal);
969    setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i16, Legal);
970    setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i16, Legal);
971    setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i32, Legal);
972
973    // i8 and i16 vectors are custom because the source register and source
974    // source memory operand types are not the same width.  f32 vectors are
975    // custom since the immediate controlling the insert encodes additional
976    // information.
977    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
978    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
979    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
980    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
981
982    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
983    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
984    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
985    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
986
987    // FIXME: these should be Legal, but that's only for the case where
988    // the index is constant.  For now custom expand to deal with that.
989    if (Subtarget->is64Bit()) {
990      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
991      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
992    }
993  }
994
995  if (Subtarget->hasSSE2()) {
996    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
997    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
998
999    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1000    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1001
1002    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1003    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1004
1005    // In the customized shift lowering, the legal cases in AVX2 will be
1006    // recognized.
1007    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
1008    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
1009
1010    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
1011    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
1012
1013    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
1014  }
1015
1016  if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
1017    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1018    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1019    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1020    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1021    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1022    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1023
1024    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1025    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1026    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1027
1028    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1029    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1030    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1031    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1032    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1033    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1034    setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal);
1035    setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal);
1036    setOperationAction(ISD::FRINT,              MVT::v8f32, Legal);
1037    setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal);
1038    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1039    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1040
1041    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1042    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1043    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1044    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1045    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1046    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1047    setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal);
1048    setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal);
1049    setOperationAction(ISD::FRINT,              MVT::v4f64, Legal);
1050    setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal);
1051    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1052    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1053
1054    // (fp_to_int:v8i16 (v8f32 ..)) requires the result type to be promoted
1055    // even though v8i16 is a legal type.
1056    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Promote);
1057    setOperationAction(ISD::FP_TO_UINT,         MVT::v8i16, Promote);
1058    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1059
1060    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i16, Promote);
1061    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1062    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1063
1064    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
1065    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
1066
1067    for (MVT VT : MVT::fp_vector_valuetypes())
1068      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4f32, Legal);
1069
1070    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1071    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1072
1073    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1074    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1075
1076    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1077    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1078
1079    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1080    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1081    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1082    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1083
1084    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1085    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1086    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1087
1088    setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom);
1089    setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom);
1090    setOperationAction(ISD::SIGN_EXTEND,       MVT::v16i16, Custom);
1091    setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom);
1092    setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom);
1093    setOperationAction(ISD::ZERO_EXTEND,       MVT::v16i16, Custom);
1094    setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom);
1095    setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom);
1096    setOperationAction(ISD::ANY_EXTEND,        MVT::v16i16, Custom);
1097    setOperationAction(ISD::TRUNCATE,          MVT::v16i8, Custom);
1098    setOperationAction(ISD::TRUNCATE,          MVT::v8i16, Custom);
1099    setOperationAction(ISD::TRUNCATE,          MVT::v4i32, Custom);
1100
1101    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1102      setOperationAction(ISD::FMA,             MVT::v8f32, Legal);
1103      setOperationAction(ISD::FMA,             MVT::v4f64, Legal);
1104      setOperationAction(ISD::FMA,             MVT::v4f32, Legal);
1105      setOperationAction(ISD::FMA,             MVT::v2f64, Legal);
1106      setOperationAction(ISD::FMA,             MVT::f32, Legal);
1107      setOperationAction(ISD::FMA,             MVT::f64, Legal);
1108    }
1109
1110    if (Subtarget->hasInt256()) {
1111      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1112      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1113      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1114      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1115
1116      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1117      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1118      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1119      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1120
1121      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1122      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1123      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1124      // Don't lower v32i8 because there is no 128-bit byte mul
1125
1126      setOperationAction(ISD::UMUL_LOHI,       MVT::v8i32, Custom);
1127      setOperationAction(ISD::SMUL_LOHI,       MVT::v8i32, Custom);
1128      setOperationAction(ISD::MULHU,           MVT::v16i16, Legal);
1129      setOperationAction(ISD::MULHS,           MVT::v16i16, Legal);
1130
1131      // The custom lowering for UINT_TO_FP for v8i32 becomes interesting
1132      // when we have a 256bit-wide blend with immediate.
1133      setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Custom);
1134
1135      // Only provide customized ctpop vector bit twiddling for vector types we
1136      // know to perform better than using the popcnt instructions on each
1137      // vector element. If popcnt isn't supported, always provide the custom
1138      // version.
1139      if (!Subtarget->hasPOPCNT())
1140        setOperationAction(ISD::CTPOP,           MVT::v4i64, Custom);
1141
1142      // Custom CTPOP always performs better on natively supported v8i32
1143      setOperationAction(ISD::CTPOP,             MVT::v8i32, Custom);
1144
1145      // AVX2 also has wider vector sign/zero extending loads, VPMOV[SZ]X
1146      setLoadExtAction(ISD::SEXTLOAD, MVT::v16i16, MVT::v16i8, Legal);
1147      setLoadExtAction(ISD::SEXTLOAD, MVT::v8i32,  MVT::v8i8,  Legal);
1148      setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64,  MVT::v4i8,  Legal);
1149      setLoadExtAction(ISD::SEXTLOAD, MVT::v8i32,  MVT::v8i16, Legal);
1150      setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64,  MVT::v4i16, Legal);
1151      setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64,  MVT::v4i32, Legal);
1152
1153      setLoadExtAction(ISD::ZEXTLOAD, MVT::v16i16, MVT::v16i8, Legal);
1154      setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i32,  MVT::v8i8,  Legal);
1155      setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64,  MVT::v4i8,  Legal);
1156      setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i32,  MVT::v8i16, Legal);
1157      setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64,  MVT::v4i16, Legal);
1158      setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64,  MVT::v4i32, Legal);
1159    } else {
1160      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1161      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1162      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1163      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1164
1165      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1166      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1167      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1168      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1169
1170      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1171      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1172      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1173      // Don't lower v32i8 because there is no 128-bit byte mul
1174    }
1175
1176    // In the customized shift lowering, the legal cases in AVX2 will be
1177    // recognized.
1178    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
1179    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
1180
1181    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
1182    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
1183
1184    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
1185
1186    // Custom lower several nodes for 256-bit types.
1187    for (MVT VT : MVT::vector_valuetypes()) {
1188      if (VT.getScalarSizeInBits() >= 32) {
1189        setOperationAction(ISD::MLOAD,  VT, Legal);
1190        setOperationAction(ISD::MSTORE, VT, Legal);
1191      }
1192      // Extract subvector is special because the value type
1193      // (result) is 128-bit but the source is 256-bit wide.
1194      if (VT.is128BitVector()) {
1195        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1196      }
1197      // Do not attempt to custom lower other non-256-bit vectors
1198      if (!VT.is256BitVector())
1199        continue;
1200
1201      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1202      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1203      setOperationAction(ISD::VSELECT,            VT, Custom);
1204      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1205      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1206      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1207      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1208      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1209    }
1210
1211    if (Subtarget->hasInt256())
1212      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1213
1214
1215    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1216    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1217      MVT VT = (MVT::SimpleValueType)i;
1218
1219      // Do not attempt to promote non-256-bit vectors
1220      if (!VT.is256BitVector())
1221        continue;
1222
1223      setOperationAction(ISD::AND,    VT, Promote);
1224      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1225      setOperationAction(ISD::OR,     VT, Promote);
1226      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1227      setOperationAction(ISD::XOR,    VT, Promote);
1228      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1229      setOperationAction(ISD::LOAD,   VT, Promote);
1230      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1231      setOperationAction(ISD::SELECT, VT, Promote);
1232      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1233    }
1234  }
1235
1236  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX512()) {
1237    addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
1238    addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
1239    addRegisterClass(MVT::v8i64,  &X86::VR512RegClass);
1240    addRegisterClass(MVT::v8f64,  &X86::VR512RegClass);
1241
1242    addRegisterClass(MVT::i1,     &X86::VK1RegClass);
1243    addRegisterClass(MVT::v8i1,   &X86::VK8RegClass);
1244    addRegisterClass(MVT::v16i1,  &X86::VK16RegClass);
1245
1246    for (MVT VT : MVT::fp_vector_valuetypes())
1247      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8f32, Legal);
1248
1249    setOperationAction(ISD::BR_CC,              MVT::i1,    Expand);
1250    setOperationAction(ISD::SETCC,              MVT::i1,    Custom);
1251    setOperationAction(ISD::XOR,                MVT::i1,    Legal);
1252    setOperationAction(ISD::OR,                 MVT::i1,    Legal);
1253    setOperationAction(ISD::AND,                MVT::i1,    Legal);
1254    setOperationAction(ISD::LOAD,               MVT::v16f32, Legal);
1255    setOperationAction(ISD::LOAD,               MVT::v8f64, Legal);
1256    setOperationAction(ISD::LOAD,               MVT::v8i64, Legal);
1257    setOperationAction(ISD::LOAD,               MVT::v16i32, Legal);
1258    setOperationAction(ISD::LOAD,               MVT::v16i1, Legal);
1259
1260    setOperationAction(ISD::FADD,               MVT::v16f32, Legal);
1261    setOperationAction(ISD::FSUB,               MVT::v16f32, Legal);
1262    setOperationAction(ISD::FMUL,               MVT::v16f32, Legal);
1263    setOperationAction(ISD::FDIV,               MVT::v16f32, Legal);
1264    setOperationAction(ISD::FSQRT,              MVT::v16f32, Legal);
1265    setOperationAction(ISD::FNEG,               MVT::v16f32, Custom);
1266
1267    setOperationAction(ISD::FADD,               MVT::v8f64, Legal);
1268    setOperationAction(ISD::FSUB,               MVT::v8f64, Legal);
1269    setOperationAction(ISD::FMUL,               MVT::v8f64, Legal);
1270    setOperationAction(ISD::FDIV,               MVT::v8f64, Legal);
1271    setOperationAction(ISD::FSQRT,              MVT::v8f64, Legal);
1272    setOperationAction(ISD::FNEG,               MVT::v8f64, Custom);
1273    setOperationAction(ISD::FMA,                MVT::v8f64, Legal);
1274    setOperationAction(ISD::FMA,                MVT::v16f32, Legal);
1275
1276    setOperationAction(ISD::FP_TO_SINT,         MVT::i32, Legal);
1277    setOperationAction(ISD::FP_TO_UINT,         MVT::i32, Legal);
1278    setOperationAction(ISD::SINT_TO_FP,         MVT::i32, Legal);
1279    setOperationAction(ISD::UINT_TO_FP,         MVT::i32, Legal);
1280    if (Subtarget->is64Bit()) {
1281      setOperationAction(ISD::FP_TO_UINT,       MVT::i64, Legal);
1282      setOperationAction(ISD::FP_TO_SINT,       MVT::i64, Legal);
1283      setOperationAction(ISD::SINT_TO_FP,       MVT::i64, Legal);
1284      setOperationAction(ISD::UINT_TO_FP,       MVT::i64, Legal);
1285    }
1286    setOperationAction(ISD::FP_TO_SINT,         MVT::v16i32, Legal);
1287    setOperationAction(ISD::FP_TO_UINT,         MVT::v16i32, Legal);
1288    setOperationAction(ISD::FP_TO_UINT,         MVT::v8i32, Legal);
1289    setOperationAction(ISD::FP_TO_UINT,         MVT::v4i32, Legal);
1290    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i32, Legal);
1291    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i1,   Custom);
1292    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i1,  Custom);
1293    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i8,  Promote);
1294    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i16, Promote);
1295    setOperationAction(ISD::UINT_TO_FP,         MVT::v16i32, Legal);
1296    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i32, Legal);
1297    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i32, Legal);
1298    setOperationAction(ISD::FP_ROUND,           MVT::v8f32, Legal);
1299    setOperationAction(ISD::FP_EXTEND,          MVT::v8f32, Legal);
1300
1301    setOperationAction(ISD::TRUNCATE,           MVT::i1, Custom);
1302    setOperationAction(ISD::TRUNCATE,           MVT::v16i8, Custom);
1303    setOperationAction(ISD::TRUNCATE,           MVT::v8i32, Custom);
1304    setOperationAction(ISD::TRUNCATE,           MVT::v8i1, Custom);
1305    setOperationAction(ISD::TRUNCATE,           MVT::v16i1, Custom);
1306    setOperationAction(ISD::TRUNCATE,           MVT::v16i16, Custom);
1307    setOperationAction(ISD::ZERO_EXTEND,        MVT::v16i32, Custom);
1308    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i64, Custom);
1309    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i32, Custom);
1310    setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i64, Custom);
1311    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i8, Custom);
1312    setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i16, Custom);
1313    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i16, Custom);
1314
1315    setOperationAction(ISD::FFLOOR,             MVT::v16f32, Legal);
1316    setOperationAction(ISD::FFLOOR,             MVT::v8f64, Legal);
1317    setOperationAction(ISD::FCEIL,              MVT::v16f32, Legal);
1318    setOperationAction(ISD::FCEIL,              MVT::v8f64, Legal);
1319    setOperationAction(ISD::FTRUNC,             MVT::v16f32, Legal);
1320    setOperationAction(ISD::FTRUNC,             MVT::v8f64, Legal);
1321    setOperationAction(ISD::FRINT,              MVT::v16f32, Legal);
1322    setOperationAction(ISD::FRINT,              MVT::v8f64, Legal);
1323    setOperationAction(ISD::FNEARBYINT,         MVT::v16f32, Legal);
1324    setOperationAction(ISD::FNEARBYINT,         MVT::v8f64, Legal);
1325
1326    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f64,  Custom);
1327    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i64,  Custom);
1328    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16f32,  Custom);
1329    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i32,  Custom);
1330    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i1, Legal);
1331
1332    setOperationAction(ISD::SETCC,              MVT::v16i1, Custom);
1333    setOperationAction(ISD::SETCC,              MVT::v8i1, Custom);
1334
1335    setOperationAction(ISD::MUL,              MVT::v8i64, Custom);
1336
1337    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i1,  Custom);
1338    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i1, Custom);
1339    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i1, Custom);
1340    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i1, Custom);
1341    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i1, Custom);
1342    setOperationAction(ISD::BUILD_VECTOR,       MVT::v16i1, Custom);
1343    setOperationAction(ISD::SELECT,             MVT::v8f64, Custom);
1344    setOperationAction(ISD::SELECT,             MVT::v8i64, Custom);
1345    setOperationAction(ISD::SELECT,             MVT::v16f32, Custom);
1346
1347    setOperationAction(ISD::ADD,                MVT::v8i64, Legal);
1348    setOperationAction(ISD::ADD,                MVT::v16i32, Legal);
1349
1350    setOperationAction(ISD::SUB,                MVT::v8i64, Legal);
1351    setOperationAction(ISD::SUB,                MVT::v16i32, Legal);
1352
1353    setOperationAction(ISD::MUL,                MVT::v16i32, Legal);
1354
1355    setOperationAction(ISD::SRL,                MVT::v8i64, Custom);
1356    setOperationAction(ISD::SRL,                MVT::v16i32, Custom);
1357
1358    setOperationAction(ISD::SHL,                MVT::v8i64, Custom);
1359    setOperationAction(ISD::SHL,                MVT::v16i32, Custom);
1360
1361    setOperationAction(ISD::SRA,                MVT::v8i64, Custom);
1362    setOperationAction(ISD::SRA,                MVT::v16i32, Custom);
1363
1364    setOperationAction(ISD::AND,                MVT::v8i64, Legal);
1365    setOperationAction(ISD::OR,                 MVT::v8i64, Legal);
1366    setOperationAction(ISD::XOR,                MVT::v8i64, Legal);
1367    setOperationAction(ISD::AND,                MVT::v16i32, Legal);
1368    setOperationAction(ISD::OR,                 MVT::v16i32, Legal);
1369    setOperationAction(ISD::XOR,                MVT::v16i32, Legal);
1370
1371    if (Subtarget->hasCDI()) {
1372      setOperationAction(ISD::CTLZ,             MVT::v8i64, Legal);
1373      setOperationAction(ISD::CTLZ,             MVT::v16i32, Legal);
1374    }
1375
1376    // Custom lower several nodes.
1377    for (MVT VT : MVT::vector_valuetypes()) {
1378      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1379      // Extract subvector is special because the value type
1380      // (result) is 256/128-bit but the source is 512-bit wide.
1381      if (VT.is128BitVector() || VT.is256BitVector()) {
1382        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1383      }
1384      if (VT.getVectorElementType() == MVT::i1)
1385        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
1386
1387      // Do not attempt to custom lower other non-512-bit vectors
1388      if (!VT.is512BitVector())
1389        continue;
1390
1391      if ( EltSize >= 32) {
1392        setOperationAction(ISD::VECTOR_SHUFFLE,      VT, Custom);
1393        setOperationAction(ISD::INSERT_VECTOR_ELT,   VT, Custom);
1394        setOperationAction(ISD::BUILD_VECTOR,        VT, Custom);
1395        setOperationAction(ISD::VSELECT,             VT, Legal);
1396        setOperationAction(ISD::EXTRACT_VECTOR_ELT,  VT, Custom);
1397        setOperationAction(ISD::SCALAR_TO_VECTOR,    VT, Custom);
1398        setOperationAction(ISD::INSERT_SUBVECTOR,    VT, Custom);
1399        setOperationAction(ISD::MLOAD,               VT, Legal);
1400        setOperationAction(ISD::MSTORE,              VT, Legal);
1401      }
1402    }
1403    for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {
1404      MVT VT = (MVT::SimpleValueType)i;
1405
1406      // Do not attempt to promote non-512-bit vectors.
1407      if (!VT.is512BitVector())
1408        continue;
1409
1410      setOperationAction(ISD::SELECT, VT, Promote);
1411      AddPromotedToType (ISD::SELECT, VT, MVT::v8i64);
1412    }
1413  }// has  AVX-512
1414
1415  if (!TM.Options.UseSoftFloat && Subtarget->hasBWI()) {
1416    addRegisterClass(MVT::v32i16, &X86::VR512RegClass);
1417    addRegisterClass(MVT::v64i8,  &X86::VR512RegClass);
1418
1419    addRegisterClass(MVT::v32i1,  &X86::VK32RegClass);
1420    addRegisterClass(MVT::v64i1,  &X86::VK64RegClass);
1421
1422    setOperationAction(ISD::LOAD,               MVT::v32i16, Legal);
1423    setOperationAction(ISD::LOAD,               MVT::v64i8, Legal);
1424    setOperationAction(ISD::SETCC,              MVT::v32i1, Custom);
1425    setOperationAction(ISD::SETCC,              MVT::v64i1, Custom);
1426    setOperationAction(ISD::ADD,                MVT::v32i16, Legal);
1427    setOperationAction(ISD::ADD,                MVT::v64i8, Legal);
1428    setOperationAction(ISD::SUB,                MVT::v32i16, Legal);
1429    setOperationAction(ISD::SUB,                MVT::v64i8, Legal);
1430    setOperationAction(ISD::MUL,                MVT::v32i16, Legal);
1431    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i1, Custom);
1432    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v64i1, Custom);
1433    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v32i1, Custom);
1434    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v64i1, Custom);
1435
1436    for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {
1437      const MVT VT = (MVT::SimpleValueType)i;
1438
1439      const unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1440
1441      // Do not attempt to promote non-512-bit vectors.
1442      if (!VT.is512BitVector())
1443        continue;
1444
1445      if (EltSize < 32) {
1446        setOperationAction(ISD::BUILD_VECTOR,        VT, Custom);
1447        setOperationAction(ISD::VSELECT,             VT, Legal);
1448      }
1449    }
1450  }
1451
1452  if (!TM.Options.UseSoftFloat && Subtarget->hasVLX()) {
1453    addRegisterClass(MVT::v4i1,   &X86::VK4RegClass);
1454    addRegisterClass(MVT::v2i1,   &X86::VK2RegClass);
1455
1456    setOperationAction(ISD::SETCC,              MVT::v4i1, Custom);
1457    setOperationAction(ISD::SETCC,              MVT::v2i1, Custom);
1458    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i1, Custom);
1459    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i1, Custom);
1460    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v8i1, Custom);
1461    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v4i1, Custom);
1462
1463    setOperationAction(ISD::AND,                MVT::v8i32, Legal);
1464    setOperationAction(ISD::OR,                 MVT::v8i32, Legal);
1465    setOperationAction(ISD::XOR,                MVT::v8i32, Legal);
1466    setOperationAction(ISD::AND,                MVT::v4i32, Legal);
1467    setOperationAction(ISD::OR,                 MVT::v4i32, Legal);
1468    setOperationAction(ISD::XOR,                MVT::v4i32, Legal);
1469  }
1470
1471  // We want to custom lower some of our intrinsics.
1472  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1473  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1474  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1475  if (!Subtarget->is64Bit())
1476    setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
1477
1478  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1479  // handle type legalization for these operations here.
1480  //
1481  // FIXME: We really should do custom legalization for addition and
1482  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1483  // than generic legalization for 64-bit multiplication-with-overflow, though.
1484  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1485    // Add/Sub/Mul with overflow operations are custom lowered.
1486    MVT VT = IntVTs[i];
1487    setOperationAction(ISD::SADDO, VT, Custom);
1488    setOperationAction(ISD::UADDO, VT, Custom);
1489    setOperationAction(ISD::SSUBO, VT, Custom);
1490    setOperationAction(ISD::USUBO, VT, Custom);
1491    setOperationAction(ISD::SMULO, VT, Custom);
1492    setOperationAction(ISD::UMULO, VT, Custom);
1493  }
1494
1495
1496  if (!Subtarget->is64Bit()) {
1497    // These libcalls are not available in 32-bit.
1498    setLibcallName(RTLIB::SHL_I128, nullptr);
1499    setLibcallName(RTLIB::SRL_I128, nullptr);
1500    setLibcallName(RTLIB::SRA_I128, nullptr);
1501  }
1502
1503  // Combine sin / cos into one node or libcall if possible.
1504  if (Subtarget->hasSinCos()) {
1505    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
1506    setLibcallName(RTLIB::SINCOS_F64, "sincos");
1507    if (Subtarget->isTargetDarwin()) {
1508      // For MacOSX, we don't want the normal expansion of a libcall to sincos.
1509      // We want to issue a libcall to __sincos_stret to avoid memory traffic.
1510      setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1511      setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1512    }
1513  }
1514
1515  if (Subtarget->isTargetWin64()) {
1516    setOperationAction(ISD::SDIV, MVT::i128, Custom);
1517    setOperationAction(ISD::UDIV, MVT::i128, Custom);
1518    setOperationAction(ISD::SREM, MVT::i128, Custom);
1519    setOperationAction(ISD::UREM, MVT::i128, Custom);
1520    setOperationAction(ISD::SDIVREM, MVT::i128, Custom);
1521    setOperationAction(ISD::UDIVREM, MVT::i128, Custom);
1522  }
1523
1524  // We have target-specific dag combine patterns for the following nodes:
1525  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1526  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1527  setTargetDAGCombine(ISD::BITCAST);
1528  setTargetDAGCombine(ISD::VSELECT);
1529  setTargetDAGCombine(ISD::SELECT);
1530  setTargetDAGCombine(ISD::SHL);
1531  setTargetDAGCombine(ISD::SRA);
1532  setTargetDAGCombine(ISD::SRL);
1533  setTargetDAGCombine(ISD::OR);
1534  setTargetDAGCombine(ISD::AND);
1535  setTargetDAGCombine(ISD::ADD);
1536  setTargetDAGCombine(ISD::FADD);
1537  setTargetDAGCombine(ISD::FSUB);
1538  setTargetDAGCombine(ISD::FMA);
1539  setTargetDAGCombine(ISD::SUB);
1540  setTargetDAGCombine(ISD::LOAD);
1541  setTargetDAGCombine(ISD::MLOAD);
1542  setTargetDAGCombine(ISD::STORE);
1543  setTargetDAGCombine(ISD::MSTORE);
1544  setTargetDAGCombine(ISD::ZERO_EXTEND);
1545  setTargetDAGCombine(ISD::ANY_EXTEND);
1546  setTargetDAGCombine(ISD::SIGN_EXTEND);
1547  setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1548  setTargetDAGCombine(ISD::TRUNCATE);
1549  setTargetDAGCombine(ISD::SINT_TO_FP);
1550  setTargetDAGCombine(ISD::SETCC);
1551  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1552  setTargetDAGCombine(ISD::BUILD_VECTOR);
1553  setTargetDAGCombine(ISD::MUL);
1554  setTargetDAGCombine(ISD::XOR);
1555
1556  computeRegisterProperties(Subtarget->getRegisterInfo());
1557
1558  // On Darwin, -Os means optimize for size without hurting performance,
1559  // do not reduce the limit.
1560  MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1561  MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1562  MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1563  MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1564  MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1565  MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1566  setPrefLoopAlignment(4); // 2^4 bytes.
1567
1568  // Predictable cmov don't hurt on atom because it's in-order.
1569  PredictableSelectIsExpensive = !Subtarget->isAtom();
1570  EnableExtLdPromotion = true;
1571  setPrefFunctionAlignment(4); // 2^4 bytes.
1572
1573  verifyIntrinsicTables();
1574}
1575
1576// This has so far only been implemented for 64-bit MachO.
1577bool X86TargetLowering::useLoadStackGuardNode() const {
1578  return Subtarget->isTargetMachO() && Subtarget->is64Bit();
1579}
1580
1581TargetLoweringBase::LegalizeTypeAction
1582X86TargetLowering::getPreferredVectorAction(EVT VT) const {
1583  if (ExperimentalVectorWideningLegalization &&
1584      VT.getVectorNumElements() != 1 &&
1585      VT.getVectorElementType().getSimpleVT() != MVT::i1)
1586    return TypeWidenVector;
1587
1588  return TargetLoweringBase::getPreferredVectorAction(VT);
1589}
1590
1591EVT X86TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
1592  if (!VT.isVector())
1593    return Subtarget->hasAVX512() ? MVT::i1: MVT::i8;
1594
1595  const unsigned NumElts = VT.getVectorNumElements();
1596  const EVT EltVT = VT.getVectorElementType();
1597  if (VT.is512BitVector()) {
1598    if (Subtarget->hasAVX512())
1599      if (EltVT == MVT::i32 || EltVT == MVT::i64 ||
1600          EltVT == MVT::f32 || EltVT == MVT::f64)
1601        switch(NumElts) {
1602        case  8: return MVT::v8i1;
1603        case 16: return MVT::v16i1;
1604      }
1605    if (Subtarget->hasBWI())
1606      if (EltVT == MVT::i8 || EltVT == MVT::i16)
1607        switch(NumElts) {
1608        case 32: return MVT::v32i1;
1609        case 64: return MVT::v64i1;
1610      }
1611  }
1612
1613  if (VT.is256BitVector() || VT.is128BitVector()) {
1614    if (Subtarget->hasVLX())
1615      if (EltVT == MVT::i32 || EltVT == MVT::i64 ||
1616          EltVT == MVT::f32 || EltVT == MVT::f64)
1617        switch(NumElts) {
1618        case 2: return MVT::v2i1;
1619        case 4: return MVT::v4i1;
1620        case 8: return MVT::v8i1;
1621      }
1622    if (Subtarget->hasBWI() && Subtarget->hasVLX())
1623      if (EltVT == MVT::i8 || EltVT == MVT::i16)
1624        switch(NumElts) {
1625        case  8: return MVT::v8i1;
1626        case 16: return MVT::v16i1;
1627        case 32: return MVT::v32i1;
1628      }
1629  }
1630
1631  return VT.changeVectorElementTypeToInteger();
1632}
1633
1634/// Helper for getByValTypeAlignment to determine
1635/// the desired ByVal argument alignment.
1636static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1637  if (MaxAlign == 16)
1638    return;
1639  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1640    if (VTy->getBitWidth() == 128)
1641      MaxAlign = 16;
1642  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1643    unsigned EltAlign = 0;
1644    getMaxByValAlign(ATy->getElementType(), EltAlign);
1645    if (EltAlign > MaxAlign)
1646      MaxAlign = EltAlign;
1647  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1648    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1649      unsigned EltAlign = 0;
1650      getMaxByValAlign(STy->getElementType(i), EltAlign);
1651      if (EltAlign > MaxAlign)
1652        MaxAlign = EltAlign;
1653      if (MaxAlign == 16)
1654        break;
1655    }
1656  }
1657}
1658
1659/// Return the desired alignment for ByVal aggregate
1660/// function arguments in the caller parameter area. For X86, aggregates
1661/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1662/// are at 4-byte boundaries.
1663unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1664  if (Subtarget->is64Bit()) {
1665    // Max of 8 and alignment of type.
1666    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1667    if (TyAlign > 8)
1668      return TyAlign;
1669    return 8;
1670  }
1671
1672  unsigned Align = 4;
1673  if (Subtarget->hasSSE1())
1674    getMaxByValAlign(Ty, Align);
1675  return Align;
1676}
1677
1678/// Returns the target specific optimal type for load
1679/// and store operations as a result of memset, memcpy, and memmove
1680/// lowering. If DstAlign is zero that means it's safe to destination
1681/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1682/// means there isn't a need to check it against alignment requirement,
1683/// probably because the source does not need to be loaded. If 'IsMemset' is
1684/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
1685/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
1686/// source is constant so it does not need to be loaded.
1687/// It returns EVT::Other if the type should be determined using generic
1688/// target-independent logic.
1689EVT
1690X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1691                                       unsigned DstAlign, unsigned SrcAlign,
1692                                       bool IsMemset, bool ZeroMemset,
1693                                       bool MemcpyStrSrc,
1694                                       MachineFunction &MF) const {
1695  const Function *F = MF.getFunction();
1696  if ((!IsMemset || ZeroMemset) &&
1697      !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
1698    if (Size >= 16 &&
1699        (Subtarget->isUnalignedMemAccessFast() ||
1700         ((DstAlign == 0 || DstAlign >= 16) &&
1701          (SrcAlign == 0 || SrcAlign >= 16)))) {
1702      if (Size >= 32) {
1703        if (Subtarget->hasInt256())
1704          return MVT::v8i32;
1705        if (Subtarget->hasFp256())
1706          return MVT::v8f32;
1707      }
1708      if (Subtarget->hasSSE2())
1709        return MVT::v4i32;
1710      if (Subtarget->hasSSE1())
1711        return MVT::v4f32;
1712    } else if (!MemcpyStrSrc && Size >= 8 &&
1713               !Subtarget->is64Bit() &&
1714               Subtarget->hasSSE2()) {
1715      // Do not use f64 to lower memcpy if source is string constant. It's
1716      // better to use i32 to avoid the loads.
1717      return MVT::f64;
1718    }
1719  }
1720  if (Subtarget->is64Bit() && Size >= 8)
1721    return MVT::i64;
1722  return MVT::i32;
1723}
1724
1725bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
1726  if (VT == MVT::f32)
1727    return X86ScalarSSEf32;
1728  else if (VT == MVT::f64)
1729    return X86ScalarSSEf64;
1730  return true;
1731}
1732
1733bool
1734X86TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
1735                                                  unsigned,
1736                                                  unsigned,
1737                                                  bool *Fast) const {
1738  if (Fast)
1739    *Fast = Subtarget->isUnalignedMemAccessFast();
1740  return true;
1741}
1742
1743/// Return the entry encoding for a jump table in the
1744/// current function.  The returned value is a member of the
1745/// MachineJumpTableInfo::JTEntryKind enum.
1746unsigned X86TargetLowering::getJumpTableEncoding() const {
1747  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1748  // symbol.
1749  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1750      Subtarget->isPICStyleGOT())
1751    return MachineJumpTableInfo::EK_Custom32;
1752
1753  // Otherwise, use the normal jump table encoding heuristics.
1754  return TargetLowering::getJumpTableEncoding();
1755}
1756
1757const MCExpr *
1758X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1759                                             const MachineBasicBlock *MBB,
1760                                             unsigned uid,MCContext &Ctx) const{
1761  assert(MBB->getParent()->getTarget().getRelocationModel() == Reloc::PIC_ &&
1762         Subtarget->isPICStyleGOT());
1763  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1764  // entries.
1765  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1766                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1767}
1768
1769/// Returns relocation base for the given PIC jumptable.
1770SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1771                                                    SelectionDAG &DAG) const {
1772  if (!Subtarget->is64Bit())
1773    // This doesn't have SDLoc associated with it, but is not really the
1774    // same as a Register.
1775    return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy());
1776  return Table;
1777}
1778
1779/// This returns the relocation base for the given PIC jumptable,
1780/// the same as getPICJumpTableRelocBase, but as an MCExpr.
1781const MCExpr *X86TargetLowering::
1782getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1783                             MCContext &Ctx) const {
1784  // X86-64 uses RIP relative addressing based on the jump table label.
1785  if (Subtarget->isPICStyleRIPRel())
1786    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1787
1788  // Otherwise, the reference is relative to the PIC base.
1789  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1790}
1791
1792std::pair<const TargetRegisterClass *, uint8_t>
1793X86TargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1794                                           MVT VT) const {
1795  const TargetRegisterClass *RRC = nullptr;
1796  uint8_t Cost = 1;
1797  switch (VT.SimpleTy) {
1798  default:
1799    return TargetLowering::findRepresentativeClass(TRI, VT);
1800  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1801    RRC = Subtarget->is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass;
1802    break;
1803  case MVT::x86mmx:
1804    RRC = &X86::VR64RegClass;
1805    break;
1806  case MVT::f32: case MVT::f64:
1807  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1808  case MVT::v4f32: case MVT::v2f64:
1809  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1810  case MVT::v4f64:
1811    RRC = &X86::VR128RegClass;
1812    break;
1813  }
1814  return std::make_pair(RRC, Cost);
1815}
1816
1817bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1818                                               unsigned &Offset) const {
1819  if (!Subtarget->isTargetLinux())
1820    return false;
1821
1822  if (Subtarget->is64Bit()) {
1823    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1824    Offset = 0x28;
1825    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1826      AddressSpace = 256;
1827    else
1828      AddressSpace = 257;
1829  } else {
1830    // %gs:0x14 on i386
1831    Offset = 0x14;
1832    AddressSpace = 256;
1833  }
1834  return true;
1835}
1836
1837bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
1838                                            unsigned DestAS) const {
1839  assert(SrcAS != DestAS && "Expected different address spaces!");
1840
1841  return SrcAS < 256 && DestAS < 256;
1842}
1843
1844//===----------------------------------------------------------------------===//
1845//               Return Value Calling Convention Implementation
1846//===----------------------------------------------------------------------===//
1847
1848#include "X86GenCallingConv.inc"
1849
1850bool
1851X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1852                                  MachineFunction &MF, bool isVarArg,
1853                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1854                        LLVMContext &Context) const {
1855  SmallVector<CCValAssign, 16> RVLocs;
1856  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1857  return CCInfo.CheckReturn(Outs, RetCC_X86);
1858}
1859
1860const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const {
1861  static const MCPhysReg ScratchRegs[] = { X86::R11, 0 };
1862  return ScratchRegs;
1863}
1864
1865SDValue
1866X86TargetLowering::LowerReturn(SDValue Chain,
1867                               CallingConv::ID CallConv, bool isVarArg,
1868                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1869                               const SmallVectorImpl<SDValue> &OutVals,
1870                               SDLoc dl, SelectionDAG &DAG) const {
1871  MachineFunction &MF = DAG.getMachineFunction();
1872  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1873
1874  SmallVector<CCValAssign, 16> RVLocs;
1875  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext());
1876  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1877
1878  SDValue Flag;
1879  SmallVector<SDValue, 6> RetOps;
1880  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1881  // Operand #1 = Bytes To Pop
1882  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1883                   MVT::i16));
1884
1885  // Copy the result values into the output registers.
1886  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1887    CCValAssign &VA = RVLocs[i];
1888    assert(VA.isRegLoc() && "Can only return in registers!");
1889    SDValue ValToCopy = OutVals[i];
1890    EVT ValVT = ValToCopy.getValueType();
1891
1892    // Promote values to the appropriate types.
1893    if (VA.getLocInfo() == CCValAssign::SExt)
1894      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1895    else if (VA.getLocInfo() == CCValAssign::ZExt)
1896      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1897    else if (VA.getLocInfo() == CCValAssign::AExt)
1898      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1899    else if (VA.getLocInfo() == CCValAssign::BCvt)
1900      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1901
1902    assert(VA.getLocInfo() != CCValAssign::FPExt &&
1903           "Unexpected FP-extend for return value.");
1904
1905    // If this is x86-64, and we disabled SSE, we can't return FP values,
1906    // or SSE or MMX vectors.
1907    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1908         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1909          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1910      report_fatal_error("SSE register return with SSE disabled");
1911    }
1912    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1913    // llvm-gcc has never done it right and no one has noticed, so this
1914    // should be OK for now.
1915    if (ValVT == MVT::f64 &&
1916        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1917      report_fatal_error("SSE2 register return with SSE2 disabled");
1918
1919    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1920    // the RET instruction and handled by the FP Stackifier.
1921    if (VA.getLocReg() == X86::FP0 ||
1922        VA.getLocReg() == X86::FP1) {
1923      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1924      // change the value to the FP stack register class.
1925      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1926        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1927      RetOps.push_back(ValToCopy);
1928      // Don't emit a copytoreg.
1929      continue;
1930    }
1931
1932    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1933    // which is returned in RAX / RDX.
1934    if (Subtarget->is64Bit()) {
1935      if (ValVT == MVT::x86mmx) {
1936        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1937          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1938          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1939                                  ValToCopy);
1940          // If we don't have SSE2 available, convert to v4f32 so the generated
1941          // register is legal.
1942          if (!Subtarget->hasSSE2())
1943            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1944        }
1945      }
1946    }
1947
1948    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1949    Flag = Chain.getValue(1);
1950    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1951  }
1952
1953  // The x86-64 ABIs require that for returning structs by value we copy
1954  // the sret argument into %rax/%eax (depending on ABI) for the return.
1955  // Win32 requires us to put the sret argument to %eax as well.
1956  // We saved the argument into a virtual register in the entry block,
1957  // so now we copy the value out and into %rax/%eax.
1958  //
1959  // Checking Function.hasStructRetAttr() here is insufficient because the IR
1960  // may not have an explicit sret argument. If FuncInfo.CanLowerReturn is
1961  // false, then an sret argument may be implicitly inserted in the SelDAG. In
1962  // either case FuncInfo->setSRetReturnReg() will have been called.
1963  if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) {
1964    assert((Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC()) &&
1965           "No need for an sret register");
1966    SDValue Val = DAG.getCopyFromReg(Chain, dl, SRetReg, getPointerTy());
1967
1968    unsigned RetValReg
1969        = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ?
1970          X86::RAX : X86::EAX;
1971    Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
1972    Flag = Chain.getValue(1);
1973
1974    // RAX/EAX now acts like a return value.
1975    RetOps.push_back(DAG.getRegister(RetValReg, getPointerTy()));
1976  }
1977
1978  RetOps[0] = Chain;  // Update chain.
1979
1980  // Add the flag if we have it.
1981  if (Flag.getNode())
1982    RetOps.push_back(Flag);
1983
1984  return DAG.getNode(X86ISD::RET_FLAG, dl, MVT::Other, RetOps);
1985}
1986
1987bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1988  if (N->getNumValues() != 1)
1989    return false;
1990  if (!N->hasNUsesOfValue(1, 0))
1991    return false;
1992
1993  SDValue TCChain = Chain;
1994  SDNode *Copy = *N->use_begin();
1995  if (Copy->getOpcode() == ISD::CopyToReg) {
1996    // If the copy has a glue operand, we conservatively assume it isn't safe to
1997    // perform a tail call.
1998    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1999      return false;
2000    TCChain = Copy->getOperand(0);
2001  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
2002    return false;
2003
2004  bool HasRet = false;
2005  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2006       UI != UE; ++UI) {
2007    if (UI->getOpcode() != X86ISD::RET_FLAG)
2008      return false;
2009    // If we are returning more than one value, we can definitely
2010    // not make a tail call see PR19530
2011    if (UI->getNumOperands() > 4)
2012      return false;
2013    if (UI->getNumOperands() == 4 &&
2014        UI->getOperand(UI->getNumOperands()-1).getValueType() != MVT::Glue)
2015      return false;
2016    HasRet = true;
2017  }
2018
2019  if (!HasRet)
2020    return false;
2021
2022  Chain = TCChain;
2023  return true;
2024}
2025
2026EVT
2027X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
2028                                            ISD::NodeType ExtendKind) const {
2029  MVT ReturnMVT;
2030  // TODO: Is this also valid on 32-bit?
2031  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
2032    ReturnMVT = MVT::i8;
2033  else
2034    ReturnMVT = MVT::i32;
2035
2036  EVT MinVT = getRegisterType(Context, ReturnMVT);
2037  return VT.bitsLT(MinVT) ? MinVT : VT;
2038}
2039
2040/// Lower the result values of a call into the
2041/// appropriate copies out of appropriate physical registers.
2042///
2043SDValue
2044X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2045                                   CallingConv::ID CallConv, bool isVarArg,
2046                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2047                                   SDLoc dl, SelectionDAG &DAG,
2048                                   SmallVectorImpl<SDValue> &InVals) const {
2049
2050  // Assign locations to each value returned by this call.
2051  SmallVector<CCValAssign, 16> RVLocs;
2052  bool Is64Bit = Subtarget->is64Bit();
2053  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2054                 *DAG.getContext());
2055  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2056
2057  // Copy all of the result registers out of their specified physreg.
2058  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2059    CCValAssign &VA = RVLocs[i];
2060    EVT CopyVT = VA.getValVT();
2061
2062    // If this is x86-64, and we disabled SSE, we can't return FP values
2063    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
2064        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
2065      report_fatal_error("SSE register return with SSE disabled");
2066    }
2067
2068    // If we prefer to use the value in xmm registers, copy it out as f80 and
2069    // use a truncate to move it from fp stack reg to xmm reg.
2070    if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
2071        isScalarFPTypeInSSEReg(VA.getValVT()))
2072      CopyVT = MVT::f80;
2073
2074    Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
2075                               CopyVT, InFlag).getValue(1);
2076    SDValue Val = Chain.getValue(0);
2077
2078    if (CopyVT != VA.getValVT())
2079      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
2080                        // This truncation won't change the value.
2081                        DAG.getIntPtrConstant(1));
2082
2083    InFlag = Chain.getValue(2);
2084    InVals.push_back(Val);
2085  }
2086
2087  return Chain;
2088}
2089
2090//===----------------------------------------------------------------------===//
2091//                C & StdCall & Fast Calling Convention implementation
2092//===----------------------------------------------------------------------===//
2093//  StdCall calling convention seems to be standard for many Windows' API
2094//  routines and around. It differs from C calling convention just a little:
2095//  callee should clean up the stack, not caller. Symbols should be also
2096//  decorated in some fancy way :) It doesn't support any vector arguments.
2097//  For info on fast calling convention see Fast Calling Convention (tail call)
2098//  implementation LowerX86_32FastCCCallTo.
2099
2100/// CallIsStructReturn - Determines whether a call uses struct return
2101/// semantics.
2102enum StructReturnType {
2103  NotStructReturn,
2104  RegStructReturn,
2105  StackStructReturn
2106};
2107static StructReturnType
2108callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
2109  if (Outs.empty())
2110    return NotStructReturn;
2111
2112  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
2113  if (!Flags.isSRet())
2114    return NotStructReturn;
2115  if (Flags.isInReg())
2116    return RegStructReturn;
2117  return StackStructReturn;
2118}
2119
2120/// Determines whether a function uses struct return semantics.
2121static StructReturnType
2122argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
2123  if (Ins.empty())
2124    return NotStructReturn;
2125
2126  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
2127  if (!Flags.isSRet())
2128    return NotStructReturn;
2129  if (Flags.isInReg())
2130    return RegStructReturn;
2131  return StackStructReturn;
2132}
2133
2134/// Make a copy of an aggregate at address specified by "Src" to address
2135/// "Dst" with size and alignment information specified by the specific
2136/// parameter attribute. The copy will be passed as a byval function parameter.
2137static SDValue
2138CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2139                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2140                          SDLoc dl) {
2141  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2142
2143  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2144                       /*isVolatile*/false, /*AlwaysInline=*/true,
2145                       MachinePointerInfo(), MachinePointerInfo());
2146}
2147
2148/// Return true if the calling convention is one that
2149/// supports tail call optimization.
2150static bool IsTailCallConvention(CallingConv::ID CC) {
2151  return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
2152          CC == CallingConv::HiPE);
2153}
2154
2155/// \brief Return true if the calling convention is a C calling convention.
2156static bool IsCCallConvention(CallingConv::ID CC) {
2157  return (CC == CallingConv::C || CC == CallingConv::X86_64_Win64 ||
2158          CC == CallingConv::X86_64_SysV);
2159}
2160
2161bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2162  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
2163    return false;
2164
2165  CallSite CS(CI);
2166  CallingConv::ID CalleeCC = CS.getCallingConv();
2167  if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
2168    return false;
2169
2170  return true;
2171}
2172
2173/// Return true if the function is being made into
2174/// a tailcall target by changing its ABI.
2175static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
2176                                   bool GuaranteedTailCallOpt) {
2177  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
2178}
2179
2180SDValue
2181X86TargetLowering::LowerMemArgument(SDValue Chain,
2182                                    CallingConv::ID CallConv,
2183                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2184                                    SDLoc dl, SelectionDAG &DAG,
2185                                    const CCValAssign &VA,
2186                                    MachineFrameInfo *MFI,
2187                                    unsigned i) const {
2188  // Create the nodes corresponding to a load from this parameter slot.
2189  ISD::ArgFlagsTy Flags = Ins[i].Flags;
2190  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(
2191      CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt);
2192  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
2193  EVT ValVT;
2194
2195  // If value is passed by pointer we have address passed instead of the value
2196  // itself.
2197  if (VA.getLocInfo() == CCValAssign::Indirect)
2198    ValVT = VA.getLocVT();
2199  else
2200    ValVT = VA.getValVT();
2201
2202  // FIXME: For now, all byval parameter objects are marked mutable. This can be
2203  // changed with more analysis.
2204  // In case of tail call optimization mark all arguments mutable. Since they
2205  // could be overwritten by lowering of arguments in case of a tail call.
2206  if (Flags.isByVal()) {
2207    unsigned Bytes = Flags.getByValSize();
2208    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2209    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
2210    return DAG.getFrameIndex(FI, getPointerTy());
2211  } else {
2212    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2213                                    VA.getLocMemOffset(), isImmutable);
2214    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2215    return DAG.getLoad(ValVT, dl, Chain, FIN,
2216                       MachinePointerInfo::getFixedStack(FI),
2217                       false, false, false, 0);
2218  }
2219}
2220
2221// FIXME: Get this from tablegen.
2222static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv,
2223                                                const X86Subtarget *Subtarget) {
2224  assert(Subtarget->is64Bit());
2225
2226  if (Subtarget->isCallingConvWin64(CallConv)) {
2227    static const MCPhysReg GPR64ArgRegsWin64[] = {
2228      X86::RCX, X86::RDX, X86::R8,  X86::R9
2229    };
2230    return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64));
2231  }
2232
2233  static const MCPhysReg GPR64ArgRegs64Bit[] = {
2234    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2235  };
2236  return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit));
2237}
2238
2239// FIXME: Get this from tablegen.
2240static ArrayRef<MCPhysReg> get64BitArgumentXMMs(MachineFunction &MF,
2241                                                CallingConv::ID CallConv,
2242                                                const X86Subtarget *Subtarget) {
2243  assert(Subtarget->is64Bit());
2244  if (Subtarget->isCallingConvWin64(CallConv)) {
2245    // The XMM registers which might contain var arg parameters are shadowed
2246    // in their paired GPR.  So we only need to save the GPR to their home
2247    // slots.
2248    // TODO: __vectorcall will change this.
2249    return None;
2250  }
2251
2252  const Function *Fn = MF.getFunction();
2253  bool NoImplicitFloatOps = Fn->hasFnAttribute(Attribute::NoImplicitFloat);
2254  assert(!(MF.getTarget().Options.UseSoftFloat && NoImplicitFloatOps) &&
2255         "SSE register cannot be used when SSE is disabled!");
2256  if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2257      !Subtarget->hasSSE1())
2258    // Kernel mode asks for SSE to be disabled, so there are no XMM argument
2259    // registers.
2260    return None;
2261
2262  static const MCPhysReg XMMArgRegs64Bit[] = {
2263    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2264    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2265  };
2266  return makeArrayRef(std::begin(XMMArgRegs64Bit), std::end(XMMArgRegs64Bit));
2267}
2268
2269SDValue
2270X86TargetLowering::LowerFormalArguments(SDValue Chain,
2271                                        CallingConv::ID CallConv,
2272                                        bool isVarArg,
2273                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2274                                        SDLoc dl,
2275                                        SelectionDAG &DAG,
2276                                        SmallVectorImpl<SDValue> &InVals)
2277                                          const {
2278  MachineFunction &MF = DAG.getMachineFunction();
2279  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2280
2281  const Function* Fn = MF.getFunction();
2282  if (Fn->hasExternalLinkage() &&
2283      Subtarget->isTargetCygMing() &&
2284      Fn->getName() == "main")
2285    FuncInfo->setForceFramePointer(true);
2286
2287  MachineFrameInfo *MFI = MF.getFrameInfo();
2288  bool Is64Bit = Subtarget->is64Bit();
2289  bool IsWin64 = Subtarget->isCallingConvWin64(CallConv);
2290
2291  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2292         "Var args not supported with calling convention fastcc, ghc or hipe");
2293
2294  // Assign locations to all of the incoming arguments.
2295  SmallVector<CCValAssign, 16> ArgLocs;
2296  CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
2297
2298  // Allocate shadow area for Win64
2299  if (IsWin64)
2300    CCInfo.AllocateStack(32, 8);
2301
2302  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
2303
2304  unsigned LastVal = ~0U;
2305  SDValue ArgValue;
2306  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2307    CCValAssign &VA = ArgLocs[i];
2308    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
2309    // places.
2310    assert(VA.getValNo() != LastVal &&
2311           "Don't support value assigned to multiple locs yet");
2312    (void)LastVal;
2313    LastVal = VA.getValNo();
2314
2315    if (VA.isRegLoc()) {
2316      EVT RegVT = VA.getLocVT();
2317      const TargetRegisterClass *RC;
2318      if (RegVT == MVT::i32)
2319        RC = &X86::GR32RegClass;
2320      else if (Is64Bit && RegVT == MVT::i64)
2321        RC = &X86::GR64RegClass;
2322      else if (RegVT == MVT::f32)
2323        RC = &X86::FR32RegClass;
2324      else if (RegVT == MVT::f64)
2325        RC = &X86::FR64RegClass;
2326      else if (RegVT.is512BitVector())
2327        RC = &X86::VR512RegClass;
2328      else if (RegVT.is256BitVector())
2329        RC = &X86::VR256RegClass;
2330      else if (RegVT.is128BitVector())
2331        RC = &X86::VR128RegClass;
2332      else if (RegVT == MVT::x86mmx)
2333        RC = &X86::VR64RegClass;
2334      else if (RegVT == MVT::i1)
2335        RC = &X86::VK1RegClass;
2336      else if (RegVT == MVT::v8i1)
2337        RC = &X86::VK8RegClass;
2338      else if (RegVT == MVT::v16i1)
2339        RC = &X86::VK16RegClass;
2340      else if (RegVT == MVT::v32i1)
2341        RC = &X86::VK32RegClass;
2342      else if (RegVT == MVT::v64i1)
2343        RC = &X86::VK64RegClass;
2344      else
2345        llvm_unreachable("Unknown argument type!");
2346
2347      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2348      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2349
2350      // If this is an 8 or 16-bit value, it is really passed promoted to 32
2351      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
2352      // right size.
2353      if (VA.getLocInfo() == CCValAssign::SExt)
2354        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2355                               DAG.getValueType(VA.getValVT()));
2356      else if (VA.getLocInfo() == CCValAssign::ZExt)
2357        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2358                               DAG.getValueType(VA.getValVT()));
2359      else if (VA.getLocInfo() == CCValAssign::BCvt)
2360        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2361
2362      if (VA.isExtInLoc()) {
2363        // Handle MMX values passed in XMM regs.
2364        if (RegVT.isVector())
2365          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
2366        else
2367          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2368      }
2369    } else {
2370      assert(VA.isMemLoc());
2371      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
2372    }
2373
2374    // If value is passed via pointer - do a load.
2375    if (VA.getLocInfo() == CCValAssign::Indirect)
2376      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
2377                             MachinePointerInfo(), false, false, false, 0);
2378
2379    InVals.push_back(ArgValue);
2380  }
2381
2382  if (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC()) {
2383    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2384      // The x86-64 ABIs require that for returning structs by value we copy
2385      // the sret argument into %rax/%eax (depending on ABI) for the return.
2386      // Win32 requires us to put the sret argument to %eax as well.
2387      // Save the argument into a virtual register so that we can access it
2388      // from the return points.
2389      if (Ins[i].Flags.isSRet()) {
2390        unsigned Reg = FuncInfo->getSRetReturnReg();
2391        if (!Reg) {
2392          MVT PtrTy = getPointerTy();
2393          Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
2394          FuncInfo->setSRetReturnReg(Reg);
2395        }
2396        SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]);
2397        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2398        break;
2399      }
2400    }
2401  }
2402
2403  unsigned StackSize = CCInfo.getNextStackOffset();
2404  // Align stack specially for tail calls.
2405  if (FuncIsMadeTailCallSafe(CallConv,
2406                             MF.getTarget().Options.GuaranteedTailCallOpt))
2407    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
2408
2409  // If the function takes variable number of arguments, make a frame index for
2410  // the start of the first vararg value... for expansion of llvm.va_start. We
2411  // can skip this if there are no va_start calls.
2412  if (MFI->hasVAStart() &&
2413      (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2414                   CallConv != CallingConv::X86_ThisCall))) {
2415    FuncInfo->setVarArgsFrameIndex(
2416        MFI->CreateFixedObject(1, StackSize, true));
2417  }
2418
2419  // Figure out if XMM registers are in use.
2420  assert(!(MF.getTarget().Options.UseSoftFloat &&
2421           Fn->hasFnAttribute(Attribute::NoImplicitFloat)) &&
2422         "SSE register cannot be used when SSE is disabled!");
2423
2424  // 64-bit calling conventions support varargs and register parameters, so we
2425  // have to do extra work to spill them in the prologue.
2426  if (Is64Bit && isVarArg && MFI->hasVAStart()) {
2427    // Find the first unallocated argument registers.
2428    ArrayRef<MCPhysReg> ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget);
2429    ArrayRef<MCPhysReg> ArgXMMs = get64BitArgumentXMMs(MF, CallConv, Subtarget);
2430    unsigned NumIntRegs = CCInfo.getFirstUnallocated(ArgGPRs);
2431    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(ArgXMMs);
2432    assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2433           "SSE register cannot be used when SSE is disabled!");
2434
2435    // Gather all the live in physical registers.
2436    SmallVector<SDValue, 6> LiveGPRs;
2437    SmallVector<SDValue, 8> LiveXMMRegs;
2438    SDValue ALVal;
2439    for (MCPhysReg Reg : ArgGPRs.slice(NumIntRegs)) {
2440      unsigned GPR = MF.addLiveIn(Reg, &X86::GR64RegClass);
2441      LiveGPRs.push_back(
2442          DAG.getCopyFromReg(Chain, dl, GPR, MVT::i64));
2443    }
2444    if (!ArgXMMs.empty()) {
2445      unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2446      ALVal = DAG.getCopyFromReg(Chain, dl, AL, MVT::i8);
2447      for (MCPhysReg Reg : ArgXMMs.slice(NumXMMRegs)) {
2448        unsigned XMMReg = MF.addLiveIn(Reg, &X86::VR128RegClass);
2449        LiveXMMRegs.push_back(
2450            DAG.getCopyFromReg(Chain, dl, XMMReg, MVT::v4f32));
2451      }
2452    }
2453
2454    if (IsWin64) {
2455      const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
2456      // Get to the caller-allocated home save location.  Add 8 to account
2457      // for the return address.
2458      int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2459      FuncInfo->setRegSaveFrameIndex(
2460          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2461      // Fixup to set vararg frame on shadow area (4 x i64).
2462      if (NumIntRegs < 4)
2463        FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2464    } else {
2465      // For X86-64, if there are vararg parameters that are passed via
2466      // registers, then we must store them to their spots on the stack so
2467      // they may be loaded by deferencing the result of va_next.
2468      FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2469      FuncInfo->setVarArgsFPOffset(ArgGPRs.size() * 8 + NumXMMRegs * 16);
2470      FuncInfo->setRegSaveFrameIndex(MFI->CreateStackObject(
2471          ArgGPRs.size() * 8 + ArgXMMs.size() * 16, 16, false));
2472    }
2473
2474    // Store the integer parameter registers.
2475    SmallVector<SDValue, 8> MemOps;
2476    SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2477                                      getPointerTy());
2478    unsigned Offset = FuncInfo->getVarArgsGPOffset();
2479    for (SDValue Val : LiveGPRs) {
2480      SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2481                                DAG.getIntPtrConstant(Offset));
2482      SDValue Store =
2483        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2484                     MachinePointerInfo::getFixedStack(
2485                       FuncInfo->getRegSaveFrameIndex(), Offset),
2486                     false, false, 0);
2487      MemOps.push_back(Store);
2488      Offset += 8;
2489    }
2490
2491    if (!ArgXMMs.empty() && NumXMMRegs != ArgXMMs.size()) {
2492      // Now store the XMM (fp + vector) parameter registers.
2493      SmallVector<SDValue, 12> SaveXMMOps;
2494      SaveXMMOps.push_back(Chain);
2495      SaveXMMOps.push_back(ALVal);
2496      SaveXMMOps.push_back(DAG.getIntPtrConstant(
2497                             FuncInfo->getRegSaveFrameIndex()));
2498      SaveXMMOps.push_back(DAG.getIntPtrConstant(
2499                             FuncInfo->getVarArgsFPOffset()));
2500      SaveXMMOps.insert(SaveXMMOps.end(), LiveXMMRegs.begin(),
2501                        LiveXMMRegs.end());
2502      MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2503                                   MVT::Other, SaveXMMOps));
2504    }
2505
2506    if (!MemOps.empty())
2507      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
2508  }
2509
2510  if (isVarArg && MFI->hasMustTailInVarArgFunc()) {
2511    // Find the largest legal vector type.
2512    MVT VecVT = MVT::Other;
2513    // FIXME: Only some x86_32 calling conventions support AVX512.
2514    if (Subtarget->hasAVX512() &&
2515        (Is64Bit || (CallConv == CallingConv::X86_VectorCall ||
2516                     CallConv == CallingConv::Intel_OCL_BI)))
2517      VecVT = MVT::v16f32;
2518    else if (Subtarget->hasAVX())
2519      VecVT = MVT::v8f32;
2520    else if (Subtarget->hasSSE2())
2521      VecVT = MVT::v4f32;
2522
2523    // We forward some GPRs and some vector types.
2524    SmallVector<MVT, 2> RegParmTypes;
2525    MVT IntVT = Is64Bit ? MVT::i64 : MVT::i32;
2526    RegParmTypes.push_back(IntVT);
2527    if (VecVT != MVT::Other)
2528      RegParmTypes.push_back(VecVT);
2529
2530    // Compute the set of forwarded registers. The rest are scratch.
2531    SmallVectorImpl<ForwardedRegister> &Forwards =
2532        FuncInfo->getForwardedMustTailRegParms();
2533    CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_X86);
2534
2535    // Conservatively forward AL on x86_64, since it might be used for varargs.
2536    if (Is64Bit && !CCInfo.isAllocated(X86::AL)) {
2537      unsigned ALVReg = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2538      Forwards.push_back(ForwardedRegister(ALVReg, X86::AL, MVT::i8));
2539    }
2540
2541    // Copy all forwards from physical to virtual registers.
2542    for (ForwardedRegister &F : Forwards) {
2543      // FIXME: Can we use a less constrained schedule?
2544      SDValue RegVal = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
2545      F.VReg = MF.getRegInfo().createVirtualRegister(getRegClassFor(F.VT));
2546      Chain = DAG.getCopyToReg(Chain, dl, F.VReg, RegVal);
2547    }
2548  }
2549
2550  // Some CCs need callee pop.
2551  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2552                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2553    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2554  } else {
2555    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2556    // If this is an sret function, the return should pop the hidden pointer.
2557    if (!Is64Bit && !IsTailCallConvention(CallConv) &&
2558        !Subtarget->getTargetTriple().isOSMSVCRT() &&
2559        argsAreStructReturn(Ins) == StackStructReturn)
2560      FuncInfo->setBytesToPopOnReturn(4);
2561  }
2562
2563  if (!Is64Bit) {
2564    // RegSaveFrameIndex is X86-64 only.
2565    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2566    if (CallConv == CallingConv::X86_FastCall ||
2567        CallConv == CallingConv::X86_ThisCall)
2568      // fastcc functions can't have varargs.
2569      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2570  }
2571
2572  FuncInfo->setArgumentStackSize(StackSize);
2573
2574  return Chain;
2575}
2576
2577SDValue
2578X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2579                                    SDValue StackPtr, SDValue Arg,
2580                                    SDLoc dl, SelectionDAG &DAG,
2581                                    const CCValAssign &VA,
2582                                    ISD::ArgFlagsTy Flags) const {
2583  unsigned LocMemOffset = VA.getLocMemOffset();
2584  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2585  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2586  if (Flags.isByVal())
2587    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2588
2589  return DAG.getStore(Chain, dl, Arg, PtrOff,
2590                      MachinePointerInfo::getStack(LocMemOffset),
2591                      false, false, 0);
2592}
2593
2594/// Emit a load of return address if tail call
2595/// optimization is performed and it is required.
2596SDValue
2597X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2598                                           SDValue &OutRetAddr, SDValue Chain,
2599                                           bool IsTailCall, bool Is64Bit,
2600                                           int FPDiff, SDLoc dl) const {
2601  // Adjust the Return address stack slot.
2602  EVT VT = getPointerTy();
2603  OutRetAddr = getReturnAddressFrameIndex(DAG);
2604
2605  // Load the "old" Return address.
2606  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2607                           false, false, false, 0);
2608  return SDValue(OutRetAddr.getNode(), 1);
2609}
2610
2611/// Emit a store of the return address if tail call
2612/// optimization is performed and it is required (FPDiff!=0).
2613static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF,
2614                                        SDValue Chain, SDValue RetAddrFrIdx,
2615                                        EVT PtrVT, unsigned SlotSize,
2616                                        int FPDiff, SDLoc dl) {
2617  // Store the return address to the appropriate stack slot.
2618  if (!FPDiff) return Chain;
2619  // Calculate the new stack slot for the return address.
2620  int NewReturnAddrFI =
2621    MF.getFrameInfo()->CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
2622                                         false);
2623  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
2624  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2625                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2626                       false, false, 0);
2627  return Chain;
2628}
2629
2630SDValue
2631X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2632                             SmallVectorImpl<SDValue> &InVals) const {
2633  SelectionDAG &DAG                     = CLI.DAG;
2634  SDLoc &dl                             = CLI.DL;
2635  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2636  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2637  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2638  SDValue Chain                         = CLI.Chain;
2639  SDValue Callee                        = CLI.Callee;
2640  CallingConv::ID CallConv              = CLI.CallConv;
2641  bool &isTailCall                      = CLI.IsTailCall;
2642  bool isVarArg                         = CLI.IsVarArg;
2643
2644  MachineFunction &MF = DAG.getMachineFunction();
2645  bool Is64Bit        = Subtarget->is64Bit();
2646  bool IsWin64        = Subtarget->isCallingConvWin64(CallConv);
2647  StructReturnType SR = callIsStructReturn(Outs);
2648  bool IsSibcall      = false;
2649  X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2650
2651  if (MF.getTarget().Options.DisableTailCalls)
2652    isTailCall = false;
2653
2654  bool IsMustTail = CLI.CS && CLI.CS->isMustTailCall();
2655  if (IsMustTail) {
2656    // Force this to be a tail call.  The verifier rules are enough to ensure
2657    // that we can lower this successfully without moving the return address
2658    // around.
2659    isTailCall = true;
2660  } else if (isTailCall) {
2661    // Check if it's really possible to do a tail call.
2662    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2663                    isVarArg, SR != NotStructReturn,
2664                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2665                    Outs, OutVals, Ins, DAG);
2666
2667    // Sibcalls are automatically detected tailcalls which do not require
2668    // ABI changes.
2669    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2670      IsSibcall = true;
2671
2672    if (isTailCall)
2673      ++NumTailCalls;
2674  }
2675
2676  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2677         "Var args not supported with calling convention fastcc, ghc or hipe");
2678
2679  // Analyze operands of the call, assigning locations to each operand.
2680  SmallVector<CCValAssign, 16> ArgLocs;
2681  CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
2682
2683  // Allocate shadow area for Win64
2684  if (IsWin64)
2685    CCInfo.AllocateStack(32, 8);
2686
2687  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2688
2689  // Get a count of how many bytes are to be pushed on the stack.
2690  unsigned NumBytes = CCInfo.getNextStackOffset();
2691  if (IsSibcall)
2692    // This is a sibcall. The memory operands are available in caller's
2693    // own caller's stack.
2694    NumBytes = 0;
2695  else if (MF.getTarget().Options.GuaranteedTailCallOpt &&
2696           IsTailCallConvention(CallConv))
2697    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2698
2699  int FPDiff = 0;
2700  if (isTailCall && !IsSibcall && !IsMustTail) {
2701    // Lower arguments at fp - stackoffset + fpdiff.
2702    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2703
2704    FPDiff = NumBytesCallerPushed - NumBytes;
2705
2706    // Set the delta of movement of the returnaddr stackslot.
2707    // But only set if delta is greater than previous delta.
2708    if (FPDiff < X86Info->getTCReturnAddrDelta())
2709      X86Info->setTCReturnAddrDelta(FPDiff);
2710  }
2711
2712  unsigned NumBytesToPush = NumBytes;
2713  unsigned NumBytesToPop = NumBytes;
2714
2715  // If we have an inalloca argument, all stack space has already been allocated
2716  // for us and be right at the top of the stack.  We don't support multiple
2717  // arguments passed in memory when using inalloca.
2718  if (!Outs.empty() && Outs.back().Flags.isInAlloca()) {
2719    NumBytesToPush = 0;
2720    if (!ArgLocs.back().isMemLoc())
2721      report_fatal_error("cannot use inalloca attribute on a register "
2722                         "parameter");
2723    if (ArgLocs.back().getLocMemOffset() != 0)
2724      report_fatal_error("any parameter with the inalloca attribute must be "
2725                         "the only memory argument");
2726  }
2727
2728  if (!IsSibcall)
2729    Chain = DAG.getCALLSEQ_START(
2730        Chain, DAG.getIntPtrConstant(NumBytesToPush, true), dl);
2731
2732  SDValue RetAddrFrIdx;
2733  // Load return address for tail calls.
2734  if (isTailCall && FPDiff)
2735    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2736                                    Is64Bit, FPDiff, dl);
2737
2738  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2739  SmallVector<SDValue, 8> MemOpChains;
2740  SDValue StackPtr;
2741
2742  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2743  // of tail call optimization arguments are handle later.
2744  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2745  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2746    // Skip inalloca arguments, they have already been written.
2747    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2748    if (Flags.isInAlloca())
2749      continue;
2750
2751    CCValAssign &VA = ArgLocs[i];
2752    EVT RegVT = VA.getLocVT();
2753    SDValue Arg = OutVals[i];
2754    bool isByVal = Flags.isByVal();
2755
2756    // Promote the value if needed.
2757    switch (VA.getLocInfo()) {
2758    default: llvm_unreachable("Unknown loc info!");
2759    case CCValAssign::Full: break;
2760    case CCValAssign::SExt:
2761      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2762      break;
2763    case CCValAssign::ZExt:
2764      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2765      break;
2766    case CCValAssign::AExt:
2767      if (RegVT.is128BitVector()) {
2768        // Special case: passing MMX values in XMM registers.
2769        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2770        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2771        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2772      } else
2773        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2774      break;
2775    case CCValAssign::BCvt:
2776      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2777      break;
2778    case CCValAssign::Indirect: {
2779      // Store the argument.
2780      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2781      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2782      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2783                           MachinePointerInfo::getFixedStack(FI),
2784                           false, false, 0);
2785      Arg = SpillSlot;
2786      break;
2787    }
2788    }
2789
2790    if (VA.isRegLoc()) {
2791      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2792      if (isVarArg && IsWin64) {
2793        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2794        // shadow reg if callee is a varargs function.
2795        unsigned ShadowReg = 0;
2796        switch (VA.getLocReg()) {
2797        case X86::XMM0: ShadowReg = X86::RCX; break;
2798        case X86::XMM1: ShadowReg = X86::RDX; break;
2799        case X86::XMM2: ShadowReg = X86::R8; break;
2800        case X86::XMM3: ShadowReg = X86::R9; break;
2801        }
2802        if (ShadowReg)
2803          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2804      }
2805    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2806      assert(VA.isMemLoc());
2807      if (!StackPtr.getNode())
2808        StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
2809                                      getPointerTy());
2810      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2811                                             dl, DAG, VA, Flags));
2812    }
2813  }
2814
2815  if (!MemOpChains.empty())
2816    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
2817
2818  if (Subtarget->isPICStyleGOT()) {
2819    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2820    // GOT pointer.
2821    if (!isTailCall) {
2822      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2823               DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy())));
2824    } else {
2825      // If we are tail calling and generating PIC/GOT style code load the
2826      // address of the callee into ECX. The value in ecx is used as target of
2827      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2828      // for tail calls on PIC/GOT architectures. Normally we would just put the
2829      // address of GOT into ebx and then call target@PLT. But for tail calls
2830      // ebx would be restored (since ebx is callee saved) before jumping to the
2831      // target@PLT.
2832
2833      // Note: The actual moving to ECX is done further down.
2834      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2835      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2836          !G->getGlobal()->hasProtectedVisibility())
2837        Callee = LowerGlobalAddress(Callee, DAG);
2838      else if (isa<ExternalSymbolSDNode>(Callee))
2839        Callee = LowerExternalSymbol(Callee, DAG);
2840    }
2841  }
2842
2843  if (Is64Bit && isVarArg && !IsWin64 && !IsMustTail) {
2844    // From AMD64 ABI document:
2845    // For calls that may call functions that use varargs or stdargs
2846    // (prototype-less calls or calls to functions containing ellipsis (...) in
2847    // the declaration) %al is used as hidden argument to specify the number
2848    // of SSE registers used. The contents of %al do not need to match exactly
2849    // the number of registers, but must be an ubound on the number of SSE
2850    // registers used and is in the range 0 - 8 inclusive.
2851
2852    // Count the number of XMM registers allocated.
2853    static const MCPhysReg XMMArgRegs[] = {
2854      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2855      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2856    };
2857    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
2858    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2859           && "SSE registers cannot be used when SSE is disabled");
2860
2861    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2862                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2863  }
2864
2865  if (isVarArg && IsMustTail) {
2866    const auto &Forwards = X86Info->getForwardedMustTailRegParms();
2867    for (const auto &F : Forwards) {
2868      SDValue Val = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
2869      RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val));
2870    }
2871  }
2872
2873  // For tail calls lower the arguments to the 'real' stack slots.  Sibcalls
2874  // don't need this because the eligibility check rejects calls that require
2875  // shuffling arguments passed in memory.
2876  if (!IsSibcall && isTailCall) {
2877    // Force all the incoming stack arguments to be loaded from the stack
2878    // before any new outgoing arguments are stored to the stack, because the
2879    // outgoing stack slots may alias the incoming argument stack slots, and
2880    // the alias isn't otherwise explicit. This is slightly more conservative
2881    // than necessary, because it means that each store effectively depends
2882    // on every argument instead of just those arguments it would clobber.
2883    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2884
2885    SmallVector<SDValue, 8> MemOpChains2;
2886    SDValue FIN;
2887    int FI = 0;
2888    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2889      CCValAssign &VA = ArgLocs[i];
2890      if (VA.isRegLoc())
2891        continue;
2892      assert(VA.isMemLoc());
2893      SDValue Arg = OutVals[i];
2894      ISD::ArgFlagsTy Flags = Outs[i].Flags;
2895      // Skip inalloca arguments.  They don't require any work.
2896      if (Flags.isInAlloca())
2897        continue;
2898      // Create frame index.
2899      int32_t Offset = VA.getLocMemOffset()+FPDiff;
2900      uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2901      FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2902      FIN = DAG.getFrameIndex(FI, getPointerTy());
2903
2904      if (Flags.isByVal()) {
2905        // Copy relative to framepointer.
2906        SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2907        if (!StackPtr.getNode())
2908          StackPtr = DAG.getCopyFromReg(Chain, dl,
2909                                        RegInfo->getStackRegister(),
2910                                        getPointerTy());
2911        Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2912
2913        MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2914                                                         ArgChain,
2915                                                         Flags, DAG, dl));
2916      } else {
2917        // Store relative to framepointer.
2918        MemOpChains2.push_back(
2919          DAG.getStore(ArgChain, dl, Arg, FIN,
2920                       MachinePointerInfo::getFixedStack(FI),
2921                       false, false, 0));
2922      }
2923    }
2924
2925    if (!MemOpChains2.empty())
2926      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
2927
2928    // Store the return address to the appropriate stack slot.
2929    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
2930                                     getPointerTy(), RegInfo->getSlotSize(),
2931                                     FPDiff, dl);
2932  }
2933
2934  // Build a sequence of copy-to-reg nodes chained together with token chain
2935  // and flag operands which copy the outgoing args into registers.
2936  SDValue InFlag;
2937  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2938    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2939                             RegsToPass[i].second, InFlag);
2940    InFlag = Chain.getValue(1);
2941  }
2942
2943  if (DAG.getTarget().getCodeModel() == CodeModel::Large) {
2944    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2945    // In the 64-bit large code model, we have to make all calls
2946    // through a register, since the call instruction's 32-bit
2947    // pc-relative offset may not be large enough to hold the whole
2948    // address.
2949  } else if (Callee->getOpcode() == ISD::GlobalAddress) {
2950    // If the callee is a GlobalAddress node (quite common, every direct call
2951    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2952    // it.
2953    GlobalAddressSDNode* G = cast<GlobalAddressSDNode>(Callee);
2954
2955    // We should use extra load for direct calls to dllimported functions in
2956    // non-JIT mode.
2957    const GlobalValue *GV = G->getGlobal();
2958    if (!GV->hasDLLImportStorageClass()) {
2959      unsigned char OpFlags = 0;
2960      bool ExtraLoad = false;
2961      unsigned WrapperKind = ISD::DELETED_NODE;
2962
2963      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2964      // external symbols most go through the PLT in PIC mode.  If the symbol
2965      // has hidden or protected visibility, or if it is static or local, then
2966      // we don't need to use the PLT - we can directly call it.
2967      if (Subtarget->isTargetELF() &&
2968          DAG.getTarget().getRelocationModel() == Reloc::PIC_ &&
2969          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2970        OpFlags = X86II::MO_PLT;
2971      } else if (Subtarget->isPICStyleStubAny() &&
2972                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2973                 (!Subtarget->getTargetTriple().isMacOSX() ||
2974                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2975        // PC-relative references to external symbols should go through $stub,
2976        // unless we're building with the leopard linker or later, which
2977        // automatically synthesizes these stubs.
2978        OpFlags = X86II::MO_DARWIN_STUB;
2979      } else if (Subtarget->isPICStyleRIPRel() && isa<Function>(GV) &&
2980                 cast<Function>(GV)->hasFnAttribute(Attribute::NonLazyBind)) {
2981        // If the function is marked as non-lazy, generate an indirect call
2982        // which loads from the GOT directly. This avoids runtime overhead
2983        // at the cost of eager binding (and one extra byte of encoding).
2984        OpFlags = X86II::MO_GOTPCREL;
2985        WrapperKind = X86ISD::WrapperRIP;
2986        ExtraLoad = true;
2987      }
2988
2989      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2990                                          G->getOffset(), OpFlags);
2991
2992      // Add a wrapper if needed.
2993      if (WrapperKind != ISD::DELETED_NODE)
2994        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2995      // Add extra indirection if needed.
2996      if (ExtraLoad)
2997        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2998                             MachinePointerInfo::getGOT(),
2999                             false, false, false, 0);
3000    }
3001  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3002    unsigned char OpFlags = 0;
3003
3004    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
3005    // external symbols should go through the PLT.
3006    if (Subtarget->isTargetELF() &&
3007        DAG.getTarget().getRelocationModel() == Reloc::PIC_) {
3008      OpFlags = X86II::MO_PLT;
3009    } else if (Subtarget->isPICStyleStubAny() &&
3010               (!Subtarget->getTargetTriple().isMacOSX() ||
3011                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
3012      // PC-relative references to external symbols should go through $stub,
3013      // unless we're building with the leopard linker or later, which
3014      // automatically synthesizes these stubs.
3015      OpFlags = X86II::MO_DARWIN_STUB;
3016    }
3017
3018    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
3019                                         OpFlags);
3020  } else if (Subtarget->isTarget64BitILP32() &&
3021             Callee->getValueType(0) == MVT::i32) {
3022    // Zero-extend the 32-bit Callee address into a 64-bit according to x32 ABI
3023    Callee = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Callee);
3024  }
3025
3026  // Returns a chain & a flag for retval copy to use.
3027  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3028  SmallVector<SDValue, 8> Ops;
3029
3030  if (!IsSibcall && isTailCall) {
3031    Chain = DAG.getCALLSEQ_END(Chain,
3032                               DAG.getIntPtrConstant(NumBytesToPop, true),
3033                               DAG.getIntPtrConstant(0, true), InFlag, dl);
3034    InFlag = Chain.getValue(1);
3035  }
3036
3037  Ops.push_back(Chain);
3038  Ops.push_back(Callee);
3039
3040  if (isTailCall)
3041    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
3042
3043  // Add argument registers to the end of the list so that they are known live
3044  // into the call.
3045  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3046    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3047                                  RegsToPass[i].second.getValueType()));
3048
3049  // Add a register mask operand representing the call-preserved registers.
3050  const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
3051  const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3052  assert(Mask && "Missing call preserved mask for calling convention");
3053  Ops.push_back(DAG.getRegisterMask(Mask));
3054
3055  if (InFlag.getNode())
3056    Ops.push_back(InFlag);
3057
3058  if (isTailCall) {
3059    // We used to do:
3060    //// If this is the first return lowered for this function, add the regs
3061    //// to the liveout set for the function.
3062    // This isn't right, although it's probably harmless on x86; liveouts
3063    // should be computed from returns not tail calls.  Consider a void
3064    // function making a tail call to a function returning int.
3065    return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops);
3066  }
3067
3068  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops);
3069  InFlag = Chain.getValue(1);
3070
3071  // Create the CALLSEQ_END node.
3072  unsigned NumBytesForCalleeToPop;
3073  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
3074                       DAG.getTarget().Options.GuaranteedTailCallOpt))
3075    NumBytesForCalleeToPop = NumBytes;    // Callee pops everything
3076  else if (!Is64Bit && !IsTailCallConvention(CallConv) &&
3077           !Subtarget->getTargetTriple().isOSMSVCRT() &&
3078           SR == StackStructReturn)
3079    // If this is a call to a struct-return function, the callee
3080    // pops the hidden struct pointer, so we have to push it back.
3081    // This is common for Darwin/X86, Linux & Mingw32 targets.
3082    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
3083    NumBytesForCalleeToPop = 4;
3084  else
3085    NumBytesForCalleeToPop = 0;  // Callee pops nothing.
3086
3087  // Returns a flag for retval copy to use.
3088  if (!IsSibcall) {
3089    Chain = DAG.getCALLSEQ_END(Chain,
3090                               DAG.getIntPtrConstant(NumBytesToPop, true),
3091                               DAG.getIntPtrConstant(NumBytesForCalleeToPop,
3092                                                     true),
3093                               InFlag, dl);
3094    InFlag = Chain.getValue(1);
3095  }
3096
3097  // Handle result values, copying them out of physregs into vregs that we
3098  // return.
3099  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3100                         Ins, dl, DAG, InVals);
3101}
3102
3103//===----------------------------------------------------------------------===//
3104//                Fast Calling Convention (tail call) implementation
3105//===----------------------------------------------------------------------===//
3106
3107//  Like std call, callee cleans arguments, convention except that ECX is
3108//  reserved for storing the tail called function address. Only 2 registers are
3109//  free for argument passing (inreg). Tail call optimization is performed
3110//  provided:
3111//                * tailcallopt is enabled
3112//                * caller/callee are fastcc
3113//  On X86_64 architecture with GOT-style position independent code only local
3114//  (within module) calls are supported at the moment.
3115//  To keep the stack aligned according to platform abi the function
3116//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
3117//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
3118//  If a tail called function callee has more arguments than the caller the
3119//  caller needs to make sure that there is room to move the RETADDR to. This is
3120//  achieved by reserving an area the size of the argument delta right after the
3121//  original RETADDR, but before the saved framepointer or the spilled registers
3122//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
3123//  stack layout:
3124//    arg1
3125//    arg2
3126//    RETADDR
3127//    [ new RETADDR
3128//      move area ]
3129//    (possible EBP)
3130//    ESI
3131//    EDI
3132//    local1 ..
3133
3134/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
3135/// for a 16 byte align requirement.
3136unsigned
3137X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
3138                                               SelectionDAG& DAG) const {
3139  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3140  const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
3141  unsigned StackAlignment = TFI.getStackAlignment();
3142  uint64_t AlignMask = StackAlignment - 1;
3143  int64_t Offset = StackSize;
3144  unsigned SlotSize = RegInfo->getSlotSize();
3145  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
3146    // Number smaller than 12 so just add the difference.
3147    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
3148  } else {
3149    // Mask out lower bits, add stackalignment once plus the 12 bytes.
3150    Offset = ((~AlignMask) & Offset) + StackAlignment +
3151      (StackAlignment-SlotSize);
3152  }
3153  return Offset;
3154}
3155
3156/// MatchingStackOffset - Return true if the given stack call argument is
3157/// already available in the same position (relatively) of the caller's
3158/// incoming argument stack.
3159static
3160bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
3161                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
3162                         const X86InstrInfo *TII) {
3163  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
3164  int FI = INT_MAX;
3165  if (Arg.getOpcode() == ISD::CopyFromReg) {
3166    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
3167    if (!TargetRegisterInfo::isVirtualRegister(VR))
3168      return false;
3169    MachineInstr *Def = MRI->getVRegDef(VR);
3170    if (!Def)
3171      return false;
3172    if (!Flags.isByVal()) {
3173      if (!TII->isLoadFromStackSlot(Def, FI))
3174        return false;
3175    } else {
3176      unsigned Opcode = Def->getOpcode();
3177      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r ||
3178           Opcode == X86::LEA64_32r) &&
3179          Def->getOperand(1).isFI()) {
3180        FI = Def->getOperand(1).getIndex();
3181        Bytes = Flags.getByValSize();
3182      } else
3183        return false;
3184    }
3185  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
3186    if (Flags.isByVal())
3187      // ByVal argument is passed in as a pointer but it's now being
3188      // dereferenced. e.g.
3189      // define @foo(%struct.X* %A) {
3190      //   tail call @bar(%struct.X* byval %A)
3191      // }
3192      return false;
3193    SDValue Ptr = Ld->getBasePtr();
3194    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
3195    if (!FINode)
3196      return false;
3197    FI = FINode->getIndex();
3198  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
3199    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
3200    FI = FINode->getIndex();
3201    Bytes = Flags.getByValSize();
3202  } else
3203    return false;
3204
3205  assert(FI != INT_MAX);
3206  if (!MFI->isFixedObjectIndex(FI))
3207    return false;
3208  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
3209}
3210
3211/// IsEligibleForTailCallOptimization - Check whether the call is eligible
3212/// for tail call optimization. Targets which want to do tail call
3213/// optimization should implement this function.
3214bool
3215X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
3216                                                     CallingConv::ID CalleeCC,
3217                                                     bool isVarArg,
3218                                                     bool isCalleeStructRet,
3219                                                     bool isCallerStructRet,
3220                                                     Type *RetTy,
3221                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3222                                    const SmallVectorImpl<SDValue> &OutVals,
3223                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3224                                                     SelectionDAG &DAG) const {
3225  if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
3226    return false;
3227
3228  // If -tailcallopt is specified, make fastcc functions tail-callable.
3229  const MachineFunction &MF = DAG.getMachineFunction();
3230  const Function *CallerF = MF.getFunction();
3231
3232  // If the function return type is x86_fp80 and the callee return type is not,
3233  // then the FP_EXTEND of the call result is not a nop. It's not safe to
3234  // perform a tailcall optimization here.
3235  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
3236    return false;
3237
3238  CallingConv::ID CallerCC = CallerF->getCallingConv();
3239  bool CCMatch = CallerCC == CalleeCC;
3240  bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC);
3241  bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC);
3242
3243  // Win64 functions have extra shadow space for argument homing. Don't do the
3244  // sibcall if the caller and callee have mismatched expectations for this
3245  // space.
3246  if (IsCalleeWin64 != IsCallerWin64)
3247    return false;
3248
3249  if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
3250    if (IsTailCallConvention(CalleeCC) && CCMatch)
3251      return true;
3252    return false;
3253  }
3254
3255  // Look for obvious safe cases to perform tail call optimization that do not
3256  // require ABI changes. This is what gcc calls sibcall.
3257
3258  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
3259  // emit a special epilogue.
3260  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3261  if (RegInfo->needsStackRealignment(MF))
3262    return false;
3263
3264  // Also avoid sibcall optimization if either caller or callee uses struct
3265  // return semantics.
3266  if (isCalleeStructRet || isCallerStructRet)
3267    return false;
3268
3269  // An stdcall/thiscall caller is expected to clean up its arguments; the
3270  // callee isn't going to do that.
3271  // FIXME: this is more restrictive than needed. We could produce a tailcall
3272  // when the stack adjustment matches. For example, with a thiscall that takes
3273  // only one argument.
3274  if (!CCMatch && (CallerCC == CallingConv::X86_StdCall ||
3275                   CallerCC == CallingConv::X86_ThisCall))
3276    return false;
3277
3278  // Do not sibcall optimize vararg calls unless all arguments are passed via
3279  // registers.
3280  if (isVarArg && !Outs.empty()) {
3281
3282    // Optimizing for varargs on Win64 is unlikely to be safe without
3283    // additional testing.
3284    if (IsCalleeWin64 || IsCallerWin64)
3285      return false;
3286
3287    SmallVector<CCValAssign, 16> ArgLocs;
3288    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
3289                   *DAG.getContext());
3290
3291    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3292    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
3293      if (!ArgLocs[i].isRegLoc())
3294        return false;
3295  }
3296
3297  // If the call result is in ST0 / ST1, it needs to be popped off the x87
3298  // stack.  Therefore, if it's not used by the call it is not safe to optimize
3299  // this into a sibcall.
3300  bool Unused = false;
3301  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3302    if (!Ins[i].Used) {
3303      Unused = true;
3304      break;
3305    }
3306  }
3307  if (Unused) {
3308    SmallVector<CCValAssign, 16> RVLocs;
3309    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(), RVLocs,
3310                   *DAG.getContext());
3311    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
3312    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3313      CCValAssign &VA = RVLocs[i];
3314      if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
3315        return false;
3316    }
3317  }
3318
3319  // If the calling conventions do not match, then we'd better make sure the
3320  // results are returned in the same way as what the caller expects.
3321  if (!CCMatch) {
3322    SmallVector<CCValAssign, 16> RVLocs1;
3323    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
3324                    *DAG.getContext());
3325    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
3326
3327    SmallVector<CCValAssign, 16> RVLocs2;
3328    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
3329                    *DAG.getContext());
3330    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
3331
3332    if (RVLocs1.size() != RVLocs2.size())
3333      return false;
3334    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
3335      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
3336        return false;
3337      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
3338        return false;
3339      if (RVLocs1[i].isRegLoc()) {
3340        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
3341          return false;
3342      } else {
3343        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
3344          return false;
3345      }
3346    }
3347  }
3348
3349  // If the callee takes no arguments then go on to check the results of the
3350  // call.
3351  if (!Outs.empty()) {
3352    // Check if stack adjustment is needed. For now, do not do this if any
3353    // argument is passed on the stack.
3354    SmallVector<CCValAssign, 16> ArgLocs;
3355    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
3356                   *DAG.getContext());
3357
3358    // Allocate shadow area for Win64
3359    if (IsCalleeWin64)
3360      CCInfo.AllocateStack(32, 8);
3361
3362    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3363    if (CCInfo.getNextStackOffset()) {
3364      MachineFunction &MF = DAG.getMachineFunction();
3365      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
3366        return false;
3367
3368      // Check if the arguments are already laid out in the right way as
3369      // the caller's fixed stack objects.
3370      MachineFrameInfo *MFI = MF.getFrameInfo();
3371      const MachineRegisterInfo *MRI = &MF.getRegInfo();
3372      const X86InstrInfo *TII = Subtarget->getInstrInfo();
3373      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3374        CCValAssign &VA = ArgLocs[i];
3375        SDValue Arg = OutVals[i];
3376        ISD::ArgFlagsTy Flags = Outs[i].Flags;
3377        if (VA.getLocInfo() == CCValAssign::Indirect)
3378          return false;
3379        if (!VA.isRegLoc()) {
3380          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
3381                                   MFI, MRI, TII))
3382            return false;
3383        }
3384      }
3385    }
3386
3387    // If the tailcall address may be in a register, then make sure it's
3388    // possible to register allocate for it. In 32-bit, the call address can
3389    // only target EAX, EDX, or ECX since the tail call must be scheduled after
3390    // callee-saved registers are restored. These happen to be the same
3391    // registers used to pass 'inreg' arguments so watch out for those.
3392    if (!Subtarget->is64Bit() &&
3393        ((!isa<GlobalAddressSDNode>(Callee) &&
3394          !isa<ExternalSymbolSDNode>(Callee)) ||
3395         DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
3396      unsigned NumInRegs = 0;
3397      // In PIC we need an extra register to formulate the address computation
3398      // for the callee.
3399      unsigned MaxInRegs =
3400        (DAG.getTarget().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
3401
3402      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3403        CCValAssign &VA = ArgLocs[i];
3404        if (!VA.isRegLoc())
3405          continue;
3406        unsigned Reg = VA.getLocReg();
3407        switch (Reg) {
3408        default: break;
3409        case X86::EAX: case X86::EDX: case X86::ECX:
3410          if (++NumInRegs == MaxInRegs)
3411            return false;
3412          break;
3413        }
3414      }
3415    }
3416  }
3417
3418  return true;
3419}
3420
3421FastISel *
3422X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
3423                                  const TargetLibraryInfo *libInfo) const {
3424  return X86::createFastISel(funcInfo, libInfo);
3425}
3426
3427//===----------------------------------------------------------------------===//
3428//                           Other Lowering Hooks
3429//===----------------------------------------------------------------------===//
3430
3431static bool MayFoldLoad(SDValue Op) {
3432  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
3433}
3434
3435static bool MayFoldIntoStore(SDValue Op) {
3436  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
3437}
3438
3439static bool isTargetShuffle(unsigned Opcode) {
3440  switch(Opcode) {
3441  default: return false;
3442  case X86ISD::BLENDI:
3443  case X86ISD::PSHUFB:
3444  case X86ISD::PSHUFD:
3445  case X86ISD::PSHUFHW:
3446  case X86ISD::PSHUFLW:
3447  case X86ISD::SHUFP:
3448  case X86ISD::PALIGNR:
3449  case X86ISD::MOVLHPS:
3450  case X86ISD::MOVLHPD:
3451  case X86ISD::MOVHLPS:
3452  case X86ISD::MOVLPS:
3453  case X86ISD::MOVLPD:
3454  case X86ISD::MOVSHDUP:
3455  case X86ISD::MOVSLDUP:
3456  case X86ISD::MOVDDUP:
3457  case X86ISD::MOVSS:
3458  case X86ISD::MOVSD:
3459  case X86ISD::UNPCKL:
3460  case X86ISD::UNPCKH:
3461  case X86ISD::VPERMILPI:
3462  case X86ISD::VPERM2X128:
3463  case X86ISD::VPERMI:
3464    return true;
3465  }
3466}
3467
3468static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3469                                    SDValue V1, unsigned TargetMask,
3470                                    SelectionDAG &DAG) {
3471  switch(Opc) {
3472  default: llvm_unreachable("Unknown x86 shuffle node");
3473  case X86ISD::PSHUFD:
3474  case X86ISD::PSHUFHW:
3475  case X86ISD::PSHUFLW:
3476  case X86ISD::VPERMILPI:
3477  case X86ISD::VPERMI:
3478    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
3479  }
3480}
3481
3482static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3483                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3484  switch(Opc) {
3485  default: llvm_unreachable("Unknown x86 shuffle node");
3486  case X86ISD::MOVLHPS:
3487  case X86ISD::MOVLHPD:
3488  case X86ISD::MOVHLPS:
3489  case X86ISD::MOVLPS:
3490  case X86ISD::MOVLPD:
3491  case X86ISD::MOVSS:
3492  case X86ISD::MOVSD:
3493  case X86ISD::UNPCKL:
3494  case X86ISD::UNPCKH:
3495    return DAG.getNode(Opc, dl, VT, V1, V2);
3496  }
3497}
3498
3499SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3500  MachineFunction &MF = DAG.getMachineFunction();
3501  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3502  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3503  int ReturnAddrIndex = FuncInfo->getRAIndex();
3504
3505  if (ReturnAddrIndex == 0) {
3506    // Set up a frame object for the return address.
3507    unsigned SlotSize = RegInfo->getSlotSize();
3508    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3509                                                           -(int64_t)SlotSize,
3510                                                           false);
3511    FuncInfo->setRAIndex(ReturnAddrIndex);
3512  }
3513
3514  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3515}
3516
3517bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3518                                       bool hasSymbolicDisplacement) {
3519  // Offset should fit into 32 bit immediate field.
3520  if (!isInt<32>(Offset))
3521    return false;
3522
3523  // If we don't have a symbolic displacement - we don't have any extra
3524  // restrictions.
3525  if (!hasSymbolicDisplacement)
3526    return true;
3527
3528  // FIXME: Some tweaks might be needed for medium code model.
3529  if (M != CodeModel::Small && M != CodeModel::Kernel)
3530    return false;
3531
3532  // For small code model we assume that latest object is 16MB before end of 31
3533  // bits boundary. We may also accept pretty large negative constants knowing
3534  // that all objects are in the positive half of address space.
3535  if (M == CodeModel::Small && Offset < 16*1024*1024)
3536    return true;
3537
3538  // For kernel code model we know that all object resist in the negative half
3539  // of 32bits address space. We may not accept negative offsets, since they may
3540  // be just off and we may accept pretty large positive ones.
3541  if (M == CodeModel::Kernel && Offset >= 0)
3542    return true;
3543
3544  return false;
3545}
3546
3547/// isCalleePop - Determines whether the callee is required to pop its
3548/// own arguments. Callee pop is necessary to support tail calls.
3549bool X86::isCalleePop(CallingConv::ID CallingConv,
3550                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3551  switch (CallingConv) {
3552  default:
3553    return false;
3554  case CallingConv::X86_StdCall:
3555  case CallingConv::X86_FastCall:
3556  case CallingConv::X86_ThisCall:
3557    return !is64Bit;
3558  case CallingConv::Fast:
3559  case CallingConv::GHC:
3560  case CallingConv::HiPE:
3561    if (IsVarArg)
3562      return false;
3563    return TailCallOpt;
3564  }
3565}
3566
3567/// \brief Return true if the condition is an unsigned comparison operation.
3568static bool isX86CCUnsigned(unsigned X86CC) {
3569  switch (X86CC) {
3570  default: llvm_unreachable("Invalid integer condition!");
3571  case X86::COND_E:     return true;
3572  case X86::COND_G:     return false;
3573  case X86::COND_GE:    return false;
3574  case X86::COND_L:     return false;
3575  case X86::COND_LE:    return false;
3576  case X86::COND_NE:    return true;
3577  case X86::COND_B:     return true;
3578  case X86::COND_A:     return true;
3579  case X86::COND_BE:    return true;
3580  case X86::COND_AE:    return true;
3581  }
3582  llvm_unreachable("covered switch fell through?!");
3583}
3584
3585/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3586/// specific condition code, returning the condition code and the LHS/RHS of the
3587/// comparison to make.
3588static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3589                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3590  if (!isFP) {
3591    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3592      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3593        // X > -1   -> X == 0, jump !sign.
3594        RHS = DAG.getConstant(0, RHS.getValueType());
3595        return X86::COND_NS;
3596      }
3597      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3598        // X < 0   -> X == 0, jump on sign.
3599        return X86::COND_S;
3600      }
3601      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3602        // X < 1   -> X <= 0
3603        RHS = DAG.getConstant(0, RHS.getValueType());
3604        return X86::COND_LE;
3605      }
3606    }
3607
3608    switch (SetCCOpcode) {
3609    default: llvm_unreachable("Invalid integer condition!");
3610    case ISD::SETEQ:  return X86::COND_E;
3611    case ISD::SETGT:  return X86::COND_G;
3612    case ISD::SETGE:  return X86::COND_GE;
3613    case ISD::SETLT:  return X86::COND_L;
3614    case ISD::SETLE:  return X86::COND_LE;
3615    case ISD::SETNE:  return X86::COND_NE;
3616    case ISD::SETULT: return X86::COND_B;
3617    case ISD::SETUGT: return X86::COND_A;
3618    case ISD::SETULE: return X86::COND_BE;
3619    case ISD::SETUGE: return X86::COND_AE;
3620    }
3621  }
3622
3623  // First determine if it is required or is profitable to flip the operands.
3624
3625  // If LHS is a foldable load, but RHS is not, flip the condition.
3626  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3627      !ISD::isNON_EXTLoad(RHS.getNode())) {
3628    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3629    std::swap(LHS, RHS);
3630  }
3631
3632  switch (SetCCOpcode) {
3633  default: break;
3634  case ISD::SETOLT:
3635  case ISD::SETOLE:
3636  case ISD::SETUGT:
3637  case ISD::SETUGE:
3638    std::swap(LHS, RHS);
3639    break;
3640  }
3641
3642  // On a floating point condition, the flags are set as follows:
3643  // ZF  PF  CF   op
3644  //  0 | 0 | 0 | X > Y
3645  //  0 | 0 | 1 | X < Y
3646  //  1 | 0 | 0 | X == Y
3647  //  1 | 1 | 1 | unordered
3648  switch (SetCCOpcode) {
3649  default: llvm_unreachable("Condcode should be pre-legalized away");
3650  case ISD::SETUEQ:
3651  case ISD::SETEQ:   return X86::COND_E;
3652  case ISD::SETOLT:              // flipped
3653  case ISD::SETOGT:
3654  case ISD::SETGT:   return X86::COND_A;
3655  case ISD::SETOLE:              // flipped
3656  case ISD::SETOGE:
3657  case ISD::SETGE:   return X86::COND_AE;
3658  case ISD::SETUGT:              // flipped
3659  case ISD::SETULT:
3660  case ISD::SETLT:   return X86::COND_B;
3661  case ISD::SETUGE:              // flipped
3662  case ISD::SETULE:
3663  case ISD::SETLE:   return X86::COND_BE;
3664  case ISD::SETONE:
3665  case ISD::SETNE:   return X86::COND_NE;
3666  case ISD::SETUO:   return X86::COND_P;
3667  case ISD::SETO:    return X86::COND_NP;
3668  case ISD::SETOEQ:
3669  case ISD::SETUNE:  return X86::COND_INVALID;
3670  }
3671}
3672
3673/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3674/// code. Current x86 isa includes the following FP cmov instructions:
3675/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3676static bool hasFPCMov(unsigned X86CC) {
3677  switch (X86CC) {
3678  default:
3679    return false;
3680  case X86::COND_B:
3681  case X86::COND_BE:
3682  case X86::COND_E:
3683  case X86::COND_P:
3684  case X86::COND_A:
3685  case X86::COND_AE:
3686  case X86::COND_NE:
3687  case X86::COND_NP:
3688    return true;
3689  }
3690}
3691
3692/// isFPImmLegal - Returns true if the target can instruction select the
3693/// specified FP immediate natively. If false, the legalizer will
3694/// materialize the FP immediate as a load from a constant pool.
3695bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3696  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3697    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3698      return true;
3699  }
3700  return false;
3701}
3702
3703bool X86TargetLowering::shouldReduceLoadWidth(SDNode *Load,
3704                                              ISD::LoadExtType ExtTy,
3705                                              EVT NewVT) const {
3706  // "ELF Handling for Thread-Local Storage" specifies that R_X86_64_GOTTPOFF
3707  // relocation target a movq or addq instruction: don't let the load shrink.
3708  SDValue BasePtr = cast<LoadSDNode>(Load)->getBasePtr();
3709  if (BasePtr.getOpcode() == X86ISD::WrapperRIP)
3710    if (const auto *GA = dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0)))
3711      return GA->getTargetFlags() != X86II::MO_GOTTPOFF;
3712  return true;
3713}
3714
3715/// \brief Returns true if it is beneficial to convert a load of a constant
3716/// to just the constant itself.
3717bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
3718                                                          Type *Ty) const {
3719  assert(Ty->isIntegerTy());
3720
3721  unsigned BitSize = Ty->getPrimitiveSizeInBits();
3722  if (BitSize == 0 || BitSize > 64)
3723    return false;
3724  return true;
3725}
3726
3727bool X86TargetLowering::isExtractSubvectorCheap(EVT ResVT,
3728                                                unsigned Index) const {
3729  if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
3730    return false;
3731
3732  return (Index == 0 || Index == ResVT.getVectorNumElements());
3733}
3734
3735bool X86TargetLowering::isCheapToSpeculateCttz() const {
3736  // Speculate cttz only if we can directly use TZCNT.
3737  return Subtarget->hasBMI();
3738}
3739
3740bool X86TargetLowering::isCheapToSpeculateCtlz() const {
3741  // Speculate ctlz only if we can directly use LZCNT.
3742  return Subtarget->hasLZCNT();
3743}
3744
3745/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3746/// the specified range (L, H].
3747static bool isUndefOrInRange(int Val, int Low, int Hi) {
3748  return (Val < 0) || (Val >= Low && Val < Hi);
3749}
3750
3751/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3752/// specified value.
3753static bool isUndefOrEqual(int Val, int CmpVal) {
3754  return (Val < 0 || Val == CmpVal);
3755}
3756
3757/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3758/// from position Pos and ending in Pos+Size, falls within the specified
3759/// sequential range (Low, Low+Size]. or is undef.
3760static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3761                                       unsigned Pos, unsigned Size, int Low) {
3762  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3763    if (!isUndefOrEqual(Mask[i], Low))
3764      return false;
3765  return true;
3766}
3767
3768/// isVEXTRACTIndex - Return true if the specified
3769/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3770/// suitable for instruction that extract 128 or 256 bit vectors
3771static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) {
3772  assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
3773  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3774    return false;
3775
3776  // The index should be aligned on a vecWidth-bit boundary.
3777  uint64_t Index =
3778    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3779
3780  MVT VT = N->getSimpleValueType(0);
3781  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
3782  bool Result = (Index * ElSize) % vecWidth == 0;
3783
3784  return Result;
3785}
3786
3787/// isVINSERTIndex - Return true if the specified INSERT_SUBVECTOR
3788/// operand specifies a subvector insert that is suitable for input to
3789/// insertion of 128 or 256-bit subvectors
3790static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) {
3791  assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
3792  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3793    return false;
3794  // The index should be aligned on a vecWidth-bit boundary.
3795  uint64_t Index =
3796    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3797
3798  MVT VT = N->getSimpleValueType(0);
3799  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
3800  bool Result = (Index * ElSize) % vecWidth == 0;
3801
3802  return Result;
3803}
3804
3805bool X86::isVINSERT128Index(SDNode *N) {
3806  return isVINSERTIndex(N, 128);
3807}
3808
3809bool X86::isVINSERT256Index(SDNode *N) {
3810  return isVINSERTIndex(N, 256);
3811}
3812
3813bool X86::isVEXTRACT128Index(SDNode *N) {
3814  return isVEXTRACTIndex(N, 128);
3815}
3816
3817bool X86::isVEXTRACT256Index(SDNode *N) {
3818  return isVEXTRACTIndex(N, 256);
3819}
3820
3821static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) {
3822  assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
3823  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3824    llvm_unreachable("Illegal extract subvector for VEXTRACT");
3825
3826  uint64_t Index =
3827    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3828
3829  MVT VecVT = N->getOperand(0).getSimpleValueType();
3830  MVT ElVT = VecVT.getVectorElementType();
3831
3832  unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
3833  return Index / NumElemsPerChunk;
3834}
3835
3836static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) {
3837  assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
3838  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3839    llvm_unreachable("Illegal insert subvector for VINSERT");
3840
3841  uint64_t Index =
3842    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3843
3844  MVT VecVT = N->getSimpleValueType(0);
3845  MVT ElVT = VecVT.getVectorElementType();
3846
3847  unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
3848  return Index / NumElemsPerChunk;
3849}
3850
3851/// getExtractVEXTRACT128Immediate - Return the appropriate immediate
3852/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3853/// and VINSERTI128 instructions.
3854unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) {
3855  return getExtractVEXTRACTImmediate(N, 128);
3856}
3857
3858/// getExtractVEXTRACT256Immediate - Return the appropriate immediate
3859/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF64x4
3860/// and VINSERTI64x4 instructions.
3861unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) {
3862  return getExtractVEXTRACTImmediate(N, 256);
3863}
3864
3865/// getInsertVINSERT128Immediate - Return the appropriate immediate
3866/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3867/// and VINSERTI128 instructions.
3868unsigned X86::getInsertVINSERT128Immediate(SDNode *N) {
3869  return getInsertVINSERTImmediate(N, 128);
3870}
3871
3872/// getInsertVINSERT256Immediate - Return the appropriate immediate
3873/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF46x4
3874/// and VINSERTI64x4 instructions.
3875unsigned X86::getInsertVINSERT256Immediate(SDNode *N) {
3876  return getInsertVINSERTImmediate(N, 256);
3877}
3878
3879/// isZero - Returns true if Elt is a constant integer zero
3880static bool isZero(SDValue V) {
3881  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
3882  return C && C->isNullValue();
3883}
3884
3885/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3886/// constant +0.0.
3887bool X86::isZeroNode(SDValue Elt) {
3888  if (isZero(Elt))
3889    return true;
3890  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt))
3891    return CFP->getValueAPF().isPosZero();
3892  return false;
3893}
3894
3895/// getZeroVector - Returns a vector of specified type with all zero elements.
3896///
3897static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
3898                             SelectionDAG &DAG, SDLoc dl) {
3899  assert(VT.isVector() && "Expected a vector type");
3900
3901  // Always build SSE zero vectors as <4 x i32> bitcasted
3902  // to their dest type. This ensures they get CSE'd.
3903  SDValue Vec;
3904  if (VT.is128BitVector()) {  // SSE
3905    if (Subtarget->hasSSE2()) {  // SSE2
3906      SDValue Cst = DAG.getConstant(0, MVT::i32);
3907      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3908    } else { // SSE1
3909      SDValue Cst = DAG.getConstantFP(+0.0, MVT::f32);
3910      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3911    }
3912  } else if (VT.is256BitVector()) { // AVX
3913    if (Subtarget->hasInt256()) { // AVX2
3914      SDValue Cst = DAG.getConstant(0, MVT::i32);
3915      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3916      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops);
3917    } else {
3918      // 256-bit logic and arithmetic instructions in AVX are all
3919      // floating-point, no support for integer ops. Emit fp zeroed vectors.
3920      SDValue Cst = DAG.getConstantFP(+0.0, MVT::f32);
3921      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3922      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops);
3923    }
3924  } else if (VT.is512BitVector()) { // AVX-512
3925      SDValue Cst = DAG.getConstant(0, MVT::i32);
3926      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
3927                        Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3928      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops);
3929  } else if (VT.getScalarType() == MVT::i1) {
3930
3931    assert((Subtarget->hasBWI() || VT.getVectorNumElements() <= 16)
3932            && "Unexpected vector type");
3933    assert((Subtarget->hasVLX() || VT.getVectorNumElements() >= 8)
3934            && "Unexpected vector type");
3935    SDValue Cst = DAG.getConstant(0, MVT::i1);
3936    SmallVector<SDValue, 64> Ops(VT.getVectorNumElements(), Cst);
3937    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3938  } else
3939    llvm_unreachable("Unexpected vector type");
3940
3941  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3942}
3943
3944static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal,
3945                                SelectionDAG &DAG, SDLoc dl,
3946                                unsigned vectorWidth) {
3947  assert((vectorWidth == 128 || vectorWidth == 256) &&
3948         "Unsupported vector width");
3949  EVT VT = Vec.getValueType();
3950  EVT ElVT = VT.getVectorElementType();
3951  unsigned Factor = VT.getSizeInBits()/vectorWidth;
3952  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
3953                                  VT.getVectorNumElements()/Factor);
3954
3955  // Extract from UNDEF is UNDEF.
3956  if (Vec.getOpcode() == ISD::UNDEF)
3957    return DAG.getUNDEF(ResultVT);
3958
3959  // Extract the relevant vectorWidth bits.  Generate an EXTRACT_SUBVECTOR
3960  unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
3961
3962  // This is the index of the first element of the vectorWidth-bit chunk
3963  // we want.
3964  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / vectorWidth)
3965                               * ElemsPerChunk);
3966
3967  // If the input is a buildvector just emit a smaller one.
3968  if (Vec.getOpcode() == ISD::BUILD_VECTOR)
3969    return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
3970                       makeArrayRef(Vec->op_begin() + NormalizedIdxVal,
3971                                    ElemsPerChunk));
3972
3973  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
3974  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, VecIdx);
3975}
3976
3977/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
3978/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
3979/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
3980/// instructions or a simple subregister reference. Idx is an index in the
3981/// 128 bits we want.  It need not be aligned to a 128-bit boundary.  That makes
3982/// lowering EXTRACT_VECTOR_ELT operations easier.
3983static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
3984                                   SelectionDAG &DAG, SDLoc dl) {
3985  assert((Vec.getValueType().is256BitVector() ||
3986          Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
3987  return ExtractSubVector(Vec, IdxVal, DAG, dl, 128);
3988}
3989
3990/// Generate a DAG to grab 256-bits from a 512-bit vector.
3991static SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal,
3992                                   SelectionDAG &DAG, SDLoc dl) {
3993  assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
3994  return ExtractSubVector(Vec, IdxVal, DAG, dl, 256);
3995}
3996
3997static SDValue InsertSubVector(SDValue Result, SDValue Vec,
3998                               unsigned IdxVal, SelectionDAG &DAG,
3999                               SDLoc dl, unsigned vectorWidth) {
4000  assert((vectorWidth == 128 || vectorWidth == 256) &&
4001         "Unsupported vector width");
4002  // Inserting UNDEF is Result
4003  if (Vec.getOpcode() == ISD::UNDEF)
4004    return Result;
4005  EVT VT = Vec.getValueType();
4006  EVT ElVT = VT.getVectorElementType();
4007  EVT ResultVT = Result.getValueType();
4008
4009  // Insert the relevant vectorWidth bits.
4010  unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
4011
4012  // This is the index of the first element of the vectorWidth-bit chunk
4013  // we want.
4014  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/vectorWidth)
4015                               * ElemsPerChunk);
4016
4017  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
4018  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, VecIdx);
4019}
4020
4021/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
4022/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
4023/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
4024/// simple superregister reference.  Idx is an index in the 128 bits
4025/// we want.  It need not be aligned to a 128-bit boundary.  That makes
4026/// lowering INSERT_VECTOR_ELT operations easier.
4027static SDValue Insert128BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
4028                                  SelectionDAG &DAG, SDLoc dl) {
4029  assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
4030
4031  // For insertion into the zero index (low half) of a 256-bit vector, it is
4032  // more efficient to generate a blend with immediate instead of an insert*128.
4033  // We are still creating an INSERT_SUBVECTOR below with an undef node to
4034  // extend the subvector to the size of the result vector. Make sure that
4035  // we are not recursing on that node by checking for undef here.
4036  if (IdxVal == 0 && Result.getValueType().is256BitVector() &&
4037      Result.getOpcode() != ISD::UNDEF) {
4038    EVT ResultVT = Result.getValueType();
4039    SDValue ZeroIndex = DAG.getIntPtrConstant(0);
4040    SDValue Undef = DAG.getUNDEF(ResultVT);
4041    SDValue Vec256 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Undef,
4042                                 Vec, ZeroIndex);
4043
4044    // The blend instruction, and therefore its mask, depend on the data type.
4045    MVT ScalarType = ResultVT.getScalarType().getSimpleVT();
4046    if (ScalarType.isFloatingPoint()) {
4047      // Choose either vblendps (float) or vblendpd (double).
4048      unsigned ScalarSize = ScalarType.getSizeInBits();
4049      assert((ScalarSize == 64 || ScalarSize == 32) && "Unknown float type");
4050      unsigned MaskVal = (ScalarSize == 64) ? 0x03 : 0x0f;
4051      SDValue Mask = DAG.getConstant(MaskVal, MVT::i8);
4052      return DAG.getNode(X86ISD::BLENDI, dl, ResultVT, Result, Vec256, Mask);
4053    }
4054
4055    const X86Subtarget &Subtarget =
4056    static_cast<const X86Subtarget &>(DAG.getSubtarget());
4057
4058    // AVX2 is needed for 256-bit integer blend support.
4059    // Integers must be cast to 32-bit because there is only vpblendd;
4060    // vpblendw can't be used for this because it has a handicapped mask.
4061
4062    // If we don't have AVX2, then cast to float. Using a wrong domain blend
4063    // is still more efficient than using the wrong domain vinsertf128 that
4064    // will be created by InsertSubVector().
4065    MVT CastVT = Subtarget.hasAVX2() ? MVT::v8i32 : MVT::v8f32;
4066
4067    SDValue Mask = DAG.getConstant(0x0f, MVT::i8);
4068    Vec256 = DAG.getNode(ISD::BITCAST, dl, CastVT, Vec256);
4069    Vec256 = DAG.getNode(X86ISD::BLENDI, dl, CastVT, Result, Vec256, Mask);
4070    return DAG.getNode(ISD::BITCAST, dl, ResultVT, Vec256);
4071  }
4072
4073  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
4074}
4075
4076static SDValue Insert256BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
4077                                  SelectionDAG &DAG, SDLoc dl) {
4078  assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!");
4079  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256);
4080}
4081
4082/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
4083/// instructions. This is used because creating CONCAT_VECTOR nodes of
4084/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
4085/// large BUILD_VECTORS.
4086static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
4087                                   unsigned NumElems, SelectionDAG &DAG,
4088                                   SDLoc dl) {
4089  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
4090  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
4091}
4092
4093static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
4094                                   unsigned NumElems, SelectionDAG &DAG,
4095                                   SDLoc dl) {
4096  SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
4097  return Insert256BitVector(V, V2, NumElems/2, DAG, dl);
4098}
4099
4100/// getOnesVector - Returns a vector of specified type with all bits set.
4101/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4102/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4103/// Then bitcast to their original type, ensuring they get CSE'd.
4104static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
4105                             SDLoc dl) {
4106  assert(VT.isVector() && "Expected a vector type");
4107
4108  SDValue Cst = DAG.getConstant(~0U, MVT::i32);
4109  SDValue Vec;
4110  if (VT.is256BitVector()) {
4111    if (HasInt256) { // AVX2
4112      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4113      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops);
4114    } else { // AVX
4115      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4116      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4117    }
4118  } else if (VT.is128BitVector()) {
4119    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4120  } else
4121    llvm_unreachable("Unexpected vector type");
4122
4123  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4124}
4125
4126/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4127/// operation of specified width.
4128static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
4129                       SDValue V2) {
4130  unsigned NumElems = VT.getVectorNumElements();
4131  SmallVector<int, 8> Mask;
4132  Mask.push_back(NumElems);
4133  for (unsigned i = 1; i != NumElems; ++i)
4134    Mask.push_back(i);
4135  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4136}
4137
4138/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4139static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
4140                          SDValue V2) {
4141  unsigned NumElems = VT.getVectorNumElements();
4142  SmallVector<int, 8> Mask;
4143  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4144    Mask.push_back(i);
4145    Mask.push_back(i + NumElems);
4146  }
4147  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4148}
4149
4150/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4151static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
4152                          SDValue V2) {
4153  unsigned NumElems = VT.getVectorNumElements();
4154  SmallVector<int, 8> Mask;
4155  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4156    Mask.push_back(i + Half);
4157    Mask.push_back(i + NumElems + Half);
4158  }
4159  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4160}
4161
4162/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4163/// vector of zero or undef vector.  This produces a shuffle where the low
4164/// element of V2 is swizzled into the zero/undef vector, landing at element
4165/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4166static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4167                                           bool IsZero,
4168                                           const X86Subtarget *Subtarget,
4169                                           SelectionDAG &DAG) {
4170  MVT VT = V2.getSimpleValueType();
4171  SDValue V1 = IsZero
4172    ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
4173  unsigned NumElems = VT.getVectorNumElements();
4174  SmallVector<int, 16> MaskVec;
4175  for (unsigned i = 0; i != NumElems; ++i)
4176    // If this is the insertion idx, put the low elt of V2 here.
4177    MaskVec.push_back(i == Idx ? NumElems : i);
4178  return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]);
4179}
4180
4181/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4182/// target specific opcode. Returns true if the Mask could be calculated. Sets
4183/// IsUnary to true if only uses one source. Note that this will set IsUnary for
4184/// shuffles which use a single input multiple times, and in those cases it will
4185/// adjust the mask to only have indices within that single input.
4186static bool getTargetShuffleMask(SDNode *N, MVT VT,
4187                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4188  unsigned NumElems = VT.getVectorNumElements();
4189  SDValue ImmN;
4190
4191  IsUnary = false;
4192  bool IsFakeUnary = false;
4193  switch(N->getOpcode()) {
4194  case X86ISD::BLENDI:
4195    ImmN = N->getOperand(N->getNumOperands()-1);
4196    DecodeBLENDMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4197    break;
4198  case X86ISD::SHUFP:
4199    ImmN = N->getOperand(N->getNumOperands()-1);
4200    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4201    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
4202    break;
4203  case X86ISD::UNPCKH:
4204    DecodeUNPCKHMask(VT, Mask);
4205    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
4206    break;
4207  case X86ISD::UNPCKL:
4208    DecodeUNPCKLMask(VT, Mask);
4209    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
4210    break;
4211  case X86ISD::MOVHLPS:
4212    DecodeMOVHLPSMask(NumElems, Mask);
4213    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
4214    break;
4215  case X86ISD::MOVLHPS:
4216    DecodeMOVLHPSMask(NumElems, Mask);
4217    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
4218    break;
4219  case X86ISD::PALIGNR:
4220    ImmN = N->getOperand(N->getNumOperands()-1);
4221    DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4222    break;
4223  case X86ISD::PSHUFD:
4224  case X86ISD::VPERMILPI:
4225    ImmN = N->getOperand(N->getNumOperands()-1);
4226    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4227    IsUnary = true;
4228    break;
4229  case X86ISD::PSHUFHW:
4230    ImmN = N->getOperand(N->getNumOperands()-1);
4231    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4232    IsUnary = true;
4233    break;
4234  case X86ISD::PSHUFLW:
4235    ImmN = N->getOperand(N->getNumOperands()-1);
4236    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4237    IsUnary = true;
4238    break;
4239  case X86ISD::PSHUFB: {
4240    IsUnary = true;
4241    SDValue MaskNode = N->getOperand(1);
4242    while (MaskNode->getOpcode() == ISD::BITCAST)
4243      MaskNode = MaskNode->getOperand(0);
4244
4245    if (MaskNode->getOpcode() == ISD::BUILD_VECTOR) {
4246      // If we have a build-vector, then things are easy.
4247      EVT VT = MaskNode.getValueType();
4248      assert(VT.isVector() &&
4249             "Can't produce a non-vector with a build_vector!");
4250      if (!VT.isInteger())
4251        return false;
4252
4253      int NumBytesPerElement = VT.getVectorElementType().getSizeInBits() / 8;
4254
4255      SmallVector<uint64_t, 32> RawMask;
4256      for (int i = 0, e = MaskNode->getNumOperands(); i < e; ++i) {
4257        SDValue Op = MaskNode->getOperand(i);
4258        if (Op->getOpcode() == ISD::UNDEF) {
4259          RawMask.push_back((uint64_t)SM_SentinelUndef);
4260          continue;
4261        }
4262        auto *CN = dyn_cast<ConstantSDNode>(Op.getNode());
4263        if (!CN)
4264          return false;
4265        APInt MaskElement = CN->getAPIntValue();
4266
4267        // We now have to decode the element which could be any integer size and
4268        // extract each byte of it.
4269        for (int j = 0; j < NumBytesPerElement; ++j) {
4270          // Note that this is x86 and so always little endian: the low byte is
4271          // the first byte of the mask.
4272          RawMask.push_back(MaskElement.getLoBits(8).getZExtValue());
4273          MaskElement = MaskElement.lshr(8);
4274        }
4275      }
4276      DecodePSHUFBMask(RawMask, Mask);
4277      break;
4278    }
4279
4280    auto *MaskLoad = dyn_cast<LoadSDNode>(MaskNode);
4281    if (!MaskLoad)
4282      return false;
4283
4284    SDValue Ptr = MaskLoad->getBasePtr();
4285    if (Ptr->getOpcode() == X86ISD::Wrapper)
4286      Ptr = Ptr->getOperand(0);
4287
4288    auto *MaskCP = dyn_cast<ConstantPoolSDNode>(Ptr);
4289    if (!MaskCP || MaskCP->isMachineConstantPoolEntry())
4290      return false;
4291
4292    if (auto *C = dyn_cast<Constant>(MaskCP->getConstVal())) {
4293      DecodePSHUFBMask(C, Mask);
4294      if (Mask.empty())
4295        return false;
4296      break;
4297    }
4298
4299    return false;
4300  }
4301  case X86ISD::VPERMI:
4302    ImmN = N->getOperand(N->getNumOperands()-1);
4303    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4304    IsUnary = true;
4305    break;
4306  case X86ISD::MOVSS:
4307  case X86ISD::MOVSD:
4308    DecodeScalarMoveMask(VT, /* IsLoad */ false, Mask);
4309    break;
4310  case X86ISD::VPERM2X128:
4311    ImmN = N->getOperand(N->getNumOperands()-1);
4312    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4313    if (Mask.empty()) return false;
4314    break;
4315  case X86ISD::MOVSLDUP:
4316    DecodeMOVSLDUPMask(VT, Mask);
4317    IsUnary = true;
4318    break;
4319  case X86ISD::MOVSHDUP:
4320    DecodeMOVSHDUPMask(VT, Mask);
4321    IsUnary = true;
4322    break;
4323  case X86ISD::MOVDDUP:
4324    DecodeMOVDDUPMask(VT, Mask);
4325    IsUnary = true;
4326    break;
4327  case X86ISD::MOVLHPD:
4328  case X86ISD::MOVLPD:
4329  case X86ISD::MOVLPS:
4330    // Not yet implemented
4331    return false;
4332  default: llvm_unreachable("unknown target shuffle node");
4333  }
4334
4335  // If we have a fake unary shuffle, the shuffle mask is spread across two
4336  // inputs that are actually the same node. Re-map the mask to always point
4337  // into the first input.
4338  if (IsFakeUnary)
4339    for (int &M : Mask)
4340      if (M >= (int)Mask.size())
4341        M -= Mask.size();
4342
4343  return true;
4344}
4345
4346/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4347/// element of the result of the vector shuffle.
4348static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4349                                   unsigned Depth) {
4350  if (Depth == 6)
4351    return SDValue();  // Limit search depth.
4352
4353  SDValue V = SDValue(N, 0);
4354  EVT VT = V.getValueType();
4355  unsigned Opcode = V.getOpcode();
4356
4357  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4358  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4359    int Elt = SV->getMaskElt(Index);
4360
4361    if (Elt < 0)
4362      return DAG.getUNDEF(VT.getVectorElementType());
4363
4364    unsigned NumElems = VT.getVectorNumElements();
4365    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4366                                         : SV->getOperand(1);
4367    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4368  }
4369
4370  // Recurse into target specific vector shuffles to find scalars.
4371  if (isTargetShuffle(Opcode)) {
4372    MVT ShufVT = V.getSimpleValueType();
4373    unsigned NumElems = ShufVT.getVectorNumElements();
4374    SmallVector<int, 16> ShuffleMask;
4375    bool IsUnary;
4376
4377    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4378      return SDValue();
4379
4380    int Elt = ShuffleMask[Index];
4381    if (Elt < 0)
4382      return DAG.getUNDEF(ShufVT.getVectorElementType());
4383
4384    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4385                                         : N->getOperand(1);
4386    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4387                               Depth+1);
4388  }
4389
4390  // Actual nodes that may contain scalar elements
4391  if (Opcode == ISD::BITCAST) {
4392    V = V.getOperand(0);
4393    EVT SrcVT = V.getValueType();
4394    unsigned NumElems = VT.getVectorNumElements();
4395
4396    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4397      return SDValue();
4398  }
4399
4400  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4401    return (Index == 0) ? V.getOperand(0)
4402                        : DAG.getUNDEF(VT.getVectorElementType());
4403
4404  if (V.getOpcode() == ISD::BUILD_VECTOR)
4405    return V.getOperand(Index);
4406
4407  return SDValue();
4408}
4409
4410/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4411///
4412static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4413                                       unsigned NumNonZero, unsigned NumZero,
4414                                       SelectionDAG &DAG,
4415                                       const X86Subtarget* Subtarget,
4416                                       const TargetLowering &TLI) {
4417  if (NumNonZero > 8)
4418    return SDValue();
4419
4420  SDLoc dl(Op);
4421  SDValue V;
4422  bool First = true;
4423  for (unsigned i = 0; i < 16; ++i) {
4424    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4425    if (ThisIsNonZero && First) {
4426      if (NumZero)
4427        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4428      else
4429        V = DAG.getUNDEF(MVT::v8i16);
4430      First = false;
4431    }
4432
4433    if ((i & 1) != 0) {
4434      SDValue ThisElt, LastElt;
4435      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4436      if (LastIsNonZero) {
4437        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4438                              MVT::i16, Op.getOperand(i-1));
4439      }
4440      if (ThisIsNonZero) {
4441        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4442        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4443                              ThisElt, DAG.getConstant(8, MVT::i8));
4444        if (LastIsNonZero)
4445          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4446      } else
4447        ThisElt = LastElt;
4448
4449      if (ThisElt.getNode())
4450        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4451                        DAG.getIntPtrConstant(i/2));
4452    }
4453  }
4454
4455  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4456}
4457
4458/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4459///
4460static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4461                                     unsigned NumNonZero, unsigned NumZero,
4462                                     SelectionDAG &DAG,
4463                                     const X86Subtarget* Subtarget,
4464                                     const TargetLowering &TLI) {
4465  if (NumNonZero > 4)
4466    return SDValue();
4467
4468  SDLoc dl(Op);
4469  SDValue V;
4470  bool First = true;
4471  for (unsigned i = 0; i < 8; ++i) {
4472    bool isNonZero = (NonZeros & (1 << i)) != 0;
4473    if (isNonZero) {
4474      if (First) {
4475        if (NumZero)
4476          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4477        else
4478          V = DAG.getUNDEF(MVT::v8i16);
4479        First = false;
4480      }
4481      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4482                      MVT::v8i16, V, Op.getOperand(i),
4483                      DAG.getIntPtrConstant(i));
4484    }
4485  }
4486
4487  return V;
4488}
4489
4490/// LowerBuildVectorv4x32 - Custom lower build_vector of v4i32 or v4f32.
4491static SDValue LowerBuildVectorv4x32(SDValue Op, SelectionDAG &DAG,
4492                                     const X86Subtarget *Subtarget,
4493                                     const TargetLowering &TLI) {
4494  // Find all zeroable elements.
4495  std::bitset<4> Zeroable;
4496  for (int i=0; i < 4; ++i) {
4497    SDValue Elt = Op->getOperand(i);
4498    Zeroable[i] = (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt));
4499  }
4500  assert(Zeroable.size() - Zeroable.count() > 1 &&
4501         "We expect at least two non-zero elements!");
4502
4503  // We only know how to deal with build_vector nodes where elements are either
4504  // zeroable or extract_vector_elt with constant index.
4505  SDValue FirstNonZero;
4506  unsigned FirstNonZeroIdx;
4507  for (unsigned i=0; i < 4; ++i) {
4508    if (Zeroable[i])
4509      continue;
4510    SDValue Elt = Op->getOperand(i);
4511    if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4512        !isa<ConstantSDNode>(Elt.getOperand(1)))
4513      return SDValue();
4514    // Make sure that this node is extracting from a 128-bit vector.
4515    MVT VT = Elt.getOperand(0).getSimpleValueType();
4516    if (!VT.is128BitVector())
4517      return SDValue();
4518    if (!FirstNonZero.getNode()) {
4519      FirstNonZero = Elt;
4520      FirstNonZeroIdx = i;
4521    }
4522  }
4523
4524  assert(FirstNonZero.getNode() && "Unexpected build vector of all zeros!");
4525  SDValue V1 = FirstNonZero.getOperand(0);
4526  MVT VT = V1.getSimpleValueType();
4527
4528  // See if this build_vector can be lowered as a blend with zero.
4529  SDValue Elt;
4530  unsigned EltMaskIdx, EltIdx;
4531  int Mask[4];
4532  for (EltIdx = 0; EltIdx < 4; ++EltIdx) {
4533    if (Zeroable[EltIdx]) {
4534      // The zero vector will be on the right hand side.
4535      Mask[EltIdx] = EltIdx+4;
4536      continue;
4537    }
4538
4539    Elt = Op->getOperand(EltIdx);
4540    // By construction, Elt is a EXTRACT_VECTOR_ELT with constant index.
4541    EltMaskIdx = cast<ConstantSDNode>(Elt.getOperand(1))->getZExtValue();
4542    if (Elt.getOperand(0) != V1 || EltMaskIdx != EltIdx)
4543      break;
4544    Mask[EltIdx] = EltIdx;
4545  }
4546
4547  if (EltIdx == 4) {
4548    // Let the shuffle legalizer deal with blend operations.
4549    SDValue VZero = getZeroVector(VT, Subtarget, DAG, SDLoc(Op));
4550    if (V1.getSimpleValueType() != VT)
4551      V1 = DAG.getNode(ISD::BITCAST, SDLoc(V1), VT, V1);
4552    return DAG.getVectorShuffle(VT, SDLoc(V1), V1, VZero, &Mask[0]);
4553  }
4554
4555  // See if we can lower this build_vector to a INSERTPS.
4556  if (!Subtarget->hasSSE41())
4557    return SDValue();
4558
4559  SDValue V2 = Elt.getOperand(0);
4560  if (Elt == FirstNonZero && EltIdx == FirstNonZeroIdx)
4561    V1 = SDValue();
4562
4563  bool CanFold = true;
4564  for (unsigned i = EltIdx + 1; i < 4 && CanFold; ++i) {
4565    if (Zeroable[i])
4566      continue;
4567
4568    SDValue Current = Op->getOperand(i);
4569    SDValue SrcVector = Current->getOperand(0);
4570    if (!V1.getNode())
4571      V1 = SrcVector;
4572    CanFold = SrcVector == V1 &&
4573      cast<ConstantSDNode>(Current.getOperand(1))->getZExtValue() == i;
4574  }
4575
4576  if (!CanFold)
4577    return SDValue();
4578
4579  assert(V1.getNode() && "Expected at least two non-zero elements!");
4580  if (V1.getSimpleValueType() != MVT::v4f32)
4581    V1 = DAG.getNode(ISD::BITCAST, SDLoc(V1), MVT::v4f32, V1);
4582  if (V2.getSimpleValueType() != MVT::v4f32)
4583    V2 = DAG.getNode(ISD::BITCAST, SDLoc(V2), MVT::v4f32, V2);
4584
4585  // Ok, we can emit an INSERTPS instruction.
4586  unsigned ZMask = Zeroable.to_ulong();
4587
4588  unsigned InsertPSMask = EltMaskIdx << 6 | EltIdx << 4 | ZMask;
4589  assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
4590  SDValue Result = DAG.getNode(X86ISD::INSERTPS, SDLoc(Op), MVT::v4f32, V1, V2,
4591                               DAG.getIntPtrConstant(InsertPSMask));
4592  return DAG.getNode(ISD::BITCAST, SDLoc(Op), VT, Result);
4593}
4594
4595/// Return a vector logical shift node.
4596static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4597                         unsigned NumBits, SelectionDAG &DAG,
4598                         const TargetLowering &TLI, SDLoc dl) {
4599  assert(VT.is128BitVector() && "Unknown type for VShift");
4600  MVT ShVT = MVT::v2i64;
4601  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4602  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4603  MVT ScalarShiftTy = TLI.getScalarShiftAmountTy(SrcOp.getValueType());
4604  assert(NumBits % 8 == 0 && "Only support byte sized shifts");
4605  SDValue ShiftVal = DAG.getConstant(NumBits/8, ScalarShiftTy);
4606  return DAG.getNode(ISD::BITCAST, dl, VT,
4607                     DAG.getNode(Opc, dl, ShVT, SrcOp, ShiftVal));
4608}
4609
4610static SDValue
4611LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) {
4612
4613  // Check if the scalar load can be widened into a vector load. And if
4614  // the address is "base + cst" see if the cst can be "absorbed" into
4615  // the shuffle mask.
4616  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4617    SDValue Ptr = LD->getBasePtr();
4618    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4619      return SDValue();
4620    EVT PVT = LD->getValueType(0);
4621    if (PVT != MVT::i32 && PVT != MVT::f32)
4622      return SDValue();
4623
4624    int FI = -1;
4625    int64_t Offset = 0;
4626    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4627      FI = FINode->getIndex();
4628      Offset = 0;
4629    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4630               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4631      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4632      Offset = Ptr.getConstantOperandVal(1);
4633      Ptr = Ptr.getOperand(0);
4634    } else {
4635      return SDValue();
4636    }
4637
4638    // FIXME: 256-bit vector instructions don't require a strict alignment,
4639    // improve this code to support it better.
4640    unsigned RequiredAlign = VT.getSizeInBits()/8;
4641    SDValue Chain = LD->getChain();
4642    // Make sure the stack object alignment is at least 16 or 32.
4643    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4644    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4645      if (MFI->isFixedObjectIndex(FI)) {
4646        // Can't change the alignment. FIXME: It's possible to compute
4647        // the exact stack offset and reference FI + adjust offset instead.
4648        // If someone *really* cares about this. That's the way to implement it.
4649        return SDValue();
4650      } else {
4651        MFI->setObjectAlignment(FI, RequiredAlign);
4652      }
4653    }
4654
4655    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4656    // Ptr + (Offset & ~15).
4657    if (Offset < 0)
4658      return SDValue();
4659    if ((Offset % RequiredAlign) & 3)
4660      return SDValue();
4661    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4662    if (StartOffset)
4663      Ptr = DAG.getNode(ISD::ADD, SDLoc(Ptr), Ptr.getValueType(),
4664                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4665
4666    int EltNo = (Offset - StartOffset) >> 2;
4667    unsigned NumElems = VT.getVectorNumElements();
4668
4669    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4670    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4671                             LD->getPointerInfo().getWithOffset(StartOffset),
4672                             false, false, false, 0);
4673
4674    SmallVector<int, 8> Mask(NumElems, EltNo);
4675
4676    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4677  }
4678
4679  return SDValue();
4680}
4681
4682/// Given the initializing elements 'Elts' of a vector of type 'VT', see if the
4683/// elements can be replaced by a single large load which has the same value as
4684/// a build_vector or insert_subvector whose loaded operands are 'Elts'.
4685///
4686/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4687///
4688/// FIXME: we'd also like to handle the case where the last elements are zero
4689/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4690/// There's even a handy isZeroNode for that purpose.
4691static SDValue EltsFromConsecutiveLoads(EVT VT, ArrayRef<SDValue> Elts,
4692                                        SDLoc &DL, SelectionDAG &DAG,
4693                                        bool isAfterLegalize) {
4694  unsigned NumElems = Elts.size();
4695
4696  LoadSDNode *LDBase = nullptr;
4697  unsigned LastLoadedElt = -1U;
4698
4699  // For each element in the initializer, see if we've found a load or an undef.
4700  // If we don't find an initial load element, or later load elements are
4701  // non-consecutive, bail out.
4702  for (unsigned i = 0; i < NumElems; ++i) {
4703    SDValue Elt = Elts[i];
4704    // Look through a bitcast.
4705    if (Elt.getNode() && Elt.getOpcode() == ISD::BITCAST)
4706      Elt = Elt.getOperand(0);
4707    if (!Elt.getNode() ||
4708        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4709      return SDValue();
4710    if (!LDBase) {
4711      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4712        return SDValue();
4713      LDBase = cast<LoadSDNode>(Elt.getNode());
4714      LastLoadedElt = i;
4715      continue;
4716    }
4717    if (Elt.getOpcode() == ISD::UNDEF)
4718      continue;
4719
4720    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4721    EVT LdVT = Elt.getValueType();
4722    // Each loaded element must be the correct fractional portion of the
4723    // requested vector load.
4724    if (LdVT.getSizeInBits() != VT.getSizeInBits() / NumElems)
4725      return SDValue();
4726    if (!DAG.isConsecutiveLoad(LD, LDBase, LdVT.getSizeInBits() / 8, i))
4727      return SDValue();
4728    LastLoadedElt = i;
4729  }
4730
4731  // If we have found an entire vector of loads and undefs, then return a large
4732  // load of the entire vector width starting at the base pointer.  If we found
4733  // consecutive loads for the low half, generate a vzext_load node.
4734  if (LastLoadedElt == NumElems - 1) {
4735    assert(LDBase && "Did not find base load for merging consecutive loads");
4736    EVT EltVT = LDBase->getValueType(0);
4737    // Ensure that the input vector size for the merged loads matches the
4738    // cumulative size of the input elements.
4739    if (VT.getSizeInBits() != EltVT.getSizeInBits() * NumElems)
4740      return SDValue();
4741
4742    if (isAfterLegalize &&
4743        !DAG.getTargetLoweringInfo().isOperationLegal(ISD::LOAD, VT))
4744      return SDValue();
4745
4746    SDValue NewLd = SDValue();
4747
4748    NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4749                        LDBase->getPointerInfo(), LDBase->isVolatile(),
4750                        LDBase->isNonTemporal(), LDBase->isInvariant(),
4751                        LDBase->getAlignment());
4752
4753    if (LDBase->hasAnyUseOfValue(1)) {
4754      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
4755                                     SDValue(LDBase, 1),
4756                                     SDValue(NewLd.getNode(), 1));
4757      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
4758      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
4759                             SDValue(NewLd.getNode(), 1));
4760    }
4761
4762    return NewLd;
4763  }
4764
4765  //TODO: The code below fires only for for loading the low v2i32 / v2f32
4766  //of a v4i32 / v4f32. It's probably worth generalizing.
4767  EVT EltVT = VT.getVectorElementType();
4768  if (NumElems == 4 && LastLoadedElt == 1 && (EltVT.getSizeInBits() == 32) &&
4769      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4770    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4771    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4772    SDValue ResNode =
4773        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, MVT::i64,
4774                                LDBase->getPointerInfo(),
4775                                LDBase->getAlignment(),
4776                                false/*isVolatile*/, true/*ReadMem*/,
4777                                false/*WriteMem*/);
4778
4779    // Make sure the newly-created LOAD is in the same position as LDBase in
4780    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
4781    // update uses of LDBase's output chain to use the TokenFactor.
4782    if (LDBase->hasAnyUseOfValue(1)) {
4783      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
4784                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
4785      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
4786      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
4787                             SDValue(ResNode.getNode(), 1));
4788    }
4789
4790    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4791  }
4792  return SDValue();
4793}
4794
4795/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
4796/// to generate a splat value for the following cases:
4797/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
4798/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4799/// a scalar load, or a constant.
4800/// The VBROADCAST node is returned when a pattern is found,
4801/// or SDValue() otherwise.
4802static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget,
4803                                    SelectionDAG &DAG) {
4804  // VBROADCAST requires AVX.
4805  // TODO: Splats could be generated for non-AVX CPUs using SSE
4806  // instructions, but there's less potential gain for only 128-bit vectors.
4807  if (!Subtarget->hasAVX())
4808    return SDValue();
4809
4810  MVT VT = Op.getSimpleValueType();
4811  SDLoc dl(Op);
4812
4813  assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
4814         "Unsupported vector type for broadcast.");
4815
4816  SDValue Ld;
4817  bool ConstSplatVal;
4818
4819  switch (Op.getOpcode()) {
4820    default:
4821      // Unknown pattern found.
4822      return SDValue();
4823
4824    case ISD::BUILD_VECTOR: {
4825      auto *BVOp = cast<BuildVectorSDNode>(Op.getNode());
4826      BitVector UndefElements;
4827      SDValue Splat = BVOp->getSplatValue(&UndefElements);
4828
4829      // We need a splat of a single value to use broadcast, and it doesn't
4830      // make any sense if the value is only in one element of the vector.
4831      if (!Splat || (VT.getVectorNumElements() - UndefElements.count()) <= 1)
4832        return SDValue();
4833
4834      Ld = Splat;
4835      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4836                       Ld.getOpcode() == ISD::ConstantFP);
4837
4838      // Make sure that all of the users of a non-constant load are from the
4839      // BUILD_VECTOR node.
4840      if (!ConstSplatVal && !BVOp->isOnlyUserOf(Ld.getNode()))
4841        return SDValue();
4842      break;
4843    }
4844
4845    case ISD::VECTOR_SHUFFLE: {
4846      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4847
4848      // Shuffles must have a splat mask where the first element is
4849      // broadcasted.
4850      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4851        return SDValue();
4852
4853      SDValue Sc = Op.getOperand(0);
4854      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
4855          Sc.getOpcode() != ISD::BUILD_VECTOR) {
4856
4857        if (!Subtarget->hasInt256())
4858          return SDValue();
4859
4860        // Use the register form of the broadcast instruction available on AVX2.
4861        if (VT.getSizeInBits() >= 256)
4862          Sc = Extract128BitVector(Sc, 0, DAG, dl);
4863        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
4864      }
4865
4866      Ld = Sc.getOperand(0);
4867      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4868                       Ld.getOpcode() == ISD::ConstantFP);
4869
4870      // The scalar_to_vector node and the suspected
4871      // load node must have exactly one user.
4872      // Constants may have multiple users.
4873
4874      // AVX-512 has register version of the broadcast
4875      bool hasRegVer = Subtarget->hasAVX512() && VT.is512BitVector() &&
4876        Ld.getValueType().getSizeInBits() >= 32;
4877      if (!ConstSplatVal && ((!Sc.hasOneUse() || !Ld.hasOneUse()) &&
4878          !hasRegVer))
4879        return SDValue();
4880      break;
4881    }
4882  }
4883
4884  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
4885  bool IsGE256 = (VT.getSizeInBits() >= 256);
4886
4887  // When optimizing for size, generate up to 5 extra bytes for a broadcast
4888  // instruction to save 8 or more bytes of constant pool data.
4889  // TODO: If multiple splats are generated to load the same constant,
4890  // it may be detrimental to overall size. There needs to be a way to detect
4891  // that condition to know if this is truly a size win.
4892  const Function *F = DAG.getMachineFunction().getFunction();
4893  bool OptForSize = F->hasFnAttribute(Attribute::OptimizeForSize);
4894
4895  // Handle broadcasting a single constant scalar from the constant pool
4896  // into a vector.
4897  // On Sandybridge (no AVX2), it is still better to load a constant vector
4898  // from the constant pool and not to broadcast it from a scalar.
4899  // But override that restriction when optimizing for size.
4900  // TODO: Check if splatting is recommended for other AVX-capable CPUs.
4901  if (ConstSplatVal && (Subtarget->hasAVX2() || OptForSize)) {
4902    EVT CVT = Ld.getValueType();
4903    assert(!CVT.isVector() && "Must not broadcast a vector type");
4904
4905    // Splat f32, i32, v4f64, v4i64 in all cases with AVX2.
4906    // For size optimization, also splat v2f64 and v2i64, and for size opt
4907    // with AVX2, also splat i8 and i16.
4908    // With pattern matching, the VBROADCAST node may become a VMOVDDUP.
4909    if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
4910        (OptForSize && (ScalarSize == 64 || Subtarget->hasAVX2()))) {
4911      const Constant *C = nullptr;
4912      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
4913        C = CI->getConstantIntValue();
4914      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
4915        C = CF->getConstantFPValue();
4916
4917      assert(C && "Invalid constant type");
4918
4919      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4920      SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
4921      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
4922      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
4923                       MachinePointerInfo::getConstantPool(),
4924                       false, false, false, Alignment);
4925
4926      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4927    }
4928  }
4929
4930  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
4931
4932  // Handle AVX2 in-register broadcasts.
4933  if (!IsLoad && Subtarget->hasInt256() &&
4934      (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)))
4935    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4936
4937  // The scalar source must be a normal load.
4938  if (!IsLoad)
4939    return SDValue();
4940
4941  if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
4942      (Subtarget->hasVLX() && ScalarSize == 64))
4943    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4944
4945  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
4946  // double since there is no vbroadcastsd xmm
4947  if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
4948    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
4949      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4950  }
4951
4952  // Unsupported broadcast.
4953  return SDValue();
4954}
4955
4956/// \brief For an EXTRACT_VECTOR_ELT with a constant index return the real
4957/// underlying vector and index.
4958///
4959/// Modifies \p ExtractedFromVec to the real vector and returns the real
4960/// index.
4961static int getUnderlyingExtractedFromVec(SDValue &ExtractedFromVec,
4962                                         SDValue ExtIdx) {
4963  int Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
4964  if (!isa<ShuffleVectorSDNode>(ExtractedFromVec))
4965    return Idx;
4966
4967  // For 256-bit vectors, LowerEXTRACT_VECTOR_ELT_SSE4 may have already
4968  // lowered this:
4969  //   (extract_vector_elt (v8f32 %vreg1), Constant<6>)
4970  // to:
4971  //   (extract_vector_elt (vector_shuffle<2,u,u,u>
4972  //                           (extract_subvector (v8f32 %vreg0), Constant<4>),
4973  //                           undef)
4974  //                       Constant<0>)
4975  // In this case the vector is the extract_subvector expression and the index
4976  // is 2, as specified by the shuffle.
4977  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(ExtractedFromVec);
4978  SDValue ShuffleVec = SVOp->getOperand(0);
4979  MVT ShuffleVecVT = ShuffleVec.getSimpleValueType();
4980  assert(ShuffleVecVT.getVectorElementType() ==
4981         ExtractedFromVec.getSimpleValueType().getVectorElementType());
4982
4983  int ShuffleIdx = SVOp->getMaskElt(Idx);
4984  if (isUndefOrInRange(ShuffleIdx, 0, ShuffleVecVT.getVectorNumElements())) {
4985    ExtractedFromVec = ShuffleVec;
4986    return ShuffleIdx;
4987  }
4988  return Idx;
4989}
4990
4991static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) {
4992  MVT VT = Op.getSimpleValueType();
4993
4994  // Skip if insert_vec_elt is not supported.
4995  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4996  if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
4997    return SDValue();
4998
4999  SDLoc DL(Op);
5000  unsigned NumElems = Op.getNumOperands();
5001
5002  SDValue VecIn1;
5003  SDValue VecIn2;
5004  SmallVector<unsigned, 4> InsertIndices;
5005  SmallVector<int, 8> Mask(NumElems, -1);
5006
5007  for (unsigned i = 0; i != NumElems; ++i) {
5008    unsigned Opc = Op.getOperand(i).getOpcode();
5009
5010    if (Opc == ISD::UNDEF)
5011      continue;
5012
5013    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
5014      // Quit if more than 1 elements need inserting.
5015      if (InsertIndices.size() > 1)
5016        return SDValue();
5017
5018      InsertIndices.push_back(i);
5019      continue;
5020    }
5021
5022    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
5023    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
5024    // Quit if non-constant index.
5025    if (!isa<ConstantSDNode>(ExtIdx))
5026      return SDValue();
5027    int Idx = getUnderlyingExtractedFromVec(ExtractedFromVec, ExtIdx);
5028
5029    // Quit if extracted from vector of different type.
5030    if (ExtractedFromVec.getValueType() != VT)
5031      return SDValue();
5032
5033    if (!VecIn1.getNode())
5034      VecIn1 = ExtractedFromVec;
5035    else if (VecIn1 != ExtractedFromVec) {
5036      if (!VecIn2.getNode())
5037        VecIn2 = ExtractedFromVec;
5038      else if (VecIn2 != ExtractedFromVec)
5039        // Quit if more than 2 vectors to shuffle
5040        return SDValue();
5041    }
5042
5043    if (ExtractedFromVec == VecIn1)
5044      Mask[i] = Idx;
5045    else if (ExtractedFromVec == VecIn2)
5046      Mask[i] = Idx + NumElems;
5047  }
5048
5049  if (!VecIn1.getNode())
5050    return SDValue();
5051
5052  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5053  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
5054  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
5055    unsigned Idx = InsertIndices[i];
5056    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
5057                     DAG.getIntPtrConstant(Idx));
5058  }
5059
5060  return NV;
5061}
5062
5063// Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
5064SDValue
5065X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
5066
5067  MVT VT = Op.getSimpleValueType();
5068  assert((VT.getVectorElementType() == MVT::i1) && (VT.getSizeInBits() <= 16) &&
5069         "Unexpected type in LowerBUILD_VECTORvXi1!");
5070
5071  SDLoc dl(Op);
5072  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5073    SDValue Cst = DAG.getTargetConstant(0, MVT::i1);
5074    SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
5075    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5076  }
5077
5078  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5079    SDValue Cst = DAG.getTargetConstant(1, MVT::i1);
5080    SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
5081    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5082  }
5083
5084  bool AllContants = true;
5085  uint64_t Immediate = 0;
5086  int NonConstIdx = -1;
5087  bool IsSplat = true;
5088  unsigned NumNonConsts = 0;
5089  unsigned NumConsts = 0;
5090  for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
5091    SDValue In = Op.getOperand(idx);
5092    if (In.getOpcode() == ISD::UNDEF)
5093      continue;
5094    if (!isa<ConstantSDNode>(In)) {
5095      AllContants = false;
5096      NonConstIdx = idx;
5097      NumNonConsts++;
5098    } else {
5099      NumConsts++;
5100      if (cast<ConstantSDNode>(In)->getZExtValue())
5101      Immediate |= (1ULL << idx);
5102    }
5103    if (In != Op.getOperand(0))
5104      IsSplat = false;
5105  }
5106
5107  if (AllContants) {
5108    SDValue FullMask = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1,
5109      DAG.getConstant(Immediate, MVT::i16));
5110    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, FullMask,
5111                       DAG.getIntPtrConstant(0));
5112  }
5113
5114  if (NumNonConsts == 1 && NonConstIdx != 0) {
5115    SDValue DstVec;
5116    if (NumConsts) {
5117      SDValue VecAsImm = DAG.getConstant(Immediate,
5118                                         MVT::getIntegerVT(VT.getSizeInBits()));
5119      DstVec = DAG.getNode(ISD::BITCAST, dl, VT, VecAsImm);
5120    }
5121    else
5122      DstVec = DAG.getUNDEF(VT);
5123    return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5124                       Op.getOperand(NonConstIdx),
5125                       DAG.getIntPtrConstant(NonConstIdx));
5126  }
5127  if (!IsSplat && (NonConstIdx != 0))
5128    llvm_unreachable("Unsupported BUILD_VECTOR operation");
5129  MVT SelectVT = (VT == MVT::v16i1)? MVT::i16 : MVT::i8;
5130  SDValue Select;
5131  if (IsSplat)
5132    Select = DAG.getNode(ISD::SELECT, dl, SelectVT, Op.getOperand(0),
5133                          DAG.getConstant(-1, SelectVT),
5134                          DAG.getConstant(0, SelectVT));
5135  else
5136    Select = DAG.getNode(ISD::SELECT, dl, SelectVT, Op.getOperand(0),
5137                         DAG.getConstant((Immediate | 1), SelectVT),
5138                         DAG.getConstant(Immediate, SelectVT));
5139  return DAG.getNode(ISD::BITCAST, dl, VT, Select);
5140}
5141
5142/// \brief Return true if \p N implements a horizontal binop and return the
5143/// operands for the horizontal binop into V0 and V1.
5144///
5145/// This is a helper function of PerformBUILD_VECTORCombine.
5146/// This function checks that the build_vector \p N in input implements a
5147/// horizontal operation. Parameter \p Opcode defines the kind of horizontal
5148/// operation to match.
5149/// For example, if \p Opcode is equal to ISD::ADD, then this function
5150/// checks if \p N implements a horizontal arithmetic add; if instead \p Opcode
5151/// is equal to ISD::SUB, then this function checks if this is a horizontal
5152/// arithmetic sub.
5153///
5154/// This function only analyzes elements of \p N whose indices are
5155/// in range [BaseIdx, LastIdx).
5156static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode,
5157                              SelectionDAG &DAG,
5158                              unsigned BaseIdx, unsigned LastIdx,
5159                              SDValue &V0, SDValue &V1) {
5160  EVT VT = N->getValueType(0);
5161
5162  assert(BaseIdx * 2 <= LastIdx && "Invalid Indices in input!");
5163  assert(VT.isVector() && VT.getVectorNumElements() >= LastIdx &&
5164         "Invalid Vector in input!");
5165
5166  bool IsCommutable = (Opcode == ISD::ADD || Opcode == ISD::FADD);
5167  bool CanFold = true;
5168  unsigned ExpectedVExtractIdx = BaseIdx;
5169  unsigned NumElts = LastIdx - BaseIdx;
5170  V0 = DAG.getUNDEF(VT);
5171  V1 = DAG.getUNDEF(VT);
5172
5173  // Check if N implements a horizontal binop.
5174  for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i) {
5175    SDValue Op = N->getOperand(i + BaseIdx);
5176
5177    // Skip UNDEFs.
5178    if (Op->getOpcode() == ISD::UNDEF) {
5179      // Update the expected vector extract index.
5180      if (i * 2 == NumElts)
5181        ExpectedVExtractIdx = BaseIdx;
5182      ExpectedVExtractIdx += 2;
5183      continue;
5184    }
5185
5186    CanFold = Op->getOpcode() == Opcode && Op->hasOneUse();
5187
5188    if (!CanFold)
5189      break;
5190
5191    SDValue Op0 = Op.getOperand(0);
5192    SDValue Op1 = Op.getOperand(1);
5193
5194    // Try to match the following pattern:
5195    // (BINOP (extract_vector_elt A, I), (extract_vector_elt A, I+1))
5196    CanFold = (Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5197        Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5198        Op0.getOperand(0) == Op1.getOperand(0) &&
5199        isa<ConstantSDNode>(Op0.getOperand(1)) &&
5200        isa<ConstantSDNode>(Op1.getOperand(1)));
5201    if (!CanFold)
5202      break;
5203
5204    unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
5205    unsigned I1 = cast<ConstantSDNode>(Op1.getOperand(1))->getZExtValue();
5206
5207    if (i * 2 < NumElts) {
5208      if (V0.getOpcode() == ISD::UNDEF)
5209        V0 = Op0.getOperand(0);
5210    } else {
5211      if (V1.getOpcode() == ISD::UNDEF)
5212        V1 = Op0.getOperand(0);
5213      if (i * 2 == NumElts)
5214        ExpectedVExtractIdx = BaseIdx;
5215    }
5216
5217    SDValue Expected = (i * 2 < NumElts) ? V0 : V1;
5218    if (I0 == ExpectedVExtractIdx)
5219      CanFold = I1 == I0 + 1 && Op0.getOperand(0) == Expected;
5220    else if (IsCommutable && I1 == ExpectedVExtractIdx) {
5221      // Try to match the following dag sequence:
5222      // (BINOP (extract_vector_elt A, I+1), (extract_vector_elt A, I))
5223      CanFold = I0 == I1 + 1 && Op1.getOperand(0) == Expected;
5224    } else
5225      CanFold = false;
5226
5227    ExpectedVExtractIdx += 2;
5228  }
5229
5230  return CanFold;
5231}
5232
5233/// \brief Emit a sequence of two 128-bit horizontal add/sub followed by
5234/// a concat_vector.
5235///
5236/// This is a helper function of PerformBUILD_VECTORCombine.
5237/// This function expects two 256-bit vectors called V0 and V1.
5238/// At first, each vector is split into two separate 128-bit vectors.
5239/// Then, the resulting 128-bit vectors are used to implement two
5240/// horizontal binary operations.
5241///
5242/// The kind of horizontal binary operation is defined by \p X86Opcode.
5243///
5244/// \p Mode specifies how the 128-bit parts of V0 and V1 are passed in input to
5245/// the two new horizontal binop.
5246/// When Mode is set, the first horizontal binop dag node would take as input
5247/// the lower 128-bit of V0 and the upper 128-bit of V0. The second
5248/// horizontal binop dag node would take as input the lower 128-bit of V1
5249/// and the upper 128-bit of V1.
5250///   Example:
5251///     HADD V0_LO, V0_HI
5252///     HADD V1_LO, V1_HI
5253///
5254/// Otherwise, the first horizontal binop dag node takes as input the lower
5255/// 128-bit of V0 and the lower 128-bit of V1, and the second horizontal binop
5256/// dag node takes the the upper 128-bit of V0 and the upper 128-bit of V1.
5257///   Example:
5258///     HADD V0_LO, V1_LO
5259///     HADD V0_HI, V1_HI
5260///
5261/// If \p isUndefLO is set, then the algorithm propagates UNDEF to the lower
5262/// 128-bits of the result. If \p isUndefHI is set, then UNDEF is propagated to
5263/// the upper 128-bits of the result.
5264static SDValue ExpandHorizontalBinOp(const SDValue &V0, const SDValue &V1,
5265                                     SDLoc DL, SelectionDAG &DAG,
5266                                     unsigned X86Opcode, bool Mode,
5267                                     bool isUndefLO, bool isUndefHI) {
5268  EVT VT = V0.getValueType();
5269  assert(VT.is256BitVector() && VT == V1.getValueType() &&
5270         "Invalid nodes in input!");
5271
5272  unsigned NumElts = VT.getVectorNumElements();
5273  SDValue V0_LO = Extract128BitVector(V0, 0, DAG, DL);
5274  SDValue V0_HI = Extract128BitVector(V0, NumElts/2, DAG, DL);
5275  SDValue V1_LO = Extract128BitVector(V1, 0, DAG, DL);
5276  SDValue V1_HI = Extract128BitVector(V1, NumElts/2, DAG, DL);
5277  EVT NewVT = V0_LO.getValueType();
5278
5279  SDValue LO = DAG.getUNDEF(NewVT);
5280  SDValue HI = DAG.getUNDEF(NewVT);
5281
5282  if (Mode) {
5283    // Don't emit a horizontal binop if the result is expected to be UNDEF.
5284    if (!isUndefLO && V0->getOpcode() != ISD::UNDEF)
5285      LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V0_HI);
5286    if (!isUndefHI && V1->getOpcode() != ISD::UNDEF)
5287      HI = DAG.getNode(X86Opcode, DL, NewVT, V1_LO, V1_HI);
5288  } else {
5289    // Don't emit a horizontal binop if the result is expected to be UNDEF.
5290    if (!isUndefLO && (V0_LO->getOpcode() != ISD::UNDEF ||
5291                       V1_LO->getOpcode() != ISD::UNDEF))
5292      LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V1_LO);
5293
5294    if (!isUndefHI && (V0_HI->getOpcode() != ISD::UNDEF ||
5295                       V1_HI->getOpcode() != ISD::UNDEF))
5296      HI = DAG.getNode(X86Opcode, DL, NewVT, V0_HI, V1_HI);
5297  }
5298
5299  return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LO, HI);
5300}
5301
5302/// \brief Try to fold a build_vector that performs an 'addsub' into the
5303/// sequence of 'vadd + vsub + blendi'.
5304static SDValue matchAddSub(const BuildVectorSDNode *BV, SelectionDAG &DAG,
5305                           const X86Subtarget *Subtarget) {
5306  SDLoc DL(BV);
5307  EVT VT = BV->getValueType(0);
5308  unsigned NumElts = VT.getVectorNumElements();
5309  SDValue InVec0 = DAG.getUNDEF(VT);
5310  SDValue InVec1 = DAG.getUNDEF(VT);
5311
5312  assert((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v4f32 ||
5313          VT == MVT::v2f64) && "build_vector with an invalid type found!");
5314
5315  // Odd-numbered elements in the input build vector are obtained from
5316  // adding two integer/float elements.
5317  // Even-numbered elements in the input build vector are obtained from
5318  // subtracting two integer/float elements.
5319  unsigned ExpectedOpcode = ISD::FSUB;
5320  unsigned NextExpectedOpcode = ISD::FADD;
5321  bool AddFound = false;
5322  bool SubFound = false;
5323
5324  for (unsigned i = 0, e = NumElts; i != e; ++i) {
5325    SDValue Op = BV->getOperand(i);
5326
5327    // Skip 'undef' values.
5328    unsigned Opcode = Op.getOpcode();
5329    if (Opcode == ISD::UNDEF) {
5330      std::swap(ExpectedOpcode, NextExpectedOpcode);
5331      continue;
5332    }
5333
5334    // Early exit if we found an unexpected opcode.
5335    if (Opcode != ExpectedOpcode)
5336      return SDValue();
5337
5338    SDValue Op0 = Op.getOperand(0);
5339    SDValue Op1 = Op.getOperand(1);
5340
5341    // Try to match the following pattern:
5342    // (BINOP (extract_vector_elt A, i), (extract_vector_elt B, i))
5343    // Early exit if we cannot match that sequence.
5344    if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5345        Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5346        !isa<ConstantSDNode>(Op0.getOperand(1)) ||
5347        !isa<ConstantSDNode>(Op1.getOperand(1)) ||
5348        Op0.getOperand(1) != Op1.getOperand(1))
5349      return SDValue();
5350
5351    unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
5352    if (I0 != i)
5353      return SDValue();
5354
5355    // We found a valid add/sub node. Update the information accordingly.
5356    if (i & 1)
5357      AddFound = true;
5358    else
5359      SubFound = true;
5360
5361    // Update InVec0 and InVec1.
5362    if (InVec0.getOpcode() == ISD::UNDEF)
5363      InVec0 = Op0.getOperand(0);
5364    if (InVec1.getOpcode() == ISD::UNDEF)
5365      InVec1 = Op1.getOperand(0);
5366
5367    // Make sure that operands in input to each add/sub node always
5368    // come from a same pair of vectors.
5369    if (InVec0 != Op0.getOperand(0)) {
5370      if (ExpectedOpcode == ISD::FSUB)
5371        return SDValue();
5372
5373      // FADD is commutable. Try to commute the operands
5374      // and then test again.
5375      std::swap(Op0, Op1);
5376      if (InVec0 != Op0.getOperand(0))
5377        return SDValue();
5378    }
5379
5380    if (InVec1 != Op1.getOperand(0))
5381      return SDValue();
5382
5383    // Update the pair of expected opcodes.
5384    std::swap(ExpectedOpcode, NextExpectedOpcode);
5385  }
5386
5387  // Don't try to fold this build_vector into an ADDSUB if the inputs are undef.
5388  if (AddFound && SubFound && InVec0.getOpcode() != ISD::UNDEF &&
5389      InVec1.getOpcode() != ISD::UNDEF)
5390    return DAG.getNode(X86ISD::ADDSUB, DL, VT, InVec0, InVec1);
5391
5392  return SDValue();
5393}
5394
5395static SDValue PerformBUILD_VECTORCombine(SDNode *N, SelectionDAG &DAG,
5396                                          const X86Subtarget *Subtarget) {
5397  SDLoc DL(N);
5398  EVT VT = N->getValueType(0);
5399  unsigned NumElts = VT.getVectorNumElements();
5400  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
5401  SDValue InVec0, InVec1;
5402
5403  // Try to match an ADDSUB.
5404  if ((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
5405      (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) {
5406    SDValue Value = matchAddSub(BV, DAG, Subtarget);
5407    if (Value.getNode())
5408      return Value;
5409  }
5410
5411  // Try to match horizontal ADD/SUB.
5412  unsigned NumUndefsLO = 0;
5413  unsigned NumUndefsHI = 0;
5414  unsigned Half = NumElts/2;
5415
5416  // Count the number of UNDEF operands in the build_vector in input.
5417  for (unsigned i = 0, e = Half; i != e; ++i)
5418    if (BV->getOperand(i)->getOpcode() == ISD::UNDEF)
5419      NumUndefsLO++;
5420
5421  for (unsigned i = Half, e = NumElts; i != e; ++i)
5422    if (BV->getOperand(i)->getOpcode() == ISD::UNDEF)
5423      NumUndefsHI++;
5424
5425  // Early exit if this is either a build_vector of all UNDEFs or all the
5426  // operands but one are UNDEF.
5427  if (NumUndefsLO + NumUndefsHI + 1 >= NumElts)
5428    return SDValue();
5429
5430  if ((VT == MVT::v4f32 || VT == MVT::v2f64) && Subtarget->hasSSE3()) {
5431    // Try to match an SSE3 float HADD/HSUB.
5432    if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
5433      return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
5434
5435    if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
5436      return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
5437  } else if ((VT == MVT::v4i32 || VT == MVT::v8i16) && Subtarget->hasSSSE3()) {
5438    // Try to match an SSSE3 integer HADD/HSUB.
5439    if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
5440      return DAG.getNode(X86ISD::HADD, DL, VT, InVec0, InVec1);
5441
5442    if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
5443      return DAG.getNode(X86ISD::HSUB, DL, VT, InVec0, InVec1);
5444  }
5445
5446  if (!Subtarget->hasAVX())
5447    return SDValue();
5448
5449  if ((VT == MVT::v8f32 || VT == MVT::v4f64)) {
5450    // Try to match an AVX horizontal add/sub of packed single/double
5451    // precision floating point values from 256-bit vectors.
5452    SDValue InVec2, InVec3;
5453    if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, Half, InVec0, InVec1) &&
5454        isHorizontalBinOp(BV, ISD::FADD, DAG, Half, NumElts, InVec2, InVec3) &&
5455        ((InVec0.getOpcode() == ISD::UNDEF ||
5456          InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
5457        ((InVec1.getOpcode() == ISD::UNDEF ||
5458          InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
5459      return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
5460
5461    if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, Half, InVec0, InVec1) &&
5462        isHorizontalBinOp(BV, ISD::FSUB, DAG, Half, NumElts, InVec2, InVec3) &&
5463        ((InVec0.getOpcode() == ISD::UNDEF ||
5464          InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
5465        ((InVec1.getOpcode() == ISD::UNDEF ||
5466          InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
5467      return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
5468  } else if (VT == MVT::v8i32 || VT == MVT::v16i16) {
5469    // Try to match an AVX2 horizontal add/sub of signed integers.
5470    SDValue InVec2, InVec3;
5471    unsigned X86Opcode;
5472    bool CanFold = true;
5473
5474    if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, Half, InVec0, InVec1) &&
5475        isHorizontalBinOp(BV, ISD::ADD, DAG, Half, NumElts, InVec2, InVec3) &&
5476        ((InVec0.getOpcode() == ISD::UNDEF ||
5477          InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
5478        ((InVec1.getOpcode() == ISD::UNDEF ||
5479          InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
5480      X86Opcode = X86ISD::HADD;
5481    else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, Half, InVec0, InVec1) &&
5482        isHorizontalBinOp(BV, ISD::SUB, DAG, Half, NumElts, InVec2, InVec3) &&
5483        ((InVec0.getOpcode() == ISD::UNDEF ||
5484          InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
5485        ((InVec1.getOpcode() == ISD::UNDEF ||
5486          InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
5487      X86Opcode = X86ISD::HSUB;
5488    else
5489      CanFold = false;
5490
5491    if (CanFold) {
5492      // Fold this build_vector into a single horizontal add/sub.
5493      // Do this only if the target has AVX2.
5494      if (Subtarget->hasAVX2())
5495        return DAG.getNode(X86Opcode, DL, VT, InVec0, InVec1);
5496
5497      // Do not try to expand this build_vector into a pair of horizontal
5498      // add/sub if we can emit a pair of scalar add/sub.
5499      if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
5500        return SDValue();
5501
5502      // Convert this build_vector into a pair of horizontal binop followed by
5503      // a concat vector.
5504      bool isUndefLO = NumUndefsLO == Half;
5505      bool isUndefHI = NumUndefsHI == Half;
5506      return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, false,
5507                                   isUndefLO, isUndefHI);
5508    }
5509  }
5510
5511  if ((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v8i32 ||
5512       VT == MVT::v16i16) && Subtarget->hasAVX()) {
5513    unsigned X86Opcode;
5514    if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
5515      X86Opcode = X86ISD::HADD;
5516    else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
5517      X86Opcode = X86ISD::HSUB;
5518    else if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
5519      X86Opcode = X86ISD::FHADD;
5520    else if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
5521      X86Opcode = X86ISD::FHSUB;
5522    else
5523      return SDValue();
5524
5525    // Don't try to expand this build_vector into a pair of horizontal add/sub
5526    // if we can simply emit a pair of scalar add/sub.
5527    if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
5528      return SDValue();
5529
5530    // Convert this build_vector into two horizontal add/sub followed by
5531    // a concat vector.
5532    bool isUndefLO = NumUndefsLO == Half;
5533    bool isUndefHI = NumUndefsHI == Half;
5534    return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, true,
5535                                 isUndefLO, isUndefHI);
5536  }
5537
5538  return SDValue();
5539}
5540
5541SDValue
5542X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5543  SDLoc dl(Op);
5544
5545  MVT VT = Op.getSimpleValueType();
5546  MVT ExtVT = VT.getVectorElementType();
5547  unsigned NumElems = Op.getNumOperands();
5548
5549  // Generate vectors for predicate vectors.
5550  if (VT.getScalarType() == MVT::i1 && Subtarget->hasAVX512())
5551    return LowerBUILD_VECTORvXi1(Op, DAG);
5552
5553  // Vectors containing all zeros can be matched by pxor and xorps later
5554  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5555    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5556    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5557    if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32)
5558      return Op;
5559
5560    return getZeroVector(VT, Subtarget, DAG, dl);
5561  }
5562
5563  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5564  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5565  // vpcmpeqd on 256-bit vectors.
5566  if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
5567    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
5568      return Op;
5569
5570    if (!VT.is512BitVector())
5571      return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
5572  }
5573
5574  if (SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG))
5575    return Broadcast;
5576
5577  unsigned EVTBits = ExtVT.getSizeInBits();
5578
5579  unsigned NumZero  = 0;
5580  unsigned NumNonZero = 0;
5581  unsigned NonZeros = 0;
5582  bool IsAllConstants = true;
5583  SmallSet<SDValue, 8> Values;
5584  for (unsigned i = 0; i < NumElems; ++i) {
5585    SDValue Elt = Op.getOperand(i);
5586    if (Elt.getOpcode() == ISD::UNDEF)
5587      continue;
5588    Values.insert(Elt);
5589    if (Elt.getOpcode() != ISD::Constant &&
5590        Elt.getOpcode() != ISD::ConstantFP)
5591      IsAllConstants = false;
5592    if (X86::isZeroNode(Elt))
5593      NumZero++;
5594    else {
5595      NonZeros |= (1 << i);
5596      NumNonZero++;
5597    }
5598  }
5599
5600  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5601  if (NumNonZero == 0)
5602    return DAG.getUNDEF(VT);
5603
5604  // Special case for single non-zero, non-undef, element.
5605  if (NumNonZero == 1) {
5606    unsigned Idx = countTrailingZeros(NonZeros);
5607    SDValue Item = Op.getOperand(Idx);
5608
5609    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5610    // the value are obviously zero, truncate the value to i32 and do the
5611    // insertion that way.  Only do this if the value is non-constant or if the
5612    // value is a constant being inserted into element 0.  It is cheaper to do
5613    // a constant pool load than it is to do a movd + shuffle.
5614    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5615        (!IsAllConstants || Idx == 0)) {
5616      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5617        // Handle SSE only.
5618        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5619        EVT VecVT = MVT::v4i32;
5620
5621        // Truncate the value (which may itself be a constant) to i32, and
5622        // convert it to a vector with movd (S2V+shuffle to zero extend).
5623        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5624        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5625        return DAG.getNode(
5626            ISD::BITCAST, dl, VT,
5627            getShuffleVectorZeroOrUndef(Item, Idx * 2, true, Subtarget, DAG));
5628      }
5629    }
5630
5631    // If we have a constant or non-constant insertion into the low element of
5632    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5633    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5634    // depending on what the source datatype is.
5635    if (Idx == 0) {
5636      if (NumZero == 0)
5637        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5638
5639      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5640          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5641        if (VT.is512BitVector()) {
5642          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5643          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5644                             Item, DAG.getIntPtrConstant(0));
5645        }
5646        assert((VT.is128BitVector() || VT.is256BitVector()) &&
5647               "Expected an SSE value type!");
5648        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5649        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5650        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5651      }
5652
5653      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5654        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5655        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5656        if (VT.is256BitVector()) {
5657          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5658          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5659        } else {
5660          assert(VT.is128BitVector() && "Expected an SSE value type!");
5661          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5662        }
5663        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5664      }
5665    }
5666
5667    // Is it a vector logical left shift?
5668    if (NumElems == 2 && Idx == 1 &&
5669        X86::isZeroNode(Op.getOperand(0)) &&
5670        !X86::isZeroNode(Op.getOperand(1))) {
5671      unsigned NumBits = VT.getSizeInBits();
5672      return getVShift(true, VT,
5673                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5674                                   VT, Op.getOperand(1)),
5675                       NumBits/2, DAG, *this, dl);
5676    }
5677
5678    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5679      return SDValue();
5680
5681    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5682    // is a non-constant being inserted into an element other than the low one,
5683    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5684    // movd/movss) to move this into the low element, then shuffle it into
5685    // place.
5686    if (EVTBits == 32) {
5687      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5688      return getShuffleVectorZeroOrUndef(Item, Idx, NumZero > 0, Subtarget, DAG);
5689    }
5690  }
5691
5692  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5693  if (Values.size() == 1) {
5694    if (EVTBits == 32) {
5695      // Instead of a shuffle like this:
5696      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5697      // Check if it's possible to issue this instead.
5698      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5699      unsigned Idx = countTrailingZeros(NonZeros);
5700      SDValue Item = Op.getOperand(Idx);
5701      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5702        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5703    }
5704    return SDValue();
5705  }
5706
5707  // A vector full of immediates; various special cases are already
5708  // handled, so this is best done with a single constant-pool load.
5709  if (IsAllConstants)
5710    return SDValue();
5711
5712  // For AVX-length vectors, see if we can use a vector load to get all of the
5713  // elements, otherwise build the individual 128-bit pieces and use
5714  // shuffles to put them in place.
5715  if (VT.is256BitVector() || VT.is512BitVector()) {
5716    SmallVector<SDValue, 64> V(Op->op_begin(), Op->op_begin() + NumElems);
5717
5718    // Check for a build vector of consecutive loads.
5719    if (SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false))
5720      return LD;
5721
5722    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5723
5724    // Build both the lower and upper subvector.
5725    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT,
5726                                makeArrayRef(&V[0], NumElems/2));
5727    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT,
5728                                makeArrayRef(&V[NumElems / 2], NumElems/2));
5729
5730    // Recreate the wider vector with the lower and upper part.
5731    if (VT.is256BitVector())
5732      return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5733    return Concat256BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5734  }
5735
5736  // Let legalizer expand 2-wide build_vectors.
5737  if (EVTBits == 64) {
5738    if (NumNonZero == 1) {
5739      // One half is zero or undef.
5740      unsigned Idx = countTrailingZeros(NonZeros);
5741      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5742                                 Op.getOperand(Idx));
5743      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5744    }
5745    return SDValue();
5746  }
5747
5748  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5749  if (EVTBits == 8 && NumElems == 16)
5750    if (SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5751                                        Subtarget, *this))
5752      return V;
5753
5754  if (EVTBits == 16 && NumElems == 8)
5755    if (SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5756                                      Subtarget, *this))
5757      return V;
5758
5759  // If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS
5760  if (EVTBits == 32 && NumElems == 4)
5761    if (SDValue V = LowerBuildVectorv4x32(Op, DAG, Subtarget, *this))
5762      return V;
5763
5764  // If element VT is == 32 bits, turn it into a number of shuffles.
5765  SmallVector<SDValue, 8> V(NumElems);
5766  if (NumElems == 4 && NumZero > 0) {
5767    for (unsigned i = 0; i < 4; ++i) {
5768      bool isZero = !(NonZeros & (1 << i));
5769      if (isZero)
5770        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5771      else
5772        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5773    }
5774
5775    for (unsigned i = 0; i < 2; ++i) {
5776      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5777        default: break;
5778        case 0:
5779          V[i] = V[i*2];  // Must be a zero vector.
5780          break;
5781        case 1:
5782          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5783          break;
5784        case 2:
5785          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5786          break;
5787        case 3:
5788          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5789          break;
5790      }
5791    }
5792
5793    bool Reverse1 = (NonZeros & 0x3) == 2;
5794    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5795    int MaskVec[] = {
5796      Reverse1 ? 1 : 0,
5797      Reverse1 ? 0 : 1,
5798      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5799      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5800    };
5801    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5802  }
5803
5804  if (Values.size() > 1 && VT.is128BitVector()) {
5805    // Check for a build vector of consecutive loads.
5806    for (unsigned i = 0; i < NumElems; ++i)
5807      V[i] = Op.getOperand(i);
5808
5809    // Check for elements which are consecutive loads.
5810    if (SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false))
5811      return LD;
5812
5813    // Check for a build vector from mostly shuffle plus few inserting.
5814    if (SDValue Sh = buildFromShuffleMostly(Op, DAG))
5815      return Sh;
5816
5817    // For SSE 4.1, use insertps to put the high elements into the low element.
5818    if (Subtarget->hasSSE41()) {
5819      SDValue Result;
5820      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5821        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5822      else
5823        Result = DAG.getUNDEF(VT);
5824
5825      for (unsigned i = 1; i < NumElems; ++i) {
5826        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5827        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5828                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5829      }
5830      return Result;
5831    }
5832
5833    // Otherwise, expand into a number of unpckl*, start by extending each of
5834    // our (non-undef) elements to the full vector width with the element in the
5835    // bottom slot of the vector (which generates no code for SSE).
5836    for (unsigned i = 0; i < NumElems; ++i) {
5837      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5838        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5839      else
5840        V[i] = DAG.getUNDEF(VT);
5841    }
5842
5843    // Next, we iteratively mix elements, e.g. for v4f32:
5844    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5845    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5846    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5847    unsigned EltStride = NumElems >> 1;
5848    while (EltStride != 0) {
5849      for (unsigned i = 0; i < EltStride; ++i) {
5850        // If V[i+EltStride] is undef and this is the first round of mixing,
5851        // then it is safe to just drop this shuffle: V[i] is already in the
5852        // right place, the one element (since it's the first round) being
5853        // inserted as undef can be dropped.  This isn't safe for successive
5854        // rounds because they will permute elements within both vectors.
5855        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5856            EltStride == NumElems/2)
5857          continue;
5858
5859        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5860      }
5861      EltStride >>= 1;
5862    }
5863    return V[0];
5864  }
5865  return SDValue();
5866}
5867
5868// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5869// to create 256-bit vectors from two other 128-bit ones.
5870static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5871  SDLoc dl(Op);
5872  MVT ResVT = Op.getSimpleValueType();
5873
5874  assert((ResVT.is256BitVector() ||
5875          ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide");
5876
5877  SDValue V1 = Op.getOperand(0);
5878  SDValue V2 = Op.getOperand(1);
5879  unsigned NumElems = ResVT.getVectorNumElements();
5880  if(ResVT.is256BitVector())
5881    return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5882
5883  if (Op.getNumOperands() == 4) {
5884    MVT HalfVT = MVT::getVectorVT(ResVT.getScalarType(),
5885                                ResVT.getVectorNumElements()/2);
5886    SDValue V3 = Op.getOperand(2);
5887    SDValue V4 = Op.getOperand(3);
5888    return Concat256BitVectors(Concat128BitVectors(V1, V2, HalfVT, NumElems/2, DAG, dl),
5889      Concat128BitVectors(V3, V4, HalfVT, NumElems/2, DAG, dl), ResVT, NumElems, DAG, dl);
5890  }
5891  return Concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5892}
5893
5894static SDValue LowerCONCAT_VECTORSvXi1(SDValue Op,
5895                                       const X86Subtarget *Subtarget,
5896                                       SelectionDAG & DAG) {
5897  SDLoc dl(Op);
5898  MVT ResVT = Op.getSimpleValueType();
5899  unsigned NumOfOperands = Op.getNumOperands();
5900
5901  assert(isPowerOf2_32(NumOfOperands) &&
5902         "Unexpected number of operands in CONCAT_VECTORS");
5903
5904  if (NumOfOperands > 2) {
5905    MVT HalfVT = MVT::getVectorVT(ResVT.getScalarType(),
5906                                  ResVT.getVectorNumElements()/2);
5907    SmallVector<SDValue, 2> Ops;
5908    for (unsigned i = 0; i < NumOfOperands/2; i++)
5909      Ops.push_back(Op.getOperand(i));
5910    SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, Ops);
5911    Ops.clear();
5912    for (unsigned i = NumOfOperands/2; i < NumOfOperands; i++)
5913      Ops.push_back(Op.getOperand(i));
5914    SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, Ops);
5915    return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
5916  }
5917
5918  SDValue V1 = Op.getOperand(0);
5919  SDValue V2 = Op.getOperand(1);
5920  bool IsZeroV1 = ISD::isBuildVectorAllZeros(V1.getNode());
5921  bool IsZeroV2 = ISD::isBuildVectorAllZeros(V2.getNode());
5922
5923  if (IsZeroV1 && IsZeroV2)
5924    return getZeroVector(ResVT, Subtarget, DAG, dl);
5925
5926  SDValue ZeroIdx = DAG.getIntPtrConstant(0);
5927  SDValue Undef = DAG.getUNDEF(ResVT);
5928  unsigned NumElems = ResVT.getVectorNumElements();
5929  SDValue ShiftBits = DAG.getConstant(NumElems/2, MVT::i8);
5930
5931  V2 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V2, ZeroIdx);
5932  V2 = DAG.getNode(X86ISD::VSHLI, dl, ResVT, V2, ShiftBits);
5933  if (IsZeroV1)
5934    return V2;
5935
5936  V1 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V1, ZeroIdx);
5937  // Zero the upper bits of V1
5938  V1 = DAG.getNode(X86ISD::VSHLI, dl, ResVT, V1, ShiftBits);
5939  V1 = DAG.getNode(X86ISD::VSRLI, dl, ResVT, V1, ShiftBits);
5940  if (IsZeroV2)
5941    return V1;
5942  return DAG.getNode(ISD::OR, dl, ResVT, V1, V2);
5943}
5944
5945static SDValue LowerCONCAT_VECTORS(SDValue Op,
5946                                   const X86Subtarget *Subtarget,
5947                                   SelectionDAG &DAG) {
5948  MVT VT = Op.getSimpleValueType();
5949  if (VT.getVectorElementType() == MVT::i1)
5950    return LowerCONCAT_VECTORSvXi1(Op, Subtarget, DAG);
5951
5952  assert((VT.is256BitVector() && Op.getNumOperands() == 2) ||
5953         (VT.is512BitVector() && (Op.getNumOperands() == 2 ||
5954          Op.getNumOperands() == 4)));
5955
5956  // AVX can use the vinsertf128 instruction to create 256-bit vectors
5957  // from two other 128-bit ones.
5958
5959  // 512-bit vector may contain 2 256-bit vectors or 4 128-bit vectors
5960  return LowerAVXCONCAT_VECTORS(Op, DAG);
5961}
5962
5963
5964//===----------------------------------------------------------------------===//
5965// Vector shuffle lowering
5966//
5967// This is an experimental code path for lowering vector shuffles on x86. It is
5968// designed to handle arbitrary vector shuffles and blends, gracefully
5969// degrading performance as necessary. It works hard to recognize idiomatic
5970// shuffles and lower them to optimal instruction patterns without leaving
5971// a framework that allows reasonably efficient handling of all vector shuffle
5972// patterns.
5973//===----------------------------------------------------------------------===//
5974
5975/// \brief Tiny helper function to identify a no-op mask.
5976///
5977/// This is a somewhat boring predicate function. It checks whether the mask
5978/// array input, which is assumed to be a single-input shuffle mask of the kind
5979/// used by the X86 shuffle instructions (not a fully general
5980/// ShuffleVectorSDNode mask) requires any shuffles to occur. Both undef and an
5981/// in-place shuffle are 'no-op's.
5982static bool isNoopShuffleMask(ArrayRef<int> Mask) {
5983  for (int i = 0, Size = Mask.size(); i < Size; ++i)
5984    if (Mask[i] != -1 && Mask[i] != i)
5985      return false;
5986  return true;
5987}
5988
5989/// \brief Helper function to classify a mask as a single-input mask.
5990///
5991/// This isn't a generic single-input test because in the vector shuffle
5992/// lowering we canonicalize single inputs to be the first input operand. This
5993/// means we can more quickly test for a single input by only checking whether
5994/// an input from the second operand exists. We also assume that the size of
5995/// mask corresponds to the size of the input vectors which isn't true in the
5996/// fully general case.
5997static bool isSingleInputShuffleMask(ArrayRef<int> Mask) {
5998  for (int M : Mask)
5999    if (M >= (int)Mask.size())
6000      return false;
6001  return true;
6002}
6003
6004/// \brief Test whether there are elements crossing 128-bit lanes in this
6005/// shuffle mask.
6006///
6007/// X86 divides up its shuffles into in-lane and cross-lane shuffle operations
6008/// and we routinely test for these.
6009static bool is128BitLaneCrossingShuffleMask(MVT VT, ArrayRef<int> Mask) {
6010  int LaneSize = 128 / VT.getScalarSizeInBits();
6011  int Size = Mask.size();
6012  for (int i = 0; i < Size; ++i)
6013    if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
6014      return true;
6015  return false;
6016}
6017
6018/// \brief Test whether a shuffle mask is equivalent within each 128-bit lane.
6019///
6020/// This checks a shuffle mask to see if it is performing the same
6021/// 128-bit lane-relative shuffle in each 128-bit lane. This trivially implies
6022/// that it is also not lane-crossing. It may however involve a blend from the
6023/// same lane of a second vector.
6024///
6025/// The specific repeated shuffle mask is populated in \p RepeatedMask, as it is
6026/// non-trivial to compute in the face of undef lanes. The representation is
6027/// *not* suitable for use with existing 128-bit shuffles as it will contain
6028/// entries from both V1 and V2 inputs to the wider mask.
6029static bool
6030is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask,
6031                                SmallVectorImpl<int> &RepeatedMask) {
6032  int LaneSize = 128 / VT.getScalarSizeInBits();
6033  RepeatedMask.resize(LaneSize, -1);
6034  int Size = Mask.size();
6035  for (int i = 0; i < Size; ++i) {
6036    if (Mask[i] < 0)
6037      continue;
6038    if ((Mask[i] % Size) / LaneSize != i / LaneSize)
6039      // This entry crosses lanes, so there is no way to model this shuffle.
6040      return false;
6041
6042    // Ok, handle the in-lane shuffles by detecting if and when they repeat.
6043    if (RepeatedMask[i % LaneSize] == -1)
6044      // This is the first non-undef entry in this slot of a 128-bit lane.
6045      RepeatedMask[i % LaneSize] =
6046          Mask[i] < Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + Size;
6047    else if (RepeatedMask[i % LaneSize] + (i / LaneSize) * LaneSize != Mask[i])
6048      // Found a mismatch with the repeated mask.
6049      return false;
6050  }
6051  return true;
6052}
6053
6054/// \brief Checks whether a shuffle mask is equivalent to an explicit list of
6055/// arguments.
6056///
6057/// This is a fast way to test a shuffle mask against a fixed pattern:
6058///
6059///   if (isShuffleEquivalent(Mask, 3, 2, {1, 0})) { ... }
6060///
6061/// It returns true if the mask is exactly as wide as the argument list, and
6062/// each element of the mask is either -1 (signifying undef) or the value given
6063/// in the argument.
6064static bool isShuffleEquivalent(SDValue V1, SDValue V2, ArrayRef<int> Mask,
6065                                ArrayRef<int> ExpectedMask) {
6066  if (Mask.size() != ExpectedMask.size())
6067    return false;
6068
6069  int Size = Mask.size();
6070
6071  // If the values are build vectors, we can look through them to find
6072  // equivalent inputs that make the shuffles equivalent.
6073  auto *BV1 = dyn_cast<BuildVectorSDNode>(V1);
6074  auto *BV2 = dyn_cast<BuildVectorSDNode>(V2);
6075
6076  for (int i = 0; i < Size; ++i)
6077    if (Mask[i] != -1 && Mask[i] != ExpectedMask[i]) {
6078      auto *MaskBV = Mask[i] < Size ? BV1 : BV2;
6079      auto *ExpectedBV = ExpectedMask[i] < Size ? BV1 : BV2;
6080      if (!MaskBV || !ExpectedBV ||
6081          MaskBV->getOperand(Mask[i] % Size) !=
6082              ExpectedBV->getOperand(ExpectedMask[i] % Size))
6083        return false;
6084    }
6085
6086  return true;
6087}
6088
6089/// \brief Get a 4-lane 8-bit shuffle immediate for a mask.
6090///
6091/// This helper function produces an 8-bit shuffle immediate corresponding to
6092/// the ubiquitous shuffle encoding scheme used in x86 instructions for
6093/// shuffling 4 lanes. It can be used with most of the PSHUF instructions for
6094/// example.
6095///
6096/// NB: We rely heavily on "undef" masks preserving the input lane.
6097static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask,
6098                                          SelectionDAG &DAG) {
6099  assert(Mask.size() == 4 && "Only 4-lane shuffle masks");
6100  assert(Mask[0] >= -1 && Mask[0] < 4 && "Out of bound mask element!");
6101  assert(Mask[1] >= -1 && Mask[1] < 4 && "Out of bound mask element!");
6102  assert(Mask[2] >= -1 && Mask[2] < 4 && "Out of bound mask element!");
6103  assert(Mask[3] >= -1 && Mask[3] < 4 && "Out of bound mask element!");
6104
6105  unsigned Imm = 0;
6106  Imm |= (Mask[0] == -1 ? 0 : Mask[0]) << 0;
6107  Imm |= (Mask[1] == -1 ? 1 : Mask[1]) << 2;
6108  Imm |= (Mask[2] == -1 ? 2 : Mask[2]) << 4;
6109  Imm |= (Mask[3] == -1 ? 3 : Mask[3]) << 6;
6110  return DAG.getConstant(Imm, MVT::i8);
6111}
6112
6113/// \brief Try to emit a blend instruction for a shuffle using bit math.
6114///
6115/// This is used as a fallback approach when first class blend instructions are
6116/// unavailable. Currently it is only suitable for integer vectors, but could
6117/// be generalized for floating point vectors if desirable.
6118static SDValue lowerVectorShuffleAsBitBlend(SDLoc DL, MVT VT, SDValue V1,
6119                                            SDValue V2, ArrayRef<int> Mask,
6120                                            SelectionDAG &DAG) {
6121  assert(VT.isInteger() && "Only supports integer vector types!");
6122  MVT EltVT = VT.getScalarType();
6123  int NumEltBits = EltVT.getSizeInBits();
6124  SDValue Zero = DAG.getConstant(0, EltVT);
6125  SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), EltVT);
6126  SmallVector<SDValue, 16> MaskOps;
6127  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
6128    if (Mask[i] != -1 && Mask[i] != i && Mask[i] != i + Size)
6129      return SDValue(); // Shuffled input!
6130    MaskOps.push_back(Mask[i] < Size ? AllOnes : Zero);
6131  }
6132
6133  SDValue V1Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, MaskOps);
6134  V1 = DAG.getNode(ISD::AND, DL, VT, V1, V1Mask);
6135  // We have to cast V2 around.
6136  MVT MaskVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64);
6137  V2 = DAG.getNode(ISD::BITCAST, DL, VT,
6138                   DAG.getNode(X86ISD::ANDNP, DL, MaskVT,
6139                               DAG.getNode(ISD::BITCAST, DL, MaskVT, V1Mask),
6140                               DAG.getNode(ISD::BITCAST, DL, MaskVT, V2)));
6141  return DAG.getNode(ISD::OR, DL, VT, V1, V2);
6142}
6143
6144/// \brief Try to emit a blend instruction for a shuffle.
6145///
6146/// This doesn't do any checks for the availability of instructions for blending
6147/// these values. It relies on the availability of the X86ISD::BLENDI pattern to
6148/// be matched in the backend with the type given. What it does check for is
6149/// that the shuffle mask is in fact a blend.
6150static SDValue lowerVectorShuffleAsBlend(SDLoc DL, MVT VT, SDValue V1,
6151                                         SDValue V2, ArrayRef<int> Mask,
6152                                         const X86Subtarget *Subtarget,
6153                                         SelectionDAG &DAG) {
6154  unsigned BlendMask = 0;
6155  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
6156    if (Mask[i] >= Size) {
6157      if (Mask[i] != i + Size)
6158        return SDValue(); // Shuffled V2 input!
6159      BlendMask |= 1u << i;
6160      continue;
6161    }
6162    if (Mask[i] >= 0 && Mask[i] != i)
6163      return SDValue(); // Shuffled V1 input!
6164  }
6165  switch (VT.SimpleTy) {
6166  case MVT::v2f64:
6167  case MVT::v4f32:
6168  case MVT::v4f64:
6169  case MVT::v8f32:
6170    return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V2,
6171                       DAG.getConstant(BlendMask, MVT::i8));
6172
6173  case MVT::v4i64:
6174  case MVT::v8i32:
6175    assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!");
6176    // FALLTHROUGH
6177  case MVT::v2i64:
6178  case MVT::v4i32:
6179    // If we have AVX2 it is faster to use VPBLENDD when the shuffle fits into
6180    // that instruction.
6181    if (Subtarget->hasAVX2()) {
6182      // Scale the blend by the number of 32-bit dwords per element.
6183      int Scale =  VT.getScalarSizeInBits() / 32;
6184      BlendMask = 0;
6185      for (int i = 0, Size = Mask.size(); i < Size; ++i)
6186        if (Mask[i] >= Size)
6187          for (int j = 0; j < Scale; ++j)
6188            BlendMask |= 1u << (i * Scale + j);
6189
6190      MVT BlendVT = VT.getSizeInBits() > 128 ? MVT::v8i32 : MVT::v4i32;
6191      V1 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V1);
6192      V2 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V2);
6193      return DAG.getNode(ISD::BITCAST, DL, VT,
6194                         DAG.getNode(X86ISD::BLENDI, DL, BlendVT, V1, V2,
6195                                     DAG.getConstant(BlendMask, MVT::i8)));
6196    }
6197    // FALLTHROUGH
6198  case MVT::v8i16: {
6199    // For integer shuffles we need to expand the mask and cast the inputs to
6200    // v8i16s prior to blending.
6201    int Scale = 8 / VT.getVectorNumElements();
6202    BlendMask = 0;
6203    for (int i = 0, Size = Mask.size(); i < Size; ++i)
6204      if (Mask[i] >= Size)
6205        for (int j = 0; j < Scale; ++j)
6206          BlendMask |= 1u << (i * Scale + j);
6207
6208    V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1);
6209    V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V2);
6210    return DAG.getNode(ISD::BITCAST, DL, VT,
6211                       DAG.getNode(X86ISD::BLENDI, DL, MVT::v8i16, V1, V2,
6212                                   DAG.getConstant(BlendMask, MVT::i8)));
6213  }
6214
6215  case MVT::v16i16: {
6216    assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!");
6217    SmallVector<int, 8> RepeatedMask;
6218    if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
6219      // We can lower these with PBLENDW which is mirrored across 128-bit lanes.
6220      assert(RepeatedMask.size() == 8 && "Repeated mask size doesn't match!");
6221      BlendMask = 0;
6222      for (int i = 0; i < 8; ++i)
6223        if (RepeatedMask[i] >= 16)
6224          BlendMask |= 1u << i;
6225      return DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2,
6226                         DAG.getConstant(BlendMask, MVT::i8));
6227    }
6228  }
6229    // FALLTHROUGH
6230  case MVT::v16i8:
6231  case MVT::v32i8: {
6232    assert((VT.getSizeInBits() == 128 || Subtarget->hasAVX2()) &&
6233           "256-bit byte-blends require AVX2 support!");
6234
6235    // Scale the blend by the number of bytes per element.
6236    int Scale = VT.getScalarSizeInBits() / 8;
6237
6238    // This form of blend is always done on bytes. Compute the byte vector
6239    // type.
6240    MVT BlendVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8);
6241
6242    // Compute the VSELECT mask. Note that VSELECT is really confusing in the
6243    // mix of LLVM's code generator and the x86 backend. We tell the code
6244    // generator that boolean values in the elements of an x86 vector register
6245    // are -1 for true and 0 for false. We then use the LLVM semantics of 'true'
6246    // mapping a select to operand #1, and 'false' mapping to operand #2. The
6247    // reality in x86 is that vector masks (pre-AVX-512) use only the high bit
6248    // of the element (the remaining are ignored) and 0 in that high bit would
6249    // mean operand #1 while 1 in the high bit would mean operand #2. So while
6250    // the LLVM model for boolean values in vector elements gets the relevant
6251    // bit set, it is set backwards and over constrained relative to x86's
6252    // actual model.
6253    SmallVector<SDValue, 32> VSELECTMask;
6254    for (int i = 0, Size = Mask.size(); i < Size; ++i)
6255      for (int j = 0; j < Scale; ++j)
6256        VSELECTMask.push_back(
6257            Mask[i] < 0 ? DAG.getUNDEF(MVT::i8)
6258                        : DAG.getConstant(Mask[i] < Size ? -1 : 0, MVT::i8));
6259
6260    V1 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V1);
6261    V2 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V2);
6262    return DAG.getNode(
6263        ISD::BITCAST, DL, VT,
6264        DAG.getNode(ISD::VSELECT, DL, BlendVT,
6265                    DAG.getNode(ISD::BUILD_VECTOR, DL, BlendVT, VSELECTMask),
6266                    V1, V2));
6267  }
6268
6269  default:
6270    llvm_unreachable("Not a supported integer vector type!");
6271  }
6272}
6273
6274/// \brief Try to lower as a blend of elements from two inputs followed by
6275/// a single-input permutation.
6276///
6277/// This matches the pattern where we can blend elements from two inputs and
6278/// then reduce the shuffle to a single-input permutation.
6279static SDValue lowerVectorShuffleAsBlendAndPermute(SDLoc DL, MVT VT, SDValue V1,
6280                                                   SDValue V2,
6281                                                   ArrayRef<int> Mask,
6282                                                   SelectionDAG &DAG) {
6283  // We build up the blend mask while checking whether a blend is a viable way
6284  // to reduce the shuffle.
6285  SmallVector<int, 32> BlendMask(Mask.size(), -1);
6286  SmallVector<int, 32> PermuteMask(Mask.size(), -1);
6287
6288  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
6289    if (Mask[i] < 0)
6290      continue;
6291
6292    assert(Mask[i] < Size * 2 && "Shuffle input is out of bounds.");
6293
6294    if (BlendMask[Mask[i] % Size] == -1)
6295      BlendMask[Mask[i] % Size] = Mask[i];
6296    else if (BlendMask[Mask[i] % Size] != Mask[i])
6297      return SDValue(); // Can't blend in the needed input!
6298
6299    PermuteMask[i] = Mask[i] % Size;
6300  }
6301
6302  SDValue V = DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
6303  return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), PermuteMask);
6304}
6305
6306/// \brief Generic routine to decompose a shuffle and blend into indepndent
6307/// blends and permutes.
6308///
6309/// This matches the extremely common pattern for handling combined
6310/// shuffle+blend operations on newer X86 ISAs where we have very fast blend
6311/// operations. It will try to pick the best arrangement of shuffles and
6312/// blends.
6313static SDValue lowerVectorShuffleAsDecomposedShuffleBlend(SDLoc DL, MVT VT,
6314                                                          SDValue V1,
6315                                                          SDValue V2,
6316                                                          ArrayRef<int> Mask,
6317                                                          SelectionDAG &DAG) {
6318  // Shuffle the input elements into the desired positions in V1 and V2 and
6319  // blend them together.
6320  SmallVector<int, 32> V1Mask(Mask.size(), -1);
6321  SmallVector<int, 32> V2Mask(Mask.size(), -1);
6322  SmallVector<int, 32> BlendMask(Mask.size(), -1);
6323  for (int i = 0, Size = Mask.size(); i < Size; ++i)
6324    if (Mask[i] >= 0 && Mask[i] < Size) {
6325      V1Mask[i] = Mask[i];
6326      BlendMask[i] = i;
6327    } else if (Mask[i] >= Size) {
6328      V2Mask[i] = Mask[i] - Size;
6329      BlendMask[i] = i + Size;
6330    }
6331
6332  // Try to lower with the simpler initial blend strategy unless one of the
6333  // input shuffles would be a no-op. We prefer to shuffle inputs as the
6334  // shuffle may be able to fold with a load or other benefit. However, when
6335  // we'll have to do 2x as many shuffles in order to achieve this, blending
6336  // first is a better strategy.
6337  if (!isNoopShuffleMask(V1Mask) && !isNoopShuffleMask(V2Mask))
6338    if (SDValue BlendPerm =
6339            lowerVectorShuffleAsBlendAndPermute(DL, VT, V1, V2, Mask, DAG))
6340      return BlendPerm;
6341
6342  V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
6343  V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
6344  return DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
6345}
6346
6347/// \brief Try to lower a vector shuffle as a byte rotation.
6348///
6349/// SSSE3 has a generic PALIGNR instruction in x86 that will do an arbitrary
6350/// byte-rotation of the concatenation of two vectors; pre-SSSE3 can use
6351/// a PSRLDQ/PSLLDQ/POR pattern to get a similar effect. This routine will
6352/// try to generically lower a vector shuffle through such an pattern. It
6353/// does not check for the profitability of lowering either as PALIGNR or
6354/// PSRLDQ/PSLLDQ/POR, only whether the mask is valid to lower in that form.
6355/// This matches shuffle vectors that look like:
6356///
6357///   v8i16 [11, 12, 13, 14, 15, 0, 1, 2]
6358///
6359/// Essentially it concatenates V1 and V2, shifts right by some number of
6360/// elements, and takes the low elements as the result. Note that while this is
6361/// specified as a *right shift* because x86 is little-endian, it is a *left
6362/// rotate* of the vector lanes.
6363static SDValue lowerVectorShuffleAsByteRotate(SDLoc DL, MVT VT, SDValue V1,
6364                                              SDValue V2,
6365                                              ArrayRef<int> Mask,
6366                                              const X86Subtarget *Subtarget,
6367                                              SelectionDAG &DAG) {
6368  assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!");
6369
6370  int NumElts = Mask.size();
6371  int NumLanes = VT.getSizeInBits() / 128;
6372  int NumLaneElts = NumElts / NumLanes;
6373
6374  // We need to detect various ways of spelling a rotation:
6375  //   [11, 12, 13, 14, 15,  0,  1,  2]
6376  //   [-1, 12, 13, 14, -1, -1,  1, -1]
6377  //   [-1, -1, -1, -1, -1, -1,  1,  2]
6378  //   [ 3,  4,  5,  6,  7,  8,  9, 10]
6379  //   [-1,  4,  5,  6, -1, -1,  9, -1]
6380  //   [-1,  4,  5,  6, -1, -1, -1, -1]
6381  int Rotation = 0;
6382  SDValue Lo, Hi;
6383  for (int l = 0; l < NumElts; l += NumLaneElts) {
6384    for (int i = 0; i < NumLaneElts; ++i) {
6385      if (Mask[l + i] == -1)
6386        continue;
6387      assert(Mask[l + i] >= 0 && "Only -1 is a valid negative mask element!");
6388
6389      // Get the mod-Size index and lane correct it.
6390      int LaneIdx = (Mask[l + i] % NumElts) - l;
6391      // Make sure it was in this lane.
6392      if (LaneIdx < 0 || LaneIdx >= NumLaneElts)
6393        return SDValue();
6394
6395      // Determine where a rotated vector would have started.
6396      int StartIdx = i - LaneIdx;
6397      if (StartIdx == 0)
6398        // The identity rotation isn't interesting, stop.
6399        return SDValue();
6400
6401      // If we found the tail of a vector the rotation must be the missing
6402      // front. If we found the head of a vector, it must be how much of the
6403      // head.
6404      int CandidateRotation = StartIdx < 0 ? -StartIdx : NumLaneElts - StartIdx;
6405
6406      if (Rotation == 0)
6407        Rotation = CandidateRotation;
6408      else if (Rotation != CandidateRotation)
6409        // The rotations don't match, so we can't match this mask.
6410        return SDValue();
6411
6412      // Compute which value this mask is pointing at.
6413      SDValue MaskV = Mask[l + i] < NumElts ? V1 : V2;
6414
6415      // Compute which of the two target values this index should be assigned
6416      // to. This reflects whether the high elements are remaining or the low
6417      // elements are remaining.
6418      SDValue &TargetV = StartIdx < 0 ? Hi : Lo;
6419
6420      // Either set up this value if we've not encountered it before, or check
6421      // that it remains consistent.
6422      if (!TargetV)
6423        TargetV = MaskV;
6424      else if (TargetV != MaskV)
6425        // This may be a rotation, but it pulls from the inputs in some
6426        // unsupported interleaving.
6427        return SDValue();
6428    }
6429  }
6430
6431  // Check that we successfully analyzed the mask, and normalize the results.
6432  assert(Rotation != 0 && "Failed to locate a viable rotation!");
6433  assert((Lo || Hi) && "Failed to find a rotated input vector!");
6434  if (!Lo)
6435    Lo = Hi;
6436  else if (!Hi)
6437    Hi = Lo;
6438
6439  // The actual rotate instruction rotates bytes, so we need to scale the
6440  // rotation based on how many bytes are in the vector lane.
6441  int Scale = 16 / NumLaneElts;
6442
6443  // SSSE3 targets can use the palignr instruction.
6444  if (Subtarget->hasSSSE3()) {
6445    // Cast the inputs to i8 vector of correct length to match PALIGNR.
6446    MVT AlignVT = MVT::getVectorVT(MVT::i8, 16 * NumLanes);
6447    Lo = DAG.getNode(ISD::BITCAST, DL, AlignVT, Lo);
6448    Hi = DAG.getNode(ISD::BITCAST, DL, AlignVT, Hi);
6449
6450    return DAG.getNode(ISD::BITCAST, DL, VT,
6451                       DAG.getNode(X86ISD::PALIGNR, DL, AlignVT, Hi, Lo,
6452                                   DAG.getConstant(Rotation * Scale, MVT::i8)));
6453  }
6454
6455  assert(VT.getSizeInBits() == 128 &&
6456         "Rotate-based lowering only supports 128-bit lowering!");
6457  assert(Mask.size() <= 16 &&
6458         "Can shuffle at most 16 bytes in a 128-bit vector!");
6459
6460  // Default SSE2 implementation
6461  int LoByteShift = 16 - Rotation * Scale;
6462  int HiByteShift = Rotation * Scale;
6463
6464  // Cast the inputs to v2i64 to match PSLLDQ/PSRLDQ.
6465  Lo = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Lo);
6466  Hi = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Hi);
6467
6468  SDValue LoShift = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v2i64, Lo,
6469                                DAG.getConstant(LoByteShift, MVT::i8));
6470  SDValue HiShift = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v2i64, Hi,
6471                                DAG.getConstant(HiByteShift, MVT::i8));
6472  return DAG.getNode(ISD::BITCAST, DL, VT,
6473                     DAG.getNode(ISD::OR, DL, MVT::v2i64, LoShift, HiShift));
6474}
6475
6476/// \brief Compute whether each element of a shuffle is zeroable.
6477///
6478/// A "zeroable" vector shuffle element is one which can be lowered to zero.
6479/// Either it is an undef element in the shuffle mask, the element of the input
6480/// referenced is undef, or the element of the input referenced is known to be
6481/// zero. Many x86 shuffles can zero lanes cheaply and we often want to handle
6482/// as many lanes with this technique as possible to simplify the remaining
6483/// shuffle.
6484static SmallBitVector computeZeroableShuffleElements(ArrayRef<int> Mask,
6485                                                     SDValue V1, SDValue V2) {
6486  SmallBitVector Zeroable(Mask.size(), false);
6487
6488  while (V1.getOpcode() == ISD::BITCAST)
6489    V1 = V1->getOperand(0);
6490  while (V2.getOpcode() == ISD::BITCAST)
6491    V2 = V2->getOperand(0);
6492
6493  bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode());
6494  bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode());
6495
6496  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
6497    int M = Mask[i];
6498    // Handle the easy cases.
6499    if (M < 0 || (M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) {
6500      Zeroable[i] = true;
6501      continue;
6502    }
6503
6504    // If this is an index into a build_vector node (which has the same number
6505    // of elements), dig out the input value and use it.
6506    SDValue V = M < Size ? V1 : V2;
6507    if (V.getOpcode() != ISD::BUILD_VECTOR || Size != (int)V.getNumOperands())
6508      continue;
6509
6510    SDValue Input = V.getOperand(M % Size);
6511    // The UNDEF opcode check really should be dead code here, but not quite
6512    // worth asserting on (it isn't invalid, just unexpected).
6513    if (Input.getOpcode() == ISD::UNDEF || X86::isZeroNode(Input))
6514      Zeroable[i] = true;
6515  }
6516
6517  return Zeroable;
6518}
6519
6520/// \brief Try to emit a bitmask instruction for a shuffle.
6521///
6522/// This handles cases where we can model a blend exactly as a bitmask due to
6523/// one of the inputs being zeroable.
6524static SDValue lowerVectorShuffleAsBitMask(SDLoc DL, MVT VT, SDValue V1,
6525                                           SDValue V2, ArrayRef<int> Mask,
6526                                           SelectionDAG &DAG) {
6527  MVT EltVT = VT.getScalarType();
6528  int NumEltBits = EltVT.getSizeInBits();
6529  MVT IntEltVT = MVT::getIntegerVT(NumEltBits);
6530  SDValue Zero = DAG.getConstant(0, IntEltVT);
6531  SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), IntEltVT);
6532  if (EltVT.isFloatingPoint()) {
6533    Zero = DAG.getNode(ISD::BITCAST, DL, EltVT, Zero);
6534    AllOnes = DAG.getNode(ISD::BITCAST, DL, EltVT, AllOnes);
6535  }
6536  SmallVector<SDValue, 16> VMaskOps(Mask.size(), Zero);
6537  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
6538  SDValue V;
6539  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
6540    if (Zeroable[i])
6541      continue;
6542    if (Mask[i] % Size != i)
6543      return SDValue(); // Not a blend.
6544    if (!V)
6545      V = Mask[i] < Size ? V1 : V2;
6546    else if (V != (Mask[i] < Size ? V1 : V2))
6547      return SDValue(); // Can only let one input through the mask.
6548
6549    VMaskOps[i] = AllOnes;
6550  }
6551  if (!V)
6552    return SDValue(); // No non-zeroable elements!
6553
6554  SDValue VMask = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, VMaskOps);
6555  V = DAG.getNode(VT.isFloatingPoint()
6556                  ? (unsigned) X86ISD::FAND : (unsigned) ISD::AND,
6557                  DL, VT, V, VMask);
6558  return V;
6559}
6560
6561/// \brief Try to lower a vector shuffle as a bit shift (shifts in zeros).
6562///
6563/// Attempts to match a shuffle mask against the PSLL(W/D/Q/DQ) and
6564/// PSRL(W/D/Q/DQ) SSE2 and AVX2 logical bit-shift instructions. The function
6565/// matches elements from one of the input vectors shuffled to the left or
6566/// right with zeroable elements 'shifted in'. It handles both the strictly
6567/// bit-wise element shifts and the byte shift across an entire 128-bit double
6568/// quad word lane.
6569///
6570/// PSHL : (little-endian) left bit shift.
6571/// [ zz, 0, zz,  2 ]
6572/// [ -1, 4, zz, -1 ]
6573/// PSRL : (little-endian) right bit shift.
6574/// [  1, zz,  3, zz]
6575/// [ -1, -1,  7, zz]
6576/// PSLLDQ : (little-endian) left byte shift
6577/// [ zz,  0,  1,  2,  3,  4,  5,  6]
6578/// [ zz, zz, -1, -1,  2,  3,  4, -1]
6579/// [ zz, zz, zz, zz, zz, zz, -1,  1]
6580/// PSRLDQ : (little-endian) right byte shift
6581/// [  5, 6,  7, zz, zz, zz, zz, zz]
6582/// [ -1, 5,  6,  7, zz, zz, zz, zz]
6583/// [  1, 2, -1, -1, -1, -1, zz, zz]
6584static SDValue lowerVectorShuffleAsShift(SDLoc DL, MVT VT, SDValue V1,
6585                                         SDValue V2, ArrayRef<int> Mask,
6586                                         SelectionDAG &DAG) {
6587  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
6588
6589  int Size = Mask.size();
6590  assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
6591
6592  auto CheckZeros = [&](int Shift, int Scale, bool Left) {
6593    for (int i = 0; i < Size; i += Scale)
6594      for (int j = 0; j < Shift; ++j)
6595        if (!Zeroable[i + j + (Left ? 0 : (Scale - Shift))])
6596          return false;
6597
6598    return true;
6599  };
6600
6601  auto MatchShift = [&](int Shift, int Scale, bool Left, SDValue V) {
6602    for (int i = 0; i != Size; i += Scale) {
6603      unsigned Pos = Left ? i + Shift : i;
6604      unsigned Low = Left ? i : i + Shift;
6605      unsigned Len = Scale - Shift;
6606      if (!isSequentialOrUndefInRange(Mask, Pos, Len,
6607                                      Low + (V == V1 ? 0 : Size)))
6608        return SDValue();
6609    }
6610
6611    int ShiftEltBits = VT.getScalarSizeInBits() * Scale;
6612    bool ByteShift = ShiftEltBits > 64;
6613    unsigned OpCode = Left ? (ByteShift ? X86ISD::VSHLDQ : X86ISD::VSHLI)
6614                           : (ByteShift ? X86ISD::VSRLDQ : X86ISD::VSRLI);
6615    int ShiftAmt = Shift * VT.getScalarSizeInBits() / (ByteShift ? 8 : 1);
6616
6617    // Normalize the scale for byte shifts to still produce an i64 element
6618    // type.
6619    Scale = ByteShift ? Scale / 2 : Scale;
6620
6621    // We need to round trip through the appropriate type for the shift.
6622    MVT ShiftSVT = MVT::getIntegerVT(VT.getScalarSizeInBits() * Scale);
6623    MVT ShiftVT = MVT::getVectorVT(ShiftSVT, Size / Scale);
6624    assert(DAG.getTargetLoweringInfo().isTypeLegal(ShiftVT) &&
6625           "Illegal integer vector type");
6626    V = DAG.getNode(ISD::BITCAST, DL, ShiftVT, V);
6627
6628    V = DAG.getNode(OpCode, DL, ShiftVT, V, DAG.getConstant(ShiftAmt, MVT::i8));
6629    return DAG.getNode(ISD::BITCAST, DL, VT, V);
6630  };
6631
6632  // SSE/AVX supports logical shifts up to 64-bit integers - so we can just
6633  // keep doubling the size of the integer elements up to that. We can
6634  // then shift the elements of the integer vector by whole multiples of
6635  // their width within the elements of the larger integer vector. Test each
6636  // multiple to see if we can find a match with the moved element indices
6637  // and that the shifted in elements are all zeroable.
6638  for (int Scale = 2; Scale * VT.getScalarSizeInBits() <= 128; Scale *= 2)
6639    for (int Shift = 1; Shift != Scale; ++Shift)
6640      for (bool Left : {true, false})
6641        if (CheckZeros(Shift, Scale, Left))
6642          for (SDValue V : {V1, V2})
6643            if (SDValue Match = MatchShift(Shift, Scale, Left, V))
6644              return Match;
6645
6646  // no match
6647  return SDValue();
6648}
6649
6650/// \brief Lower a vector shuffle as a zero or any extension.
6651///
6652/// Given a specific number of elements, element bit width, and extension
6653/// stride, produce either a zero or any extension based on the available
6654/// features of the subtarget.
6655static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend(
6656    SDLoc DL, MVT VT, int Scale, bool AnyExt, SDValue InputV,
6657    const X86Subtarget *Subtarget, SelectionDAG &DAG) {
6658  assert(Scale > 1 && "Need a scale to extend.");
6659  int NumElements = VT.getVectorNumElements();
6660  int EltBits = VT.getScalarSizeInBits();
6661  assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
6662         "Only 8, 16, and 32 bit elements can be extended.");
6663  assert(Scale * EltBits <= 64 && "Cannot zero extend past 64 bits.");
6664
6665  // Found a valid zext mask! Try various lowering strategies based on the
6666  // input type and available ISA extensions.
6667  if (Subtarget->hasSSE41()) {
6668    MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Scale),
6669                                 NumElements / Scale);
6670    return DAG.getNode(ISD::BITCAST, DL, VT,
6671                       DAG.getNode(X86ISD::VZEXT, DL, ExtVT, InputV));
6672  }
6673
6674  // For any extends we can cheat for larger element sizes and use shuffle
6675  // instructions that can fold with a load and/or copy.
6676  if (AnyExt && EltBits == 32) {
6677    int PSHUFDMask[4] = {0, -1, 1, -1};
6678    return DAG.getNode(
6679        ISD::BITCAST, DL, VT,
6680        DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
6681                    DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, InputV),
6682                    getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
6683  }
6684  if (AnyExt && EltBits == 16 && Scale > 2) {
6685    int PSHUFDMask[4] = {0, -1, 0, -1};
6686    InputV = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
6687                         DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, InputV),
6688                         getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG));
6689    int PSHUFHWMask[4] = {1, -1, -1, -1};
6690    return DAG.getNode(
6691        ISD::BITCAST, DL, VT,
6692        DAG.getNode(X86ISD::PSHUFHW, DL, MVT::v8i16,
6693                    DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, InputV),
6694                    getV4X86ShuffleImm8ForMask(PSHUFHWMask, DAG)));
6695  }
6696
6697  // If this would require more than 2 unpack instructions to expand, use
6698  // pshufb when available. We can only use more than 2 unpack instructions
6699  // when zero extending i8 elements which also makes it easier to use pshufb.
6700  if (Scale > 4 && EltBits == 8 && Subtarget->hasSSSE3()) {
6701    assert(NumElements == 16 && "Unexpected byte vector width!");
6702    SDValue PSHUFBMask[16];
6703    for (int i = 0; i < 16; ++i)
6704      PSHUFBMask[i] =
6705          DAG.getConstant((i % Scale == 0) ? i / Scale : 0x80, MVT::i8);
6706    InputV = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, InputV);
6707    return DAG.getNode(ISD::BITCAST, DL, VT,
6708                       DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV,
6709                                   DAG.getNode(ISD::BUILD_VECTOR, DL,
6710                                               MVT::v16i8, PSHUFBMask)));
6711  }
6712
6713  // Otherwise emit a sequence of unpacks.
6714  do {
6715    MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements);
6716    SDValue Ext = AnyExt ? DAG.getUNDEF(InputVT)
6717                         : getZeroVector(InputVT, Subtarget, DAG, DL);
6718    InputV = DAG.getNode(ISD::BITCAST, DL, InputVT, InputV);
6719    InputV = DAG.getNode(X86ISD::UNPCKL, DL, InputVT, InputV, Ext);
6720    Scale /= 2;
6721    EltBits *= 2;
6722    NumElements /= 2;
6723  } while (Scale > 1);
6724  return DAG.getNode(ISD::BITCAST, DL, VT, InputV);
6725}
6726
6727/// \brief Try to lower a vector shuffle as a zero extension on any microarch.
6728///
6729/// This routine will try to do everything in its power to cleverly lower
6730/// a shuffle which happens to match the pattern of a zero extend. It doesn't
6731/// check for the profitability of this lowering,  it tries to aggressively
6732/// match this pattern. It will use all of the micro-architectural details it
6733/// can to emit an efficient lowering. It handles both blends with all-zero
6734/// inputs to explicitly zero-extend and undef-lanes (sometimes undef due to
6735/// masking out later).
6736///
6737/// The reason we have dedicated lowering for zext-style shuffles is that they
6738/// are both incredibly common and often quite performance sensitive.
6739static SDValue lowerVectorShuffleAsZeroOrAnyExtend(
6740    SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
6741    const X86Subtarget *Subtarget, SelectionDAG &DAG) {
6742  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
6743
6744  int Bits = VT.getSizeInBits();
6745  int NumElements = VT.getVectorNumElements();
6746  assert(VT.getScalarSizeInBits() <= 32 &&
6747         "Exceeds 32-bit integer zero extension limit");
6748  assert((int)Mask.size() == NumElements && "Unexpected shuffle mask size");
6749
6750  // Define a helper function to check a particular ext-scale and lower to it if
6751  // valid.
6752  auto Lower = [&](int Scale) -> SDValue {
6753    SDValue InputV;
6754    bool AnyExt = true;
6755    for (int i = 0; i < NumElements; ++i) {
6756      if (Mask[i] == -1)
6757        continue; // Valid anywhere but doesn't tell us anything.
6758      if (i % Scale != 0) {
6759        // Each of the extended elements need to be zeroable.
6760        if (!Zeroable[i])
6761          return SDValue();
6762
6763        // We no longer are in the anyext case.
6764        AnyExt = false;
6765        continue;
6766      }
6767
6768      // Each of the base elements needs to be consecutive indices into the
6769      // same input vector.
6770      SDValue V = Mask[i] < NumElements ? V1 : V2;
6771      if (!InputV)
6772        InputV = V;
6773      else if (InputV != V)
6774        return SDValue(); // Flip-flopping inputs.
6775
6776      if (Mask[i] % NumElements != i / Scale)
6777        return SDValue(); // Non-consecutive strided elements.
6778    }
6779
6780    // If we fail to find an input, we have a zero-shuffle which should always
6781    // have already been handled.
6782    // FIXME: Maybe handle this here in case during blending we end up with one?
6783    if (!InputV)
6784      return SDValue();
6785
6786    return lowerVectorShuffleAsSpecificZeroOrAnyExtend(
6787        DL, VT, Scale, AnyExt, InputV, Subtarget, DAG);
6788  };
6789
6790  // The widest scale possible for extending is to a 64-bit integer.
6791  assert(Bits % 64 == 0 &&
6792         "The number of bits in a vector must be divisible by 64 on x86!");
6793  int NumExtElements = Bits / 64;
6794
6795  // Each iteration, try extending the elements half as much, but into twice as
6796  // many elements.
6797  for (; NumExtElements < NumElements; NumExtElements *= 2) {
6798    assert(NumElements % NumExtElements == 0 &&
6799           "The input vector size must be divisible by the extended size.");
6800    if (SDValue V = Lower(NumElements / NumExtElements))
6801      return V;
6802  }
6803
6804  // General extends failed, but 128-bit vectors may be able to use MOVQ.
6805  if (Bits != 128)
6806    return SDValue();
6807
6808  // Returns one of the source operands if the shuffle can be reduced to a
6809  // MOVQ, copying the lower 64-bits and zero-extending to the upper 64-bits.
6810  auto CanZExtLowHalf = [&]() {
6811    for (int i = NumElements / 2; i != NumElements; ++i)
6812      if (!Zeroable[i])
6813        return SDValue();
6814    if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, 0))
6815      return V1;
6816    if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, NumElements))
6817      return V2;
6818    return SDValue();
6819  };
6820
6821  if (SDValue V = CanZExtLowHalf()) {
6822    V = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, V);
6823    V = DAG.getNode(X86ISD::VZEXT_MOVL, DL, MVT::v2i64, V);
6824    return DAG.getNode(ISD::BITCAST, DL, VT, V);
6825  }
6826
6827  // No viable ext lowering found.
6828  return SDValue();
6829}
6830
6831/// \brief Try to get a scalar value for a specific element of a vector.
6832///
6833/// Looks through BUILD_VECTOR and SCALAR_TO_VECTOR nodes to find a scalar.
6834static SDValue getScalarValueForVectorElement(SDValue V, int Idx,
6835                                              SelectionDAG &DAG) {
6836  MVT VT = V.getSimpleValueType();
6837  MVT EltVT = VT.getVectorElementType();
6838  while (V.getOpcode() == ISD::BITCAST)
6839    V = V.getOperand(0);
6840  // If the bitcasts shift the element size, we can't extract an equivalent
6841  // element from it.
6842  MVT NewVT = V.getSimpleValueType();
6843  if (!NewVT.isVector() || NewVT.getScalarSizeInBits() != VT.getScalarSizeInBits())
6844    return SDValue();
6845
6846  if (V.getOpcode() == ISD::BUILD_VECTOR ||
6847      (Idx == 0 && V.getOpcode() == ISD::SCALAR_TO_VECTOR))
6848    return DAG.getNode(ISD::BITCAST, SDLoc(V), EltVT, V.getOperand(Idx));
6849
6850  return SDValue();
6851}
6852
6853/// \brief Helper to test for a load that can be folded with x86 shuffles.
6854///
6855/// This is particularly important because the set of instructions varies
6856/// significantly based on whether the operand is a load or not.
6857static bool isShuffleFoldableLoad(SDValue V) {
6858  while (V.getOpcode() == ISD::BITCAST)
6859    V = V.getOperand(0);
6860
6861  return ISD::isNON_EXTLoad(V.getNode());
6862}
6863
6864/// \brief Try to lower insertion of a single element into a zero vector.
6865///
6866/// This is a common pattern that we have especially efficient patterns to lower
6867/// across all subtarget feature sets.
6868static SDValue lowerVectorShuffleAsElementInsertion(
6869    SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
6870    const X86Subtarget *Subtarget, SelectionDAG &DAG) {
6871  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
6872  MVT ExtVT = VT;
6873  MVT EltVT = VT.getVectorElementType();
6874
6875  int V2Index = std::find_if(Mask.begin(), Mask.end(),
6876                             [&Mask](int M) { return M >= (int)Mask.size(); }) -
6877                Mask.begin();
6878  bool IsV1Zeroable = true;
6879  for (int i = 0, Size = Mask.size(); i < Size; ++i)
6880    if (i != V2Index && !Zeroable[i]) {
6881      IsV1Zeroable = false;
6882      break;
6883    }
6884
6885  // Check for a single input from a SCALAR_TO_VECTOR node.
6886  // FIXME: All of this should be canonicalized into INSERT_VECTOR_ELT and
6887  // all the smarts here sunk into that routine. However, the current
6888  // lowering of BUILD_VECTOR makes that nearly impossible until the old
6889  // vector shuffle lowering is dead.
6890  if (SDValue V2S = getScalarValueForVectorElement(
6891          V2, Mask[V2Index] - Mask.size(), DAG)) {
6892    // We need to zext the scalar if it is smaller than an i32.
6893    V2S = DAG.getNode(ISD::BITCAST, DL, EltVT, V2S);
6894    if (EltVT == MVT::i8 || EltVT == MVT::i16) {
6895      // Using zext to expand a narrow element won't work for non-zero
6896      // insertions.
6897      if (!IsV1Zeroable)
6898        return SDValue();
6899
6900      // Zero-extend directly to i32.
6901      ExtVT = MVT::v4i32;
6902      V2S = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, V2S);
6903    }
6904    V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, ExtVT, V2S);
6905  } else if (Mask[V2Index] != (int)Mask.size() || EltVT == MVT::i8 ||
6906             EltVT == MVT::i16) {
6907    // Either not inserting from the low element of the input or the input
6908    // element size is too small to use VZEXT_MOVL to clear the high bits.
6909    return SDValue();
6910  }
6911
6912  if (!IsV1Zeroable) {
6913    // If V1 can't be treated as a zero vector we have fewer options to lower
6914    // this. We can't support integer vectors or non-zero targets cheaply, and
6915    // the V1 elements can't be permuted in any way.
6916    assert(VT == ExtVT && "Cannot change extended type when non-zeroable!");
6917    if (!VT.isFloatingPoint() || V2Index != 0)
6918      return SDValue();
6919    SmallVector<int, 8> V1Mask(Mask.begin(), Mask.end());
6920    V1Mask[V2Index] = -1;
6921    if (!isNoopShuffleMask(V1Mask))
6922      return SDValue();
6923    // This is essentially a special case blend operation, but if we have
6924    // general purpose blend operations, they are always faster. Bail and let
6925    // the rest of the lowering handle these as blends.
6926    if (Subtarget->hasSSE41())
6927      return SDValue();
6928
6929    // Otherwise, use MOVSD or MOVSS.
6930    assert((EltVT == MVT::f32 || EltVT == MVT::f64) &&
6931           "Only two types of floating point element types to handle!");
6932    return DAG.getNode(EltVT == MVT::f32 ? X86ISD::MOVSS : X86ISD::MOVSD, DL,
6933                       ExtVT, V1, V2);
6934  }
6935
6936  // This lowering only works for the low element with floating point vectors.
6937  if (VT.isFloatingPoint() && V2Index != 0)
6938    return SDValue();
6939
6940  V2 = DAG.getNode(X86ISD::VZEXT_MOVL, DL, ExtVT, V2);
6941  if (ExtVT != VT)
6942    V2 = DAG.getNode(ISD::BITCAST, DL, VT, V2);
6943
6944  if (V2Index != 0) {
6945    // If we have 4 or fewer lanes we can cheaply shuffle the element into
6946    // the desired position. Otherwise it is more efficient to do a vector
6947    // shift left. We know that we can do a vector shift left because all
6948    // the inputs are zero.
6949    if (VT.isFloatingPoint() || VT.getVectorNumElements() <= 4) {
6950      SmallVector<int, 4> V2Shuffle(Mask.size(), 1);
6951      V2Shuffle[V2Index] = 0;
6952      V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Shuffle);
6953    } else {
6954      V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, V2);
6955      V2 = DAG.getNode(
6956          X86ISD::VSHLDQ, DL, MVT::v2i64, V2,
6957          DAG.getConstant(
6958              V2Index * EltVT.getSizeInBits()/8,
6959              DAG.getTargetLoweringInfo().getScalarShiftAmountTy(MVT::v2i64)));
6960      V2 = DAG.getNode(ISD::BITCAST, DL, VT, V2);
6961    }
6962  }
6963  return V2;
6964}
6965
6966/// \brief Try to lower broadcast of a single element.
6967///
6968/// For convenience, this code also bundles all of the subtarget feature set
6969/// filtering. While a little annoying to re-dispatch on type here, there isn't
6970/// a convenient way to factor it out.
6971static SDValue lowerVectorShuffleAsBroadcast(SDLoc DL, MVT VT, SDValue V,
6972                                             ArrayRef<int> Mask,
6973                                             const X86Subtarget *Subtarget,
6974                                             SelectionDAG &DAG) {
6975  if (!Subtarget->hasAVX())
6976    return SDValue();
6977  if (VT.isInteger() && !Subtarget->hasAVX2())
6978    return SDValue();
6979
6980  // Check that the mask is a broadcast.
6981  int BroadcastIdx = -1;
6982  for (int M : Mask)
6983    if (M >= 0 && BroadcastIdx == -1)
6984      BroadcastIdx = M;
6985    else if (M >= 0 && M != BroadcastIdx)
6986      return SDValue();
6987
6988  assert(BroadcastIdx < (int)Mask.size() && "We only expect to be called with "
6989                                            "a sorted mask where the broadcast "
6990                                            "comes from V1.");
6991
6992  // Go up the chain of (vector) values to find a scalar load that we can
6993  // combine with the broadcast.
6994  for (;;) {
6995    switch (V.getOpcode()) {
6996    case ISD::CONCAT_VECTORS: {
6997      int OperandSize = Mask.size() / V.getNumOperands();
6998      V = V.getOperand(BroadcastIdx / OperandSize);
6999      BroadcastIdx %= OperandSize;
7000      continue;
7001    }
7002
7003    case ISD::INSERT_SUBVECTOR: {
7004      SDValue VOuter = V.getOperand(0), VInner = V.getOperand(1);
7005      auto ConstantIdx = dyn_cast<ConstantSDNode>(V.getOperand(2));
7006      if (!ConstantIdx)
7007        break;
7008
7009      int BeginIdx = (int)ConstantIdx->getZExtValue();
7010      int EndIdx =
7011          BeginIdx + (int)VInner.getValueType().getVectorNumElements();
7012      if (BroadcastIdx >= BeginIdx && BroadcastIdx < EndIdx) {
7013        BroadcastIdx -= BeginIdx;
7014        V = VInner;
7015      } else {
7016        V = VOuter;
7017      }
7018      continue;
7019    }
7020    }
7021    break;
7022  }
7023
7024  // Check if this is a broadcast of a scalar. We special case lowering
7025  // for scalars so that we can more effectively fold with loads.
7026  if (V.getOpcode() == ISD::BUILD_VECTOR ||
7027      (V.getOpcode() == ISD::SCALAR_TO_VECTOR && BroadcastIdx == 0)) {
7028    V = V.getOperand(BroadcastIdx);
7029
7030    // If the scalar isn't a load, we can't broadcast from it in AVX1.
7031    // Only AVX2 has register broadcasts.
7032    if (!Subtarget->hasAVX2() && !isShuffleFoldableLoad(V))
7033      return SDValue();
7034  } else if (BroadcastIdx != 0 || !Subtarget->hasAVX2()) {
7035    // We can't broadcast from a vector register without AVX2, and we can only
7036    // broadcast from the zero-element of a vector register.
7037    return SDValue();
7038  }
7039
7040  return DAG.getNode(X86ISD::VBROADCAST, DL, VT, V);
7041}
7042
7043// Check for whether we can use INSERTPS to perform the shuffle. We only use
7044// INSERTPS when the V1 elements are already in the correct locations
7045// because otherwise we can just always use two SHUFPS instructions which
7046// are much smaller to encode than a SHUFPS and an INSERTPS. We can also
7047// perform INSERTPS if a single V1 element is out of place and all V2
7048// elements are zeroable.
7049static SDValue lowerVectorShuffleAsInsertPS(SDValue Op, SDValue V1, SDValue V2,
7050                                            ArrayRef<int> Mask,
7051                                            SelectionDAG &DAG) {
7052  assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!");
7053  assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
7054  assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
7055  assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
7056
7057  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
7058
7059  unsigned ZMask = 0;
7060  int V1DstIndex = -1;
7061  int V2DstIndex = -1;
7062  bool V1UsedInPlace = false;
7063
7064  for (int i = 0; i < 4; ++i) {
7065    // Synthesize a zero mask from the zeroable elements (includes undefs).
7066    if (Zeroable[i]) {
7067      ZMask |= 1 << i;
7068      continue;
7069    }
7070
7071    // Flag if we use any V1 inputs in place.
7072    if (i == Mask[i]) {
7073      V1UsedInPlace = true;
7074      continue;
7075    }
7076
7077    // We can only insert a single non-zeroable element.
7078    if (V1DstIndex != -1 || V2DstIndex != -1)
7079      return SDValue();
7080
7081    if (Mask[i] < 4) {
7082      // V1 input out of place for insertion.
7083      V1DstIndex = i;
7084    } else {
7085      // V2 input for insertion.
7086      V2DstIndex = i;
7087    }
7088  }
7089
7090  // Don't bother if we have no (non-zeroable) element for insertion.
7091  if (V1DstIndex == -1 && V2DstIndex == -1)
7092    return SDValue();
7093
7094  // Determine element insertion src/dst indices. The src index is from the
7095  // start of the inserted vector, not the start of the concatenated vector.
7096  unsigned V2SrcIndex = 0;
7097  if (V1DstIndex != -1) {
7098    // If we have a V1 input out of place, we use V1 as the V2 element insertion
7099    // and don't use the original V2 at all.
7100    V2SrcIndex = Mask[V1DstIndex];
7101    V2DstIndex = V1DstIndex;
7102    V2 = V1;
7103  } else {
7104    V2SrcIndex = Mask[V2DstIndex] - 4;
7105  }
7106
7107  // If no V1 inputs are used in place, then the result is created only from
7108  // the zero mask and the V2 insertion - so remove V1 dependency.
7109  if (!V1UsedInPlace)
7110    V1 = DAG.getUNDEF(MVT::v4f32);
7111
7112  unsigned InsertPSMask = V2SrcIndex << 6 | V2DstIndex << 4 | ZMask;
7113  assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
7114
7115  // Insert the V2 element into the desired position.
7116  SDLoc DL(Op);
7117  return DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
7118                     DAG.getConstant(InsertPSMask, MVT::i8));
7119}
7120
7121/// \brief Try to lower a shuffle as a permute of the inputs followed by an
7122/// UNPCK instruction.
7123///
7124/// This specifically targets cases where we end up with alternating between
7125/// the two inputs, and so can permute them into something that feeds a single
7126/// UNPCK instruction. Note that this routine only targets integer vectors
7127/// because for floating point vectors we have a generalized SHUFPS lowering
7128/// strategy that handles everything that doesn't *exactly* match an unpack,
7129/// making this clever lowering unnecessary.
7130static SDValue lowerVectorShuffleAsUnpack(SDLoc DL, MVT VT, SDValue V1,
7131                                          SDValue V2, ArrayRef<int> Mask,
7132                                          SelectionDAG &DAG) {
7133  assert(!VT.isFloatingPoint() &&
7134         "This routine only supports integer vectors.");
7135  assert(!isSingleInputShuffleMask(Mask) &&
7136         "This routine should only be used when blending two inputs.");
7137  assert(Mask.size() >= 2 && "Single element masks are invalid.");
7138
7139  int Size = Mask.size();
7140
7141  int NumLoInputs = std::count_if(Mask.begin(), Mask.end(), [Size](int M) {
7142    return M >= 0 && M % Size < Size / 2;
7143  });
7144  int NumHiInputs = std::count_if(
7145      Mask.begin(), Mask.end(), [Size](int M) { return M % Size >= Size / 2; });
7146
7147  bool UnpackLo = NumLoInputs >= NumHiInputs;
7148
7149  auto TryUnpack = [&](MVT UnpackVT, int Scale) {
7150    SmallVector<int, 32> V1Mask(Mask.size(), -1);
7151    SmallVector<int, 32> V2Mask(Mask.size(), -1);
7152
7153    for (int i = 0; i < Size; ++i) {
7154      if (Mask[i] < 0)
7155        continue;
7156
7157      // Each element of the unpack contains Scale elements from this mask.
7158      int UnpackIdx = i / Scale;
7159
7160      // We only handle the case where V1 feeds the first slots of the unpack.
7161      // We rely on canonicalization to ensure this is the case.
7162      if ((UnpackIdx % 2 == 0) != (Mask[i] < Size))
7163        return SDValue();
7164
7165      // Setup the mask for this input. The indexing is tricky as we have to
7166      // handle the unpack stride.
7167      SmallVectorImpl<int> &VMask = (UnpackIdx % 2 == 0) ? V1Mask : V2Mask;
7168      VMask[(UnpackIdx / 2) * Scale + i % Scale + (UnpackLo ? 0 : Size / 2)] =
7169          Mask[i] % Size;
7170    }
7171
7172    // If we will have to shuffle both inputs to use the unpack, check whether
7173    // we can just unpack first and shuffle the result. If so, skip this unpack.
7174    if ((NumLoInputs == 0 || NumHiInputs == 0) && !isNoopShuffleMask(V1Mask) &&
7175        !isNoopShuffleMask(V2Mask))
7176      return SDValue();
7177
7178    // Shuffle the inputs into place.
7179    V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
7180    V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
7181
7182    // Cast the inputs to the type we will use to unpack them.
7183    V1 = DAG.getNode(ISD::BITCAST, DL, UnpackVT, V1);
7184    V2 = DAG.getNode(ISD::BITCAST, DL, UnpackVT, V2);
7185
7186    // Unpack the inputs and cast the result back to the desired type.
7187    return DAG.getNode(ISD::BITCAST, DL, VT,
7188                       DAG.getNode(UnpackLo ? X86ISD::UNPCKL : X86ISD::UNPCKH,
7189                                   DL, UnpackVT, V1, V2));
7190  };
7191
7192  // We try each unpack from the largest to the smallest to try and find one
7193  // that fits this mask.
7194  int OrigNumElements = VT.getVectorNumElements();
7195  int OrigScalarSize = VT.getScalarSizeInBits();
7196  for (int ScalarSize = 64; ScalarSize >= OrigScalarSize; ScalarSize /= 2) {
7197    int Scale = ScalarSize / OrigScalarSize;
7198    int NumElements = OrigNumElements / Scale;
7199    MVT UnpackVT = MVT::getVectorVT(MVT::getIntegerVT(ScalarSize), NumElements);
7200    if (SDValue Unpack = TryUnpack(UnpackVT, Scale))
7201      return Unpack;
7202  }
7203
7204  // If none of the unpack-rooted lowerings worked (or were profitable) try an
7205  // initial unpack.
7206  if (NumLoInputs == 0 || NumHiInputs == 0) {
7207    assert((NumLoInputs > 0 || NumHiInputs > 0) &&
7208           "We have to have *some* inputs!");
7209    int HalfOffset = NumLoInputs == 0 ? Size / 2 : 0;
7210
7211    // FIXME: We could consider the total complexity of the permute of each
7212    // possible unpacking. Or at the least we should consider how many
7213    // half-crossings are created.
7214    // FIXME: We could consider commuting the unpacks.
7215
7216    SmallVector<int, 32> PermMask;
7217    PermMask.assign(Size, -1);
7218    for (int i = 0; i < Size; ++i) {
7219      if (Mask[i] < 0)
7220        continue;
7221
7222      assert(Mask[i] % Size >= HalfOffset && "Found input from wrong half!");
7223
7224      PermMask[i] =
7225          2 * ((Mask[i] % Size) - HalfOffset) + (Mask[i] < Size ? 0 : 1);
7226    }
7227    return DAG.getVectorShuffle(
7228        VT, DL, DAG.getNode(NumLoInputs == 0 ? X86ISD::UNPCKH : X86ISD::UNPCKL,
7229                            DL, VT, V1, V2),
7230        DAG.getUNDEF(VT), PermMask);
7231  }
7232
7233  return SDValue();
7234}
7235
7236/// \brief Handle lowering of 2-lane 64-bit floating point shuffles.
7237///
7238/// This is the basis function for the 2-lane 64-bit shuffles as we have full
7239/// support for floating point shuffles but not integer shuffles. These
7240/// instructions will incur a domain crossing penalty on some chips though so
7241/// it is better to avoid lowering through this for integer vectors where
7242/// possible.
7243static SDValue lowerV2F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
7244                                       const X86Subtarget *Subtarget,
7245                                       SelectionDAG &DAG) {
7246  SDLoc DL(Op);
7247  assert(Op.getSimpleValueType() == MVT::v2f64 && "Bad shuffle type!");
7248  assert(V1.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
7249  assert(V2.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
7250  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7251  ArrayRef<int> Mask = SVOp->getMask();
7252  assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
7253
7254  if (isSingleInputShuffleMask(Mask)) {
7255    // Use low duplicate instructions for masks that match their pattern.
7256    if (Subtarget->hasSSE3())
7257      if (isShuffleEquivalent(V1, V2, Mask, {0, 0}))
7258        return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v2f64, V1);
7259
7260    // Straight shuffle of a single input vector. Simulate this by using the
7261    // single input as both of the "inputs" to this instruction..
7262    unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1);
7263
7264    if (Subtarget->hasAVX()) {
7265      // If we have AVX, we can use VPERMILPS which will allow folding a load
7266      // into the shuffle.
7267      return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v2f64, V1,
7268                         DAG.getConstant(SHUFPDMask, MVT::i8));
7269    }
7270
7271    return DAG.getNode(X86ISD::SHUFP, SDLoc(Op), MVT::v2f64, V1, V1,
7272                       DAG.getConstant(SHUFPDMask, MVT::i8));
7273  }
7274  assert(Mask[0] >= 0 && Mask[0] < 2 && "Non-canonicalized blend!");
7275  assert(Mask[1] >= 2 && "Non-canonicalized blend!");
7276
7277  // If we have a single input, insert that into V1 if we can do so cheaply.
7278  if ((Mask[0] >= 2) + (Mask[1] >= 2) == 1) {
7279    if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
7280            DL, MVT::v2f64, V1, V2, Mask, Subtarget, DAG))
7281      return Insertion;
7282    // Try inverting the insertion since for v2 masks it is easy to do and we
7283    // can't reliably sort the mask one way or the other.
7284    int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2),
7285                          Mask[1] < 0 ? -1 : (Mask[1] ^ 2)};
7286    if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
7287            DL, MVT::v2f64, V2, V1, InverseMask, Subtarget, DAG))
7288      return Insertion;
7289  }
7290
7291  // Try to use one of the special instruction patterns to handle two common
7292  // blend patterns if a zero-blend above didn't work.
7293  if (isShuffleEquivalent(V1, V2, Mask, {0, 3}) ||
7294      isShuffleEquivalent(V1, V2, Mask, {1, 3}))
7295    if (SDValue V1S = getScalarValueForVectorElement(V1, Mask[0], DAG))
7296      // We can either use a special instruction to load over the low double or
7297      // to move just the low double.
7298      return DAG.getNode(
7299          isShuffleFoldableLoad(V1S) ? X86ISD::MOVLPD : X86ISD::MOVSD,
7300          DL, MVT::v2f64, V2,
7301          DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, V1S));
7302
7303  if (Subtarget->hasSSE41())
7304    if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2f64, V1, V2, Mask,
7305                                                  Subtarget, DAG))
7306      return Blend;
7307
7308  // Use dedicated unpack instructions for masks that match their pattern.
7309  if (isShuffleEquivalent(V1, V2, Mask, {0, 2}))
7310    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2f64, V1, V2);
7311  if (isShuffleEquivalent(V1, V2, Mask, {1, 3}))
7312    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v2f64, V1, V2);
7313
7314  unsigned SHUFPDMask = (Mask[0] == 1) | (((Mask[1] - 2) == 1) << 1);
7315  return DAG.getNode(X86ISD::SHUFP, SDLoc(Op), MVT::v2f64, V1, V2,
7316                     DAG.getConstant(SHUFPDMask, MVT::i8));
7317}
7318
7319/// \brief Handle lowering of 2-lane 64-bit integer shuffles.
7320///
7321/// Tries to lower a 2-lane 64-bit shuffle using shuffle operations provided by
7322/// the integer unit to minimize domain crossing penalties. However, for blends
7323/// it falls back to the floating point shuffle operation with appropriate bit
7324/// casting.
7325static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
7326                                       const X86Subtarget *Subtarget,
7327                                       SelectionDAG &DAG) {
7328  SDLoc DL(Op);
7329  assert(Op.getSimpleValueType() == MVT::v2i64 && "Bad shuffle type!");
7330  assert(V1.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
7331  assert(V2.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
7332  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7333  ArrayRef<int> Mask = SVOp->getMask();
7334  assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
7335
7336  if (isSingleInputShuffleMask(Mask)) {
7337    // Check for being able to broadcast a single element.
7338    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v2i64, V1,
7339                                                          Mask, Subtarget, DAG))
7340      return Broadcast;
7341
7342    // Straight shuffle of a single input vector. For everything from SSE2
7343    // onward this has a single fast instruction with no scary immediates.
7344    // We have to map the mask as it is actually a v4i32 shuffle instruction.
7345    V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V1);
7346    int WidenedMask[4] = {
7347        std::max(Mask[0], 0) * 2, std::max(Mask[0], 0) * 2 + 1,
7348        std::max(Mask[1], 0) * 2, std::max(Mask[1], 0) * 2 + 1};
7349    return DAG.getNode(
7350        ISD::BITCAST, DL, MVT::v2i64,
7351        DAG.getNode(X86ISD::PSHUFD, SDLoc(Op), MVT::v4i32, V1,
7352                    getV4X86ShuffleImm8ForMask(WidenedMask, DAG)));
7353  }
7354  assert(Mask[0] != -1 && "No undef lanes in multi-input v2 shuffles!");
7355  assert(Mask[1] != -1 && "No undef lanes in multi-input v2 shuffles!");
7356  assert(Mask[0] < 2 && "We sort V1 to be the first input.");
7357  assert(Mask[1] >= 2 && "We sort V2 to be the second input.");
7358
7359  // If we have a blend of two PACKUS operations an the blend aligns with the
7360  // low and half halves, we can just merge the PACKUS operations. This is
7361  // particularly important as it lets us merge shuffles that this routine itself
7362  // creates.
7363  auto GetPackNode = [](SDValue V) {
7364    while (V.getOpcode() == ISD::BITCAST)
7365      V = V.getOperand(0);
7366
7367    return V.getOpcode() == X86ISD::PACKUS ? V : SDValue();
7368  };
7369  if (SDValue V1Pack = GetPackNode(V1))
7370    if (SDValue V2Pack = GetPackNode(V2))
7371      return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
7372                         DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8,
7373                                     Mask[0] == 0 ? V1Pack.getOperand(0)
7374                                                  : V1Pack.getOperand(1),
7375                                     Mask[1] == 2 ? V2Pack.getOperand(0)
7376                                                  : V2Pack.getOperand(1)));
7377
7378  // Try to use shift instructions.
7379  if (SDValue Shift =
7380          lowerVectorShuffleAsShift(DL, MVT::v2i64, V1, V2, Mask, DAG))
7381    return Shift;
7382
7383  // When loading a scalar and then shuffling it into a vector we can often do
7384  // the insertion cheaply.
7385  if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
7386          DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG))
7387    return Insertion;
7388  // Try inverting the insertion since for v2 masks it is easy to do and we
7389  // can't reliably sort the mask one way or the other.
7390  int InverseMask[2] = {Mask[0] ^ 2, Mask[1] ^ 2};
7391  if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
7392          DL, MVT::v2i64, V2, V1, InverseMask, Subtarget, DAG))
7393    return Insertion;
7394
7395  // We have different paths for blend lowering, but they all must use the
7396  // *exact* same predicate.
7397  bool IsBlendSupported = Subtarget->hasSSE41();
7398  if (IsBlendSupported)
7399    if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2i64, V1, V2, Mask,
7400                                                  Subtarget, DAG))
7401      return Blend;
7402
7403  // Use dedicated unpack instructions for masks that match their pattern.
7404  if (isShuffleEquivalent(V1, V2, Mask, {0, 2}))
7405    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, V1, V2);
7406  if (isShuffleEquivalent(V1, V2, Mask, {1, 3}))
7407    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v2i64, V1, V2);
7408
7409  // Try to use byte rotation instructions.
7410  // Its more profitable for pre-SSSE3 to use shuffles/unpacks.
7411  if (Subtarget->hasSSSE3())
7412    if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
7413            DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG))
7414      return Rotate;
7415
7416  // If we have direct support for blends, we should lower by decomposing into
7417  // a permute. That will be faster than the domain cross.
7418  if (IsBlendSupported)
7419    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v2i64, V1, V2,
7420                                                      Mask, DAG);
7421
7422  // We implement this with SHUFPD which is pretty lame because it will likely
7423  // incur 2 cycles of stall for integer vectors on Nehalem and older chips.
7424  // However, all the alternatives are still more cycles and newer chips don't
7425  // have this problem. It would be really nice if x86 had better shuffles here.
7426  V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, V1);
7427  V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, V2);
7428  return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
7429                     DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask));
7430}
7431
7432/// \brief Test whether this can be lowered with a single SHUFPS instruction.
7433///
7434/// This is used to disable more specialized lowerings when the shufps lowering
7435/// will happen to be efficient.
7436static bool isSingleSHUFPSMask(ArrayRef<int> Mask) {
7437  // This routine only handles 128-bit shufps.
7438  assert(Mask.size() == 4 && "Unsupported mask size!");
7439
7440  // To lower with a single SHUFPS we need to have the low half and high half
7441  // each requiring a single input.
7442  if (Mask[0] != -1 && Mask[1] != -1 && (Mask[0] < 4) != (Mask[1] < 4))
7443    return false;
7444  if (Mask[2] != -1 && Mask[3] != -1 && (Mask[2] < 4) != (Mask[3] < 4))
7445    return false;
7446
7447  return true;
7448}
7449
7450/// \brief Lower a vector shuffle using the SHUFPS instruction.
7451///
7452/// This is a helper routine dedicated to lowering vector shuffles using SHUFPS.
7453/// It makes no assumptions about whether this is the *best* lowering, it simply
7454/// uses it.
7455static SDValue lowerVectorShuffleWithSHUFPS(SDLoc DL, MVT VT,
7456                                            ArrayRef<int> Mask, SDValue V1,
7457                                            SDValue V2, SelectionDAG &DAG) {
7458  SDValue LowV = V1, HighV = V2;
7459  int NewMask[4] = {Mask[0], Mask[1], Mask[2], Mask[3]};
7460
7461  int NumV2Elements =
7462      std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
7463
7464  if (NumV2Elements == 1) {
7465    int V2Index =
7466        std::find_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }) -
7467        Mask.begin();
7468
7469    // Compute the index adjacent to V2Index and in the same half by toggling
7470    // the low bit.
7471    int V2AdjIndex = V2Index ^ 1;
7472
7473    if (Mask[V2AdjIndex] == -1) {
7474      // Handles all the cases where we have a single V2 element and an undef.
7475      // This will only ever happen in the high lanes because we commute the
7476      // vector otherwise.
7477      if (V2Index < 2)
7478        std::swap(LowV, HighV);
7479      NewMask[V2Index] -= 4;
7480    } else {
7481      // Handle the case where the V2 element ends up adjacent to a V1 element.
7482      // To make this work, blend them together as the first step.
7483      int V1Index = V2AdjIndex;
7484      int BlendMask[4] = {Mask[V2Index] - 4, 0, Mask[V1Index], 0};
7485      V2 = DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1,
7486                       getV4X86ShuffleImm8ForMask(BlendMask, DAG));
7487
7488      // Now proceed to reconstruct the final blend as we have the necessary
7489      // high or low half formed.
7490      if (V2Index < 2) {
7491        LowV = V2;
7492        HighV = V1;
7493      } else {
7494        HighV = V2;
7495      }
7496      NewMask[V1Index] = 2; // We put the V1 element in V2[2].
7497      NewMask[V2Index] = 0; // We shifted the V2 element into V2[0].
7498    }
7499  } else if (NumV2Elements == 2) {
7500    if (Mask[0] < 4 && Mask[1] < 4) {
7501      // Handle the easy case where we have V1 in the low lanes and V2 in the
7502      // high lanes.
7503      NewMask[2] -= 4;
7504      NewMask[3] -= 4;
7505    } else if (Mask[2] < 4 && Mask[3] < 4) {
7506      // We also handle the reversed case because this utility may get called
7507      // when we detect a SHUFPS pattern but can't easily commute the shuffle to
7508      // arrange things in the right direction.
7509      NewMask[0] -= 4;
7510      NewMask[1] -= 4;
7511      HighV = V1;
7512      LowV = V2;
7513    } else {
7514      // We have a mixture of V1 and V2 in both low and high lanes. Rather than
7515      // trying to place elements directly, just blend them and set up the final
7516      // shuffle to place them.
7517
7518      // The first two blend mask elements are for V1, the second two are for
7519      // V2.
7520      int BlendMask[4] = {Mask[0] < 4 ? Mask[0] : Mask[1],
7521                          Mask[2] < 4 ? Mask[2] : Mask[3],
7522                          (Mask[0] >= 4 ? Mask[0] : Mask[1]) - 4,
7523                          (Mask[2] >= 4 ? Mask[2] : Mask[3]) - 4};
7524      V1 = DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
7525                       getV4X86ShuffleImm8ForMask(BlendMask, DAG));
7526
7527      // Now we do a normal shuffle of V1 by giving V1 as both operands to
7528      // a blend.
7529      LowV = HighV = V1;
7530      NewMask[0] = Mask[0] < 4 ? 0 : 2;
7531      NewMask[1] = Mask[0] < 4 ? 2 : 0;
7532      NewMask[2] = Mask[2] < 4 ? 1 : 3;
7533      NewMask[3] = Mask[2] < 4 ? 3 : 1;
7534    }
7535  }
7536  return DAG.getNode(X86ISD::SHUFP, DL, VT, LowV, HighV,
7537                     getV4X86ShuffleImm8ForMask(NewMask, DAG));
7538}
7539
7540/// \brief Lower 4-lane 32-bit floating point shuffles.
7541///
7542/// Uses instructions exclusively from the floating point unit to minimize
7543/// domain crossing penalties, as these are sufficient to implement all v4f32
7544/// shuffles.
7545static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
7546                                       const X86Subtarget *Subtarget,
7547                                       SelectionDAG &DAG) {
7548  SDLoc DL(Op);
7549  assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!");
7550  assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
7551  assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
7552  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7553  ArrayRef<int> Mask = SVOp->getMask();
7554  assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
7555
7556  int NumV2Elements =
7557      std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
7558
7559  if (NumV2Elements == 0) {
7560    // Check for being able to broadcast a single element.
7561    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4f32, V1,
7562                                                          Mask, Subtarget, DAG))
7563      return Broadcast;
7564
7565    // Use even/odd duplicate instructions for masks that match their pattern.
7566    if (Subtarget->hasSSE3()) {
7567      if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2}))
7568        return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v4f32, V1);
7569      if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3}))
7570        return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v4f32, V1);
7571    }
7572
7573    if (Subtarget->hasAVX()) {
7574      // If we have AVX, we can use VPERMILPS which will allow folding a load
7575      // into the shuffle.
7576      return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f32, V1,
7577                         getV4X86ShuffleImm8ForMask(Mask, DAG));
7578    }
7579
7580    // Otherwise, use a straight shuffle of a single input vector. We pass the
7581    // input vector to both operands to simulate this with a SHUFPS.
7582    return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1,
7583                       getV4X86ShuffleImm8ForMask(Mask, DAG));
7584  }
7585
7586  // There are special ways we can lower some single-element blends. However, we
7587  // have custom ways we can lower more complex single-element blends below that
7588  // we defer to if both this and BLENDPS fail to match, so restrict this to
7589  // when the V2 input is targeting element 0 of the mask -- that is the fast
7590  // case here.
7591  if (NumV2Elements == 1 && Mask[0] >= 4)
7592    if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v4f32, V1, V2,
7593                                                         Mask, Subtarget, DAG))
7594      return V;
7595
7596  if (Subtarget->hasSSE41()) {
7597    if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f32, V1, V2, Mask,
7598                                                  Subtarget, DAG))
7599      return Blend;
7600
7601    // Use INSERTPS if we can complete the shuffle efficiently.
7602    if (SDValue V = lowerVectorShuffleAsInsertPS(Op, V1, V2, Mask, DAG))
7603      return V;
7604
7605    if (!isSingleSHUFPSMask(Mask))
7606      if (SDValue BlendPerm = lowerVectorShuffleAsBlendAndPermute(
7607              DL, MVT::v4f32, V1, V2, Mask, DAG))
7608        return BlendPerm;
7609  }
7610
7611  // Use dedicated unpack instructions for masks that match their pattern.
7612  if (isShuffleEquivalent(V1, V2, Mask, {0, 4, 1, 5}))
7613    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f32, V1, V2);
7614  if (isShuffleEquivalent(V1, V2, Mask, {2, 6, 3, 7}))
7615    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f32, V1, V2);
7616  if (isShuffleEquivalent(V1, V2, Mask, {4, 0, 5, 1}))
7617    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f32, V2, V1);
7618  if (isShuffleEquivalent(V1, V2, Mask, {6, 2, 7, 3}))
7619    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f32, V2, V1);
7620
7621  // Otherwise fall back to a SHUFPS lowering strategy.
7622  return lowerVectorShuffleWithSHUFPS(DL, MVT::v4f32, Mask, V1, V2, DAG);
7623}
7624
7625/// \brief Lower 4-lane i32 vector shuffles.
7626///
7627/// We try to handle these with integer-domain shuffles where we can, but for
7628/// blends we use the floating point domain blend instructions.
7629static SDValue lowerV4I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
7630                                       const X86Subtarget *Subtarget,
7631                                       SelectionDAG &DAG) {
7632  SDLoc DL(Op);
7633  assert(Op.getSimpleValueType() == MVT::v4i32 && "Bad shuffle type!");
7634  assert(V1.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
7635  assert(V2.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
7636  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7637  ArrayRef<int> Mask = SVOp->getMask();
7638  assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
7639
7640  // Whenever we can lower this as a zext, that instruction is strictly faster
7641  // than any alternative. It also allows us to fold memory operands into the
7642  // shuffle in many cases.
7643  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v4i32, V1, V2,
7644                                                         Mask, Subtarget, DAG))
7645    return ZExt;
7646
7647  int NumV2Elements =
7648      std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
7649
7650  if (NumV2Elements == 0) {
7651    // Check for being able to broadcast a single element.
7652    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4i32, V1,
7653                                                          Mask, Subtarget, DAG))
7654      return Broadcast;
7655
7656    // Straight shuffle of a single input vector. For everything from SSE2
7657    // onward this has a single fast instruction with no scary immediates.
7658    // We coerce the shuffle pattern to be compatible with UNPCK instructions
7659    // but we aren't actually going to use the UNPCK instruction because doing
7660    // so prevents folding a load into this instruction or making a copy.
7661    const int UnpackLoMask[] = {0, 0, 1, 1};
7662    const int UnpackHiMask[] = {2, 2, 3, 3};
7663    if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 1, 1}))
7664      Mask = UnpackLoMask;
7665    else if (isShuffleEquivalent(V1, V2, Mask, {2, 2, 3, 3}))
7666      Mask = UnpackHiMask;
7667
7668    return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
7669                       getV4X86ShuffleImm8ForMask(Mask, DAG));
7670  }
7671
7672  // Try to use shift instructions.
7673  if (SDValue Shift =
7674          lowerVectorShuffleAsShift(DL, MVT::v4i32, V1, V2, Mask, DAG))
7675    return Shift;
7676
7677  // There are special ways we can lower some single-element blends.
7678  if (NumV2Elements == 1)
7679    if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v4i32, V1, V2,
7680                                                         Mask, Subtarget, DAG))
7681      return V;
7682
7683  // We have different paths for blend lowering, but they all must use the
7684  // *exact* same predicate.
7685  bool IsBlendSupported = Subtarget->hasSSE41();
7686  if (IsBlendSupported)
7687    if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i32, V1, V2, Mask,
7688                                                  Subtarget, DAG))
7689      return Blend;
7690
7691  if (SDValue Masked =
7692          lowerVectorShuffleAsBitMask(DL, MVT::v4i32, V1, V2, Mask, DAG))
7693    return Masked;
7694
7695  // Use dedicated unpack instructions for masks that match their pattern.
7696  if (isShuffleEquivalent(V1, V2, Mask, {0, 4, 1, 5}))
7697    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i32, V1, V2);
7698  if (isShuffleEquivalent(V1, V2, Mask, {2, 6, 3, 7}))
7699    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i32, V1, V2);
7700  if (isShuffleEquivalent(V1, V2, Mask, {4, 0, 5, 1}))
7701    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i32, V2, V1);
7702  if (isShuffleEquivalent(V1, V2, Mask, {6, 2, 7, 3}))
7703    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i32, V2, V1);
7704
7705  // Try to use byte rotation instructions.
7706  // Its more profitable for pre-SSSE3 to use shuffles/unpacks.
7707  if (Subtarget->hasSSSE3())
7708    if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
7709            DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG))
7710      return Rotate;
7711
7712  // If we have direct support for blends, we should lower by decomposing into
7713  // a permute. That will be faster than the domain cross.
7714  if (IsBlendSupported)
7715    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i32, V1, V2,
7716                                                      Mask, DAG);
7717
7718  // Try to lower by permuting the inputs into an unpack instruction.
7719  if (SDValue Unpack =
7720          lowerVectorShuffleAsUnpack(DL, MVT::v4i32, V1, V2, Mask, DAG))
7721    return Unpack;
7722
7723  // We implement this with SHUFPS because it can blend from two vectors.
7724  // Because we're going to eventually use SHUFPS, we use SHUFPS even to build
7725  // up the inputs, bypassing domain shift penalties that we would encur if we
7726  // directly used PSHUFD on Nehalem and older. For newer chips, this isn't
7727  // relevant.
7728  return DAG.getNode(ISD::BITCAST, DL, MVT::v4i32,
7729                     DAG.getVectorShuffle(
7730                         MVT::v4f32, DL,
7731                         DAG.getNode(ISD::BITCAST, DL, MVT::v4f32, V1),
7732                         DAG.getNode(ISD::BITCAST, DL, MVT::v4f32, V2), Mask));
7733}
7734
7735/// \brief Lowering of single-input v8i16 shuffles is the cornerstone of SSE2
7736/// shuffle lowering, and the most complex part.
7737///
7738/// The lowering strategy is to try to form pairs of input lanes which are
7739/// targeted at the same half of the final vector, and then use a dword shuffle
7740/// to place them onto the right half, and finally unpack the paired lanes into
7741/// their final position.
7742///
7743/// The exact breakdown of how to form these dword pairs and align them on the
7744/// correct sides is really tricky. See the comments within the function for
7745/// more of the details.
7746///
7747/// This code also handles repeated 128-bit lanes of v8i16 shuffles, but each
7748/// lane must shuffle the *exact* same way. In fact, you must pass a v8 Mask to
7749/// this routine for it to work correctly. To shuffle a 256-bit or 512-bit i16
7750/// vector, form the analogous 128-bit 8-element Mask.
7751static SDValue lowerV8I16GeneralSingleInputVectorShuffle(
7752    SDLoc DL, MVT VT, SDValue V, MutableArrayRef<int> Mask,
7753    const X86Subtarget *Subtarget, SelectionDAG &DAG) {
7754  assert(VT.getScalarType() == MVT::i16 && "Bad input type!");
7755  MVT PSHUFDVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
7756
7757  assert(Mask.size() == 8 && "Shuffle mask length doen't match!");
7758  MutableArrayRef<int> LoMask = Mask.slice(0, 4);
7759  MutableArrayRef<int> HiMask = Mask.slice(4, 4);
7760
7761  SmallVector<int, 4> LoInputs;
7762  std::copy_if(LoMask.begin(), LoMask.end(), std::back_inserter(LoInputs),
7763               [](int M) { return M >= 0; });
7764  std::sort(LoInputs.begin(), LoInputs.end());
7765  LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), LoInputs.end());
7766  SmallVector<int, 4> HiInputs;
7767  std::copy_if(HiMask.begin(), HiMask.end(), std::back_inserter(HiInputs),
7768               [](int M) { return M >= 0; });
7769  std::sort(HiInputs.begin(), HiInputs.end());
7770  HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), HiInputs.end());
7771  int NumLToL =
7772      std::lower_bound(LoInputs.begin(), LoInputs.end(), 4) - LoInputs.begin();
7773  int NumHToL = LoInputs.size() - NumLToL;
7774  int NumLToH =
7775      std::lower_bound(HiInputs.begin(), HiInputs.end(), 4) - HiInputs.begin();
7776  int NumHToH = HiInputs.size() - NumLToH;
7777  MutableArrayRef<int> LToLInputs(LoInputs.data(), NumLToL);
7778  MutableArrayRef<int> LToHInputs(HiInputs.data(), NumLToH);
7779  MutableArrayRef<int> HToLInputs(LoInputs.data() + NumLToL, NumHToL);
7780  MutableArrayRef<int> HToHInputs(HiInputs.data() + NumLToH, NumHToH);
7781
7782  // Simplify the 1-into-3 and 3-into-1 cases with a single pshufd. For all
7783  // such inputs we can swap two of the dwords across the half mark and end up
7784  // with <=2 inputs to each half in each half. Once there, we can fall through
7785  // to the generic code below. For example:
7786  //
7787  // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
7788  // Mask:  [0, 1, 2, 7, 4, 5, 6, 3] -----------------> [0, 1, 4, 7, 2, 3, 6, 5]
7789  //
7790  // However in some very rare cases we have a 1-into-3 or 3-into-1 on one half
7791  // and an existing 2-into-2 on the other half. In this case we may have to
7792  // pre-shuffle the 2-into-2 half to avoid turning it into a 3-into-1 or
7793  // 1-into-3 which could cause us to cycle endlessly fixing each side in turn.
7794  // Fortunately, we don't have to handle anything but a 2-into-2 pattern
7795  // because any other situation (including a 3-into-1 or 1-into-3 in the other
7796  // half than the one we target for fixing) will be fixed when we re-enter this
7797  // path. We will also combine away any sequence of PSHUFD instructions that
7798  // result into a single instruction. Here is an example of the tricky case:
7799  //
7800  // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
7801  // Mask:  [3, 7, 1, 0, 2, 7, 3, 5] -THIS-IS-BAD!!!!-> [5, 7, 1, 0, 4, 7, 5, 3]
7802  //
7803  // This now has a 1-into-3 in the high half! Instead, we do two shuffles:
7804  //
7805  // Input: [a, b, c, d, e, f, g, h] PSHUFHW[0,2,1,3]-> [a, b, c, d, e, g, f, h]
7806  // Mask:  [3, 7, 1, 0, 2, 7, 3, 5] -----------------> [3, 7, 1, 0, 2, 7, 3, 6]
7807  //
7808  // Input: [a, b, c, d, e, g, f, h] -PSHUFD[0,2,1,3]-> [a, b, e, g, c, d, f, h]
7809  // Mask:  [3, 7, 1, 0, 2, 7, 3, 6] -----------------> [5, 7, 1, 0, 4, 7, 5, 6]
7810  //
7811  // The result is fine to be handled by the generic logic.
7812  auto balanceSides = [&](ArrayRef<int> AToAInputs, ArrayRef<int> BToAInputs,
7813                          ArrayRef<int> BToBInputs, ArrayRef<int> AToBInputs,
7814                          int AOffset, int BOffset) {
7815    assert((AToAInputs.size() == 3 || AToAInputs.size() == 1) &&
7816           "Must call this with A having 3 or 1 inputs from the A half.");
7817    assert((BToAInputs.size() == 1 || BToAInputs.size() == 3) &&
7818           "Must call this with B having 1 or 3 inputs from the B half.");
7819    assert(AToAInputs.size() + BToAInputs.size() == 4 &&
7820           "Must call this with either 3:1 or 1:3 inputs (summing to 4).");
7821
7822    // Compute the index of dword with only one word among the three inputs in
7823    // a half by taking the sum of the half with three inputs and subtracting
7824    // the sum of the actual three inputs. The difference is the remaining
7825    // slot.
7826    int ADWord, BDWord;
7827    int &TripleDWord = AToAInputs.size() == 3 ? ADWord : BDWord;
7828    int &OneInputDWord = AToAInputs.size() == 3 ? BDWord : ADWord;
7829    int TripleInputOffset = AToAInputs.size() == 3 ? AOffset : BOffset;
7830    ArrayRef<int> TripleInputs = AToAInputs.size() == 3 ? AToAInputs : BToAInputs;
7831    int OneInput = AToAInputs.size() == 3 ? BToAInputs[0] : AToAInputs[0];
7832    int TripleInputSum = 0 + 1 + 2 + 3 + (4 * TripleInputOffset);
7833    int TripleNonInputIdx =
7834        TripleInputSum - std::accumulate(TripleInputs.begin(), TripleInputs.end(), 0);
7835    TripleDWord = TripleNonInputIdx / 2;
7836
7837    // We use xor with one to compute the adjacent DWord to whichever one the
7838    // OneInput is in.
7839    OneInputDWord = (OneInput / 2) ^ 1;
7840
7841    // Check for one tricky case: We're fixing a 3<-1 or a 1<-3 shuffle for AToA
7842    // and BToA inputs. If there is also such a problem with the BToB and AToB
7843    // inputs, we don't try to fix it necessarily -- we'll recurse and see it in
7844    // the next pass. However, if we have a 2<-2 in the BToB and AToB inputs, it
7845    // is essential that we don't *create* a 3<-1 as then we might oscillate.
7846    if (BToBInputs.size() == 2 && AToBInputs.size() == 2) {
7847      // Compute how many inputs will be flipped by swapping these DWords. We
7848      // need
7849      // to balance this to ensure we don't form a 3-1 shuffle in the other
7850      // half.
7851      int NumFlippedAToBInputs =
7852          std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord) +
7853          std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord + 1);
7854      int NumFlippedBToBInputs =
7855          std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord) +
7856          std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord + 1);
7857      if ((NumFlippedAToBInputs == 1 &&
7858           (NumFlippedBToBInputs == 0 || NumFlippedBToBInputs == 2)) ||
7859          (NumFlippedBToBInputs == 1 &&
7860           (NumFlippedAToBInputs == 0 || NumFlippedAToBInputs == 2))) {
7861        // We choose whether to fix the A half or B half based on whether that
7862        // half has zero flipped inputs. At zero, we may not be able to fix it
7863        // with that half. We also bias towards fixing the B half because that
7864        // will more commonly be the high half, and we have to bias one way.
7865        auto FixFlippedInputs = [&V, &DL, &Mask, &DAG](int PinnedIdx, int DWord,
7866                                                       ArrayRef<int> Inputs) {
7867          int FixIdx = PinnedIdx ^ 1; // The adjacent slot to the pinned slot.
7868          bool IsFixIdxInput = std::find(Inputs.begin(), Inputs.end(),
7869                                         PinnedIdx ^ 1) != Inputs.end();
7870          // Determine whether the free index is in the flipped dword or the
7871          // unflipped dword based on where the pinned index is. We use this bit
7872          // in an xor to conditionally select the adjacent dword.
7873          int FixFreeIdx = 2 * (DWord ^ (PinnedIdx / 2 == DWord));
7874          bool IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(),
7875                                             FixFreeIdx) != Inputs.end();
7876          if (IsFixIdxInput == IsFixFreeIdxInput)
7877            FixFreeIdx += 1;
7878          IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(),
7879                                        FixFreeIdx) != Inputs.end();
7880          assert(IsFixIdxInput != IsFixFreeIdxInput &&
7881                 "We need to be changing the number of flipped inputs!");
7882          int PSHUFHalfMask[] = {0, 1, 2, 3};
7883          std::swap(PSHUFHalfMask[FixFreeIdx % 4], PSHUFHalfMask[FixIdx % 4]);
7884          V = DAG.getNode(FixIdx < 4 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW, DL,
7885                          MVT::v8i16, V,
7886                          getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DAG));
7887
7888          for (int &M : Mask)
7889            if (M != -1 && M == FixIdx)
7890              M = FixFreeIdx;
7891            else if (M != -1 && M == FixFreeIdx)
7892              M = FixIdx;
7893        };
7894        if (NumFlippedBToBInputs != 0) {
7895          int BPinnedIdx =
7896              BToAInputs.size() == 3 ? TripleNonInputIdx : OneInput;
7897          FixFlippedInputs(BPinnedIdx, BDWord, BToBInputs);
7898        } else {
7899          assert(NumFlippedAToBInputs != 0 && "Impossible given predicates!");
7900          int APinnedIdx =
7901              AToAInputs.size() == 3 ? TripleNonInputIdx : OneInput;
7902          FixFlippedInputs(APinnedIdx, ADWord, AToBInputs);
7903        }
7904      }
7905    }
7906
7907    int PSHUFDMask[] = {0, 1, 2, 3};
7908    PSHUFDMask[ADWord] = BDWord;
7909    PSHUFDMask[BDWord] = ADWord;
7910    V = DAG.getNode(ISD::BITCAST, DL, VT,
7911                    DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT,
7912                                DAG.getNode(ISD::BITCAST, DL, PSHUFDVT, V),
7913                                getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
7914
7915    // Adjust the mask to match the new locations of A and B.
7916    for (int &M : Mask)
7917      if (M != -1 && M/2 == ADWord)
7918        M = 2 * BDWord + M % 2;
7919      else if (M != -1 && M/2 == BDWord)
7920        M = 2 * ADWord + M % 2;
7921
7922    // Recurse back into this routine to re-compute state now that this isn't
7923    // a 3 and 1 problem.
7924    return lowerV8I16GeneralSingleInputVectorShuffle(DL, VT, V, Mask, Subtarget,
7925                                                     DAG);
7926  };
7927  if ((NumLToL == 3 && NumHToL == 1) || (NumLToL == 1 && NumHToL == 3))
7928    return balanceSides(LToLInputs, HToLInputs, HToHInputs, LToHInputs, 0, 4);
7929  else if ((NumHToH == 3 && NumLToH == 1) || (NumHToH == 1 && NumLToH == 3))
7930    return balanceSides(HToHInputs, LToHInputs, LToLInputs, HToLInputs, 4, 0);
7931
7932  // At this point there are at most two inputs to the low and high halves from
7933  // each half. That means the inputs can always be grouped into dwords and
7934  // those dwords can then be moved to the correct half with a dword shuffle.
7935  // We use at most one low and one high word shuffle to collect these paired
7936  // inputs into dwords, and finally a dword shuffle to place them.
7937  int PSHUFLMask[4] = {-1, -1, -1, -1};
7938  int PSHUFHMask[4] = {-1, -1, -1, -1};
7939  int PSHUFDMask[4] = {-1, -1, -1, -1};
7940
7941  // First fix the masks for all the inputs that are staying in their
7942  // original halves. This will then dictate the targets of the cross-half
7943  // shuffles.
7944  auto fixInPlaceInputs =
7945      [&PSHUFDMask](ArrayRef<int> InPlaceInputs, ArrayRef<int> IncomingInputs,
7946                    MutableArrayRef<int> SourceHalfMask,
7947                    MutableArrayRef<int> HalfMask, int HalfOffset) {
7948    if (InPlaceInputs.empty())
7949      return;
7950    if (InPlaceInputs.size() == 1) {
7951      SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
7952          InPlaceInputs[0] - HalfOffset;
7953      PSHUFDMask[InPlaceInputs[0] / 2] = InPlaceInputs[0] / 2;
7954      return;
7955    }
7956    if (IncomingInputs.empty()) {
7957      // Just fix all of the in place inputs.
7958      for (int Input : InPlaceInputs) {
7959        SourceHalfMask[Input - HalfOffset] = Input - HalfOffset;
7960        PSHUFDMask[Input / 2] = Input / 2;
7961      }
7962      return;
7963    }
7964
7965    assert(InPlaceInputs.size() == 2 && "Cannot handle 3 or 4 inputs!");
7966    SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
7967        InPlaceInputs[0] - HalfOffset;
7968    // Put the second input next to the first so that they are packed into
7969    // a dword. We find the adjacent index by toggling the low bit.
7970    int AdjIndex = InPlaceInputs[0] ^ 1;
7971    SourceHalfMask[AdjIndex - HalfOffset] = InPlaceInputs[1] - HalfOffset;
7972    std::replace(HalfMask.begin(), HalfMask.end(), InPlaceInputs[1], AdjIndex);
7973    PSHUFDMask[AdjIndex / 2] = AdjIndex / 2;
7974  };
7975  fixInPlaceInputs(LToLInputs, HToLInputs, PSHUFLMask, LoMask, 0);
7976  fixInPlaceInputs(HToHInputs, LToHInputs, PSHUFHMask, HiMask, 4);
7977
7978  // Now gather the cross-half inputs and place them into a free dword of
7979  // their target half.
7980  // FIXME: This operation could almost certainly be simplified dramatically to
7981  // look more like the 3-1 fixing operation.
7982  auto moveInputsToRightHalf = [&PSHUFDMask](
7983      MutableArrayRef<int> IncomingInputs, ArrayRef<int> ExistingInputs,
7984      MutableArrayRef<int> SourceHalfMask, MutableArrayRef<int> HalfMask,
7985      MutableArrayRef<int> FinalSourceHalfMask, int SourceOffset,
7986      int DestOffset) {
7987    auto isWordClobbered = [](ArrayRef<int> SourceHalfMask, int Word) {
7988      return SourceHalfMask[Word] != -1 && SourceHalfMask[Word] != Word;
7989    };
7990    auto isDWordClobbered = [&isWordClobbered](ArrayRef<int> SourceHalfMask,
7991                                               int Word) {
7992      int LowWord = Word & ~1;
7993      int HighWord = Word | 1;
7994      return isWordClobbered(SourceHalfMask, LowWord) ||
7995             isWordClobbered(SourceHalfMask, HighWord);
7996    };
7997
7998    if (IncomingInputs.empty())
7999      return;
8000
8001    if (ExistingInputs.empty()) {
8002      // Map any dwords with inputs from them into the right half.
8003      for (int Input : IncomingInputs) {
8004        // If the source half mask maps over the inputs, turn those into
8005        // swaps and use the swapped lane.
8006        if (isWordClobbered(SourceHalfMask, Input - SourceOffset)) {
8007          if (SourceHalfMask[SourceHalfMask[Input - SourceOffset]] == -1) {
8008            SourceHalfMask[SourceHalfMask[Input - SourceOffset]] =
8009                Input - SourceOffset;
8010            // We have to swap the uses in our half mask in one sweep.
8011            for (int &M : HalfMask)
8012              if (M == SourceHalfMask[Input - SourceOffset] + SourceOffset)
8013                M = Input;
8014              else if (M == Input)
8015                M = SourceHalfMask[Input - SourceOffset] + SourceOffset;
8016          } else {
8017            assert(SourceHalfMask[SourceHalfMask[Input - SourceOffset]] ==
8018                       Input - SourceOffset &&
8019                   "Previous placement doesn't match!");
8020          }
8021          // Note that this correctly re-maps both when we do a swap and when
8022          // we observe the other side of the swap above. We rely on that to
8023          // avoid swapping the members of the input list directly.
8024          Input = SourceHalfMask[Input - SourceOffset] + SourceOffset;
8025        }
8026
8027        // Map the input's dword into the correct half.
8028        if (PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] == -1)
8029          PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] = Input / 2;
8030        else
8031          assert(PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] ==
8032                     Input / 2 &&
8033                 "Previous placement doesn't match!");
8034      }
8035
8036      // And just directly shift any other-half mask elements to be same-half
8037      // as we will have mirrored the dword containing the element into the
8038      // same position within that half.
8039      for (int &M : HalfMask)
8040        if (M >= SourceOffset && M < SourceOffset + 4) {
8041          M = M - SourceOffset + DestOffset;
8042          assert(M >= 0 && "This should never wrap below zero!");
8043        }
8044      return;
8045    }
8046
8047    // Ensure we have the input in a viable dword of its current half. This
8048    // is particularly tricky because the original position may be clobbered
8049    // by inputs being moved and *staying* in that half.
8050    if (IncomingInputs.size() == 1) {
8051      if (isWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
8052        int InputFixed = std::find(std::begin(SourceHalfMask),
8053                                   std::end(SourceHalfMask), -1) -
8054                         std::begin(SourceHalfMask) + SourceOffset;
8055        SourceHalfMask[InputFixed - SourceOffset] =
8056            IncomingInputs[0] - SourceOffset;
8057        std::replace(HalfMask.begin(), HalfMask.end(), IncomingInputs[0],
8058                     InputFixed);
8059        IncomingInputs[0] = InputFixed;
8060      }
8061    } else if (IncomingInputs.size() == 2) {
8062      if (IncomingInputs[0] / 2 != IncomingInputs[1] / 2 ||
8063          isDWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
8064        // We have two non-adjacent or clobbered inputs we need to extract from
8065        // the source half. To do this, we need to map them into some adjacent
8066        // dword slot in the source mask.
8067        int InputsFixed[2] = {IncomingInputs[0] - SourceOffset,
8068                              IncomingInputs[1] - SourceOffset};
8069
8070        // If there is a free slot in the source half mask adjacent to one of
8071        // the inputs, place the other input in it. We use (Index XOR 1) to
8072        // compute an adjacent index.
8073        if (!isWordClobbered(SourceHalfMask, InputsFixed[0]) &&
8074            SourceHalfMask[InputsFixed[0] ^ 1] == -1) {
8075          SourceHalfMask[InputsFixed[0]] = InputsFixed[0];
8076          SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
8077          InputsFixed[1] = InputsFixed[0] ^ 1;
8078        } else if (!isWordClobbered(SourceHalfMask, InputsFixed[1]) &&
8079                   SourceHalfMask[InputsFixed[1] ^ 1] == -1) {
8080          SourceHalfMask[InputsFixed[1]] = InputsFixed[1];
8081          SourceHalfMask[InputsFixed[1] ^ 1] = InputsFixed[0];
8082          InputsFixed[0] = InputsFixed[1] ^ 1;
8083        } else if (SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] == -1 &&
8084                   SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] == -1) {
8085          // The two inputs are in the same DWord but it is clobbered and the
8086          // adjacent DWord isn't used at all. Move both inputs to the free
8087          // slot.
8088          SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] = InputsFixed[0];
8089          SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] = InputsFixed[1];
8090          InputsFixed[0] = 2 * ((InputsFixed[0] / 2) ^ 1);
8091          InputsFixed[1] = 2 * ((InputsFixed[0] / 2) ^ 1) + 1;
8092        } else {
8093          // The only way we hit this point is if there is no clobbering
8094          // (because there are no off-half inputs to this half) and there is no
8095          // free slot adjacent to one of the inputs. In this case, we have to
8096          // swap an input with a non-input.
8097          for (int i = 0; i < 4; ++i)
8098            assert((SourceHalfMask[i] == -1 || SourceHalfMask[i] == i) &&
8099                   "We can't handle any clobbers here!");
8100          assert(InputsFixed[1] != (InputsFixed[0] ^ 1) &&
8101                 "Cannot have adjacent inputs here!");
8102
8103          SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
8104          SourceHalfMask[InputsFixed[1]] = InputsFixed[0] ^ 1;
8105
8106          // We also have to update the final source mask in this case because
8107          // it may need to undo the above swap.
8108          for (int &M : FinalSourceHalfMask)
8109            if (M == (InputsFixed[0] ^ 1) + SourceOffset)
8110              M = InputsFixed[1] + SourceOffset;
8111            else if (M == InputsFixed[1] + SourceOffset)
8112              M = (InputsFixed[0] ^ 1) + SourceOffset;
8113
8114          InputsFixed[1] = InputsFixed[0] ^ 1;
8115        }
8116
8117        // Point everything at the fixed inputs.
8118        for (int &M : HalfMask)
8119          if (M == IncomingInputs[0])
8120            M = InputsFixed[0] + SourceOffset;
8121          else if (M == IncomingInputs[1])
8122            M = InputsFixed[1] + SourceOffset;
8123
8124        IncomingInputs[0] = InputsFixed[0] + SourceOffset;
8125        IncomingInputs[1] = InputsFixed[1] + SourceOffset;
8126      }
8127    } else {
8128      llvm_unreachable("Unhandled input size!");
8129    }
8130
8131    // Now hoist the DWord down to the right half.
8132    int FreeDWord = (PSHUFDMask[DestOffset / 2] == -1 ? 0 : 1) + DestOffset / 2;
8133    assert(PSHUFDMask[FreeDWord] == -1 && "DWord not free");
8134    PSHUFDMask[FreeDWord] = IncomingInputs[0] / 2;
8135    for (int &M : HalfMask)
8136      for (int Input : IncomingInputs)
8137        if (M == Input)
8138          M = FreeDWord * 2 + Input % 2;
8139  };
8140  moveInputsToRightHalf(HToLInputs, LToLInputs, PSHUFHMask, LoMask, HiMask,
8141                        /*SourceOffset*/ 4, /*DestOffset*/ 0);
8142  moveInputsToRightHalf(LToHInputs, HToHInputs, PSHUFLMask, HiMask, LoMask,
8143                        /*SourceOffset*/ 0, /*DestOffset*/ 4);
8144
8145  // Now enact all the shuffles we've computed to move the inputs into their
8146  // target half.
8147  if (!isNoopShuffleMask(PSHUFLMask))
8148    V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
8149                    getV4X86ShuffleImm8ForMask(PSHUFLMask, DAG));
8150  if (!isNoopShuffleMask(PSHUFHMask))
8151    V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
8152                    getV4X86ShuffleImm8ForMask(PSHUFHMask, DAG));
8153  if (!isNoopShuffleMask(PSHUFDMask))
8154    V = DAG.getNode(ISD::BITCAST, DL, VT,
8155                    DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT,
8156                                DAG.getNode(ISD::BITCAST, DL, PSHUFDVT, V),
8157                                getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
8158
8159  // At this point, each half should contain all its inputs, and we can then
8160  // just shuffle them into their final position.
8161  assert(std::count_if(LoMask.begin(), LoMask.end(),
8162                       [](int M) { return M >= 4; }) == 0 &&
8163         "Failed to lift all the high half inputs to the low mask!");
8164  assert(std::count_if(HiMask.begin(), HiMask.end(),
8165                       [](int M) { return M >= 0 && M < 4; }) == 0 &&
8166         "Failed to lift all the low half inputs to the high mask!");
8167
8168  // Do a half shuffle for the low mask.
8169  if (!isNoopShuffleMask(LoMask))
8170    V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
8171                    getV4X86ShuffleImm8ForMask(LoMask, DAG));
8172
8173  // Do a half shuffle with the high mask after shifting its values down.
8174  for (int &M : HiMask)
8175    if (M >= 0)
8176      M -= 4;
8177  if (!isNoopShuffleMask(HiMask))
8178    V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
8179                    getV4X86ShuffleImm8ForMask(HiMask, DAG));
8180
8181  return V;
8182}
8183
8184/// \brief Helper to form a PSHUFB-based shuffle+blend.
8185static SDValue lowerVectorShuffleAsPSHUFB(SDLoc DL, MVT VT, SDValue V1,
8186                                          SDValue V2, ArrayRef<int> Mask,
8187                                          SelectionDAG &DAG, bool &V1InUse,
8188                                          bool &V2InUse) {
8189  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
8190  SDValue V1Mask[16];
8191  SDValue V2Mask[16];
8192  V1InUse = false;
8193  V2InUse = false;
8194
8195  int Size = Mask.size();
8196  int Scale = 16 / Size;
8197  for (int i = 0; i < 16; ++i) {
8198    if (Mask[i / Scale] == -1) {
8199      V1Mask[i] = V2Mask[i] = DAG.getUNDEF(MVT::i8);
8200    } else {
8201      const int ZeroMask = 0x80;
8202      int V1Idx = Mask[i / Scale] < Size ? Mask[i / Scale] * Scale + i % Scale
8203                                          : ZeroMask;
8204      int V2Idx = Mask[i / Scale] < Size
8205                      ? ZeroMask
8206                      : (Mask[i / Scale] - Size) * Scale + i % Scale;
8207      if (Zeroable[i / Scale])
8208        V1Idx = V2Idx = ZeroMask;
8209      V1Mask[i] = DAG.getConstant(V1Idx, MVT::i8);
8210      V2Mask[i] = DAG.getConstant(V2Idx, MVT::i8);
8211      V1InUse |= (ZeroMask != V1Idx);
8212      V2InUse |= (ZeroMask != V2Idx);
8213    }
8214  }
8215
8216  if (V1InUse)
8217    V1 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8,
8218                     DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, V1),
8219                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V1Mask));
8220  if (V2InUse)
8221    V2 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8,
8222                     DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, V2),
8223                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V2Mask));
8224
8225  // If we need shuffled inputs from both, blend the two.
8226  SDValue V;
8227  if (V1InUse && V2InUse)
8228    V = DAG.getNode(ISD::OR, DL, MVT::v16i8, V1, V2);
8229  else
8230    V = V1InUse ? V1 : V2;
8231
8232  // Cast the result back to the correct type.
8233  return DAG.getNode(ISD::BITCAST, DL, VT, V);
8234}
8235
8236/// \brief Generic lowering of 8-lane i16 shuffles.
8237///
8238/// This handles both single-input shuffles and combined shuffle/blends with
8239/// two inputs. The single input shuffles are immediately delegated to
8240/// a dedicated lowering routine.
8241///
8242/// The blends are lowered in one of three fundamental ways. If there are few
8243/// enough inputs, it delegates to a basic UNPCK-based strategy. If the shuffle
8244/// of the input is significantly cheaper when lowered as an interleaving of
8245/// the two inputs, try to interleave them. Otherwise, blend the low and high
8246/// halves of the inputs separately (making them have relatively few inputs)
8247/// and then concatenate them.
8248static SDValue lowerV8I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
8249                                       const X86Subtarget *Subtarget,
8250                                       SelectionDAG &DAG) {
8251  SDLoc DL(Op);
8252  assert(Op.getSimpleValueType() == MVT::v8i16 && "Bad shuffle type!");
8253  assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
8254  assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
8255  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8256  ArrayRef<int> OrigMask = SVOp->getMask();
8257  int MaskStorage[8] = {OrigMask[0], OrigMask[1], OrigMask[2], OrigMask[3],
8258                        OrigMask[4], OrigMask[5], OrigMask[6], OrigMask[7]};
8259  MutableArrayRef<int> Mask(MaskStorage);
8260
8261  assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
8262
8263  // Whenever we can lower this as a zext, that instruction is strictly faster
8264  // than any alternative.
8265  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
8266          DL, MVT::v8i16, V1, V2, OrigMask, Subtarget, DAG))
8267    return ZExt;
8268
8269  auto isV1 = [](int M) { return M >= 0 && M < 8; };
8270  (void)isV1;
8271  auto isV2 = [](int M) { return M >= 8; };
8272
8273  int NumV2Inputs = std::count_if(Mask.begin(), Mask.end(), isV2);
8274
8275  if (NumV2Inputs == 0) {
8276    // Check for being able to broadcast a single element.
8277    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8i16, V1,
8278                                                          Mask, Subtarget, DAG))
8279      return Broadcast;
8280
8281    // Try to use shift instructions.
8282    if (SDValue Shift =
8283            lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V1, Mask, DAG))
8284      return Shift;
8285
8286    // Use dedicated unpack instructions for masks that match their pattern.
8287    if (isShuffleEquivalent(V1, V1, Mask, {0, 0, 1, 1, 2, 2, 3, 3}))
8288      return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i16, V1, V1);
8289    if (isShuffleEquivalent(V1, V1, Mask, {4, 4, 5, 5, 6, 6, 7, 7}))
8290      return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i16, V1, V1);
8291
8292    // Try to use byte rotation instructions.
8293    if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v8i16, V1, V1,
8294                                                        Mask, Subtarget, DAG))
8295      return Rotate;
8296
8297    return lowerV8I16GeneralSingleInputVectorShuffle(DL, MVT::v8i16, V1, Mask,
8298                                                     Subtarget, DAG);
8299  }
8300
8301  assert(std::any_of(Mask.begin(), Mask.end(), isV1) &&
8302         "All single-input shuffles should be canonicalized to be V1-input "
8303         "shuffles.");
8304
8305  // Try to use shift instructions.
8306  if (SDValue Shift =
8307          lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V2, Mask, DAG))
8308    return Shift;
8309
8310  // There are special ways we can lower some single-element blends.
8311  if (NumV2Inputs == 1)
8312    if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v8i16, V1, V2,
8313                                                         Mask, Subtarget, DAG))
8314      return V;
8315
8316  // We have different paths for blend lowering, but they all must use the
8317  // *exact* same predicate.
8318  bool IsBlendSupported = Subtarget->hasSSE41();
8319  if (IsBlendSupported)
8320    if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i16, V1, V2, Mask,
8321                                                  Subtarget, DAG))
8322      return Blend;
8323
8324  if (SDValue Masked =
8325          lowerVectorShuffleAsBitMask(DL, MVT::v8i16, V1, V2, Mask, DAG))
8326    return Masked;
8327
8328  // Use dedicated unpack instructions for masks that match their pattern.
8329  if (isShuffleEquivalent(V1, V2, Mask, {0, 8, 1, 9, 2, 10, 3, 11}))
8330    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i16, V1, V2);
8331  if (isShuffleEquivalent(V1, V2, Mask, {4, 12, 5, 13, 6, 14, 7, 15}))
8332    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i16, V1, V2);
8333
8334  // Try to use byte rotation instructions.
8335  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
8336          DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG))
8337    return Rotate;
8338
8339  if (SDValue BitBlend =
8340          lowerVectorShuffleAsBitBlend(DL, MVT::v8i16, V1, V2, Mask, DAG))
8341    return BitBlend;
8342
8343  if (SDValue Unpack =
8344          lowerVectorShuffleAsUnpack(DL, MVT::v8i16, V1, V2, Mask, DAG))
8345    return Unpack;
8346
8347  // If we can't directly blend but can use PSHUFB, that will be better as it
8348  // can both shuffle and set up the inefficient blend.
8349  if (!IsBlendSupported && Subtarget->hasSSSE3()) {
8350    bool V1InUse, V2InUse;
8351    return lowerVectorShuffleAsPSHUFB(DL, MVT::v8i16, V1, V2, Mask, DAG,
8352                                      V1InUse, V2InUse);
8353  }
8354
8355  // We can always bit-blend if we have to so the fallback strategy is to
8356  // decompose into single-input permutes and blends.
8357  return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i16, V1, V2,
8358                                                      Mask, DAG);
8359}
8360
8361/// \brief Check whether a compaction lowering can be done by dropping even
8362/// elements and compute how many times even elements must be dropped.
8363///
8364/// This handles shuffles which take every Nth element where N is a power of
8365/// two. Example shuffle masks:
8366///
8367///  N = 1:  0,  2,  4,  6,  8, 10, 12, 14,  0,  2,  4,  6,  8, 10, 12, 14
8368///  N = 1:  0,  2,  4,  6,  8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30
8369///  N = 2:  0,  4,  8, 12,  0,  4,  8, 12,  0,  4,  8, 12,  0,  4,  8, 12
8370///  N = 2:  0,  4,  8, 12, 16, 20, 24, 28,  0,  4,  8, 12, 16, 20, 24, 28
8371///  N = 3:  0,  8,  0,  8,  0,  8,  0,  8,  0,  8,  0,  8,  0,  8,  0,  8
8372///  N = 3:  0,  8, 16, 24,  0,  8, 16, 24,  0,  8, 16, 24,  0,  8, 16, 24
8373///
8374/// Any of these lanes can of course be undef.
8375///
8376/// This routine only supports N <= 3.
8377/// FIXME: Evaluate whether either AVX or AVX-512 have any opportunities here
8378/// for larger N.
8379///
8380/// \returns N above, or the number of times even elements must be dropped if
8381/// there is such a number. Otherwise returns zero.
8382static int canLowerByDroppingEvenElements(ArrayRef<int> Mask) {
8383  // Figure out whether we're looping over two inputs or just one.
8384  bool IsSingleInput = isSingleInputShuffleMask(Mask);
8385
8386  // The modulus for the shuffle vector entries is based on whether this is
8387  // a single input or not.
8388  int ShuffleModulus = Mask.size() * (IsSingleInput ? 1 : 2);
8389  assert(isPowerOf2_32((uint32_t)ShuffleModulus) &&
8390         "We should only be called with masks with a power-of-2 size!");
8391
8392  uint64_t ModMask = (uint64_t)ShuffleModulus - 1;
8393
8394  // We track whether the input is viable for all power-of-2 strides 2^1, 2^2,
8395  // and 2^3 simultaneously. This is because we may have ambiguity with
8396  // partially undef inputs.
8397  bool ViableForN[3] = {true, true, true};
8398
8399  for (int i = 0, e = Mask.size(); i < e; ++i) {
8400    // Ignore undef lanes, we'll optimistically collapse them to the pattern we
8401    // want.
8402    if (Mask[i] == -1)
8403      continue;
8404
8405    bool IsAnyViable = false;
8406    for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
8407      if (ViableForN[j]) {
8408        uint64_t N = j + 1;
8409
8410        // The shuffle mask must be equal to (i * 2^N) % M.
8411        if ((uint64_t)Mask[i] == (((uint64_t)i << N) & ModMask))
8412          IsAnyViable = true;
8413        else
8414          ViableForN[j] = false;
8415      }
8416    // Early exit if we exhaust the possible powers of two.
8417    if (!IsAnyViable)
8418      break;
8419  }
8420
8421  for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
8422    if (ViableForN[j])
8423      return j + 1;
8424
8425  // Return 0 as there is no viable power of two.
8426  return 0;
8427}
8428
8429/// \brief Generic lowering of v16i8 shuffles.
8430///
8431/// This is a hybrid strategy to lower v16i8 vectors. It first attempts to
8432/// detect any complexity reducing interleaving. If that doesn't help, it uses
8433/// UNPCK to spread the i8 elements across two i16-element vectors, and uses
8434/// the existing lowering for v8i16 blends on each half, finally PACK-ing them
8435/// back together.
8436static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
8437                                       const X86Subtarget *Subtarget,
8438                                       SelectionDAG &DAG) {
8439  SDLoc DL(Op);
8440  assert(Op.getSimpleValueType() == MVT::v16i8 && "Bad shuffle type!");
8441  assert(V1.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
8442  assert(V2.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
8443  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8444  ArrayRef<int> Mask = SVOp->getMask();
8445  assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
8446
8447  // Try to use shift instructions.
8448  if (SDValue Shift =
8449          lowerVectorShuffleAsShift(DL, MVT::v16i8, V1, V2, Mask, DAG))
8450    return Shift;
8451
8452  // Try to use byte rotation instructions.
8453  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
8454          DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG))
8455    return Rotate;
8456
8457  // Try to use a zext lowering.
8458  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
8459          DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG))
8460    return ZExt;
8461
8462  int NumV2Elements =
8463      std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 16; });
8464
8465  // For single-input shuffles, there are some nicer lowering tricks we can use.
8466  if (NumV2Elements == 0) {
8467    // Check for being able to broadcast a single element.
8468    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v16i8, V1,
8469                                                          Mask, Subtarget, DAG))
8470      return Broadcast;
8471
8472    // Check whether we can widen this to an i16 shuffle by duplicating bytes.
8473    // Notably, this handles splat and partial-splat shuffles more efficiently.
8474    // However, it only makes sense if the pre-duplication shuffle simplifies
8475    // things significantly. Currently, this means we need to be able to
8476    // express the pre-duplication shuffle as an i16 shuffle.
8477    //
8478    // FIXME: We should check for other patterns which can be widened into an
8479    // i16 shuffle as well.
8480    auto canWidenViaDuplication = [](ArrayRef<int> Mask) {
8481      for (int i = 0; i < 16; i += 2)
8482        if (Mask[i] != -1 && Mask[i + 1] != -1 && Mask[i] != Mask[i + 1])
8483          return false;
8484
8485      return true;
8486    };
8487    auto tryToWidenViaDuplication = [&]() -> SDValue {
8488      if (!canWidenViaDuplication(Mask))
8489        return SDValue();
8490      SmallVector<int, 4> LoInputs;
8491      std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(LoInputs),
8492                   [](int M) { return M >= 0 && M < 8; });
8493      std::sort(LoInputs.begin(), LoInputs.end());
8494      LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()),
8495                     LoInputs.end());
8496      SmallVector<int, 4> HiInputs;
8497      std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(HiInputs),
8498                   [](int M) { return M >= 8; });
8499      std::sort(HiInputs.begin(), HiInputs.end());
8500      HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()),
8501                     HiInputs.end());
8502
8503      bool TargetLo = LoInputs.size() >= HiInputs.size();
8504      ArrayRef<int> InPlaceInputs = TargetLo ? LoInputs : HiInputs;
8505      ArrayRef<int> MovingInputs = TargetLo ? HiInputs : LoInputs;
8506
8507      int PreDupI16Shuffle[] = {-1, -1, -1, -1, -1, -1, -1, -1};
8508      SmallDenseMap<int, int, 8> LaneMap;
8509      for (int I : InPlaceInputs) {
8510        PreDupI16Shuffle[I/2] = I/2;
8511        LaneMap[I] = I;
8512      }
8513      int j = TargetLo ? 0 : 4, je = j + 4;
8514      for (int i = 0, ie = MovingInputs.size(); i < ie; ++i) {
8515        // Check if j is already a shuffle of this input. This happens when
8516        // there are two adjacent bytes after we move the low one.
8517        if (PreDupI16Shuffle[j] != MovingInputs[i] / 2) {
8518          // If we haven't yet mapped the input, search for a slot into which
8519          // we can map it.
8520          while (j < je && PreDupI16Shuffle[j] != -1)
8521            ++j;
8522
8523          if (j == je)
8524            // We can't place the inputs into a single half with a simple i16 shuffle, so bail.
8525            return SDValue();
8526
8527          // Map this input with the i16 shuffle.
8528          PreDupI16Shuffle[j] = MovingInputs[i] / 2;
8529        }
8530
8531        // Update the lane map based on the mapping we ended up with.
8532        LaneMap[MovingInputs[i]] = 2 * j + MovingInputs[i] % 2;
8533      }
8534      V1 = DAG.getNode(
8535          ISD::BITCAST, DL, MVT::v16i8,
8536          DAG.getVectorShuffle(MVT::v8i16, DL,
8537                               DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1),
8538                               DAG.getUNDEF(MVT::v8i16), PreDupI16Shuffle));
8539
8540      // Unpack the bytes to form the i16s that will be shuffled into place.
8541      V1 = DAG.getNode(TargetLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
8542                       MVT::v16i8, V1, V1);
8543
8544      int PostDupI16Shuffle[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
8545      for (int i = 0; i < 16; ++i)
8546        if (Mask[i] != -1) {
8547          int MappedMask = LaneMap[Mask[i]] - (TargetLo ? 0 : 8);
8548          assert(MappedMask < 8 && "Invalid v8 shuffle mask!");
8549          if (PostDupI16Shuffle[i / 2] == -1)
8550            PostDupI16Shuffle[i / 2] = MappedMask;
8551          else
8552            assert(PostDupI16Shuffle[i / 2] == MappedMask &&
8553                   "Conflicting entrties in the original shuffle!");
8554        }
8555      return DAG.getNode(
8556          ISD::BITCAST, DL, MVT::v16i8,
8557          DAG.getVectorShuffle(MVT::v8i16, DL,
8558                               DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1),
8559                               DAG.getUNDEF(MVT::v8i16), PostDupI16Shuffle));
8560    };
8561    if (SDValue V = tryToWidenViaDuplication())
8562      return V;
8563  }
8564
8565  // Use dedicated unpack instructions for masks that match their pattern.
8566  if (isShuffleEquivalent(V1, V2, Mask, {// Low half.
8567                                         0, 16, 1, 17, 2, 18, 3, 19,
8568                                         // High half.
8569                                         4, 20, 5, 21, 6, 22, 7, 23}))
8570    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V1, V2);
8571  if (isShuffleEquivalent(V1, V2, Mask, {// Low half.
8572                                         8, 24, 9, 25, 10, 26, 11, 27,
8573                                         // High half.
8574                                         12, 28, 13, 29, 14, 30, 15, 31}))
8575    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V1, V2);
8576
8577  // Check for SSSE3 which lets us lower all v16i8 shuffles much more directly
8578  // with PSHUFB. It is important to do this before we attempt to generate any
8579  // blends but after all of the single-input lowerings. If the single input
8580  // lowerings can find an instruction sequence that is faster than a PSHUFB, we
8581  // want to preserve that and we can DAG combine any longer sequences into
8582  // a PSHUFB in the end. But once we start blending from multiple inputs,
8583  // the complexity of DAG combining bad patterns back into PSHUFB is too high,
8584  // and there are *very* few patterns that would actually be faster than the
8585  // PSHUFB approach because of its ability to zero lanes.
8586  //
8587  // FIXME: The only exceptions to the above are blends which are exact
8588  // interleavings with direct instructions supporting them. We currently don't
8589  // handle those well here.
8590  if (Subtarget->hasSSSE3()) {
8591    bool V1InUse = false;
8592    bool V2InUse = false;
8593
8594    SDValue PSHUFB = lowerVectorShuffleAsPSHUFB(DL, MVT::v16i8, V1, V2, Mask,
8595                                                DAG, V1InUse, V2InUse);
8596
8597    // If both V1 and V2 are in use and we can use a direct blend or an unpack,
8598    // do so. This avoids using them to handle blends-with-zero which is
8599    // important as a single pshufb is significantly faster for that.
8600    if (V1InUse && V2InUse) {
8601      if (Subtarget->hasSSE41())
8602        if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i8, V1, V2,
8603                                                      Mask, Subtarget, DAG))
8604          return Blend;
8605
8606      // We can use an unpack to do the blending rather than an or in some
8607      // cases. Even though the or may be (very minorly) more efficient, we
8608      // preference this lowering because there are common cases where part of
8609      // the complexity of the shuffles goes away when we do the final blend as
8610      // an unpack.
8611      // FIXME: It might be worth trying to detect if the unpack-feeding
8612      // shuffles will both be pshufb, in which case we shouldn't bother with
8613      // this.
8614      if (SDValue Unpack =
8615              lowerVectorShuffleAsUnpack(DL, MVT::v16i8, V1, V2, Mask, DAG))
8616        return Unpack;
8617    }
8618
8619    return PSHUFB;
8620  }
8621
8622  // There are special ways we can lower some single-element blends.
8623  if (NumV2Elements == 1)
8624    if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v16i8, V1, V2,
8625                                                         Mask, Subtarget, DAG))
8626      return V;
8627
8628  if (SDValue BitBlend =
8629          lowerVectorShuffleAsBitBlend(DL, MVT::v16i8, V1, V2, Mask, DAG))
8630    return BitBlend;
8631
8632  // Check whether a compaction lowering can be done. This handles shuffles
8633  // which take every Nth element for some even N. See the helper function for
8634  // details.
8635  //
8636  // We special case these as they can be particularly efficiently handled with
8637  // the PACKUSB instruction on x86 and they show up in common patterns of
8638  // rearranging bytes to truncate wide elements.
8639  if (int NumEvenDrops = canLowerByDroppingEvenElements(Mask)) {
8640    // NumEvenDrops is the power of two stride of the elements. Another way of
8641    // thinking about it is that we need to drop the even elements this many
8642    // times to get the original input.
8643    bool IsSingleInput = isSingleInputShuffleMask(Mask);
8644
8645    // First we need to zero all the dropped bytes.
8646    assert(NumEvenDrops <= 3 &&
8647           "No support for dropping even elements more than 3 times.");
8648    // We use the mask type to pick which bytes are preserved based on how many
8649    // elements are dropped.
8650    MVT MaskVTs[] = { MVT::v8i16, MVT::v4i32, MVT::v2i64 };
8651    SDValue ByteClearMask =
8652        DAG.getNode(ISD::BITCAST, DL, MVT::v16i8,
8653                    DAG.getConstant(0xFF, MaskVTs[NumEvenDrops - 1]));
8654    V1 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V1, ByteClearMask);
8655    if (!IsSingleInput)
8656      V2 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V2, ByteClearMask);
8657
8658    // Now pack things back together.
8659    V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1);
8660    V2 = IsSingleInput ? V1 : DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V2);
8661    SDValue Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, V1, V2);
8662    for (int i = 1; i < NumEvenDrops; ++i) {
8663      Result = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, Result);
8664      Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, Result, Result);
8665    }
8666
8667    return Result;
8668  }
8669
8670  // Handle multi-input cases by blending single-input shuffles.
8671  if (NumV2Elements > 0)
8672    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v16i8, V1, V2,
8673                                                      Mask, DAG);
8674
8675  // The fallback path for single-input shuffles widens this into two v8i16
8676  // vectors with unpacks, shuffles those, and then pulls them back together
8677  // with a pack.
8678  SDValue V = V1;
8679
8680  int LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
8681  int HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
8682  for (int i = 0; i < 16; ++i)
8683    if (Mask[i] >= 0)
8684      (i < 8 ? LoBlendMask[i] : HiBlendMask[i % 8]) = Mask[i];
8685
8686  SDValue Zero = getZeroVector(MVT::v8i16, Subtarget, DAG, DL);
8687
8688  SDValue VLoHalf, VHiHalf;
8689  // Check if any of the odd lanes in the v16i8 are used. If not, we can mask
8690  // them out and avoid using UNPCK{L,H} to extract the elements of V as
8691  // i16s.
8692  if (std::none_of(std::begin(LoBlendMask), std::end(LoBlendMask),
8693                   [](int M) { return M >= 0 && M % 2 == 1; }) &&
8694      std::none_of(std::begin(HiBlendMask), std::end(HiBlendMask),
8695                   [](int M) { return M >= 0 && M % 2 == 1; })) {
8696    // Use a mask to drop the high bytes.
8697    VLoHalf = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V);
8698    VLoHalf = DAG.getNode(ISD::AND, DL, MVT::v8i16, VLoHalf,
8699                     DAG.getConstant(0x00FF, MVT::v8i16));
8700
8701    // This will be a single vector shuffle instead of a blend so nuke VHiHalf.
8702    VHiHalf = DAG.getUNDEF(MVT::v8i16);
8703
8704    // Squash the masks to point directly into VLoHalf.
8705    for (int &M : LoBlendMask)
8706      if (M >= 0)
8707        M /= 2;
8708    for (int &M : HiBlendMask)
8709      if (M >= 0)
8710        M /= 2;
8711  } else {
8712    // Otherwise just unpack the low half of V into VLoHalf and the high half into
8713    // VHiHalf so that we can blend them as i16s.
8714    VLoHalf = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
8715                     DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero));
8716    VHiHalf = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
8717                     DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero));
8718  }
8719
8720  SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, LoBlendMask);
8721  SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, HiBlendMask);
8722
8723  return DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, LoV, HiV);
8724}
8725
8726/// \brief Dispatching routine to lower various 128-bit x86 vector shuffles.
8727///
8728/// This routine breaks down the specific type of 128-bit shuffle and
8729/// dispatches to the lowering routines accordingly.
8730static SDValue lower128BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
8731                                        MVT VT, const X86Subtarget *Subtarget,
8732                                        SelectionDAG &DAG) {
8733  switch (VT.SimpleTy) {
8734  case MVT::v2i64:
8735    return lowerV2I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
8736  case MVT::v2f64:
8737    return lowerV2F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
8738  case MVT::v4i32:
8739    return lowerV4I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
8740  case MVT::v4f32:
8741    return lowerV4F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
8742  case MVT::v8i16:
8743    return lowerV8I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
8744  case MVT::v16i8:
8745    return lowerV16I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
8746
8747  default:
8748    llvm_unreachable("Unimplemented!");
8749  }
8750}
8751
8752/// \brief Helper function to test whether a shuffle mask could be
8753/// simplified by widening the elements being shuffled.
8754///
8755/// Appends the mask for wider elements in WidenedMask if valid. Otherwise
8756/// leaves it in an unspecified state.
8757///
8758/// NOTE: This must handle normal vector shuffle masks and *target* vector
8759/// shuffle masks. The latter have the special property of a '-2' representing
8760/// a zero-ed lane of a vector.
8761static bool canWidenShuffleElements(ArrayRef<int> Mask,
8762                                    SmallVectorImpl<int> &WidenedMask) {
8763  for (int i = 0, Size = Mask.size(); i < Size; i += 2) {
8764    // If both elements are undef, its trivial.
8765    if (Mask[i] == SM_SentinelUndef && Mask[i + 1] == SM_SentinelUndef) {
8766      WidenedMask.push_back(SM_SentinelUndef);
8767      continue;
8768    }
8769
8770    // Check for an undef mask and a mask value properly aligned to fit with
8771    // a pair of values. If we find such a case, use the non-undef mask's value.
8772    if (Mask[i] == SM_SentinelUndef && Mask[i + 1] >= 0 && Mask[i + 1] % 2 == 1) {
8773      WidenedMask.push_back(Mask[i + 1] / 2);
8774      continue;
8775    }
8776    if (Mask[i + 1] == SM_SentinelUndef && Mask[i] >= 0 && Mask[i] % 2 == 0) {
8777      WidenedMask.push_back(Mask[i] / 2);
8778      continue;
8779    }
8780
8781    // When zeroing, we need to spread the zeroing across both lanes to widen.
8782    if (Mask[i] == SM_SentinelZero || Mask[i + 1] == SM_SentinelZero) {
8783      if ((Mask[i] == SM_SentinelZero || Mask[i] == SM_SentinelUndef) &&
8784          (Mask[i + 1] == SM_SentinelZero || Mask[i + 1] == SM_SentinelUndef)) {
8785        WidenedMask.push_back(SM_SentinelZero);
8786        continue;
8787      }
8788      return false;
8789    }
8790
8791    // Finally check if the two mask values are adjacent and aligned with
8792    // a pair.
8793    if (Mask[i] != SM_SentinelUndef && Mask[i] % 2 == 0 && Mask[i] + 1 == Mask[i + 1]) {
8794      WidenedMask.push_back(Mask[i] / 2);
8795      continue;
8796    }
8797
8798    // Otherwise we can't safely widen the elements used in this shuffle.
8799    return false;
8800  }
8801  assert(WidenedMask.size() == Mask.size() / 2 &&
8802         "Incorrect size of mask after widening the elements!");
8803
8804  return true;
8805}
8806
8807/// \brief Generic routine to split vector shuffle into half-sized shuffles.
8808///
8809/// This routine just extracts two subvectors, shuffles them independently, and
8810/// then concatenates them back together. This should work effectively with all
8811/// AVX vector shuffle types.
8812static SDValue splitAndLowerVectorShuffle(SDLoc DL, MVT VT, SDValue V1,
8813                                          SDValue V2, ArrayRef<int> Mask,
8814                                          SelectionDAG &DAG) {
8815  assert(VT.getSizeInBits() >= 256 &&
8816         "Only for 256-bit or wider vector shuffles!");
8817  assert(V1.getSimpleValueType() == VT && "Bad operand type!");
8818  assert(V2.getSimpleValueType() == VT && "Bad operand type!");
8819
8820  ArrayRef<int> LoMask = Mask.slice(0, Mask.size() / 2);
8821  ArrayRef<int> HiMask = Mask.slice(Mask.size() / 2);
8822
8823  int NumElements = VT.getVectorNumElements();
8824  int SplitNumElements = NumElements / 2;
8825  MVT ScalarVT = VT.getScalarType();
8826  MVT SplitVT = MVT::getVectorVT(ScalarVT, NumElements / 2);
8827
8828  // Rather than splitting build-vectors, just build two narrower build
8829  // vectors. This helps shuffling with splats and zeros.
8830  auto SplitVector = [&](SDValue V) {
8831    while (V.getOpcode() == ISD::BITCAST)
8832      V = V->getOperand(0);
8833
8834    MVT OrigVT = V.getSimpleValueType();
8835    int OrigNumElements = OrigVT.getVectorNumElements();
8836    int OrigSplitNumElements = OrigNumElements / 2;
8837    MVT OrigScalarVT = OrigVT.getScalarType();
8838    MVT OrigSplitVT = MVT::getVectorVT(OrigScalarVT, OrigNumElements / 2);
8839
8840    SDValue LoV, HiV;
8841
8842    auto *BV = dyn_cast<BuildVectorSDNode>(V);
8843    if (!BV) {
8844      LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V,
8845                        DAG.getIntPtrConstant(0));
8846      HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V,
8847                        DAG.getIntPtrConstant(OrigSplitNumElements));
8848    } else {
8849
8850      SmallVector<SDValue, 16> LoOps, HiOps;
8851      for (int i = 0; i < OrigSplitNumElements; ++i) {
8852        LoOps.push_back(BV->getOperand(i));
8853        HiOps.push_back(BV->getOperand(i + OrigSplitNumElements));
8854      }
8855      LoV = DAG.getNode(ISD::BUILD_VECTOR, DL, OrigSplitVT, LoOps);
8856      HiV = DAG.getNode(ISD::BUILD_VECTOR, DL, OrigSplitVT, HiOps);
8857    }
8858    return std::make_pair(DAG.getNode(ISD::BITCAST, DL, SplitVT, LoV),
8859                          DAG.getNode(ISD::BITCAST, DL, SplitVT, HiV));
8860  };
8861
8862  SDValue LoV1, HiV1, LoV2, HiV2;
8863  std::tie(LoV1, HiV1) = SplitVector(V1);
8864  std::tie(LoV2, HiV2) = SplitVector(V2);
8865
8866  // Now create two 4-way blends of these half-width vectors.
8867  auto HalfBlend = [&](ArrayRef<int> HalfMask) {
8868    bool UseLoV1 = false, UseHiV1 = false, UseLoV2 = false, UseHiV2 = false;
8869    SmallVector<int, 32> V1BlendMask, V2BlendMask, BlendMask;
8870    for (int i = 0; i < SplitNumElements; ++i) {
8871      int M = HalfMask[i];
8872      if (M >= NumElements) {
8873        if (M >= NumElements + SplitNumElements)
8874          UseHiV2 = true;
8875        else
8876          UseLoV2 = true;
8877        V2BlendMask.push_back(M - NumElements);
8878        V1BlendMask.push_back(-1);
8879        BlendMask.push_back(SplitNumElements + i);
8880      } else if (M >= 0) {
8881        if (M >= SplitNumElements)
8882          UseHiV1 = true;
8883        else
8884          UseLoV1 = true;
8885        V2BlendMask.push_back(-1);
8886        V1BlendMask.push_back(M);
8887        BlendMask.push_back(i);
8888      } else {
8889        V2BlendMask.push_back(-1);
8890        V1BlendMask.push_back(-1);
8891        BlendMask.push_back(-1);
8892      }
8893    }
8894
8895    // Because the lowering happens after all combining takes place, we need to
8896    // manually combine these blend masks as much as possible so that we create
8897    // a minimal number of high-level vector shuffle nodes.
8898
8899    // First try just blending the halves of V1 or V2.
8900    if (!UseLoV1 && !UseHiV1 && !UseLoV2 && !UseHiV2)
8901      return DAG.getUNDEF(SplitVT);
8902    if (!UseLoV2 && !UseHiV2)
8903      return DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
8904    if (!UseLoV1 && !UseHiV1)
8905      return DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
8906
8907    SDValue V1Blend, V2Blend;
8908    if (UseLoV1 && UseHiV1) {
8909      V1Blend =
8910        DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
8911    } else {
8912      // We only use half of V1 so map the usage down into the final blend mask.
8913      V1Blend = UseLoV1 ? LoV1 : HiV1;
8914      for (int i = 0; i < SplitNumElements; ++i)
8915        if (BlendMask[i] >= 0 && BlendMask[i] < SplitNumElements)
8916          BlendMask[i] = V1BlendMask[i] - (UseLoV1 ? 0 : SplitNumElements);
8917    }
8918    if (UseLoV2 && UseHiV2) {
8919      V2Blend =
8920        DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
8921    } else {
8922      // We only use half of V2 so map the usage down into the final blend mask.
8923      V2Blend = UseLoV2 ? LoV2 : HiV2;
8924      for (int i = 0; i < SplitNumElements; ++i)
8925        if (BlendMask[i] >= SplitNumElements)
8926          BlendMask[i] = V2BlendMask[i] + (UseLoV2 ? SplitNumElements : 0);
8927    }
8928    return DAG.getVectorShuffle(SplitVT, DL, V1Blend, V2Blend, BlendMask);
8929  };
8930  SDValue Lo = HalfBlend(LoMask);
8931  SDValue Hi = HalfBlend(HiMask);
8932  return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
8933}
8934
8935/// \brief Either split a vector in halves or decompose the shuffles and the
8936/// blend.
8937///
8938/// This is provided as a good fallback for many lowerings of non-single-input
8939/// shuffles with more than one 128-bit lane. In those cases, we want to select
8940/// between splitting the shuffle into 128-bit components and stitching those
8941/// back together vs. extracting the single-input shuffles and blending those
8942/// results.
8943static SDValue lowerVectorShuffleAsSplitOrBlend(SDLoc DL, MVT VT, SDValue V1,
8944                                                SDValue V2, ArrayRef<int> Mask,
8945                                                SelectionDAG &DAG) {
8946  assert(!isSingleInputShuffleMask(Mask) && "This routine must not be used to "
8947                                            "lower single-input shuffles as it "
8948                                            "could then recurse on itself.");
8949  int Size = Mask.size();
8950
8951  // If this can be modeled as a broadcast of two elements followed by a blend,
8952  // prefer that lowering. This is especially important because broadcasts can
8953  // often fold with memory operands.
8954  auto DoBothBroadcast = [&] {
8955    int V1BroadcastIdx = -1, V2BroadcastIdx = -1;
8956    for (int M : Mask)
8957      if (M >= Size) {
8958        if (V2BroadcastIdx == -1)
8959          V2BroadcastIdx = M - Size;
8960        else if (M - Size != V2BroadcastIdx)
8961          return false;
8962      } else if (M >= 0) {
8963        if (V1BroadcastIdx == -1)
8964          V1BroadcastIdx = M;
8965        else if (M != V1BroadcastIdx)
8966          return false;
8967      }
8968    return true;
8969  };
8970  if (DoBothBroadcast())
8971    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask,
8972                                                      DAG);
8973
8974  // If the inputs all stem from a single 128-bit lane of each input, then we
8975  // split them rather than blending because the split will decompose to
8976  // unusually few instructions.
8977  int LaneCount = VT.getSizeInBits() / 128;
8978  int LaneSize = Size / LaneCount;
8979  SmallBitVector LaneInputs[2];
8980  LaneInputs[0].resize(LaneCount, false);
8981  LaneInputs[1].resize(LaneCount, false);
8982  for (int i = 0; i < Size; ++i)
8983    if (Mask[i] >= 0)
8984      LaneInputs[Mask[i] / Size][(Mask[i] % Size) / LaneSize] = true;
8985  if (LaneInputs[0].count() <= 1 && LaneInputs[1].count() <= 1)
8986    return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
8987
8988  // Otherwise, just fall back to decomposed shuffles and a blend. This requires
8989  // that the decomposed single-input shuffles don't end up here.
8990  return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG);
8991}
8992
8993/// \brief Lower a vector shuffle crossing multiple 128-bit lanes as
8994/// a permutation and blend of those lanes.
8995///
8996/// This essentially blends the out-of-lane inputs to each lane into the lane
8997/// from a permuted copy of the vector. This lowering strategy results in four
8998/// instructions in the worst case for a single-input cross lane shuffle which
8999/// is lower than any other fully general cross-lane shuffle strategy I'm aware
9000/// of. Special cases for each particular shuffle pattern should be handled
9001/// prior to trying this lowering.
9002static SDValue lowerVectorShuffleAsLanePermuteAndBlend(SDLoc DL, MVT VT,
9003                                                       SDValue V1, SDValue V2,
9004                                                       ArrayRef<int> Mask,
9005                                                       SelectionDAG &DAG) {
9006  // FIXME: This should probably be generalized for 512-bit vectors as well.
9007  assert(VT.getSizeInBits() == 256 && "Only for 256-bit vector shuffles!");
9008  int LaneSize = Mask.size() / 2;
9009
9010  // If there are only inputs from one 128-bit lane, splitting will in fact be
9011  // less expensive. The flags track whether the given lane contains an element
9012  // that crosses to another lane.
9013  bool LaneCrossing[2] = {false, false};
9014  for (int i = 0, Size = Mask.size(); i < Size; ++i)
9015    if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
9016      LaneCrossing[(Mask[i] % Size) / LaneSize] = true;
9017  if (!LaneCrossing[0] || !LaneCrossing[1])
9018    return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
9019
9020  if (isSingleInputShuffleMask(Mask)) {
9021    SmallVector<int, 32> FlippedBlendMask;
9022    for (int i = 0, Size = Mask.size(); i < Size; ++i)
9023      FlippedBlendMask.push_back(
9024          Mask[i] < 0 ? -1 : (((Mask[i] % Size) / LaneSize == i / LaneSize)
9025                                  ? Mask[i]
9026                                  : Mask[i] % LaneSize +
9027                                        (i / LaneSize) * LaneSize + Size));
9028
9029    // Flip the vector, and blend the results which should now be in-lane. The
9030    // VPERM2X128 mask uses the low 2 bits for the low source and bits 4 and
9031    // 5 for the high source. The value 3 selects the high half of source 2 and
9032    // the value 2 selects the low half of source 2. We only use source 2 to
9033    // allow folding it into a memory operand.
9034    unsigned PERMMask = 3 | 2 << 4;
9035    SDValue Flipped = DAG.getNode(X86ISD::VPERM2X128, DL, VT, DAG.getUNDEF(VT),
9036                                  V1, DAG.getConstant(PERMMask, MVT::i8));
9037    return DAG.getVectorShuffle(VT, DL, V1, Flipped, FlippedBlendMask);
9038  }
9039
9040  // This now reduces to two single-input shuffles of V1 and V2 which at worst
9041  // will be handled by the above logic and a blend of the results, much like
9042  // other patterns in AVX.
9043  return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG);
9044}
9045
9046/// \brief Handle lowering 2-lane 128-bit shuffles.
9047static SDValue lowerV2X128VectorShuffle(SDLoc DL, MVT VT, SDValue V1,
9048                                        SDValue V2, ArrayRef<int> Mask,
9049                                        const X86Subtarget *Subtarget,
9050                                        SelectionDAG &DAG) {
9051  // TODO: If minimizing size and one of the inputs is a zero vector and the
9052  // the zero vector has only one use, we could use a VPERM2X128 to save the
9053  // instruction bytes needed to explicitly generate the zero vector.
9054
9055  // Blends are faster and handle all the non-lane-crossing cases.
9056  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, VT, V1, V2, Mask,
9057                                                Subtarget, DAG))
9058    return Blend;
9059
9060  bool IsV1Zero = ISD::isBuildVectorAllZeros(V1.getNode());
9061  bool IsV2Zero = ISD::isBuildVectorAllZeros(V2.getNode());
9062
9063  // If either input operand is a zero vector, use VPERM2X128 because its mask
9064  // allows us to replace the zero input with an implicit zero.
9065  if (!IsV1Zero && !IsV2Zero) {
9066    // Check for patterns which can be matched with a single insert of a 128-bit
9067    // subvector.
9068    bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1});
9069    if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5})) {
9070      MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(),
9071                                   VT.getVectorNumElements() / 2);
9072      SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
9073                                DAG.getIntPtrConstant(0));
9074      SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT,
9075                                OnlyUsesV1 ? V1 : V2, DAG.getIntPtrConstant(0));
9076      return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV);
9077    }
9078  }
9079
9080  // Otherwise form a 128-bit permutation. After accounting for undefs,
9081  // convert the 64-bit shuffle mask selection values into 128-bit
9082  // selection bits by dividing the indexes by 2 and shifting into positions
9083  // defined by a vperm2*128 instruction's immediate control byte.
9084
9085  // The immediate permute control byte looks like this:
9086  //    [1:0] - select 128 bits from sources for low half of destination
9087  //    [2]   - ignore
9088  //    [3]   - zero low half of destination
9089  //    [5:4] - select 128 bits from sources for high half of destination
9090  //    [6]   - ignore
9091  //    [7]   - zero high half of destination
9092
9093  int MaskLO = Mask[0];
9094  if (MaskLO == SM_SentinelUndef)
9095    MaskLO = Mask[1] == SM_SentinelUndef ? 0 : Mask[1];
9096
9097  int MaskHI = Mask[2];
9098  if (MaskHI == SM_SentinelUndef)
9099    MaskHI = Mask[3] == SM_SentinelUndef ? 0 : Mask[3];
9100
9101  unsigned PermMask = MaskLO / 2 | (MaskHI / 2) << 4;
9102
9103  // If either input is a zero vector, replace it with an undef input.
9104  // Shuffle mask values <  4 are selecting elements of V1.
9105  // Shuffle mask values >= 4 are selecting elements of V2.
9106  // Adjust each half of the permute mask by clearing the half that was
9107  // selecting the zero vector and setting the zero mask bit.
9108  if (IsV1Zero) {
9109    V1 = DAG.getUNDEF(VT);
9110    if (MaskLO < 4)
9111      PermMask = (PermMask & 0xf0) | 0x08;
9112    if (MaskHI < 4)
9113      PermMask = (PermMask & 0x0f) | 0x80;
9114  }
9115  if (IsV2Zero) {
9116    V2 = DAG.getUNDEF(VT);
9117    if (MaskLO >= 4)
9118      PermMask = (PermMask & 0xf0) | 0x08;
9119    if (MaskHI >= 4)
9120      PermMask = (PermMask & 0x0f) | 0x80;
9121  }
9122
9123  return DAG.getNode(X86ISD::VPERM2X128, DL, VT, V1, V2,
9124                     DAG.getConstant(PermMask, MVT::i8));
9125}
9126
9127/// \brief Lower a vector shuffle by first fixing the 128-bit lanes and then
9128/// shuffling each lane.
9129///
9130/// This will only succeed when the result of fixing the 128-bit lanes results
9131/// in a single-input non-lane-crossing shuffle with a repeating shuffle mask in
9132/// each 128-bit lanes. This handles many cases where we can quickly blend away
9133/// the lane crosses early and then use simpler shuffles within each lane.
9134///
9135/// FIXME: It might be worthwhile at some point to support this without
9136/// requiring the 128-bit lane-relative shuffles to be repeating, but currently
9137/// in x86 only floating point has interesting non-repeating shuffles, and even
9138/// those are still *marginally* more expensive.
9139static SDValue lowerVectorShuffleByMerging128BitLanes(
9140    SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
9141    const X86Subtarget *Subtarget, SelectionDAG &DAG) {
9142  assert(!isSingleInputShuffleMask(Mask) &&
9143         "This is only useful with multiple inputs.");
9144
9145  int Size = Mask.size();
9146  int LaneSize = 128 / VT.getScalarSizeInBits();
9147  int NumLanes = Size / LaneSize;
9148  assert(NumLanes > 1 && "Only handles 256-bit and wider shuffles.");
9149
9150  // See if we can build a hypothetical 128-bit lane-fixing shuffle mask. Also
9151  // check whether the in-128-bit lane shuffles share a repeating pattern.
9152  SmallVector<int, 4> Lanes;
9153  Lanes.resize(NumLanes, -1);
9154  SmallVector<int, 4> InLaneMask;
9155  InLaneMask.resize(LaneSize, -1);
9156  for (int i = 0; i < Size; ++i) {
9157    if (Mask[i] < 0)
9158      continue;
9159
9160    int j = i / LaneSize;
9161
9162    if (Lanes[j] < 0) {
9163      // First entry we've seen for this lane.
9164      Lanes[j] = Mask[i] / LaneSize;
9165    } else if (Lanes[j] != Mask[i] / LaneSize) {
9166      // This doesn't match the lane selected previously!
9167      return SDValue();
9168    }
9169
9170    // Check that within each lane we have a consistent shuffle mask.
9171    int k = i % LaneSize;
9172    if (InLaneMask[k] < 0) {
9173      InLaneMask[k] = Mask[i] % LaneSize;
9174    } else if (InLaneMask[k] != Mask[i] % LaneSize) {
9175      // This doesn't fit a repeating in-lane mask.
9176      return SDValue();
9177    }
9178  }
9179
9180  // First shuffle the lanes into place.
9181  MVT LaneVT = MVT::getVectorVT(VT.isFloatingPoint() ? MVT::f64 : MVT::i64,
9182                                VT.getSizeInBits() / 64);
9183  SmallVector<int, 8> LaneMask;
9184  LaneMask.resize(NumLanes * 2, -1);
9185  for (int i = 0; i < NumLanes; ++i)
9186    if (Lanes[i] >= 0) {
9187      LaneMask[2 * i + 0] = 2*Lanes[i] + 0;
9188      LaneMask[2 * i + 1] = 2*Lanes[i] + 1;
9189    }
9190
9191  V1 = DAG.getNode(ISD::BITCAST, DL, LaneVT, V1);
9192  V2 = DAG.getNode(ISD::BITCAST, DL, LaneVT, V2);
9193  SDValue LaneShuffle = DAG.getVectorShuffle(LaneVT, DL, V1, V2, LaneMask);
9194
9195  // Cast it back to the type we actually want.
9196  LaneShuffle = DAG.getNode(ISD::BITCAST, DL, VT, LaneShuffle);
9197
9198  // Now do a simple shuffle that isn't lane crossing.
9199  SmallVector<int, 8> NewMask;
9200  NewMask.resize(Size, -1);
9201  for (int i = 0; i < Size; ++i)
9202    if (Mask[i] >= 0)
9203      NewMask[i] = (i / LaneSize) * LaneSize + Mask[i] % LaneSize;
9204  assert(!is128BitLaneCrossingShuffleMask(VT, NewMask) &&
9205         "Must not introduce lane crosses at this point!");
9206
9207  return DAG.getVectorShuffle(VT, DL, LaneShuffle, DAG.getUNDEF(VT), NewMask);
9208}
9209
9210/// \brief Test whether the specified input (0 or 1) is in-place blended by the
9211/// given mask.
9212///
9213/// This returns true if the elements from a particular input are already in the
9214/// slot required by the given mask and require no permutation.
9215static bool isShuffleMaskInputInPlace(int Input, ArrayRef<int> Mask) {
9216  assert((Input == 0 || Input == 1) && "Only two inputs to shuffles.");
9217  int Size = Mask.size();
9218  for (int i = 0; i < Size; ++i)
9219    if (Mask[i] >= 0 && Mask[i] / Size == Input && Mask[i] % Size != i)
9220      return false;
9221
9222  return true;
9223}
9224
9225/// \brief Handle lowering of 4-lane 64-bit floating point shuffles.
9226///
9227/// Also ends up handling lowering of 4-lane 64-bit integer shuffles when AVX2
9228/// isn't available.
9229static SDValue lowerV4F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9230                                       const X86Subtarget *Subtarget,
9231                                       SelectionDAG &DAG) {
9232  SDLoc DL(Op);
9233  assert(V1.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
9234  assert(V2.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
9235  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9236  ArrayRef<int> Mask = SVOp->getMask();
9237  assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
9238
9239  SmallVector<int, 4> WidenedMask;
9240  if (canWidenShuffleElements(Mask, WidenedMask))
9241    return lowerV2X128VectorShuffle(DL, MVT::v4f64, V1, V2, Mask, Subtarget,
9242                                    DAG);
9243
9244  if (isSingleInputShuffleMask(Mask)) {
9245    // Check for being able to broadcast a single element.
9246    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4f64, V1,
9247                                                          Mask, Subtarget, DAG))
9248      return Broadcast;
9249
9250    // Use low duplicate instructions for masks that match their pattern.
9251    if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2}))
9252      return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v4f64, V1);
9253
9254    if (!is128BitLaneCrossingShuffleMask(MVT::v4f64, Mask)) {
9255      // Non-half-crossing single input shuffles can be lowerid with an
9256      // interleaved permutation.
9257      unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) |
9258                              ((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3);
9259      return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f64, V1,
9260                         DAG.getConstant(VPERMILPMask, MVT::i8));
9261    }
9262
9263    // With AVX2 we have direct support for this permutation.
9264    if (Subtarget->hasAVX2())
9265      return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4f64, V1,
9266                         getV4X86ShuffleImm8ForMask(Mask, DAG));
9267
9268    // Otherwise, fall back.
9269    return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v4f64, V1, V2, Mask,
9270                                                   DAG);
9271  }
9272
9273  // X86 has dedicated unpack instructions that can handle specific blend
9274  // operations: UNPCKH and UNPCKL.
9275  if (isShuffleEquivalent(V1, V2, Mask, {0, 4, 2, 6}))
9276    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f64, V1, V2);
9277  if (isShuffleEquivalent(V1, V2, Mask, {1, 5, 3, 7}))
9278    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f64, V1, V2);
9279  if (isShuffleEquivalent(V1, V2, Mask, {4, 0, 6, 2}))
9280    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f64, V2, V1);
9281  if (isShuffleEquivalent(V1, V2, Mask, {5, 1, 7, 3}))
9282    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f64, V2, V1);
9283
9284  // If we have a single input to the zero element, insert that into V1 if we
9285  // can do so cheaply.
9286  int NumV2Elements =
9287      std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
9288  if (NumV2Elements == 1 && Mask[0] >= 4)
9289    if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
9290            DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
9291      return Insertion;
9292
9293  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f64, V1, V2, Mask,
9294                                                Subtarget, DAG))
9295    return Blend;
9296
9297  // Check if the blend happens to exactly fit that of SHUFPD.
9298  if ((Mask[0] == -1 || Mask[0] < 2) &&
9299      (Mask[1] == -1 || (Mask[1] >= 4 && Mask[1] < 6)) &&
9300      (Mask[2] == -1 || (Mask[2] >= 2 && Mask[2] < 4)) &&
9301      (Mask[3] == -1 || Mask[3] >= 6)) {
9302    unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 5) << 1) |
9303                          ((Mask[2] == 3) << 2) | ((Mask[3] == 7) << 3);
9304    return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f64, V1, V2,
9305                       DAG.getConstant(SHUFPDMask, MVT::i8));
9306  }
9307  if ((Mask[0] == -1 || (Mask[0] >= 4 && Mask[0] < 6)) &&
9308      (Mask[1] == -1 || Mask[1] < 2) &&
9309      (Mask[2] == -1 || Mask[2] >= 6) &&
9310      (Mask[3] == -1 || (Mask[3] >= 2 && Mask[3] < 4))) {
9311    unsigned SHUFPDMask = (Mask[0] == 5) | ((Mask[1] == 1) << 1) |
9312                          ((Mask[2] == 7) << 2) | ((Mask[3] == 3) << 3);
9313    return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f64, V2, V1,
9314                       DAG.getConstant(SHUFPDMask, MVT::i8));
9315  }
9316
9317  // Try to simplify this by merging 128-bit lanes to enable a lane-based
9318  // shuffle. However, if we have AVX2 and either inputs are already in place,
9319  // we will be able to shuffle even across lanes the other input in a single
9320  // instruction so skip this pattern.
9321  if (!(Subtarget->hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) ||
9322                                 isShuffleMaskInputInPlace(1, Mask))))
9323    if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
9324            DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
9325      return Result;
9326
9327  // If we have AVX2 then we always want to lower with a blend because an v4 we
9328  // can fully permute the elements.
9329  if (Subtarget->hasAVX2())
9330    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4f64, V1, V2,
9331                                                      Mask, DAG);
9332
9333  // Otherwise fall back on generic lowering.
9334  return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v4f64, V1, V2, Mask, DAG);
9335}
9336
9337/// \brief Handle lowering of 4-lane 64-bit integer shuffles.
9338///
9339/// This routine is only called when we have AVX2 and thus a reasonable
9340/// instruction set for v4i64 shuffling..
9341static SDValue lowerV4I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9342                                       const X86Subtarget *Subtarget,
9343                                       SelectionDAG &DAG) {
9344  SDLoc DL(Op);
9345  assert(V1.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
9346  assert(V2.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
9347  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9348  ArrayRef<int> Mask = SVOp->getMask();
9349  assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
9350  assert(Subtarget->hasAVX2() && "We can only lower v4i64 with AVX2!");
9351
9352  SmallVector<int, 4> WidenedMask;
9353  if (canWidenShuffleElements(Mask, WidenedMask))
9354    return lowerV2X128VectorShuffle(DL, MVT::v4i64, V1, V2, Mask, Subtarget,
9355                                    DAG);
9356
9357  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i64, V1, V2, Mask,
9358                                                Subtarget, DAG))
9359    return Blend;
9360
9361  // Check for being able to broadcast a single element.
9362  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4i64, V1,
9363                                                        Mask, Subtarget, DAG))
9364    return Broadcast;
9365
9366  // When the shuffle is mirrored between the 128-bit lanes of the unit, we can
9367  // use lower latency instructions that will operate on both 128-bit lanes.
9368  SmallVector<int, 2> RepeatedMask;
9369  if (is128BitLaneRepeatedShuffleMask(MVT::v4i64, Mask, RepeatedMask)) {
9370    if (isSingleInputShuffleMask(Mask)) {
9371      int PSHUFDMask[] = {-1, -1, -1, -1};
9372      for (int i = 0; i < 2; ++i)
9373        if (RepeatedMask[i] >= 0) {
9374          PSHUFDMask[2 * i] = 2 * RepeatedMask[i];
9375          PSHUFDMask[2 * i + 1] = 2 * RepeatedMask[i] + 1;
9376        }
9377      return DAG.getNode(
9378          ISD::BITCAST, DL, MVT::v4i64,
9379          DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32,
9380                      DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, V1),
9381                      getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
9382    }
9383  }
9384
9385  // AVX2 provides a direct instruction for permuting a single input across
9386  // lanes.
9387  if (isSingleInputShuffleMask(Mask))
9388    return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4i64, V1,
9389                       getV4X86ShuffleImm8ForMask(Mask, DAG));
9390
9391  // Try to use shift instructions.
9392  if (SDValue Shift =
9393          lowerVectorShuffleAsShift(DL, MVT::v4i64, V1, V2, Mask, DAG))
9394    return Shift;
9395
9396  // Use dedicated unpack instructions for masks that match their pattern.
9397  if (isShuffleEquivalent(V1, V2, Mask, {0, 4, 2, 6}))
9398    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i64, V1, V2);
9399  if (isShuffleEquivalent(V1, V2, Mask, {1, 5, 3, 7}))
9400    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i64, V1, V2);
9401  if (isShuffleEquivalent(V1, V2, Mask, {4, 0, 6, 2}))
9402    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i64, V2, V1);
9403  if (isShuffleEquivalent(V1, V2, Mask, {5, 1, 7, 3}))
9404    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i64, V2, V1);
9405
9406  // Try to simplify this by merging 128-bit lanes to enable a lane-based
9407  // shuffle. However, if we have AVX2 and either inputs are already in place,
9408  // we will be able to shuffle even across lanes the other input in a single
9409  // instruction so skip this pattern.
9410  if (!(Subtarget->hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) ||
9411                                 isShuffleMaskInputInPlace(1, Mask))))
9412    if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
9413            DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG))
9414      return Result;
9415
9416  // Otherwise fall back on generic blend lowering.
9417  return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i64, V1, V2,
9418                                                    Mask, DAG);
9419}
9420
9421/// \brief Handle lowering of 8-lane 32-bit floating point shuffles.
9422///
9423/// Also ends up handling lowering of 8-lane 32-bit integer shuffles when AVX2
9424/// isn't available.
9425static SDValue lowerV8F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9426                                       const X86Subtarget *Subtarget,
9427                                       SelectionDAG &DAG) {
9428  SDLoc DL(Op);
9429  assert(V1.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
9430  assert(V2.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
9431  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9432  ArrayRef<int> Mask = SVOp->getMask();
9433  assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
9434
9435  // If we have a single input to the zero element, insert that into V1 if we
9436  // can do so cheaply.
9437  int NumV2Elements =
9438      std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 8; });
9439  if (NumV2Elements == 1 && Mask[0] >= 8)
9440    if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
9441            DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG))
9442      return Insertion;
9443
9444  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8f32, V1, V2, Mask,
9445                                                Subtarget, DAG))
9446    return Blend;
9447
9448  // Check for being able to broadcast a single element.
9449  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8f32, V1,
9450                                                        Mask, Subtarget, DAG))
9451    return Broadcast;
9452
9453  // If the shuffle mask is repeated in each 128-bit lane, we have many more
9454  // options to efficiently lower the shuffle.
9455  SmallVector<int, 4> RepeatedMask;
9456  if (is128BitLaneRepeatedShuffleMask(MVT::v8f32, Mask, RepeatedMask)) {
9457    assert(RepeatedMask.size() == 4 &&
9458           "Repeated masks must be half the mask width!");
9459
9460    // Use even/odd duplicate instructions for masks that match their pattern.
9461    if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2, 4, 4, 6, 6}))
9462      return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v8f32, V1);
9463    if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3, 5, 5, 7, 7}))
9464      return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v8f32, V1);
9465
9466    if (isSingleInputShuffleMask(Mask))
9467      return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f32, V1,
9468                         getV4X86ShuffleImm8ForMask(RepeatedMask, DAG));
9469
9470    // Use dedicated unpack instructions for masks that match their pattern.
9471    if (isShuffleEquivalent(V1, V2, Mask, {0, 8, 1, 9, 4, 12, 5, 13}))
9472      return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8f32, V1, V2);
9473    if (isShuffleEquivalent(V1, V2, Mask, {2, 10, 3, 11, 6, 14, 7, 15}))
9474      return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8f32, V1, V2);
9475    if (isShuffleEquivalent(V1, V2, Mask, {8, 0, 9, 1, 12, 4, 13, 5}))
9476      return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8f32, V2, V1);
9477    if (isShuffleEquivalent(V1, V2, Mask, {10, 2, 11, 3, 14, 6, 15, 7}))
9478      return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8f32, V2, V1);
9479
9480    // Otherwise, fall back to a SHUFPS sequence. Here it is important that we
9481    // have already handled any direct blends. We also need to squash the
9482    // repeated mask into a simulated v4f32 mask.
9483    for (int i = 0; i < 4; ++i)
9484      if (RepeatedMask[i] >= 8)
9485        RepeatedMask[i] -= 4;
9486    return lowerVectorShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask, V1, V2, DAG);
9487  }
9488
9489  // If we have a single input shuffle with different shuffle patterns in the
9490  // two 128-bit lanes use the variable mask to VPERMILPS.
9491  if (isSingleInputShuffleMask(Mask)) {
9492    SDValue VPermMask[8];
9493    for (int i = 0; i < 8; ++i)
9494      VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32)
9495                                 : DAG.getConstant(Mask[i], MVT::i32);
9496    if (!is128BitLaneCrossingShuffleMask(MVT::v8f32, Mask))
9497      return DAG.getNode(
9498          X86ISD::VPERMILPV, DL, MVT::v8f32, V1,
9499          DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask));
9500
9501    if (Subtarget->hasAVX2())
9502      return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8f32,
9503                         DAG.getNode(ISD::BITCAST, DL, MVT::v8f32,
9504                                     DAG.getNode(ISD::BUILD_VECTOR, DL,
9505                                                 MVT::v8i32, VPermMask)),
9506                         V1);
9507
9508    // Otherwise, fall back.
9509    return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v8f32, V1, V2, Mask,
9510                                                   DAG);
9511  }
9512
9513  // Try to simplify this by merging 128-bit lanes to enable a lane-based
9514  // shuffle.
9515  if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
9516          DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG))
9517    return Result;
9518
9519  // If we have AVX2 then we always want to lower with a blend because at v8 we
9520  // can fully permute the elements.
9521  if (Subtarget->hasAVX2())
9522    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8f32, V1, V2,
9523                                                      Mask, DAG);
9524
9525  // Otherwise fall back on generic lowering.
9526  return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2, Mask, DAG);
9527}
9528
9529/// \brief Handle lowering of 8-lane 32-bit integer shuffles.
9530///
9531/// This routine is only called when we have AVX2 and thus a reasonable
9532/// instruction set for v8i32 shuffling..
9533static SDValue lowerV8I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9534                                       const X86Subtarget *Subtarget,
9535                                       SelectionDAG &DAG) {
9536  SDLoc DL(Op);
9537  assert(V1.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
9538  assert(V2.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
9539  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9540  ArrayRef<int> Mask = SVOp->getMask();
9541  assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
9542  assert(Subtarget->hasAVX2() && "We can only lower v8i32 with AVX2!");
9543
9544  // Whenever we can lower this as a zext, that instruction is strictly faster
9545  // than any alternative. It also allows us to fold memory operands into the
9546  // shuffle in many cases.
9547  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v8i32, V1, V2,
9548                                                         Mask, Subtarget, DAG))
9549    return ZExt;
9550
9551  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i32, V1, V2, Mask,
9552                                                Subtarget, DAG))
9553    return Blend;
9554
9555  // Check for being able to broadcast a single element.
9556  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8i32, V1,
9557                                                        Mask, Subtarget, DAG))
9558    return Broadcast;
9559
9560  // If the shuffle mask is repeated in each 128-bit lane we can use more
9561  // efficient instructions that mirror the shuffles across the two 128-bit
9562  // lanes.
9563  SmallVector<int, 4> RepeatedMask;
9564  if (is128BitLaneRepeatedShuffleMask(MVT::v8i32, Mask, RepeatedMask)) {
9565    assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
9566    if (isSingleInputShuffleMask(Mask))
9567      return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, V1,
9568                         getV4X86ShuffleImm8ForMask(RepeatedMask, DAG));
9569
9570    // Use dedicated unpack instructions for masks that match their pattern.
9571    if (isShuffleEquivalent(V1, V2, Mask, {0, 8, 1, 9, 4, 12, 5, 13}))
9572      return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i32, V1, V2);
9573    if (isShuffleEquivalent(V1, V2, Mask, {2, 10, 3, 11, 6, 14, 7, 15}))
9574      return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i32, V1, V2);
9575    if (isShuffleEquivalent(V1, V2, Mask, {8, 0, 9, 1, 12, 4, 13, 5}))
9576      return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i32, V2, V1);
9577    if (isShuffleEquivalent(V1, V2, Mask, {10, 2, 11, 3, 14, 6, 15, 7}))
9578      return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i32, V2, V1);
9579  }
9580
9581  // Try to use shift instructions.
9582  if (SDValue Shift =
9583          lowerVectorShuffleAsShift(DL, MVT::v8i32, V1, V2, Mask, DAG))
9584    return Shift;
9585
9586  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
9587          DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
9588    return Rotate;
9589
9590  // If the shuffle patterns aren't repeated but it is a single input, directly
9591  // generate a cross-lane VPERMD instruction.
9592  if (isSingleInputShuffleMask(Mask)) {
9593    SDValue VPermMask[8];
9594    for (int i = 0; i < 8; ++i)
9595      VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32)
9596                                 : DAG.getConstant(Mask[i], MVT::i32);
9597    return DAG.getNode(
9598        X86ISD::VPERMV, DL, MVT::v8i32,
9599        DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask), V1);
9600  }
9601
9602  // Try to simplify this by merging 128-bit lanes to enable a lane-based
9603  // shuffle.
9604  if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
9605          DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
9606    return Result;
9607
9608  // Otherwise fall back on generic blend lowering.
9609  return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i32, V1, V2,
9610                                                    Mask, DAG);
9611}
9612
9613/// \brief Handle lowering of 16-lane 16-bit integer shuffles.
9614///
9615/// This routine is only called when we have AVX2 and thus a reasonable
9616/// instruction set for v16i16 shuffling..
9617static SDValue lowerV16I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9618                                        const X86Subtarget *Subtarget,
9619                                        SelectionDAG &DAG) {
9620  SDLoc DL(Op);
9621  assert(V1.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
9622  assert(V2.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
9623  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9624  ArrayRef<int> Mask = SVOp->getMask();
9625  assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
9626  assert(Subtarget->hasAVX2() && "We can only lower v16i16 with AVX2!");
9627
9628  // Whenever we can lower this as a zext, that instruction is strictly faster
9629  // than any alternative. It also allows us to fold memory operands into the
9630  // shuffle in many cases.
9631  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v16i16, V1, V2,
9632                                                         Mask, Subtarget, DAG))
9633    return ZExt;
9634
9635  // Check for being able to broadcast a single element.
9636  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v16i16, V1,
9637                                                        Mask, Subtarget, DAG))
9638    return Broadcast;
9639
9640  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i16, V1, V2, Mask,
9641                                                Subtarget, DAG))
9642    return Blend;
9643
9644  // Use dedicated unpack instructions for masks that match their pattern.
9645  if (isShuffleEquivalent(V1, V2, Mask,
9646                          {// First 128-bit lane:
9647                           0, 16, 1, 17, 2, 18, 3, 19,
9648                           // Second 128-bit lane:
9649                           8, 24, 9, 25, 10, 26, 11, 27}))
9650    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i16, V1, V2);
9651  if (isShuffleEquivalent(V1, V2, Mask,
9652                          {// First 128-bit lane:
9653                           4, 20, 5, 21, 6, 22, 7, 23,
9654                           // Second 128-bit lane:
9655                           12, 28, 13, 29, 14, 30, 15, 31}))
9656    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i16, V1, V2);
9657
9658  // Try to use shift instructions.
9659  if (SDValue Shift =
9660          lowerVectorShuffleAsShift(DL, MVT::v16i16, V1, V2, Mask, DAG))
9661    return Shift;
9662
9663  // Try to use byte rotation instructions.
9664  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
9665          DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
9666    return Rotate;
9667
9668  if (isSingleInputShuffleMask(Mask)) {
9669    // There are no generalized cross-lane shuffle operations available on i16
9670    // element types.
9671    if (is128BitLaneCrossingShuffleMask(MVT::v16i16, Mask))
9672      return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v16i16, V1, V2,
9673                                                     Mask, DAG);
9674
9675    SmallVector<int, 8> RepeatedMask;
9676    if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
9677      // As this is a single-input shuffle, the repeated mask should be
9678      // a strictly valid v8i16 mask that we can pass through to the v8i16
9679      // lowering to handle even the v16 case.
9680      return lowerV8I16GeneralSingleInputVectorShuffle(
9681          DL, MVT::v16i16, V1, RepeatedMask, Subtarget, DAG);
9682    }
9683
9684    SDValue PSHUFBMask[32];
9685    for (int i = 0; i < 16; ++i) {
9686      if (Mask[i] == -1) {
9687        PSHUFBMask[2 * i] = PSHUFBMask[2 * i + 1] = DAG.getUNDEF(MVT::i8);
9688        continue;
9689      }
9690
9691      int M = i < 8 ? Mask[i] : Mask[i] - 8;
9692      assert(M >= 0 && M < 8 && "Invalid single-input mask!");
9693      PSHUFBMask[2 * i] = DAG.getConstant(2 * M, MVT::i8);
9694      PSHUFBMask[2 * i + 1] = DAG.getConstant(2 * M + 1, MVT::i8);
9695    }
9696    return DAG.getNode(
9697        ISD::BITCAST, DL, MVT::v16i16,
9698        DAG.getNode(
9699            X86ISD::PSHUFB, DL, MVT::v32i8,
9700            DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, V1),
9701            DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, PSHUFBMask)));
9702  }
9703
9704  // Try to simplify this by merging 128-bit lanes to enable a lane-based
9705  // shuffle.
9706  if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
9707          DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
9708    return Result;
9709
9710  // Otherwise fall back on generic lowering.
9711  return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v16i16, V1, V2, Mask, DAG);
9712}
9713
9714/// \brief Handle lowering of 32-lane 8-bit integer shuffles.
9715///
9716/// This routine is only called when we have AVX2 and thus a reasonable
9717/// instruction set for v32i8 shuffling..
9718static SDValue lowerV32I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9719                                       const X86Subtarget *Subtarget,
9720                                       SelectionDAG &DAG) {
9721  SDLoc DL(Op);
9722  assert(V1.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
9723  assert(V2.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
9724  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9725  ArrayRef<int> Mask = SVOp->getMask();
9726  assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
9727  assert(Subtarget->hasAVX2() && "We can only lower v32i8 with AVX2!");
9728
9729  // Whenever we can lower this as a zext, that instruction is strictly faster
9730  // than any alternative. It also allows us to fold memory operands into the
9731  // shuffle in many cases.
9732  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v32i8, V1, V2,
9733                                                         Mask, Subtarget, DAG))
9734    return ZExt;
9735
9736  // Check for being able to broadcast a single element.
9737  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v32i8, V1,
9738                                                        Mask, Subtarget, DAG))
9739    return Broadcast;
9740
9741  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v32i8, V1, V2, Mask,
9742                                                Subtarget, DAG))
9743    return Blend;
9744
9745  // Use dedicated unpack instructions for masks that match their pattern.
9746  // Note that these are repeated 128-bit lane unpacks, not unpacks across all
9747  // 256-bit lanes.
9748  if (isShuffleEquivalent(
9749          V1, V2, Mask,
9750          {// First 128-bit lane:
9751           0, 32, 1, 33, 2, 34, 3, 35, 4, 36, 5, 37, 6, 38, 7, 39,
9752           // Second 128-bit lane:
9753           16, 48, 17, 49, 18, 50, 19, 51, 20, 52, 21, 53, 22, 54, 23, 55}))
9754    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v32i8, V1, V2);
9755  if (isShuffleEquivalent(
9756          V1, V2, Mask,
9757          {// First 128-bit lane:
9758           8, 40, 9, 41, 10, 42, 11, 43, 12, 44, 13, 45, 14, 46, 15, 47,
9759           // Second 128-bit lane:
9760           24, 56, 25, 57, 26, 58, 27, 59, 28, 60, 29, 61, 30, 62, 31, 63}))
9761    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v32i8, V1, V2);
9762
9763  // Try to use shift instructions.
9764  if (SDValue Shift =
9765          lowerVectorShuffleAsShift(DL, MVT::v32i8, V1, V2, Mask, DAG))
9766    return Shift;
9767
9768  // Try to use byte rotation instructions.
9769  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
9770          DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
9771    return Rotate;
9772
9773  if (isSingleInputShuffleMask(Mask)) {
9774    // There are no generalized cross-lane shuffle operations available on i8
9775    // element types.
9776    if (is128BitLaneCrossingShuffleMask(MVT::v32i8, Mask))
9777      return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v32i8, V1, V2,
9778                                                     Mask, DAG);
9779
9780    SDValue PSHUFBMask[32];
9781    for (int i = 0; i < 32; ++i)
9782      PSHUFBMask[i] =
9783          Mask[i] < 0
9784              ? DAG.getUNDEF(MVT::i8)
9785              : DAG.getConstant(Mask[i] < 16 ? Mask[i] : Mask[i] - 16, MVT::i8);
9786
9787    return DAG.getNode(
9788        X86ISD::PSHUFB, DL, MVT::v32i8, V1,
9789        DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, PSHUFBMask));
9790  }
9791
9792  // Try to simplify this by merging 128-bit lanes to enable a lane-based
9793  // shuffle.
9794  if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
9795          DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
9796    return Result;
9797
9798  // Otherwise fall back on generic lowering.
9799  return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v32i8, V1, V2, Mask, DAG);
9800}
9801
9802/// \brief High-level routine to lower various 256-bit x86 vector shuffles.
9803///
9804/// This routine either breaks down the specific type of a 256-bit x86 vector
9805/// shuffle or splits it into two 128-bit shuffles and fuses the results back
9806/// together based on the available instructions.
9807static SDValue lower256BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9808                                        MVT VT, const X86Subtarget *Subtarget,
9809                                        SelectionDAG &DAG) {
9810  SDLoc DL(Op);
9811  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9812  ArrayRef<int> Mask = SVOp->getMask();
9813
9814  // There is a really nice hard cut-over between AVX1 and AVX2 that means we can
9815  // check for those subtargets here and avoid much of the subtarget querying in
9816  // the per-vector-type lowering routines. With AVX1 we have essentially *zero*
9817  // ability to manipulate a 256-bit vector with integer types. Since we'll use
9818  // floating point types there eventually, just immediately cast everything to
9819  // a float and operate entirely in that domain.
9820  if (VT.isInteger() && !Subtarget->hasAVX2()) {
9821    int ElementBits = VT.getScalarSizeInBits();
9822    if (ElementBits < 32)
9823      // No floating point type available, decompose into 128-bit vectors.
9824      return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
9825
9826    MVT FpVT = MVT::getVectorVT(MVT::getFloatingPointVT(ElementBits),
9827                                VT.getVectorNumElements());
9828    V1 = DAG.getNode(ISD::BITCAST, DL, FpVT, V1);
9829    V2 = DAG.getNode(ISD::BITCAST, DL, FpVT, V2);
9830    return DAG.getNode(ISD::BITCAST, DL, VT,
9831                       DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask));
9832  }
9833
9834  switch (VT.SimpleTy) {
9835  case MVT::v4f64:
9836    return lowerV4F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
9837  case MVT::v4i64:
9838    return lowerV4I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
9839  case MVT::v8f32:
9840    return lowerV8F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
9841  case MVT::v8i32:
9842    return lowerV8I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
9843  case MVT::v16i16:
9844    return lowerV16I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
9845  case MVT::v32i8:
9846    return lowerV32I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
9847
9848  default:
9849    llvm_unreachable("Not a valid 256-bit x86 vector type!");
9850  }
9851}
9852
9853/// \brief Handle lowering of 8-lane 64-bit floating point shuffles.
9854static SDValue lowerV8F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9855                                       const X86Subtarget *Subtarget,
9856                                       SelectionDAG &DAG) {
9857  SDLoc DL(Op);
9858  assert(V1.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
9859  assert(V2.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
9860  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9861  ArrayRef<int> Mask = SVOp->getMask();
9862  assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
9863
9864  // X86 has dedicated unpack instructions that can handle specific blend
9865  // operations: UNPCKH and UNPCKL.
9866  if (isShuffleEquivalent(V1, V2, Mask, {0, 8, 2, 10, 4, 12, 6, 14}))
9867    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8f64, V1, V2);
9868  if (isShuffleEquivalent(V1, V2, Mask, {1, 9, 3, 11, 5, 13, 7, 15}))
9869    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8f64, V1, V2);
9870
9871  // FIXME: Implement direct support for this type!
9872  return splitAndLowerVectorShuffle(DL, MVT::v8f64, V1, V2, Mask, DAG);
9873}
9874
9875/// \brief Handle lowering of 16-lane 32-bit floating point shuffles.
9876static SDValue lowerV16F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9877                                       const X86Subtarget *Subtarget,
9878                                       SelectionDAG &DAG) {
9879  SDLoc DL(Op);
9880  assert(V1.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
9881  assert(V2.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
9882  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9883  ArrayRef<int> Mask = SVOp->getMask();
9884  assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
9885
9886  // Use dedicated unpack instructions for masks that match their pattern.
9887  if (isShuffleEquivalent(V1, V2, Mask,
9888                          {// First 128-bit lane.
9889                           0, 16, 1, 17, 4, 20, 5, 21,
9890                           // Second 128-bit lane.
9891                           8, 24, 9, 25, 12, 28, 13, 29}))
9892    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16f32, V1, V2);
9893  if (isShuffleEquivalent(V1, V2, Mask,
9894                          {// First 128-bit lane.
9895                           2, 18, 3, 19, 6, 22, 7, 23,
9896                           // Second 128-bit lane.
9897                           10, 26, 11, 27, 14, 30, 15, 31}))
9898    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16f32, V1, V2);
9899
9900  // FIXME: Implement direct support for this type!
9901  return splitAndLowerVectorShuffle(DL, MVT::v16f32, V1, V2, Mask, DAG);
9902}
9903
9904/// \brief Handle lowering of 8-lane 64-bit integer shuffles.
9905static SDValue lowerV8I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9906                                       const X86Subtarget *Subtarget,
9907                                       SelectionDAG &DAG) {
9908  SDLoc DL(Op);
9909  assert(V1.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
9910  assert(V2.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
9911  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9912  ArrayRef<int> Mask = SVOp->getMask();
9913  assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
9914
9915  // X86 has dedicated unpack instructions that can handle specific blend
9916  // operations: UNPCKH and UNPCKL.
9917  if (isShuffleEquivalent(V1, V2, Mask, {0, 8, 2, 10, 4, 12, 6, 14}))
9918    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i64, V1, V2);
9919  if (isShuffleEquivalent(V1, V2, Mask, {1, 9, 3, 11, 5, 13, 7, 15}))
9920    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i64, V1, V2);
9921
9922  // FIXME: Implement direct support for this type!
9923  return splitAndLowerVectorShuffle(DL, MVT::v8i64, V1, V2, Mask, DAG);
9924}
9925
9926/// \brief Handle lowering of 16-lane 32-bit integer shuffles.
9927static SDValue lowerV16I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9928                                       const X86Subtarget *Subtarget,
9929                                       SelectionDAG &DAG) {
9930  SDLoc DL(Op);
9931  assert(V1.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
9932  assert(V2.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
9933  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9934  ArrayRef<int> Mask = SVOp->getMask();
9935  assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
9936
9937  // Use dedicated unpack instructions for masks that match their pattern.
9938  if (isShuffleEquivalent(V1, V2, Mask,
9939                          {// First 128-bit lane.
9940                           0, 16, 1, 17, 4, 20, 5, 21,
9941                           // Second 128-bit lane.
9942                           8, 24, 9, 25, 12, 28, 13, 29}))
9943    return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i32, V1, V2);
9944  if (isShuffleEquivalent(V1, V2, Mask,
9945                          {// First 128-bit lane.
9946                           2, 18, 3, 19, 6, 22, 7, 23,
9947                           // Second 128-bit lane.
9948                           10, 26, 11, 27, 14, 30, 15, 31}))
9949    return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i32, V1, V2);
9950
9951  // FIXME: Implement direct support for this type!
9952  return splitAndLowerVectorShuffle(DL, MVT::v16i32, V1, V2, Mask, DAG);
9953}
9954
9955/// \brief Handle lowering of 32-lane 16-bit integer shuffles.
9956static SDValue lowerV32I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9957                                        const X86Subtarget *Subtarget,
9958                                        SelectionDAG &DAG) {
9959  SDLoc DL(Op);
9960  assert(V1.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
9961  assert(V2.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
9962  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9963  ArrayRef<int> Mask = SVOp->getMask();
9964  assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
9965  assert(Subtarget->hasBWI() && "We can only lower v32i16 with AVX-512-BWI!");
9966
9967  // FIXME: Implement direct support for this type!
9968  return splitAndLowerVectorShuffle(DL, MVT::v32i16, V1, V2, Mask, DAG);
9969}
9970
9971/// \brief Handle lowering of 64-lane 8-bit integer shuffles.
9972static SDValue lowerV64I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9973                                       const X86Subtarget *Subtarget,
9974                                       SelectionDAG &DAG) {
9975  SDLoc DL(Op);
9976  assert(V1.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
9977  assert(V2.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
9978  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9979  ArrayRef<int> Mask = SVOp->getMask();
9980  assert(Mask.size() == 64 && "Unexpected mask size for v64 shuffle!");
9981  assert(Subtarget->hasBWI() && "We can only lower v64i8 with AVX-512-BWI!");
9982
9983  // FIXME: Implement direct support for this type!
9984  return splitAndLowerVectorShuffle(DL, MVT::v64i8, V1, V2, Mask, DAG);
9985}
9986
9987/// \brief High-level routine to lower various 512-bit x86 vector shuffles.
9988///
9989/// This routine either breaks down the specific type of a 512-bit x86 vector
9990/// shuffle or splits it into two 256-bit shuffles and fuses the results back
9991/// together based on the available instructions.
9992static SDValue lower512BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9993                                        MVT VT, const X86Subtarget *Subtarget,
9994                                        SelectionDAG &DAG) {
9995  SDLoc DL(Op);
9996  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9997  ArrayRef<int> Mask = SVOp->getMask();
9998  assert(Subtarget->hasAVX512() &&
9999         "Cannot lower 512-bit vectors w/ basic ISA!");
10000
10001  // Check for being able to broadcast a single element.
10002  if (SDValue Broadcast =
10003          lowerVectorShuffleAsBroadcast(DL, VT, V1, Mask, Subtarget, DAG))
10004    return Broadcast;
10005
10006  // Dispatch to each element type for lowering. If we don't have supprot for
10007  // specific element type shuffles at 512 bits, immediately split them and
10008  // lower them. Each lowering routine of a given type is allowed to assume that
10009  // the requisite ISA extensions for that element type are available.
10010  switch (VT.SimpleTy) {
10011  case MVT::v8f64:
10012    return lowerV8F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
10013  case MVT::v16f32:
10014    return lowerV16F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
10015  case MVT::v8i64:
10016    return lowerV8I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
10017  case MVT::v16i32:
10018    return lowerV16I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
10019  case MVT::v32i16:
10020    if (Subtarget->hasBWI())
10021      return lowerV32I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
10022    break;
10023  case MVT::v64i8:
10024    if (Subtarget->hasBWI())
10025      return lowerV64I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
10026    break;
10027
10028  default:
10029    llvm_unreachable("Not a valid 512-bit x86 vector type!");
10030  }
10031
10032  // Otherwise fall back on splitting.
10033  return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
10034}
10035
10036/// \brief Top-level lowering for x86 vector shuffles.
10037///
10038/// This handles decomposition, canonicalization, and lowering of all x86
10039/// vector shuffles. Most of the specific lowering strategies are encapsulated
10040/// above in helper routines. The canonicalization attempts to widen shuffles
10041/// to involve fewer lanes of wider elements, consolidate symmetric patterns
10042/// s.t. only one of the two inputs needs to be tested, etc.
10043static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
10044                                  SelectionDAG &DAG) {
10045  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
10046  ArrayRef<int> Mask = SVOp->getMask();
10047  SDValue V1 = Op.getOperand(0);
10048  SDValue V2 = Op.getOperand(1);
10049  MVT VT = Op.getSimpleValueType();
10050  int NumElements = VT.getVectorNumElements();
10051  SDLoc dl(Op);
10052
10053  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
10054
10055  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
10056  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
10057  if (V1IsUndef && V2IsUndef)
10058    return DAG.getUNDEF(VT);
10059
10060  // When we create a shuffle node we put the UNDEF node to second operand,
10061  // but in some cases the first operand may be transformed to UNDEF.
10062  // In this case we should just commute the node.
10063  if (V1IsUndef)
10064    return DAG.getCommutedVectorShuffle(*SVOp);
10065
10066  // Check for non-undef masks pointing at an undef vector and make the masks
10067  // undef as well. This makes it easier to match the shuffle based solely on
10068  // the mask.
10069  if (V2IsUndef)
10070    for (int M : Mask)
10071      if (M >= NumElements) {
10072        SmallVector<int, 8> NewMask(Mask.begin(), Mask.end());
10073        for (int &M : NewMask)
10074          if (M >= NumElements)
10075            M = -1;
10076        return DAG.getVectorShuffle(VT, dl, V1, V2, NewMask);
10077      }
10078
10079  // We actually see shuffles that are entirely re-arrangements of a set of
10080  // zero inputs. This mostly happens while decomposing complex shuffles into
10081  // simple ones. Directly lower these as a buildvector of zeros.
10082  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
10083  if (Zeroable.all())
10084    return getZeroVector(VT, Subtarget, DAG, dl);
10085
10086  // Try to collapse shuffles into using a vector type with fewer elements but
10087  // wider element types. We cap this to not form integers or floating point
10088  // elements wider than 64 bits, but it might be interesting to form i128
10089  // integers to handle flipping the low and high halves of AVX 256-bit vectors.
10090  SmallVector<int, 16> WidenedMask;
10091  if (VT.getScalarSizeInBits() < 64 &&
10092      canWidenShuffleElements(Mask, WidenedMask)) {
10093    MVT NewEltVT = VT.isFloatingPoint()
10094                       ? MVT::getFloatingPointVT(VT.getScalarSizeInBits() * 2)
10095                       : MVT::getIntegerVT(VT.getScalarSizeInBits() * 2);
10096    MVT NewVT = MVT::getVectorVT(NewEltVT, VT.getVectorNumElements() / 2);
10097    // Make sure that the new vector type is legal. For example, v2f64 isn't
10098    // legal on SSE1.
10099    if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) {
10100      V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
10101      V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
10102      return DAG.getNode(ISD::BITCAST, dl, VT,
10103                         DAG.getVectorShuffle(NewVT, dl, V1, V2, WidenedMask));
10104    }
10105  }
10106
10107  int NumV1Elements = 0, NumUndefElements = 0, NumV2Elements = 0;
10108  for (int M : SVOp->getMask())
10109    if (M < 0)
10110      ++NumUndefElements;
10111    else if (M < NumElements)
10112      ++NumV1Elements;
10113    else
10114      ++NumV2Elements;
10115
10116  // Commute the shuffle as needed such that more elements come from V1 than
10117  // V2. This allows us to match the shuffle pattern strictly on how many
10118  // elements come from V1 without handling the symmetric cases.
10119  if (NumV2Elements > NumV1Elements)
10120    return DAG.getCommutedVectorShuffle(*SVOp);
10121
10122  // When the number of V1 and V2 elements are the same, try to minimize the
10123  // number of uses of V2 in the low half of the vector. When that is tied,
10124  // ensure that the sum of indices for V1 is equal to or lower than the sum
10125  // indices for V2. When those are equal, try to ensure that the number of odd
10126  // indices for V1 is lower than the number of odd indices for V2.
10127  if (NumV1Elements == NumV2Elements) {
10128    int LowV1Elements = 0, LowV2Elements = 0;
10129    for (int M : SVOp->getMask().slice(0, NumElements / 2))
10130      if (M >= NumElements)
10131        ++LowV2Elements;
10132      else if (M >= 0)
10133        ++LowV1Elements;
10134    if (LowV2Elements > LowV1Elements) {
10135      return DAG.getCommutedVectorShuffle(*SVOp);
10136    } else if (LowV2Elements == LowV1Elements) {
10137      int SumV1Indices = 0, SumV2Indices = 0;
10138      for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i)
10139        if (SVOp->getMask()[i] >= NumElements)
10140          SumV2Indices += i;
10141        else if (SVOp->getMask()[i] >= 0)
10142          SumV1Indices += i;
10143      if (SumV2Indices < SumV1Indices) {
10144        return DAG.getCommutedVectorShuffle(*SVOp);
10145      } else if (SumV2Indices == SumV1Indices) {
10146        int NumV1OddIndices = 0, NumV2OddIndices = 0;
10147        for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i)
10148          if (SVOp->getMask()[i] >= NumElements)
10149            NumV2OddIndices += i % 2;
10150          else if (SVOp->getMask()[i] >= 0)
10151            NumV1OddIndices += i % 2;
10152        if (NumV2OddIndices < NumV1OddIndices)
10153          return DAG.getCommutedVectorShuffle(*SVOp);
10154      }
10155    }
10156  }
10157
10158  // For each vector width, delegate to a specialized lowering routine.
10159  if (VT.getSizeInBits() == 128)
10160    return lower128BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
10161
10162  if (VT.getSizeInBits() == 256)
10163    return lower256BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
10164
10165  // Force AVX-512 vectors to be scalarized for now.
10166  // FIXME: Implement AVX-512 support!
10167  if (VT.getSizeInBits() == 512)
10168    return lower512BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
10169
10170  llvm_unreachable("Unimplemented!");
10171}
10172
10173// This function assumes its argument is a BUILD_VECTOR of constants or
10174// undef SDNodes. i.e: ISD::isBuildVectorOfConstantSDNodes(BuildVector) is
10175// true.
10176static bool BUILD_VECTORtoBlendMask(BuildVectorSDNode *BuildVector,
10177                                    unsigned &MaskValue) {
10178  MaskValue = 0;
10179  unsigned NumElems = BuildVector->getNumOperands();
10180  // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
10181  unsigned NumLanes = (NumElems - 1) / 8 + 1;
10182  unsigned NumElemsInLane = NumElems / NumLanes;
10183
10184  // Blend for v16i16 should be symetric for the both lanes.
10185  for (unsigned i = 0; i < NumElemsInLane; ++i) {
10186    SDValue EltCond = BuildVector->getOperand(i);
10187    SDValue SndLaneEltCond =
10188        (NumLanes == 2) ? BuildVector->getOperand(i + NumElemsInLane) : EltCond;
10189
10190    int Lane1Cond = -1, Lane2Cond = -1;
10191    if (isa<ConstantSDNode>(EltCond))
10192      Lane1Cond = !isZero(EltCond);
10193    if (isa<ConstantSDNode>(SndLaneEltCond))
10194      Lane2Cond = !isZero(SndLaneEltCond);
10195
10196    if (Lane1Cond == Lane2Cond || Lane2Cond < 0)
10197      // Lane1Cond != 0, means we want the first argument.
10198      // Lane1Cond == 0, means we want the second argument.
10199      // The encoding of this argument is 0 for the first argument, 1
10200      // for the second. Therefore, invert the condition.
10201      MaskValue |= !Lane1Cond << i;
10202    else if (Lane1Cond < 0)
10203      MaskValue |= !Lane2Cond << i;
10204    else
10205      return false;
10206  }
10207  return true;
10208}
10209
10210/// \brief Try to lower a VSELECT instruction to a vector shuffle.
10211static SDValue lowerVSELECTtoVectorShuffle(SDValue Op,
10212                                           const X86Subtarget *Subtarget,
10213                                           SelectionDAG &DAG) {
10214  SDValue Cond = Op.getOperand(0);
10215  SDValue LHS = Op.getOperand(1);
10216  SDValue RHS = Op.getOperand(2);
10217  SDLoc dl(Op);
10218  MVT VT = Op.getSimpleValueType();
10219
10220  if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
10221    return SDValue();
10222  auto *CondBV = cast<BuildVectorSDNode>(Cond);
10223
10224  // Only non-legal VSELECTs reach this lowering, convert those into generic
10225  // shuffles and re-use the shuffle lowering path for blends.
10226  SmallVector<int, 32> Mask;
10227  for (int i = 0, Size = VT.getVectorNumElements(); i < Size; ++i) {
10228    SDValue CondElt = CondBV->getOperand(i);
10229    Mask.push_back(
10230        isa<ConstantSDNode>(CondElt) ? i + (isZero(CondElt) ? Size : 0) : -1);
10231  }
10232  return DAG.getVectorShuffle(VT, dl, LHS, RHS, Mask);
10233}
10234
10235SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
10236  // A vselect where all conditions and data are constants can be optimized into
10237  // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR().
10238  if (ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(0).getNode()) &&
10239      ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(1).getNode()) &&
10240      ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(2).getNode()))
10241    return SDValue();
10242
10243  // Try to lower this to a blend-style vector shuffle. This can handle all
10244  // constant condition cases.
10245  if (SDValue BlendOp = lowerVSELECTtoVectorShuffle(Op, Subtarget, DAG))
10246    return BlendOp;
10247
10248  // Variable blends are only legal from SSE4.1 onward.
10249  if (!Subtarget->hasSSE41())
10250    return SDValue();
10251
10252  // Only some types will be legal on some subtargets. If we can emit a legal
10253  // VSELECT-matching blend, return Op, and but if we need to expand, return
10254  // a null value.
10255  switch (Op.getSimpleValueType().SimpleTy) {
10256  default:
10257    // Most of the vector types have blends past SSE4.1.
10258    return Op;
10259
10260  case MVT::v32i8:
10261    // The byte blends for AVX vectors were introduced only in AVX2.
10262    if (Subtarget->hasAVX2())
10263      return Op;
10264
10265    return SDValue();
10266
10267  case MVT::v8i16:
10268  case MVT::v16i16:
10269    // AVX-512 BWI and VLX features support VSELECT with i16 elements.
10270    if (Subtarget->hasBWI() && Subtarget->hasVLX())
10271      return Op;
10272
10273    // FIXME: We should custom lower this by fixing the condition and using i8
10274    // blends.
10275    return SDValue();
10276  }
10277}
10278
10279static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
10280  MVT VT = Op.getSimpleValueType();
10281  SDLoc dl(Op);
10282
10283  if (!Op.getOperand(0).getSimpleValueType().is128BitVector())
10284    return SDValue();
10285
10286  if (VT.getSizeInBits() == 8) {
10287    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
10288                                  Op.getOperand(0), Op.getOperand(1));
10289    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
10290                                  DAG.getValueType(VT));
10291    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
10292  }
10293
10294  if (VT.getSizeInBits() == 16) {
10295    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10296    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
10297    if (Idx == 0)
10298      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
10299                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
10300                                     DAG.getNode(ISD::BITCAST, dl,
10301                                                 MVT::v4i32,
10302                                                 Op.getOperand(0)),
10303                                     Op.getOperand(1)));
10304    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
10305                                  Op.getOperand(0), Op.getOperand(1));
10306    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
10307                                  DAG.getValueType(VT));
10308    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
10309  }
10310
10311  if (VT == MVT::f32) {
10312    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
10313    // the result back to FR32 register. It's only worth matching if the
10314    // result has a single use which is a store or a bitcast to i32.  And in
10315    // the case of a store, it's not worth it if the index is a constant 0,
10316    // because a MOVSSmr can be used instead, which is smaller and faster.
10317    if (!Op.hasOneUse())
10318      return SDValue();
10319    SDNode *User = *Op.getNode()->use_begin();
10320    if ((User->getOpcode() != ISD::STORE ||
10321         (isa<ConstantSDNode>(Op.getOperand(1)) &&
10322          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
10323        (User->getOpcode() != ISD::BITCAST ||
10324         User->getValueType(0) != MVT::i32))
10325      return SDValue();
10326    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
10327                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
10328                                              Op.getOperand(0)),
10329                                              Op.getOperand(1));
10330    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
10331  }
10332
10333  if (VT == MVT::i32 || VT == MVT::i64) {
10334    // ExtractPS/pextrq works with constant index.
10335    if (isa<ConstantSDNode>(Op.getOperand(1)))
10336      return Op;
10337  }
10338  return SDValue();
10339}
10340
10341/// Extract one bit from mask vector, like v16i1 or v8i1.
10342/// AVX-512 feature.
10343SDValue
10344X86TargetLowering::ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const {
10345  SDValue Vec = Op.getOperand(0);
10346  SDLoc dl(Vec);
10347  MVT VecVT = Vec.getSimpleValueType();
10348  SDValue Idx = Op.getOperand(1);
10349  MVT EltVT = Op.getSimpleValueType();
10350
10351  assert((EltVT == MVT::i1) && "Unexpected operands in ExtractBitFromMaskVector");
10352  assert((VecVT.getVectorNumElements() <= 16 || Subtarget->hasBWI()) &&
10353         "Unexpected vector type in ExtractBitFromMaskVector");
10354
10355  // variable index can't be handled in mask registers,
10356  // extend vector to VR512
10357  if (!isa<ConstantSDNode>(Idx)) {
10358    MVT ExtVT = (VecVT == MVT::v8i1 ?  MVT::v8i64 : MVT::v16i32);
10359    SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Vec);
10360    SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
10361                              ExtVT.getVectorElementType(), Ext, Idx);
10362    return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
10363  }
10364
10365  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
10366  const TargetRegisterClass* rc = getRegClassFor(VecVT);
10367  if (!Subtarget->hasDQI() && (VecVT.getVectorNumElements() <= 8))
10368    rc = getRegClassFor(MVT::v16i1);
10369  unsigned MaxSift = rc->getSize()*8 - 1;
10370  Vec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, Vec,
10371                    DAG.getConstant(MaxSift - IdxVal, MVT::i8));
10372  Vec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, Vec,
10373                    DAG.getConstant(MaxSift, MVT::i8));
10374  return DAG.getNode(X86ISD::VEXTRACT, dl, MVT::i1, Vec,
10375                       DAG.getIntPtrConstant(0));
10376}
10377
10378SDValue
10379X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
10380                                           SelectionDAG &DAG) const {
10381  SDLoc dl(Op);
10382  SDValue Vec = Op.getOperand(0);
10383  MVT VecVT = Vec.getSimpleValueType();
10384  SDValue Idx = Op.getOperand(1);
10385
10386  if (Op.getSimpleValueType() == MVT::i1)
10387    return ExtractBitFromMaskVector(Op, DAG);
10388
10389  if (!isa<ConstantSDNode>(Idx)) {
10390    if (VecVT.is512BitVector() ||
10391        (VecVT.is256BitVector() && Subtarget->hasInt256() &&
10392         VecVT.getVectorElementType().getSizeInBits() == 32)) {
10393
10394      MVT MaskEltVT =
10395        MVT::getIntegerVT(VecVT.getVectorElementType().getSizeInBits());
10396      MVT MaskVT = MVT::getVectorVT(MaskEltVT, VecVT.getSizeInBits() /
10397                                    MaskEltVT.getSizeInBits());
10398
10399      Idx = DAG.getZExtOrTrunc(Idx, dl, MaskEltVT);
10400      SDValue Mask = DAG.getNode(X86ISD::VINSERT, dl, MaskVT,
10401                                getZeroVector(MaskVT, Subtarget, DAG, dl),
10402                                Idx, DAG.getConstant(0, getPointerTy()));
10403      SDValue Perm = DAG.getNode(X86ISD::VPERMV, dl, VecVT, Mask, Vec);
10404      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(),
10405                        Perm, DAG.getConstant(0, getPointerTy()));
10406    }
10407    return SDValue();
10408  }
10409
10410  // If this is a 256-bit vector result, first extract the 128-bit vector and
10411  // then extract the element from the 128-bit vector.
10412  if (VecVT.is256BitVector() || VecVT.is512BitVector()) {
10413
10414    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
10415    // Get the 128-bit vector.
10416    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
10417    MVT EltVT = VecVT.getVectorElementType();
10418
10419    unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits();
10420
10421    //if (IdxVal >= NumElems/2)
10422    //  IdxVal -= NumElems/2;
10423    IdxVal -= (IdxVal/ElemsPerChunk)*ElemsPerChunk;
10424    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
10425                       DAG.getConstant(IdxVal, MVT::i32));
10426  }
10427
10428  assert(VecVT.is128BitVector() && "Unexpected vector length");
10429
10430  if (Subtarget->hasSSE41()) {
10431    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
10432    if (Res.getNode())
10433      return Res;
10434  }
10435
10436  MVT VT = Op.getSimpleValueType();
10437  // TODO: handle v16i8.
10438  if (VT.getSizeInBits() == 16) {
10439    SDValue Vec = Op.getOperand(0);
10440    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10441    if (Idx == 0)
10442      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
10443                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
10444                                     DAG.getNode(ISD::BITCAST, dl,
10445                                                 MVT::v4i32, Vec),
10446                                     Op.getOperand(1)));
10447    // Transform it so it match pextrw which produces a 32-bit result.
10448    MVT EltVT = MVT::i32;
10449    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
10450                                  Op.getOperand(0), Op.getOperand(1));
10451    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
10452                                  DAG.getValueType(VT));
10453    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
10454  }
10455
10456  if (VT.getSizeInBits() == 32) {
10457    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10458    if (Idx == 0)
10459      return Op;
10460
10461    // SHUFPS the element to the lowest double word, then movss.
10462    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
10463    MVT VVT = Op.getOperand(0).getSimpleValueType();
10464    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
10465                                       DAG.getUNDEF(VVT), Mask);
10466    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
10467                       DAG.getIntPtrConstant(0));
10468  }
10469
10470  if (VT.getSizeInBits() == 64) {
10471    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
10472    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
10473    //        to match extract_elt for f64.
10474    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10475    if (Idx == 0)
10476      return Op;
10477
10478    // UNPCKHPD the element to the lowest double word, then movsd.
10479    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
10480    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
10481    int Mask[2] = { 1, -1 };
10482    MVT VVT = Op.getOperand(0).getSimpleValueType();
10483    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
10484                                       DAG.getUNDEF(VVT), Mask);
10485    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
10486                       DAG.getIntPtrConstant(0));
10487  }
10488
10489  return SDValue();
10490}
10491
10492/// Insert one bit to mask vector, like v16i1 or v8i1.
10493/// AVX-512 feature.
10494SDValue
10495X86TargetLowering::InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const {
10496  SDLoc dl(Op);
10497  SDValue Vec = Op.getOperand(0);
10498  SDValue Elt = Op.getOperand(1);
10499  SDValue Idx = Op.getOperand(2);
10500  MVT VecVT = Vec.getSimpleValueType();
10501
10502  if (!isa<ConstantSDNode>(Idx)) {
10503    // Non constant index. Extend source and destination,
10504    // insert element and then truncate the result.
10505    MVT ExtVecVT = (VecVT == MVT::v8i1 ?  MVT::v8i64 : MVT::v16i32);
10506    MVT ExtEltVT = (VecVT == MVT::v8i1 ?  MVT::i64 : MVT::i32);
10507    SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT,
10508      DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVecVT, Vec),
10509      DAG.getNode(ISD::ZERO_EXTEND, dl, ExtEltVT, Elt), Idx);
10510    return DAG.getNode(ISD::TRUNCATE, dl, VecVT, ExtOp);
10511  }
10512
10513  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
10514  SDValue EltInVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Elt);
10515  if (Vec.getOpcode() == ISD::UNDEF)
10516    return DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec,
10517                       DAG.getConstant(IdxVal, MVT::i8));
10518  const TargetRegisterClass* rc = getRegClassFor(VecVT);
10519  unsigned MaxSift = rc->getSize()*8 - 1;
10520  EltInVec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec,
10521                    DAG.getConstant(MaxSift, MVT::i8));
10522  EltInVec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, EltInVec,
10523                    DAG.getConstant(MaxSift - IdxVal, MVT::i8));
10524  return DAG.getNode(ISD::OR, dl, VecVT, Vec, EltInVec);
10525}
10526
10527SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10528                                                  SelectionDAG &DAG) const {
10529  MVT VT = Op.getSimpleValueType();
10530  MVT EltVT = VT.getVectorElementType();
10531
10532  if (EltVT == MVT::i1)
10533    return InsertBitToMaskVector(Op, DAG);
10534
10535  SDLoc dl(Op);
10536  SDValue N0 = Op.getOperand(0);
10537  SDValue N1 = Op.getOperand(1);
10538  SDValue N2 = Op.getOperand(2);
10539  if (!isa<ConstantSDNode>(N2))
10540    return SDValue();
10541  auto *N2C = cast<ConstantSDNode>(N2);
10542  unsigned IdxVal = N2C->getZExtValue();
10543
10544  // If the vector is wider than 128 bits, extract the 128-bit subvector, insert
10545  // into that, and then insert the subvector back into the result.
10546  if (VT.is256BitVector() || VT.is512BitVector()) {
10547    // With a 256-bit vector, we can insert into the zero element efficiently
10548    // using a blend if we have AVX or AVX2 and the right data type.
10549    if (VT.is256BitVector() && IdxVal == 0) {
10550      // TODO: It is worthwhile to cast integer to floating point and back
10551      // and incur a domain crossing penalty if that's what we'll end up
10552      // doing anyway after extracting to a 128-bit vector.
10553      if ((Subtarget->hasAVX() && (EltVT == MVT::f64 || EltVT == MVT::f32)) ||
10554          (Subtarget->hasAVX2() && EltVT == MVT::i32)) {
10555        SDValue N1Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, N1);
10556        N2 = DAG.getIntPtrConstant(1);
10557        return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1Vec, N2);
10558      }
10559    }
10560
10561    // Get the desired 128-bit vector chunk.
10562    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
10563
10564    // Insert the element into the desired chunk.
10565    unsigned NumEltsIn128 = 128 / EltVT.getSizeInBits();
10566    unsigned IdxIn128 = IdxVal - (IdxVal / NumEltsIn128) * NumEltsIn128;
10567
10568    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
10569                    DAG.getConstant(IdxIn128, MVT::i32));
10570
10571    // Insert the changed part back into the bigger vector
10572    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
10573  }
10574  assert(VT.is128BitVector() && "Only 128-bit vector types should be left!");
10575
10576  if (Subtarget->hasSSE41()) {
10577    if (EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) {
10578      unsigned Opc;
10579      if (VT == MVT::v8i16) {
10580        Opc = X86ISD::PINSRW;
10581      } else {
10582        assert(VT == MVT::v16i8);
10583        Opc = X86ISD::PINSRB;
10584      }
10585
10586      // Transform it so it match pinsr{b,w} which expects a GR32 as its second
10587      // argument.
10588      if (N1.getValueType() != MVT::i32)
10589        N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
10590      if (N2.getValueType() != MVT::i32)
10591        N2 = DAG.getIntPtrConstant(IdxVal);
10592      return DAG.getNode(Opc, dl, VT, N0, N1, N2);
10593    }
10594
10595    if (EltVT == MVT::f32) {
10596      // Bits [7:6] of the constant are the source select. This will always be
10597      //   zero here. The DAG Combiner may combine an extract_elt index into
10598      //   these bits. For example (insert (extract, 3), 2) could be matched by
10599      //   putting the '3' into bits [7:6] of X86ISD::INSERTPS.
10600      // Bits [5:4] of the constant are the destination select. This is the
10601      //   value of the incoming immediate.
10602      // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
10603      //   combine either bitwise AND or insert of float 0.0 to set these bits.
10604
10605      const Function *F = DAG.getMachineFunction().getFunction();
10606      bool MinSize = F->hasFnAttribute(Attribute::MinSize);
10607      if (IdxVal == 0 && (!MinSize || !MayFoldLoad(N1))) {
10608        // If this is an insertion of 32-bits into the low 32-bits of
10609        // a vector, we prefer to generate a blend with immediate rather
10610        // than an insertps. Blends are simpler operations in hardware and so
10611        // will always have equal or better performance than insertps.
10612        // But if optimizing for size and there's a load folding opportunity,
10613        // generate insertps because blendps does not have a 32-bit memory
10614        // operand form.
10615        N2 = DAG.getIntPtrConstant(1);
10616        N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
10617        return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1, N2);
10618      }
10619      N2 = DAG.getIntPtrConstant(IdxVal << 4);
10620      // Create this as a scalar to vector..
10621      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
10622      return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
10623    }
10624
10625    if (EltVT == MVT::i32 || EltVT == MVT::i64) {
10626      // PINSR* works with constant index.
10627      return Op;
10628    }
10629  }
10630
10631  if (EltVT == MVT::i8)
10632    return SDValue();
10633
10634  if (EltVT.getSizeInBits() == 16) {
10635    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
10636    // as its second argument.
10637    if (N1.getValueType() != MVT::i32)
10638      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
10639    if (N2.getValueType() != MVT::i32)
10640      N2 = DAG.getIntPtrConstant(IdxVal);
10641    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
10642  }
10643  return SDValue();
10644}
10645
10646static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
10647  SDLoc dl(Op);
10648  MVT OpVT = Op.getSimpleValueType();
10649
10650  // If this is a 256-bit vector result, first insert into a 128-bit
10651  // vector and then insert into the 256-bit vector.
10652  if (!OpVT.is128BitVector()) {
10653    // Insert into a 128-bit vector.
10654    unsigned SizeFactor = OpVT.getSizeInBits()/128;
10655    MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(),
10656                                 OpVT.getVectorNumElements() / SizeFactor);
10657
10658    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
10659
10660    // Insert the 128-bit vector.
10661    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
10662  }
10663
10664  if (OpVT == MVT::v1i64 &&
10665      Op.getOperand(0).getValueType() == MVT::i64)
10666    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
10667
10668  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
10669  assert(OpVT.is128BitVector() && "Expected an SSE type!");
10670  return DAG.getNode(ISD::BITCAST, dl, OpVT,
10671                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
10672}
10673
10674// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
10675// a simple subregister reference or explicit instructions to grab
10676// upper bits of a vector.
10677static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
10678                                      SelectionDAG &DAG) {
10679  SDLoc dl(Op);
10680  SDValue In =  Op.getOperand(0);
10681  SDValue Idx = Op.getOperand(1);
10682  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
10683  MVT ResVT   = Op.getSimpleValueType();
10684  MVT InVT    = In.getSimpleValueType();
10685
10686  if (Subtarget->hasFp256()) {
10687    if (ResVT.is128BitVector() &&
10688        (InVT.is256BitVector() || InVT.is512BitVector()) &&
10689        isa<ConstantSDNode>(Idx)) {
10690      return Extract128BitVector(In, IdxVal, DAG, dl);
10691    }
10692    if (ResVT.is256BitVector() && InVT.is512BitVector() &&
10693        isa<ConstantSDNode>(Idx)) {
10694      return Extract256BitVector(In, IdxVal, DAG, dl);
10695    }
10696  }
10697  return SDValue();
10698}
10699
10700// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
10701// simple superregister reference or explicit instructions to insert
10702// the upper bits of a vector.
10703static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
10704                                     SelectionDAG &DAG) {
10705  if (!Subtarget->hasAVX())
10706    return SDValue();
10707
10708  SDLoc dl(Op);
10709  SDValue Vec = Op.getOperand(0);
10710  SDValue SubVec = Op.getOperand(1);
10711  SDValue Idx = Op.getOperand(2);
10712
10713  if (!isa<ConstantSDNode>(Idx))
10714    return SDValue();
10715
10716  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
10717  MVT OpVT = Op.getSimpleValueType();
10718  MVT SubVecVT = SubVec.getSimpleValueType();
10719
10720  // Fold two 16-byte subvector loads into one 32-byte load:
10721  // (insert_subvector (insert_subvector undef, (load addr), 0),
10722  //                   (load addr + 16), Elts/2)
10723  // --> load32 addr
10724  if ((IdxVal == OpVT.getVectorNumElements() / 2) &&
10725      Vec.getOpcode() == ISD::INSERT_SUBVECTOR &&
10726      OpVT.is256BitVector() && SubVecVT.is128BitVector() &&
10727      !Subtarget->isUnalignedMem32Slow()) {
10728    SDValue SubVec2 = Vec.getOperand(1);
10729    if (auto *Idx2 = dyn_cast<ConstantSDNode>(Vec.getOperand(2))) {
10730      if (Idx2->getZExtValue() == 0) {
10731        SDValue Ops[] = { SubVec2, SubVec };
10732        SDValue LD = EltsFromConsecutiveLoads(OpVT, Ops, dl, DAG, false);
10733        if (LD.getNode())
10734          return LD;
10735      }
10736    }
10737  }
10738
10739  if ((OpVT.is256BitVector() || OpVT.is512BitVector()) &&
10740      SubVecVT.is128BitVector())
10741    return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
10742
10743  if (OpVT.is512BitVector() && SubVecVT.is256BitVector())
10744    return Insert256BitVector(Vec, SubVec, IdxVal, DAG, dl);
10745
10746  if (OpVT.getVectorElementType() == MVT::i1) {
10747    if (IdxVal == 0  && Vec.getOpcode() == ISD::UNDEF) // the operation is legal
10748      return Op;
10749    SDValue ZeroIdx = DAG.getIntPtrConstant(0);
10750    SDValue Undef = DAG.getUNDEF(OpVT);
10751    unsigned NumElems = OpVT.getVectorNumElements();
10752    SDValue ShiftBits = DAG.getConstant(NumElems/2, MVT::i8);
10753
10754    if (IdxVal == OpVT.getVectorNumElements() / 2) {
10755      // Zero upper bits of the Vec
10756      Vec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec, ShiftBits);
10757      Vec = DAG.getNode(X86ISD::VSRLI, dl, OpVT, Vec, ShiftBits);
10758
10759      SDValue Vec2 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, Undef,
10760                                 SubVec, ZeroIdx);
10761      Vec2 = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec2, ShiftBits);
10762      return DAG.getNode(ISD::OR, dl, OpVT, Vec, Vec2);
10763    }
10764    if (IdxVal == 0) {
10765      SDValue Vec2 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, Undef,
10766                                 SubVec, ZeroIdx);
10767      // Zero upper bits of the Vec2
10768      Vec2 = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec2, ShiftBits);
10769      Vec2 = DAG.getNode(X86ISD::VSRLI, dl, OpVT, Vec2, ShiftBits);
10770      // Zero lower bits of the Vec
10771      Vec = DAG.getNode(X86ISD::VSRLI, dl, OpVT, Vec, ShiftBits);
10772      Vec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec, ShiftBits);
10773      // Merge them together
10774      return DAG.getNode(ISD::OR, dl, OpVT, Vec, Vec2);
10775    }
10776  }
10777  return SDValue();
10778}
10779
10780// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
10781// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
10782// one of the above mentioned nodes. It has to be wrapped because otherwise
10783// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
10784// be used to form addressing mode. These wrapped nodes will be selected
10785// into MOV32ri.
10786SDValue
10787X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
10788  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
10789
10790  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
10791  // global base reg.
10792  unsigned char OpFlag = 0;
10793  unsigned WrapperKind = X86ISD::Wrapper;
10794  CodeModel::Model M = DAG.getTarget().getCodeModel();
10795
10796  if (Subtarget->isPICStyleRIPRel() &&
10797      (M == CodeModel::Small || M == CodeModel::Kernel))
10798    WrapperKind = X86ISD::WrapperRIP;
10799  else if (Subtarget->isPICStyleGOT())
10800    OpFlag = X86II::MO_GOTOFF;
10801  else if (Subtarget->isPICStyleStubPIC())
10802    OpFlag = X86II::MO_PIC_BASE_OFFSET;
10803
10804  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
10805                                             CP->getAlignment(),
10806                                             CP->getOffset(), OpFlag);
10807  SDLoc DL(CP);
10808  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
10809  // With PIC, the address is actually $g + Offset.
10810  if (OpFlag) {
10811    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10812                         DAG.getNode(X86ISD::GlobalBaseReg,
10813                                     SDLoc(), getPointerTy()),
10814                         Result);
10815  }
10816
10817  return Result;
10818}
10819
10820SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
10821  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
10822
10823  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
10824  // global base reg.
10825  unsigned char OpFlag = 0;
10826  unsigned WrapperKind = X86ISD::Wrapper;
10827  CodeModel::Model M = DAG.getTarget().getCodeModel();
10828
10829  if (Subtarget->isPICStyleRIPRel() &&
10830      (M == CodeModel::Small || M == CodeModel::Kernel))
10831    WrapperKind = X86ISD::WrapperRIP;
10832  else if (Subtarget->isPICStyleGOT())
10833    OpFlag = X86II::MO_GOTOFF;
10834  else if (Subtarget->isPICStyleStubPIC())
10835    OpFlag = X86II::MO_PIC_BASE_OFFSET;
10836
10837  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
10838                                          OpFlag);
10839  SDLoc DL(JT);
10840  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
10841
10842  // With PIC, the address is actually $g + Offset.
10843  if (OpFlag)
10844    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10845                         DAG.getNode(X86ISD::GlobalBaseReg,
10846                                     SDLoc(), getPointerTy()),
10847                         Result);
10848
10849  return Result;
10850}
10851
10852SDValue
10853X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
10854  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
10855
10856  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
10857  // global base reg.
10858  unsigned char OpFlag = 0;
10859  unsigned WrapperKind = X86ISD::Wrapper;
10860  CodeModel::Model M = DAG.getTarget().getCodeModel();
10861
10862  if (Subtarget->isPICStyleRIPRel() &&
10863      (M == CodeModel::Small || M == CodeModel::Kernel)) {
10864    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
10865      OpFlag = X86II::MO_GOTPCREL;
10866    WrapperKind = X86ISD::WrapperRIP;
10867  } else if (Subtarget->isPICStyleGOT()) {
10868    OpFlag = X86II::MO_GOT;
10869  } else if (Subtarget->isPICStyleStubPIC()) {
10870    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
10871  } else if (Subtarget->isPICStyleStubNoDynamic()) {
10872    OpFlag = X86II::MO_DARWIN_NONLAZY;
10873  }
10874
10875  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
10876
10877  SDLoc DL(Op);
10878  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
10879
10880  // With PIC, the address is actually $g + Offset.
10881  if (DAG.getTarget().getRelocationModel() == Reloc::PIC_ &&
10882      !Subtarget->is64Bit()) {
10883    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10884                         DAG.getNode(X86ISD::GlobalBaseReg,
10885                                     SDLoc(), getPointerTy()),
10886                         Result);
10887  }
10888
10889  // For symbols that require a load from a stub to get the address, emit the
10890  // load.
10891  if (isGlobalStubReference(OpFlag))
10892    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
10893                         MachinePointerInfo::getGOT(), false, false, false, 0);
10894
10895  return Result;
10896}
10897
10898SDValue
10899X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
10900  // Create the TargetBlockAddressAddress node.
10901  unsigned char OpFlags =
10902    Subtarget->ClassifyBlockAddressReference();
10903  CodeModel::Model M = DAG.getTarget().getCodeModel();
10904  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
10905  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
10906  SDLoc dl(Op);
10907  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
10908                                             OpFlags);
10909
10910  if (Subtarget->isPICStyleRIPRel() &&
10911      (M == CodeModel::Small || M == CodeModel::Kernel))
10912    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
10913  else
10914    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
10915
10916  // With PIC, the address is actually $g + Offset.
10917  if (isGlobalRelativeToPICBase(OpFlags)) {
10918    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
10919                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
10920                         Result);
10921  }
10922
10923  return Result;
10924}
10925
10926SDValue
10927X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
10928                                      int64_t Offset, SelectionDAG &DAG) const {
10929  // Create the TargetGlobalAddress node, folding in the constant
10930  // offset if it is legal.
10931  unsigned char OpFlags =
10932      Subtarget->ClassifyGlobalReference(GV, DAG.getTarget());
10933  CodeModel::Model M = DAG.getTarget().getCodeModel();
10934  SDValue Result;
10935  if (OpFlags == X86II::MO_NO_FLAG &&
10936      X86::isOffsetSuitableForCodeModel(Offset, M)) {
10937    // A direct static reference to a global.
10938    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
10939    Offset = 0;
10940  } else {
10941    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
10942  }
10943
10944  if (Subtarget->isPICStyleRIPRel() &&
10945      (M == CodeModel::Small || M == CodeModel::Kernel))
10946    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
10947  else
10948    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
10949
10950  // With PIC, the address is actually $g + Offset.
10951  if (isGlobalRelativeToPICBase(OpFlags)) {
10952    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
10953                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
10954                         Result);
10955  }
10956
10957  // For globals that require a load from a stub to get the address, emit the
10958  // load.
10959  if (isGlobalStubReference(OpFlags))
10960    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
10961                         MachinePointerInfo::getGOT(), false, false, false, 0);
10962
10963  // If there was a non-zero offset that we didn't fold, create an explicit
10964  // addition for it.
10965  if (Offset != 0)
10966    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
10967                         DAG.getConstant(Offset, getPointerTy()));
10968
10969  return Result;
10970}
10971
10972SDValue
10973X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
10974  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
10975  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
10976  return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
10977}
10978
10979static SDValue
10980GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
10981           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
10982           unsigned char OperandFlags, bool LocalDynamic = false) {
10983  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10984  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10985  SDLoc dl(GA);
10986  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
10987                                           GA->getValueType(0),
10988                                           GA->getOffset(),
10989                                           OperandFlags);
10990
10991  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
10992                                           : X86ISD::TLSADDR;
10993
10994  if (InFlag) {
10995    SDValue Ops[] = { Chain,  TGA, *InFlag };
10996    Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
10997  } else {
10998    SDValue Ops[]  = { Chain, TGA };
10999    Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
11000  }
11001
11002  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
11003  MFI->setAdjustsStack(true);
11004  MFI->setHasCalls(true);
11005
11006  SDValue Flag = Chain.getValue(1);
11007  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
11008}
11009
11010// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
11011static SDValue
11012LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
11013                                const EVT PtrVT) {
11014  SDValue InFlag;
11015  SDLoc dl(GA);  // ? function entry point might be better
11016  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
11017                                   DAG.getNode(X86ISD::GlobalBaseReg,
11018                                               SDLoc(), PtrVT), InFlag);
11019  InFlag = Chain.getValue(1);
11020
11021  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
11022}
11023
11024// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
11025static SDValue
11026LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
11027                                const EVT PtrVT) {
11028  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT,
11029                    X86::RAX, X86II::MO_TLSGD);
11030}
11031
11032static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
11033                                           SelectionDAG &DAG,
11034                                           const EVT PtrVT,
11035                                           bool is64Bit) {
11036  SDLoc dl(GA);
11037
11038  // Get the start address of the TLS block for this module.
11039  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
11040      .getInfo<X86MachineFunctionInfo>();
11041  MFI->incNumLocalDynamicTLSAccesses();
11042
11043  SDValue Base;
11044  if (is64Bit) {
11045    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX,
11046                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
11047  } else {
11048    SDValue InFlag;
11049    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
11050        DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
11051    InFlag = Chain.getValue(1);
11052    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
11053                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
11054  }
11055
11056  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
11057  // of Base.
11058
11059  // Build x@dtpoff.
11060  unsigned char OperandFlags = X86II::MO_DTPOFF;
11061  unsigned WrapperKind = X86ISD::Wrapper;
11062  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
11063                                           GA->getValueType(0),
11064                                           GA->getOffset(), OperandFlags);
11065  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
11066
11067  // Add x@dtpoff with the base.
11068  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
11069}
11070
11071// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
11072static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
11073                                   const EVT PtrVT, TLSModel::Model model,
11074                                   bool is64Bit, bool isPIC) {
11075  SDLoc dl(GA);
11076
11077  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
11078  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
11079                                                         is64Bit ? 257 : 256));
11080
11081  SDValue ThreadPointer =
11082      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0),
11083                  MachinePointerInfo(Ptr), false, false, false, 0);
11084
11085  unsigned char OperandFlags = 0;
11086  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
11087  // initialexec.
11088  unsigned WrapperKind = X86ISD::Wrapper;
11089  if (model == TLSModel::LocalExec) {
11090    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
11091  } else if (model == TLSModel::InitialExec) {
11092    if (is64Bit) {
11093      OperandFlags = X86II::MO_GOTTPOFF;
11094      WrapperKind = X86ISD::WrapperRIP;
11095    } else {
11096      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
11097    }
11098  } else {
11099    llvm_unreachable("Unexpected model");
11100  }
11101
11102  // emit "addl x@ntpoff,%eax" (local exec)
11103  // or "addl x@indntpoff,%eax" (initial exec)
11104  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
11105  SDValue TGA =
11106      DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0),
11107                                 GA->getOffset(), OperandFlags);
11108  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
11109
11110  if (model == TLSModel::InitialExec) {
11111    if (isPIC && !is64Bit) {
11112      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
11113                           DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
11114                           Offset);
11115    }
11116
11117    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
11118                         MachinePointerInfo::getGOT(), false, false, false, 0);
11119  }
11120
11121  // The address of the thread local variable is the add of the thread
11122  // pointer with the offset of the variable.
11123  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
11124}
11125
11126SDValue
11127X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
11128
11129  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
11130  const GlobalValue *GV = GA->getGlobal();
11131
11132  if (Subtarget->isTargetELF()) {
11133    TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
11134
11135    switch (model) {
11136      case TLSModel::GeneralDynamic:
11137        if (Subtarget->is64Bit())
11138          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
11139        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
11140      case TLSModel::LocalDynamic:
11141        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
11142                                           Subtarget->is64Bit());
11143      case TLSModel::InitialExec:
11144      case TLSModel::LocalExec:
11145        return LowerToTLSExecModel(
11146            GA, DAG, getPointerTy(), model, Subtarget->is64Bit(),
11147            DAG.getTarget().getRelocationModel() == Reloc::PIC_);
11148    }
11149    llvm_unreachable("Unknown TLS model.");
11150  }
11151
11152  if (Subtarget->isTargetDarwin()) {
11153    // Darwin only has one model of TLS.  Lower to that.
11154    unsigned char OpFlag = 0;
11155    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
11156                           X86ISD::WrapperRIP : X86ISD::Wrapper;
11157
11158    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
11159    // global base reg.
11160    bool PIC32 = (DAG.getTarget().getRelocationModel() == Reloc::PIC_) &&
11161                 !Subtarget->is64Bit();
11162    if (PIC32)
11163      OpFlag = X86II::MO_TLVP_PIC_BASE;
11164    else
11165      OpFlag = X86II::MO_TLVP;
11166    SDLoc DL(Op);
11167    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
11168                                                GA->getValueType(0),
11169                                                GA->getOffset(), OpFlag);
11170    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
11171
11172    // With PIC32, the address is actually $g + Offset.
11173    if (PIC32)
11174      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
11175                           DAG.getNode(X86ISD::GlobalBaseReg,
11176                                       SDLoc(), getPointerTy()),
11177                           Offset);
11178
11179    // Lowering the machine isd will make sure everything is in the right
11180    // location.
11181    SDValue Chain = DAG.getEntryNode();
11182    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
11183    SDValue Args[] = { Chain, Offset };
11184    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args);
11185
11186    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
11187    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
11188    MFI->setAdjustsStack(true);
11189
11190    // And our return value (tls address) is in the standard call return value
11191    // location.
11192    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11193    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
11194                              Chain.getValue(1));
11195  }
11196
11197  if (Subtarget->isTargetKnownWindowsMSVC() ||
11198      Subtarget->isTargetWindowsGNU()) {
11199    // Just use the implicit TLS architecture
11200    // Need to generate someting similar to:
11201    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
11202    //                                  ; from TEB
11203    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
11204    //   mov     rcx, qword [rdx+rcx*8]
11205    //   mov     eax, .tls$:tlsvar
11206    //   [rax+rcx] contains the address
11207    // Windows 64bit: gs:0x58
11208    // Windows 32bit: fs:__tls_array
11209
11210    SDLoc dl(GA);
11211    SDValue Chain = DAG.getEntryNode();
11212
11213    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
11214    // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
11215    // use its literal value of 0x2C.
11216    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
11217                                        ? Type::getInt8PtrTy(*DAG.getContext(),
11218                                                             256)
11219                                        : Type::getInt32PtrTy(*DAG.getContext(),
11220                                                              257));
11221
11222    SDValue TlsArray =
11223        Subtarget->is64Bit()
11224            ? DAG.getIntPtrConstant(0x58)
11225            : (Subtarget->isTargetWindowsGNU()
11226                   ? DAG.getIntPtrConstant(0x2C)
11227                   : DAG.getExternalSymbol("_tls_array", getPointerTy()));
11228
11229    SDValue ThreadPointer =
11230        DAG.getLoad(getPointerTy(), dl, Chain, TlsArray,
11231                    MachinePointerInfo(Ptr), false, false, false, 0);
11232
11233    // Load the _tls_index variable
11234    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
11235    if (Subtarget->is64Bit())
11236      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
11237                           IDX, MachinePointerInfo(), MVT::i32,
11238                           false, false, false, 0);
11239    else
11240      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
11241                        false, false, false, 0);
11242
11243    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
11244                                    getPointerTy());
11245    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
11246
11247    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
11248    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
11249                      false, false, false, 0);
11250
11251    // Get the offset of start of .tls section
11252    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
11253                                             GA->getValueType(0),
11254                                             GA->getOffset(), X86II::MO_SECREL);
11255    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
11256
11257    // The address of the thread local variable is the add of the thread
11258    // pointer with the offset of the variable.
11259    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
11260  }
11261
11262  llvm_unreachable("TLS not implemented for this target.");
11263}
11264
11265/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
11266/// and take a 2 x i32 value to shift plus a shift amount.
11267static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) {
11268  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
11269  MVT VT = Op.getSimpleValueType();
11270  unsigned VTBits = VT.getSizeInBits();
11271  SDLoc dl(Op);
11272  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
11273  SDValue ShOpLo = Op.getOperand(0);
11274  SDValue ShOpHi = Op.getOperand(1);
11275  SDValue ShAmt  = Op.getOperand(2);
11276  // X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the
11277  // generic ISD nodes haven't. Insert an AND to be safe, it's optimized away
11278  // during isel.
11279  SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
11280                                  DAG.getConstant(VTBits - 1, MVT::i8));
11281  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
11282                                     DAG.getConstant(VTBits - 1, MVT::i8))
11283                       : DAG.getConstant(0, VT);
11284
11285  SDValue Tmp2, Tmp3;
11286  if (Op.getOpcode() == ISD::SHL_PARTS) {
11287    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
11288    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
11289  } else {
11290    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
11291    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
11292  }
11293
11294  // If the shift amount is larger or equal than the width of a part we can't
11295  // rely on the results of shld/shrd. Insert a test and select the appropriate
11296  // values for large shift amounts.
11297  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
11298                                DAG.getConstant(VTBits, MVT::i8));
11299  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
11300                             AndNode, DAG.getConstant(0, MVT::i8));
11301
11302  SDValue Hi, Lo;
11303  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
11304  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
11305  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
11306
11307  if (Op.getOpcode() == ISD::SHL_PARTS) {
11308    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
11309    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
11310  } else {
11311    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
11312    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
11313  }
11314
11315  SDValue Ops[2] = { Lo, Hi };
11316  return DAG.getMergeValues(Ops, dl);
11317}
11318
11319SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
11320                                           SelectionDAG &DAG) const {
11321  MVT SrcVT = Op.getOperand(0).getSimpleValueType();
11322  SDLoc dl(Op);
11323
11324  if (SrcVT.isVector()) {
11325    if (SrcVT.getVectorElementType() == MVT::i1) {
11326      MVT IntegerVT = MVT::getVectorVT(MVT::i32, SrcVT.getVectorNumElements());
11327      return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
11328                         DAG.getNode(ISD::SIGN_EXTEND, dl, IntegerVT,
11329                                     Op.getOperand(0)));
11330    }
11331    return SDValue();
11332  }
11333
11334  assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 &&
11335         "Unknown SINT_TO_FP to lower!");
11336
11337  // These are really Legal; return the operand so the caller accepts it as
11338  // Legal.
11339  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
11340    return Op;
11341  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
11342      Subtarget->is64Bit()) {
11343    return Op;
11344  }
11345
11346  unsigned Size = SrcVT.getSizeInBits()/8;
11347  MachineFunction &MF = DAG.getMachineFunction();
11348  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
11349  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
11350  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
11351                               StackSlot,
11352                               MachinePointerInfo::getFixedStack(SSFI),
11353                               false, false, 0);
11354  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
11355}
11356
11357SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
11358                                     SDValue StackSlot,
11359                                     SelectionDAG &DAG) const {
11360  // Build the FILD
11361  SDLoc DL(Op);
11362  SDVTList Tys;
11363  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
11364  if (useSSE)
11365    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
11366  else
11367    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
11368
11369  unsigned ByteSize = SrcVT.getSizeInBits()/8;
11370
11371  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
11372  MachineMemOperand *MMO;
11373  if (FI) {
11374    int SSFI = FI->getIndex();
11375    MMO =
11376      DAG.getMachineFunction()
11377      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
11378                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
11379  } else {
11380    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
11381    StackSlot = StackSlot.getOperand(1);
11382  }
11383  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
11384  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
11385                                           X86ISD::FILD, DL,
11386                                           Tys, Ops, SrcVT, MMO);
11387
11388  if (useSSE) {
11389    Chain = Result.getValue(1);
11390    SDValue InFlag = Result.getValue(2);
11391
11392    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
11393    // shouldn't be necessary except that RFP cannot be live across
11394    // multiple blocks. When stackifier is fixed, they can be uncoupled.
11395    MachineFunction &MF = DAG.getMachineFunction();
11396    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
11397    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
11398    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
11399    Tys = DAG.getVTList(MVT::Other);
11400    SDValue Ops[] = {
11401      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
11402    };
11403    MachineMemOperand *MMO =
11404      DAG.getMachineFunction()
11405      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
11406                            MachineMemOperand::MOStore, SSFISize, SSFISize);
11407
11408    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
11409                                    Ops, Op.getValueType(), MMO);
11410    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
11411                         MachinePointerInfo::getFixedStack(SSFI),
11412                         false, false, false, 0);
11413  }
11414
11415  return Result;
11416}
11417
11418// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
11419SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
11420                                               SelectionDAG &DAG) const {
11421  // This algorithm is not obvious. Here it is what we're trying to output:
11422  /*
11423     movq       %rax,  %xmm0
11424     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
11425     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
11426     #ifdef __SSE3__
11427       haddpd   %xmm0, %xmm0
11428     #else
11429       pshufd   $0x4e, %xmm0, %xmm1
11430       addpd    %xmm1, %xmm0
11431     #endif
11432  */
11433
11434  SDLoc dl(Op);
11435  LLVMContext *Context = DAG.getContext();
11436
11437  // Build some magic constants.
11438  static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
11439  Constant *C0 = ConstantDataVector::get(*Context, CV0);
11440  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
11441
11442  SmallVector<Constant*,2> CV1;
11443  CV1.push_back(
11444    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
11445                                      APInt(64, 0x4330000000000000ULL))));
11446  CV1.push_back(
11447    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
11448                                      APInt(64, 0x4530000000000000ULL))));
11449  Constant *C1 = ConstantVector::get(CV1);
11450  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
11451
11452  // Load the 64-bit value into an XMM register.
11453  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
11454                            Op.getOperand(0));
11455  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
11456                              MachinePointerInfo::getConstantPool(),
11457                              false, false, false, 16);
11458  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
11459                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
11460                              CLod0);
11461
11462  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
11463                              MachinePointerInfo::getConstantPool(),
11464                              false, false, false, 16);
11465  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
11466  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
11467  SDValue Result;
11468
11469  if (Subtarget->hasSSE3()) {
11470    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
11471    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
11472  } else {
11473    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
11474    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
11475                                           S2F, 0x4E, DAG);
11476    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
11477                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
11478                         Sub);
11479  }
11480
11481  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
11482                     DAG.getIntPtrConstant(0));
11483}
11484
11485// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
11486SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
11487                                               SelectionDAG &DAG) const {
11488  SDLoc dl(Op);
11489  // FP constant to bias correct the final result.
11490  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
11491                                   MVT::f64);
11492
11493  // Load the 32-bit value into an XMM register.
11494  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
11495                             Op.getOperand(0));
11496
11497  // Zero out the upper parts of the register.
11498  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
11499
11500  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
11501                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
11502                     DAG.getIntPtrConstant(0));
11503
11504  // Or the load with the bias.
11505  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
11506                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
11507                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
11508                                                   MVT::v2f64, Load)),
11509                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
11510                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
11511                                                   MVT::v2f64, Bias)));
11512  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
11513                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
11514                   DAG.getIntPtrConstant(0));
11515
11516  // Subtract the bias.
11517  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
11518
11519  // Handle final rounding.
11520  EVT DestVT = Op.getValueType();
11521
11522  if (DestVT.bitsLT(MVT::f64))
11523    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
11524                       DAG.getIntPtrConstant(0));
11525  if (DestVT.bitsGT(MVT::f64))
11526    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
11527
11528  // Handle final rounding.
11529  return Sub;
11530}
11531
11532static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG,
11533                                     const X86Subtarget &Subtarget) {
11534  // The algorithm is the following:
11535  // #ifdef __SSE4_1__
11536  //     uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
11537  //     uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
11538  //                                 (uint4) 0x53000000, 0xaa);
11539  // #else
11540  //     uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
11541  //     uint4 hi = (v >> 16) | (uint4) 0x53000000;
11542  // #endif
11543  //     float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
11544  //     return (float4) lo + fhi;
11545
11546  SDLoc DL(Op);
11547  SDValue V = Op->getOperand(0);
11548  EVT VecIntVT = V.getValueType();
11549  bool Is128 = VecIntVT == MVT::v4i32;
11550  EVT VecFloatVT = Is128 ? MVT::v4f32 : MVT::v8f32;
11551  // If we convert to something else than the supported type, e.g., to v4f64,
11552  // abort early.
11553  if (VecFloatVT != Op->getValueType(0))
11554    return SDValue();
11555
11556  unsigned NumElts = VecIntVT.getVectorNumElements();
11557  assert((VecIntVT == MVT::v4i32 || VecIntVT == MVT::v8i32) &&
11558         "Unsupported custom type");
11559  assert(NumElts <= 8 && "The size of the constant array must be fixed");
11560
11561  // In the #idef/#else code, we have in common:
11562  // - The vector of constants:
11563  // -- 0x4b000000
11564  // -- 0x53000000
11565  // - A shift:
11566  // -- v >> 16
11567
11568  // Create the splat vector for 0x4b000000.
11569  SDValue CstLow = DAG.getConstant(0x4b000000, MVT::i32);
11570  SDValue CstLowArray[] = {CstLow, CstLow, CstLow, CstLow,
11571                           CstLow, CstLow, CstLow, CstLow};
11572  SDValue VecCstLow = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT,
11573                                  makeArrayRef(&CstLowArray[0], NumElts));
11574  // Create the splat vector for 0x53000000.
11575  SDValue CstHigh = DAG.getConstant(0x53000000, MVT::i32);
11576  SDValue CstHighArray[] = {CstHigh, CstHigh, CstHigh, CstHigh,
11577                            CstHigh, CstHigh, CstHigh, CstHigh};
11578  SDValue VecCstHigh = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT,
11579                                   makeArrayRef(&CstHighArray[0], NumElts));
11580
11581  // Create the right shift.
11582  SDValue CstShift = DAG.getConstant(16, MVT::i32);
11583  SDValue CstShiftArray[] = {CstShift, CstShift, CstShift, CstShift,
11584                             CstShift, CstShift, CstShift, CstShift};
11585  SDValue VecCstShift = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT,
11586                                    makeArrayRef(&CstShiftArray[0], NumElts));
11587  SDValue HighShift = DAG.getNode(ISD::SRL, DL, VecIntVT, V, VecCstShift);
11588
11589  SDValue Low, High;
11590  if (Subtarget.hasSSE41()) {
11591    EVT VecI16VT = Is128 ? MVT::v8i16 : MVT::v16i16;
11592    //     uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
11593    SDValue VecCstLowBitcast =
11594        DAG.getNode(ISD::BITCAST, DL, VecI16VT, VecCstLow);
11595    SDValue VecBitcast = DAG.getNode(ISD::BITCAST, DL, VecI16VT, V);
11596    // Low will be bitcasted right away, so do not bother bitcasting back to its
11597    // original type.
11598    Low = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecBitcast,
11599                      VecCstLowBitcast, DAG.getConstant(0xaa, MVT::i32));
11600    //     uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
11601    //                                 (uint4) 0x53000000, 0xaa);
11602    SDValue VecCstHighBitcast =
11603        DAG.getNode(ISD::BITCAST, DL, VecI16VT, VecCstHigh);
11604    SDValue VecShiftBitcast =
11605        DAG.getNode(ISD::BITCAST, DL, VecI16VT, HighShift);
11606    // High will be bitcasted right away, so do not bother bitcasting back to
11607    // its original type.
11608    High = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecShiftBitcast,
11609                       VecCstHighBitcast, DAG.getConstant(0xaa, MVT::i32));
11610  } else {
11611    SDValue CstMask = DAG.getConstant(0xffff, MVT::i32);
11612    SDValue VecCstMask = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, CstMask,
11613                                     CstMask, CstMask, CstMask);
11614    //     uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
11615    SDValue LowAnd = DAG.getNode(ISD::AND, DL, VecIntVT, V, VecCstMask);
11616    Low = DAG.getNode(ISD::OR, DL, VecIntVT, LowAnd, VecCstLow);
11617
11618    //     uint4 hi = (v >> 16) | (uint4) 0x53000000;
11619    High = DAG.getNode(ISD::OR, DL, VecIntVT, HighShift, VecCstHigh);
11620  }
11621
11622  // Create the vector constant for -(0x1.0p39f + 0x1.0p23f).
11623  SDValue CstFAdd = DAG.getConstantFP(
11624      APFloat(APFloat::IEEEsingle, APInt(32, 0xD3000080)), MVT::f32);
11625  SDValue CstFAddArray[] = {CstFAdd, CstFAdd, CstFAdd, CstFAdd,
11626                            CstFAdd, CstFAdd, CstFAdd, CstFAdd};
11627  SDValue VecCstFAdd = DAG.getNode(ISD::BUILD_VECTOR, DL, VecFloatVT,
11628                                   makeArrayRef(&CstFAddArray[0], NumElts));
11629
11630  //     float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
11631  SDValue HighBitcast = DAG.getNode(ISD::BITCAST, DL, VecFloatVT, High);
11632  SDValue FHigh =
11633      DAG.getNode(ISD::FADD, DL, VecFloatVT, HighBitcast, VecCstFAdd);
11634  //     return (float4) lo + fhi;
11635  SDValue LowBitcast = DAG.getNode(ISD::BITCAST, DL, VecFloatVT, Low);
11636  return DAG.getNode(ISD::FADD, DL, VecFloatVT, LowBitcast, FHigh);
11637}
11638
11639SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
11640                                               SelectionDAG &DAG) const {
11641  SDValue N0 = Op.getOperand(0);
11642  MVT SVT = N0.getSimpleValueType();
11643  SDLoc dl(Op);
11644
11645  switch (SVT.SimpleTy) {
11646  default:
11647    llvm_unreachable("Custom UINT_TO_FP is not supported!");
11648  case MVT::v4i8:
11649  case MVT::v4i16:
11650  case MVT::v8i8:
11651  case MVT::v8i16: {
11652    MVT NVT = MVT::getVectorVT(MVT::i32, SVT.getVectorNumElements());
11653    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
11654                       DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
11655  }
11656  case MVT::v4i32:
11657  case MVT::v8i32:
11658    return lowerUINT_TO_FP_vXi32(Op, DAG, *Subtarget);
11659  }
11660  llvm_unreachable(nullptr);
11661}
11662
11663SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
11664                                           SelectionDAG &DAG) const {
11665  SDValue N0 = Op.getOperand(0);
11666  SDLoc dl(Op);
11667
11668  if (Op.getValueType().isVector())
11669    return lowerUINT_TO_FP_vec(Op, DAG);
11670
11671  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
11672  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
11673  // the optimization here.
11674  if (DAG.SignBitIsZero(N0))
11675    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
11676
11677  MVT SrcVT = N0.getSimpleValueType();
11678  MVT DstVT = Op.getSimpleValueType();
11679  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
11680    return LowerUINT_TO_FP_i64(Op, DAG);
11681  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
11682    return LowerUINT_TO_FP_i32(Op, DAG);
11683  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
11684    return SDValue();
11685
11686  // Make a 64-bit buffer, and use it to build an FILD.
11687  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
11688  if (SrcVT == MVT::i32) {
11689    SDValue WordOff = DAG.getConstant(4, getPointerTy());
11690    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
11691                                     getPointerTy(), StackSlot, WordOff);
11692    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
11693                                  StackSlot, MachinePointerInfo(),
11694                                  false, false, 0);
11695    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
11696                                  OffsetSlot, MachinePointerInfo(),
11697                                  false, false, 0);
11698    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
11699    return Fild;
11700  }
11701
11702  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
11703  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
11704                               StackSlot, MachinePointerInfo(),
11705                               false, false, 0);
11706  // For i64 source, we need to add the appropriate power of 2 if the input
11707  // was negative.  This is the same as the optimization in
11708  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
11709  // we must be careful to do the computation in x87 extended precision, not
11710  // in SSE. (The generic code can't know it's OK to do this, or how to.)
11711  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
11712  MachineMemOperand *MMO =
11713    DAG.getMachineFunction()
11714    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
11715                          MachineMemOperand::MOLoad, 8, 8);
11716
11717  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
11718  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
11719  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
11720                                         MVT::i64, MMO);
11721
11722  APInt FF(32, 0x5F800000ULL);
11723
11724  // Check whether the sign bit is set.
11725  SDValue SignSet = DAG.getSetCC(dl,
11726                                 getSetCCResultType(*DAG.getContext(), MVT::i64),
11727                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
11728                                 ISD::SETLT);
11729
11730  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
11731  SDValue FudgePtr = DAG.getConstantPool(
11732                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
11733                                         getPointerTy());
11734
11735  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
11736  SDValue Zero = DAG.getIntPtrConstant(0);
11737  SDValue Four = DAG.getIntPtrConstant(4);
11738  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
11739                               Zero, Four);
11740  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
11741
11742  // Load the value out, extending it from f32 to f80.
11743  // FIXME: Avoid the extend by constructing the right constant pool?
11744  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
11745                                 FudgePtr, MachinePointerInfo::getConstantPool(),
11746                                 MVT::f32, false, false, false, 4);
11747  // Extend everything to 80 bits to force it to be done on x87.
11748  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
11749  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
11750}
11751
11752std::pair<SDValue,SDValue>
11753X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
11754                                    bool IsSigned, bool IsReplace) const {
11755  SDLoc DL(Op);
11756
11757  EVT DstTy = Op.getValueType();
11758
11759  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
11760    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
11761    DstTy = MVT::i64;
11762  }
11763
11764  assert(DstTy.getSimpleVT() <= MVT::i64 &&
11765         DstTy.getSimpleVT() >= MVT::i16 &&
11766         "Unknown FP_TO_INT to lower!");
11767
11768  // These are really Legal.
11769  if (DstTy == MVT::i32 &&
11770      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
11771    return std::make_pair(SDValue(), SDValue());
11772  if (Subtarget->is64Bit() &&
11773      DstTy == MVT::i64 &&
11774      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
11775    return std::make_pair(SDValue(), SDValue());
11776
11777  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
11778  // stack slot, or into the FTOL runtime function.
11779  MachineFunction &MF = DAG.getMachineFunction();
11780  unsigned MemSize = DstTy.getSizeInBits()/8;
11781  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
11782  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
11783
11784  unsigned Opc;
11785  if (!IsSigned && isIntegerTypeFTOL(DstTy))
11786    Opc = X86ISD::WIN_FTOL;
11787  else
11788    switch (DstTy.getSimpleVT().SimpleTy) {
11789    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
11790    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
11791    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
11792    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
11793    }
11794
11795  SDValue Chain = DAG.getEntryNode();
11796  SDValue Value = Op.getOperand(0);
11797  EVT TheVT = Op.getOperand(0).getValueType();
11798  // FIXME This causes a redundant load/store if the SSE-class value is already
11799  // in memory, such as if it is on the callstack.
11800  if (isScalarFPTypeInSSEReg(TheVT)) {
11801    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
11802    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
11803                         MachinePointerInfo::getFixedStack(SSFI),
11804                         false, false, 0);
11805    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
11806    SDValue Ops[] = {
11807      Chain, StackSlot, DAG.getValueType(TheVT)
11808    };
11809
11810    MachineMemOperand *MMO =
11811      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
11812                              MachineMemOperand::MOLoad, MemSize, MemSize);
11813    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, DstTy, MMO);
11814    Chain = Value.getValue(1);
11815    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
11816    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
11817  }
11818
11819  MachineMemOperand *MMO =
11820    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
11821                            MachineMemOperand::MOStore, MemSize, MemSize);
11822
11823  if (Opc != X86ISD::WIN_FTOL) {
11824    // Build the FP_TO_INT*_IN_MEM
11825    SDValue Ops[] = { Chain, Value, StackSlot };
11826    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
11827                                           Ops, DstTy, MMO);
11828    return std::make_pair(FIST, StackSlot);
11829  } else {
11830    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
11831      DAG.getVTList(MVT::Other, MVT::Glue),
11832      Chain, Value);
11833    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
11834      MVT::i32, ftol.getValue(1));
11835    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
11836      MVT::i32, eax.getValue(2));
11837    SDValue Ops[] = { eax, edx };
11838    SDValue pair = IsReplace
11839      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops)
11840      : DAG.getMergeValues(Ops, DL);
11841    return std::make_pair(pair, SDValue());
11842  }
11843}
11844
11845static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
11846                              const X86Subtarget *Subtarget) {
11847  MVT VT = Op->getSimpleValueType(0);
11848  SDValue In = Op->getOperand(0);
11849  MVT InVT = In.getSimpleValueType();
11850  SDLoc dl(Op);
11851
11852  // Optimize vectors in AVX mode:
11853  //
11854  //   v8i16 -> v8i32
11855  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
11856  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
11857  //   Concat upper and lower parts.
11858  //
11859  //   v4i32 -> v4i64
11860  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
11861  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
11862  //   Concat upper and lower parts.
11863  //
11864
11865  if (((VT != MVT::v16i16) || (InVT != MVT::v16i8)) &&
11866      ((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
11867      ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
11868    return SDValue();
11869
11870  if (Subtarget->hasInt256())
11871    return DAG.getNode(X86ISD::VZEXT, dl, VT, In);
11872
11873  SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
11874  SDValue Undef = DAG.getUNDEF(InVT);
11875  bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
11876  SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
11877  SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
11878
11879  MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
11880                             VT.getVectorNumElements()/2);
11881
11882  OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
11883  OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
11884
11885  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
11886}
11887
11888static  SDValue LowerZERO_EXTEND_AVX512(SDValue Op,
11889                                        SelectionDAG &DAG) {
11890  MVT VT = Op->getSimpleValueType(0);
11891  SDValue In = Op->getOperand(0);
11892  MVT InVT = In.getSimpleValueType();
11893  SDLoc DL(Op);
11894  unsigned int NumElts = VT.getVectorNumElements();
11895  if (NumElts != 8 && NumElts != 16)
11896    return SDValue();
11897
11898  if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
11899    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
11900
11901  EVT ExtVT = (NumElts == 8)? MVT::v8i64 : MVT::v16i32;
11902  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11903  // Now we have only mask extension
11904  assert(InVT.getVectorElementType() == MVT::i1);
11905  SDValue Cst = DAG.getTargetConstant(1, ExtVT.getScalarType());
11906  const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
11907  SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
11908  unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
11909  SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
11910                           MachinePointerInfo::getConstantPool(),
11911                           false, false, false, Alignment);
11912
11913  SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, DL, ExtVT, In, Ld);
11914  if (VT.is512BitVector())
11915    return Brcst;
11916  return DAG.getNode(X86ISD::VTRUNC, DL, VT, Brcst);
11917}
11918
11919static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
11920                               SelectionDAG &DAG) {
11921  if (Subtarget->hasFp256()) {
11922    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
11923    if (Res.getNode())
11924      return Res;
11925  }
11926
11927  return SDValue();
11928}
11929
11930static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
11931                                SelectionDAG &DAG) {
11932  SDLoc DL(Op);
11933  MVT VT = Op.getSimpleValueType();
11934  SDValue In = Op.getOperand(0);
11935  MVT SVT = In.getSimpleValueType();
11936
11937  if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1)
11938    return LowerZERO_EXTEND_AVX512(Op, DAG);
11939
11940  if (Subtarget->hasFp256()) {
11941    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
11942    if (Res.getNode())
11943      return Res;
11944  }
11945
11946  assert(!VT.is256BitVector() || !SVT.is128BitVector() ||
11947         VT.getVectorNumElements() != SVT.getVectorNumElements());
11948  return SDValue();
11949}
11950
11951SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
11952  SDLoc DL(Op);
11953  MVT VT = Op.getSimpleValueType();
11954  SDValue In = Op.getOperand(0);
11955  MVT InVT = In.getSimpleValueType();
11956
11957  if (VT == MVT::i1) {
11958    assert((InVT.isInteger() && (InVT.getSizeInBits() <= 64)) &&
11959           "Invalid scalar TRUNCATE operation");
11960    if (InVT.getSizeInBits() >= 32)
11961      return SDValue();
11962    In = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, In);
11963    return DAG.getNode(ISD::TRUNCATE, DL, VT, In);
11964  }
11965  assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
11966         "Invalid TRUNCATE operation");
11967
11968  if (InVT.is512BitVector() || VT.getVectorElementType() == MVT::i1) {
11969    if (VT.getVectorElementType().getSizeInBits() >=8)
11970      return DAG.getNode(X86ISD::VTRUNC, DL, VT, In);
11971
11972    assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
11973    unsigned NumElts = InVT.getVectorNumElements();
11974    assert ((NumElts == 8 || NumElts == 16) && "Unexpected vector type");
11975    if (InVT.getSizeInBits() < 512) {
11976      MVT ExtVT = (NumElts == 16)? MVT::v16i32 : MVT::v8i64;
11977      In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In);
11978      InVT = ExtVT;
11979    }
11980
11981    SDValue Cst = DAG.getTargetConstant(1, InVT.getVectorElementType());
11982    const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
11983    SDValue CP = DAG.getConstantPool(C, getPointerTy());
11984    unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
11985    SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
11986                           MachinePointerInfo::getConstantPool(),
11987                           false, false, false, Alignment);
11988    SDValue OneV = DAG.getNode(X86ISD::VBROADCAST, DL, InVT, Ld);
11989    SDValue And = DAG.getNode(ISD::AND, DL, InVT, OneV, In);
11990    return DAG.getNode(X86ISD::TESTM, DL, VT, And, And);
11991  }
11992
11993  if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) {
11994    // On AVX2, v4i64 -> v4i32 becomes VPERMD.
11995    if (Subtarget->hasInt256()) {
11996      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
11997      In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
11998      In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
11999                                ShufMask);
12000      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
12001                         DAG.getIntPtrConstant(0));
12002    }
12003
12004    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
12005                               DAG.getIntPtrConstant(0));
12006    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
12007                               DAG.getIntPtrConstant(2));
12008    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
12009    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
12010    static const int ShufMask[] = {0, 2, 4, 6};
12011    return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask);
12012  }
12013
12014  if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
12015    // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
12016    if (Subtarget->hasInt256()) {
12017      In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
12018
12019      SmallVector<SDValue,32> pshufbMask;
12020      for (unsigned i = 0; i < 2; ++i) {
12021        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
12022        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
12023        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
12024        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
12025        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
12026        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
12027        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
12028        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
12029        for (unsigned j = 0; j < 8; ++j)
12030          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
12031      }
12032      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, pshufbMask);
12033      In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
12034      In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
12035
12036      static const int ShufMask[] = {0,  2,  -1,  -1};
12037      In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64),
12038                                &ShufMask[0]);
12039      In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
12040                       DAG.getIntPtrConstant(0));
12041      return DAG.getNode(ISD::BITCAST, DL, VT, In);
12042    }
12043
12044    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
12045                               DAG.getIntPtrConstant(0));
12046
12047    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
12048                               DAG.getIntPtrConstant(4));
12049
12050    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
12051    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
12052
12053    // The PSHUFB mask:
12054    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
12055                                   -1, -1, -1, -1, -1, -1, -1, -1};
12056
12057    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
12058    OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
12059    OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
12060
12061    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
12062    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
12063
12064    // The MOVLHPS Mask:
12065    static const int ShufMask2[] = {0, 1, 4, 5};
12066    SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
12067    return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
12068  }
12069
12070  // Handle truncation of V256 to V128 using shuffles.
12071  if (!VT.is128BitVector() || !InVT.is256BitVector())
12072    return SDValue();
12073
12074  assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
12075
12076  unsigned NumElems = VT.getVectorNumElements();
12077  MVT NVT = MVT::getVectorVT(VT.getVectorElementType(), NumElems * 2);
12078
12079  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
12080  // Prepare truncation shuffle mask
12081  for (unsigned i = 0; i != NumElems; ++i)
12082    MaskVec[i] = i * 2;
12083  SDValue V = DAG.getVectorShuffle(NVT, DL,
12084                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
12085                                   DAG.getUNDEF(NVT), &MaskVec[0]);
12086  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
12087                     DAG.getIntPtrConstant(0));
12088}
12089
12090SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
12091                                           SelectionDAG &DAG) const {
12092  assert(!Op.getSimpleValueType().isVector());
12093
12094  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
12095    /*IsSigned=*/ true, /*IsReplace=*/ false);
12096  SDValue FIST = Vals.first, StackSlot = Vals.second;
12097  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
12098  if (!FIST.getNode()) return Op;
12099
12100  if (StackSlot.getNode())
12101    // Load the result.
12102    return DAG.getLoad(Op.getValueType(), SDLoc(Op),
12103                       FIST, StackSlot, MachinePointerInfo(),
12104                       false, false, false, 0);
12105
12106  // The node is the result.
12107  return FIST;
12108}
12109
12110SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
12111                                           SelectionDAG &DAG) const {
12112  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
12113    /*IsSigned=*/ false, /*IsReplace=*/ false);
12114  SDValue FIST = Vals.first, StackSlot = Vals.second;
12115  assert(FIST.getNode() && "Unexpected failure");
12116
12117  if (StackSlot.getNode())
12118    // Load the result.
12119    return DAG.getLoad(Op.getValueType(), SDLoc(Op),
12120                       FIST, StackSlot, MachinePointerInfo(),
12121                       false, false, false, 0);
12122
12123  // The node is the result.
12124  return FIST;
12125}
12126
12127static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
12128  SDLoc DL(Op);
12129  MVT VT = Op.getSimpleValueType();
12130  SDValue In = Op.getOperand(0);
12131  MVT SVT = In.getSimpleValueType();
12132
12133  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
12134
12135  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
12136                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
12137                                 In, DAG.getUNDEF(SVT)));
12138}
12139
12140/// The only differences between FABS and FNEG are the mask and the logic op.
12141/// FNEG also has a folding opportunity for FNEG(FABS(x)).
12142static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) {
12143  assert((Op.getOpcode() == ISD::FABS || Op.getOpcode() == ISD::FNEG) &&
12144         "Wrong opcode for lowering FABS or FNEG.");
12145
12146  bool IsFABS = (Op.getOpcode() == ISD::FABS);
12147
12148  // If this is a FABS and it has an FNEG user, bail out to fold the combination
12149  // into an FNABS. We'll lower the FABS after that if it is still in use.
12150  if (IsFABS)
12151    for (SDNode *User : Op->uses())
12152      if (User->getOpcode() == ISD::FNEG)
12153        return Op;
12154
12155  SDValue Op0 = Op.getOperand(0);
12156  bool IsFNABS = !IsFABS && (Op0.getOpcode() == ISD::FABS);
12157
12158  SDLoc dl(Op);
12159  MVT VT = Op.getSimpleValueType();
12160  // Assume scalar op for initialization; update for vector if needed.
12161  // Note that there are no scalar bitwise logical SSE/AVX instructions, so we
12162  // generate a 16-byte vector constant and logic op even for the scalar case.
12163  // Using a 16-byte mask allows folding the load of the mask with
12164  // the logic op, so it can save (~4 bytes) on code size.
12165  MVT EltVT = VT;
12166  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
12167  // FIXME: Use function attribute "OptimizeForSize" and/or CodeGenOpt::Level to
12168  // decide if we should generate a 16-byte constant mask when we only need 4 or
12169  // 8 bytes for the scalar case.
12170  if (VT.isVector()) {
12171    EltVT = VT.getVectorElementType();
12172    NumElts = VT.getVectorNumElements();
12173  }
12174
12175  unsigned EltBits = EltVT.getSizeInBits();
12176  LLVMContext *Context = DAG.getContext();
12177  // For FABS, mask is 0x7f...; for FNEG, mask is 0x80...
12178  APInt MaskElt =
12179    IsFABS ? APInt::getSignedMaxValue(EltBits) : APInt::getSignBit(EltBits);
12180  Constant *C = ConstantInt::get(*Context, MaskElt);
12181  C = ConstantVector::getSplat(NumElts, C);
12182  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12183  SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy());
12184  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
12185  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
12186                             MachinePointerInfo::getConstantPool(),
12187                             false, false, false, Alignment);
12188
12189  if (VT.isVector()) {
12190    // For a vector, cast operands to a vector type, perform the logic op,
12191    // and cast the result back to the original value type.
12192    MVT VecVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64);
12193    SDValue MaskCasted = DAG.getNode(ISD::BITCAST, dl, VecVT, Mask);
12194    SDValue Operand = IsFNABS ?
12195      DAG.getNode(ISD::BITCAST, dl, VecVT, Op0.getOperand(0)) :
12196      DAG.getNode(ISD::BITCAST, dl, VecVT, Op0);
12197    unsigned BitOp = IsFABS ? ISD::AND : IsFNABS ? ISD::OR : ISD::XOR;
12198    return DAG.getNode(ISD::BITCAST, dl, VT,
12199                       DAG.getNode(BitOp, dl, VecVT, Operand, MaskCasted));
12200  }
12201
12202  // If not vector, then scalar.
12203  unsigned BitOp = IsFABS ? X86ISD::FAND : IsFNABS ? X86ISD::FOR : X86ISD::FXOR;
12204  SDValue Operand = IsFNABS ? Op0.getOperand(0) : Op0;
12205  return DAG.getNode(BitOp, dl, VT, Operand, Mask);
12206}
12207
12208static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
12209  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12210  LLVMContext *Context = DAG.getContext();
12211  SDValue Op0 = Op.getOperand(0);
12212  SDValue Op1 = Op.getOperand(1);
12213  SDLoc dl(Op);
12214  MVT VT = Op.getSimpleValueType();
12215  MVT SrcVT = Op1.getSimpleValueType();
12216
12217  // If second operand is smaller, extend it first.
12218  if (SrcVT.bitsLT(VT)) {
12219    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
12220    SrcVT = VT;
12221  }
12222  // And if it is bigger, shrink it first.
12223  if (SrcVT.bitsGT(VT)) {
12224    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
12225    SrcVT = VT;
12226  }
12227
12228  // At this point the operands and the result should have the same
12229  // type, and that won't be f80 since that is not custom lowered.
12230
12231  const fltSemantics &Sem =
12232      VT == MVT::f64 ? APFloat::IEEEdouble : APFloat::IEEEsingle;
12233  const unsigned SizeInBits = VT.getSizeInBits();
12234
12235  SmallVector<Constant *, 4> CV(
12236      VT == MVT::f64 ? 2 : 4,
12237      ConstantFP::get(*Context, APFloat(Sem, APInt(SizeInBits, 0))));
12238
12239  // First, clear all bits but the sign bit from the second operand (sign).
12240  CV[0] = ConstantFP::get(*Context,
12241                          APFloat(Sem, APInt::getHighBitsSet(SizeInBits, 1)));
12242  Constant *C = ConstantVector::get(CV);
12243  SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(), 16);
12244  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
12245                              MachinePointerInfo::getConstantPool(),
12246                              false, false, false, 16);
12247  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
12248
12249  // Next, clear the sign bit from the first operand (magnitude).
12250  // If it's a constant, we can clear it here.
12251  if (ConstantFPSDNode *Op0CN = dyn_cast<ConstantFPSDNode>(Op0)) {
12252    APFloat APF = Op0CN->getValueAPF();
12253    // If the magnitude is a positive zero, the sign bit alone is enough.
12254    if (APF.isPosZero())
12255      return SignBit;
12256    APF.clearSign();
12257    CV[0] = ConstantFP::get(*Context, APF);
12258  } else {
12259    CV[0] = ConstantFP::get(
12260        *Context,
12261        APFloat(Sem, APInt::getLowBitsSet(SizeInBits, SizeInBits - 1)));
12262  }
12263  C = ConstantVector::get(CV);
12264  CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(), 16);
12265  SDValue Val = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
12266                            MachinePointerInfo::getConstantPool(),
12267                            false, false, false, 16);
12268  // If the magnitude operand wasn't a constant, we need to AND out the sign.
12269  if (!isa<ConstantFPSDNode>(Op0))
12270    Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Val);
12271
12272  // OR the magnitude value with the sign bit.
12273  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
12274}
12275
12276static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
12277  SDValue N0 = Op.getOperand(0);
12278  SDLoc dl(Op);
12279  MVT VT = Op.getSimpleValueType();
12280
12281  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
12282  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
12283                                  DAG.getConstant(1, VT));
12284  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
12285}
12286
12287// Check whether an OR'd tree is PTEST-able.
12288static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget,
12289                                      SelectionDAG &DAG) {
12290  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
12291
12292  if (!Subtarget->hasSSE41())
12293    return SDValue();
12294
12295  if (!Op->hasOneUse())
12296    return SDValue();
12297
12298  SDNode *N = Op.getNode();
12299  SDLoc DL(N);
12300
12301  SmallVector<SDValue, 8> Opnds;
12302  DenseMap<SDValue, unsigned> VecInMap;
12303  SmallVector<SDValue, 8> VecIns;
12304  EVT VT = MVT::Other;
12305
12306  // Recognize a special case where a vector is casted into wide integer to
12307  // test all 0s.
12308  Opnds.push_back(N->getOperand(0));
12309  Opnds.push_back(N->getOperand(1));
12310
12311  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
12312    SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
12313    // BFS traverse all OR'd operands.
12314    if (I->getOpcode() == ISD::OR) {
12315      Opnds.push_back(I->getOperand(0));
12316      Opnds.push_back(I->getOperand(1));
12317      // Re-evaluate the number of nodes to be traversed.
12318      e += 2; // 2 more nodes (LHS and RHS) are pushed.
12319      continue;
12320    }
12321
12322    // Quit if a non-EXTRACT_VECTOR_ELT
12323    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12324      return SDValue();
12325
12326    // Quit if without a constant index.
12327    SDValue Idx = I->getOperand(1);
12328    if (!isa<ConstantSDNode>(Idx))
12329      return SDValue();
12330
12331    SDValue ExtractedFromVec = I->getOperand(0);
12332    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
12333    if (M == VecInMap.end()) {
12334      VT = ExtractedFromVec.getValueType();
12335      // Quit if not 128/256-bit vector.
12336      if (!VT.is128BitVector() && !VT.is256BitVector())
12337        return SDValue();
12338      // Quit if not the same type.
12339      if (VecInMap.begin() != VecInMap.end() &&
12340          VT != VecInMap.begin()->first.getValueType())
12341        return SDValue();
12342      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
12343      VecIns.push_back(ExtractedFromVec);
12344    }
12345    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
12346  }
12347
12348  assert((VT.is128BitVector() || VT.is256BitVector()) &&
12349         "Not extracted from 128-/256-bit vector.");
12350
12351  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
12352
12353  for (DenseMap<SDValue, unsigned>::const_iterator
12354        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
12355    // Quit if not all elements are used.
12356    if (I->second != FullMask)
12357      return SDValue();
12358  }
12359
12360  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
12361
12362  // Cast all vectors into TestVT for PTEST.
12363  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
12364    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
12365
12366  // If more than one full vectors are evaluated, OR them first before PTEST.
12367  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
12368    // Each iteration will OR 2 nodes and append the result until there is only
12369    // 1 node left, i.e. the final OR'd value of all vectors.
12370    SDValue LHS = VecIns[Slot];
12371    SDValue RHS = VecIns[Slot + 1];
12372    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
12373  }
12374
12375  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
12376                     VecIns.back(), VecIns.back());
12377}
12378
12379/// \brief return true if \c Op has a use that doesn't just read flags.
12380static bool hasNonFlagsUse(SDValue Op) {
12381  for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE;
12382       ++UI) {
12383    SDNode *User = *UI;
12384    unsigned UOpNo = UI.getOperandNo();
12385    if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
12386      // Look pass truncate.
12387      UOpNo = User->use_begin().getOperandNo();
12388      User = *User->use_begin();
12389    }
12390
12391    if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC &&
12392        !(User->getOpcode() == ISD::SELECT && UOpNo == 0))
12393      return true;
12394  }
12395  return false;
12396}
12397
12398/// Emit nodes that will be selected as "test Op0,Op0", or something
12399/// equivalent.
12400SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, SDLoc dl,
12401                                    SelectionDAG &DAG) const {
12402  if (Op.getValueType() == MVT::i1) {
12403    SDValue ExtOp = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i8, Op);
12404    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, ExtOp,
12405                       DAG.getConstant(0, MVT::i8));
12406  }
12407  // CF and OF aren't always set the way we want. Determine which
12408  // of these we need.
12409  bool NeedCF = false;
12410  bool NeedOF = false;
12411  switch (X86CC) {
12412  default: break;
12413  case X86::COND_A: case X86::COND_AE:
12414  case X86::COND_B: case X86::COND_BE:
12415    NeedCF = true;
12416    break;
12417  case X86::COND_G: case X86::COND_GE:
12418  case X86::COND_L: case X86::COND_LE:
12419  case X86::COND_O: case X86::COND_NO: {
12420    // Check if we really need to set the
12421    // Overflow flag. If NoSignedWrap is present
12422    // that is not actually needed.
12423    switch (Op->getOpcode()) {
12424    case ISD::ADD:
12425    case ISD::SUB:
12426    case ISD::MUL:
12427    case ISD::SHL: {
12428      const BinaryWithFlagsSDNode *BinNode =
12429          cast<BinaryWithFlagsSDNode>(Op.getNode());
12430      if (BinNode->hasNoSignedWrap())
12431        break;
12432    }
12433    default:
12434      NeedOF = true;
12435      break;
12436    }
12437    break;
12438  }
12439  }
12440  // See if we can use the EFLAGS value from the operand instead of
12441  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
12442  // we prove that the arithmetic won't overflow, we can't use OF or CF.
12443  if (Op.getResNo() != 0 || NeedOF || NeedCF) {
12444    // Emit a CMP with 0, which is the TEST pattern.
12445    //if (Op.getValueType() == MVT::i1)
12446    //  return DAG.getNode(X86ISD::CMP, dl, MVT::i1, Op,
12447    //                     DAG.getConstant(0, MVT::i1));
12448    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
12449                       DAG.getConstant(0, Op.getValueType()));
12450  }
12451  unsigned Opcode = 0;
12452  unsigned NumOperands = 0;
12453
12454  // Truncate operations may prevent the merge of the SETCC instruction
12455  // and the arithmetic instruction before it. Attempt to truncate the operands
12456  // of the arithmetic instruction and use a reduced bit-width instruction.
12457  bool NeedTruncation = false;
12458  SDValue ArithOp = Op;
12459  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
12460    SDValue Arith = Op->getOperand(0);
12461    // Both the trunc and the arithmetic op need to have one user each.
12462    if (Arith->hasOneUse())
12463      switch (Arith.getOpcode()) {
12464        default: break;
12465        case ISD::ADD:
12466        case ISD::SUB:
12467        case ISD::AND:
12468        case ISD::OR:
12469        case ISD::XOR: {
12470          NeedTruncation = true;
12471          ArithOp = Arith;
12472        }
12473      }
12474  }
12475
12476  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
12477  // which may be the result of a CAST.  We use the variable 'Op', which is the
12478  // non-casted variable when we check for possible users.
12479  switch (ArithOp.getOpcode()) {
12480  case ISD::ADD:
12481    // Due to an isel shortcoming, be conservative if this add is likely to be
12482    // selected as part of a load-modify-store instruction. When the root node
12483    // in a match is a store, isel doesn't know how to remap non-chain non-flag
12484    // uses of other nodes in the match, such as the ADD in this case. This
12485    // leads to the ADD being left around and reselected, with the result being
12486    // two adds in the output.  Alas, even if none our users are stores, that
12487    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
12488    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
12489    // climbing the DAG back to the root, and it doesn't seem to be worth the
12490    // effort.
12491    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
12492         UE = Op.getNode()->use_end(); UI != UE; ++UI)
12493      if (UI->getOpcode() != ISD::CopyToReg &&
12494          UI->getOpcode() != ISD::SETCC &&
12495          UI->getOpcode() != ISD::STORE)
12496        goto default_case;
12497
12498    if (ConstantSDNode *C =
12499        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
12500      // An add of one will be selected as an INC.
12501      if (C->getAPIntValue() == 1 && !Subtarget->slowIncDec()) {
12502        Opcode = X86ISD::INC;
12503        NumOperands = 1;
12504        break;
12505      }
12506
12507      // An add of negative one (subtract of one) will be selected as a DEC.
12508      if (C->getAPIntValue().isAllOnesValue() && !Subtarget->slowIncDec()) {
12509        Opcode = X86ISD::DEC;
12510        NumOperands = 1;
12511        break;
12512      }
12513    }
12514
12515    // Otherwise use a regular EFLAGS-setting add.
12516    Opcode = X86ISD::ADD;
12517    NumOperands = 2;
12518    break;
12519  case ISD::SHL:
12520  case ISD::SRL:
12521    // If we have a constant logical shift that's only used in a comparison
12522    // against zero turn it into an equivalent AND. This allows turning it into
12523    // a TEST instruction later.
12524    if ((X86CC == X86::COND_E || X86CC == X86::COND_NE) && Op->hasOneUse() &&
12525        isa<ConstantSDNode>(Op->getOperand(1)) && !hasNonFlagsUse(Op)) {
12526      EVT VT = Op.getValueType();
12527      unsigned BitWidth = VT.getSizeInBits();
12528      unsigned ShAmt = Op->getConstantOperandVal(1);
12529      if (ShAmt >= BitWidth) // Avoid undefined shifts.
12530        break;
12531      APInt Mask = ArithOp.getOpcode() == ISD::SRL
12532                       ? APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt)
12533                       : APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt);
12534      if (!Mask.isSignedIntN(32)) // Avoid large immediates.
12535        break;
12536      SDValue New = DAG.getNode(ISD::AND, dl, VT, Op->getOperand(0),
12537                                DAG.getConstant(Mask, VT));
12538      DAG.ReplaceAllUsesWith(Op, New);
12539      Op = New;
12540    }
12541    break;
12542
12543  case ISD::AND:
12544    // If the primary and result isn't used, don't bother using X86ISD::AND,
12545    // because a TEST instruction will be better.
12546    if (!hasNonFlagsUse(Op))
12547      break;
12548    // FALL THROUGH
12549  case ISD::SUB:
12550  case ISD::OR:
12551  case ISD::XOR:
12552    // Due to the ISEL shortcoming noted above, be conservative if this op is
12553    // likely to be selected as part of a load-modify-store instruction.
12554    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
12555           UE = Op.getNode()->use_end(); UI != UE; ++UI)
12556      if (UI->getOpcode() == ISD::STORE)
12557        goto default_case;
12558
12559    // Otherwise use a regular EFLAGS-setting instruction.
12560    switch (ArithOp.getOpcode()) {
12561    default: llvm_unreachable("unexpected operator!");
12562    case ISD::SUB: Opcode = X86ISD::SUB; break;
12563    case ISD::XOR: Opcode = X86ISD::XOR; break;
12564    case ISD::AND: Opcode = X86ISD::AND; break;
12565    case ISD::OR: {
12566      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
12567        SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG);
12568        if (EFLAGS.getNode())
12569          return EFLAGS;
12570      }
12571      Opcode = X86ISD::OR;
12572      break;
12573    }
12574    }
12575
12576    NumOperands = 2;
12577    break;
12578  case X86ISD::ADD:
12579  case X86ISD::SUB:
12580  case X86ISD::INC:
12581  case X86ISD::DEC:
12582  case X86ISD::OR:
12583  case X86ISD::XOR:
12584  case X86ISD::AND:
12585    return SDValue(Op.getNode(), 1);
12586  default:
12587  default_case:
12588    break;
12589  }
12590
12591  // If we found that truncation is beneficial, perform the truncation and
12592  // update 'Op'.
12593  if (NeedTruncation) {
12594    EVT VT = Op.getValueType();
12595    SDValue WideVal = Op->getOperand(0);
12596    EVT WideVT = WideVal.getValueType();
12597    unsigned ConvertedOp = 0;
12598    // Use a target machine opcode to prevent further DAGCombine
12599    // optimizations that may separate the arithmetic operations
12600    // from the setcc node.
12601    switch (WideVal.getOpcode()) {
12602      default: break;
12603      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
12604      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
12605      case ISD::AND: ConvertedOp = X86ISD::AND; break;
12606      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
12607      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
12608    }
12609
12610    if (ConvertedOp) {
12611      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12612      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
12613        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
12614        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
12615        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
12616      }
12617    }
12618  }
12619
12620  if (Opcode == 0)
12621    // Emit a CMP with 0, which is the TEST pattern.
12622    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
12623                       DAG.getConstant(0, Op.getValueType()));
12624
12625  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
12626  SmallVector<SDValue, 4> Ops(Op->op_begin(), Op->op_begin() + NumOperands);
12627
12628  SDValue New = DAG.getNode(Opcode, dl, VTs, Ops);
12629  DAG.ReplaceAllUsesWith(Op, New);
12630  return SDValue(New.getNode(), 1);
12631}
12632
12633/// Emit nodes that will be selected as "cmp Op0,Op1", or something
12634/// equivalent.
12635SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
12636                                   SDLoc dl, SelectionDAG &DAG) const {
12637  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1)) {
12638    if (C->getAPIntValue() == 0)
12639      return EmitTest(Op0, X86CC, dl, DAG);
12640
12641     if (Op0.getValueType() == MVT::i1)
12642       llvm_unreachable("Unexpected comparison operation for MVT::i1 operands");
12643  }
12644
12645  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
12646       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
12647    // Do the comparison at i32 if it's smaller, besides the Atom case.
12648    // This avoids subregister aliasing issues. Keep the smaller reference
12649    // if we're optimizing for size, however, as that'll allow better folding
12650    // of memory operations.
12651    if (Op0.getValueType() != MVT::i32 && Op0.getValueType() != MVT::i64 &&
12652        !DAG.getMachineFunction().getFunction()->hasFnAttribute(
12653            Attribute::MinSize) &&
12654        !Subtarget->isAtom()) {
12655      unsigned ExtendOp =
12656          isX86CCUnsigned(X86CC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
12657      Op0 = DAG.getNode(ExtendOp, dl, MVT::i32, Op0);
12658      Op1 = DAG.getNode(ExtendOp, dl, MVT::i32, Op1);
12659    }
12660    // Use SUB instead of CMP to enable CSE between SUB and CMP.
12661    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
12662    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
12663                              Op0, Op1);
12664    return SDValue(Sub.getNode(), 1);
12665  }
12666  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
12667}
12668
12669/// Convert a comparison if required by the subtarget.
12670SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
12671                                                 SelectionDAG &DAG) const {
12672  // If the subtarget does not support the FUCOMI instruction, floating-point
12673  // comparisons have to be converted.
12674  if (Subtarget->hasCMov() ||
12675      Cmp.getOpcode() != X86ISD::CMP ||
12676      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
12677      !Cmp.getOperand(1).getValueType().isFloatingPoint())
12678    return Cmp;
12679
12680  // The instruction selector will select an FUCOM instruction instead of
12681  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
12682  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
12683  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
12684  SDLoc dl(Cmp);
12685  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
12686  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
12687  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
12688                            DAG.getConstant(8, MVT::i8));
12689  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
12690  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
12691}
12692
12693/// The minimum architected relative accuracy is 2^-12. We need one
12694/// Newton-Raphson step to have a good float result (24 bits of precision).
12695SDValue X86TargetLowering::getRsqrtEstimate(SDValue Op,
12696                                            DAGCombinerInfo &DCI,
12697                                            unsigned &RefinementSteps,
12698                                            bool &UseOneConstNR) const {
12699  // FIXME: We should use instruction latency models to calculate the cost of
12700  // each potential sequence, but this is very hard to do reliably because
12701  // at least Intel's Core* chips have variable timing based on the number of
12702  // significant digits in the divisor and/or sqrt operand.
12703  if (!Subtarget->useSqrtEst())
12704    return SDValue();
12705
12706  EVT VT = Op.getValueType();
12707
12708  // SSE1 has rsqrtss and rsqrtps.
12709  // TODO: Add support for AVX512 (v16f32).
12710  // It is likely not profitable to do this for f64 because a double-precision
12711  // rsqrt estimate with refinement on x86 prior to FMA requires at least 16
12712  // instructions: convert to single, rsqrtss, convert back to double, refine
12713  // (3 steps = at least 13 insts). If an 'rsqrtsd' variant was added to the ISA
12714  // along with FMA, this could be a throughput win.
12715  if ((Subtarget->hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) ||
12716      (Subtarget->hasAVX() && VT == MVT::v8f32)) {
12717    RefinementSteps = 1;
12718    UseOneConstNR = false;
12719    return DCI.DAG.getNode(X86ISD::FRSQRT, SDLoc(Op), VT, Op);
12720  }
12721  return SDValue();
12722}
12723
12724/// The minimum architected relative accuracy is 2^-12. We need one
12725/// Newton-Raphson step to have a good float result (24 bits of precision).
12726SDValue X86TargetLowering::getRecipEstimate(SDValue Op,
12727                                            DAGCombinerInfo &DCI,
12728                                            unsigned &RefinementSteps) const {
12729  // FIXME: We should use instruction latency models to calculate the cost of
12730  // each potential sequence, but this is very hard to do reliably because
12731  // at least Intel's Core* chips have variable timing based on the number of
12732  // significant digits in the divisor.
12733  if (!Subtarget->useReciprocalEst())
12734    return SDValue();
12735
12736  EVT VT = Op.getValueType();
12737
12738  // SSE1 has rcpss and rcpps. AVX adds a 256-bit variant for rcpps.
12739  // TODO: Add support for AVX512 (v16f32).
12740  // It is likely not profitable to do this for f64 because a double-precision
12741  // reciprocal estimate with refinement on x86 prior to FMA requires
12742  // 15 instructions: convert to single, rcpss, convert back to double, refine
12743  // (3 steps = 12 insts). If an 'rcpsd' variant was added to the ISA
12744  // along with FMA, this could be a throughput win.
12745  if ((Subtarget->hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) ||
12746      (Subtarget->hasAVX() && VT == MVT::v8f32)) {
12747    RefinementSteps = ReciprocalEstimateRefinementSteps;
12748    return DCI.DAG.getNode(X86ISD::FRCP, SDLoc(Op), VT, Op);
12749  }
12750  return SDValue();
12751}
12752
12753static bool isAllOnes(SDValue V) {
12754  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
12755  return C && C->isAllOnesValue();
12756}
12757
12758/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
12759/// if it's possible.
12760SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
12761                                     SDLoc dl, SelectionDAG &DAG) const {
12762  SDValue Op0 = And.getOperand(0);
12763  SDValue Op1 = And.getOperand(1);
12764  if (Op0.getOpcode() == ISD::TRUNCATE)
12765    Op0 = Op0.getOperand(0);
12766  if (Op1.getOpcode() == ISD::TRUNCATE)
12767    Op1 = Op1.getOperand(0);
12768
12769  SDValue LHS, RHS;
12770  if (Op1.getOpcode() == ISD::SHL)
12771    std::swap(Op0, Op1);
12772  if (Op0.getOpcode() == ISD::SHL) {
12773    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
12774      if (And00C->getZExtValue() == 1) {
12775        // If we looked past a truncate, check that it's only truncating away
12776        // known zeros.
12777        unsigned BitWidth = Op0.getValueSizeInBits();
12778        unsigned AndBitWidth = And.getValueSizeInBits();
12779        if (BitWidth > AndBitWidth) {
12780          APInt Zeros, Ones;
12781          DAG.computeKnownBits(Op0, Zeros, Ones);
12782          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
12783            return SDValue();
12784        }
12785        LHS = Op1;
12786        RHS = Op0.getOperand(1);
12787      }
12788  } else if (Op1.getOpcode() == ISD::Constant) {
12789    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
12790    uint64_t AndRHSVal = AndRHS->getZExtValue();
12791    SDValue AndLHS = Op0;
12792
12793    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
12794      LHS = AndLHS.getOperand(0);
12795      RHS = AndLHS.getOperand(1);
12796    }
12797
12798    // Use BT if the immediate can't be encoded in a TEST instruction.
12799    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
12800      LHS = AndLHS;
12801      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
12802    }
12803  }
12804
12805  if (LHS.getNode()) {
12806    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
12807    // instruction.  Since the shift amount is in-range-or-undefined, we know
12808    // that doing a bittest on the i32 value is ok.  We extend to i32 because
12809    // the encoding for the i16 version is larger than the i32 version.
12810    // Also promote i16 to i32 for performance / code size reason.
12811    if (LHS.getValueType() == MVT::i8 ||
12812        LHS.getValueType() == MVT::i16)
12813      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
12814
12815    // If the operand types disagree, extend the shift amount to match.  Since
12816    // BT ignores high bits (like shifts) we can use anyextend.
12817    if (LHS.getValueType() != RHS.getValueType())
12818      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
12819
12820    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
12821    X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
12822    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
12823                       DAG.getConstant(Cond, MVT::i8), BT);
12824  }
12825
12826  return SDValue();
12827}
12828
12829/// \brief - Turns an ISD::CondCode into a value suitable for SSE floating point
12830/// mask CMPs.
12831static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0,
12832                              SDValue &Op1) {
12833  unsigned SSECC;
12834  bool Swap = false;
12835
12836  // SSE Condition code mapping:
12837  //  0 - EQ
12838  //  1 - LT
12839  //  2 - LE
12840  //  3 - UNORD
12841  //  4 - NEQ
12842  //  5 - NLT
12843  //  6 - NLE
12844  //  7 - ORD
12845  switch (SetCCOpcode) {
12846  default: llvm_unreachable("Unexpected SETCC condition");
12847  case ISD::SETOEQ:
12848  case ISD::SETEQ:  SSECC = 0; break;
12849  case ISD::SETOGT:
12850  case ISD::SETGT:  Swap = true; // Fallthrough
12851  case ISD::SETLT:
12852  case ISD::SETOLT: SSECC = 1; break;
12853  case ISD::SETOGE:
12854  case ISD::SETGE:  Swap = true; // Fallthrough
12855  case ISD::SETLE:
12856  case ISD::SETOLE: SSECC = 2; break;
12857  case ISD::SETUO:  SSECC = 3; break;
12858  case ISD::SETUNE:
12859  case ISD::SETNE:  SSECC = 4; break;
12860  case ISD::SETULE: Swap = true; // Fallthrough
12861  case ISD::SETUGE: SSECC = 5; break;
12862  case ISD::SETULT: Swap = true; // Fallthrough
12863  case ISD::SETUGT: SSECC = 6; break;
12864  case ISD::SETO:   SSECC = 7; break;
12865  case ISD::SETUEQ:
12866  case ISD::SETONE: SSECC = 8; break;
12867  }
12868  if (Swap)
12869    std::swap(Op0, Op1);
12870
12871  return SSECC;
12872}
12873
12874// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
12875// ones, and then concatenate the result back.
12876static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
12877  MVT VT = Op.getSimpleValueType();
12878
12879  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
12880         "Unsupported value type for operation");
12881
12882  unsigned NumElems = VT.getVectorNumElements();
12883  SDLoc dl(Op);
12884  SDValue CC = Op.getOperand(2);
12885
12886  // Extract the LHS vectors
12887  SDValue LHS = Op.getOperand(0);
12888  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
12889  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
12890
12891  // Extract the RHS vectors
12892  SDValue RHS = Op.getOperand(1);
12893  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
12894  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
12895
12896  // Issue the operation on the smaller types and concatenate the result back
12897  MVT EltVT = VT.getVectorElementType();
12898  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
12899  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
12900                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
12901                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
12902}
12903
12904static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG,
12905                                     const X86Subtarget *Subtarget) {
12906  SDValue Op0 = Op.getOperand(0);
12907  SDValue Op1 = Op.getOperand(1);
12908  SDValue CC = Op.getOperand(2);
12909  MVT VT = Op.getSimpleValueType();
12910  SDLoc dl(Op);
12911
12912  assert(Op0.getValueType().getVectorElementType().getSizeInBits() >= 8 &&
12913         Op.getValueType().getScalarType() == MVT::i1 &&
12914         "Cannot set masked compare for this operation");
12915
12916  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
12917  unsigned  Opc = 0;
12918  bool Unsigned = false;
12919  bool Swap = false;
12920  unsigned SSECC;
12921  switch (SetCCOpcode) {
12922  default: llvm_unreachable("Unexpected SETCC condition");
12923  case ISD::SETNE:  SSECC = 4; break;
12924  case ISD::SETEQ:  Opc = X86ISD::PCMPEQM; break;
12925  case ISD::SETUGT: SSECC = 6; Unsigned = true; break;
12926  case ISD::SETLT:  Swap = true; //fall-through
12927  case ISD::SETGT:  Opc = X86ISD::PCMPGTM; break;
12928  case ISD::SETULT: SSECC = 1; Unsigned = true; break;
12929  case ISD::SETUGE: SSECC = 5; Unsigned = true; break; //NLT
12930  case ISD::SETGE:  Swap = true; SSECC = 2; break; // LE + swap
12931  case ISD::SETULE: Unsigned = true; //fall-through
12932  case ISD::SETLE:  SSECC = 2; break;
12933  }
12934
12935  if (Swap)
12936    std::swap(Op0, Op1);
12937  if (Opc)
12938    return DAG.getNode(Opc, dl, VT, Op0, Op1);
12939  Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM;
12940  return DAG.getNode(Opc, dl, VT, Op0, Op1,
12941                     DAG.getConstant(SSECC, MVT::i8));
12942}
12943
12944/// \brief Try to turn a VSETULT into a VSETULE by modifying its second
12945/// operand \p Op1.  If non-trivial (for example because it's not constant)
12946/// return an empty value.
12947static SDValue ChangeVSETULTtoVSETULE(SDLoc dl, SDValue Op1, SelectionDAG &DAG)
12948{
12949  BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1.getNode());
12950  if (!BV)
12951    return SDValue();
12952
12953  MVT VT = Op1.getSimpleValueType();
12954  MVT EVT = VT.getVectorElementType();
12955  unsigned n = VT.getVectorNumElements();
12956  SmallVector<SDValue, 8> ULTOp1;
12957
12958  for (unsigned i = 0; i < n; ++i) {
12959    ConstantSDNode *Elt = dyn_cast<ConstantSDNode>(BV->getOperand(i));
12960    if (!Elt || Elt->isOpaque() || Elt->getValueType(0) != EVT)
12961      return SDValue();
12962
12963    // Avoid underflow.
12964    APInt Val = Elt->getAPIntValue();
12965    if (Val == 0)
12966      return SDValue();
12967
12968    ULTOp1.push_back(DAG.getConstant(Val - 1, EVT));
12969  }
12970
12971  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, ULTOp1);
12972}
12973
12974static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
12975                           SelectionDAG &DAG) {
12976  SDValue Op0 = Op.getOperand(0);
12977  SDValue Op1 = Op.getOperand(1);
12978  SDValue CC = Op.getOperand(2);
12979  MVT VT = Op.getSimpleValueType();
12980  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
12981  bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint();
12982  SDLoc dl(Op);
12983
12984  if (isFP) {
12985#ifndef NDEBUG
12986    MVT EltVT = Op0.getSimpleValueType().getVectorElementType();
12987    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
12988#endif
12989
12990    unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1);
12991    unsigned Opc = X86ISD::CMPP;
12992    if (Subtarget->hasAVX512() && VT.getVectorElementType() == MVT::i1) {
12993      assert(VT.getVectorNumElements() <= 16);
12994      Opc = X86ISD::CMPM;
12995    }
12996    // In the two special cases we can't handle, emit two comparisons.
12997    if (SSECC == 8) {
12998      unsigned CC0, CC1;
12999      unsigned CombineOpc;
13000      if (SetCCOpcode == ISD::SETUEQ) {
13001        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
13002      } else {
13003        assert(SetCCOpcode == ISD::SETONE);
13004        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
13005      }
13006
13007      SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1,
13008                                 DAG.getConstant(CC0, MVT::i8));
13009      SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1,
13010                                 DAG.getConstant(CC1, MVT::i8));
13011      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
13012    }
13013    // Handle all other FP comparisons here.
13014    return DAG.getNode(Opc, dl, VT, Op0, Op1,
13015                       DAG.getConstant(SSECC, MVT::i8));
13016  }
13017
13018  // Break 256-bit integer vector compare into smaller ones.
13019  if (VT.is256BitVector() && !Subtarget->hasInt256())
13020    return Lower256IntVSETCC(Op, DAG);
13021
13022  bool MaskResult = (VT.getVectorElementType() == MVT::i1);
13023  EVT OpVT = Op1.getValueType();
13024  if (Subtarget->hasAVX512()) {
13025    if (Op1.getValueType().is512BitVector() ||
13026        (Subtarget->hasBWI() && Subtarget->hasVLX()) ||
13027        (MaskResult && OpVT.getVectorElementType().getSizeInBits() >= 32))
13028      return LowerIntVSETCC_AVX512(Op, DAG, Subtarget);
13029
13030    // In AVX-512 architecture setcc returns mask with i1 elements,
13031    // But there is no compare instruction for i8 and i16 elements in KNL.
13032    // We are not talking about 512-bit operands in this case, these
13033    // types are illegal.
13034    if (MaskResult &&
13035        (OpVT.getVectorElementType().getSizeInBits() < 32 &&
13036         OpVT.getVectorElementType().getSizeInBits() >= 8))
13037      return DAG.getNode(ISD::TRUNCATE, dl, VT,
13038                         DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC));
13039  }
13040
13041  // We are handling one of the integer comparisons here.  Since SSE only has
13042  // GT and EQ comparisons for integer, swapping operands and multiple
13043  // operations may be required for some comparisons.
13044  unsigned Opc;
13045  bool Swap = false, Invert = false, FlipSigns = false, MinMax = false;
13046  bool Subus = false;
13047
13048  switch (SetCCOpcode) {
13049  default: llvm_unreachable("Unexpected SETCC condition");
13050  case ISD::SETNE:  Invert = true;
13051  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
13052  case ISD::SETLT:  Swap = true;
13053  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
13054  case ISD::SETGE:  Swap = true;
13055  case ISD::SETLE:  Opc = X86ISD::PCMPGT;
13056                    Invert = true; break;
13057  case ISD::SETULT: Swap = true;
13058  case ISD::SETUGT: Opc = X86ISD::PCMPGT;
13059                    FlipSigns = true; break;
13060  case ISD::SETUGE: Swap = true;
13061  case ISD::SETULE: Opc = X86ISD::PCMPGT;
13062                    FlipSigns = true; Invert = true; break;
13063  }
13064
13065  // Special case: Use min/max operations for SETULE/SETUGE
13066  MVT VET = VT.getVectorElementType();
13067  bool hasMinMax =
13068       (Subtarget->hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32))
13069    || (Subtarget->hasSSE2()  && (VET == MVT::i8));
13070
13071  if (hasMinMax) {
13072    switch (SetCCOpcode) {
13073    default: break;
13074    case ISD::SETULE: Opc = X86ISD::UMIN; MinMax = true; break;
13075    case ISD::SETUGE: Opc = X86ISD::UMAX; MinMax = true; break;
13076    }
13077
13078    if (MinMax) { Swap = false; Invert = false; FlipSigns = false; }
13079  }
13080
13081  bool hasSubus = Subtarget->hasSSE2() && (VET == MVT::i8 || VET == MVT::i16);
13082  if (!MinMax && hasSubus) {
13083    // As another special case, use PSUBUS[BW] when it's profitable. E.g. for
13084    // Op0 u<= Op1:
13085    //   t = psubus Op0, Op1
13086    //   pcmpeq t, <0..0>
13087    switch (SetCCOpcode) {
13088    default: break;
13089    case ISD::SETULT: {
13090      // If the comparison is against a constant we can turn this into a
13091      // setule.  With psubus, setule does not require a swap.  This is
13092      // beneficial because the constant in the register is no longer
13093      // destructed as the destination so it can be hoisted out of a loop.
13094      // Only do this pre-AVX since vpcmp* is no longer destructive.
13095      if (Subtarget->hasAVX())
13096        break;
13097      SDValue ULEOp1 = ChangeVSETULTtoVSETULE(dl, Op1, DAG);
13098      if (ULEOp1.getNode()) {
13099        Op1 = ULEOp1;
13100        Subus = true; Invert = false; Swap = false;
13101      }
13102      break;
13103    }
13104    // Psubus is better than flip-sign because it requires no inversion.
13105    case ISD::SETUGE: Subus = true; Invert = false; Swap = true;  break;
13106    case ISD::SETULE: Subus = true; Invert = false; Swap = false; break;
13107    }
13108
13109    if (Subus) {
13110      Opc = X86ISD::SUBUS;
13111      FlipSigns = false;
13112    }
13113  }
13114
13115  if (Swap)
13116    std::swap(Op0, Op1);
13117
13118  // Check that the operation in question is available (most are plain SSE2,
13119  // but PCMPGTQ and PCMPEQQ have different requirements).
13120  if (VT == MVT::v2i64) {
13121    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) {
13122      assert(Subtarget->hasSSE2() && "Don't know how to lower!");
13123
13124      // First cast everything to the right type.
13125      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
13126      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
13127
13128      // Since SSE has no unsigned integer comparisons, we need to flip the sign
13129      // bits of the inputs before performing those operations. The lower
13130      // compare is always unsigned.
13131      SDValue SB;
13132      if (FlipSigns) {
13133        SB = DAG.getConstant(0x80000000U, MVT::v4i32);
13134      } else {
13135        SDValue Sign = DAG.getConstant(0x80000000U, MVT::i32);
13136        SDValue Zero = DAG.getConstant(0x00000000U, MVT::i32);
13137        SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
13138                         Sign, Zero, Sign, Zero);
13139      }
13140      Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB);
13141      Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB);
13142
13143      // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
13144      SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
13145      SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
13146
13147      // Create masks for only the low parts/high parts of the 64 bit integers.
13148      static const int MaskHi[] = { 1, 1, 3, 3 };
13149      static const int MaskLo[] = { 0, 0, 2, 2 };
13150      SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
13151      SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
13152      SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
13153
13154      SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
13155      Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
13156
13157      if (Invert)
13158        Result = DAG.getNOT(dl, Result, MVT::v4i32);
13159
13160      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
13161    }
13162
13163    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
13164      // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
13165      // pcmpeqd + pshufd + pand.
13166      assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
13167
13168      // First cast everything to the right type.
13169      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
13170      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
13171
13172      // Do the compare.
13173      SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
13174
13175      // Make sure the lower and upper halves are both all-ones.
13176      static const int Mask[] = { 1, 0, 3, 2 };
13177      SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
13178      Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
13179
13180      if (Invert)
13181        Result = DAG.getNOT(dl, Result, MVT::v4i32);
13182
13183      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
13184    }
13185  }
13186
13187  // Since SSE has no unsigned integer comparisons, we need to flip the sign
13188  // bits of the inputs before performing those operations.
13189  if (FlipSigns) {
13190    EVT EltVT = VT.getVectorElementType();
13191    SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), VT);
13192    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB);
13193    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB);
13194  }
13195
13196  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
13197
13198  // If the logical-not of the result is required, perform that now.
13199  if (Invert)
13200    Result = DAG.getNOT(dl, Result, VT);
13201
13202  if (MinMax)
13203    Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
13204
13205  if (Subus)
13206    Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Result,
13207                         getZeroVector(VT, Subtarget, DAG, dl));
13208
13209  return Result;
13210}
13211
13212SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
13213
13214  MVT VT = Op.getSimpleValueType();
13215
13216  if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
13217
13218  assert(((!Subtarget->hasAVX512() && VT == MVT::i8) || (VT == MVT::i1))
13219         && "SetCC type must be 8-bit or 1-bit integer");
13220  SDValue Op0 = Op.getOperand(0);
13221  SDValue Op1 = Op.getOperand(1);
13222  SDLoc dl(Op);
13223  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
13224
13225  // Optimize to BT if possible.
13226  // Lower (X & (1 << N)) == 0 to BT(X, N).
13227  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
13228  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
13229  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
13230      Op1.getOpcode() == ISD::Constant &&
13231      cast<ConstantSDNode>(Op1)->isNullValue() &&
13232      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
13233    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
13234    if (NewSetCC.getNode()) {
13235      if (VT == MVT::i1)
13236        return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewSetCC);
13237      return NewSetCC;
13238    }
13239  }
13240
13241  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
13242  // these.
13243  if (Op1.getOpcode() == ISD::Constant &&
13244      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
13245       cast<ConstantSDNode>(Op1)->isNullValue()) &&
13246      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
13247
13248    // If the input is a setcc, then reuse the input setcc or use a new one with
13249    // the inverted condition.
13250    if (Op0.getOpcode() == X86ISD::SETCC) {
13251      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
13252      bool Invert = (CC == ISD::SETNE) ^
13253        cast<ConstantSDNode>(Op1)->isNullValue();
13254      if (!Invert)
13255        return Op0;
13256
13257      CCode = X86::GetOppositeBranchCondition(CCode);
13258      SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
13259                                  DAG.getConstant(CCode, MVT::i8),
13260                                  Op0.getOperand(1));
13261      if (VT == MVT::i1)
13262        return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
13263      return SetCC;
13264    }
13265  }
13266  if ((Op0.getValueType() == MVT::i1) && (Op1.getOpcode() == ISD::Constant) &&
13267      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1) &&
13268      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
13269
13270    ISD::CondCode NewCC = ISD::getSetCCInverse(CC, true);
13271    return DAG.getSetCC(dl, VT, Op0, DAG.getConstant(0, MVT::i1), NewCC);
13272  }
13273
13274  bool isFP = Op1.getSimpleValueType().isFloatingPoint();
13275  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
13276  if (X86CC == X86::COND_INVALID)
13277    return SDValue();
13278
13279  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, dl, DAG);
13280  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
13281  SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
13282                              DAG.getConstant(X86CC, MVT::i8), EFLAGS);
13283  if (VT == MVT::i1)
13284    return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
13285  return SetCC;
13286}
13287
13288// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
13289static bool isX86LogicalCmp(SDValue Op) {
13290  unsigned Opc = Op.getNode()->getOpcode();
13291  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
13292      Opc == X86ISD::SAHF)
13293    return true;
13294  if (Op.getResNo() == 1 &&
13295      (Opc == X86ISD::ADD ||
13296       Opc == X86ISD::SUB ||
13297       Opc == X86ISD::ADC ||
13298       Opc == X86ISD::SBB ||
13299       Opc == X86ISD::SMUL ||
13300       Opc == X86ISD::UMUL ||
13301       Opc == X86ISD::INC ||
13302       Opc == X86ISD::DEC ||
13303       Opc == X86ISD::OR ||
13304       Opc == X86ISD::XOR ||
13305       Opc == X86ISD::AND))
13306    return true;
13307
13308  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
13309    return true;
13310
13311  return false;
13312}
13313
13314static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
13315  if (V.getOpcode() != ISD::TRUNCATE)
13316    return false;
13317
13318  SDValue VOp0 = V.getOperand(0);
13319  unsigned InBits = VOp0.getValueSizeInBits();
13320  unsigned Bits = V.getValueSizeInBits();
13321  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
13322}
13323
13324SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
13325  bool addTest = true;
13326  SDValue Cond  = Op.getOperand(0);
13327  SDValue Op1 = Op.getOperand(1);
13328  SDValue Op2 = Op.getOperand(2);
13329  SDLoc DL(Op);
13330  EVT VT = Op1.getValueType();
13331  SDValue CC;
13332
13333  // Lower FP selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
13334  // are available or VBLENDV if AVX is available.
13335  // Otherwise FP cmovs get lowered into a less efficient branch sequence later.
13336  if (Cond.getOpcode() == ISD::SETCC &&
13337      ((Subtarget->hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) ||
13338       (Subtarget->hasSSE1() && VT == MVT::f32)) &&
13339      VT == Cond.getOperand(0).getValueType() && Cond->hasOneUse()) {
13340    SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1);
13341    int SSECC = translateX86FSETCC(
13342        cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1);
13343
13344    if (SSECC != 8) {
13345      if (Subtarget->hasAVX512()) {
13346        SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CondOp0, CondOp1,
13347                                  DAG.getConstant(SSECC, MVT::i8));
13348        return DAG.getNode(X86ISD::SELECT, DL, VT, Cmp, Op1, Op2);
13349      }
13350
13351      SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1,
13352                                DAG.getConstant(SSECC, MVT::i8));
13353
13354      // If we have AVX, we can use a variable vector select (VBLENDV) instead
13355      // of 3 logic instructions for size savings and potentially speed.
13356      // Unfortunately, there is no scalar form of VBLENDV.
13357
13358      // If either operand is a constant, don't try this. We can expect to
13359      // optimize away at least one of the logic instructions later in that
13360      // case, so that sequence would be faster than a variable blend.
13361
13362      // BLENDV was introduced with SSE 4.1, but the 2 register form implicitly
13363      // uses XMM0 as the selection register. That may need just as many
13364      // instructions as the AND/ANDN/OR sequence due to register moves, so
13365      // don't bother.
13366
13367      if (Subtarget->hasAVX() &&
13368          !isa<ConstantFPSDNode>(Op1) && !isa<ConstantFPSDNode>(Op2)) {
13369
13370        // Convert to vectors, do a VSELECT, and convert back to scalar.
13371        // All of the conversions should be optimized away.
13372
13373        EVT VecVT = VT == MVT::f32 ? MVT::v4f32 : MVT::v2f64;
13374        SDValue VOp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op1);
13375        SDValue VOp2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op2);
13376        SDValue VCmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Cmp);
13377
13378        EVT VCmpVT = VT == MVT::f32 ? MVT::v4i32 : MVT::v2i64;
13379        VCmp = DAG.getNode(ISD::BITCAST, DL, VCmpVT, VCmp);
13380
13381        SDValue VSel = DAG.getNode(ISD::VSELECT, DL, VecVT, VCmp, VOp1, VOp2);
13382
13383        return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
13384                           VSel, DAG.getIntPtrConstant(0));
13385      }
13386      SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
13387      SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
13388      return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
13389    }
13390  }
13391
13392  if (Cond.getOpcode() == ISD::SETCC) {
13393    SDValue NewCond = LowerSETCC(Cond, DAG);
13394    if (NewCond.getNode())
13395      Cond = NewCond;
13396  }
13397
13398  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
13399  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
13400  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
13401  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
13402  if (Cond.getOpcode() == X86ISD::SETCC &&
13403      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
13404      isZero(Cond.getOperand(1).getOperand(1))) {
13405    SDValue Cmp = Cond.getOperand(1);
13406
13407    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
13408
13409    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
13410        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
13411      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
13412
13413      SDValue CmpOp0 = Cmp.getOperand(0);
13414      // Apply further optimizations for special cases
13415      // (select (x != 0), -1, 0) -> neg & sbb
13416      // (select (x == 0), 0, -1) -> neg & sbb
13417      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
13418        if (YC->isNullValue() &&
13419            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
13420          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
13421          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
13422                                    DAG.getConstant(0, CmpOp0.getValueType()),
13423                                    CmpOp0);
13424          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
13425                                    DAG.getConstant(X86::COND_B, MVT::i8),
13426                                    SDValue(Neg.getNode(), 1));
13427          return Res;
13428        }
13429
13430      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
13431                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
13432      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
13433
13434      SDValue Res =   // Res = 0 or -1.
13435        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
13436                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
13437
13438      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
13439        Res = DAG.getNOT(DL, Res, Res.getValueType());
13440
13441      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
13442      if (!N2C || !N2C->isNullValue())
13443        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
13444      return Res;
13445    }
13446  }
13447
13448  // Look past (and (setcc_carry (cmp ...)), 1).
13449  if (Cond.getOpcode() == ISD::AND &&
13450      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
13451    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
13452    if (C && C->getAPIntValue() == 1)
13453      Cond = Cond.getOperand(0);
13454  }
13455
13456  // If condition flag is set by a X86ISD::CMP, then use it as the condition
13457  // setting operand in place of the X86ISD::SETCC.
13458  unsigned CondOpcode = Cond.getOpcode();
13459  if (CondOpcode == X86ISD::SETCC ||
13460      CondOpcode == X86ISD::SETCC_CARRY) {
13461    CC = Cond.getOperand(0);
13462
13463    SDValue Cmp = Cond.getOperand(1);
13464    unsigned Opc = Cmp.getOpcode();
13465    MVT VT = Op.getSimpleValueType();
13466
13467    bool IllegalFPCMov = false;
13468    if (VT.isFloatingPoint() && !VT.isVector() &&
13469        !isScalarFPTypeInSSEReg(VT))  // FPStack?
13470      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
13471
13472    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
13473        Opc == X86ISD::BT) { // FIXME
13474      Cond = Cmp;
13475      addTest = false;
13476    }
13477  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
13478             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
13479             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
13480              Cond.getOperand(0).getValueType() != MVT::i8)) {
13481    SDValue LHS = Cond.getOperand(0);
13482    SDValue RHS = Cond.getOperand(1);
13483    unsigned X86Opcode;
13484    unsigned X86Cond;
13485    SDVTList VTs;
13486    switch (CondOpcode) {
13487    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
13488    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
13489    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
13490    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
13491    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
13492    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
13493    default: llvm_unreachable("unexpected overflowing operator");
13494    }
13495    if (CondOpcode == ISD::UMULO)
13496      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
13497                          MVT::i32);
13498    else
13499      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
13500
13501    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
13502
13503    if (CondOpcode == ISD::UMULO)
13504      Cond = X86Op.getValue(2);
13505    else
13506      Cond = X86Op.getValue(1);
13507
13508    CC = DAG.getConstant(X86Cond, MVT::i8);
13509    addTest = false;
13510  }
13511
13512  if (addTest) {
13513    // Look pass the truncate if the high bits are known zero.
13514    if (isTruncWithZeroHighBitsInput(Cond, DAG))
13515        Cond = Cond.getOperand(0);
13516
13517    // We know the result of AND is compared against zero. Try to match
13518    // it to BT.
13519    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
13520      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
13521      if (NewSetCC.getNode()) {
13522        CC = NewSetCC.getOperand(0);
13523        Cond = NewSetCC.getOperand(1);
13524        addTest = false;
13525      }
13526    }
13527  }
13528
13529  if (addTest) {
13530    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
13531    Cond = EmitTest(Cond, X86::COND_NE, DL, DAG);
13532  }
13533
13534  // a <  b ? -1 :  0 -> RES = ~setcc_carry
13535  // a <  b ?  0 : -1 -> RES = setcc_carry
13536  // a >= b ? -1 :  0 -> RES = setcc_carry
13537  // a >= b ?  0 : -1 -> RES = ~setcc_carry
13538  if (Cond.getOpcode() == X86ISD::SUB) {
13539    Cond = ConvertCmpIfNecessary(Cond, DAG);
13540    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
13541
13542    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
13543        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
13544      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
13545                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
13546      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
13547        return DAG.getNOT(DL, Res, Res.getValueType());
13548      return Res;
13549    }
13550  }
13551
13552  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
13553  // widen the cmov and push the truncate through. This avoids introducing a new
13554  // branch during isel and doesn't add any extensions.
13555  if (Op.getValueType() == MVT::i8 &&
13556      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
13557    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
13558    if (T1.getValueType() == T2.getValueType() &&
13559        // Blacklist CopyFromReg to avoid partial register stalls.
13560        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
13561      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
13562      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
13563      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
13564    }
13565  }
13566
13567  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
13568  // condition is true.
13569  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
13570  SDValue Ops[] = { Op2, Op1, CC, Cond };
13571  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops);
13572}
13573
13574static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, const X86Subtarget *Subtarget,
13575                                       SelectionDAG &DAG) {
13576  MVT VT = Op->getSimpleValueType(0);
13577  SDValue In = Op->getOperand(0);
13578  MVT InVT = In.getSimpleValueType();
13579  MVT VTElt = VT.getVectorElementType();
13580  MVT InVTElt = InVT.getVectorElementType();
13581  SDLoc dl(Op);
13582
13583  // SKX processor
13584  if ((InVTElt == MVT::i1) &&
13585      (((Subtarget->hasBWI() && Subtarget->hasVLX() &&
13586        VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() <= 16)) ||
13587
13588       ((Subtarget->hasBWI() && VT.is512BitVector() &&
13589        VTElt.getSizeInBits() <= 16)) ||
13590
13591       ((Subtarget->hasDQI() && Subtarget->hasVLX() &&
13592        VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() >= 32)) ||
13593
13594       ((Subtarget->hasDQI() && VT.is512BitVector() &&
13595        VTElt.getSizeInBits() >= 32))))
13596    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
13597
13598  unsigned int NumElts = VT.getVectorNumElements();
13599
13600  if (NumElts != 8 && NumElts != 16)
13601    return SDValue();
13602
13603  if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1) {
13604    if (In.getOpcode() == X86ISD::VSEXT || In.getOpcode() == X86ISD::VZEXT)
13605      return DAG.getNode(In.getOpcode(), dl, VT, In.getOperand(0));
13606    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
13607  }
13608
13609  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13610  assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
13611
13612  MVT ExtVT = (NumElts == 8) ? MVT::v8i64 : MVT::v16i32;
13613  Constant *C = ConstantInt::get(*DAG.getContext(),
13614    APInt::getAllOnesValue(ExtVT.getScalarType().getSizeInBits()));
13615
13616  SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
13617  unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
13618  SDValue Ld = DAG.getLoad(ExtVT.getScalarType(), dl, DAG.getEntryNode(), CP,
13619                          MachinePointerInfo::getConstantPool(),
13620                          false, false, false, Alignment);
13621  SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, dl, ExtVT, In, Ld);
13622  if (VT.is512BitVector())
13623    return Brcst;
13624  return DAG.getNode(X86ISD::VTRUNC, dl, VT, Brcst);
13625}
13626
13627static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
13628                                SelectionDAG &DAG) {
13629  MVT VT = Op->getSimpleValueType(0);
13630  SDValue In = Op->getOperand(0);
13631  MVT InVT = In.getSimpleValueType();
13632  SDLoc dl(Op);
13633
13634  if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1)
13635    return LowerSIGN_EXTEND_AVX512(Op, Subtarget, DAG);
13636
13637  if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
13638      (VT != MVT::v8i32 || InVT != MVT::v8i16) &&
13639      (VT != MVT::v16i16 || InVT != MVT::v16i8))
13640    return SDValue();
13641
13642  if (Subtarget->hasInt256())
13643    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
13644
13645  // Optimize vectors in AVX mode
13646  // Sign extend  v8i16 to v8i32 and
13647  //              v4i32 to v4i64
13648  //
13649  // Divide input vector into two parts
13650  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
13651  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
13652  // concat the vectors to original VT
13653
13654  unsigned NumElems = InVT.getVectorNumElements();
13655  SDValue Undef = DAG.getUNDEF(InVT);
13656
13657  SmallVector<int,8> ShufMask1(NumElems, -1);
13658  for (unsigned i = 0; i != NumElems/2; ++i)
13659    ShufMask1[i] = i;
13660
13661  SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
13662
13663  SmallVector<int,8> ShufMask2(NumElems, -1);
13664  for (unsigned i = 0; i != NumElems/2; ++i)
13665    ShufMask2[i] = i + NumElems/2;
13666
13667  SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
13668
13669  MVT HalfVT = MVT::getVectorVT(VT.getScalarType(),
13670                                VT.getVectorNumElements()/2);
13671
13672  OpLo = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpLo);
13673  OpHi = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpHi);
13674
13675  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
13676}
13677
13678// Lower vector extended loads using a shuffle. If SSSE3 is not available we
13679// may emit an illegal shuffle but the expansion is still better than scalar
13680// code. We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise
13681// we'll emit a shuffle and a arithmetic shift.
13682// FIXME: Is the expansion actually better than scalar code? It doesn't seem so.
13683// TODO: It is possible to support ZExt by zeroing the undef values during
13684// the shuffle phase or after the shuffle.
13685static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget *Subtarget,
13686                                 SelectionDAG &DAG) {
13687  MVT RegVT = Op.getSimpleValueType();
13688  assert(RegVT.isVector() && "We only custom lower vector sext loads.");
13689  assert(RegVT.isInteger() &&
13690         "We only custom lower integer vector sext loads.");
13691
13692  // Nothing useful we can do without SSE2 shuffles.
13693  assert(Subtarget->hasSSE2() && "We only custom lower sext loads with SSE2.");
13694
13695  LoadSDNode *Ld = cast<LoadSDNode>(Op.getNode());
13696  SDLoc dl(Ld);
13697  EVT MemVT = Ld->getMemoryVT();
13698  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13699  unsigned RegSz = RegVT.getSizeInBits();
13700
13701  ISD::LoadExtType Ext = Ld->getExtensionType();
13702
13703  assert((Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)
13704         && "Only anyext and sext are currently implemented.");
13705  assert(MemVT != RegVT && "Cannot extend to the same type");
13706  assert(MemVT.isVector() && "Must load a vector from memory");
13707
13708  unsigned NumElems = RegVT.getVectorNumElements();
13709  unsigned MemSz = MemVT.getSizeInBits();
13710  assert(RegSz > MemSz && "Register size must be greater than the mem size");
13711
13712  if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256()) {
13713    // The only way in which we have a legal 256-bit vector result but not the
13714    // integer 256-bit operations needed to directly lower a sextload is if we
13715    // have AVX1 but not AVX2. In that case, we can always emit a sextload to
13716    // a 128-bit vector and a normal sign_extend to 256-bits that should get
13717    // correctly legalized. We do this late to allow the canonical form of
13718    // sextload to persist throughout the rest of the DAG combiner -- it wants
13719    // to fold together any extensions it can, and so will fuse a sign_extend
13720    // of an sextload into a sextload targeting a wider value.
13721    SDValue Load;
13722    if (MemSz == 128) {
13723      // Just switch this to a normal load.
13724      assert(TLI.isTypeLegal(MemVT) && "If the memory type is a 128-bit type, "
13725                                       "it must be a legal 128-bit vector "
13726                                       "type!");
13727      Load = DAG.getLoad(MemVT, dl, Ld->getChain(), Ld->getBasePtr(),
13728                  Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(),
13729                  Ld->isInvariant(), Ld->getAlignment());
13730    } else {
13731      assert(MemSz < 128 &&
13732             "Can't extend a type wider than 128 bits to a 256 bit vector!");
13733      // Do an sext load to a 128-bit vector type. We want to use the same
13734      // number of elements, but elements half as wide. This will end up being
13735      // recursively lowered by this routine, but will succeed as we definitely
13736      // have all the necessary features if we're using AVX1.
13737      EVT HalfEltVT =
13738          EVT::getIntegerVT(*DAG.getContext(), RegVT.getScalarSizeInBits() / 2);
13739      EVT HalfVecVT = EVT::getVectorVT(*DAG.getContext(), HalfEltVT, NumElems);
13740      Load =
13741          DAG.getExtLoad(Ext, dl, HalfVecVT, Ld->getChain(), Ld->getBasePtr(),
13742                         Ld->getPointerInfo(), MemVT, Ld->isVolatile(),
13743                         Ld->isNonTemporal(), Ld->isInvariant(),
13744                         Ld->getAlignment());
13745    }
13746
13747    // Replace chain users with the new chain.
13748    assert(Load->getNumValues() == 2 && "Loads must carry a chain!");
13749    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1));
13750
13751    // Finally, do a normal sign-extend to the desired register.
13752    return DAG.getSExtOrTrunc(Load, dl, RegVT);
13753  }
13754
13755  // All sizes must be a power of two.
13756  assert(isPowerOf2_32(RegSz * MemSz * NumElems) &&
13757         "Non-power-of-two elements are not custom lowered!");
13758
13759  // Attempt to load the original value using scalar loads.
13760  // Find the largest scalar type that divides the total loaded size.
13761  MVT SclrLoadTy = MVT::i8;
13762  for (MVT Tp : MVT::integer_valuetypes()) {
13763    if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
13764      SclrLoadTy = Tp;
13765    }
13766  }
13767
13768  // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
13769  if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
13770      (64 <= MemSz))
13771    SclrLoadTy = MVT::f64;
13772
13773  // Calculate the number of scalar loads that we need to perform
13774  // in order to load our vector from memory.
13775  unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
13776
13777  assert((Ext != ISD::SEXTLOAD || NumLoads == 1) &&
13778         "Can only lower sext loads with a single scalar load!");
13779
13780  unsigned loadRegZize = RegSz;
13781  if (Ext == ISD::SEXTLOAD && RegSz == 256)
13782    loadRegZize /= 2;
13783
13784  // Represent our vector as a sequence of elements which are the
13785  // largest scalar that we can load.
13786  EVT LoadUnitVecVT = EVT::getVectorVT(
13787      *DAG.getContext(), SclrLoadTy, loadRegZize / SclrLoadTy.getSizeInBits());
13788
13789  // Represent the data using the same element type that is stored in
13790  // memory. In practice, we ''widen'' MemVT.
13791  EVT WideVecVT =
13792      EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
13793                       loadRegZize / MemVT.getScalarType().getSizeInBits());
13794
13795  assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
13796         "Invalid vector type");
13797
13798  // We can't shuffle using an illegal type.
13799  assert(TLI.isTypeLegal(WideVecVT) &&
13800         "We only lower types that form legal widened vector types");
13801
13802  SmallVector<SDValue, 8> Chains;
13803  SDValue Ptr = Ld->getBasePtr();
13804  SDValue Increment =
13805      DAG.getConstant(SclrLoadTy.getSizeInBits() / 8, TLI.getPointerTy());
13806  SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
13807
13808  for (unsigned i = 0; i < NumLoads; ++i) {
13809    // Perform a single load.
13810    SDValue ScalarLoad =
13811        DAG.getLoad(SclrLoadTy, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
13812                    Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(),
13813                    Ld->getAlignment());
13814    Chains.push_back(ScalarLoad.getValue(1));
13815    // Create the first element type using SCALAR_TO_VECTOR in order to avoid
13816    // another round of DAGCombining.
13817    if (i == 0)
13818      Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
13819    else
13820      Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
13821                        ScalarLoad, DAG.getIntPtrConstant(i));
13822
13823    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
13824  }
13825
13826  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
13827
13828  // Bitcast the loaded value to a vector of the original element type, in
13829  // the size of the target vector type.
13830  SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
13831  unsigned SizeRatio = RegSz / MemSz;
13832
13833  if (Ext == ISD::SEXTLOAD) {
13834    // If we have SSE4.1, we can directly emit a VSEXT node.
13835    if (Subtarget->hasSSE41()) {
13836      SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
13837      DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
13838      return Sext;
13839    }
13840
13841    // Otherwise we'll shuffle the small elements in the high bits of the
13842    // larger type and perform an arithmetic shift. If the shift is not legal
13843    // it's better to scalarize.
13844    assert(TLI.isOperationLegalOrCustom(ISD::SRA, RegVT) &&
13845           "We can't implement a sext load without an arithmetic right shift!");
13846
13847    // Redistribute the loaded elements into the different locations.
13848    SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
13849    for (unsigned i = 0; i != NumElems; ++i)
13850      ShuffleVec[i * SizeRatio + SizeRatio - 1] = i;
13851
13852    SDValue Shuff = DAG.getVectorShuffle(
13853        WideVecVT, dl, SlicedVec, DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
13854
13855    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
13856
13857    // Build the arithmetic shift.
13858    unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
13859                   MemVT.getVectorElementType().getSizeInBits();
13860    Shuff =
13861        DAG.getNode(ISD::SRA, dl, RegVT, Shuff, DAG.getConstant(Amt, RegVT));
13862
13863    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
13864    return Shuff;
13865  }
13866
13867  // Redistribute the loaded elements into the different locations.
13868  SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
13869  for (unsigned i = 0; i != NumElems; ++i)
13870    ShuffleVec[i * SizeRatio] = i;
13871
13872  SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
13873                                       DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
13874
13875  // Bitcast to the requested type.
13876  Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
13877  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
13878  return Shuff;
13879}
13880
13881// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
13882// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
13883// from the AND / OR.
13884static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
13885  Opc = Op.getOpcode();
13886  if (Opc != ISD::OR && Opc != ISD::AND)
13887    return false;
13888  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
13889          Op.getOperand(0).hasOneUse() &&
13890          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
13891          Op.getOperand(1).hasOneUse());
13892}
13893
13894// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
13895// 1 and that the SETCC node has a single use.
13896static bool isXor1OfSetCC(SDValue Op) {
13897  if (Op.getOpcode() != ISD::XOR)
13898    return false;
13899  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
13900  if (N1C && N1C->getAPIntValue() == 1) {
13901    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
13902      Op.getOperand(0).hasOneUse();
13903  }
13904  return false;
13905}
13906
13907SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
13908  bool addTest = true;
13909  SDValue Chain = Op.getOperand(0);
13910  SDValue Cond  = Op.getOperand(1);
13911  SDValue Dest  = Op.getOperand(2);
13912  SDLoc dl(Op);
13913  SDValue CC;
13914  bool Inverted = false;
13915
13916  if (Cond.getOpcode() == ISD::SETCC) {
13917    // Check for setcc([su]{add,sub,mul}o == 0).
13918    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
13919        isa<ConstantSDNode>(Cond.getOperand(1)) &&
13920        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
13921        Cond.getOperand(0).getResNo() == 1 &&
13922        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
13923         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
13924         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
13925         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
13926         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
13927         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
13928      Inverted = true;
13929      Cond = Cond.getOperand(0);
13930    } else {
13931      SDValue NewCond = LowerSETCC(Cond, DAG);
13932      if (NewCond.getNode())
13933        Cond = NewCond;
13934    }
13935  }
13936#if 0
13937  // FIXME: LowerXALUO doesn't handle these!!
13938  else if (Cond.getOpcode() == X86ISD::ADD  ||
13939           Cond.getOpcode() == X86ISD::SUB  ||
13940           Cond.getOpcode() == X86ISD::SMUL ||
13941           Cond.getOpcode() == X86ISD::UMUL)
13942    Cond = LowerXALUO(Cond, DAG);
13943#endif
13944
13945  // Look pass (and (setcc_carry (cmp ...)), 1).
13946  if (Cond.getOpcode() == ISD::AND &&
13947      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
13948    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
13949    if (C && C->getAPIntValue() == 1)
13950      Cond = Cond.getOperand(0);
13951  }
13952
13953  // If condition flag is set by a X86ISD::CMP, then use it as the condition
13954  // setting operand in place of the X86ISD::SETCC.
13955  unsigned CondOpcode = Cond.getOpcode();
13956  if (CondOpcode == X86ISD::SETCC ||
13957      CondOpcode == X86ISD::SETCC_CARRY) {
13958    CC = Cond.getOperand(0);
13959
13960    SDValue Cmp = Cond.getOperand(1);
13961    unsigned Opc = Cmp.getOpcode();
13962    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
13963    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
13964      Cond = Cmp;
13965      addTest = false;
13966    } else {
13967      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
13968      default: break;
13969      case X86::COND_O:
13970      case X86::COND_B:
13971        // These can only come from an arithmetic instruction with overflow,
13972        // e.g. SADDO, UADDO.
13973        Cond = Cond.getNode()->getOperand(1);
13974        addTest = false;
13975        break;
13976      }
13977    }
13978  }
13979  CondOpcode = Cond.getOpcode();
13980  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
13981      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
13982      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
13983       Cond.getOperand(0).getValueType() != MVT::i8)) {
13984    SDValue LHS = Cond.getOperand(0);
13985    SDValue RHS = Cond.getOperand(1);
13986    unsigned X86Opcode;
13987    unsigned X86Cond;
13988    SDVTList VTs;
13989    // Keep this in sync with LowerXALUO, otherwise we might create redundant
13990    // instructions that can't be removed afterwards (i.e. X86ISD::ADD and
13991    // X86ISD::INC).
13992    switch (CondOpcode) {
13993    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
13994    case ISD::SADDO:
13995      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
13996        if (C->isOne()) {
13997          X86Opcode = X86ISD::INC; X86Cond = X86::COND_O;
13998          break;
13999        }
14000      X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
14001    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
14002    case ISD::SSUBO:
14003      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
14004        if (C->isOne()) {
14005          X86Opcode = X86ISD::DEC; X86Cond = X86::COND_O;
14006          break;
14007        }
14008      X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
14009    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
14010    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
14011    default: llvm_unreachable("unexpected overflowing operator");
14012    }
14013    if (Inverted)
14014      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
14015    if (CondOpcode == ISD::UMULO)
14016      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
14017                          MVT::i32);
14018    else
14019      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
14020
14021    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
14022
14023    if (CondOpcode == ISD::UMULO)
14024      Cond = X86Op.getValue(2);
14025    else
14026      Cond = X86Op.getValue(1);
14027
14028    CC = DAG.getConstant(X86Cond, MVT::i8);
14029    addTest = false;
14030  } else {
14031    unsigned CondOpc;
14032    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
14033      SDValue Cmp = Cond.getOperand(0).getOperand(1);
14034      if (CondOpc == ISD::OR) {
14035        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
14036        // two branches instead of an explicit OR instruction with a
14037        // separate test.
14038        if (Cmp == Cond.getOperand(1).getOperand(1) &&
14039            isX86LogicalCmp(Cmp)) {
14040          CC = Cond.getOperand(0).getOperand(0);
14041          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
14042                              Chain, Dest, CC, Cmp);
14043          CC = Cond.getOperand(1).getOperand(0);
14044          Cond = Cmp;
14045          addTest = false;
14046        }
14047      } else { // ISD::AND
14048        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
14049        // two branches instead of an explicit AND instruction with a
14050        // separate test. However, we only do this if this block doesn't
14051        // have a fall-through edge, because this requires an explicit
14052        // jmp when the condition is false.
14053        if (Cmp == Cond.getOperand(1).getOperand(1) &&
14054            isX86LogicalCmp(Cmp) &&
14055            Op.getNode()->hasOneUse()) {
14056          X86::CondCode CCode =
14057            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
14058          CCode = X86::GetOppositeBranchCondition(CCode);
14059          CC = DAG.getConstant(CCode, MVT::i8);
14060          SDNode *User = *Op.getNode()->use_begin();
14061          // Look for an unconditional branch following this conditional branch.
14062          // We need this because we need to reverse the successors in order
14063          // to implement FCMP_OEQ.
14064          if (User->getOpcode() == ISD::BR) {
14065            SDValue FalseBB = User->getOperand(1);
14066            SDNode *NewBR =
14067              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
14068            assert(NewBR == User);
14069            (void)NewBR;
14070            Dest = FalseBB;
14071
14072            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
14073                                Chain, Dest, CC, Cmp);
14074            X86::CondCode CCode =
14075              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
14076            CCode = X86::GetOppositeBranchCondition(CCode);
14077            CC = DAG.getConstant(CCode, MVT::i8);
14078            Cond = Cmp;
14079            addTest = false;
14080          }
14081        }
14082      }
14083    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
14084      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
14085      // It should be transformed during dag combiner except when the condition
14086      // is set by a arithmetics with overflow node.
14087      X86::CondCode CCode =
14088        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
14089      CCode = X86::GetOppositeBranchCondition(CCode);
14090      CC = DAG.getConstant(CCode, MVT::i8);
14091      Cond = Cond.getOperand(0).getOperand(1);
14092      addTest = false;
14093    } else if (Cond.getOpcode() == ISD::SETCC &&
14094               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
14095      // For FCMP_OEQ, we can emit
14096      // two branches instead of an explicit AND instruction with a
14097      // separate test. However, we only do this if this block doesn't
14098      // have a fall-through edge, because this requires an explicit
14099      // jmp when the condition is false.
14100      if (Op.getNode()->hasOneUse()) {
14101        SDNode *User = *Op.getNode()->use_begin();
14102        // Look for an unconditional branch following this conditional branch.
14103        // We need this because we need to reverse the successors in order
14104        // to implement FCMP_OEQ.
14105        if (User->getOpcode() == ISD::BR) {
14106          SDValue FalseBB = User->getOperand(1);
14107          SDNode *NewBR =
14108            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
14109          assert(NewBR == User);
14110          (void)NewBR;
14111          Dest = FalseBB;
14112
14113          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
14114                                    Cond.getOperand(0), Cond.getOperand(1));
14115          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
14116          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
14117          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
14118                              Chain, Dest, CC, Cmp);
14119          CC = DAG.getConstant(X86::COND_P, MVT::i8);
14120          Cond = Cmp;
14121          addTest = false;
14122        }
14123      }
14124    } else if (Cond.getOpcode() == ISD::SETCC &&
14125               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
14126      // For FCMP_UNE, we can emit
14127      // two branches instead of an explicit AND instruction with a
14128      // separate test. However, we only do this if this block doesn't
14129      // have a fall-through edge, because this requires an explicit
14130      // jmp when the condition is false.
14131      if (Op.getNode()->hasOneUse()) {
14132        SDNode *User = *Op.getNode()->use_begin();
14133        // Look for an unconditional branch following this conditional branch.
14134        // We need this because we need to reverse the successors in order
14135        // to implement FCMP_UNE.
14136        if (User->getOpcode() == ISD::BR) {
14137          SDValue FalseBB = User->getOperand(1);
14138          SDNode *NewBR =
14139            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
14140          assert(NewBR == User);
14141          (void)NewBR;
14142
14143          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
14144                                    Cond.getOperand(0), Cond.getOperand(1));
14145          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
14146          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
14147          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
14148                              Chain, Dest, CC, Cmp);
14149          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
14150          Cond = Cmp;
14151          addTest = false;
14152          Dest = FalseBB;
14153        }
14154      }
14155    }
14156  }
14157
14158  if (addTest) {
14159    // Look pass the truncate if the high bits are known zero.
14160    if (isTruncWithZeroHighBitsInput(Cond, DAG))
14161        Cond = Cond.getOperand(0);
14162
14163    // We know the result of AND is compared against zero. Try to match
14164    // it to BT.
14165    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
14166      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
14167      if (NewSetCC.getNode()) {
14168        CC = NewSetCC.getOperand(0);
14169        Cond = NewSetCC.getOperand(1);
14170        addTest = false;
14171      }
14172    }
14173  }
14174
14175  if (addTest) {
14176    X86::CondCode X86Cond = Inverted ? X86::COND_E : X86::COND_NE;
14177    CC = DAG.getConstant(X86Cond, MVT::i8);
14178    Cond = EmitTest(Cond, X86Cond, dl, DAG);
14179  }
14180  Cond = ConvertCmpIfNecessary(Cond, DAG);
14181  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
14182                     Chain, Dest, CC, Cond);
14183}
14184
14185// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
14186// Calls to _alloca are needed to probe the stack when allocating more than 4k
14187// bytes in one go. Touching the stack at 4K increments is necessary to ensure
14188// that the guard pages used by the OS virtual memory manager are allocated in
14189// correct sequence.
14190SDValue
14191X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
14192                                           SelectionDAG &DAG) const {
14193  MachineFunction &MF = DAG.getMachineFunction();
14194  bool SplitStack = MF.shouldSplitStack();
14195  bool Lower = (Subtarget->isOSWindows() && !Subtarget->isTargetMachO()) ||
14196               SplitStack;
14197  SDLoc dl(Op);
14198
14199  if (!Lower) {
14200    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14201    SDNode* Node = Op.getNode();
14202
14203    unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
14204    assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
14205        " not tell us which reg is the stack pointer!");
14206    EVT VT = Node->getValueType(0);
14207    SDValue Tmp1 = SDValue(Node, 0);
14208    SDValue Tmp2 = SDValue(Node, 1);
14209    SDValue Tmp3 = Node->getOperand(2);
14210    SDValue Chain = Tmp1.getOperand(0);
14211
14212    // Chain the dynamic stack allocation so that it doesn't modify the stack
14213    // pointer when other instructions are using the stack.
14214    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true),
14215        SDLoc(Node));
14216
14217    SDValue Size = Tmp2.getOperand(1);
14218    SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
14219    Chain = SP.getValue(1);
14220    unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
14221    const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
14222    unsigned StackAlign = TFI.getStackAlignment();
14223    Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
14224    if (Align > StackAlign)
14225      Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
14226          DAG.getConstant(-(uint64_t)Align, VT));
14227    Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
14228
14229    Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
14230        DAG.getIntPtrConstant(0, true), SDValue(),
14231        SDLoc(Node));
14232
14233    SDValue Ops[2] = { Tmp1, Tmp2 };
14234    return DAG.getMergeValues(Ops, dl);
14235  }
14236
14237  // Get the inputs.
14238  SDValue Chain = Op.getOperand(0);
14239  SDValue Size  = Op.getOperand(1);
14240  unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
14241  EVT VT = Op.getNode()->getValueType(0);
14242
14243  bool Is64Bit = Subtarget->is64Bit();
14244  EVT SPTy = getPointerTy();
14245
14246  if (SplitStack) {
14247    MachineRegisterInfo &MRI = MF.getRegInfo();
14248
14249    if (Is64Bit) {
14250      // The 64 bit implementation of segmented stacks needs to clobber both r10
14251      // r11. This makes it impossible to use it along with nested parameters.
14252      const Function *F = MF.getFunction();
14253
14254      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
14255           I != E; ++I)
14256        if (I->hasNestAttr())
14257          report_fatal_error("Cannot use segmented stacks with functions that "
14258                             "have nested arguments.");
14259    }
14260
14261    const TargetRegisterClass *AddrRegClass =
14262      getRegClassFor(getPointerTy());
14263    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
14264    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
14265    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
14266                                DAG.getRegister(Vreg, SPTy));
14267    SDValue Ops1[2] = { Value, Chain };
14268    return DAG.getMergeValues(Ops1, dl);
14269  } else {
14270    SDValue Flag;
14271    const unsigned Reg = (Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX);
14272
14273    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
14274    Flag = Chain.getValue(1);
14275    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
14276
14277    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
14278
14279    const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
14280    unsigned SPReg = RegInfo->getStackRegister();
14281    SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy);
14282    Chain = SP.getValue(1);
14283
14284    if (Align) {
14285      SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
14286                       DAG.getConstant(-(uint64_t)Align, VT));
14287      Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP);
14288    }
14289
14290    SDValue Ops1[2] = { SP, Chain };
14291    return DAG.getMergeValues(Ops1, dl);
14292  }
14293}
14294
14295SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
14296  MachineFunction &MF = DAG.getMachineFunction();
14297  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
14298
14299  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
14300  SDLoc DL(Op);
14301
14302  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
14303    // vastart just stores the address of the VarArgsFrameIndex slot into the
14304    // memory location argument.
14305    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
14306                                   getPointerTy());
14307    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
14308                        MachinePointerInfo(SV), false, false, 0);
14309  }
14310
14311  // __va_list_tag:
14312  //   gp_offset         (0 - 6 * 8)
14313  //   fp_offset         (48 - 48 + 8 * 16)
14314  //   overflow_arg_area (point to parameters coming in memory).
14315  //   reg_save_area
14316  SmallVector<SDValue, 8> MemOps;
14317  SDValue FIN = Op.getOperand(1);
14318  // Store gp_offset
14319  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
14320                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
14321                                               MVT::i32),
14322                               FIN, MachinePointerInfo(SV), false, false, 0);
14323  MemOps.push_back(Store);
14324
14325  // Store fp_offset
14326  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
14327                    FIN, DAG.getIntPtrConstant(4));
14328  Store = DAG.getStore(Op.getOperand(0), DL,
14329                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
14330                                       MVT::i32),
14331                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
14332  MemOps.push_back(Store);
14333
14334  // Store ptr to overflow_arg_area
14335  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
14336                    FIN, DAG.getIntPtrConstant(4));
14337  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
14338                                    getPointerTy());
14339  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
14340                       MachinePointerInfo(SV, 8),
14341                       false, false, 0);
14342  MemOps.push_back(Store);
14343
14344  // Store ptr to reg_save_area.
14345  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
14346                    FIN, DAG.getIntPtrConstant(8));
14347  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
14348                                    getPointerTy());
14349  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
14350                       MachinePointerInfo(SV, 16), false, false, 0);
14351  MemOps.push_back(Store);
14352  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
14353}
14354
14355SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
14356  assert(Subtarget->is64Bit() &&
14357         "LowerVAARG only handles 64-bit va_arg!");
14358  assert((Subtarget->isTargetLinux() ||
14359          Subtarget->isTargetDarwin()) &&
14360          "Unhandled target in LowerVAARG");
14361  assert(Op.getNode()->getNumOperands() == 4);
14362  SDValue Chain = Op.getOperand(0);
14363  SDValue SrcPtr = Op.getOperand(1);
14364  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
14365  unsigned Align = Op.getConstantOperandVal(3);
14366  SDLoc dl(Op);
14367
14368  EVT ArgVT = Op.getNode()->getValueType(0);
14369  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
14370  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
14371  uint8_t ArgMode;
14372
14373  // Decide which area this value should be read from.
14374  // TODO: Implement the AMD64 ABI in its entirety. This simple
14375  // selection mechanism works only for the basic types.
14376  if (ArgVT == MVT::f80) {
14377    llvm_unreachable("va_arg for f80 not yet implemented");
14378  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
14379    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
14380  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
14381    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
14382  } else {
14383    llvm_unreachable("Unhandled argument type in LowerVAARG");
14384  }
14385
14386  if (ArgMode == 2) {
14387    // Sanity Check: Make sure using fp_offset makes sense.
14388    assert(!DAG.getTarget().Options.UseSoftFloat &&
14389           !(DAG.getMachineFunction().getFunction()->hasFnAttribute(
14390               Attribute::NoImplicitFloat)) &&
14391           Subtarget->hasSSE1());
14392  }
14393
14394  // Insert VAARG_64 node into the DAG
14395  // VAARG_64 returns two values: Variable Argument Address, Chain
14396  SDValue InstOps[] = {Chain, SrcPtr, DAG.getConstant(ArgSize, MVT::i32),
14397                       DAG.getConstant(ArgMode, MVT::i8),
14398                       DAG.getConstant(Align, MVT::i32)};
14399  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
14400  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
14401                                          VTs, InstOps, MVT::i64,
14402                                          MachinePointerInfo(SV),
14403                                          /*Align=*/0,
14404                                          /*Volatile=*/false,
14405                                          /*ReadMem=*/true,
14406                                          /*WriteMem=*/true);
14407  Chain = VAARG.getValue(1);
14408
14409  // Load the next argument and return it
14410  return DAG.getLoad(ArgVT, dl,
14411                     Chain,
14412                     VAARG,
14413                     MachinePointerInfo(),
14414                     false, false, false, 0);
14415}
14416
14417static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
14418                           SelectionDAG &DAG) {
14419  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
14420  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
14421  SDValue Chain = Op.getOperand(0);
14422  SDValue DstPtr = Op.getOperand(1);
14423  SDValue SrcPtr = Op.getOperand(2);
14424  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
14425  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
14426  SDLoc DL(Op);
14427
14428  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
14429                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
14430                       false,
14431                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
14432}
14433
14434// getTargetVShiftByConstNode - Handle vector element shifts where the shift
14435// amount is a constant. Takes immediate version of shift as input.
14436static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, MVT VT,
14437                                          SDValue SrcOp, uint64_t ShiftAmt,
14438                                          SelectionDAG &DAG) {
14439  MVT ElementType = VT.getVectorElementType();
14440
14441  // Fold this packed shift into its first operand if ShiftAmt is 0.
14442  if (ShiftAmt == 0)
14443    return SrcOp;
14444
14445  // Check for ShiftAmt >= element width
14446  if (ShiftAmt >= ElementType.getSizeInBits()) {
14447    if (Opc == X86ISD::VSRAI)
14448      ShiftAmt = ElementType.getSizeInBits() - 1;
14449    else
14450      return DAG.getConstant(0, VT);
14451  }
14452
14453  assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI)
14454         && "Unknown target vector shift-by-constant node");
14455
14456  // Fold this packed vector shift into a build vector if SrcOp is a
14457  // vector of Constants or UNDEFs, and SrcOp valuetype is the same as VT.
14458  if (VT == SrcOp.getSimpleValueType() &&
14459      ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) {
14460    SmallVector<SDValue, 8> Elts;
14461    unsigned NumElts = SrcOp->getNumOperands();
14462    ConstantSDNode *ND;
14463
14464    switch(Opc) {
14465    default: llvm_unreachable(nullptr);
14466    case X86ISD::VSHLI:
14467      for (unsigned i=0; i!=NumElts; ++i) {
14468        SDValue CurrentOp = SrcOp->getOperand(i);
14469        if (CurrentOp->getOpcode() == ISD::UNDEF) {
14470          Elts.push_back(CurrentOp);
14471          continue;
14472        }
14473        ND = cast<ConstantSDNode>(CurrentOp);
14474        const APInt &C = ND->getAPIntValue();
14475        Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), ElementType));
14476      }
14477      break;
14478    case X86ISD::VSRLI:
14479      for (unsigned i=0; i!=NumElts; ++i) {
14480        SDValue CurrentOp = SrcOp->getOperand(i);
14481        if (CurrentOp->getOpcode() == ISD::UNDEF) {
14482          Elts.push_back(CurrentOp);
14483          continue;
14484        }
14485        ND = cast<ConstantSDNode>(CurrentOp);
14486        const APInt &C = ND->getAPIntValue();
14487        Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), ElementType));
14488      }
14489      break;
14490    case X86ISD::VSRAI:
14491      for (unsigned i=0; i!=NumElts; ++i) {
14492        SDValue CurrentOp = SrcOp->getOperand(i);
14493        if (CurrentOp->getOpcode() == ISD::UNDEF) {
14494          Elts.push_back(CurrentOp);
14495          continue;
14496        }
14497        ND = cast<ConstantSDNode>(CurrentOp);
14498        const APInt &C = ND->getAPIntValue();
14499        Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), ElementType));
14500      }
14501      break;
14502    }
14503
14504    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts);
14505  }
14506
14507  return DAG.getNode(Opc, dl, VT, SrcOp, DAG.getConstant(ShiftAmt, MVT::i8));
14508}
14509
14510// getTargetVShiftNode - Handle vector element shifts where the shift amount
14511// may or may not be a constant. Takes immediate version of shift as input.
14512static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, MVT VT,
14513                                   SDValue SrcOp, SDValue ShAmt,
14514                                   SelectionDAG &DAG) {
14515  MVT SVT = ShAmt.getSimpleValueType();
14516  assert((SVT == MVT::i32 || SVT == MVT::i64) && "Unexpected value type!");
14517
14518  // Catch shift-by-constant.
14519  if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt))
14520    return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp,
14521                                      CShAmt->getZExtValue(), DAG);
14522
14523  // Change opcode to non-immediate version
14524  switch (Opc) {
14525    default: llvm_unreachable("Unknown target vector shift node");
14526    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
14527    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
14528    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
14529  }
14530
14531  const X86Subtarget &Subtarget =
14532      static_cast<const X86Subtarget &>(DAG.getSubtarget());
14533  if (Subtarget.hasSSE41() && ShAmt.getOpcode() == ISD::ZERO_EXTEND &&
14534      ShAmt.getOperand(0).getSimpleValueType() == MVT::i16) {
14535    // Let the shuffle legalizer expand this shift amount node.
14536    SDValue Op0 = ShAmt.getOperand(0);
14537    Op0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(Op0), MVT::v8i16, Op0);
14538    ShAmt = getShuffleVectorZeroOrUndef(Op0, 0, true, &Subtarget, DAG);
14539  } else {
14540    // Need to build a vector containing shift amount.
14541    // SSE/AVX packed shifts only use the lower 64-bit of the shift count.
14542    SmallVector<SDValue, 4> ShOps;
14543    ShOps.push_back(ShAmt);
14544    if (SVT == MVT::i32) {
14545      ShOps.push_back(DAG.getConstant(0, SVT));
14546      ShOps.push_back(DAG.getUNDEF(SVT));
14547    }
14548    ShOps.push_back(DAG.getUNDEF(SVT));
14549
14550    MVT BVT = SVT == MVT::i32 ? MVT::v4i32 : MVT::v2i64;
14551    ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, BVT, ShOps);
14552  }
14553
14554  // The return type has to be a 128-bit type with the same element
14555  // type as the input type.
14556  MVT EltVT = VT.getVectorElementType();
14557  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
14558
14559  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
14560  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
14561}
14562
14563/// \brief Return (and \p Op, \p Mask) for compare instructions or
14564/// (vselect \p Mask, \p Op, \p PreservedSrc) for others along with the
14565/// necessary casting for \p Mask when lowering masking intrinsics.
14566static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
14567                                    SDValue PreservedSrc,
14568                                    const X86Subtarget *Subtarget,
14569                                    SelectionDAG &DAG) {
14570    EVT VT = Op.getValueType();
14571    EVT MaskVT = EVT::getVectorVT(*DAG.getContext(),
14572                                  MVT::i1, VT.getVectorNumElements());
14573    EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
14574                                     Mask.getValueType().getSizeInBits());
14575    SDLoc dl(Op);
14576
14577    assert(MaskVT.isSimple() && "invalid mask type");
14578
14579    if (isAllOnes(Mask))
14580      return Op;
14581
14582    // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
14583    // are extracted by EXTRACT_SUBVECTOR.
14584    SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
14585                              DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
14586                              DAG.getIntPtrConstant(0));
14587
14588    switch (Op.getOpcode()) {
14589      default: break;
14590      case X86ISD::PCMPEQM:
14591      case X86ISD::PCMPGTM:
14592      case X86ISD::CMPM:
14593      case X86ISD::CMPMU:
14594        return DAG.getNode(ISD::AND, dl, VT, Op, VMask);
14595    }
14596    if (PreservedSrc.getOpcode() == ISD::UNDEF)
14597      PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
14598    return DAG.getNode(ISD::VSELECT, dl, VT, VMask, Op, PreservedSrc);
14599}
14600
14601/// \brief Creates an SDNode for a predicated scalar operation.
14602/// \returns (X86vselect \p Mask, \p Op, \p PreservedSrc).
14603/// The mask is comming as MVT::i8 and it should be truncated
14604/// to MVT::i1 while lowering masking intrinsics.
14605/// The main difference between ScalarMaskingNode and VectorMaskingNode is using
14606/// "X86select" instead of "vselect". We just can't create the "vselect" node for
14607/// a scalar instruction.
14608static SDValue getScalarMaskingNode(SDValue Op, SDValue Mask,
14609                                    SDValue PreservedSrc,
14610                                    const X86Subtarget *Subtarget,
14611                                    SelectionDAG &DAG) {
14612    if (isAllOnes(Mask))
14613      return Op;
14614
14615    EVT VT = Op.getValueType();
14616    SDLoc dl(Op);
14617    // The mask should be of type MVT::i1
14618    SDValue IMask = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Mask);
14619
14620    if (PreservedSrc.getOpcode() == ISD::UNDEF)
14621      PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
14622    return DAG.getNode(X86ISD::SELECT, dl, VT, IMask, Op, PreservedSrc);
14623}
14624
14625static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
14626                                       SelectionDAG &DAG) {
14627  SDLoc dl(Op);
14628  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14629  EVT VT = Op.getValueType();
14630  const IntrinsicData* IntrData = getIntrinsicWithoutChain(IntNo);
14631  if (IntrData) {
14632    switch(IntrData->Type) {
14633    case INTR_TYPE_1OP:
14634      return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1));
14635    case INTR_TYPE_2OP:
14636      return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
14637        Op.getOperand(2));
14638    case INTR_TYPE_3OP:
14639      return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
14640        Op.getOperand(2), Op.getOperand(3));
14641    case INTR_TYPE_1OP_MASK_RM: {
14642      SDValue Src = Op.getOperand(1);
14643      SDValue Src0 = Op.getOperand(2);
14644      SDValue Mask = Op.getOperand(3);
14645      SDValue RoundingMode = Op.getOperand(4);
14646      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src,
14647                                              RoundingMode),
14648                                  Mask, Src0, Subtarget, DAG);
14649    }
14650    case INTR_TYPE_SCALAR_MASK_RM: {
14651      SDValue Src1 = Op.getOperand(1);
14652      SDValue Src2 = Op.getOperand(2);
14653      SDValue Src0 = Op.getOperand(3);
14654      SDValue Mask = Op.getOperand(4);
14655      // There are 2 kinds of intrinsics in this group:
14656      // (1) With supress-all-exceptions (sae) - 6 operands
14657      // (2) With rounding mode and sae - 7 operands.
14658      if (Op.getNumOperands() == 6) {
14659        SDValue Sae  = Op.getOperand(5);
14660        return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2,
14661                                                Sae),
14662                                    Mask, Src0, Subtarget, DAG);
14663      }
14664      assert(Op.getNumOperands() == 7 && "Unexpected intrinsic form");
14665      SDValue RoundingMode  = Op.getOperand(5);
14666      SDValue Sae  = Op.getOperand(6);
14667      return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2,
14668                                              RoundingMode, Sae),
14669                                  Mask, Src0, Subtarget, DAG);
14670    }
14671    case INTR_TYPE_2OP_MASK: {
14672      SDValue Src1 = Op.getOperand(1);
14673      SDValue Src2 = Op.getOperand(2);
14674      SDValue PassThru = Op.getOperand(3);
14675      SDValue Mask = Op.getOperand(4);
14676      // We specify 2 possible opcodes for intrinsics with rounding modes.
14677      // First, we check if the intrinsic may have non-default rounding mode,
14678      // (IntrData->Opc1 != 0), then we check the rounding mode operand.
14679      unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
14680      if (IntrWithRoundingModeOpcode != 0) {
14681        SDValue Rnd = Op.getOperand(5);
14682        unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue();
14683        if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION) {
14684          return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
14685                                      dl, Op.getValueType(),
14686                                      Src1, Src2, Rnd),
14687                                      Mask, PassThru, Subtarget, DAG);
14688        }
14689      }
14690      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
14691                                              Src1,Src2),
14692                                  Mask, PassThru, Subtarget, DAG);
14693    }
14694    case FMA_OP_MASK: {
14695      SDValue Src1 = Op.getOperand(1);
14696      SDValue Src2 = Op.getOperand(2);
14697      SDValue Src3 = Op.getOperand(3);
14698      SDValue Mask = Op.getOperand(4);
14699      // We specify 2 possible opcodes for intrinsics with rounding modes.
14700      // First, we check if the intrinsic may have non-default rounding mode,
14701      // (IntrData->Opc1 != 0), then we check the rounding mode operand.
14702      unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
14703      if (IntrWithRoundingModeOpcode != 0) {
14704        SDValue Rnd = Op.getOperand(5);
14705        if (cast<ConstantSDNode>(Rnd)->getZExtValue() !=
14706            X86::STATIC_ROUNDING::CUR_DIRECTION)
14707          return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
14708                                                  dl, Op.getValueType(),
14709                                                  Src1, Src2, Src3, Rnd),
14710                                      Mask, Src1, Subtarget, DAG);
14711      }
14712      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0,
14713                                              dl, Op.getValueType(),
14714                                              Src1, Src2, Src3),
14715                                  Mask, Src1, Subtarget, DAG);
14716    }
14717    case CMP_MASK:
14718    case CMP_MASK_CC: {
14719      // Comparison intrinsics with masks.
14720      // Example of transformation:
14721      // (i8 (int_x86_avx512_mask_pcmpeq_q_128
14722      //             (v2i64 %a), (v2i64 %b), (i8 %mask))) ->
14723      // (i8 (bitcast
14724      //   (v8i1 (insert_subvector undef,
14725      //           (v2i1 (and (PCMPEQM %a, %b),
14726      //                      (extract_subvector
14727      //                         (v8i1 (bitcast %mask)), 0))), 0))))
14728      EVT VT = Op.getOperand(1).getValueType();
14729      EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
14730                                    VT.getVectorNumElements());
14731      SDValue Mask = Op.getOperand((IntrData->Type == CMP_MASK_CC) ? 4 : 3);
14732      EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
14733                                       Mask.getValueType().getSizeInBits());
14734      SDValue Cmp;
14735      if (IntrData->Type == CMP_MASK_CC) {
14736        Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
14737                    Op.getOperand(2), Op.getOperand(3));
14738      } else {
14739        assert(IntrData->Type == CMP_MASK && "Unexpected intrinsic type!");
14740        Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
14741                    Op.getOperand(2));
14742      }
14743      SDValue CmpMask = getVectorMaskingNode(Cmp, Mask,
14744                                             DAG.getTargetConstant(0, MaskVT),
14745                                             Subtarget, DAG);
14746      SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT,
14747                                DAG.getUNDEF(BitcastVT), CmpMask,
14748                                DAG.getIntPtrConstant(0));
14749      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
14750    }
14751    case COMI: { // Comparison intrinsics
14752      ISD::CondCode CC = (ISD::CondCode)IntrData->Opc1;
14753      SDValue LHS = Op.getOperand(1);
14754      SDValue RHS = Op.getOperand(2);
14755      unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
14756      assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
14757      SDValue Cond = DAG.getNode(IntrData->Opc0, dl, MVT::i32, LHS, RHS);
14758      SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
14759                                  DAG.getConstant(X86CC, MVT::i8), Cond);
14760      return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
14761    }
14762    case VSHIFT:
14763      return getTargetVShiftNode(IntrData->Opc0, dl, Op.getSimpleValueType(),
14764                                 Op.getOperand(1), Op.getOperand(2), DAG);
14765    case VSHIFT_MASK:
14766      return getVectorMaskingNode(getTargetVShiftNode(IntrData->Opc0, dl,
14767                                                      Op.getSimpleValueType(),
14768                                                      Op.getOperand(1),
14769                                                      Op.getOperand(2), DAG),
14770                                  Op.getOperand(4), Op.getOperand(3), Subtarget,
14771                                  DAG);
14772    case COMPRESS_EXPAND_IN_REG: {
14773      SDValue Mask = Op.getOperand(3);
14774      SDValue DataToCompress = Op.getOperand(1);
14775      SDValue PassThru = Op.getOperand(2);
14776      if (isAllOnes(Mask)) // return data as is
14777        return Op.getOperand(1);
14778      EVT VT = Op.getValueType();
14779      EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
14780                                    VT.getVectorNumElements());
14781      EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
14782                                       Mask.getValueType().getSizeInBits());
14783      SDLoc dl(Op);
14784      SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
14785                                  DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
14786                                  DAG.getIntPtrConstant(0));
14787
14788      return DAG.getNode(IntrData->Opc0, dl, VT, VMask, DataToCompress,
14789                         PassThru);
14790    }
14791    case BLEND: {
14792      SDValue Mask = Op.getOperand(3);
14793      EVT VT = Op.getValueType();
14794      EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
14795                                    VT.getVectorNumElements());
14796      EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
14797                                       Mask.getValueType().getSizeInBits());
14798      SDLoc dl(Op);
14799      SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
14800                                  DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
14801                                  DAG.getIntPtrConstant(0));
14802      return DAG.getNode(IntrData->Opc0, dl, VT, VMask, Op.getOperand(1),
14803                         Op.getOperand(2));
14804    }
14805    default:
14806      break;
14807    }
14808  }
14809
14810  switch (IntNo) {
14811  default: return SDValue();    // Don't custom lower most intrinsics.
14812
14813  case Intrinsic::x86_avx2_permd:
14814  case Intrinsic::x86_avx2_permps:
14815    // Operands intentionally swapped. Mask is last operand to intrinsic,
14816    // but second operand for node/instruction.
14817    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
14818                       Op.getOperand(2), Op.getOperand(1));
14819
14820  case Intrinsic::x86_avx512_mask_valign_q_512:
14821  case Intrinsic::x86_avx512_mask_valign_d_512:
14822    // Vector source operands are swapped.
14823    return getVectorMaskingNode(DAG.getNode(X86ISD::VALIGN, dl,
14824                                            Op.getValueType(), Op.getOperand(2),
14825                                            Op.getOperand(1),
14826                                            Op.getOperand(3)),
14827                                Op.getOperand(5), Op.getOperand(4),
14828                                Subtarget, DAG);
14829
14830  // ptest and testp intrinsics. The intrinsic these come from are designed to
14831  // return an integer value, not just an instruction so lower it to the ptest
14832  // or testp pattern and a setcc for the result.
14833  case Intrinsic::x86_sse41_ptestz:
14834  case Intrinsic::x86_sse41_ptestc:
14835  case Intrinsic::x86_sse41_ptestnzc:
14836  case Intrinsic::x86_avx_ptestz_256:
14837  case Intrinsic::x86_avx_ptestc_256:
14838  case Intrinsic::x86_avx_ptestnzc_256:
14839  case Intrinsic::x86_avx_vtestz_ps:
14840  case Intrinsic::x86_avx_vtestc_ps:
14841  case Intrinsic::x86_avx_vtestnzc_ps:
14842  case Intrinsic::x86_avx_vtestz_pd:
14843  case Intrinsic::x86_avx_vtestc_pd:
14844  case Intrinsic::x86_avx_vtestnzc_pd:
14845  case Intrinsic::x86_avx_vtestz_ps_256:
14846  case Intrinsic::x86_avx_vtestc_ps_256:
14847  case Intrinsic::x86_avx_vtestnzc_ps_256:
14848  case Intrinsic::x86_avx_vtestz_pd_256:
14849  case Intrinsic::x86_avx_vtestc_pd_256:
14850  case Intrinsic::x86_avx_vtestnzc_pd_256: {
14851    bool IsTestPacked = false;
14852    unsigned X86CC;
14853    switch (IntNo) {
14854    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
14855    case Intrinsic::x86_avx_vtestz_ps:
14856    case Intrinsic::x86_avx_vtestz_pd:
14857    case Intrinsic::x86_avx_vtestz_ps_256:
14858    case Intrinsic::x86_avx_vtestz_pd_256:
14859      IsTestPacked = true; // Fallthrough
14860    case Intrinsic::x86_sse41_ptestz:
14861    case Intrinsic::x86_avx_ptestz_256:
14862      // ZF = 1
14863      X86CC = X86::COND_E;
14864      break;
14865    case Intrinsic::x86_avx_vtestc_ps:
14866    case Intrinsic::x86_avx_vtestc_pd:
14867    case Intrinsic::x86_avx_vtestc_ps_256:
14868    case Intrinsic::x86_avx_vtestc_pd_256:
14869      IsTestPacked = true; // Fallthrough
14870    case Intrinsic::x86_sse41_ptestc:
14871    case Intrinsic::x86_avx_ptestc_256:
14872      // CF = 1
14873      X86CC = X86::COND_B;
14874      break;
14875    case Intrinsic::x86_avx_vtestnzc_ps:
14876    case Intrinsic::x86_avx_vtestnzc_pd:
14877    case Intrinsic::x86_avx_vtestnzc_ps_256:
14878    case Intrinsic::x86_avx_vtestnzc_pd_256:
14879      IsTestPacked = true; // Fallthrough
14880    case Intrinsic::x86_sse41_ptestnzc:
14881    case Intrinsic::x86_avx_ptestnzc_256:
14882      // ZF and CF = 0
14883      X86CC = X86::COND_A;
14884      break;
14885    }
14886
14887    SDValue LHS = Op.getOperand(1);
14888    SDValue RHS = Op.getOperand(2);
14889    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
14890    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
14891    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
14892    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
14893    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
14894  }
14895  case Intrinsic::x86_avx512_kortestz_w:
14896  case Intrinsic::x86_avx512_kortestc_w: {
14897    unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz_w)? X86::COND_E: X86::COND_B;
14898    SDValue LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(1));
14899    SDValue RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(2));
14900    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
14901    SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
14902    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i1, CC, Test);
14903    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
14904  }
14905
14906  case Intrinsic::x86_sse42_pcmpistria128:
14907  case Intrinsic::x86_sse42_pcmpestria128:
14908  case Intrinsic::x86_sse42_pcmpistric128:
14909  case Intrinsic::x86_sse42_pcmpestric128:
14910  case Intrinsic::x86_sse42_pcmpistrio128:
14911  case Intrinsic::x86_sse42_pcmpestrio128:
14912  case Intrinsic::x86_sse42_pcmpistris128:
14913  case Intrinsic::x86_sse42_pcmpestris128:
14914  case Intrinsic::x86_sse42_pcmpistriz128:
14915  case Intrinsic::x86_sse42_pcmpestriz128: {
14916    unsigned Opcode;
14917    unsigned X86CC;
14918    switch (IntNo) {
14919    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
14920    case Intrinsic::x86_sse42_pcmpistria128:
14921      Opcode = X86ISD::PCMPISTRI;
14922      X86CC = X86::COND_A;
14923      break;
14924    case Intrinsic::x86_sse42_pcmpestria128:
14925      Opcode = X86ISD::PCMPESTRI;
14926      X86CC = X86::COND_A;
14927      break;
14928    case Intrinsic::x86_sse42_pcmpistric128:
14929      Opcode = X86ISD::PCMPISTRI;
14930      X86CC = X86::COND_B;
14931      break;
14932    case Intrinsic::x86_sse42_pcmpestric128:
14933      Opcode = X86ISD::PCMPESTRI;
14934      X86CC = X86::COND_B;
14935      break;
14936    case Intrinsic::x86_sse42_pcmpistrio128:
14937      Opcode = X86ISD::PCMPISTRI;
14938      X86CC = X86::COND_O;
14939      break;
14940    case Intrinsic::x86_sse42_pcmpestrio128:
14941      Opcode = X86ISD::PCMPESTRI;
14942      X86CC = X86::COND_O;
14943      break;
14944    case Intrinsic::x86_sse42_pcmpistris128:
14945      Opcode = X86ISD::PCMPISTRI;
14946      X86CC = X86::COND_S;
14947      break;
14948    case Intrinsic::x86_sse42_pcmpestris128:
14949      Opcode = X86ISD::PCMPESTRI;
14950      X86CC = X86::COND_S;
14951      break;
14952    case Intrinsic::x86_sse42_pcmpistriz128:
14953      Opcode = X86ISD::PCMPISTRI;
14954      X86CC = X86::COND_E;
14955      break;
14956    case Intrinsic::x86_sse42_pcmpestriz128:
14957      Opcode = X86ISD::PCMPESTRI;
14958      X86CC = X86::COND_E;
14959      break;
14960    }
14961    SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
14962    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
14963    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps);
14964    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
14965                                DAG.getConstant(X86CC, MVT::i8),
14966                                SDValue(PCMP.getNode(), 1));
14967    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
14968  }
14969
14970  case Intrinsic::x86_sse42_pcmpistri128:
14971  case Intrinsic::x86_sse42_pcmpestri128: {
14972    unsigned Opcode;
14973    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
14974      Opcode = X86ISD::PCMPISTRI;
14975    else
14976      Opcode = X86ISD::PCMPESTRI;
14977
14978    SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
14979    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
14980    return DAG.getNode(Opcode, dl, VTs, NewOps);
14981  }
14982  }
14983}
14984
14985static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
14986                              SDValue Src, SDValue Mask, SDValue Base,
14987                              SDValue Index, SDValue ScaleOp, SDValue Chain,
14988                              const X86Subtarget * Subtarget) {
14989  SDLoc dl(Op);
14990  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
14991  assert(C && "Invalid scale type");
14992  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
14993  EVT MaskVT = MVT::getVectorVT(MVT::i1,
14994                             Index.getSimpleValueType().getVectorNumElements());
14995  SDValue MaskInReg;
14996  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
14997  if (MaskC)
14998    MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
14999  else
15000    MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
15001  SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
15002  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
15003  SDValue Segment = DAG.getRegister(0, MVT::i32);
15004  if (Src.getOpcode() == ISD::UNDEF)
15005    Src = getZeroVector(Op.getValueType(), Subtarget, DAG, dl);
15006  SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
15007  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
15008  SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
15009  return DAG.getMergeValues(RetOps, dl);
15010}
15011
15012static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
15013                               SDValue Src, SDValue Mask, SDValue Base,
15014                               SDValue Index, SDValue ScaleOp, SDValue Chain) {
15015  SDLoc dl(Op);
15016  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
15017  assert(C && "Invalid scale type");
15018  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
15019  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
15020  SDValue Segment = DAG.getRegister(0, MVT::i32);
15021  EVT MaskVT = MVT::getVectorVT(MVT::i1,
15022                             Index.getSimpleValueType().getVectorNumElements());
15023  SDValue MaskInReg;
15024  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
15025  if (MaskC)
15026    MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
15027  else
15028    MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
15029  SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
15030  SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain};
15031  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
15032  return SDValue(Res, 1);
15033}
15034
15035static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
15036                               SDValue Mask, SDValue Base, SDValue Index,
15037                               SDValue ScaleOp, SDValue Chain) {
15038  SDLoc dl(Op);
15039  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
15040  assert(C && "Invalid scale type");
15041  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
15042  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
15043  SDValue Segment = DAG.getRegister(0, MVT::i32);
15044  EVT MaskVT =
15045    MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements());
15046  SDValue MaskInReg;
15047  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
15048  if (MaskC)
15049    MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
15050  else
15051    MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
15052  //SDVTList VTs = DAG.getVTList(MVT::Other);
15053  SDValue Ops[] = {MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
15054  SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops);
15055  return SDValue(Res, 0);
15056}
15057
15058// getReadPerformanceCounter - Handles the lowering of builtin intrinsics that
15059// read performance monitor counters (x86_rdpmc).
15060static void getReadPerformanceCounter(SDNode *N, SDLoc DL,
15061                              SelectionDAG &DAG, const X86Subtarget *Subtarget,
15062                              SmallVectorImpl<SDValue> &Results) {
15063  assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
15064  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
15065  SDValue LO, HI;
15066
15067  // The ECX register is used to select the index of the performance counter
15068  // to read.
15069  SDValue Chain = DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX,
15070                                   N->getOperand(2));
15071  SDValue rd = DAG.getNode(X86ISD::RDPMC_DAG, DL, Tys, Chain);
15072
15073  // Reads the content of a 64-bit performance counter and returns it in the
15074  // registers EDX:EAX.
15075  if (Subtarget->is64Bit()) {
15076    LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
15077    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
15078                            LO.getValue(2));
15079  } else {
15080    LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
15081    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
15082                            LO.getValue(2));
15083  }
15084  Chain = HI.getValue(1);
15085
15086  if (Subtarget->is64Bit()) {
15087    // The EAX register is loaded with the low-order 32 bits. The EDX register
15088    // is loaded with the supported high-order bits of the counter.
15089    SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
15090                              DAG.getConstant(32, MVT::i8));
15091    Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
15092    Results.push_back(Chain);
15093    return;
15094  }
15095
15096  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
15097  SDValue Ops[] = { LO, HI };
15098  SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
15099  Results.push_back(Pair);
15100  Results.push_back(Chain);
15101}
15102
15103// getReadTimeStampCounter - Handles the lowering of builtin intrinsics that
15104// read the time stamp counter (x86_rdtsc and x86_rdtscp). This function is
15105// also used to custom lower READCYCLECOUNTER nodes.
15106static void getReadTimeStampCounter(SDNode *N, SDLoc DL, unsigned Opcode,
15107                              SelectionDAG &DAG, const X86Subtarget *Subtarget,
15108                              SmallVectorImpl<SDValue> &Results) {
15109  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
15110  SDValue rd = DAG.getNode(Opcode, DL, Tys, N->getOperand(0));
15111  SDValue LO, HI;
15112
15113  // The processor's time-stamp counter (a 64-bit MSR) is stored into the
15114  // EDX:EAX registers. EDX is loaded with the high-order 32 bits of the MSR
15115  // and the EAX register is loaded with the low-order 32 bits.
15116  if (Subtarget->is64Bit()) {
15117    LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
15118    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
15119                            LO.getValue(2));
15120  } else {
15121    LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
15122    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
15123                            LO.getValue(2));
15124  }
15125  SDValue Chain = HI.getValue(1);
15126
15127  if (Opcode == X86ISD::RDTSCP_DAG) {
15128    assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
15129
15130    // Instruction RDTSCP loads the IA32:TSC_AUX_MSR (address C000_0103H) into
15131    // the ECX register. Add 'ecx' explicitly to the chain.
15132    SDValue ecx = DAG.getCopyFromReg(Chain, DL, X86::ECX, MVT::i32,
15133                                     HI.getValue(2));
15134    // Explicitly store the content of ECX at the location passed in input
15135    // to the 'rdtscp' intrinsic.
15136    Chain = DAG.getStore(ecx.getValue(1), DL, ecx, N->getOperand(2),
15137                         MachinePointerInfo(), false, false, 0);
15138  }
15139
15140  if (Subtarget->is64Bit()) {
15141    // The EDX register is loaded with the high-order 32 bits of the MSR, and
15142    // the EAX register is loaded with the low-order 32 bits.
15143    SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
15144                              DAG.getConstant(32, MVT::i8));
15145    Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
15146    Results.push_back(Chain);
15147    return;
15148  }
15149
15150  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
15151  SDValue Ops[] = { LO, HI };
15152  SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
15153  Results.push_back(Pair);
15154  Results.push_back(Chain);
15155}
15156
15157static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
15158                                     SelectionDAG &DAG) {
15159  SmallVector<SDValue, 2> Results;
15160  SDLoc DL(Op);
15161  getReadTimeStampCounter(Op.getNode(), DL, X86ISD::RDTSC_DAG, DAG, Subtarget,
15162                          Results);
15163  return DAG.getMergeValues(Results, DL);
15164}
15165
15166
15167static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
15168                                      SelectionDAG &DAG) {
15169  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
15170
15171  const IntrinsicData* IntrData = getIntrinsicWithChain(IntNo);
15172  if (!IntrData)
15173    return SDValue();
15174
15175  SDLoc dl(Op);
15176  switch(IntrData->Type) {
15177  default:
15178    llvm_unreachable("Unknown Intrinsic Type");
15179    break;
15180  case RDSEED:
15181  case RDRAND: {
15182    // Emit the node with the right value type.
15183    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
15184    SDValue Result = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
15185
15186    // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
15187    // Otherwise return the value from Rand, which is always 0, casted to i32.
15188    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
15189                      DAG.getConstant(1, Op->getValueType(1)),
15190                      DAG.getConstant(X86::COND_B, MVT::i32),
15191                      SDValue(Result.getNode(), 1) };
15192    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
15193                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
15194                                  Ops);
15195
15196    // Return { result, isValid, chain }.
15197    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
15198                       SDValue(Result.getNode(), 2));
15199  }
15200  case GATHER: {
15201  //gather(v1, mask, index, base, scale);
15202    SDValue Chain = Op.getOperand(0);
15203    SDValue Src   = Op.getOperand(2);
15204    SDValue Base  = Op.getOperand(3);
15205    SDValue Index = Op.getOperand(4);
15206    SDValue Mask  = Op.getOperand(5);
15207    SDValue Scale = Op.getOperand(6);
15208    return getGatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain,
15209                          Subtarget);
15210  }
15211  case SCATTER: {
15212  //scatter(base, mask, index, v1, scale);
15213    SDValue Chain = Op.getOperand(0);
15214    SDValue Base  = Op.getOperand(2);
15215    SDValue Mask  = Op.getOperand(3);
15216    SDValue Index = Op.getOperand(4);
15217    SDValue Src   = Op.getOperand(5);
15218    SDValue Scale = Op.getOperand(6);
15219    return getScatterNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain);
15220  }
15221  case PREFETCH: {
15222    SDValue Hint = Op.getOperand(6);
15223    unsigned HintVal;
15224    if (dyn_cast<ConstantSDNode> (Hint) == nullptr ||
15225        (HintVal = dyn_cast<ConstantSDNode> (Hint)->getZExtValue()) > 1)
15226      llvm_unreachable("Wrong prefetch hint in intrinsic: should be 0 or 1");
15227    unsigned Opcode = (HintVal ? IntrData->Opc1 : IntrData->Opc0);
15228    SDValue Chain = Op.getOperand(0);
15229    SDValue Mask  = Op.getOperand(2);
15230    SDValue Index = Op.getOperand(3);
15231    SDValue Base  = Op.getOperand(4);
15232    SDValue Scale = Op.getOperand(5);
15233    return getPrefetchNode(Opcode, Op, DAG, Mask, Base, Index, Scale, Chain);
15234  }
15235  // Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP).
15236  case RDTSC: {
15237    SmallVector<SDValue, 2> Results;
15238    getReadTimeStampCounter(Op.getNode(), dl, IntrData->Opc0, DAG, Subtarget, Results);
15239    return DAG.getMergeValues(Results, dl);
15240  }
15241  // Read Performance Monitoring Counters.
15242  case RDPMC: {
15243    SmallVector<SDValue, 2> Results;
15244    getReadPerformanceCounter(Op.getNode(), dl, DAG, Subtarget, Results);
15245    return DAG.getMergeValues(Results, dl);
15246  }
15247  // XTEST intrinsics.
15248  case XTEST: {
15249    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
15250    SDValue InTrans = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
15251    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
15252                                DAG.getConstant(X86::COND_NE, MVT::i8),
15253                                InTrans);
15254    SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
15255    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
15256                       Ret, SDValue(InTrans.getNode(), 1));
15257  }
15258  // ADC/ADCX/SBB
15259  case ADX: {
15260    SmallVector<SDValue, 2> Results;
15261    SDVTList CFVTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
15262    SDVTList VTs = DAG.getVTList(Op.getOperand(3)->getValueType(0), MVT::Other);
15263    SDValue GenCF = DAG.getNode(X86ISD::ADD, dl, CFVTs, Op.getOperand(2),
15264                                DAG.getConstant(-1, MVT::i8));
15265    SDValue Res = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(3),
15266                              Op.getOperand(4), GenCF.getValue(1));
15267    SDValue Store = DAG.getStore(Op.getOperand(0), dl, Res.getValue(0),
15268                                 Op.getOperand(5), MachinePointerInfo(),
15269                                 false, false, 0);
15270    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
15271                                DAG.getConstant(X86::COND_B, MVT::i8),
15272                                Res.getValue(1));
15273    Results.push_back(SetCC);
15274    Results.push_back(Store);
15275    return DAG.getMergeValues(Results, dl);
15276  }
15277  case COMPRESS_TO_MEM: {
15278    SDLoc dl(Op);
15279    SDValue Mask = Op.getOperand(4);
15280    SDValue DataToCompress = Op.getOperand(3);
15281    SDValue Addr = Op.getOperand(2);
15282    SDValue Chain = Op.getOperand(0);
15283
15284    if (isAllOnes(Mask)) // return just a store
15285      return DAG.getStore(Chain, dl, DataToCompress, Addr,
15286                          MachinePointerInfo(), false, false, 0);
15287
15288    EVT VT = DataToCompress.getValueType();
15289    EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
15290                                  VT.getVectorNumElements());
15291    EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
15292                                     Mask.getValueType().getSizeInBits());
15293    SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
15294                                DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
15295                                DAG.getIntPtrConstant(0));
15296
15297    SDValue Compressed =  DAG.getNode(IntrData->Opc0, dl, VT, VMask,
15298                                      DataToCompress, DAG.getUNDEF(VT));
15299    return DAG.getStore(Chain, dl, Compressed, Addr,
15300                        MachinePointerInfo(), false, false, 0);
15301  }
15302  case EXPAND_FROM_MEM: {
15303    SDLoc dl(Op);
15304    SDValue Mask = Op.getOperand(4);
15305    SDValue PathThru = Op.getOperand(3);
15306    SDValue Addr = Op.getOperand(2);
15307    SDValue Chain = Op.getOperand(0);
15308    EVT VT = Op.getValueType();
15309
15310    if (isAllOnes(Mask)) // return just a load
15311      return DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(), false, false,
15312                         false, 0);
15313    EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
15314                                  VT.getVectorNumElements());
15315    EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
15316                                     Mask.getValueType().getSizeInBits());
15317    SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
15318                                DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
15319                                DAG.getIntPtrConstant(0));
15320
15321    SDValue DataToExpand = DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(),
15322                                   false, false, false, 0);
15323
15324    SDValue Results[] = {
15325        DAG.getNode(IntrData->Opc0, dl, VT, VMask, DataToExpand, PathThru),
15326        Chain};
15327    return DAG.getMergeValues(Results, dl);
15328  }
15329  }
15330}
15331
15332SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
15333                                           SelectionDAG &DAG) const {
15334  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
15335  MFI->setReturnAddressIsTaken(true);
15336
15337  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
15338    return SDValue();
15339
15340  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15341  SDLoc dl(Op);
15342  EVT PtrVT = getPointerTy();
15343
15344  if (Depth > 0) {
15345    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
15346    const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
15347    SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
15348    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15349                       DAG.getNode(ISD::ADD, dl, PtrVT,
15350                                   FrameAddr, Offset),
15351                       MachinePointerInfo(), false, false, false, 0);
15352  }
15353
15354  // Just load the return address.
15355  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
15356  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15357                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
15358}
15359
15360SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
15361  MachineFunction &MF = DAG.getMachineFunction();
15362  MachineFrameInfo *MFI = MF.getFrameInfo();
15363  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
15364  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
15365  EVT VT = Op.getValueType();
15366
15367  MFI->setFrameAddressIsTaken(true);
15368
15369  if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
15370    // Depth > 0 makes no sense on targets which use Windows unwind codes.  It
15371    // is not possible to crawl up the stack without looking at the unwind codes
15372    // simultaneously.
15373    int FrameAddrIndex = FuncInfo->getFAIndex();
15374    if (!FrameAddrIndex) {
15375      // Set up a frame object for the return address.
15376      unsigned SlotSize = RegInfo->getSlotSize();
15377      FrameAddrIndex = MF.getFrameInfo()->CreateFixedObject(
15378          SlotSize, /*Offset=*/INT64_MIN, /*IsImmutable=*/false);
15379      FuncInfo->setFAIndex(FrameAddrIndex);
15380    }
15381    return DAG.getFrameIndex(FrameAddrIndex, VT);
15382  }
15383
15384  unsigned FrameReg =
15385      RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction());
15386  SDLoc dl(Op);  // FIXME probably not meaningful
15387  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15388  assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
15389          (FrameReg == X86::EBP && VT == MVT::i32)) &&
15390         "Invalid Frame Register!");
15391  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
15392  while (Depth--)
15393    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
15394                            MachinePointerInfo(),
15395                            false, false, false, 0);
15396  return FrameAddr;
15397}
15398
15399// FIXME? Maybe this could be a TableGen attribute on some registers and
15400// this table could be generated automatically from RegInfo.
15401unsigned X86TargetLowering::getRegisterByName(const char* RegName,
15402                                              EVT VT) const {
15403  unsigned Reg = StringSwitch<unsigned>(RegName)
15404                       .Case("esp", X86::ESP)
15405                       .Case("rsp", X86::RSP)
15406                       .Default(0);
15407  if (Reg)
15408    return Reg;
15409  report_fatal_error("Invalid register name global variable");
15410}
15411
15412SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
15413                                                     SelectionDAG &DAG) const {
15414  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
15415  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
15416}
15417
15418SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
15419  SDValue Chain     = Op.getOperand(0);
15420  SDValue Offset    = Op.getOperand(1);
15421  SDValue Handler   = Op.getOperand(2);
15422  SDLoc dl      (Op);
15423
15424  EVT PtrVT = getPointerTy();
15425  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
15426  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
15427  assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
15428          (FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
15429         "Invalid Frame Register!");
15430  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
15431  unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
15432
15433  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
15434                                 DAG.getIntPtrConstant(RegInfo->getSlotSize()));
15435  StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
15436  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
15437                       false, false, 0);
15438  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
15439
15440  return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
15441                     DAG.getRegister(StoreAddrReg, PtrVT));
15442}
15443
15444SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
15445                                               SelectionDAG &DAG) const {
15446  SDLoc DL(Op);
15447  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
15448                     DAG.getVTList(MVT::i32, MVT::Other),
15449                     Op.getOperand(0), Op.getOperand(1));
15450}
15451
15452SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
15453                                                SelectionDAG &DAG) const {
15454  SDLoc DL(Op);
15455  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
15456                     Op.getOperand(0), Op.getOperand(1));
15457}
15458
15459static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
15460  return Op.getOperand(0);
15461}
15462
15463SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
15464                                                SelectionDAG &DAG) const {
15465  SDValue Root = Op.getOperand(0);
15466  SDValue Trmp = Op.getOperand(1); // trampoline
15467  SDValue FPtr = Op.getOperand(2); // nested function
15468  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
15469  SDLoc dl (Op);
15470
15471  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
15472  const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
15473
15474  if (Subtarget->is64Bit()) {
15475    SDValue OutChains[6];
15476
15477    // Large code-model.
15478    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
15479    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
15480
15481    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
15482    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
15483
15484    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
15485
15486    // Load the pointer to the nested function into R11.
15487    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
15488    SDValue Addr = Trmp;
15489    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
15490                                Addr, MachinePointerInfo(TrmpAddr),
15491                                false, false, 0);
15492
15493    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
15494                       DAG.getConstant(2, MVT::i64));
15495    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
15496                                MachinePointerInfo(TrmpAddr, 2),
15497                                false, false, 2);
15498
15499    // Load the 'nest' parameter value into R10.
15500    // R10 is specified in X86CallingConv.td
15501    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
15502    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
15503                       DAG.getConstant(10, MVT::i64));
15504    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
15505                                Addr, MachinePointerInfo(TrmpAddr, 10),
15506                                false, false, 0);
15507
15508    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
15509                       DAG.getConstant(12, MVT::i64));
15510    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
15511                                MachinePointerInfo(TrmpAddr, 12),
15512                                false, false, 2);
15513
15514    // Jump to the nested function.
15515    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
15516    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
15517                       DAG.getConstant(20, MVT::i64));
15518    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
15519                                Addr, MachinePointerInfo(TrmpAddr, 20),
15520                                false, false, 0);
15521
15522    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
15523    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
15524                       DAG.getConstant(22, MVT::i64));
15525    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
15526                                MachinePointerInfo(TrmpAddr, 22),
15527                                false, false, 0);
15528
15529    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
15530  } else {
15531    const Function *Func =
15532      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
15533    CallingConv::ID CC = Func->getCallingConv();
15534    unsigned NestReg;
15535
15536    switch (CC) {
15537    default:
15538      llvm_unreachable("Unsupported calling convention");
15539    case CallingConv::C:
15540    case CallingConv::X86_StdCall: {
15541      // Pass 'nest' parameter in ECX.
15542      // Must be kept in sync with X86CallingConv.td
15543      NestReg = X86::ECX;
15544
15545      // Check that ECX wasn't needed by an 'inreg' parameter.
15546      FunctionType *FTy = Func->getFunctionType();
15547      const AttributeSet &Attrs = Func->getAttributes();
15548
15549      if (!Attrs.isEmpty() && !Func->isVarArg()) {
15550        unsigned InRegCount = 0;
15551        unsigned Idx = 1;
15552
15553        for (FunctionType::param_iterator I = FTy->param_begin(),
15554             E = FTy->param_end(); I != E; ++I, ++Idx)
15555          if (Attrs.hasAttribute(Idx, Attribute::InReg))
15556            // FIXME: should only count parameters that are lowered to integers.
15557            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
15558
15559        if (InRegCount > 2) {
15560          report_fatal_error("Nest register in use - reduce number of inreg"
15561                             " parameters!");
15562        }
15563      }
15564      break;
15565    }
15566    case CallingConv::X86_FastCall:
15567    case CallingConv::X86_ThisCall:
15568    case CallingConv::Fast:
15569      // Pass 'nest' parameter in EAX.
15570      // Must be kept in sync with X86CallingConv.td
15571      NestReg = X86::EAX;
15572      break;
15573    }
15574
15575    SDValue OutChains[4];
15576    SDValue Addr, Disp;
15577
15578    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
15579                       DAG.getConstant(10, MVT::i32));
15580    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
15581
15582    // This is storing the opcode for MOV32ri.
15583    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
15584    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
15585    OutChains[0] = DAG.getStore(Root, dl,
15586                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
15587                                Trmp, MachinePointerInfo(TrmpAddr),
15588                                false, false, 0);
15589
15590    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
15591                       DAG.getConstant(1, MVT::i32));
15592    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
15593                                MachinePointerInfo(TrmpAddr, 1),
15594                                false, false, 1);
15595
15596    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
15597    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
15598                       DAG.getConstant(5, MVT::i32));
15599    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
15600                                MachinePointerInfo(TrmpAddr, 5),
15601                                false, false, 1);
15602
15603    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
15604                       DAG.getConstant(6, MVT::i32));
15605    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
15606                                MachinePointerInfo(TrmpAddr, 6),
15607                                false, false, 1);
15608
15609    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
15610  }
15611}
15612
15613SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
15614                                            SelectionDAG &DAG) const {
15615  /*
15616   The rounding mode is in bits 11:10 of FPSR, and has the following
15617   settings:
15618     00 Round to nearest
15619     01 Round to -inf
15620     10 Round to +inf
15621     11 Round to 0
15622
15623  FLT_ROUNDS, on the other hand, expects the following:
15624    -1 Undefined
15625     0 Round to 0
15626     1 Round to nearest
15627     2 Round to +inf
15628     3 Round to -inf
15629
15630  To perform the conversion, we do:
15631    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
15632  */
15633
15634  MachineFunction &MF = DAG.getMachineFunction();
15635  const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
15636  unsigned StackAlignment = TFI.getStackAlignment();
15637  MVT VT = Op.getSimpleValueType();
15638  SDLoc DL(Op);
15639
15640  // Save FP Control Word to stack slot
15641  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
15642  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
15643
15644  MachineMemOperand *MMO =
15645   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
15646                           MachineMemOperand::MOStore, 2, 2);
15647
15648  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
15649  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
15650                                          DAG.getVTList(MVT::Other),
15651                                          Ops, MVT::i16, MMO);
15652
15653  // Load FP Control Word from stack slot
15654  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
15655                            MachinePointerInfo(), false, false, false, 0);
15656
15657  // Transform as necessary
15658  SDValue CWD1 =
15659    DAG.getNode(ISD::SRL, DL, MVT::i16,
15660                DAG.getNode(ISD::AND, DL, MVT::i16,
15661                            CWD, DAG.getConstant(0x800, MVT::i16)),
15662                DAG.getConstant(11, MVT::i8));
15663  SDValue CWD2 =
15664    DAG.getNode(ISD::SRL, DL, MVT::i16,
15665                DAG.getNode(ISD::AND, DL, MVT::i16,
15666                            CWD, DAG.getConstant(0x400, MVT::i16)),
15667                DAG.getConstant(9, MVT::i8));
15668
15669  SDValue RetVal =
15670    DAG.getNode(ISD::AND, DL, MVT::i16,
15671                DAG.getNode(ISD::ADD, DL, MVT::i16,
15672                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
15673                            DAG.getConstant(1, MVT::i16)),
15674                DAG.getConstant(3, MVT::i16));
15675
15676  return DAG.getNode((VT.getSizeInBits() < 16 ?
15677                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
15678}
15679
15680static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
15681  MVT VT = Op.getSimpleValueType();
15682  EVT OpVT = VT;
15683  unsigned NumBits = VT.getSizeInBits();
15684  SDLoc dl(Op);
15685
15686  Op = Op.getOperand(0);
15687  if (VT == MVT::i8) {
15688    // Zero extend to i32 since there is not an i8 bsr.
15689    OpVT = MVT::i32;
15690    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
15691  }
15692
15693  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
15694  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
15695  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
15696
15697  // If src is zero (i.e. bsr sets ZF), returns NumBits.
15698  SDValue Ops[] = {
15699    Op,
15700    DAG.getConstant(NumBits+NumBits-1, OpVT),
15701    DAG.getConstant(X86::COND_E, MVT::i8),
15702    Op.getValue(1)
15703  };
15704  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops);
15705
15706  // Finally xor with NumBits-1.
15707  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
15708
15709  if (VT == MVT::i8)
15710    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
15711  return Op;
15712}
15713
15714static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
15715  MVT VT = Op.getSimpleValueType();
15716  EVT OpVT = VT;
15717  unsigned NumBits = VT.getSizeInBits();
15718  SDLoc dl(Op);
15719
15720  Op = Op.getOperand(0);
15721  if (VT == MVT::i8) {
15722    // Zero extend to i32 since there is not an i8 bsr.
15723    OpVT = MVT::i32;
15724    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
15725  }
15726
15727  // Issue a bsr (scan bits in reverse).
15728  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
15729  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
15730
15731  // And xor with NumBits-1.
15732  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
15733
15734  if (VT == MVT::i8)
15735    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
15736  return Op;
15737}
15738
15739static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
15740  MVT VT = Op.getSimpleValueType();
15741  unsigned NumBits = VT.getSizeInBits();
15742  SDLoc dl(Op);
15743  Op = Op.getOperand(0);
15744
15745  // Issue a bsf (scan bits forward) which also sets EFLAGS.
15746  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
15747  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
15748
15749  // If src is zero (i.e. bsf sets ZF), returns NumBits.
15750  SDValue Ops[] = {
15751    Op,
15752    DAG.getConstant(NumBits, VT),
15753    DAG.getConstant(X86::COND_E, MVT::i8),
15754    Op.getValue(1)
15755  };
15756  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops);
15757}
15758
15759// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
15760// ones, and then concatenate the result back.
15761static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
15762  MVT VT = Op.getSimpleValueType();
15763
15764  assert(VT.is256BitVector() && VT.isInteger() &&
15765         "Unsupported value type for operation");
15766
15767  unsigned NumElems = VT.getVectorNumElements();
15768  SDLoc dl(Op);
15769
15770  // Extract the LHS vectors
15771  SDValue LHS = Op.getOperand(0);
15772  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
15773  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
15774
15775  // Extract the RHS vectors
15776  SDValue RHS = Op.getOperand(1);
15777  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
15778  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
15779
15780  MVT EltVT = VT.getVectorElementType();
15781  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
15782
15783  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
15784                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
15785                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
15786}
15787
15788static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
15789  assert(Op.getSimpleValueType().is256BitVector() &&
15790         Op.getSimpleValueType().isInteger() &&
15791         "Only handle AVX 256-bit vector integer operation");
15792  return Lower256IntArith(Op, DAG);
15793}
15794
15795static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
15796  assert(Op.getSimpleValueType().is256BitVector() &&
15797         Op.getSimpleValueType().isInteger() &&
15798         "Only handle AVX 256-bit vector integer operation");
15799  return Lower256IntArith(Op, DAG);
15800}
15801
15802static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
15803                        SelectionDAG &DAG) {
15804  SDLoc dl(Op);
15805  MVT VT = Op.getSimpleValueType();
15806
15807  // Decompose 256-bit ops into smaller 128-bit ops.
15808  if (VT.is256BitVector() && !Subtarget->hasInt256())
15809    return Lower256IntArith(Op, DAG);
15810
15811  SDValue A = Op.getOperand(0);
15812  SDValue B = Op.getOperand(1);
15813
15814  // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
15815  if (VT == MVT::v4i32) {
15816    assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
15817           "Should not custom lower when pmuldq is available!");
15818
15819    // Extract the odd parts.
15820    static const int UnpackMask[] = { 1, -1, 3, -1 };
15821    SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
15822    SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
15823
15824    // Multiply the even parts.
15825    SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
15826    // Now multiply odd parts.
15827    SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
15828
15829    Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
15830    Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
15831
15832    // Merge the two vectors back together with a shuffle. This expands into 2
15833    // shuffles.
15834    static const int ShufMask[] = { 0, 4, 2, 6 };
15835    return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
15836  }
15837
15838  assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) &&
15839         "Only know how to lower V2I64/V4I64/V8I64 multiply");
15840
15841  //  Ahi = psrlqi(a, 32);
15842  //  Bhi = psrlqi(b, 32);
15843  //
15844  //  AloBlo = pmuludq(a, b);
15845  //  AloBhi = pmuludq(a, Bhi);
15846  //  AhiBlo = pmuludq(Ahi, b);
15847
15848  //  AloBhi = psllqi(AloBhi, 32);
15849  //  AhiBlo = psllqi(AhiBlo, 32);
15850  //  return AloBlo + AloBhi + AhiBlo;
15851
15852  SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG);
15853  SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG);
15854
15855  // Bit cast to 32-bit vectors for MULUDQ
15856  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 :
15857                                  (VT == MVT::v4i64) ? MVT::v8i32 : MVT::v16i32;
15858  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
15859  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
15860  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
15861  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
15862
15863  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
15864  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
15865  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
15866
15867  AloBhi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AloBhi, 32, DAG);
15868  AhiBlo = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AhiBlo, 32, DAG);
15869
15870  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
15871  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
15872}
15873
15874SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const {
15875  assert(Subtarget->isTargetWin64() && "Unexpected target");
15876  EVT VT = Op.getValueType();
15877  assert(VT.isInteger() && VT.getSizeInBits() == 128 &&
15878         "Unexpected return type for lowering");
15879
15880  RTLIB::Libcall LC;
15881  bool isSigned;
15882  switch (Op->getOpcode()) {
15883  default: llvm_unreachable("Unexpected request for libcall!");
15884  case ISD::SDIV:      isSigned = true;  LC = RTLIB::SDIV_I128;    break;
15885  case ISD::UDIV:      isSigned = false; LC = RTLIB::UDIV_I128;    break;
15886  case ISD::SREM:      isSigned = true;  LC = RTLIB::SREM_I128;    break;
15887  case ISD::UREM:      isSigned = false; LC = RTLIB::UREM_I128;    break;
15888  case ISD::SDIVREM:   isSigned = true;  LC = RTLIB::SDIVREM_I128; break;
15889  case ISD::UDIVREM:   isSigned = false; LC = RTLIB::UDIVREM_I128; break;
15890  }
15891
15892  SDLoc dl(Op);
15893  SDValue InChain = DAG.getEntryNode();
15894
15895  TargetLowering::ArgListTy Args;
15896  TargetLowering::ArgListEntry Entry;
15897  for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
15898    EVT ArgVT = Op->getOperand(i).getValueType();
15899    assert(ArgVT.isInteger() && ArgVT.getSizeInBits() == 128 &&
15900           "Unexpected argument type for lowering");
15901    SDValue StackPtr = DAG.CreateStackTemporary(ArgVT, 16);
15902    Entry.Node = StackPtr;
15903    InChain = DAG.getStore(InChain, dl, Op->getOperand(i), StackPtr, MachinePointerInfo(),
15904                           false, false, 16);
15905    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
15906    Entry.Ty = PointerType::get(ArgTy,0);
15907    Entry.isSExt = false;
15908    Entry.isZExt = false;
15909    Args.push_back(Entry);
15910  }
15911
15912  SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
15913                                         getPointerTy());
15914
15915  TargetLowering::CallLoweringInfo CLI(DAG);
15916  CLI.setDebugLoc(dl).setChain(InChain)
15917    .setCallee(getLibcallCallingConv(LC),
15918               static_cast<EVT>(MVT::v2i64).getTypeForEVT(*DAG.getContext()),
15919               Callee, std::move(Args), 0)
15920    .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
15921
15922  std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
15923  return DAG.getNode(ISD::BITCAST, dl, VT, CallInfo.first);
15924}
15925
15926static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget *Subtarget,
15927                             SelectionDAG &DAG) {
15928  SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
15929  EVT VT = Op0.getValueType();
15930  SDLoc dl(Op);
15931
15932  assert((VT == MVT::v4i32 && Subtarget->hasSSE2()) ||
15933         (VT == MVT::v8i32 && Subtarget->hasInt256()));
15934
15935  // PMULxD operations multiply each even value (starting at 0) of LHS with
15936  // the related value of RHS and produce a widen result.
15937  // E.g., PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
15938  // => <2 x i64> <ae|cg>
15939  //
15940  // In other word, to have all the results, we need to perform two PMULxD:
15941  // 1. one with the even values.
15942  // 2. one with the odd values.
15943  // To achieve #2, with need to place the odd values at an even position.
15944  //
15945  // Place the odd value at an even position (basically, shift all values 1
15946  // step to the left):
15947  const int Mask[] = {1, -1, 3, -1, 5, -1, 7, -1};
15948  // <a|b|c|d> => <b|undef|d|undef>
15949  SDValue Odd0 = DAG.getVectorShuffle(VT, dl, Op0, Op0, Mask);
15950  // <e|f|g|h> => <f|undef|h|undef>
15951  SDValue Odd1 = DAG.getVectorShuffle(VT, dl, Op1, Op1, Mask);
15952
15953  // Emit two multiplies, one for the lower 2 ints and one for the higher 2
15954  // ints.
15955  MVT MulVT = VT == MVT::v4i32 ? MVT::v2i64 : MVT::v4i64;
15956  bool IsSigned = Op->getOpcode() == ISD::SMUL_LOHI;
15957  unsigned Opcode =
15958      (!IsSigned || !Subtarget->hasSSE41()) ? X86ISD::PMULUDQ : X86ISD::PMULDQ;
15959  // PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
15960  // => <2 x i64> <ae|cg>
15961  SDValue Mul1 = DAG.getNode(ISD::BITCAST, dl, VT,
15962                             DAG.getNode(Opcode, dl, MulVT, Op0, Op1));
15963  // PMULUDQ <4 x i32> <b|undef|d|undef>, <4 x i32> <f|undef|h|undef>
15964  // => <2 x i64> <bf|dh>
15965  SDValue Mul2 = DAG.getNode(ISD::BITCAST, dl, VT,
15966                             DAG.getNode(Opcode, dl, MulVT, Odd0, Odd1));
15967
15968  // Shuffle it back into the right order.
15969  SDValue Highs, Lows;
15970  if (VT == MVT::v8i32) {
15971    const int HighMask[] = {1, 9, 3, 11, 5, 13, 7, 15};
15972    Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
15973    const int LowMask[] = {0, 8, 2, 10, 4, 12, 6, 14};
15974    Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
15975  } else {
15976    const int HighMask[] = {1, 5, 3, 7};
15977    Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
15978    const int LowMask[] = {0, 4, 2, 6};
15979    Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
15980  }
15981
15982  // If we have a signed multiply but no PMULDQ fix up the high parts of a
15983  // unsigned multiply.
15984  if (IsSigned && !Subtarget->hasSSE41()) {
15985    SDValue ShAmt =
15986        DAG.getConstant(31, DAG.getTargetLoweringInfo().getShiftAmountTy(VT));
15987    SDValue T1 = DAG.getNode(ISD::AND, dl, VT,
15988                             DAG.getNode(ISD::SRA, dl, VT, Op0, ShAmt), Op1);
15989    SDValue T2 = DAG.getNode(ISD::AND, dl, VT,
15990                             DAG.getNode(ISD::SRA, dl, VT, Op1, ShAmt), Op0);
15991
15992    SDValue Fixup = DAG.getNode(ISD::ADD, dl, VT, T1, T2);
15993    Highs = DAG.getNode(ISD::SUB, dl, VT, Highs, Fixup);
15994  }
15995
15996  // The first result of MUL_LOHI is actually the low value, followed by the
15997  // high value.
15998  SDValue Ops[] = {Lows, Highs};
15999  return DAG.getMergeValues(Ops, dl);
16000}
16001
16002static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
16003                                         const X86Subtarget *Subtarget) {
16004  MVT VT = Op.getSimpleValueType();
16005  SDLoc dl(Op);
16006  SDValue R = Op.getOperand(0);
16007  SDValue Amt = Op.getOperand(1);
16008
16009  // Optimize shl/srl/sra with constant shift amount.
16010  if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) {
16011    if (auto *ShiftConst = BVAmt->getConstantSplatNode()) {
16012      uint64_t ShiftAmt = ShiftConst->getZExtValue();
16013
16014      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
16015          (Subtarget->hasInt256() &&
16016           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16)) ||
16017          (Subtarget->hasAVX512() &&
16018           (VT == MVT::v8i64 || VT == MVT::v16i32))) {
16019        if (Op.getOpcode() == ISD::SHL)
16020          return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
16021                                            DAG);
16022        if (Op.getOpcode() == ISD::SRL)
16023          return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
16024                                            DAG);
16025        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
16026          return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
16027                                            DAG);
16028      }
16029
16030      if (VT == MVT::v16i8 || (Subtarget->hasInt256() && VT == MVT::v32i8)) {
16031        unsigned NumElts = VT.getVectorNumElements();
16032        MVT ShiftVT = MVT::getVectorVT(MVT::i16, NumElts / 2);
16033
16034        if (Op.getOpcode() == ISD::SHL) {
16035          // Make a large shift.
16036          SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, ShiftVT,
16037                                                   R, ShiftAmt, DAG);
16038          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
16039          // Zero out the rightmost bits.
16040          SmallVector<SDValue, 32> V(
16041              NumElts, DAG.getConstant(uint8_t(-1U << ShiftAmt), MVT::i8));
16042          return DAG.getNode(ISD::AND, dl, VT, SHL,
16043                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
16044        }
16045        if (Op.getOpcode() == ISD::SRL) {
16046          // Make a large shift.
16047          SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ShiftVT,
16048                                                   R, ShiftAmt, DAG);
16049          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
16050          // Zero out the leftmost bits.
16051          SmallVector<SDValue, 32> V(
16052              NumElts, DAG.getConstant(uint8_t(-1U) >> ShiftAmt, MVT::i8));
16053          return DAG.getNode(ISD::AND, dl, VT, SRL,
16054                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
16055        }
16056        if (Op.getOpcode() == ISD::SRA) {
16057          if (ShiftAmt == 7) {
16058            // R s>> 7  ===  R s< 0
16059            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
16060            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
16061          }
16062
16063          // R s>> a === ((R u>> a) ^ m) - m
16064          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
16065          SmallVector<SDValue, 32> V(NumElts,
16066                                     DAG.getConstant(128 >> ShiftAmt, MVT::i8));
16067          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V);
16068          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
16069          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
16070          return Res;
16071        }
16072        llvm_unreachable("Unknown shift opcode.");
16073      }
16074    }
16075  }
16076
16077  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
16078  if (!Subtarget->is64Bit() &&
16079      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
16080      Amt.getOpcode() == ISD::BITCAST &&
16081      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
16082    Amt = Amt.getOperand(0);
16083    unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
16084                     VT.getVectorNumElements();
16085    unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
16086    uint64_t ShiftAmt = 0;
16087    for (unsigned i = 0; i != Ratio; ++i) {
16088      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i));
16089      if (!C)
16090        return SDValue();
16091      // 6 == Log2(64)
16092      ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
16093    }
16094    // Check remaining shift amounts.
16095    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
16096      uint64_t ShAmt = 0;
16097      for (unsigned j = 0; j != Ratio; ++j) {
16098        ConstantSDNode *C =
16099          dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
16100        if (!C)
16101          return SDValue();
16102        // 6 == Log2(64)
16103        ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
16104      }
16105      if (ShAmt != ShiftAmt)
16106        return SDValue();
16107    }
16108    switch (Op.getOpcode()) {
16109    default:
16110      llvm_unreachable("Unknown shift opcode!");
16111    case ISD::SHL:
16112      return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
16113                                        DAG);
16114    case ISD::SRL:
16115      return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
16116                                        DAG);
16117    case ISD::SRA:
16118      return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
16119                                        DAG);
16120    }
16121  }
16122
16123  return SDValue();
16124}
16125
16126static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
16127                                        const X86Subtarget* Subtarget) {
16128  MVT VT = Op.getSimpleValueType();
16129  SDLoc dl(Op);
16130  SDValue R = Op.getOperand(0);
16131  SDValue Amt = Op.getOperand(1);
16132
16133  if ((VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) ||
16134      VT == MVT::v4i32 || VT == MVT::v8i16 ||
16135      (Subtarget->hasInt256() &&
16136       ((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) ||
16137        VT == MVT::v8i32 || VT == MVT::v16i16)) ||
16138       (Subtarget->hasAVX512() && (VT == MVT::v8i64 || VT == MVT::v16i32))) {
16139    SDValue BaseShAmt;
16140    EVT EltVT = VT.getVectorElementType();
16141
16142    if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Amt)) {
16143      // Check if this build_vector node is doing a splat.
16144      // If so, then set BaseShAmt equal to the splat value.
16145      BaseShAmt = BV->getSplatValue();
16146      if (BaseShAmt && BaseShAmt.getOpcode() == ISD::UNDEF)
16147        BaseShAmt = SDValue();
16148    } else {
16149      if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
16150        Amt = Amt.getOperand(0);
16151
16152      ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt);
16153      if (SVN && SVN->isSplat()) {
16154        unsigned SplatIdx = (unsigned)SVN->getSplatIndex();
16155        SDValue InVec = Amt.getOperand(0);
16156        if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
16157          assert((SplatIdx < InVec.getValueType().getVectorNumElements()) &&
16158                 "Unexpected shuffle index found!");
16159          BaseShAmt = InVec.getOperand(SplatIdx);
16160        } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
16161           if (ConstantSDNode *C =
16162               dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
16163             if (C->getZExtValue() == SplatIdx)
16164               BaseShAmt = InVec.getOperand(1);
16165           }
16166        }
16167
16168        if (!BaseShAmt)
16169          // Avoid introducing an extract element from a shuffle.
16170          BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InVec,
16171                                    DAG.getIntPtrConstant(SplatIdx));
16172      }
16173    }
16174
16175    if (BaseShAmt.getNode()) {
16176      assert(EltVT.bitsLE(MVT::i64) && "Unexpected element type!");
16177      if (EltVT != MVT::i64 && EltVT.bitsGT(MVT::i32))
16178        BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, BaseShAmt);
16179      else if (EltVT.bitsLT(MVT::i32))
16180        BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
16181
16182      switch (Op.getOpcode()) {
16183      default:
16184        llvm_unreachable("Unknown shift opcode!");
16185      case ISD::SHL:
16186        switch (VT.SimpleTy) {
16187        default: return SDValue();
16188        case MVT::v2i64:
16189        case MVT::v4i32:
16190        case MVT::v8i16:
16191        case MVT::v4i64:
16192        case MVT::v8i32:
16193        case MVT::v16i16:
16194        case MVT::v16i32:
16195        case MVT::v8i64:
16196          return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG);
16197        }
16198      case ISD::SRA:
16199        switch (VT.SimpleTy) {
16200        default: return SDValue();
16201        case MVT::v4i32:
16202        case MVT::v8i16:
16203        case MVT::v8i32:
16204        case MVT::v16i16:
16205        case MVT::v16i32:
16206        case MVT::v8i64:
16207          return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG);
16208        }
16209      case ISD::SRL:
16210        switch (VT.SimpleTy) {
16211        default: return SDValue();
16212        case MVT::v2i64:
16213        case MVT::v4i32:
16214        case MVT::v8i16:
16215        case MVT::v4i64:
16216        case MVT::v8i32:
16217        case MVT::v16i16:
16218        case MVT::v16i32:
16219        case MVT::v8i64:
16220          return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG);
16221        }
16222      }
16223    }
16224  }
16225
16226  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
16227  if (!Subtarget->is64Bit() &&
16228      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64) ||
16229      (Subtarget->hasAVX512() && VT == MVT::v8i64)) &&
16230      Amt.getOpcode() == ISD::BITCAST &&
16231      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
16232    Amt = Amt.getOperand(0);
16233    unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
16234                     VT.getVectorNumElements();
16235    std::vector<SDValue> Vals(Ratio);
16236    for (unsigned i = 0; i != Ratio; ++i)
16237      Vals[i] = Amt.getOperand(i);
16238    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
16239      for (unsigned j = 0; j != Ratio; ++j)
16240        if (Vals[j] != Amt.getOperand(i + j))
16241          return SDValue();
16242    }
16243    switch (Op.getOpcode()) {
16244    default:
16245      llvm_unreachable("Unknown shift opcode!");
16246    case ISD::SHL:
16247      return DAG.getNode(X86ISD::VSHL, dl, VT, R, Op.getOperand(1));
16248    case ISD::SRL:
16249      return DAG.getNode(X86ISD::VSRL, dl, VT, R, Op.getOperand(1));
16250    case ISD::SRA:
16251      return DAG.getNode(X86ISD::VSRA, dl, VT, R, Op.getOperand(1));
16252    }
16253  }
16254
16255  return SDValue();
16256}
16257
16258static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
16259                          SelectionDAG &DAG) {
16260  MVT VT = Op.getSimpleValueType();
16261  SDLoc dl(Op);
16262  SDValue R = Op.getOperand(0);
16263  SDValue Amt = Op.getOperand(1);
16264
16265  assert(VT.isVector() && "Custom lowering only for vector shifts!");
16266  assert(Subtarget->hasSSE2() && "Only custom lower when we have SSE2!");
16267
16268  if (SDValue V = LowerScalarImmediateShift(Op, DAG, Subtarget))
16269    return V;
16270
16271  if (SDValue V = LowerScalarVariableShift(Op, DAG, Subtarget))
16272      return V;
16273
16274  if (Subtarget->hasAVX512() && (VT == MVT::v16i32 || VT == MVT::v8i64))
16275    return Op;
16276
16277  // AVX2 has VPSLLV/VPSRAV/VPSRLV.
16278  if (Subtarget->hasInt256()) {
16279    if (Op.getOpcode() == ISD::SRL &&
16280        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
16281         VT == MVT::v4i64 || VT == MVT::v8i32))
16282      return Op;
16283    if (Op.getOpcode() == ISD::SHL &&
16284        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
16285         VT == MVT::v4i64 || VT == MVT::v8i32))
16286      return Op;
16287    if (Op.getOpcode() == ISD::SRA && (VT == MVT::v4i32 || VT == MVT::v8i32))
16288      return Op;
16289  }
16290
16291  // 2i64 vector logical shifts can efficiently avoid scalarization - do the
16292  // shifts per-lane and then shuffle the partial results back together.
16293  if (VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) {
16294    // Splat the shift amounts so the scalar shifts above will catch it.
16295    SDValue Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {0, 0});
16296    SDValue Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {1, 1});
16297    SDValue R0 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt0);
16298    SDValue R1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt1);
16299    return DAG.getVectorShuffle(VT, dl, R0, R1, {0, 3});
16300  }
16301
16302  // If possible, lower this packed shift into a vector multiply instead of
16303  // expanding it into a sequence of scalar shifts.
16304  // Do this only if the vector shift count is a constant build_vector.
16305  if (Op.getOpcode() == ISD::SHL &&
16306      (VT == MVT::v8i16 || VT == MVT::v4i32 ||
16307       (Subtarget->hasInt256() && VT == MVT::v16i16)) &&
16308      ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
16309    SmallVector<SDValue, 8> Elts;
16310    EVT SVT = VT.getScalarType();
16311    unsigned SVTBits = SVT.getSizeInBits();
16312    const APInt &One = APInt(SVTBits, 1);
16313    unsigned NumElems = VT.getVectorNumElements();
16314
16315    for (unsigned i=0; i !=NumElems; ++i) {
16316      SDValue Op = Amt->getOperand(i);
16317      if (Op->getOpcode() == ISD::UNDEF) {
16318        Elts.push_back(Op);
16319        continue;
16320      }
16321
16322      ConstantSDNode *ND = cast<ConstantSDNode>(Op);
16323      const APInt &C = APInt(SVTBits, ND->getAPIntValue().getZExtValue());
16324      uint64_t ShAmt = C.getZExtValue();
16325      if (ShAmt >= SVTBits) {
16326        Elts.push_back(DAG.getUNDEF(SVT));
16327        continue;
16328      }
16329      Elts.push_back(DAG.getConstant(One.shl(ShAmt), SVT));
16330    }
16331    SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts);
16332    return DAG.getNode(ISD::MUL, dl, VT, R, BV);
16333  }
16334
16335  // Lower SHL with variable shift amount.
16336  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
16337    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT));
16338
16339    Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT));
16340    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
16341    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
16342    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
16343  }
16344
16345  // If possible, lower this shift as a sequence of two shifts by
16346  // constant plus a MOVSS/MOVSD instead of scalarizing it.
16347  // Example:
16348  //   (v4i32 (srl A, (build_vector < X, Y, Y, Y>)))
16349  //
16350  // Could be rewritten as:
16351  //   (v4i32 (MOVSS (srl A, <Y,Y,Y,Y>), (srl A, <X,X,X,X>)))
16352  //
16353  // The advantage is that the two shifts from the example would be
16354  // lowered as X86ISD::VSRLI nodes. This would be cheaper than scalarizing
16355  // the vector shift into four scalar shifts plus four pairs of vector
16356  // insert/extract.
16357  if ((VT == MVT::v8i16 || VT == MVT::v4i32) &&
16358      ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
16359    unsigned TargetOpcode = X86ISD::MOVSS;
16360    bool CanBeSimplified;
16361    // The splat value for the first packed shift (the 'X' from the example).
16362    SDValue Amt1 = Amt->getOperand(0);
16363    // The splat value for the second packed shift (the 'Y' from the example).
16364    SDValue Amt2 = (VT == MVT::v4i32) ? Amt->getOperand(1) :
16365                                        Amt->getOperand(2);
16366
16367    // See if it is possible to replace this node with a sequence of
16368    // two shifts followed by a MOVSS/MOVSD
16369    if (VT == MVT::v4i32) {
16370      // Check if it is legal to use a MOVSS.
16371      CanBeSimplified = Amt2 == Amt->getOperand(2) &&
16372                        Amt2 == Amt->getOperand(3);
16373      if (!CanBeSimplified) {
16374        // Otherwise, check if we can still simplify this node using a MOVSD.
16375        CanBeSimplified = Amt1 == Amt->getOperand(1) &&
16376                          Amt->getOperand(2) == Amt->getOperand(3);
16377        TargetOpcode = X86ISD::MOVSD;
16378        Amt2 = Amt->getOperand(2);
16379      }
16380    } else {
16381      // Do similar checks for the case where the machine value type
16382      // is MVT::v8i16.
16383      CanBeSimplified = Amt1 == Amt->getOperand(1);
16384      for (unsigned i=3; i != 8 && CanBeSimplified; ++i)
16385        CanBeSimplified = Amt2 == Amt->getOperand(i);
16386
16387      if (!CanBeSimplified) {
16388        TargetOpcode = X86ISD::MOVSD;
16389        CanBeSimplified = true;
16390        Amt2 = Amt->getOperand(4);
16391        for (unsigned i=0; i != 4 && CanBeSimplified; ++i)
16392          CanBeSimplified = Amt1 == Amt->getOperand(i);
16393        for (unsigned j=4; j != 8 && CanBeSimplified; ++j)
16394          CanBeSimplified = Amt2 == Amt->getOperand(j);
16395      }
16396    }
16397
16398    if (CanBeSimplified && isa<ConstantSDNode>(Amt1) &&
16399        isa<ConstantSDNode>(Amt2)) {
16400      // Replace this node with two shifts followed by a MOVSS/MOVSD.
16401      EVT CastVT = MVT::v4i32;
16402      SDValue Splat1 =
16403        DAG.getConstant(cast<ConstantSDNode>(Amt1)->getAPIntValue(), VT);
16404      SDValue Shift1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat1);
16405      SDValue Splat2 =
16406        DAG.getConstant(cast<ConstantSDNode>(Amt2)->getAPIntValue(), VT);
16407      SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2);
16408      if (TargetOpcode == X86ISD::MOVSD)
16409        CastVT = MVT::v2i64;
16410      SDValue BitCast1 = DAG.getNode(ISD::BITCAST, dl, CastVT, Shift1);
16411      SDValue BitCast2 = DAG.getNode(ISD::BITCAST, dl, CastVT, Shift2);
16412      SDValue Result = getTargetShuffleNode(TargetOpcode, dl, CastVT, BitCast2,
16413                                            BitCast1, DAG);
16414      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
16415    }
16416  }
16417
16418  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
16419    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
16420
16421    // a = a << 5;
16422    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT));
16423    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
16424
16425    // Turn 'a' into a mask suitable for VSELECT
16426    SDValue VSelM = DAG.getConstant(0x80, VT);
16427    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
16428    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
16429
16430    SDValue CM1 = DAG.getConstant(0x0f, VT);
16431    SDValue CM2 = DAG.getConstant(0x3f, VT);
16432
16433    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
16434    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
16435    M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 4, DAG);
16436    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
16437    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
16438
16439    // a += a
16440    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
16441    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
16442    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
16443
16444    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
16445    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
16446    M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 2, DAG);
16447    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
16448    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
16449
16450    // a += a
16451    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
16452    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
16453    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
16454
16455    // return VSELECT(r, r+r, a);
16456    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
16457                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
16458    return R;
16459  }
16460
16461  // It's worth extending once and using the v8i32 shifts for 16-bit types, but
16462  // the extra overheads to get from v16i8 to v8i32 make the existing SSE
16463  // solution better.
16464  if (Subtarget->hasInt256() && VT == MVT::v8i16) {
16465    MVT NewVT = VT == MVT::v8i16 ? MVT::v8i32 : MVT::v16i16;
16466    unsigned ExtOpc =
16467        Op.getOpcode() == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
16468    R = DAG.getNode(ExtOpc, dl, NewVT, R);
16469    Amt = DAG.getNode(ISD::ANY_EXTEND, dl, NewVT, Amt);
16470    return DAG.getNode(ISD::TRUNCATE, dl, VT,
16471                       DAG.getNode(Op.getOpcode(), dl, NewVT, R, Amt));
16472  }
16473
16474  // Decompose 256-bit shifts into smaller 128-bit shifts.
16475  if (VT.is256BitVector()) {
16476    unsigned NumElems = VT.getVectorNumElements();
16477    MVT EltVT = VT.getVectorElementType();
16478    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
16479
16480    // Extract the two vectors
16481    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
16482    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
16483
16484    // Recreate the shift amount vectors
16485    SDValue Amt1, Amt2;
16486    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
16487      // Constant shift amount
16488      SmallVector<SDValue, 8> Ops(Amt->op_begin(), Amt->op_begin() + NumElems);
16489      ArrayRef<SDValue> Amt1Csts = makeArrayRef(Ops).slice(0, NumElems / 2);
16490      ArrayRef<SDValue> Amt2Csts = makeArrayRef(Ops).slice(NumElems / 2);
16491
16492      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt1Csts);
16493      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt2Csts);
16494    } else {
16495      // Variable shift amount
16496      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
16497      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
16498    }
16499
16500    // Issue new vector shifts for the smaller types
16501    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
16502    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
16503
16504    // Concatenate the result back
16505    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
16506  }
16507
16508  return SDValue();
16509}
16510
16511static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
16512  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
16513  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
16514  // looks for this combo and may remove the "setcc" instruction if the "setcc"
16515  // has only one use.
16516  SDNode *N = Op.getNode();
16517  SDValue LHS = N->getOperand(0);
16518  SDValue RHS = N->getOperand(1);
16519  unsigned BaseOp = 0;
16520  unsigned Cond = 0;
16521  SDLoc DL(Op);
16522  switch (Op.getOpcode()) {
16523  default: llvm_unreachable("Unknown ovf instruction!");
16524  case ISD::SADDO:
16525    // A subtract of one will be selected as a INC. Note that INC doesn't
16526    // set CF, so we can't do this for UADDO.
16527    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
16528      if (C->isOne()) {
16529        BaseOp = X86ISD::INC;
16530        Cond = X86::COND_O;
16531        break;
16532      }
16533    BaseOp = X86ISD::ADD;
16534    Cond = X86::COND_O;
16535    break;
16536  case ISD::UADDO:
16537    BaseOp = X86ISD::ADD;
16538    Cond = X86::COND_B;
16539    break;
16540  case ISD::SSUBO:
16541    // A subtract of one will be selected as a DEC. Note that DEC doesn't
16542    // set CF, so we can't do this for USUBO.
16543    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
16544      if (C->isOne()) {
16545        BaseOp = X86ISD::DEC;
16546        Cond = X86::COND_O;
16547        break;
16548      }
16549    BaseOp = X86ISD::SUB;
16550    Cond = X86::COND_O;
16551    break;
16552  case ISD::USUBO:
16553    BaseOp = X86ISD::SUB;
16554    Cond = X86::COND_B;
16555    break;
16556  case ISD::SMULO:
16557    BaseOp = N->getValueType(0) == MVT::i8 ? X86ISD::SMUL8 : X86ISD::SMUL;
16558    Cond = X86::COND_O;
16559    break;
16560  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
16561    if (N->getValueType(0) == MVT::i8) {
16562      BaseOp = X86ISD::UMUL8;
16563      Cond = X86::COND_O;
16564      break;
16565    }
16566    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
16567                                 MVT::i32);
16568    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
16569
16570    SDValue SetCC =
16571      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
16572                  DAG.getConstant(X86::COND_O, MVT::i32),
16573                  SDValue(Sum.getNode(), 2));
16574
16575    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
16576  }
16577  }
16578
16579  // Also sets EFLAGS.
16580  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
16581  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
16582
16583  SDValue SetCC =
16584    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
16585                DAG.getConstant(Cond, MVT::i32),
16586                SDValue(Sum.getNode(), 1));
16587
16588  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
16589}
16590
16591/// Returns true if the operand type is exactly twice the native width, and
16592/// the corresponding cmpxchg8b or cmpxchg16b instruction is available.
16593/// Used to know whether to use cmpxchg8/16b when expanding atomic operations
16594/// (otherwise we leave them alone to become __sync_fetch_and_... calls).
16595bool X86TargetLowering::needsCmpXchgNb(const Type *MemType) const {
16596  unsigned OpWidth = MemType->getPrimitiveSizeInBits();
16597
16598  if (OpWidth == 64)
16599    return !Subtarget->is64Bit(); // FIXME this should be Subtarget.hasCmpxchg8b
16600  else if (OpWidth == 128)
16601    return Subtarget->hasCmpxchg16b();
16602  else
16603    return false;
16604}
16605
16606bool X86TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
16607  return needsCmpXchgNb(SI->getValueOperand()->getType());
16608}
16609
16610// Note: this turns large loads into lock cmpxchg8b/16b.
16611// FIXME: On 32 bits x86, fild/movq might be faster than lock cmpxchg8b.
16612bool X86TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
16613  auto PTy = cast<PointerType>(LI->getPointerOperand()->getType());
16614  return needsCmpXchgNb(PTy->getElementType());
16615}
16616
16617TargetLoweringBase::AtomicRMWExpansionKind
16618X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
16619  unsigned NativeWidth = Subtarget->is64Bit() ? 64 : 32;
16620  const Type *MemType = AI->getType();
16621
16622  // If the operand is too big, we must see if cmpxchg8/16b is available
16623  // and default to library calls otherwise.
16624  if (MemType->getPrimitiveSizeInBits() > NativeWidth) {
16625    return needsCmpXchgNb(MemType) ? AtomicRMWExpansionKind::CmpXChg
16626                                   : AtomicRMWExpansionKind::None;
16627  }
16628
16629  AtomicRMWInst::BinOp Op = AI->getOperation();
16630  switch (Op) {
16631  default:
16632    llvm_unreachable("Unknown atomic operation");
16633  case AtomicRMWInst::Xchg:
16634  case AtomicRMWInst::Add:
16635  case AtomicRMWInst::Sub:
16636    // It's better to use xadd, xsub or xchg for these in all cases.
16637    return AtomicRMWExpansionKind::None;
16638  case AtomicRMWInst::Or:
16639  case AtomicRMWInst::And:
16640  case AtomicRMWInst::Xor:
16641    // If the atomicrmw's result isn't actually used, we can just add a "lock"
16642    // prefix to a normal instruction for these operations.
16643    return !AI->use_empty() ? AtomicRMWExpansionKind::CmpXChg
16644                            : AtomicRMWExpansionKind::None;
16645  case AtomicRMWInst::Nand:
16646  case AtomicRMWInst::Max:
16647  case AtomicRMWInst::Min:
16648  case AtomicRMWInst::UMax:
16649  case AtomicRMWInst::UMin:
16650    // These always require a non-trivial set of data operations on x86. We must
16651    // use a cmpxchg loop.
16652    return AtomicRMWExpansionKind::CmpXChg;
16653  }
16654}
16655
16656static bool hasMFENCE(const X86Subtarget& Subtarget) {
16657  // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
16658  // no-sse2). There isn't any reason to disable it if the target processor
16659  // supports it.
16660  return Subtarget.hasSSE2() || Subtarget.is64Bit();
16661}
16662
16663LoadInst *
16664X86TargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const {
16665  unsigned NativeWidth = Subtarget->is64Bit() ? 64 : 32;
16666  const Type *MemType = AI->getType();
16667  // Accesses larger than the native width are turned into cmpxchg/libcalls, so
16668  // there is no benefit in turning such RMWs into loads, and it is actually
16669  // harmful as it introduces a mfence.
16670  if (MemType->getPrimitiveSizeInBits() > NativeWidth)
16671    return nullptr;
16672
16673  auto Builder = IRBuilder<>(AI);
16674  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
16675  auto SynchScope = AI->getSynchScope();
16676  // We must restrict the ordering to avoid generating loads with Release or
16677  // ReleaseAcquire orderings.
16678  auto Order = AtomicCmpXchgInst::getStrongestFailureOrdering(AI->getOrdering());
16679  auto Ptr = AI->getPointerOperand();
16680
16681  // Before the load we need a fence. Here is an example lifted from
16682  // http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf showing why a fence
16683  // is required:
16684  // Thread 0:
16685  //   x.store(1, relaxed);
16686  //   r1 = y.fetch_add(0, release);
16687  // Thread 1:
16688  //   y.fetch_add(42, acquire);
16689  //   r2 = x.load(relaxed);
16690  // r1 = r2 = 0 is impossible, but becomes possible if the idempotent rmw is
16691  // lowered to just a load without a fence. A mfence flushes the store buffer,
16692  // making the optimization clearly correct.
16693  // FIXME: it is required if isAtLeastRelease(Order) but it is not clear
16694  // otherwise, we might be able to be more agressive on relaxed idempotent
16695  // rmw. In practice, they do not look useful, so we don't try to be
16696  // especially clever.
16697  if (SynchScope == SingleThread) {
16698    // FIXME: we could just insert an X86ISD::MEMBARRIER here, except we are at
16699    // the IR level, so we must wrap it in an intrinsic.
16700    return nullptr;
16701  } else if (hasMFENCE(*Subtarget)) {
16702    Function *MFence = llvm::Intrinsic::getDeclaration(M,
16703            Intrinsic::x86_sse2_mfence);
16704    Builder.CreateCall(MFence);
16705  } else {
16706    // FIXME: it might make sense to use a locked operation here but on a
16707    // different cache-line to prevent cache-line bouncing. In practice it
16708    // is probably a small win, and x86 processors without mfence are rare
16709    // enough that we do not bother.
16710    return nullptr;
16711  }
16712
16713  // Finally we can emit the atomic load.
16714  LoadInst *Loaded = Builder.CreateAlignedLoad(Ptr,
16715          AI->getType()->getPrimitiveSizeInBits());
16716  Loaded->setAtomic(Order, SynchScope);
16717  AI->replaceAllUsesWith(Loaded);
16718  AI->eraseFromParent();
16719  return Loaded;
16720}
16721
16722static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
16723                                 SelectionDAG &DAG) {
16724  SDLoc dl(Op);
16725  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
16726    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
16727  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
16728    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
16729
16730  // The only fence that needs an instruction is a sequentially-consistent
16731  // cross-thread fence.
16732  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
16733    if (hasMFENCE(*Subtarget))
16734      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
16735
16736    SDValue Chain = Op.getOperand(0);
16737    SDValue Zero = DAG.getConstant(0, MVT::i32);
16738    SDValue Ops[] = {
16739      DAG.getRegister(X86::ESP, MVT::i32), // Base
16740      DAG.getTargetConstant(1, MVT::i8),   // Scale
16741      DAG.getRegister(0, MVT::i32),        // Index
16742      DAG.getTargetConstant(0, MVT::i32),  // Disp
16743      DAG.getRegister(0, MVT::i32),        // Segment.
16744      Zero,
16745      Chain
16746    };
16747    SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops);
16748    return SDValue(Res, 0);
16749  }
16750
16751  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
16752  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
16753}
16754
16755static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
16756                             SelectionDAG &DAG) {
16757  MVT T = Op.getSimpleValueType();
16758  SDLoc DL(Op);
16759  unsigned Reg = 0;
16760  unsigned size = 0;
16761  switch(T.SimpleTy) {
16762  default: llvm_unreachable("Invalid value type!");
16763  case MVT::i8:  Reg = X86::AL;  size = 1; break;
16764  case MVT::i16: Reg = X86::AX;  size = 2; break;
16765  case MVT::i32: Reg = X86::EAX; size = 4; break;
16766  case MVT::i64:
16767    assert(Subtarget->is64Bit() && "Node not type legal!");
16768    Reg = X86::RAX; size = 8;
16769    break;
16770  }
16771  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
16772                                  Op.getOperand(2), SDValue());
16773  SDValue Ops[] = { cpIn.getValue(0),
16774                    Op.getOperand(1),
16775                    Op.getOperand(3),
16776                    DAG.getTargetConstant(size, MVT::i8),
16777                    cpIn.getValue(1) };
16778  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
16779  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
16780  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
16781                                           Ops, T, MMO);
16782
16783  SDValue cpOut =
16784    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
16785  SDValue EFLAGS = DAG.getCopyFromReg(cpOut.getValue(1), DL, X86::EFLAGS,
16786                                      MVT::i32, cpOut.getValue(2));
16787  SDValue Success = DAG.getNode(X86ISD::SETCC, DL, Op->getValueType(1),
16788                                DAG.getConstant(X86::COND_E, MVT::i8), EFLAGS);
16789
16790  DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), cpOut);
16791  DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
16792  DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), EFLAGS.getValue(1));
16793  return SDValue();
16794}
16795
16796static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget,
16797                            SelectionDAG &DAG) {
16798  MVT SrcVT = Op.getOperand(0).getSimpleValueType();
16799  MVT DstVT = Op.getSimpleValueType();
16800
16801  if (SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8) {
16802    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
16803    if (DstVT != MVT::f64)
16804      // This conversion needs to be expanded.
16805      return SDValue();
16806
16807    SDValue InVec = Op->getOperand(0);
16808    SDLoc dl(Op);
16809    unsigned NumElts = SrcVT.getVectorNumElements();
16810    EVT SVT = SrcVT.getVectorElementType();
16811
16812    // Widen the vector in input in the case of MVT::v2i32.
16813    // Example: from MVT::v2i32 to MVT::v4i32.
16814    SmallVector<SDValue, 16> Elts;
16815    for (unsigned i = 0, e = NumElts; i != e; ++i)
16816      Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, InVec,
16817                                 DAG.getIntPtrConstant(i)));
16818
16819    // Explicitly mark the extra elements as Undef.
16820    Elts.append(NumElts, DAG.getUNDEF(SVT));
16821
16822    EVT NewVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
16823    SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Elts);
16824    SDValue ToV2F64 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, BV);
16825    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, ToV2F64,
16826                       DAG.getIntPtrConstant(0));
16827  }
16828
16829  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
16830         Subtarget->hasMMX() && "Unexpected custom BITCAST");
16831  assert((DstVT == MVT::i64 ||
16832          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
16833         "Unexpected custom BITCAST");
16834  // i64 <=> MMX conversions are Legal.
16835  if (SrcVT==MVT::i64 && DstVT.isVector())
16836    return Op;
16837  if (DstVT==MVT::i64 && SrcVT.isVector())
16838    return Op;
16839  // MMX <=> MMX conversions are Legal.
16840  if (SrcVT.isVector() && DstVT.isVector())
16841    return Op;
16842  // All other conversions need to be expanded.
16843  return SDValue();
16844}
16845
16846static SDValue LowerCTPOP(SDValue Op, const X86Subtarget *Subtarget,
16847                          SelectionDAG &DAG) {
16848  SDNode *Node = Op.getNode();
16849  SDLoc dl(Node);
16850
16851  Op = Op.getOperand(0);
16852  EVT VT = Op.getValueType();
16853  assert((VT.is128BitVector() || VT.is256BitVector()) &&
16854         "CTPOP lowering only implemented for 128/256-bit wide vector types");
16855
16856  unsigned NumElts = VT.getVectorNumElements();
16857  EVT EltVT = VT.getVectorElementType();
16858  unsigned Len = EltVT.getSizeInBits();
16859
16860  // This is the vectorized version of the "best" algorithm from
16861  // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
16862  // with a minor tweak to use a series of adds + shifts instead of vector
16863  // multiplications. Implemented for the v2i64, v4i64, v4i32, v8i32 types:
16864  //
16865  //  v2i64, v4i64, v4i32 => Only profitable w/ popcnt disabled
16866  //  v8i32 => Always profitable
16867  //
16868  // FIXME: There a couple of possible improvements:
16869  //
16870  // 1) Support for i8 and i16 vectors (needs measurements if popcnt enabled).
16871  // 2) Use strategies from http://wm.ite.pl/articles/sse-popcount.html
16872  //
16873  assert(EltVT.isInteger() && (Len == 32 || Len == 64) && Len % 8 == 0 &&
16874         "CTPOP not implemented for this vector element type.");
16875
16876  // X86 canonicalize ANDs to vXi64, generate the appropriate bitcasts to avoid
16877  // extra legalization.
16878  bool NeedsBitcast = EltVT == MVT::i32;
16879  MVT BitcastVT = VT.is256BitVector() ? MVT::v4i64 : MVT::v2i64;
16880
16881  SDValue Cst55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), EltVT);
16882  SDValue Cst33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), EltVT);
16883  SDValue Cst0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), EltVT);
16884
16885  // v = v - ((v >> 1) & 0x55555555...)
16886  SmallVector<SDValue, 8> Ones(NumElts, DAG.getConstant(1, EltVT));
16887  SDValue OnesV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ones);
16888  SDValue Srl = DAG.getNode(ISD::SRL, dl, VT, Op, OnesV);
16889  if (NeedsBitcast)
16890    Srl = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Srl);
16891
16892  SmallVector<SDValue, 8> Mask55(NumElts, Cst55);
16893  SDValue M55 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Mask55);
16894  if (NeedsBitcast)
16895    M55 = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M55);
16896
16897  SDValue And = DAG.getNode(ISD::AND, dl, Srl.getValueType(), Srl, M55);
16898  if (VT != And.getValueType())
16899    And = DAG.getNode(ISD::BITCAST, dl, VT, And);
16900  SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Op, And);
16901
16902  // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
16903  SmallVector<SDValue, 8> Mask33(NumElts, Cst33);
16904  SDValue M33 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Mask33);
16905  SmallVector<SDValue, 8> Twos(NumElts, DAG.getConstant(2, EltVT));
16906  SDValue TwosV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Twos);
16907
16908  Srl = DAG.getNode(ISD::SRL, dl, VT, Sub, TwosV);
16909  if (NeedsBitcast) {
16910    Srl = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Srl);
16911    M33 = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M33);
16912    Sub = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Sub);
16913  }
16914
16915  SDValue AndRHS = DAG.getNode(ISD::AND, dl, M33.getValueType(), Srl, M33);
16916  SDValue AndLHS = DAG.getNode(ISD::AND, dl, M33.getValueType(), Sub, M33);
16917  if (VT != AndRHS.getValueType()) {
16918    AndRHS = DAG.getNode(ISD::BITCAST, dl, VT, AndRHS);
16919    AndLHS = DAG.getNode(ISD::BITCAST, dl, VT, AndLHS);
16920  }
16921  SDValue Add = DAG.getNode(ISD::ADD, dl, VT, AndLHS, AndRHS);
16922
16923  // v = (v + (v >> 4)) & 0x0F0F0F0F...
16924  SmallVector<SDValue, 8> Fours(NumElts, DAG.getConstant(4, EltVT));
16925  SDValue FoursV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Fours);
16926  Srl = DAG.getNode(ISD::SRL, dl, VT, Add, FoursV);
16927  Add = DAG.getNode(ISD::ADD, dl, VT, Add, Srl);
16928
16929  SmallVector<SDValue, 8> Mask0F(NumElts, Cst0F);
16930  SDValue M0F = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Mask0F);
16931  if (NeedsBitcast) {
16932    Add = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Add);
16933    M0F = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M0F);
16934  }
16935  And = DAG.getNode(ISD::AND, dl, M0F.getValueType(), Add, M0F);
16936  if (VT != And.getValueType())
16937    And = DAG.getNode(ISD::BITCAST, dl, VT, And);
16938
16939  // The algorithm mentioned above uses:
16940  //    v = (v * 0x01010101...) >> (Len - 8)
16941  //
16942  // Change it to use vector adds + vector shifts which yield faster results on
16943  // Haswell than using vector integer multiplication.
16944  //
16945  // For i32 elements:
16946  //    v = v + (v >> 8)
16947  //    v = v + (v >> 16)
16948  //
16949  // For i64 elements:
16950  //    v = v + (v >> 8)
16951  //    v = v + (v >> 16)
16952  //    v = v + (v >> 32)
16953  //
16954  Add = And;
16955  SmallVector<SDValue, 8> Csts;
16956  for (unsigned i = 8; i <= Len/2; i *= 2) {
16957    Csts.assign(NumElts, DAG.getConstant(i, EltVT));
16958    SDValue CstsV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Csts);
16959    Srl = DAG.getNode(ISD::SRL, dl, VT, Add, CstsV);
16960    Add = DAG.getNode(ISD::ADD, dl, VT, Add, Srl);
16961    Csts.clear();
16962  }
16963
16964  // The result is on the least significant 6-bits on i32 and 7-bits on i64.
16965  SDValue Cst3F = DAG.getConstant(APInt(Len, Len == 32 ? 0x3F : 0x7F), EltVT);
16966  SmallVector<SDValue, 8> Cst3FV(NumElts, Cst3F);
16967  SDValue M3F = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Cst3FV);
16968  if (NeedsBitcast) {
16969    Add = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Add);
16970    M3F = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M3F);
16971  }
16972  And = DAG.getNode(ISD::AND, dl, M3F.getValueType(), Add, M3F);
16973  if (VT != And.getValueType())
16974    And = DAG.getNode(ISD::BITCAST, dl, VT, And);
16975
16976  return And;
16977}
16978
16979static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
16980  SDNode *Node = Op.getNode();
16981  SDLoc dl(Node);
16982  EVT T = Node->getValueType(0);
16983  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
16984                              DAG.getConstant(0, T), Node->getOperand(2));
16985  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
16986                       cast<AtomicSDNode>(Node)->getMemoryVT(),
16987                       Node->getOperand(0),
16988                       Node->getOperand(1), negOp,
16989                       cast<AtomicSDNode>(Node)->getMemOperand(),
16990                       cast<AtomicSDNode>(Node)->getOrdering(),
16991                       cast<AtomicSDNode>(Node)->getSynchScope());
16992}
16993
16994static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
16995  SDNode *Node = Op.getNode();
16996  SDLoc dl(Node);
16997  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
16998
16999  // Convert seq_cst store -> xchg
17000  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
17001  // FIXME: On 32-bit, store -> fist or movq would be more efficient
17002  //        (The only way to get a 16-byte store is cmpxchg16b)
17003  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
17004  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
17005      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
17006    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
17007                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
17008                                 Node->getOperand(0),
17009                                 Node->getOperand(1), Node->getOperand(2),
17010                                 cast<AtomicSDNode>(Node)->getMemOperand(),
17011                                 cast<AtomicSDNode>(Node)->getOrdering(),
17012                                 cast<AtomicSDNode>(Node)->getSynchScope());
17013    return Swap.getValue(1);
17014  }
17015  // Other atomic stores have a simple pattern.
17016  return Op;
17017}
17018
17019static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
17020  EVT VT = Op.getNode()->getSimpleValueType(0);
17021
17022  // Let legalize expand this if it isn't a legal type yet.
17023  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
17024    return SDValue();
17025
17026  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
17027
17028  unsigned Opc;
17029  bool ExtraOp = false;
17030  switch (Op.getOpcode()) {
17031  default: llvm_unreachable("Invalid code");
17032  case ISD::ADDC: Opc = X86ISD::ADD; break;
17033  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
17034  case ISD::SUBC: Opc = X86ISD::SUB; break;
17035  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
17036  }
17037
17038  if (!ExtraOp)
17039    return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
17040                       Op.getOperand(1));
17041  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
17042                     Op.getOperand(1), Op.getOperand(2));
17043}
17044
17045static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget *Subtarget,
17046                            SelectionDAG &DAG) {
17047  assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit());
17048
17049  // For MacOSX, we want to call an alternative entry point: __sincos_stret,
17050  // which returns the values as { float, float } (in XMM0) or
17051  // { double, double } (which is returned in XMM0, XMM1).
17052  SDLoc dl(Op);
17053  SDValue Arg = Op.getOperand(0);
17054  EVT ArgVT = Arg.getValueType();
17055  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
17056
17057  TargetLowering::ArgListTy Args;
17058  TargetLowering::ArgListEntry Entry;
17059
17060  Entry.Node = Arg;
17061  Entry.Ty = ArgTy;
17062  Entry.isSExt = false;
17063  Entry.isZExt = false;
17064  Args.push_back(Entry);
17065
17066  bool isF64 = ArgVT == MVT::f64;
17067  // Only optimize x86_64 for now. i386 is a bit messy. For f32,
17068  // the small struct {f32, f32} is returned in (eax, edx). For f64,
17069  // the results are returned via SRet in memory.
17070  const char *LibcallName =  isF64 ? "__sincos_stret" : "__sincosf_stret";
17071  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17072  SDValue Callee = DAG.getExternalSymbol(LibcallName, TLI.getPointerTy());
17073
17074  Type *RetTy = isF64
17075    ? (Type*)StructType::get(ArgTy, ArgTy, nullptr)
17076    : (Type*)VectorType::get(ArgTy, 4);
17077
17078  TargetLowering::CallLoweringInfo CLI(DAG);
17079  CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
17080    .setCallee(CallingConv::C, RetTy, Callee, std::move(Args), 0);
17081
17082  std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
17083
17084  if (isF64)
17085    // Returned in xmm0 and xmm1.
17086    return CallResult.first;
17087
17088  // Returned in bits 0:31 and 32:64 xmm0.
17089  SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
17090                               CallResult.first, DAG.getIntPtrConstant(0));
17091  SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
17092                               CallResult.first, DAG.getIntPtrConstant(1));
17093  SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
17094  return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
17095}
17096
17097/// LowerOperation - Provide custom lowering hooks for some operations.
17098///
17099SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
17100  switch (Op.getOpcode()) {
17101  default: llvm_unreachable("Should not custom lower this!");
17102  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
17103  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
17104    return LowerCMP_SWAP(Op, Subtarget, DAG);
17105  case ISD::CTPOP:              return LowerCTPOP(Op, Subtarget, DAG);
17106  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
17107  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
17108  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
17109  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, Subtarget, DAG);
17110  case ISD::VECTOR_SHUFFLE:     return lowerVectorShuffle(Op, Subtarget, DAG);
17111  case ISD::VSELECT:            return LowerVSELECT(Op, DAG);
17112  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
17113  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
17114  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
17115  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
17116  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
17117  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
17118  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
17119  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
17120  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
17121  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
17122  case ISD::SHL_PARTS:
17123  case ISD::SRA_PARTS:
17124  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
17125  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
17126  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
17127  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
17128  case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, Subtarget, DAG);
17129  case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, Subtarget, DAG);
17130  case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, Subtarget, DAG);
17131  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
17132  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
17133  case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
17134  case ISD::LOAD:               return LowerExtendedLoad(Op, Subtarget, DAG);
17135  case ISD::FABS:
17136  case ISD::FNEG:               return LowerFABSorFNEG(Op, DAG);
17137  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
17138  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
17139  case ISD::SETCC:              return LowerSETCC(Op, DAG);
17140  case ISD::SELECT:             return LowerSELECT(Op, DAG);
17141  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
17142  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
17143  case ISD::VASTART:            return LowerVASTART(Op, DAG);
17144  case ISD::VAARG:              return LowerVAARG(Op, DAG);
17145  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
17146  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, Subtarget, DAG);
17147  case ISD::INTRINSIC_VOID:
17148  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG);
17149  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
17150  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
17151  case ISD::FRAME_TO_ARGS_OFFSET:
17152                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
17153  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
17154  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
17155  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
17156  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
17157  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
17158  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
17159  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
17160  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
17161  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
17162  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
17163  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
17164  case ISD::UMUL_LOHI:
17165  case ISD::SMUL_LOHI:          return LowerMUL_LOHI(Op, Subtarget, DAG);
17166  case ISD::SRA:
17167  case ISD::SRL:
17168  case ISD::SHL:                return LowerShift(Op, Subtarget, DAG);
17169  case ISD::SADDO:
17170  case ISD::UADDO:
17171  case ISD::SSUBO:
17172  case ISD::USUBO:
17173  case ISD::SMULO:
17174  case ISD::UMULO:              return LowerXALUO(Op, DAG);
17175  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
17176  case ISD::BITCAST:            return LowerBITCAST(Op, Subtarget, DAG);
17177  case ISD::ADDC:
17178  case ISD::ADDE:
17179  case ISD::SUBC:
17180  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
17181  case ISD::ADD:                return LowerADD(Op, DAG);
17182  case ISD::SUB:                return LowerSUB(Op, DAG);
17183  case ISD::FSINCOS:            return LowerFSINCOS(Op, Subtarget, DAG);
17184  }
17185}
17186
17187/// ReplaceNodeResults - Replace a node with an illegal result type
17188/// with a new node built out of custom code.
17189void X86TargetLowering::ReplaceNodeResults(SDNode *N,
17190                                           SmallVectorImpl<SDValue>&Results,
17191                                           SelectionDAG &DAG) const {
17192  SDLoc dl(N);
17193  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17194  switch (N->getOpcode()) {
17195  default:
17196    llvm_unreachable("Do not know how to custom type legalize this operation!");
17197  // We might have generated v2f32 FMIN/FMAX operations. Widen them to v4f32.
17198  case X86ISD::FMINC:
17199  case X86ISD::FMIN:
17200  case X86ISD::FMAXC:
17201  case X86ISD::FMAX: {
17202    EVT VT = N->getValueType(0);
17203    if (VT != MVT::v2f32)
17204      llvm_unreachable("Unexpected type (!= v2f32) on FMIN/FMAX.");
17205    SDValue UNDEF = DAG.getUNDEF(VT);
17206    SDValue LHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
17207                              N->getOperand(0), UNDEF);
17208    SDValue RHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
17209                              N->getOperand(1), UNDEF);
17210    Results.push_back(DAG.getNode(N->getOpcode(), dl, MVT::v4f32, LHS, RHS));
17211    return;
17212  }
17213  case ISD::SIGN_EXTEND_INREG:
17214  case ISD::ADDC:
17215  case ISD::ADDE:
17216  case ISD::SUBC:
17217  case ISD::SUBE:
17218    // We don't want to expand or promote these.
17219    return;
17220  case ISD::SDIV:
17221  case ISD::UDIV:
17222  case ISD::SREM:
17223  case ISD::UREM:
17224  case ISD::SDIVREM:
17225  case ISD::UDIVREM: {
17226    SDValue V = LowerWin64_i128OP(SDValue(N,0), DAG);
17227    Results.push_back(V);
17228    return;
17229  }
17230  case ISD::FP_TO_SINT:
17231  case ISD::FP_TO_UINT: {
17232    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
17233
17234    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
17235      return;
17236
17237    std::pair<SDValue,SDValue> Vals =
17238        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
17239    SDValue FIST = Vals.first, StackSlot = Vals.second;
17240    if (FIST.getNode()) {
17241      EVT VT = N->getValueType(0);
17242      // Return a load from the stack slot.
17243      if (StackSlot.getNode())
17244        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
17245                                      MachinePointerInfo(),
17246                                      false, false, false, 0));
17247      else
17248        Results.push_back(FIST);
17249    }
17250    return;
17251  }
17252  case ISD::UINT_TO_FP: {
17253    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
17254    if (N->getOperand(0).getValueType() != MVT::v2i32 ||
17255        N->getValueType(0) != MVT::v2f32)
17256      return;
17257    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
17258                                 N->getOperand(0));
17259    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
17260                                     MVT::f64);
17261    SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
17262    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
17263                             DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
17264    Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
17265    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
17266    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
17267    return;
17268  }
17269  case ISD::FP_ROUND: {
17270    if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
17271        return;
17272    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
17273    Results.push_back(V);
17274    return;
17275  }
17276  case ISD::INTRINSIC_W_CHAIN: {
17277    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
17278    switch (IntNo) {
17279    default : llvm_unreachable("Do not know how to custom type "
17280                               "legalize this intrinsic operation!");
17281    case Intrinsic::x86_rdtsc:
17282      return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
17283                                     Results);
17284    case Intrinsic::x86_rdtscp:
17285      return getReadTimeStampCounter(N, dl, X86ISD::RDTSCP_DAG, DAG, Subtarget,
17286                                     Results);
17287    case Intrinsic::x86_rdpmc:
17288      return getReadPerformanceCounter(N, dl, DAG, Subtarget, Results);
17289    }
17290  }
17291  case ISD::READCYCLECOUNTER: {
17292    return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
17293                                   Results);
17294  }
17295  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
17296    EVT T = N->getValueType(0);
17297    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
17298    bool Regs64bit = T == MVT::i128;
17299    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
17300    SDValue cpInL, cpInH;
17301    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
17302                        DAG.getConstant(0, HalfT));
17303    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
17304                        DAG.getConstant(1, HalfT));
17305    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
17306                             Regs64bit ? X86::RAX : X86::EAX,
17307                             cpInL, SDValue());
17308    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
17309                             Regs64bit ? X86::RDX : X86::EDX,
17310                             cpInH, cpInL.getValue(1));
17311    SDValue swapInL, swapInH;
17312    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
17313                          DAG.getConstant(0, HalfT));
17314    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
17315                          DAG.getConstant(1, HalfT));
17316    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
17317                               Regs64bit ? X86::RBX : X86::EBX,
17318                               swapInL, cpInH.getValue(1));
17319    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
17320                               Regs64bit ? X86::RCX : X86::ECX,
17321                               swapInH, swapInL.getValue(1));
17322    SDValue Ops[] = { swapInH.getValue(0),
17323                      N->getOperand(1),
17324                      swapInH.getValue(1) };
17325    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
17326    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
17327    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
17328                                  X86ISD::LCMPXCHG8_DAG;
17329    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO);
17330    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
17331                                        Regs64bit ? X86::RAX : X86::EAX,
17332                                        HalfT, Result.getValue(1));
17333    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
17334                                        Regs64bit ? X86::RDX : X86::EDX,
17335                                        HalfT, cpOutL.getValue(2));
17336    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
17337
17338    SDValue EFLAGS = DAG.getCopyFromReg(cpOutH.getValue(1), dl, X86::EFLAGS,
17339                                        MVT::i32, cpOutH.getValue(2));
17340    SDValue Success =
17341        DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
17342                    DAG.getConstant(X86::COND_E, MVT::i8), EFLAGS);
17343    Success = DAG.getZExtOrTrunc(Success, dl, N->getValueType(1));
17344
17345    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF));
17346    Results.push_back(Success);
17347    Results.push_back(EFLAGS.getValue(1));
17348    return;
17349  }
17350  case ISD::ATOMIC_SWAP:
17351  case ISD::ATOMIC_LOAD_ADD:
17352  case ISD::ATOMIC_LOAD_SUB:
17353  case ISD::ATOMIC_LOAD_AND:
17354  case ISD::ATOMIC_LOAD_OR:
17355  case ISD::ATOMIC_LOAD_XOR:
17356  case ISD::ATOMIC_LOAD_NAND:
17357  case ISD::ATOMIC_LOAD_MIN:
17358  case ISD::ATOMIC_LOAD_MAX:
17359  case ISD::ATOMIC_LOAD_UMIN:
17360  case ISD::ATOMIC_LOAD_UMAX:
17361  case ISD::ATOMIC_LOAD: {
17362    // Delegate to generic TypeLegalization. Situations we can really handle
17363    // should have already been dealt with by AtomicExpandPass.cpp.
17364    break;
17365  }
17366  case ISD::BITCAST: {
17367    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
17368    EVT DstVT = N->getValueType(0);
17369    EVT SrcVT = N->getOperand(0)->getValueType(0);
17370
17371    if (SrcVT != MVT::f64 ||
17372        (DstVT != MVT::v2i32 && DstVT != MVT::v4i16 && DstVT != MVT::v8i8))
17373      return;
17374
17375    unsigned NumElts = DstVT.getVectorNumElements();
17376    EVT SVT = DstVT.getVectorElementType();
17377    EVT WiderVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
17378    SDValue Expanded = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
17379                                   MVT::v2f64, N->getOperand(0));
17380    SDValue ToVecInt = DAG.getNode(ISD::BITCAST, dl, WiderVT, Expanded);
17381
17382    if (ExperimentalVectorWideningLegalization) {
17383      // If we are legalizing vectors by widening, we already have the desired
17384      // legal vector type, just return it.
17385      Results.push_back(ToVecInt);
17386      return;
17387    }
17388
17389    SmallVector<SDValue, 8> Elts;
17390    for (unsigned i = 0, e = NumElts; i != e; ++i)
17391      Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT,
17392                                   ToVecInt, DAG.getIntPtrConstant(i)));
17393
17394    Results.push_back(DAG.getNode(ISD::BUILD_VECTOR, dl, DstVT, Elts));
17395  }
17396  }
17397}
17398
17399const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
17400  switch (Opcode) {
17401  default: return nullptr;
17402  case X86ISD::BSF:                return "X86ISD::BSF";
17403  case X86ISD::BSR:                return "X86ISD::BSR";
17404  case X86ISD::SHLD:               return "X86ISD::SHLD";
17405  case X86ISD::SHRD:               return "X86ISD::SHRD";
17406  case X86ISD::FAND:               return "X86ISD::FAND";
17407  case X86ISD::FANDN:              return "X86ISD::FANDN";
17408  case X86ISD::FOR:                return "X86ISD::FOR";
17409  case X86ISD::FXOR:               return "X86ISD::FXOR";
17410  case X86ISD::FSRL:               return "X86ISD::FSRL";
17411  case X86ISD::FILD:               return "X86ISD::FILD";
17412  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
17413  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
17414  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
17415  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
17416  case X86ISD::FLD:                return "X86ISD::FLD";
17417  case X86ISD::FST:                return "X86ISD::FST";
17418  case X86ISD::CALL:               return "X86ISD::CALL";
17419  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
17420  case X86ISD::RDTSCP_DAG:         return "X86ISD::RDTSCP_DAG";
17421  case X86ISD::RDPMC_DAG:          return "X86ISD::RDPMC_DAG";
17422  case X86ISD::BT:                 return "X86ISD::BT";
17423  case X86ISD::CMP:                return "X86ISD::CMP";
17424  case X86ISD::COMI:               return "X86ISD::COMI";
17425  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
17426  case X86ISD::CMPM:               return "X86ISD::CMPM";
17427  case X86ISD::CMPMU:              return "X86ISD::CMPMU";
17428  case X86ISD::SETCC:              return "X86ISD::SETCC";
17429  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
17430  case X86ISD::FSETCC:             return "X86ISD::FSETCC";
17431  case X86ISD::CMOV:               return "X86ISD::CMOV";
17432  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
17433  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
17434  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
17435  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
17436  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
17437  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
17438  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
17439  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
17440  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
17441  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
17442  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
17443  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
17444  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
17445  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
17446  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
17447  case X86ISD::BLENDI:             return "X86ISD::BLENDI";
17448  case X86ISD::SHRUNKBLEND:        return "X86ISD::SHRUNKBLEND";
17449  case X86ISD::SUBUS:              return "X86ISD::SUBUS";
17450  case X86ISD::HADD:               return "X86ISD::HADD";
17451  case X86ISD::HSUB:               return "X86ISD::HSUB";
17452  case X86ISD::FHADD:              return "X86ISD::FHADD";
17453  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
17454  case X86ISD::UMAX:               return "X86ISD::UMAX";
17455  case X86ISD::UMIN:               return "X86ISD::UMIN";
17456  case X86ISD::SMAX:               return "X86ISD::SMAX";
17457  case X86ISD::SMIN:               return "X86ISD::SMIN";
17458  case X86ISD::FMAX:               return "X86ISD::FMAX";
17459  case X86ISD::FMIN:               return "X86ISD::FMIN";
17460  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
17461  case X86ISD::FMINC:              return "X86ISD::FMINC";
17462  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
17463  case X86ISD::FRCP:               return "X86ISD::FRCP";
17464  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
17465  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
17466  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
17467  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
17468  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
17469  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
17470  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
17471  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
17472  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
17473  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
17474  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
17475  case X86ISD::LCMPXCHG16_DAG:     return "X86ISD::LCMPXCHG16_DAG";
17476  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
17477  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
17478  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
17479  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
17480  case X86ISD::VTRUNC:             return "X86ISD::VTRUNC";
17481  case X86ISD::VTRUNCM:            return "X86ISD::VTRUNCM";
17482  case X86ISD::VINSERT:            return "X86ISD::VINSERT";
17483  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
17484  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
17485  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
17486  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
17487  case X86ISD::VSHL:               return "X86ISD::VSHL";
17488  case X86ISD::VSRL:               return "X86ISD::VSRL";
17489  case X86ISD::VSRA:               return "X86ISD::VSRA";
17490  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
17491  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
17492  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
17493  case X86ISD::CMPP:               return "X86ISD::CMPP";
17494  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
17495  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
17496  case X86ISD::PCMPEQM:            return "X86ISD::PCMPEQM";
17497  case X86ISD::PCMPGTM:            return "X86ISD::PCMPGTM";
17498  case X86ISD::ADD:                return "X86ISD::ADD";
17499  case X86ISD::SUB:                return "X86ISD::SUB";
17500  case X86ISD::ADC:                return "X86ISD::ADC";
17501  case X86ISD::SBB:                return "X86ISD::SBB";
17502  case X86ISD::SMUL:               return "X86ISD::SMUL";
17503  case X86ISD::UMUL:               return "X86ISD::UMUL";
17504  case X86ISD::SMUL8:              return "X86ISD::SMUL8";
17505  case X86ISD::UMUL8:              return "X86ISD::UMUL8";
17506  case X86ISD::SDIVREM8_SEXT_HREG: return "X86ISD::SDIVREM8_SEXT_HREG";
17507  case X86ISD::UDIVREM8_ZEXT_HREG: return "X86ISD::UDIVREM8_ZEXT_HREG";
17508  case X86ISD::INC:                return "X86ISD::INC";
17509  case X86ISD::DEC:                return "X86ISD::DEC";
17510  case X86ISD::OR:                 return "X86ISD::OR";
17511  case X86ISD::XOR:                return "X86ISD::XOR";
17512  case X86ISD::AND:                return "X86ISD::AND";
17513  case X86ISD::BEXTR:              return "X86ISD::BEXTR";
17514  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
17515  case X86ISD::PTEST:              return "X86ISD::PTEST";
17516  case X86ISD::TESTP:              return "X86ISD::TESTP";
17517  case X86ISD::TESTM:              return "X86ISD::TESTM";
17518  case X86ISD::TESTNM:             return "X86ISD::TESTNM";
17519  case X86ISD::KORTEST:            return "X86ISD::KORTEST";
17520  case X86ISD::PACKSS:             return "X86ISD::PACKSS";
17521  case X86ISD::PACKUS:             return "X86ISD::PACKUS";
17522  case X86ISD::PALIGNR:            return "X86ISD::PALIGNR";
17523  case X86ISD::VALIGN:             return "X86ISD::VALIGN";
17524  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
17525  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
17526  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
17527  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
17528  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
17529  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
17530  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
17531  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
17532  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
17533  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
17534  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
17535  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
17536  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
17537  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
17538  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
17539  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
17540  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
17541  case X86ISD::VBROADCASTM:        return "X86ISD::VBROADCASTM";
17542  case X86ISD::VEXTRACT:           return "X86ISD::VEXTRACT";
17543  case X86ISD::VPERMILPI:          return "X86ISD::VPERMILPI";
17544  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
17545  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
17546  case X86ISD::VPERMV3:            return "X86ISD::VPERMV3";
17547  case X86ISD::VPERMIV3:           return "X86ISD::VPERMIV3";
17548  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
17549  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
17550  case X86ISD::PMULDQ:             return "X86ISD::PMULDQ";
17551  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
17552  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
17553  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
17554  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
17555  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
17556  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
17557  case X86ISD::SAHF:               return "X86ISD::SAHF";
17558  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
17559  case X86ISD::RDSEED:             return "X86ISD::RDSEED";
17560  case X86ISD::FMADD:              return "X86ISD::FMADD";
17561  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
17562  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
17563  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
17564  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
17565  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
17566  case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
17567  case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
17568  case X86ISD::XTEST:              return "X86ISD::XTEST";
17569  case X86ISD::COMPRESS:           return "X86ISD::COMPRESS";
17570  case X86ISD::EXPAND:             return "X86ISD::EXPAND";
17571  case X86ISD::SELECT:             return "X86ISD::SELECT";
17572  case X86ISD::ADDSUB:             return "X86ISD::ADDSUB";
17573  case X86ISD::RCP28:              return "X86ISD::RCP28";
17574  case X86ISD::RSQRT28:            return "X86ISD::RSQRT28";
17575  case X86ISD::FADD_RND:           return "X86ISD::FADD_RND";
17576  case X86ISD::FSUB_RND:           return "X86ISD::FSUB_RND";
17577  case X86ISD::FMUL_RND:           return "X86ISD::FMUL_RND";
17578  case X86ISD::FDIV_RND:           return "X86ISD::FDIV_RND";
17579  }
17580}
17581
17582// isLegalAddressingMode - Return true if the addressing mode represented
17583// by AM is legal for this target, for a load/store of the specified type.
17584bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
17585                                              Type *Ty) const {
17586  // X86 supports extremely general addressing modes.
17587  CodeModel::Model M = getTargetMachine().getCodeModel();
17588  Reloc::Model R = getTargetMachine().getRelocationModel();
17589
17590  // X86 allows a sign-extended 32-bit immediate field as a displacement.
17591  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != nullptr))
17592    return false;
17593
17594  if (AM.BaseGV) {
17595    unsigned GVFlags =
17596      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
17597
17598    // If a reference to this global requires an extra load, we can't fold it.
17599    if (isGlobalStubReference(GVFlags))
17600      return false;
17601
17602    // If BaseGV requires a register for the PIC base, we cannot also have a
17603    // BaseReg specified.
17604    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
17605      return false;
17606
17607    // If lower 4G is not available, then we must use rip-relative addressing.
17608    if ((M != CodeModel::Small || R != Reloc::Static) &&
17609        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
17610      return false;
17611  }
17612
17613  switch (AM.Scale) {
17614  case 0:
17615  case 1:
17616  case 2:
17617  case 4:
17618  case 8:
17619    // These scales always work.
17620    break;
17621  case 3:
17622  case 5:
17623  case 9:
17624    // These scales are formed with basereg+scalereg.  Only accept if there is
17625    // no basereg yet.
17626    if (AM.HasBaseReg)
17627      return false;
17628    break;
17629  default:  // Other stuff never works.
17630    return false;
17631  }
17632
17633  return true;
17634}
17635
17636bool X86TargetLowering::isVectorShiftByScalarCheap(Type *Ty) const {
17637  unsigned Bits = Ty->getScalarSizeInBits();
17638
17639  // 8-bit shifts are always expensive, but versions with a scalar amount aren't
17640  // particularly cheaper than those without.
17641  if (Bits == 8)
17642    return false;
17643
17644  // On AVX2 there are new vpsllv[dq] instructions (and other shifts), that make
17645  // variable shifts just as cheap as scalar ones.
17646  if (Subtarget->hasInt256() && (Bits == 32 || Bits == 64))
17647    return false;
17648
17649  // Otherwise, it's significantly cheaper to shift by a scalar amount than by a
17650  // fully general vector.
17651  return true;
17652}
17653
17654bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
17655  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
17656    return false;
17657  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
17658  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
17659  return NumBits1 > NumBits2;
17660}
17661
17662bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
17663  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
17664    return false;
17665
17666  if (!isTypeLegal(EVT::getEVT(Ty1)))
17667    return false;
17668
17669  assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
17670
17671  // Assuming the caller doesn't have a zeroext or signext return parameter,
17672  // truncation all the way down to i1 is valid.
17673  return true;
17674}
17675
17676bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
17677  return isInt<32>(Imm);
17678}
17679
17680bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
17681  // Can also use sub to handle negated immediates.
17682  return isInt<32>(Imm);
17683}
17684
17685bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
17686  if (!VT1.isInteger() || !VT2.isInteger())
17687    return false;
17688  unsigned NumBits1 = VT1.getSizeInBits();
17689  unsigned NumBits2 = VT2.getSizeInBits();
17690  return NumBits1 > NumBits2;
17691}
17692
17693bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
17694  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
17695  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
17696}
17697
17698bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
17699  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
17700  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
17701}
17702
17703bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
17704  EVT VT1 = Val.getValueType();
17705  if (isZExtFree(VT1, VT2))
17706    return true;
17707
17708  if (Val.getOpcode() != ISD::LOAD)
17709    return false;
17710
17711  if (!VT1.isSimple() || !VT1.isInteger() ||
17712      !VT2.isSimple() || !VT2.isInteger())
17713    return false;
17714
17715  switch (VT1.getSimpleVT().SimpleTy) {
17716  default: break;
17717  case MVT::i8:
17718  case MVT::i16:
17719  case MVT::i32:
17720    // X86 has 8, 16, and 32-bit zero-extending loads.
17721    return true;
17722  }
17723
17724  return false;
17725}
17726
17727bool X86TargetLowering::isVectorLoadExtDesirable(SDValue) const { return true; }
17728
17729bool
17730X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
17731  if (!(Subtarget->hasFMA() || Subtarget->hasFMA4()))
17732    return false;
17733
17734  VT = VT.getScalarType();
17735
17736  if (!VT.isSimple())
17737    return false;
17738
17739  switch (VT.getSimpleVT().SimpleTy) {
17740  case MVT::f32:
17741  case MVT::f64:
17742    return true;
17743  default:
17744    break;
17745  }
17746
17747  return false;
17748}
17749
17750bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
17751  // i16 instructions are longer (0x66 prefix) and potentially slower.
17752  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
17753}
17754
17755/// isShuffleMaskLegal - Targets can use this to indicate that they only
17756/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
17757/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
17758/// are assumed to be legal.
17759bool
17760X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
17761                                      EVT VT) const {
17762  if (!VT.isSimple())
17763    return false;
17764
17765  // Very little shuffling can be done for 64-bit vectors right now.
17766  if (VT.getSizeInBits() == 64)
17767    return false;
17768
17769  // We only care that the types being shuffled are legal. The lowering can
17770  // handle any possible shuffle mask that results.
17771  return isTypeLegal(VT.getSimpleVT());
17772}
17773
17774bool
17775X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
17776                                          EVT VT) const {
17777  // Just delegate to the generic legality, clear masks aren't special.
17778  return isShuffleMaskLegal(Mask, VT);
17779}
17780
17781//===----------------------------------------------------------------------===//
17782//                           X86 Scheduler Hooks
17783//===----------------------------------------------------------------------===//
17784
17785/// Utility function to emit xbegin specifying the start of an RTM region.
17786static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
17787                                     const TargetInstrInfo *TII) {
17788  DebugLoc DL = MI->getDebugLoc();
17789
17790  const BasicBlock *BB = MBB->getBasicBlock();
17791  MachineFunction::iterator I = MBB;
17792  ++I;
17793
17794  // For the v = xbegin(), we generate
17795  //
17796  // thisMBB:
17797  //  xbegin sinkMBB
17798  //
17799  // mainMBB:
17800  //  eax = -1
17801  //
17802  // sinkMBB:
17803  //  v = eax
17804
17805  MachineBasicBlock *thisMBB = MBB;
17806  MachineFunction *MF = MBB->getParent();
17807  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
17808  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
17809  MF->insert(I, mainMBB);
17810  MF->insert(I, sinkMBB);
17811
17812  // Transfer the remainder of BB and its successor edges to sinkMBB.
17813  sinkMBB->splice(sinkMBB->begin(), MBB,
17814                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
17815  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
17816
17817  // thisMBB:
17818  //  xbegin sinkMBB
17819  //  # fallthrough to mainMBB
17820  //  # abortion to sinkMBB
17821  BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
17822  thisMBB->addSuccessor(mainMBB);
17823  thisMBB->addSuccessor(sinkMBB);
17824
17825  // mainMBB:
17826  //  EAX = -1
17827  BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
17828  mainMBB->addSuccessor(sinkMBB);
17829
17830  // sinkMBB:
17831  // EAX is live into the sinkMBB
17832  sinkMBB->addLiveIn(X86::EAX);
17833  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
17834          TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
17835    .addReg(X86::EAX);
17836
17837  MI->eraseFromParent();
17838  return sinkMBB;
17839}
17840
17841// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
17842// or XMM0_V32I8 in AVX all of this code can be replaced with that
17843// in the .td file.
17844static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
17845                                       const TargetInstrInfo *TII) {
17846  unsigned Opc;
17847  switch (MI->getOpcode()) {
17848  default: llvm_unreachable("illegal opcode!");
17849  case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break;
17850  case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
17851  case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break;
17852  case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
17853  case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break;
17854  case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
17855  case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break;
17856  case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
17857  }
17858
17859  DebugLoc dl = MI->getDebugLoc();
17860  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
17861
17862  unsigned NumArgs = MI->getNumOperands();
17863  for (unsigned i = 1; i < NumArgs; ++i) {
17864    MachineOperand &Op = MI->getOperand(i);
17865    if (!(Op.isReg() && Op.isImplicit()))
17866      MIB.addOperand(Op);
17867  }
17868  if (MI->hasOneMemOperand())
17869    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
17870
17871  BuildMI(*BB, MI, dl,
17872    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
17873    .addReg(X86::XMM0);
17874
17875  MI->eraseFromParent();
17876  return BB;
17877}
17878
17879// FIXME: Custom handling because TableGen doesn't support multiple implicit
17880// defs in an instruction pattern
17881static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
17882                                       const TargetInstrInfo *TII) {
17883  unsigned Opc;
17884  switch (MI->getOpcode()) {
17885  default: llvm_unreachable("illegal opcode!");
17886  case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break;
17887  case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
17888  case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break;
17889  case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
17890  case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break;
17891  case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
17892  case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break;
17893  case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
17894  }
17895
17896  DebugLoc dl = MI->getDebugLoc();
17897  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
17898
17899  unsigned NumArgs = MI->getNumOperands(); // remove the results
17900  for (unsigned i = 1; i < NumArgs; ++i) {
17901    MachineOperand &Op = MI->getOperand(i);
17902    if (!(Op.isReg() && Op.isImplicit()))
17903      MIB.addOperand(Op);
17904  }
17905  if (MI->hasOneMemOperand())
17906    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
17907
17908  BuildMI(*BB, MI, dl,
17909    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
17910    .addReg(X86::ECX);
17911
17912  MI->eraseFromParent();
17913  return BB;
17914}
17915
17916static MachineBasicBlock *EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
17917                                      const X86Subtarget *Subtarget) {
17918  DebugLoc dl = MI->getDebugLoc();
17919  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
17920  // Address into RAX/EAX, other two args into ECX, EDX.
17921  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
17922  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
17923  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
17924  for (int i = 0; i < X86::AddrNumOperands; ++i)
17925    MIB.addOperand(MI->getOperand(i));
17926
17927  unsigned ValOps = X86::AddrNumOperands;
17928  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
17929    .addReg(MI->getOperand(ValOps).getReg());
17930  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
17931    .addReg(MI->getOperand(ValOps+1).getReg());
17932
17933  // The instruction doesn't actually take any operands though.
17934  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
17935
17936  MI->eraseFromParent(); // The pseudo is gone now.
17937  return BB;
17938}
17939
17940MachineBasicBlock *
17941X86TargetLowering::EmitVAARG64WithCustomInserter(MachineInstr *MI,
17942                                                 MachineBasicBlock *MBB) const {
17943  // Emit va_arg instruction on X86-64.
17944
17945  // Operands to this pseudo-instruction:
17946  // 0  ) Output        : destination address (reg)
17947  // 1-5) Input         : va_list address (addr, i64mem)
17948  // 6  ) ArgSize       : Size (in bytes) of vararg type
17949  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
17950  // 8  ) Align         : Alignment of type
17951  // 9  ) EFLAGS (implicit-def)
17952
17953  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
17954  static_assert(X86::AddrNumOperands == 5,
17955                "VAARG_64 assumes 5 address operands");
17956
17957  unsigned DestReg = MI->getOperand(0).getReg();
17958  MachineOperand &Base = MI->getOperand(1);
17959  MachineOperand &Scale = MI->getOperand(2);
17960  MachineOperand &Index = MI->getOperand(3);
17961  MachineOperand &Disp = MI->getOperand(4);
17962  MachineOperand &Segment = MI->getOperand(5);
17963  unsigned ArgSize = MI->getOperand(6).getImm();
17964  unsigned ArgMode = MI->getOperand(7).getImm();
17965  unsigned Align = MI->getOperand(8).getImm();
17966
17967  // Memory Reference
17968  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
17969  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
17970  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
17971
17972  // Machine Information
17973  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
17974  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
17975  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
17976  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
17977  DebugLoc DL = MI->getDebugLoc();
17978
17979  // struct va_list {
17980  //   i32   gp_offset
17981  //   i32   fp_offset
17982  //   i64   overflow_area (address)
17983  //   i64   reg_save_area (address)
17984  // }
17985  // sizeof(va_list) = 24
17986  // alignment(va_list) = 8
17987
17988  unsigned TotalNumIntRegs = 6;
17989  unsigned TotalNumXMMRegs = 8;
17990  bool UseGPOffset = (ArgMode == 1);
17991  bool UseFPOffset = (ArgMode == 2);
17992  unsigned MaxOffset = TotalNumIntRegs * 8 +
17993                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
17994
17995  /* Align ArgSize to a multiple of 8 */
17996  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
17997  bool NeedsAlign = (Align > 8);
17998
17999  MachineBasicBlock *thisMBB = MBB;
18000  MachineBasicBlock *overflowMBB;
18001  MachineBasicBlock *offsetMBB;
18002  MachineBasicBlock *endMBB;
18003
18004  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
18005  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
18006  unsigned OffsetReg = 0;
18007
18008  if (!UseGPOffset && !UseFPOffset) {
18009    // If we only pull from the overflow region, we don't create a branch.
18010    // We don't need to alter control flow.
18011    OffsetDestReg = 0; // unused
18012    OverflowDestReg = DestReg;
18013
18014    offsetMBB = nullptr;
18015    overflowMBB = thisMBB;
18016    endMBB = thisMBB;
18017  } else {
18018    // First emit code to check if gp_offset (or fp_offset) is below the bound.
18019    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
18020    // If not, pull from overflow_area. (branch to overflowMBB)
18021    //
18022    //       thisMBB
18023    //         |     .
18024    //         |        .
18025    //     offsetMBB   overflowMBB
18026    //         |        .
18027    //         |     .
18028    //        endMBB
18029
18030    // Registers for the PHI in endMBB
18031    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
18032    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
18033
18034    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
18035    MachineFunction *MF = MBB->getParent();
18036    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
18037    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
18038    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
18039
18040    MachineFunction::iterator MBBIter = MBB;
18041    ++MBBIter;
18042
18043    // Insert the new basic blocks
18044    MF->insert(MBBIter, offsetMBB);
18045    MF->insert(MBBIter, overflowMBB);
18046    MF->insert(MBBIter, endMBB);
18047
18048    // Transfer the remainder of MBB and its successor edges to endMBB.
18049    endMBB->splice(endMBB->begin(), thisMBB,
18050                   std::next(MachineBasicBlock::iterator(MI)), thisMBB->end());
18051    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
18052
18053    // Make offsetMBB and overflowMBB successors of thisMBB
18054    thisMBB->addSuccessor(offsetMBB);
18055    thisMBB->addSuccessor(overflowMBB);
18056
18057    // endMBB is a successor of both offsetMBB and overflowMBB
18058    offsetMBB->addSuccessor(endMBB);
18059    overflowMBB->addSuccessor(endMBB);
18060
18061    // Load the offset value into a register
18062    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
18063    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
18064      .addOperand(Base)
18065      .addOperand(Scale)
18066      .addOperand(Index)
18067      .addDisp(Disp, UseFPOffset ? 4 : 0)
18068      .addOperand(Segment)
18069      .setMemRefs(MMOBegin, MMOEnd);
18070
18071    // Check if there is enough room left to pull this argument.
18072    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
18073      .addReg(OffsetReg)
18074      .addImm(MaxOffset + 8 - ArgSizeA8);
18075
18076    // Branch to "overflowMBB" if offset >= max
18077    // Fall through to "offsetMBB" otherwise
18078    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
18079      .addMBB(overflowMBB);
18080  }
18081
18082  // In offsetMBB, emit code to use the reg_save_area.
18083  if (offsetMBB) {
18084    assert(OffsetReg != 0);
18085
18086    // Read the reg_save_area address.
18087    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
18088    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
18089      .addOperand(Base)
18090      .addOperand(Scale)
18091      .addOperand(Index)
18092      .addDisp(Disp, 16)
18093      .addOperand(Segment)
18094      .setMemRefs(MMOBegin, MMOEnd);
18095
18096    // Zero-extend the offset
18097    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
18098      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
18099        .addImm(0)
18100        .addReg(OffsetReg)
18101        .addImm(X86::sub_32bit);
18102
18103    // Add the offset to the reg_save_area to get the final address.
18104    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
18105      .addReg(OffsetReg64)
18106      .addReg(RegSaveReg);
18107
18108    // Compute the offset for the next argument
18109    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
18110    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
18111      .addReg(OffsetReg)
18112      .addImm(UseFPOffset ? 16 : 8);
18113
18114    // Store it back into the va_list.
18115    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
18116      .addOperand(Base)
18117      .addOperand(Scale)
18118      .addOperand(Index)
18119      .addDisp(Disp, UseFPOffset ? 4 : 0)
18120      .addOperand(Segment)
18121      .addReg(NextOffsetReg)
18122      .setMemRefs(MMOBegin, MMOEnd);
18123
18124    // Jump to endMBB
18125    BuildMI(offsetMBB, DL, TII->get(X86::JMP_1))
18126      .addMBB(endMBB);
18127  }
18128
18129  //
18130  // Emit code to use overflow area
18131  //
18132
18133  // Load the overflow_area address into a register.
18134  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
18135  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
18136    .addOperand(Base)
18137    .addOperand(Scale)
18138    .addOperand(Index)
18139    .addDisp(Disp, 8)
18140    .addOperand(Segment)
18141    .setMemRefs(MMOBegin, MMOEnd);
18142
18143  // If we need to align it, do so. Otherwise, just copy the address
18144  // to OverflowDestReg.
18145  if (NeedsAlign) {
18146    // Align the overflow address
18147    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
18148    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
18149
18150    // aligned_addr = (addr + (align-1)) & ~(align-1)
18151    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
18152      .addReg(OverflowAddrReg)
18153      .addImm(Align-1);
18154
18155    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
18156      .addReg(TmpReg)
18157      .addImm(~(uint64_t)(Align-1));
18158  } else {
18159    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
18160      .addReg(OverflowAddrReg);
18161  }
18162
18163  // Compute the next overflow address after this argument.
18164  // (the overflow address should be kept 8-byte aligned)
18165  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
18166  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
18167    .addReg(OverflowDestReg)
18168    .addImm(ArgSizeA8);
18169
18170  // Store the new overflow address.
18171  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
18172    .addOperand(Base)
18173    .addOperand(Scale)
18174    .addOperand(Index)
18175    .addDisp(Disp, 8)
18176    .addOperand(Segment)
18177    .addReg(NextAddrReg)
18178    .setMemRefs(MMOBegin, MMOEnd);
18179
18180  // If we branched, emit the PHI to the front of endMBB.
18181  if (offsetMBB) {
18182    BuildMI(*endMBB, endMBB->begin(), DL,
18183            TII->get(X86::PHI), DestReg)
18184      .addReg(OffsetDestReg).addMBB(offsetMBB)
18185      .addReg(OverflowDestReg).addMBB(overflowMBB);
18186  }
18187
18188  // Erase the pseudo instruction
18189  MI->eraseFromParent();
18190
18191  return endMBB;
18192}
18193
18194MachineBasicBlock *
18195X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
18196                                                 MachineInstr *MI,
18197                                                 MachineBasicBlock *MBB) const {
18198  // Emit code to save XMM registers to the stack. The ABI says that the
18199  // number of registers to save is given in %al, so it's theoretically
18200  // possible to do an indirect jump trick to avoid saving all of them,
18201  // however this code takes a simpler approach and just executes all
18202  // of the stores if %al is non-zero. It's less code, and it's probably
18203  // easier on the hardware branch predictor, and stores aren't all that
18204  // expensive anyway.
18205
18206  // Create the new basic blocks. One block contains all the XMM stores,
18207  // and one block is the final destination regardless of whether any
18208  // stores were performed.
18209  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
18210  MachineFunction *F = MBB->getParent();
18211  MachineFunction::iterator MBBIter = MBB;
18212  ++MBBIter;
18213  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
18214  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
18215  F->insert(MBBIter, XMMSaveMBB);
18216  F->insert(MBBIter, EndMBB);
18217
18218  // Transfer the remainder of MBB and its successor edges to EndMBB.
18219  EndMBB->splice(EndMBB->begin(), MBB,
18220                 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
18221  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
18222
18223  // The original block will now fall through to the XMM save block.
18224  MBB->addSuccessor(XMMSaveMBB);
18225  // The XMMSaveMBB will fall through to the end block.
18226  XMMSaveMBB->addSuccessor(EndMBB);
18227
18228  // Now add the instructions.
18229  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
18230  DebugLoc DL = MI->getDebugLoc();
18231
18232  unsigned CountReg = MI->getOperand(0).getReg();
18233  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
18234  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
18235
18236  if (!Subtarget->isTargetWin64()) {
18237    // If %al is 0, branch around the XMM save block.
18238    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
18239    BuildMI(MBB, DL, TII->get(X86::JE_1)).addMBB(EndMBB);
18240    MBB->addSuccessor(EndMBB);
18241  }
18242
18243  // Make sure the last operand is EFLAGS, which gets clobbered by the branch
18244  // that was just emitted, but clearly shouldn't be "saved".
18245  assert((MI->getNumOperands() <= 3 ||
18246          !MI->getOperand(MI->getNumOperands() - 1).isReg() ||
18247          MI->getOperand(MI->getNumOperands() - 1).getReg() == X86::EFLAGS)
18248         && "Expected last argument to be EFLAGS");
18249  unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
18250  // In the XMM save block, save all the XMM argument registers.
18251  for (int i = 3, e = MI->getNumOperands() - 1; i != e; ++i) {
18252    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
18253    MachineMemOperand *MMO =
18254      F->getMachineMemOperand(
18255          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
18256        MachineMemOperand::MOStore,
18257        /*Size=*/16, /*Align=*/16);
18258    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
18259      .addFrameIndex(RegSaveFrameIndex)
18260      .addImm(/*Scale=*/1)
18261      .addReg(/*IndexReg=*/0)
18262      .addImm(/*Disp=*/Offset)
18263      .addReg(/*Segment=*/0)
18264      .addReg(MI->getOperand(i).getReg())
18265      .addMemOperand(MMO);
18266  }
18267
18268  MI->eraseFromParent();   // The pseudo instruction is gone now.
18269
18270  return EndMBB;
18271}
18272
18273// The EFLAGS operand of SelectItr might be missing a kill marker
18274// because there were multiple uses of EFLAGS, and ISel didn't know
18275// which to mark. Figure out whether SelectItr should have had a
18276// kill marker, and set it if it should. Returns the correct kill
18277// marker value.
18278static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
18279                                     MachineBasicBlock* BB,
18280                                     const TargetRegisterInfo* TRI) {
18281  // Scan forward through BB for a use/def of EFLAGS.
18282  MachineBasicBlock::iterator miI(std::next(SelectItr));
18283  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
18284    const MachineInstr& mi = *miI;
18285    if (mi.readsRegister(X86::EFLAGS))
18286      return false;
18287    if (mi.definesRegister(X86::EFLAGS))
18288      break; // Should have kill-flag - update below.
18289  }
18290
18291  // If we hit the end of the block, check whether EFLAGS is live into a
18292  // successor.
18293  if (miI == BB->end()) {
18294    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
18295                                          sEnd = BB->succ_end();
18296         sItr != sEnd; ++sItr) {
18297      MachineBasicBlock* succ = *sItr;
18298      if (succ->isLiveIn(X86::EFLAGS))
18299        return false;
18300    }
18301  }
18302
18303  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
18304  // out. SelectMI should have a kill flag on EFLAGS.
18305  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
18306  return true;
18307}
18308
18309MachineBasicBlock *
18310X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
18311                                     MachineBasicBlock *BB) const {
18312  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
18313  DebugLoc DL = MI->getDebugLoc();
18314
18315  // To "insert" a SELECT_CC instruction, we actually have to insert the
18316  // diamond control-flow pattern.  The incoming instruction knows the
18317  // destination vreg to set, the condition code register to branch on, the
18318  // true/false values to select between, and a branch opcode to use.
18319  const BasicBlock *LLVM_BB = BB->getBasicBlock();
18320  MachineFunction::iterator It = BB;
18321  ++It;
18322
18323  //  thisMBB:
18324  //  ...
18325  //   TrueVal = ...
18326  //   cmpTY ccX, r1, r2
18327  //   bCC copy1MBB
18328  //   fallthrough --> copy0MBB
18329  MachineBasicBlock *thisMBB = BB;
18330  MachineFunction *F = BB->getParent();
18331
18332  // We also lower double CMOVs:
18333  //   (CMOV (CMOV F, T, cc1), T, cc2)
18334  // to two successives branches.  For that, we look for another CMOV as the
18335  // following instruction.
18336  //
18337  // Without this, we would add a PHI between the two jumps, which ends up
18338  // creating a few copies all around. For instance, for
18339  //
18340  //    (sitofp (zext (fcmp une)))
18341  //
18342  // we would generate:
18343  //
18344  //         ucomiss %xmm1, %xmm0
18345  //         movss  <1.0f>, %xmm0
18346  //         movaps  %xmm0, %xmm1
18347  //         jne     .LBB5_2
18348  //         xorps   %xmm1, %xmm1
18349  // .LBB5_2:
18350  //         jp      .LBB5_4
18351  //         movaps  %xmm1, %xmm0
18352  // .LBB5_4:
18353  //         retq
18354  //
18355  // because this custom-inserter would have generated:
18356  //
18357  //   A
18358  //   | \
18359  //   |  B
18360  //   | /
18361  //   C
18362  //   | \
18363  //   |  D
18364  //   | /
18365  //   E
18366  //
18367  // A: X = ...; Y = ...
18368  // B: empty
18369  // C: Z = PHI [X, A], [Y, B]
18370  // D: empty
18371  // E: PHI [X, C], [Z, D]
18372  //
18373  // If we lower both CMOVs in a single step, we can instead generate:
18374  //
18375  //   A
18376  //   | \
18377  //   |  C
18378  //   | /|
18379  //   |/ |
18380  //   |  |
18381  //   |  D
18382  //   | /
18383  //   E
18384  //
18385  // A: X = ...; Y = ...
18386  // D: empty
18387  // E: PHI [X, A], [X, C], [Y, D]
18388  //
18389  // Which, in our sitofp/fcmp example, gives us something like:
18390  //
18391  //         ucomiss %xmm1, %xmm0
18392  //         movss  <1.0f>, %xmm0
18393  //         jne     .LBB5_4
18394  //         jp      .LBB5_4
18395  //         xorps   %xmm0, %xmm0
18396  // .LBB5_4:
18397  //         retq
18398  //
18399  MachineInstr *NextCMOV = nullptr;
18400  MachineBasicBlock::iterator NextMIIt =
18401      std::next(MachineBasicBlock::iterator(MI));
18402  if (NextMIIt != BB->end() && NextMIIt->getOpcode() == MI->getOpcode() &&
18403      NextMIIt->getOperand(2).getReg() == MI->getOperand(2).getReg() &&
18404      NextMIIt->getOperand(1).getReg() == MI->getOperand(0).getReg())
18405    NextCMOV = &*NextMIIt;
18406
18407  MachineBasicBlock *jcc1MBB = nullptr;
18408
18409  // If we have a double CMOV, we lower it to two successive branches to
18410  // the same block.  EFLAGS is used by both, so mark it as live in the second.
18411  if (NextCMOV) {
18412    jcc1MBB = F->CreateMachineBasicBlock(LLVM_BB);
18413    F->insert(It, jcc1MBB);
18414    jcc1MBB->addLiveIn(X86::EFLAGS);
18415  }
18416
18417  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
18418  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
18419  F->insert(It, copy0MBB);
18420  F->insert(It, sinkMBB);
18421
18422  // If the EFLAGS register isn't dead in the terminator, then claim that it's
18423  // live into the sink and copy blocks.
18424  const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
18425
18426  MachineInstr *LastEFLAGSUser = NextCMOV ? NextCMOV : MI;
18427  if (!LastEFLAGSUser->killsRegister(X86::EFLAGS) &&
18428      !checkAndUpdateEFLAGSKill(LastEFLAGSUser, BB, TRI)) {
18429    copy0MBB->addLiveIn(X86::EFLAGS);
18430    sinkMBB->addLiveIn(X86::EFLAGS);
18431  }
18432
18433  // Transfer the remainder of BB and its successor edges to sinkMBB.
18434  sinkMBB->splice(sinkMBB->begin(), BB,
18435                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
18436  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
18437
18438  // Add the true and fallthrough blocks as its successors.
18439  if (NextCMOV) {
18440    // The fallthrough block may be jcc1MBB, if we have a double CMOV.
18441    BB->addSuccessor(jcc1MBB);
18442
18443    // In that case, jcc1MBB will itself fallthrough the copy0MBB, and
18444    // jump to the sinkMBB.
18445    jcc1MBB->addSuccessor(copy0MBB);
18446    jcc1MBB->addSuccessor(sinkMBB);
18447  } else {
18448    BB->addSuccessor(copy0MBB);
18449  }
18450
18451  // The true block target of the first (or only) branch is always sinkMBB.
18452  BB->addSuccessor(sinkMBB);
18453
18454  // Create the conditional branch instruction.
18455  unsigned Opc =
18456    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
18457  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
18458
18459  if (NextCMOV) {
18460    unsigned Opc2 = X86::GetCondBranchFromCond(
18461        (X86::CondCode)NextCMOV->getOperand(3).getImm());
18462    BuildMI(jcc1MBB, DL, TII->get(Opc2)).addMBB(sinkMBB);
18463  }
18464
18465  //  copy0MBB:
18466  //   %FalseValue = ...
18467  //   # fallthrough to sinkMBB
18468  copy0MBB->addSuccessor(sinkMBB);
18469
18470  //  sinkMBB:
18471  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
18472  //  ...
18473  MachineInstrBuilder MIB =
18474      BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(X86::PHI),
18475              MI->getOperand(0).getReg())
18476          .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
18477          .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
18478
18479  // If we have a double CMOV, the second Jcc provides the same incoming
18480  // value as the first Jcc (the True operand of the SELECT_CC/CMOV nodes).
18481  if (NextCMOV) {
18482    MIB.addReg(MI->getOperand(2).getReg()).addMBB(jcc1MBB);
18483    // Copy the PHI result to the register defined by the second CMOV.
18484    BuildMI(*sinkMBB, std::next(MachineBasicBlock::iterator(MIB.getInstr())),
18485            DL, TII->get(TargetOpcode::COPY), NextCMOV->getOperand(0).getReg())
18486        .addReg(MI->getOperand(0).getReg());
18487    NextCMOV->eraseFromParent();
18488  }
18489
18490  MI->eraseFromParent();   // The pseudo instruction is gone now.
18491  return sinkMBB;
18492}
18493
18494MachineBasicBlock *
18495X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI,
18496                                        MachineBasicBlock *BB) const {
18497  MachineFunction *MF = BB->getParent();
18498  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
18499  DebugLoc DL = MI->getDebugLoc();
18500  const BasicBlock *LLVM_BB = BB->getBasicBlock();
18501
18502  assert(MF->shouldSplitStack());
18503
18504  const bool Is64Bit = Subtarget->is64Bit();
18505  const bool IsLP64 = Subtarget->isTarget64BitLP64();
18506
18507  const unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
18508  const unsigned TlsOffset = IsLP64 ? 0x70 : Is64Bit ? 0x40 : 0x30;
18509
18510  // BB:
18511  //  ... [Till the alloca]
18512  // If stacklet is not large enough, jump to mallocMBB
18513  //
18514  // bumpMBB:
18515  //  Allocate by subtracting from RSP
18516  //  Jump to continueMBB
18517  //
18518  // mallocMBB:
18519  //  Allocate by call to runtime
18520  //
18521  // continueMBB:
18522  //  ...
18523  //  [rest of original BB]
18524  //
18525
18526  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
18527  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
18528  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
18529
18530  MachineRegisterInfo &MRI = MF->getRegInfo();
18531  const TargetRegisterClass *AddrRegClass =
18532    getRegClassFor(getPointerTy());
18533
18534  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
18535    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
18536    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
18537    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
18538    sizeVReg = MI->getOperand(1).getReg(),
18539    physSPReg = IsLP64 || Subtarget->isTargetNaCl64() ? X86::RSP : X86::ESP;
18540
18541  MachineFunction::iterator MBBIter = BB;
18542  ++MBBIter;
18543
18544  MF->insert(MBBIter, bumpMBB);
18545  MF->insert(MBBIter, mallocMBB);
18546  MF->insert(MBBIter, continueMBB);
18547
18548  continueMBB->splice(continueMBB->begin(), BB,
18549                      std::next(MachineBasicBlock::iterator(MI)), BB->end());
18550  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
18551
18552  // Add code to the main basic block to check if the stack limit has been hit,
18553  // and if so, jump to mallocMBB otherwise to bumpMBB.
18554  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
18555  BuildMI(BB, DL, TII->get(IsLP64 ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
18556    .addReg(tmpSPVReg).addReg(sizeVReg);
18557  BuildMI(BB, DL, TII->get(IsLP64 ? X86::CMP64mr:X86::CMP32mr))
18558    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
18559    .addReg(SPLimitVReg);
18560  BuildMI(BB, DL, TII->get(X86::JG_1)).addMBB(mallocMBB);
18561
18562  // bumpMBB simply decreases the stack pointer, since we know the current
18563  // stacklet has enough space.
18564  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
18565    .addReg(SPLimitVReg);
18566  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
18567    .addReg(SPLimitVReg);
18568  BuildMI(bumpMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB);
18569
18570  // Calls into a routine in libgcc to allocate more space from the heap.
18571  const uint32_t *RegMask =
18572      Subtarget->getRegisterInfo()->getCallPreservedMask(*MF, CallingConv::C);
18573  if (IsLP64) {
18574    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
18575      .addReg(sizeVReg);
18576    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
18577      .addExternalSymbol("__morestack_allocate_stack_space")
18578      .addRegMask(RegMask)
18579      .addReg(X86::RDI, RegState::Implicit)
18580      .addReg(X86::RAX, RegState::ImplicitDefine);
18581  } else if (Is64Bit) {
18582    BuildMI(mallocMBB, DL, TII->get(X86::MOV32rr), X86::EDI)
18583      .addReg(sizeVReg);
18584    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
18585      .addExternalSymbol("__morestack_allocate_stack_space")
18586      .addRegMask(RegMask)
18587      .addReg(X86::EDI, RegState::Implicit)
18588      .addReg(X86::EAX, RegState::ImplicitDefine);
18589  } else {
18590    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
18591      .addImm(12);
18592    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
18593    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
18594      .addExternalSymbol("__morestack_allocate_stack_space")
18595      .addRegMask(RegMask)
18596      .addReg(X86::EAX, RegState::ImplicitDefine);
18597  }
18598
18599  if (!Is64Bit)
18600    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
18601      .addImm(16);
18602
18603  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
18604    .addReg(IsLP64 ? X86::RAX : X86::EAX);
18605  BuildMI(mallocMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB);
18606
18607  // Set up the CFG correctly.
18608  BB->addSuccessor(bumpMBB);
18609  BB->addSuccessor(mallocMBB);
18610  mallocMBB->addSuccessor(continueMBB);
18611  bumpMBB->addSuccessor(continueMBB);
18612
18613  // Take care of the PHI nodes.
18614  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
18615          MI->getOperand(0).getReg())
18616    .addReg(mallocPtrVReg).addMBB(mallocMBB)
18617    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
18618
18619  // Delete the original pseudo instruction.
18620  MI->eraseFromParent();
18621
18622  // And we're done.
18623  return continueMBB;
18624}
18625
18626MachineBasicBlock *
18627X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
18628                                        MachineBasicBlock *BB) const {
18629  DebugLoc DL = MI->getDebugLoc();
18630
18631  assert(!Subtarget->isTargetMachO());
18632
18633  X86FrameLowering::emitStackProbeCall(*BB->getParent(), *BB, MI, DL);
18634
18635  MI->eraseFromParent();   // The pseudo instruction is gone now.
18636  return BB;
18637}
18638
18639MachineBasicBlock *
18640X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
18641                                      MachineBasicBlock *BB) const {
18642  // This is pretty easy.  We're taking the value that we received from
18643  // our load from the relocation, sticking it in either RDI (x86-64)
18644  // or EAX and doing an indirect call.  The return value will then
18645  // be in the normal return register.
18646  MachineFunction *F = BB->getParent();
18647  const X86InstrInfo *TII = Subtarget->getInstrInfo();
18648  DebugLoc DL = MI->getDebugLoc();
18649
18650  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
18651  assert(MI->getOperand(3).isGlobal() && "This should be a global");
18652
18653  // Get a register mask for the lowered call.
18654  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
18655  // proper register mask.
18656  const uint32_t *RegMask =
18657      Subtarget->getRegisterInfo()->getCallPreservedMask(*F, CallingConv::C);
18658  if (Subtarget->is64Bit()) {
18659    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
18660                                      TII->get(X86::MOV64rm), X86::RDI)
18661    .addReg(X86::RIP)
18662    .addImm(0).addReg(0)
18663    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
18664                      MI->getOperand(3).getTargetFlags())
18665    .addReg(0);
18666    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
18667    addDirectMem(MIB, X86::RDI);
18668    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
18669  } else if (F->getTarget().getRelocationModel() != Reloc::PIC_) {
18670    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
18671                                      TII->get(X86::MOV32rm), X86::EAX)
18672    .addReg(0)
18673    .addImm(0).addReg(0)
18674    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
18675                      MI->getOperand(3).getTargetFlags())
18676    .addReg(0);
18677    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
18678    addDirectMem(MIB, X86::EAX);
18679    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
18680  } else {
18681    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
18682                                      TII->get(X86::MOV32rm), X86::EAX)
18683    .addReg(TII->getGlobalBaseReg(F))
18684    .addImm(0).addReg(0)
18685    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
18686                      MI->getOperand(3).getTargetFlags())
18687    .addReg(0);
18688    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
18689    addDirectMem(MIB, X86::EAX);
18690    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
18691  }
18692
18693  MI->eraseFromParent(); // The pseudo instruction is gone now.
18694  return BB;
18695}
18696
18697MachineBasicBlock *
18698X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
18699                                    MachineBasicBlock *MBB) const {
18700  DebugLoc DL = MI->getDebugLoc();
18701  MachineFunction *MF = MBB->getParent();
18702  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
18703  MachineRegisterInfo &MRI = MF->getRegInfo();
18704
18705  const BasicBlock *BB = MBB->getBasicBlock();
18706  MachineFunction::iterator I = MBB;
18707  ++I;
18708
18709  // Memory Reference
18710  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
18711  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
18712
18713  unsigned DstReg;
18714  unsigned MemOpndSlot = 0;
18715
18716  unsigned CurOp = 0;
18717
18718  DstReg = MI->getOperand(CurOp++).getReg();
18719  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
18720  assert(RC->hasType(MVT::i32) && "Invalid destination!");
18721  unsigned mainDstReg = MRI.createVirtualRegister(RC);
18722  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
18723
18724  MemOpndSlot = CurOp;
18725
18726  MVT PVT = getPointerTy();
18727  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
18728         "Invalid Pointer Size!");
18729
18730  // For v = setjmp(buf), we generate
18731  //
18732  // thisMBB:
18733  //  buf[LabelOffset] = restoreMBB
18734  //  SjLjSetup restoreMBB
18735  //
18736  // mainMBB:
18737  //  v_main = 0
18738  //
18739  // sinkMBB:
18740  //  v = phi(main, restore)
18741  //
18742  // restoreMBB:
18743  //  if base pointer being used, load it from frame
18744  //  v_restore = 1
18745
18746  MachineBasicBlock *thisMBB = MBB;
18747  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
18748  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
18749  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
18750  MF->insert(I, mainMBB);
18751  MF->insert(I, sinkMBB);
18752  MF->push_back(restoreMBB);
18753
18754  MachineInstrBuilder MIB;
18755
18756  // Transfer the remainder of BB and its successor edges to sinkMBB.
18757  sinkMBB->splice(sinkMBB->begin(), MBB,
18758                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
18759  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
18760
18761  // thisMBB:
18762  unsigned PtrStoreOpc = 0;
18763  unsigned LabelReg = 0;
18764  const int64_t LabelOffset = 1 * PVT.getStoreSize();
18765  Reloc::Model RM = MF->getTarget().getRelocationModel();
18766  bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) &&
18767                     (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
18768
18769  // Prepare IP either in reg or imm.
18770  if (!UseImmLabel) {
18771    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
18772    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
18773    LabelReg = MRI.createVirtualRegister(PtrRC);
18774    if (Subtarget->is64Bit()) {
18775      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
18776              .addReg(X86::RIP)
18777              .addImm(0)
18778              .addReg(0)
18779              .addMBB(restoreMBB)
18780              .addReg(0);
18781    } else {
18782      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
18783      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
18784              .addReg(XII->getGlobalBaseReg(MF))
18785              .addImm(0)
18786              .addReg(0)
18787              .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
18788              .addReg(0);
18789    }
18790  } else
18791    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
18792  // Store IP
18793  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
18794  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
18795    if (i == X86::AddrDisp)
18796      MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
18797    else
18798      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
18799  }
18800  if (!UseImmLabel)
18801    MIB.addReg(LabelReg);
18802  else
18803    MIB.addMBB(restoreMBB);
18804  MIB.setMemRefs(MMOBegin, MMOEnd);
18805  // Setup
18806  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
18807          .addMBB(restoreMBB);
18808
18809  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
18810  MIB.addRegMask(RegInfo->getNoPreservedMask());
18811  thisMBB->addSuccessor(mainMBB);
18812  thisMBB->addSuccessor(restoreMBB);
18813
18814  // mainMBB:
18815  //  EAX = 0
18816  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
18817  mainMBB->addSuccessor(sinkMBB);
18818
18819  // sinkMBB:
18820  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
18821          TII->get(X86::PHI), DstReg)
18822    .addReg(mainDstReg).addMBB(mainMBB)
18823    .addReg(restoreDstReg).addMBB(restoreMBB);
18824
18825  // restoreMBB:
18826  if (RegInfo->hasBasePointer(*MF)) {
18827    const bool Uses64BitFramePtr =
18828        Subtarget->isTarget64BitLP64() || Subtarget->isTargetNaCl64();
18829    X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
18830    X86FI->setRestoreBasePointer(MF);
18831    unsigned FramePtr = RegInfo->getFrameRegister(*MF);
18832    unsigned BasePtr = RegInfo->getBaseRegister();
18833    unsigned Opm = Uses64BitFramePtr ? X86::MOV64rm : X86::MOV32rm;
18834    addRegOffset(BuildMI(restoreMBB, DL, TII->get(Opm), BasePtr),
18835                 FramePtr, true, X86FI->getRestoreBasePointerOffset())
18836      .setMIFlag(MachineInstr::FrameSetup);
18837  }
18838  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
18839  BuildMI(restoreMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB);
18840  restoreMBB->addSuccessor(sinkMBB);
18841
18842  MI->eraseFromParent();
18843  return sinkMBB;
18844}
18845
18846MachineBasicBlock *
18847X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
18848                                     MachineBasicBlock *MBB) const {
18849  DebugLoc DL = MI->getDebugLoc();
18850  MachineFunction *MF = MBB->getParent();
18851  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
18852  MachineRegisterInfo &MRI = MF->getRegInfo();
18853
18854  // Memory Reference
18855  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
18856  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
18857
18858  MVT PVT = getPointerTy();
18859  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
18860         "Invalid Pointer Size!");
18861
18862  const TargetRegisterClass *RC =
18863    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
18864  unsigned Tmp = MRI.createVirtualRegister(RC);
18865  // Since FP is only updated here but NOT referenced, it's treated as GPR.
18866  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
18867  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
18868  unsigned SP = RegInfo->getStackRegister();
18869
18870  MachineInstrBuilder MIB;
18871
18872  const int64_t LabelOffset = 1 * PVT.getStoreSize();
18873  const int64_t SPOffset = 2 * PVT.getStoreSize();
18874
18875  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
18876  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
18877
18878  // Reload FP
18879  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
18880  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
18881    MIB.addOperand(MI->getOperand(i));
18882  MIB.setMemRefs(MMOBegin, MMOEnd);
18883  // Reload IP
18884  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
18885  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
18886    if (i == X86::AddrDisp)
18887      MIB.addDisp(MI->getOperand(i), LabelOffset);
18888    else
18889      MIB.addOperand(MI->getOperand(i));
18890  }
18891  MIB.setMemRefs(MMOBegin, MMOEnd);
18892  // Reload SP
18893  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
18894  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
18895    if (i == X86::AddrDisp)
18896      MIB.addDisp(MI->getOperand(i), SPOffset);
18897    else
18898      MIB.addOperand(MI->getOperand(i));
18899  }
18900  MIB.setMemRefs(MMOBegin, MMOEnd);
18901  // Jump
18902  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
18903
18904  MI->eraseFromParent();
18905  return MBB;
18906}
18907
18908// Replace 213-type (isel default) FMA3 instructions with 231-type for
18909// accumulator loops. Writing back to the accumulator allows the coalescer
18910// to remove extra copies in the loop.
18911MachineBasicBlock *
18912X86TargetLowering::emitFMA3Instr(MachineInstr *MI,
18913                                 MachineBasicBlock *MBB) const {
18914  MachineOperand &AddendOp = MI->getOperand(3);
18915
18916  // Bail out early if the addend isn't a register - we can't switch these.
18917  if (!AddendOp.isReg())
18918    return MBB;
18919
18920  MachineFunction &MF = *MBB->getParent();
18921  MachineRegisterInfo &MRI = MF.getRegInfo();
18922
18923  // Check whether the addend is defined by a PHI:
18924  assert(MRI.hasOneDef(AddendOp.getReg()) && "Multiple defs in SSA?");
18925  MachineInstr &AddendDef = *MRI.def_instr_begin(AddendOp.getReg());
18926  if (!AddendDef.isPHI())
18927    return MBB;
18928
18929  // Look for the following pattern:
18930  // loop:
18931  //   %addend = phi [%entry, 0], [%loop, %result]
18932  //   ...
18933  //   %result<tied1> = FMA213 %m2<tied0>, %m1, %addend
18934
18935  // Replace with:
18936  //   loop:
18937  //   %addend = phi [%entry, 0], [%loop, %result]
18938  //   ...
18939  //   %result<tied1> = FMA231 %addend<tied0>, %m1, %m2
18940
18941  for (unsigned i = 1, e = AddendDef.getNumOperands(); i < e; i += 2) {
18942    assert(AddendDef.getOperand(i).isReg());
18943    MachineOperand PHISrcOp = AddendDef.getOperand(i);
18944    MachineInstr &PHISrcInst = *MRI.def_instr_begin(PHISrcOp.getReg());
18945    if (&PHISrcInst == MI) {
18946      // Found a matching instruction.
18947      unsigned NewFMAOpc = 0;
18948      switch (MI->getOpcode()) {
18949        case X86::VFMADDPDr213r: NewFMAOpc = X86::VFMADDPDr231r; break;
18950        case X86::VFMADDPSr213r: NewFMAOpc = X86::VFMADDPSr231r; break;
18951        case X86::VFMADDSDr213r: NewFMAOpc = X86::VFMADDSDr231r; break;
18952        case X86::VFMADDSSr213r: NewFMAOpc = X86::VFMADDSSr231r; break;
18953        case X86::VFMSUBPDr213r: NewFMAOpc = X86::VFMSUBPDr231r; break;
18954        case X86::VFMSUBPSr213r: NewFMAOpc = X86::VFMSUBPSr231r; break;
18955        case X86::VFMSUBSDr213r: NewFMAOpc = X86::VFMSUBSDr231r; break;
18956        case X86::VFMSUBSSr213r: NewFMAOpc = X86::VFMSUBSSr231r; break;
18957        case X86::VFNMADDPDr213r: NewFMAOpc = X86::VFNMADDPDr231r; break;
18958        case X86::VFNMADDPSr213r: NewFMAOpc = X86::VFNMADDPSr231r; break;
18959        case X86::VFNMADDSDr213r: NewFMAOpc = X86::VFNMADDSDr231r; break;
18960        case X86::VFNMADDSSr213r: NewFMAOpc = X86::VFNMADDSSr231r; break;
18961        case X86::VFNMSUBPDr213r: NewFMAOpc = X86::VFNMSUBPDr231r; break;
18962        case X86::VFNMSUBPSr213r: NewFMAOpc = X86::VFNMSUBPSr231r; break;
18963        case X86::VFNMSUBSDr213r: NewFMAOpc = X86::VFNMSUBSDr231r; break;
18964        case X86::VFNMSUBSSr213r: NewFMAOpc = X86::VFNMSUBSSr231r; break;
18965        case X86::VFMADDSUBPDr213r: NewFMAOpc = X86::VFMADDSUBPDr231r; break;
18966        case X86::VFMADDSUBPSr213r: NewFMAOpc = X86::VFMADDSUBPSr231r; break;
18967        case X86::VFMSUBADDPDr213r: NewFMAOpc = X86::VFMSUBADDPDr231r; break;
18968        case X86::VFMSUBADDPSr213r: NewFMAOpc = X86::VFMSUBADDPSr231r; break;
18969
18970        case X86::VFMADDPDr213rY: NewFMAOpc = X86::VFMADDPDr231rY; break;
18971        case X86::VFMADDPSr213rY: NewFMAOpc = X86::VFMADDPSr231rY; break;
18972        case X86::VFMSUBPDr213rY: NewFMAOpc = X86::VFMSUBPDr231rY; break;
18973        case X86::VFMSUBPSr213rY: NewFMAOpc = X86::VFMSUBPSr231rY; break;
18974        case X86::VFNMADDPDr213rY: NewFMAOpc = X86::VFNMADDPDr231rY; break;
18975        case X86::VFNMADDPSr213rY: NewFMAOpc = X86::VFNMADDPSr231rY; break;
18976        case X86::VFNMSUBPDr213rY: NewFMAOpc = X86::VFNMSUBPDr231rY; break;
18977        case X86::VFNMSUBPSr213rY: NewFMAOpc = X86::VFNMSUBPSr231rY; break;
18978        case X86::VFMADDSUBPDr213rY: NewFMAOpc = X86::VFMADDSUBPDr231rY; break;
18979        case X86::VFMADDSUBPSr213rY: NewFMAOpc = X86::VFMADDSUBPSr231rY; break;
18980        case X86::VFMSUBADDPDr213rY: NewFMAOpc = X86::VFMSUBADDPDr231rY; break;
18981        case X86::VFMSUBADDPSr213rY: NewFMAOpc = X86::VFMSUBADDPSr231rY; break;
18982        default: llvm_unreachable("Unrecognized FMA variant.");
18983      }
18984
18985      const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
18986      MachineInstrBuilder MIB =
18987        BuildMI(MF, MI->getDebugLoc(), TII.get(NewFMAOpc))
18988        .addOperand(MI->getOperand(0))
18989        .addOperand(MI->getOperand(3))
18990        .addOperand(MI->getOperand(2))
18991        .addOperand(MI->getOperand(1));
18992      MBB->insert(MachineBasicBlock::iterator(MI), MIB);
18993      MI->eraseFromParent();
18994    }
18995  }
18996
18997  return MBB;
18998}
18999
19000MachineBasicBlock *
19001X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
19002                                               MachineBasicBlock *BB) const {
19003  switch (MI->getOpcode()) {
19004  default: llvm_unreachable("Unexpected instr type to insert");
19005  case X86::TAILJMPd64:
19006  case X86::TAILJMPr64:
19007  case X86::TAILJMPm64:
19008  case X86::TAILJMPd64_REX:
19009  case X86::TAILJMPr64_REX:
19010  case X86::TAILJMPm64_REX:
19011    llvm_unreachable("TAILJMP64 would not be touched here.");
19012  case X86::TCRETURNdi64:
19013  case X86::TCRETURNri64:
19014  case X86::TCRETURNmi64:
19015    return BB;
19016  case X86::WIN_ALLOCA:
19017    return EmitLoweredWinAlloca(MI, BB);
19018  case X86::SEG_ALLOCA_32:
19019  case X86::SEG_ALLOCA_64:
19020    return EmitLoweredSegAlloca(MI, BB);
19021  case X86::TLSCall_32:
19022  case X86::TLSCall_64:
19023    return EmitLoweredTLSCall(MI, BB);
19024  case X86::CMOV_GR8:
19025  case X86::CMOV_FR32:
19026  case X86::CMOV_FR64:
19027  case X86::CMOV_V4F32:
19028  case X86::CMOV_V2F64:
19029  case X86::CMOV_V2I64:
19030  case X86::CMOV_V8F32:
19031  case X86::CMOV_V4F64:
19032  case X86::CMOV_V4I64:
19033  case X86::CMOV_V16F32:
19034  case X86::CMOV_V8F64:
19035  case X86::CMOV_V8I64:
19036  case X86::CMOV_GR16:
19037  case X86::CMOV_GR32:
19038  case X86::CMOV_RFP32:
19039  case X86::CMOV_RFP64:
19040  case X86::CMOV_RFP80:
19041    return EmitLoweredSelect(MI, BB);
19042
19043  case X86::FP32_TO_INT16_IN_MEM:
19044  case X86::FP32_TO_INT32_IN_MEM:
19045  case X86::FP32_TO_INT64_IN_MEM:
19046  case X86::FP64_TO_INT16_IN_MEM:
19047  case X86::FP64_TO_INT32_IN_MEM:
19048  case X86::FP64_TO_INT64_IN_MEM:
19049  case X86::FP80_TO_INT16_IN_MEM:
19050  case X86::FP80_TO_INT32_IN_MEM:
19051  case X86::FP80_TO_INT64_IN_MEM: {
19052    MachineFunction *F = BB->getParent();
19053    const TargetInstrInfo *TII = Subtarget->getInstrInfo();
19054    DebugLoc DL = MI->getDebugLoc();
19055
19056    // Change the floating point control register to use "round towards zero"
19057    // mode when truncating to an integer value.
19058    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
19059    addFrameReference(BuildMI(*BB, MI, DL,
19060                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
19061
19062    // Load the old value of the high byte of the control word...
19063    unsigned OldCW =
19064      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
19065    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
19066                      CWFrameIdx);
19067
19068    // Set the high part to be round to zero...
19069    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
19070      .addImm(0xC7F);
19071
19072    // Reload the modified control word now...
19073    addFrameReference(BuildMI(*BB, MI, DL,
19074                              TII->get(X86::FLDCW16m)), CWFrameIdx);
19075
19076    // Restore the memory image of control word to original value
19077    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
19078      .addReg(OldCW);
19079
19080    // Get the X86 opcode to use.
19081    unsigned Opc;
19082    switch (MI->getOpcode()) {
19083    default: llvm_unreachable("illegal opcode!");
19084    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
19085    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
19086    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
19087    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
19088    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
19089    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
19090    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
19091    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
19092    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
19093    }
19094
19095    X86AddressMode AM;
19096    MachineOperand &Op = MI->getOperand(0);
19097    if (Op.isReg()) {
19098      AM.BaseType = X86AddressMode::RegBase;
19099      AM.Base.Reg = Op.getReg();
19100    } else {
19101      AM.BaseType = X86AddressMode::FrameIndexBase;
19102      AM.Base.FrameIndex = Op.getIndex();
19103    }
19104    Op = MI->getOperand(1);
19105    if (Op.isImm())
19106      AM.Scale = Op.getImm();
19107    Op = MI->getOperand(2);
19108    if (Op.isImm())
19109      AM.IndexReg = Op.getImm();
19110    Op = MI->getOperand(3);
19111    if (Op.isGlobal()) {
19112      AM.GV = Op.getGlobal();
19113    } else {
19114      AM.Disp = Op.getImm();
19115    }
19116    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
19117                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
19118
19119    // Reload the original control word now.
19120    addFrameReference(BuildMI(*BB, MI, DL,
19121                              TII->get(X86::FLDCW16m)), CWFrameIdx);
19122
19123    MI->eraseFromParent();   // The pseudo instruction is gone now.
19124    return BB;
19125  }
19126    // String/text processing lowering.
19127  case X86::PCMPISTRM128REG:
19128  case X86::VPCMPISTRM128REG:
19129  case X86::PCMPISTRM128MEM:
19130  case X86::VPCMPISTRM128MEM:
19131  case X86::PCMPESTRM128REG:
19132  case X86::VPCMPESTRM128REG:
19133  case X86::PCMPESTRM128MEM:
19134  case X86::VPCMPESTRM128MEM:
19135    assert(Subtarget->hasSSE42() &&
19136           "Target must have SSE4.2 or AVX features enabled");
19137    return EmitPCMPSTRM(MI, BB, Subtarget->getInstrInfo());
19138
19139  // String/text processing lowering.
19140  case X86::PCMPISTRIREG:
19141  case X86::VPCMPISTRIREG:
19142  case X86::PCMPISTRIMEM:
19143  case X86::VPCMPISTRIMEM:
19144  case X86::PCMPESTRIREG:
19145  case X86::VPCMPESTRIREG:
19146  case X86::PCMPESTRIMEM:
19147  case X86::VPCMPESTRIMEM:
19148    assert(Subtarget->hasSSE42() &&
19149           "Target must have SSE4.2 or AVX features enabled");
19150    return EmitPCMPSTRI(MI, BB, Subtarget->getInstrInfo());
19151
19152  // Thread synchronization.
19153  case X86::MONITOR:
19154    return EmitMonitor(MI, BB, Subtarget);
19155
19156  // xbegin
19157  case X86::XBEGIN:
19158    return EmitXBegin(MI, BB, Subtarget->getInstrInfo());
19159
19160  case X86::VASTART_SAVE_XMM_REGS:
19161    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
19162
19163  case X86::VAARG_64:
19164    return EmitVAARG64WithCustomInserter(MI, BB);
19165
19166  case X86::EH_SjLj_SetJmp32:
19167  case X86::EH_SjLj_SetJmp64:
19168    return emitEHSjLjSetJmp(MI, BB);
19169
19170  case X86::EH_SjLj_LongJmp32:
19171  case X86::EH_SjLj_LongJmp64:
19172    return emitEHSjLjLongJmp(MI, BB);
19173
19174  case TargetOpcode::STATEPOINT:
19175    // As an implementation detail, STATEPOINT shares the STACKMAP format at
19176    // this point in the process.  We diverge later.
19177    return emitPatchPoint(MI, BB);
19178
19179  case TargetOpcode::STACKMAP:
19180  case TargetOpcode::PATCHPOINT:
19181    return emitPatchPoint(MI, BB);
19182
19183  case X86::VFMADDPDr213r:
19184  case X86::VFMADDPSr213r:
19185  case X86::VFMADDSDr213r:
19186  case X86::VFMADDSSr213r:
19187  case X86::VFMSUBPDr213r:
19188  case X86::VFMSUBPSr213r:
19189  case X86::VFMSUBSDr213r:
19190  case X86::VFMSUBSSr213r:
19191  case X86::VFNMADDPDr213r:
19192  case X86::VFNMADDPSr213r:
19193  case X86::VFNMADDSDr213r:
19194  case X86::VFNMADDSSr213r:
19195  case X86::VFNMSUBPDr213r:
19196  case X86::VFNMSUBPSr213r:
19197  case X86::VFNMSUBSDr213r:
19198  case X86::VFNMSUBSSr213r:
19199  case X86::VFMADDSUBPDr213r:
19200  case X86::VFMADDSUBPSr213r:
19201  case X86::VFMSUBADDPDr213r:
19202  case X86::VFMSUBADDPSr213r:
19203  case X86::VFMADDPDr213rY:
19204  case X86::VFMADDPSr213rY:
19205  case X86::VFMSUBPDr213rY:
19206  case X86::VFMSUBPSr213rY:
19207  case X86::VFNMADDPDr213rY:
19208  case X86::VFNMADDPSr213rY:
19209  case X86::VFNMSUBPDr213rY:
19210  case X86::VFNMSUBPSr213rY:
19211  case X86::VFMADDSUBPDr213rY:
19212  case X86::VFMADDSUBPSr213rY:
19213  case X86::VFMSUBADDPDr213rY:
19214  case X86::VFMSUBADDPSr213rY:
19215    return emitFMA3Instr(MI, BB);
19216  }
19217}
19218
19219//===----------------------------------------------------------------------===//
19220//                           X86 Optimization Hooks
19221//===----------------------------------------------------------------------===//
19222
19223void X86TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
19224                                                      APInt &KnownZero,
19225                                                      APInt &KnownOne,
19226                                                      const SelectionDAG &DAG,
19227                                                      unsigned Depth) const {
19228  unsigned BitWidth = KnownZero.getBitWidth();
19229  unsigned Opc = Op.getOpcode();
19230  assert((Opc >= ISD::BUILTIN_OP_END ||
19231          Opc == ISD::INTRINSIC_WO_CHAIN ||
19232          Opc == ISD::INTRINSIC_W_CHAIN ||
19233          Opc == ISD::INTRINSIC_VOID) &&
19234         "Should use MaskedValueIsZero if you don't know whether Op"
19235         " is a target node!");
19236
19237  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
19238  switch (Opc) {
19239  default: break;
19240  case X86ISD::ADD:
19241  case X86ISD::SUB:
19242  case X86ISD::ADC:
19243  case X86ISD::SBB:
19244  case X86ISD::SMUL:
19245  case X86ISD::UMUL:
19246  case X86ISD::INC:
19247  case X86ISD::DEC:
19248  case X86ISD::OR:
19249  case X86ISD::XOR:
19250  case X86ISD::AND:
19251    // These nodes' second result is a boolean.
19252    if (Op.getResNo() == 0)
19253      break;
19254    // Fallthrough
19255  case X86ISD::SETCC:
19256    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
19257    break;
19258  case ISD::INTRINSIC_WO_CHAIN: {
19259    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
19260    unsigned NumLoBits = 0;
19261    switch (IntId) {
19262    default: break;
19263    case Intrinsic::x86_sse_movmsk_ps:
19264    case Intrinsic::x86_avx_movmsk_ps_256:
19265    case Intrinsic::x86_sse2_movmsk_pd:
19266    case Intrinsic::x86_avx_movmsk_pd_256:
19267    case Intrinsic::x86_mmx_pmovmskb:
19268    case Intrinsic::x86_sse2_pmovmskb_128:
19269    case Intrinsic::x86_avx2_pmovmskb: {
19270      // High bits of movmskp{s|d}, pmovmskb are known zero.
19271      switch (IntId) {
19272        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
19273        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
19274        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
19275        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
19276        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
19277        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
19278        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
19279        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
19280      }
19281      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
19282      break;
19283    }
19284    }
19285    break;
19286  }
19287  }
19288}
19289
19290unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(
19291  SDValue Op,
19292  const SelectionDAG &,
19293  unsigned Depth) const {
19294  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
19295  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
19296    return Op.getValueType().getScalarType().getSizeInBits();
19297
19298  // Fallback case.
19299  return 1;
19300}
19301
19302/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
19303/// node is a GlobalAddress + offset.
19304bool X86TargetLowering::isGAPlusOffset(SDNode *N,
19305                                       const GlobalValue* &GA,
19306                                       int64_t &Offset) const {
19307  if (N->getOpcode() == X86ISD::Wrapper) {
19308    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
19309      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
19310      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
19311      return true;
19312    }
19313  }
19314  return TargetLowering::isGAPlusOffset(N, GA, Offset);
19315}
19316
19317/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
19318/// same as extracting the high 128-bit part of 256-bit vector and then
19319/// inserting the result into the low part of a new 256-bit vector
19320static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
19321  EVT VT = SVOp->getValueType(0);
19322  unsigned NumElems = VT.getVectorNumElements();
19323
19324  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
19325  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
19326    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
19327        SVOp->getMaskElt(j) >= 0)
19328      return false;
19329
19330  return true;
19331}
19332
19333/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
19334/// same as extracting the low 128-bit part of 256-bit vector and then
19335/// inserting the result into the high part of a new 256-bit vector
19336static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
19337  EVT VT = SVOp->getValueType(0);
19338  unsigned NumElems = VT.getVectorNumElements();
19339
19340  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
19341  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
19342    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
19343        SVOp->getMaskElt(j) >= 0)
19344      return false;
19345
19346  return true;
19347}
19348
19349/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
19350static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
19351                                        TargetLowering::DAGCombinerInfo &DCI,
19352                                        const X86Subtarget* Subtarget) {
19353  SDLoc dl(N);
19354  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
19355  SDValue V1 = SVOp->getOperand(0);
19356  SDValue V2 = SVOp->getOperand(1);
19357  EVT VT = SVOp->getValueType(0);
19358  unsigned NumElems = VT.getVectorNumElements();
19359
19360  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
19361      V2.getOpcode() == ISD::CONCAT_VECTORS) {
19362    //
19363    //                   0,0,0,...
19364    //                      |
19365    //    V      UNDEF    BUILD_VECTOR    UNDEF
19366    //     \      /           \           /
19367    //  CONCAT_VECTOR         CONCAT_VECTOR
19368    //         \                  /
19369    //          \                /
19370    //          RESULT: V + zero extended
19371    //
19372    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
19373        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
19374        V1.getOperand(1).getOpcode() != ISD::UNDEF)
19375      return SDValue();
19376
19377    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
19378      return SDValue();
19379
19380    // To match the shuffle mask, the first half of the mask should
19381    // be exactly the first vector, and all the rest a splat with the
19382    // first element of the second one.
19383    for (unsigned i = 0; i != NumElems/2; ++i)
19384      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
19385          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
19386        return SDValue();
19387
19388    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
19389    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
19390      if (Ld->hasNUsesOfValue(1, 0)) {
19391        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
19392        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
19393        SDValue ResNode =
19394          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
19395                                  Ld->getMemoryVT(),
19396                                  Ld->getPointerInfo(),
19397                                  Ld->getAlignment(),
19398                                  false/*isVolatile*/, true/*ReadMem*/,
19399                                  false/*WriteMem*/);
19400
19401        // Make sure the newly-created LOAD is in the same position as Ld in
19402        // terms of dependency. We create a TokenFactor for Ld and ResNode,
19403        // and update uses of Ld's output chain to use the TokenFactor.
19404        if (Ld->hasAnyUseOfValue(1)) {
19405          SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
19406                             SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
19407          DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
19408          DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
19409                                 SDValue(ResNode.getNode(), 1));
19410        }
19411
19412        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
19413      }
19414    }
19415
19416    // Emit a zeroed vector and insert the desired subvector on its
19417    // first half.
19418    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
19419    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
19420    return DCI.CombineTo(N, InsV);
19421  }
19422
19423  //===--------------------------------------------------------------------===//
19424  // Combine some shuffles into subvector extracts and inserts:
19425  //
19426
19427  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
19428  if (isShuffleHigh128VectorInsertLow(SVOp)) {
19429    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
19430    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
19431    return DCI.CombineTo(N, InsV);
19432  }
19433
19434  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
19435  if (isShuffleLow128VectorInsertHigh(SVOp)) {
19436    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
19437    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
19438    return DCI.CombineTo(N, InsV);
19439  }
19440
19441  return SDValue();
19442}
19443
19444/// \brief Combine an arbitrary chain of shuffles into a single instruction if
19445/// possible.
19446///
19447/// This is the leaf of the recursive combinine below. When we have found some
19448/// chain of single-use x86 shuffle instructions and accumulated the combined
19449/// shuffle mask represented by them, this will try to pattern match that mask
19450/// into either a single instruction if there is a special purpose instruction
19451/// for this operation, or into a PSHUFB instruction which is a fully general
19452/// instruction but should only be used to replace chains over a certain depth.
19453static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask,
19454                                   int Depth, bool HasPSHUFB, SelectionDAG &DAG,
19455                                   TargetLowering::DAGCombinerInfo &DCI,
19456                                   const X86Subtarget *Subtarget) {
19457  assert(!Mask.empty() && "Cannot combine an empty shuffle mask!");
19458
19459  // Find the operand that enters the chain. Note that multiple uses are OK
19460  // here, we're not going to remove the operand we find.
19461  SDValue Input = Op.getOperand(0);
19462  while (Input.getOpcode() == ISD::BITCAST)
19463    Input = Input.getOperand(0);
19464
19465  MVT VT = Input.getSimpleValueType();
19466  MVT RootVT = Root.getSimpleValueType();
19467  SDLoc DL(Root);
19468
19469  // Just remove no-op shuffle masks.
19470  if (Mask.size() == 1) {
19471    DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Input),
19472                  /*AddTo*/ true);
19473    return true;
19474  }
19475
19476  // Use the float domain if the operand type is a floating point type.
19477  bool FloatDomain = VT.isFloatingPoint();
19478
19479  // For floating point shuffles, we don't have free copies in the shuffle
19480  // instructions or the ability to load as part of the instruction, so
19481  // canonicalize their shuffles to UNPCK or MOV variants.
19482  //
19483  // Note that even with AVX we prefer the PSHUFD form of shuffle for integer
19484  // vectors because it can have a load folded into it that UNPCK cannot. This
19485  // doesn't preclude something switching to the shorter encoding post-RA.
19486  //
19487  // FIXME: Should teach these routines about AVX vector widths.
19488  if (FloatDomain && VT.getSizeInBits() == 128) {
19489    if (Mask.equals({0, 0}) || Mask.equals({1, 1})) {
19490      bool Lo = Mask.equals({0, 0});
19491      unsigned Shuffle;
19492      MVT ShuffleVT;
19493      // Check if we have SSE3 which will let us use MOVDDUP. That instruction
19494      // is no slower than UNPCKLPD but has the option to fold the input operand
19495      // into even an unaligned memory load.
19496      if (Lo && Subtarget->hasSSE3()) {
19497        Shuffle = X86ISD::MOVDDUP;
19498        ShuffleVT = MVT::v2f64;
19499      } else {
19500        // We have MOVLHPS and MOVHLPS throughout SSE and they encode smaller
19501        // than the UNPCK variants.
19502        Shuffle = Lo ? X86ISD::MOVLHPS : X86ISD::MOVHLPS;
19503        ShuffleVT = MVT::v4f32;
19504      }
19505      if (Depth == 1 && Root->getOpcode() == Shuffle)
19506        return false; // Nothing to do!
19507      Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
19508      DCI.AddToWorklist(Op.getNode());
19509      if (Shuffle == X86ISD::MOVDDUP)
19510        Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op);
19511      else
19512        Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
19513      DCI.AddToWorklist(Op.getNode());
19514      DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
19515                    /*AddTo*/ true);
19516      return true;
19517    }
19518    if (Subtarget->hasSSE3() &&
19519        (Mask.equals({0, 0, 2, 2}) || Mask.equals({1, 1, 3, 3}))) {
19520      bool Lo = Mask.equals({0, 0, 2, 2});
19521      unsigned Shuffle = Lo ? X86ISD::MOVSLDUP : X86ISD::MOVSHDUP;
19522      MVT ShuffleVT = MVT::v4f32;
19523      if (Depth == 1 && Root->getOpcode() == Shuffle)
19524        return false; // Nothing to do!
19525      Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
19526      DCI.AddToWorklist(Op.getNode());
19527      Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op);
19528      DCI.AddToWorklist(Op.getNode());
19529      DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
19530                    /*AddTo*/ true);
19531      return true;
19532    }
19533    if (Mask.equals({0, 0, 1, 1}) || Mask.equals({2, 2, 3, 3})) {
19534      bool Lo = Mask.equals({0, 0, 1, 1});
19535      unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH;
19536      MVT ShuffleVT = MVT::v4f32;
19537      if (Depth == 1 && Root->getOpcode() == Shuffle)
19538        return false; // Nothing to do!
19539      Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
19540      DCI.AddToWorklist(Op.getNode());
19541      Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
19542      DCI.AddToWorklist(Op.getNode());
19543      DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
19544                    /*AddTo*/ true);
19545      return true;
19546    }
19547  }
19548
19549  // We always canonicalize the 8 x i16 and 16 x i8 shuffles into their UNPCK
19550  // variants as none of these have single-instruction variants that are
19551  // superior to the UNPCK formulation.
19552  if (!FloatDomain && VT.getSizeInBits() == 128 &&
19553      (Mask.equals({0, 0, 1, 1, 2, 2, 3, 3}) ||
19554       Mask.equals({4, 4, 5, 5, 6, 6, 7, 7}) ||
19555       Mask.equals({0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}) ||
19556       Mask.equals(
19557           {8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15}))) {
19558    bool Lo = Mask[0] == 0;
19559    unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH;
19560    if (Depth == 1 && Root->getOpcode() == Shuffle)
19561      return false; // Nothing to do!
19562    MVT ShuffleVT;
19563    switch (Mask.size()) {
19564    case 8:
19565      ShuffleVT = MVT::v8i16;
19566      break;
19567    case 16:
19568      ShuffleVT = MVT::v16i8;
19569      break;
19570    default:
19571      llvm_unreachable("Impossible mask size!");
19572    };
19573    Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
19574    DCI.AddToWorklist(Op.getNode());
19575    Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
19576    DCI.AddToWorklist(Op.getNode());
19577    DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
19578                  /*AddTo*/ true);
19579    return true;
19580  }
19581
19582  // Don't try to re-form single instruction chains under any circumstances now
19583  // that we've done encoding canonicalization for them.
19584  if (Depth < 2)
19585    return false;
19586
19587  // If we have 3 or more shuffle instructions or a chain involving PSHUFB, we
19588  // can replace them with a single PSHUFB instruction profitably. Intel's
19589  // manuals suggest only using PSHUFB if doing so replacing 5 instructions, but
19590  // in practice PSHUFB tends to be *very* fast so we're more aggressive.
19591  if ((Depth >= 3 || HasPSHUFB) && Subtarget->hasSSSE3()) {
19592    SmallVector<SDValue, 16> PSHUFBMask;
19593    int NumBytes = VT.getSizeInBits() / 8;
19594    int Ratio = NumBytes / Mask.size();
19595    for (int i = 0; i < NumBytes; ++i) {
19596      if (Mask[i / Ratio] == SM_SentinelUndef) {
19597        PSHUFBMask.push_back(DAG.getUNDEF(MVT::i8));
19598        continue;
19599      }
19600      int M = Mask[i / Ratio] != SM_SentinelZero
19601                  ? Ratio * Mask[i / Ratio] + i % Ratio
19602                  : 255;
19603      PSHUFBMask.push_back(DAG.getConstant(M, MVT::i8));
19604    }
19605    MVT ByteVT = MVT::getVectorVT(MVT::i8, NumBytes);
19606    Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Input);
19607    DCI.AddToWorklist(Op.getNode());
19608    SDValue PSHUFBMaskOp =
19609        DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVT, PSHUFBMask);
19610    DCI.AddToWorklist(PSHUFBMaskOp.getNode());
19611    Op = DAG.getNode(X86ISD::PSHUFB, DL, ByteVT, Op, PSHUFBMaskOp);
19612    DCI.AddToWorklist(Op.getNode());
19613    DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
19614                  /*AddTo*/ true);
19615    return true;
19616  }
19617
19618  // Failed to find any combines.
19619  return false;
19620}
19621
19622/// \brief Fully generic combining of x86 shuffle instructions.
19623///
19624/// This should be the last combine run over the x86 shuffle instructions. Once
19625/// they have been fully optimized, this will recursively consider all chains
19626/// of single-use shuffle instructions, build a generic model of the cumulative
19627/// shuffle operation, and check for simpler instructions which implement this
19628/// operation. We use this primarily for two purposes:
19629///
19630/// 1) Collapse generic shuffles to specialized single instructions when
19631///    equivalent. In most cases, this is just an encoding size win, but
19632///    sometimes we will collapse multiple generic shuffles into a single
19633///    special-purpose shuffle.
19634/// 2) Look for sequences of shuffle instructions with 3 or more total
19635///    instructions, and replace them with the slightly more expensive SSSE3
19636///    PSHUFB instruction if available. We do this as the last combining step
19637///    to ensure we avoid using PSHUFB if we can implement the shuffle with
19638///    a suitable short sequence of other instructions. The PHUFB will either
19639///    use a register or have to read from memory and so is slightly (but only
19640///    slightly) more expensive than the other shuffle instructions.
19641///
19642/// Because this is inherently a quadratic operation (for each shuffle in
19643/// a chain, we recurse up the chain), the depth is limited to 8 instructions.
19644/// This should never be an issue in practice as the shuffle lowering doesn't
19645/// produce sequences of more than 8 instructions.
19646///
19647/// FIXME: We will currently miss some cases where the redundant shuffling
19648/// would simplify under the threshold for PSHUFB formation because of
19649/// combine-ordering. To fix this, we should do the redundant instruction
19650/// combining in this recursive walk.
19651static bool combineX86ShufflesRecursively(SDValue Op, SDValue Root,
19652                                          ArrayRef<int> RootMask,
19653                                          int Depth, bool HasPSHUFB,
19654                                          SelectionDAG &DAG,
19655                                          TargetLowering::DAGCombinerInfo &DCI,
19656                                          const X86Subtarget *Subtarget) {
19657  // Bound the depth of our recursive combine because this is ultimately
19658  // quadratic in nature.
19659  if (Depth > 8)
19660    return false;
19661
19662  // Directly rip through bitcasts to find the underlying operand.
19663  while (Op.getOpcode() == ISD::BITCAST && Op.getOperand(0).hasOneUse())
19664    Op = Op.getOperand(0);
19665
19666  MVT VT = Op.getSimpleValueType();
19667  if (!VT.isVector())
19668    return false; // Bail if we hit a non-vector.
19669
19670  assert(Root.getSimpleValueType().isVector() &&
19671         "Shuffles operate on vector types!");
19672  assert(VT.getSizeInBits() == Root.getSimpleValueType().getSizeInBits() &&
19673         "Can only combine shuffles of the same vector register size.");
19674
19675  if (!isTargetShuffle(Op.getOpcode()))
19676    return false;
19677  SmallVector<int, 16> OpMask;
19678  bool IsUnary;
19679  bool HaveMask = getTargetShuffleMask(Op.getNode(), VT, OpMask, IsUnary);
19680  // We only can combine unary shuffles which we can decode the mask for.
19681  if (!HaveMask || !IsUnary)
19682    return false;
19683
19684  assert(VT.getVectorNumElements() == OpMask.size() &&
19685         "Different mask size from vector size!");
19686  assert(((RootMask.size() > OpMask.size() &&
19687           RootMask.size() % OpMask.size() == 0) ||
19688          (OpMask.size() > RootMask.size() &&
19689           OpMask.size() % RootMask.size() == 0) ||
19690          OpMask.size() == RootMask.size()) &&
19691         "The smaller number of elements must divide the larger.");
19692  int RootRatio = std::max<int>(1, OpMask.size() / RootMask.size());
19693  int OpRatio = std::max<int>(1, RootMask.size() / OpMask.size());
19694  assert(((RootRatio == 1 && OpRatio == 1) ||
19695          (RootRatio == 1) != (OpRatio == 1)) &&
19696         "Must not have a ratio for both incoming and op masks!");
19697
19698  SmallVector<int, 16> Mask;
19699  Mask.reserve(std::max(OpMask.size(), RootMask.size()));
19700
19701  // Merge this shuffle operation's mask into our accumulated mask. Note that
19702  // this shuffle's mask will be the first applied to the input, followed by the
19703  // root mask to get us all the way to the root value arrangement. The reason
19704  // for this order is that we are recursing up the operation chain.
19705  for (int i = 0, e = std::max(OpMask.size(), RootMask.size()); i < e; ++i) {
19706    int RootIdx = i / RootRatio;
19707    if (RootMask[RootIdx] < 0) {
19708      // This is a zero or undef lane, we're done.
19709      Mask.push_back(RootMask[RootIdx]);
19710      continue;
19711    }
19712
19713    int RootMaskedIdx = RootMask[RootIdx] * RootRatio + i % RootRatio;
19714    int OpIdx = RootMaskedIdx / OpRatio;
19715    if (OpMask[OpIdx] < 0) {
19716      // The incoming lanes are zero or undef, it doesn't matter which ones we
19717      // are using.
19718      Mask.push_back(OpMask[OpIdx]);
19719      continue;
19720    }
19721
19722    // Ok, we have non-zero lanes, map them through.
19723    Mask.push_back(OpMask[OpIdx] * OpRatio +
19724                   RootMaskedIdx % OpRatio);
19725  }
19726
19727  // See if we can recurse into the operand to combine more things.
19728  switch (Op.getOpcode()) {
19729    case X86ISD::PSHUFB:
19730      HasPSHUFB = true;
19731    case X86ISD::PSHUFD:
19732    case X86ISD::PSHUFHW:
19733    case X86ISD::PSHUFLW:
19734      if (Op.getOperand(0).hasOneUse() &&
19735          combineX86ShufflesRecursively(Op.getOperand(0), Root, Mask, Depth + 1,
19736                                        HasPSHUFB, DAG, DCI, Subtarget))
19737        return true;
19738      break;
19739
19740    case X86ISD::UNPCKL:
19741    case X86ISD::UNPCKH:
19742      assert(Op.getOperand(0) == Op.getOperand(1) && "We only combine unary shuffles!");
19743      // We can't check for single use, we have to check that this shuffle is the only user.
19744      if (Op->isOnlyUserOf(Op.getOperand(0).getNode()) &&
19745          combineX86ShufflesRecursively(Op.getOperand(0), Root, Mask, Depth + 1,
19746                                        HasPSHUFB, DAG, DCI, Subtarget))
19747          return true;
19748      break;
19749  }
19750
19751  // Minor canonicalization of the accumulated shuffle mask to make it easier
19752  // to match below. All this does is detect masks with squential pairs of
19753  // elements, and shrink them to the half-width mask. It does this in a loop
19754  // so it will reduce the size of the mask to the minimal width mask which
19755  // performs an equivalent shuffle.
19756  SmallVector<int, 16> WidenedMask;
19757  while (Mask.size() > 1 && canWidenShuffleElements(Mask, WidenedMask)) {
19758    Mask = std::move(WidenedMask);
19759    WidenedMask.clear();
19760  }
19761
19762  return combineX86ShuffleChain(Op, Root, Mask, Depth, HasPSHUFB, DAG, DCI,
19763                                Subtarget);
19764}
19765
19766/// \brief Get the PSHUF-style mask from PSHUF node.
19767///
19768/// This is a very minor wrapper around getTargetShuffleMask to easy forming v4
19769/// PSHUF-style masks that can be reused with such instructions.
19770static SmallVector<int, 4> getPSHUFShuffleMask(SDValue N) {
19771  MVT VT = N.getSimpleValueType();
19772  SmallVector<int, 4> Mask;
19773  bool IsUnary;
19774  bool HaveMask = getTargetShuffleMask(N.getNode(), VT, Mask, IsUnary);
19775  (void)HaveMask;
19776  assert(HaveMask);
19777
19778  // If we have more than 128-bits, only the low 128-bits of shuffle mask
19779  // matter. Check that the upper masks are repeats and remove them.
19780  if (VT.getSizeInBits() > 128) {
19781    int LaneElts = 128 / VT.getScalarSizeInBits();
19782#ifndef NDEBUG
19783    for (int i = 1, NumLanes = VT.getSizeInBits() / 128; i < NumLanes; ++i)
19784      for (int j = 0; j < LaneElts; ++j)
19785        assert(Mask[j] == Mask[i * LaneElts + j] - LaneElts &&
19786               "Mask doesn't repeat in high 128-bit lanes!");
19787#endif
19788    Mask.resize(LaneElts);
19789  }
19790
19791  switch (N.getOpcode()) {
19792  case X86ISD::PSHUFD:
19793    return Mask;
19794  case X86ISD::PSHUFLW:
19795    Mask.resize(4);
19796    return Mask;
19797  case X86ISD::PSHUFHW:
19798    Mask.erase(Mask.begin(), Mask.begin() + 4);
19799    for (int &M : Mask)
19800      M -= 4;
19801    return Mask;
19802  default:
19803    llvm_unreachable("No valid shuffle instruction found!");
19804  }
19805}
19806
19807/// \brief Search for a combinable shuffle across a chain ending in pshufd.
19808///
19809/// We walk up the chain and look for a combinable shuffle, skipping over
19810/// shuffles that we could hoist this shuffle's transformation past without
19811/// altering anything.
19812static SDValue
19813combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
19814                             SelectionDAG &DAG,
19815                             TargetLowering::DAGCombinerInfo &DCI) {
19816  assert(N.getOpcode() == X86ISD::PSHUFD &&
19817         "Called with something other than an x86 128-bit half shuffle!");
19818  SDLoc DL(N);
19819
19820  // Walk up a single-use chain looking for a combinable shuffle. Keep a stack
19821  // of the shuffles in the chain so that we can form a fresh chain to replace
19822  // this one.
19823  SmallVector<SDValue, 8> Chain;
19824  SDValue V = N.getOperand(0);
19825  for (; V.hasOneUse(); V = V.getOperand(0)) {
19826    switch (V.getOpcode()) {
19827    default:
19828      return SDValue(); // Nothing combined!
19829
19830    case ISD::BITCAST:
19831      // Skip bitcasts as we always know the type for the target specific
19832      // instructions.
19833      continue;
19834
19835    case X86ISD::PSHUFD:
19836      // Found another dword shuffle.
19837      break;
19838
19839    case X86ISD::PSHUFLW:
19840      // Check that the low words (being shuffled) are the identity in the
19841      // dword shuffle, and the high words are self-contained.
19842      if (Mask[0] != 0 || Mask[1] != 1 ||
19843          !(Mask[2] >= 2 && Mask[2] < 4 && Mask[3] >= 2 && Mask[3] < 4))
19844        return SDValue();
19845
19846      Chain.push_back(V);
19847      continue;
19848
19849    case X86ISD::PSHUFHW:
19850      // Check that the high words (being shuffled) are the identity in the
19851      // dword shuffle, and the low words are self-contained.
19852      if (Mask[2] != 2 || Mask[3] != 3 ||
19853          !(Mask[0] >= 0 && Mask[0] < 2 && Mask[1] >= 0 && Mask[1] < 2))
19854        return SDValue();
19855
19856      Chain.push_back(V);
19857      continue;
19858
19859    case X86ISD::UNPCKL:
19860    case X86ISD::UNPCKH:
19861      // For either i8 -> i16 or i16 -> i32 unpacks, we can combine a dword
19862      // shuffle into a preceding word shuffle.
19863      if (V.getSimpleValueType().getScalarType() != MVT::i8 &&
19864          V.getSimpleValueType().getScalarType() != MVT::i16)
19865        return SDValue();
19866
19867      // Search for a half-shuffle which we can combine with.
19868      unsigned CombineOp =
19869          V.getOpcode() == X86ISD::UNPCKL ? X86ISD::PSHUFLW : X86ISD::PSHUFHW;
19870      if (V.getOperand(0) != V.getOperand(1) ||
19871          !V->isOnlyUserOf(V.getOperand(0).getNode()))
19872        return SDValue();
19873      Chain.push_back(V);
19874      V = V.getOperand(0);
19875      do {
19876        switch (V.getOpcode()) {
19877        default:
19878          return SDValue(); // Nothing to combine.
19879
19880        case X86ISD::PSHUFLW:
19881        case X86ISD::PSHUFHW:
19882          if (V.getOpcode() == CombineOp)
19883            break;
19884
19885          Chain.push_back(V);
19886
19887          // Fallthrough!
19888        case ISD::BITCAST:
19889          V = V.getOperand(0);
19890          continue;
19891        }
19892        break;
19893      } while (V.hasOneUse());
19894      break;
19895    }
19896    // Break out of the loop if we break out of the switch.
19897    break;
19898  }
19899
19900  if (!V.hasOneUse())
19901    // We fell out of the loop without finding a viable combining instruction.
19902    return SDValue();
19903
19904  // Merge this node's mask and our incoming mask.
19905  SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
19906  for (int &M : Mask)
19907    M = VMask[M];
19908  V = DAG.getNode(V.getOpcode(), DL, V.getValueType(), V.getOperand(0),
19909                  getV4X86ShuffleImm8ForMask(Mask, DAG));
19910
19911  // Rebuild the chain around this new shuffle.
19912  while (!Chain.empty()) {
19913    SDValue W = Chain.pop_back_val();
19914
19915    if (V.getValueType() != W.getOperand(0).getValueType())
19916      V = DAG.getNode(ISD::BITCAST, DL, W.getOperand(0).getValueType(), V);
19917
19918    switch (W.getOpcode()) {
19919    default:
19920      llvm_unreachable("Only PSHUF and UNPCK instructions get here!");
19921
19922    case X86ISD::UNPCKL:
19923    case X86ISD::UNPCKH:
19924      V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, V);
19925      break;
19926
19927    case X86ISD::PSHUFD:
19928    case X86ISD::PSHUFLW:
19929    case X86ISD::PSHUFHW:
19930      V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, W.getOperand(1));
19931      break;
19932    }
19933  }
19934  if (V.getValueType() != N.getValueType())
19935    V = DAG.getNode(ISD::BITCAST, DL, N.getValueType(), V);
19936
19937  // Return the new chain to replace N.
19938  return V;
19939}
19940
19941/// \brief Search for a combinable shuffle across a chain ending in pshuflw or pshufhw.
19942///
19943/// We walk up the chain, skipping shuffles of the other half and looking
19944/// through shuffles which switch halves trying to find a shuffle of the same
19945/// pair of dwords.
19946static bool combineRedundantHalfShuffle(SDValue N, MutableArrayRef<int> Mask,
19947                                        SelectionDAG &DAG,
19948                                        TargetLowering::DAGCombinerInfo &DCI) {
19949  assert(
19950      (N.getOpcode() == X86ISD::PSHUFLW || N.getOpcode() == X86ISD::PSHUFHW) &&
19951      "Called with something other than an x86 128-bit half shuffle!");
19952  SDLoc DL(N);
19953  unsigned CombineOpcode = N.getOpcode();
19954
19955  // Walk up a single-use chain looking for a combinable shuffle.
19956  SDValue V = N.getOperand(0);
19957  for (; V.hasOneUse(); V = V.getOperand(0)) {
19958    switch (V.getOpcode()) {
19959    default:
19960      return false; // Nothing combined!
19961
19962    case ISD::BITCAST:
19963      // Skip bitcasts as we always know the type for the target specific
19964      // instructions.
19965      continue;
19966
19967    case X86ISD::PSHUFLW:
19968    case X86ISD::PSHUFHW:
19969      if (V.getOpcode() == CombineOpcode)
19970        break;
19971
19972      // Other-half shuffles are no-ops.
19973      continue;
19974    }
19975    // Break out of the loop if we break out of the switch.
19976    break;
19977  }
19978
19979  if (!V.hasOneUse())
19980    // We fell out of the loop without finding a viable combining instruction.
19981    return false;
19982
19983  // Combine away the bottom node as its shuffle will be accumulated into
19984  // a preceding shuffle.
19985  DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true);
19986
19987  // Record the old value.
19988  SDValue Old = V;
19989
19990  // Merge this node's mask and our incoming mask (adjusted to account for all
19991  // the pshufd instructions encountered).
19992  SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
19993  for (int &M : Mask)
19994    M = VMask[M];
19995  V = DAG.getNode(V.getOpcode(), DL, MVT::v8i16, V.getOperand(0),
19996                  getV4X86ShuffleImm8ForMask(Mask, DAG));
19997
19998  // Check that the shuffles didn't cancel each other out. If not, we need to
19999  // combine to the new one.
20000  if (Old != V)
20001    // Replace the combinable shuffle with the combined one, updating all users
20002    // so that we re-evaluate the chain here.
20003    DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true);
20004
20005  return true;
20006}
20007
20008/// \brief Try to combine x86 target specific shuffles.
20009static SDValue PerformTargetShuffleCombine(SDValue N, SelectionDAG &DAG,
20010                                           TargetLowering::DAGCombinerInfo &DCI,
20011                                           const X86Subtarget *Subtarget) {
20012  SDLoc DL(N);
20013  MVT VT = N.getSimpleValueType();
20014  SmallVector<int, 4> Mask;
20015
20016  switch (N.getOpcode()) {
20017  case X86ISD::PSHUFD:
20018  case X86ISD::PSHUFLW:
20019  case X86ISD::PSHUFHW:
20020    Mask = getPSHUFShuffleMask(N);
20021    assert(Mask.size() == 4);
20022    break;
20023  default:
20024    return SDValue();
20025  }
20026
20027  // Nuke no-op shuffles that show up after combining.
20028  if (isNoopShuffleMask(Mask))
20029    return DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true);
20030
20031  // Look for simplifications involving one or two shuffle instructions.
20032  SDValue V = N.getOperand(0);
20033  switch (N.getOpcode()) {
20034  default:
20035    break;
20036  case X86ISD::PSHUFLW:
20037  case X86ISD::PSHUFHW:
20038    assert(VT.getScalarType() == MVT::i16 && "Bad word shuffle type!");
20039
20040    if (combineRedundantHalfShuffle(N, Mask, DAG, DCI))
20041      return SDValue(); // We combined away this shuffle, so we're done.
20042
20043    // See if this reduces to a PSHUFD which is no more expensive and can
20044    // combine with more operations. Note that it has to at least flip the
20045    // dwords as otherwise it would have been removed as a no-op.
20046    if (makeArrayRef(Mask).equals({2, 3, 0, 1})) {
20047      int DMask[] = {0, 1, 2, 3};
20048      int DOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 2;
20049      DMask[DOffset + 0] = DOffset + 1;
20050      DMask[DOffset + 1] = DOffset + 0;
20051      MVT DVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
20052      V = DAG.getNode(ISD::BITCAST, DL, DVT, V);
20053      DCI.AddToWorklist(V.getNode());
20054      V = DAG.getNode(X86ISD::PSHUFD, DL, DVT, V,
20055                      getV4X86ShuffleImm8ForMask(DMask, DAG));
20056      DCI.AddToWorklist(V.getNode());
20057      return DAG.getNode(ISD::BITCAST, DL, VT, V);
20058    }
20059
20060    // Look for shuffle patterns which can be implemented as a single unpack.
20061    // FIXME: This doesn't handle the location of the PSHUFD generically, and
20062    // only works when we have a PSHUFD followed by two half-shuffles.
20063    if (Mask[0] == Mask[1] && Mask[2] == Mask[3] &&
20064        (V.getOpcode() == X86ISD::PSHUFLW ||
20065         V.getOpcode() == X86ISD::PSHUFHW) &&
20066        V.getOpcode() != N.getOpcode() &&
20067        V.hasOneUse()) {
20068      SDValue D = V.getOperand(0);
20069      while (D.getOpcode() == ISD::BITCAST && D.hasOneUse())
20070        D = D.getOperand(0);
20071      if (D.getOpcode() == X86ISD::PSHUFD && D.hasOneUse()) {
20072        SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
20073        SmallVector<int, 4> DMask = getPSHUFShuffleMask(D);
20074        int NOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
20075        int VOffset = V.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
20076        int WordMask[8];
20077        for (int i = 0; i < 4; ++i) {
20078          WordMask[i + NOffset] = Mask[i] + NOffset;
20079          WordMask[i + VOffset] = VMask[i] + VOffset;
20080        }
20081        // Map the word mask through the DWord mask.
20082        int MappedMask[8];
20083        for (int i = 0; i < 8; ++i)
20084          MappedMask[i] = 2 * DMask[WordMask[i] / 2] + WordMask[i] % 2;
20085        if (makeArrayRef(MappedMask).equals({0, 0, 1, 1, 2, 2, 3, 3}) ||
20086            makeArrayRef(MappedMask).equals({4, 4, 5, 5, 6, 6, 7, 7})) {
20087          // We can replace all three shuffles with an unpack.
20088          V = DAG.getNode(ISD::BITCAST, DL, VT, D.getOperand(0));
20089          DCI.AddToWorklist(V.getNode());
20090          return DAG.getNode(MappedMask[0] == 0 ? X86ISD::UNPCKL
20091                                                : X86ISD::UNPCKH,
20092                             DL, VT, V, V);
20093        }
20094      }
20095    }
20096
20097    break;
20098
20099  case X86ISD::PSHUFD:
20100    if (SDValue NewN = combineRedundantDWordShuffle(N, Mask, DAG, DCI))
20101      return NewN;
20102
20103    break;
20104  }
20105
20106  return SDValue();
20107}
20108
20109/// \brief Try to combine a shuffle into a target-specific add-sub node.
20110///
20111/// We combine this directly on the abstract vector shuffle nodes so it is
20112/// easier to generically match. We also insert dummy vector shuffle nodes for
20113/// the operands which explicitly discard the lanes which are unused by this
20114/// operation to try to flow through the rest of the combiner the fact that
20115/// they're unused.
20116static SDValue combineShuffleToAddSub(SDNode *N, SelectionDAG &DAG) {
20117  SDLoc DL(N);
20118  EVT VT = N->getValueType(0);
20119
20120  // We only handle target-independent shuffles.
20121  // FIXME: It would be easy and harmless to use the target shuffle mask
20122  // extraction tool to support more.
20123  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
20124    return SDValue();
20125
20126  auto *SVN = cast<ShuffleVectorSDNode>(N);
20127  ArrayRef<int> Mask = SVN->getMask();
20128  SDValue V1 = N->getOperand(0);
20129  SDValue V2 = N->getOperand(1);
20130
20131  // We require the first shuffle operand to be the SUB node, and the second to
20132  // be the ADD node.
20133  // FIXME: We should support the commuted patterns.
20134  if (V1->getOpcode() != ISD::FSUB || V2->getOpcode() != ISD::FADD)
20135    return SDValue();
20136
20137  // If there are other uses of these operations we can't fold them.
20138  if (!V1->hasOneUse() || !V2->hasOneUse())
20139    return SDValue();
20140
20141  // Ensure that both operations have the same operands. Note that we can
20142  // commute the FADD operands.
20143  SDValue LHS = V1->getOperand(0), RHS = V1->getOperand(1);
20144  if ((V2->getOperand(0) != LHS || V2->getOperand(1) != RHS) &&
20145      (V2->getOperand(0) != RHS || V2->getOperand(1) != LHS))
20146    return SDValue();
20147
20148  // We're looking for blends between FADD and FSUB nodes. We insist on these
20149  // nodes being lined up in a specific expected pattern.
20150  if (!(isShuffleEquivalent(V1, V2, Mask, {0, 3}) ||
20151        isShuffleEquivalent(V1, V2, Mask, {0, 5, 2, 7}) ||
20152        isShuffleEquivalent(V1, V2, Mask, {0, 9, 2, 11, 4, 13, 6, 15})))
20153    return SDValue();
20154
20155  // Only specific types are legal at this point, assert so we notice if and
20156  // when these change.
20157  assert((VT == MVT::v4f32 || VT == MVT::v2f64 || VT == MVT::v8f32 ||
20158          VT == MVT::v4f64) &&
20159         "Unknown vector type encountered!");
20160
20161  return DAG.getNode(X86ISD::ADDSUB, DL, VT, LHS, RHS);
20162}
20163
20164/// PerformShuffleCombine - Performs several different shuffle combines.
20165static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
20166                                     TargetLowering::DAGCombinerInfo &DCI,
20167                                     const X86Subtarget *Subtarget) {
20168  SDLoc dl(N);
20169  SDValue N0 = N->getOperand(0);
20170  SDValue N1 = N->getOperand(1);
20171  EVT VT = N->getValueType(0);
20172
20173  // Don't create instructions with illegal types after legalize types has run.
20174  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
20175  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
20176    return SDValue();
20177
20178  // If we have legalized the vector types, look for blends of FADD and FSUB
20179  // nodes that we can fuse into an ADDSUB node.
20180  if (TLI.isTypeLegal(VT) && Subtarget->hasSSE3())
20181    if (SDValue AddSub = combineShuffleToAddSub(N, DAG))
20182      return AddSub;
20183
20184  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
20185  if (Subtarget->hasFp256() && VT.is256BitVector() &&
20186      N->getOpcode() == ISD::VECTOR_SHUFFLE)
20187    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
20188
20189  // During Type Legalization, when promoting illegal vector types,
20190  // the backend might introduce new shuffle dag nodes and bitcasts.
20191  //
20192  // This code performs the following transformation:
20193  // fold: (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) ->
20194  //       (shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>)
20195  //
20196  // We do this only if both the bitcast and the BINOP dag nodes have
20197  // one use. Also, perform this transformation only if the new binary
20198  // operation is legal. This is to avoid introducing dag nodes that
20199  // potentially need to be further expanded (or custom lowered) into a
20200  // less optimal sequence of dag nodes.
20201  if (!DCI.isBeforeLegalize() && DCI.isBeforeLegalizeOps() &&
20202      N1.getOpcode() == ISD::UNDEF && N0.hasOneUse() &&
20203      N0.getOpcode() == ISD::BITCAST) {
20204    SDValue BC0 = N0.getOperand(0);
20205    EVT SVT = BC0.getValueType();
20206    unsigned Opcode = BC0.getOpcode();
20207    unsigned NumElts = VT.getVectorNumElements();
20208
20209    if (BC0.hasOneUse() && SVT.isVector() &&
20210        SVT.getVectorNumElements() * 2 == NumElts &&
20211        TLI.isOperationLegal(Opcode, VT)) {
20212      bool CanFold = false;
20213      switch (Opcode) {
20214      default : break;
20215      case ISD::ADD :
20216      case ISD::FADD :
20217      case ISD::SUB :
20218      case ISD::FSUB :
20219      case ISD::MUL :
20220      case ISD::FMUL :
20221        CanFold = true;
20222      }
20223
20224      unsigned SVTNumElts = SVT.getVectorNumElements();
20225      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
20226      for (unsigned i = 0, e = SVTNumElts; i != e && CanFold; ++i)
20227        CanFold = SVOp->getMaskElt(i) == (int)(i * 2);
20228      for (unsigned i = SVTNumElts, e = NumElts; i != e && CanFold; ++i)
20229        CanFold = SVOp->getMaskElt(i) < 0;
20230
20231      if (CanFold) {
20232        SDValue BC00 = DAG.getNode(ISD::BITCAST, dl, VT, BC0.getOperand(0));
20233        SDValue BC01 = DAG.getNode(ISD::BITCAST, dl, VT, BC0.getOperand(1));
20234        SDValue NewBinOp = DAG.getNode(BC0.getOpcode(), dl, VT, BC00, BC01);
20235        return DAG.getVectorShuffle(VT, dl, NewBinOp, N1, &SVOp->getMask()[0]);
20236      }
20237    }
20238  }
20239
20240  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
20241  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
20242  // consecutive, non-overlapping, and in the right order.
20243  SmallVector<SDValue, 16> Elts;
20244  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
20245    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
20246
20247  SDValue LD = EltsFromConsecutiveLoads(VT, Elts, dl, DAG, true);
20248  if (LD.getNode())
20249    return LD;
20250
20251  if (isTargetShuffle(N->getOpcode())) {
20252    SDValue Shuffle =
20253        PerformTargetShuffleCombine(SDValue(N, 0), DAG, DCI, Subtarget);
20254    if (Shuffle.getNode())
20255      return Shuffle;
20256
20257    // Try recursively combining arbitrary sequences of x86 shuffle
20258    // instructions into higher-order shuffles. We do this after combining
20259    // specific PSHUF instruction sequences into their minimal form so that we
20260    // can evaluate how many specialized shuffle instructions are involved in
20261    // a particular chain.
20262    SmallVector<int, 1> NonceMask; // Just a placeholder.
20263    NonceMask.push_back(0);
20264    if (combineX86ShufflesRecursively(SDValue(N, 0), SDValue(N, 0), NonceMask,
20265                                      /*Depth*/ 1, /*HasPSHUFB*/ false, DAG,
20266                                      DCI, Subtarget))
20267      return SDValue(); // This routine will use CombineTo to replace N.
20268  }
20269
20270  return SDValue();
20271}
20272
20273/// PerformTruncateCombine - Converts truncate operation to
20274/// a sequence of vector shuffle operations.
20275/// It is possible when we truncate 256-bit vector to 128-bit vector
20276static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
20277                                      TargetLowering::DAGCombinerInfo &DCI,
20278                                      const X86Subtarget *Subtarget)  {
20279  return SDValue();
20280}
20281
20282/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
20283/// specific shuffle of a load can be folded into a single element load.
20284/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
20285/// shuffles have been custom lowered so we need to handle those here.
20286static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
20287                                         TargetLowering::DAGCombinerInfo &DCI) {
20288  if (DCI.isBeforeLegalizeOps())
20289    return SDValue();
20290
20291  SDValue InVec = N->getOperand(0);
20292  SDValue EltNo = N->getOperand(1);
20293
20294  if (!isa<ConstantSDNode>(EltNo))
20295    return SDValue();
20296
20297  EVT OriginalVT = InVec.getValueType();
20298
20299  if (InVec.getOpcode() == ISD::BITCAST) {
20300    // Don't duplicate a load with other uses.
20301    if (!InVec.hasOneUse())
20302      return SDValue();
20303    EVT BCVT = InVec.getOperand(0).getValueType();
20304    if (BCVT.getVectorNumElements() != OriginalVT.getVectorNumElements())
20305      return SDValue();
20306    InVec = InVec.getOperand(0);
20307  }
20308
20309  EVT CurrentVT = InVec.getValueType();
20310
20311  if (!isTargetShuffle(InVec.getOpcode()))
20312    return SDValue();
20313
20314  // Don't duplicate a load with other uses.
20315  if (!InVec.hasOneUse())
20316    return SDValue();
20317
20318  SmallVector<int, 16> ShuffleMask;
20319  bool UnaryShuffle;
20320  if (!getTargetShuffleMask(InVec.getNode(), CurrentVT.getSimpleVT(),
20321                            ShuffleMask, UnaryShuffle))
20322    return SDValue();
20323
20324  // Select the input vector, guarding against out of range extract vector.
20325  unsigned NumElems = CurrentVT.getVectorNumElements();
20326  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
20327  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
20328  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
20329                                         : InVec.getOperand(1);
20330
20331  // If inputs to shuffle are the same for both ops, then allow 2 uses
20332  unsigned AllowedUses = InVec.getNumOperands() > 1 &&
20333                         InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
20334
20335  if (LdNode.getOpcode() == ISD::BITCAST) {
20336    // Don't duplicate a load with other uses.
20337    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
20338      return SDValue();
20339
20340    AllowedUses = 1; // only allow 1 load use if we have a bitcast
20341    LdNode = LdNode.getOperand(0);
20342  }
20343
20344  if (!ISD::isNormalLoad(LdNode.getNode()))
20345    return SDValue();
20346
20347  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
20348
20349  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
20350    return SDValue();
20351
20352  EVT EltVT = N->getValueType(0);
20353  // If there's a bitcast before the shuffle, check if the load type and
20354  // alignment is valid.
20355  unsigned Align = LN0->getAlignment();
20356  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
20357  unsigned NewAlign = TLI.getDataLayout()->getABITypeAlignment(
20358      EltVT.getTypeForEVT(*DAG.getContext()));
20359
20360  if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, EltVT))
20361    return SDValue();
20362
20363  // All checks match so transform back to vector_shuffle so that DAG combiner
20364  // can finish the job
20365  SDLoc dl(N);
20366
20367  // Create shuffle node taking into account the case that its a unary shuffle
20368  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(CurrentVT)
20369                                   : InVec.getOperand(1);
20370  Shuffle = DAG.getVectorShuffle(CurrentVT, dl,
20371                                 InVec.getOperand(0), Shuffle,
20372                                 &ShuffleMask[0]);
20373  Shuffle = DAG.getNode(ISD::BITCAST, dl, OriginalVT, Shuffle);
20374  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
20375                     EltNo);
20376}
20377
20378/// \brief Detect bitcasts between i32 to x86mmx low word. Since MMX types are
20379/// special and don't usually play with other vector types, it's better to
20380/// handle them early to be sure we emit efficient code by avoiding
20381/// store-load conversions.
20382static SDValue PerformBITCASTCombine(SDNode *N, SelectionDAG &DAG) {
20383  if (N->getValueType(0) != MVT::x86mmx ||
20384      N->getOperand(0)->getOpcode() != ISD::BUILD_VECTOR ||
20385      N->getOperand(0)->getValueType(0) != MVT::v2i32)
20386    return SDValue();
20387
20388  SDValue V = N->getOperand(0);
20389  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(1));
20390  if (C && C->getZExtValue() == 0 && V.getOperand(0).getValueType() == MVT::i32)
20391    return DAG.getNode(X86ISD::MMX_MOVW2D, SDLoc(V.getOperand(0)),
20392                       N->getValueType(0), V.getOperand(0));
20393
20394  return SDValue();
20395}
20396
20397/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
20398/// generation and convert it from being a bunch of shuffles and extracts
20399/// into a somewhat faster sequence. For i686, the best sequence is apparently
20400/// storing the value and loading scalars back, while for x64 we should
20401/// use 64-bit extracts and shifts.
20402static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
20403                                         TargetLowering::DAGCombinerInfo &DCI) {
20404  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
20405  if (NewOp.getNode())
20406    return NewOp;
20407
20408  SDValue InputVector = N->getOperand(0);
20409
20410  // Detect mmx to i32 conversion through a v2i32 elt extract.
20411  if (InputVector.getOpcode() == ISD::BITCAST && InputVector.hasOneUse() &&
20412      N->getValueType(0) == MVT::i32 &&
20413      InputVector.getValueType() == MVT::v2i32) {
20414
20415    // The bitcast source is a direct mmx result.
20416    SDValue MMXSrc = InputVector.getNode()->getOperand(0);
20417    if (MMXSrc.getValueType() == MVT::x86mmx)
20418      return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector),
20419                         N->getValueType(0),
20420                         InputVector.getNode()->getOperand(0));
20421
20422    // The mmx is indirect: (i64 extract_elt (v1i64 bitcast (x86mmx ...))).
20423    SDValue MMXSrcOp = MMXSrc.getOperand(0);
20424    if (MMXSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT && MMXSrc.hasOneUse() &&
20425        MMXSrc.getValueType() == MVT::i64 && MMXSrcOp.hasOneUse() &&
20426        MMXSrcOp.getOpcode() == ISD::BITCAST &&
20427        MMXSrcOp.getValueType() == MVT::v1i64 &&
20428        MMXSrcOp.getOperand(0).getValueType() == MVT::x86mmx)
20429      return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector),
20430                         N->getValueType(0),
20431                         MMXSrcOp.getOperand(0));
20432  }
20433
20434  // Only operate on vectors of 4 elements, where the alternative shuffling
20435  // gets to be more expensive.
20436  if (InputVector.getValueType() != MVT::v4i32)
20437    return SDValue();
20438
20439  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
20440  // single use which is a sign-extend or zero-extend, and all elements are
20441  // used.
20442  SmallVector<SDNode *, 4> Uses;
20443  unsigned ExtractedElements = 0;
20444  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
20445       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
20446    if (UI.getUse().getResNo() != InputVector.getResNo())
20447      return SDValue();
20448
20449    SDNode *Extract = *UI;
20450    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
20451      return SDValue();
20452
20453    if (Extract->getValueType(0) != MVT::i32)
20454      return SDValue();
20455    if (!Extract->hasOneUse())
20456      return SDValue();
20457    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
20458        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
20459      return SDValue();
20460    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
20461      return SDValue();
20462
20463    // Record which element was extracted.
20464    ExtractedElements |=
20465      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
20466
20467    Uses.push_back(Extract);
20468  }
20469
20470  // If not all the elements were used, this may not be worthwhile.
20471  if (ExtractedElements != 15)
20472    return SDValue();
20473
20474  // Ok, we've now decided to do the transformation.
20475  // If 64-bit shifts are legal, use the extract-shift sequence,
20476  // otherwise bounce the vector off the cache.
20477  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
20478  SDValue Vals[4];
20479  SDLoc dl(InputVector);
20480
20481  if (TLI.isOperationLegal(ISD::SRA, MVT::i64)) {
20482    SDValue Cst = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, InputVector);
20483    EVT VecIdxTy = DAG.getTargetLoweringInfo().getVectorIdxTy();
20484    SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst,
20485      DAG.getConstant(0, VecIdxTy));
20486    SDValue TopHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst,
20487      DAG.getConstant(1, VecIdxTy));
20488
20489    SDValue ShAmt = DAG.getConstant(32,
20490      DAG.getTargetLoweringInfo().getShiftAmountTy(MVT::i64));
20491    Vals[0] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BottomHalf);
20492    Vals[1] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
20493      DAG.getNode(ISD::SRA, dl, MVT::i64, BottomHalf, ShAmt));
20494    Vals[2] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, TopHalf);
20495    Vals[3] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
20496      DAG.getNode(ISD::SRA, dl, MVT::i64, TopHalf, ShAmt));
20497  } else {
20498    // Store the value to a temporary stack slot.
20499    SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
20500    SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
20501      MachinePointerInfo(), false, false, 0);
20502
20503    EVT ElementType = InputVector.getValueType().getVectorElementType();
20504    unsigned EltSize = ElementType.getSizeInBits() / 8;
20505
20506    // Replace each use (extract) with a load of the appropriate element.
20507    for (unsigned i = 0; i < 4; ++i) {
20508      uint64_t Offset = EltSize * i;
20509      SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
20510
20511      SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
20512                                       StackPtr, OffsetVal);
20513
20514      // Load the scalar.
20515      Vals[i] = DAG.getLoad(ElementType, dl, Ch,
20516                            ScalarAddr, MachinePointerInfo(),
20517                            false, false, false, 0);
20518
20519    }
20520  }
20521
20522  // Replace the extracts
20523  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
20524    UE = Uses.end(); UI != UE; ++UI) {
20525    SDNode *Extract = *UI;
20526
20527    SDValue Idx = Extract->getOperand(1);
20528    uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
20529    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), Vals[IdxVal]);
20530  }
20531
20532  // The replacement was made in place; don't return anything.
20533  return SDValue();
20534}
20535
20536/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
20537static std::pair<unsigned, bool>
20538matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS, SDValue RHS,
20539                   SelectionDAG &DAG, const X86Subtarget *Subtarget) {
20540  if (!VT.isVector())
20541    return std::make_pair(0, false);
20542
20543  bool NeedSplit = false;
20544  switch (VT.getSimpleVT().SimpleTy) {
20545  default: return std::make_pair(0, false);
20546  case MVT::v4i64:
20547  case MVT::v2i64:
20548    if (!Subtarget->hasVLX())
20549      return std::make_pair(0, false);
20550    break;
20551  case MVT::v64i8:
20552  case MVT::v32i16:
20553    if (!Subtarget->hasBWI())
20554      return std::make_pair(0, false);
20555    break;
20556  case MVT::v16i32:
20557  case MVT::v8i64:
20558    if (!Subtarget->hasAVX512())
20559      return std::make_pair(0, false);
20560    break;
20561  case MVT::v32i8:
20562  case MVT::v16i16:
20563  case MVT::v8i32:
20564    if (!Subtarget->hasAVX2())
20565      NeedSplit = true;
20566    if (!Subtarget->hasAVX())
20567      return std::make_pair(0, false);
20568    break;
20569  case MVT::v16i8:
20570  case MVT::v8i16:
20571  case MVT::v4i32:
20572    if (!Subtarget->hasSSE2())
20573      return std::make_pair(0, false);
20574  }
20575
20576  // SSE2 has only a small subset of the operations.
20577  bool hasUnsigned = Subtarget->hasSSE41() ||
20578                     (Subtarget->hasSSE2() && VT == MVT::v16i8);
20579  bool hasSigned = Subtarget->hasSSE41() ||
20580                   (Subtarget->hasSSE2() && VT == MVT::v8i16);
20581
20582  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
20583
20584  unsigned Opc = 0;
20585  // Check for x CC y ? x : y.
20586  if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
20587      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
20588    switch (CC) {
20589    default: break;
20590    case ISD::SETULT:
20591    case ISD::SETULE:
20592      Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
20593    case ISD::SETUGT:
20594    case ISD::SETUGE:
20595      Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
20596    case ISD::SETLT:
20597    case ISD::SETLE:
20598      Opc = hasSigned ? X86ISD::SMIN : 0; break;
20599    case ISD::SETGT:
20600    case ISD::SETGE:
20601      Opc = hasSigned ? X86ISD::SMAX : 0; break;
20602    }
20603  // Check for x CC y ? y : x -- a min/max with reversed arms.
20604  } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
20605             DAG.isEqualTo(RHS, Cond.getOperand(0))) {
20606    switch (CC) {
20607    default: break;
20608    case ISD::SETULT:
20609    case ISD::SETULE:
20610      Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
20611    case ISD::SETUGT:
20612    case ISD::SETUGE:
20613      Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
20614    case ISD::SETLT:
20615    case ISD::SETLE:
20616      Opc = hasSigned ? X86ISD::SMAX : 0; break;
20617    case ISD::SETGT:
20618    case ISD::SETGE:
20619      Opc = hasSigned ? X86ISD::SMIN : 0; break;
20620    }
20621  }
20622
20623  return std::make_pair(Opc, NeedSplit);
20624}
20625
20626static SDValue
20627transformVSELECTtoBlendVECTOR_SHUFFLE(SDNode *N, SelectionDAG &DAG,
20628                                      const X86Subtarget *Subtarget) {
20629  SDLoc dl(N);
20630  SDValue Cond = N->getOperand(0);
20631  SDValue LHS = N->getOperand(1);
20632  SDValue RHS = N->getOperand(2);
20633
20634  if (Cond.getOpcode() == ISD::SIGN_EXTEND) {
20635    SDValue CondSrc = Cond->getOperand(0);
20636    if (CondSrc->getOpcode() == ISD::SIGN_EXTEND_INREG)
20637      Cond = CondSrc->getOperand(0);
20638  }
20639
20640  if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
20641    return SDValue();
20642
20643  // A vselect where all conditions and data are constants can be optimized into
20644  // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR().
20645  if (ISD::isBuildVectorOfConstantSDNodes(LHS.getNode()) &&
20646      ISD::isBuildVectorOfConstantSDNodes(RHS.getNode()))
20647    return SDValue();
20648
20649  unsigned MaskValue = 0;
20650  if (!BUILD_VECTORtoBlendMask(cast<BuildVectorSDNode>(Cond), MaskValue))
20651    return SDValue();
20652
20653  MVT VT = N->getSimpleValueType(0);
20654  unsigned NumElems = VT.getVectorNumElements();
20655  SmallVector<int, 8> ShuffleMask(NumElems, -1);
20656  for (unsigned i = 0; i < NumElems; ++i) {
20657    // Be sure we emit undef where we can.
20658    if (Cond.getOperand(i)->getOpcode() == ISD::UNDEF)
20659      ShuffleMask[i] = -1;
20660    else
20661      ShuffleMask[i] = i + NumElems * ((MaskValue >> i) & 1);
20662  }
20663
20664  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
20665  if (!TLI.isShuffleMaskLegal(ShuffleMask, VT))
20666    return SDValue();
20667  return DAG.getVectorShuffle(VT, dl, LHS, RHS, &ShuffleMask[0]);
20668}
20669
20670/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
20671/// nodes.
20672static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
20673                                    TargetLowering::DAGCombinerInfo &DCI,
20674                                    const X86Subtarget *Subtarget) {
20675  SDLoc DL(N);
20676  SDValue Cond = N->getOperand(0);
20677  // Get the LHS/RHS of the select.
20678  SDValue LHS = N->getOperand(1);
20679  SDValue RHS = N->getOperand(2);
20680  EVT VT = LHS.getValueType();
20681  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
20682
20683  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
20684  // instructions match the semantics of the common C idiom x<y?x:y but not
20685  // x<=y?x:y, because of how they handle negative zero (which can be
20686  // ignored in unsafe-math mode).
20687  // We also try to create v2f32 min/max nodes, which we later widen to v4f32.
20688  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
20689      VT != MVT::f80 && (TLI.isTypeLegal(VT) || VT == MVT::v2f32) &&
20690      (Subtarget->hasSSE2() ||
20691       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
20692    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
20693
20694    unsigned Opcode = 0;
20695    // Check for x CC y ? x : y.
20696    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
20697        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
20698      switch (CC) {
20699      default: break;
20700      case ISD::SETULT:
20701        // Converting this to a min would handle NaNs incorrectly, and swapping
20702        // the operands would cause it to handle comparisons between positive
20703        // and negative zero incorrectly.
20704        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
20705          if (!DAG.getTarget().Options.UnsafeFPMath &&
20706              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
20707            break;
20708          std::swap(LHS, RHS);
20709        }
20710        Opcode = X86ISD::FMIN;
20711        break;
20712      case ISD::SETOLE:
20713        // Converting this to a min would handle comparisons between positive
20714        // and negative zero incorrectly.
20715        if (!DAG.getTarget().Options.UnsafeFPMath &&
20716            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
20717          break;
20718        Opcode = X86ISD::FMIN;
20719        break;
20720      case ISD::SETULE:
20721        // Converting this to a min would handle both negative zeros and NaNs
20722        // incorrectly, but we can swap the operands to fix both.
20723        std::swap(LHS, RHS);
20724      case ISD::SETOLT:
20725      case ISD::SETLT:
20726      case ISD::SETLE:
20727        Opcode = X86ISD::FMIN;
20728        break;
20729
20730      case ISD::SETOGE:
20731        // Converting this to a max would handle comparisons between positive
20732        // and negative zero incorrectly.
20733        if (!DAG.getTarget().Options.UnsafeFPMath &&
20734            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
20735          break;
20736        Opcode = X86ISD::FMAX;
20737        break;
20738      case ISD::SETUGT:
20739        // Converting this to a max would handle NaNs incorrectly, and swapping
20740        // the operands would cause it to handle comparisons between positive
20741        // and negative zero incorrectly.
20742        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
20743          if (!DAG.getTarget().Options.UnsafeFPMath &&
20744              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
20745            break;
20746          std::swap(LHS, RHS);
20747        }
20748        Opcode = X86ISD::FMAX;
20749        break;
20750      case ISD::SETUGE:
20751        // Converting this to a max would handle both negative zeros and NaNs
20752        // incorrectly, but we can swap the operands to fix both.
20753        std::swap(LHS, RHS);
20754      case ISD::SETOGT:
20755      case ISD::SETGT:
20756      case ISD::SETGE:
20757        Opcode = X86ISD::FMAX;
20758        break;
20759      }
20760    // Check for x CC y ? y : x -- a min/max with reversed arms.
20761    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
20762               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
20763      switch (CC) {
20764      default: break;
20765      case ISD::SETOGE:
20766        // Converting this to a min would handle comparisons between positive
20767        // and negative zero incorrectly, and swapping the operands would
20768        // cause it to handle NaNs incorrectly.
20769        if (!DAG.getTarget().Options.UnsafeFPMath &&
20770            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
20771          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
20772            break;
20773          std::swap(LHS, RHS);
20774        }
20775        Opcode = X86ISD::FMIN;
20776        break;
20777      case ISD::SETUGT:
20778        // Converting this to a min would handle NaNs incorrectly.
20779        if (!DAG.getTarget().Options.UnsafeFPMath &&
20780            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
20781          break;
20782        Opcode = X86ISD::FMIN;
20783        break;
20784      case ISD::SETUGE:
20785        // Converting this to a min would handle both negative zeros and NaNs
20786        // incorrectly, but we can swap the operands to fix both.
20787        std::swap(LHS, RHS);
20788      case ISD::SETOGT:
20789      case ISD::SETGT:
20790      case ISD::SETGE:
20791        Opcode = X86ISD::FMIN;
20792        break;
20793
20794      case ISD::SETULT:
20795        // Converting this to a max would handle NaNs incorrectly.
20796        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
20797          break;
20798        Opcode = X86ISD::FMAX;
20799        break;
20800      case ISD::SETOLE:
20801        // Converting this to a max would handle comparisons between positive
20802        // and negative zero incorrectly, and swapping the operands would
20803        // cause it to handle NaNs incorrectly.
20804        if (!DAG.getTarget().Options.UnsafeFPMath &&
20805            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
20806          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
20807            break;
20808          std::swap(LHS, RHS);
20809        }
20810        Opcode = X86ISD::FMAX;
20811        break;
20812      case ISD::SETULE:
20813        // Converting this to a max would handle both negative zeros and NaNs
20814        // incorrectly, but we can swap the operands to fix both.
20815        std::swap(LHS, RHS);
20816      case ISD::SETOLT:
20817      case ISD::SETLT:
20818      case ISD::SETLE:
20819        Opcode = X86ISD::FMAX;
20820        break;
20821      }
20822    }
20823
20824    if (Opcode)
20825      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
20826  }
20827
20828  EVT CondVT = Cond.getValueType();
20829  if (Subtarget->hasAVX512() && VT.isVector() && CondVT.isVector() &&
20830      CondVT.getVectorElementType() == MVT::i1) {
20831    // v16i8 (select v16i1, v16i8, v16i8) does not have a proper
20832    // lowering on KNL. In this case we convert it to
20833    // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction.
20834    // The same situation for all 128 and 256-bit vectors of i8 and i16.
20835    // Since SKX these selects have a proper lowering.
20836    EVT OpVT = LHS.getValueType();
20837    if ((OpVT.is128BitVector() || OpVT.is256BitVector()) &&
20838        (OpVT.getVectorElementType() == MVT::i8 ||
20839         OpVT.getVectorElementType() == MVT::i16) &&
20840        !(Subtarget->hasBWI() && Subtarget->hasVLX())) {
20841      Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, OpVT, Cond);
20842      DCI.AddToWorklist(Cond.getNode());
20843      return DAG.getNode(N->getOpcode(), DL, OpVT, Cond, LHS, RHS);
20844    }
20845  }
20846  // If this is a select between two integer constants, try to do some
20847  // optimizations.
20848  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
20849    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
20850      // Don't do this for crazy integer types.
20851      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
20852        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
20853        // so that TrueC (the true value) is larger than FalseC.
20854        bool NeedsCondInvert = false;
20855
20856        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
20857            // Efficiently invertible.
20858            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
20859             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
20860              isa<ConstantSDNode>(Cond.getOperand(1))))) {
20861          NeedsCondInvert = true;
20862          std::swap(TrueC, FalseC);
20863        }
20864
20865        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
20866        if (FalseC->getAPIntValue() == 0 &&
20867            TrueC->getAPIntValue().isPowerOf2()) {
20868          if (NeedsCondInvert) // Invert the condition if needed.
20869            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
20870                               DAG.getConstant(1, Cond.getValueType()));
20871
20872          // Zero extend the condition if needed.
20873          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
20874
20875          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
20876          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
20877                             DAG.getConstant(ShAmt, MVT::i8));
20878        }
20879
20880        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
20881        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
20882          if (NeedsCondInvert) // Invert the condition if needed.
20883            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
20884                               DAG.getConstant(1, Cond.getValueType()));
20885
20886          // Zero extend the condition if needed.
20887          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
20888                             FalseC->getValueType(0), Cond);
20889          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
20890                             SDValue(FalseC, 0));
20891        }
20892
20893        // Optimize cases that will turn into an LEA instruction.  This requires
20894        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
20895        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
20896          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
20897          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
20898
20899          bool isFastMultiplier = false;
20900          if (Diff < 10) {
20901            switch ((unsigned char)Diff) {
20902              default: break;
20903              case 1:  // result = add base, cond
20904              case 2:  // result = lea base(    , cond*2)
20905              case 3:  // result = lea base(cond, cond*2)
20906              case 4:  // result = lea base(    , cond*4)
20907              case 5:  // result = lea base(cond, cond*4)
20908              case 8:  // result = lea base(    , cond*8)
20909              case 9:  // result = lea base(cond, cond*8)
20910                isFastMultiplier = true;
20911                break;
20912            }
20913          }
20914
20915          if (isFastMultiplier) {
20916            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
20917            if (NeedsCondInvert) // Invert the condition if needed.
20918              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
20919                                 DAG.getConstant(1, Cond.getValueType()));
20920
20921            // Zero extend the condition if needed.
20922            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
20923                               Cond);
20924            // Scale the condition by the difference.
20925            if (Diff != 1)
20926              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
20927                                 DAG.getConstant(Diff, Cond.getValueType()));
20928
20929            // Add the base if non-zero.
20930            if (FalseC->getAPIntValue() != 0)
20931              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
20932                                 SDValue(FalseC, 0));
20933            return Cond;
20934          }
20935        }
20936      }
20937  }
20938
20939  // Canonicalize max and min:
20940  // (x > y) ? x : y -> (x >= y) ? x : y
20941  // (x < y) ? x : y -> (x <= y) ? x : y
20942  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
20943  // the need for an extra compare
20944  // against zero. e.g.
20945  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
20946  // subl   %esi, %edi
20947  // testl  %edi, %edi
20948  // movl   $0, %eax
20949  // cmovgl %edi, %eax
20950  // =>
20951  // xorl   %eax, %eax
20952  // subl   %esi, $edi
20953  // cmovsl %eax, %edi
20954  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
20955      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
20956      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
20957    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
20958    switch (CC) {
20959    default: break;
20960    case ISD::SETLT:
20961    case ISD::SETGT: {
20962      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
20963      Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
20964                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
20965      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
20966    }
20967    }
20968  }
20969
20970  // Early exit check
20971  if (!TLI.isTypeLegal(VT))
20972    return SDValue();
20973
20974  // Match VSELECTs into subs with unsigned saturation.
20975  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
20976      // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
20977      ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
20978       (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
20979    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
20980
20981    // Check if one of the arms of the VSELECT is a zero vector. If it's on the
20982    // left side invert the predicate to simplify logic below.
20983    SDValue Other;
20984    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
20985      Other = RHS;
20986      CC = ISD::getSetCCInverse(CC, true);
20987    } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
20988      Other = LHS;
20989    }
20990
20991    if (Other.getNode() && Other->getNumOperands() == 2 &&
20992        DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
20993      SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
20994      SDValue CondRHS = Cond->getOperand(1);
20995
20996      // Look for a general sub with unsigned saturation first.
20997      // x >= y ? x-y : 0 --> subus x, y
20998      // x >  y ? x-y : 0 --> subus x, y
20999      if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
21000          Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
21001        return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
21002
21003      if (auto *OpRHSBV = dyn_cast<BuildVectorSDNode>(OpRHS))
21004        if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode()) {
21005          if (auto *CondRHSBV = dyn_cast<BuildVectorSDNode>(CondRHS))
21006            if (auto *CondRHSConst = CondRHSBV->getConstantSplatNode())
21007              // If the RHS is a constant we have to reverse the const
21008              // canonicalization.
21009              // x > C-1 ? x+-C : 0 --> subus x, C
21010              if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
21011                  CondRHSConst->getAPIntValue() ==
21012                      (-OpRHSConst->getAPIntValue() - 1))
21013                return DAG.getNode(
21014                    X86ISD::SUBUS, DL, VT, OpLHS,
21015                    DAG.getConstant(-OpRHSConst->getAPIntValue(), VT));
21016
21017          // Another special case: If C was a sign bit, the sub has been
21018          // canonicalized into a xor.
21019          // FIXME: Would it be better to use computeKnownBits to determine
21020          //        whether it's safe to decanonicalize the xor?
21021          // x s< 0 ? x^C : 0 --> subus x, C
21022          if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
21023              ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
21024              OpRHSConst->getAPIntValue().isSignBit())
21025            // Note that we have to rebuild the RHS constant here to ensure we
21026            // don't rely on particular values of undef lanes.
21027            return DAG.getNode(
21028                X86ISD::SUBUS, DL, VT, OpLHS,
21029                DAG.getConstant(OpRHSConst->getAPIntValue(), VT));
21030        }
21031    }
21032  }
21033
21034  // Try to match a min/max vector operation.
21035  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC) {
21036    std::pair<unsigned, bool> ret = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget);
21037    unsigned Opc = ret.first;
21038    bool NeedSplit = ret.second;
21039
21040    if (Opc && NeedSplit) {
21041      unsigned NumElems = VT.getVectorNumElements();
21042      // Extract the LHS vectors
21043      SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, DL);
21044      SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, DL);
21045
21046      // Extract the RHS vectors
21047      SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, DL);
21048      SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, DL);
21049
21050      // Create min/max for each subvector
21051      LHS = DAG.getNode(Opc, DL, LHS1.getValueType(), LHS1, RHS1);
21052      RHS = DAG.getNode(Opc, DL, LHS2.getValueType(), LHS2, RHS2);
21053
21054      // Merge the result
21055      return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LHS, RHS);
21056    } else if (Opc)
21057      return DAG.getNode(Opc, DL, VT, LHS, RHS);
21058  }
21059
21060  // Simplify vector selection if condition value type matches vselect
21061  // operand type
21062  if (N->getOpcode() == ISD::VSELECT && CondVT == VT) {
21063    assert(Cond.getValueType().isVector() &&
21064           "vector select expects a vector selector!");
21065
21066    bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
21067    bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
21068
21069    // Try invert the condition if true value is not all 1s and false value
21070    // is not all 0s.
21071    if (!TValIsAllOnes && !FValIsAllZeros &&
21072        // Check if the selector will be produced by CMPP*/PCMP*
21073        Cond.getOpcode() == ISD::SETCC &&
21074        // Check if SETCC has already been promoted
21075        TLI.getSetCCResultType(*DAG.getContext(), VT) == CondVT) {
21076      bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
21077      bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
21078
21079      if (TValIsAllZeros || FValIsAllOnes) {
21080        SDValue CC = Cond.getOperand(2);
21081        ISD::CondCode NewCC =
21082          ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
21083                               Cond.getOperand(0).getValueType().isInteger());
21084        Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1), NewCC);
21085        std::swap(LHS, RHS);
21086        TValIsAllOnes = FValIsAllOnes;
21087        FValIsAllZeros = TValIsAllZeros;
21088      }
21089    }
21090
21091    if (TValIsAllOnes || FValIsAllZeros) {
21092      SDValue Ret;
21093
21094      if (TValIsAllOnes && FValIsAllZeros)
21095        Ret = Cond;
21096      else if (TValIsAllOnes)
21097        Ret = DAG.getNode(ISD::OR, DL, CondVT, Cond,
21098                          DAG.getNode(ISD::BITCAST, DL, CondVT, RHS));
21099      else if (FValIsAllZeros)
21100        Ret = DAG.getNode(ISD::AND, DL, CondVT, Cond,
21101                          DAG.getNode(ISD::BITCAST, DL, CondVT, LHS));
21102
21103      return DAG.getNode(ISD::BITCAST, DL, VT, Ret);
21104    }
21105  }
21106
21107  // We should generate an X86ISD::BLENDI from a vselect if its argument
21108  // is a sign_extend_inreg of an any_extend of a BUILD_VECTOR of
21109  // constants. This specific pattern gets generated when we split a
21110  // selector for a 512 bit vector in a machine without AVX512 (but with
21111  // 256-bit vectors), during legalization:
21112  //
21113  // (vselect (sign_extend (any_extend (BUILD_VECTOR)) i1) LHS RHS)
21114  //
21115  // Iff we find this pattern and the build_vectors are built from
21116  // constants, we translate the vselect into a shuffle_vector that we
21117  // know will be matched by LowerVECTOR_SHUFFLEtoBlend.
21118  if ((N->getOpcode() == ISD::VSELECT ||
21119       N->getOpcode() == X86ISD::SHRUNKBLEND) &&
21120      !DCI.isBeforeLegalize()) {
21121    SDValue Shuffle = transformVSELECTtoBlendVECTOR_SHUFFLE(N, DAG, Subtarget);
21122    if (Shuffle.getNode())
21123      return Shuffle;
21124  }
21125
21126  // If this is a *dynamic* select (non-constant condition) and we can match
21127  // this node with one of the variable blend instructions, restructure the
21128  // condition so that the blends can use the high bit of each element and use
21129  // SimplifyDemandedBits to simplify the condition operand.
21130  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
21131      !DCI.isBeforeLegalize() &&
21132      !ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) {
21133    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
21134
21135    // Don't optimize vector selects that map to mask-registers.
21136    if (BitWidth == 1)
21137      return SDValue();
21138
21139    // We can only handle the cases where VSELECT is directly legal on the
21140    // subtarget. We custom lower VSELECT nodes with constant conditions and
21141    // this makes it hard to see whether a dynamic VSELECT will correctly
21142    // lower, so we both check the operation's status and explicitly handle the
21143    // cases where a *dynamic* blend will fail even though a constant-condition
21144    // blend could be custom lowered.
21145    // FIXME: We should find a better way to handle this class of problems.
21146    // Potentially, we should combine constant-condition vselect nodes
21147    // pre-legalization into shuffles and not mark as many types as custom
21148    // lowered.
21149    if (!TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
21150      return SDValue();
21151    // FIXME: We don't support i16-element blends currently. We could and
21152    // should support them by making *all* the bits in the condition be set
21153    // rather than just the high bit and using an i8-element blend.
21154    if (VT.getScalarType() == MVT::i16)
21155      return SDValue();
21156    // Dynamic blending was only available from SSE4.1 onward.
21157    if (VT.getSizeInBits() == 128 && !Subtarget->hasSSE41())
21158      return SDValue();
21159    // Byte blends are only available in AVX2
21160    if (VT.getSizeInBits() == 256 && VT.getScalarType() == MVT::i8 &&
21161        !Subtarget->hasAVX2())
21162      return SDValue();
21163
21164    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
21165    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
21166
21167    APInt KnownZero, KnownOne;
21168    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
21169                                          DCI.isBeforeLegalizeOps());
21170    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
21171        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne,
21172                                 TLO)) {
21173      // If we changed the computation somewhere in the DAG, this change
21174      // will affect all users of Cond.
21175      // Make sure it is fine and update all the nodes so that we do not
21176      // use the generic VSELECT anymore. Otherwise, we may perform
21177      // wrong optimizations as we messed up with the actual expectation
21178      // for the vector boolean values.
21179      if (Cond != TLO.Old) {
21180        // Check all uses of that condition operand to check whether it will be
21181        // consumed by non-BLEND instructions, which may depend on all bits are
21182        // set properly.
21183        for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end();
21184             I != E; ++I)
21185          if (I->getOpcode() != ISD::VSELECT)
21186            // TODO: Add other opcodes eventually lowered into BLEND.
21187            return SDValue();
21188
21189        // Update all the users of the condition, before committing the change,
21190        // so that the VSELECT optimizations that expect the correct vector
21191        // boolean value will not be triggered.
21192        for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end();
21193             I != E; ++I)
21194          DAG.ReplaceAllUsesOfValueWith(
21195              SDValue(*I, 0),
21196              DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(*I), I->getValueType(0),
21197                          Cond, I->getOperand(1), I->getOperand(2)));
21198        DCI.CommitTargetLoweringOpt(TLO);
21199        return SDValue();
21200      }
21201      // At this point, only Cond is changed. Change the condition
21202      // just for N to keep the opportunity to optimize all other
21203      // users their own way.
21204      DAG.ReplaceAllUsesOfValueWith(
21205          SDValue(N, 0),
21206          DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(N), N->getValueType(0),
21207                      TLO.New, N->getOperand(1), N->getOperand(2)));
21208      return SDValue();
21209    }
21210  }
21211
21212  return SDValue();
21213}
21214
21215// Check whether a boolean test is testing a boolean value generated by
21216// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
21217// code.
21218//
21219// Simplify the following patterns:
21220// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
21221// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
21222// to (Op EFLAGS Cond)
21223//
21224// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
21225// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
21226// to (Op EFLAGS !Cond)
21227//
21228// where Op could be BRCOND or CMOV.
21229//
21230static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
21231  // Quit if not CMP and SUB with its value result used.
21232  if (Cmp.getOpcode() != X86ISD::CMP &&
21233      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
21234      return SDValue();
21235
21236  // Quit if not used as a boolean value.
21237  if (CC != X86::COND_E && CC != X86::COND_NE)
21238    return SDValue();
21239
21240  // Check CMP operands. One of them should be 0 or 1 and the other should be
21241  // an SetCC or extended from it.
21242  SDValue Op1 = Cmp.getOperand(0);
21243  SDValue Op2 = Cmp.getOperand(1);
21244
21245  SDValue SetCC;
21246  const ConstantSDNode* C = nullptr;
21247  bool needOppositeCond = (CC == X86::COND_E);
21248  bool checkAgainstTrue = false; // Is it a comparison against 1?
21249
21250  if ((C = dyn_cast<ConstantSDNode>(Op1)))
21251    SetCC = Op2;
21252  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
21253    SetCC = Op1;
21254  else // Quit if all operands are not constants.
21255    return SDValue();
21256
21257  if (C->getZExtValue() == 1) {
21258    needOppositeCond = !needOppositeCond;
21259    checkAgainstTrue = true;
21260  } else if (C->getZExtValue() != 0)
21261    // Quit if the constant is neither 0 or 1.
21262    return SDValue();
21263
21264  bool truncatedToBoolWithAnd = false;
21265  // Skip (zext $x), (trunc $x), or (and $x, 1) node.
21266  while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
21267         SetCC.getOpcode() == ISD::TRUNCATE ||
21268         SetCC.getOpcode() == ISD::AND) {
21269    if (SetCC.getOpcode() == ISD::AND) {
21270      int OpIdx = -1;
21271      ConstantSDNode *CS;
21272      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(0))) &&
21273          CS->getZExtValue() == 1)
21274        OpIdx = 1;
21275      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(1))) &&
21276          CS->getZExtValue() == 1)
21277        OpIdx = 0;
21278      if (OpIdx == -1)
21279        break;
21280      SetCC = SetCC.getOperand(OpIdx);
21281      truncatedToBoolWithAnd = true;
21282    } else
21283      SetCC = SetCC.getOperand(0);
21284  }
21285
21286  switch (SetCC.getOpcode()) {
21287  case X86ISD::SETCC_CARRY:
21288    // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
21289    // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
21290    // i.e. it's a comparison against true but the result of SETCC_CARRY is not
21291    // truncated to i1 using 'and'.
21292    if (checkAgainstTrue && !truncatedToBoolWithAnd)
21293      break;
21294    assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
21295           "Invalid use of SETCC_CARRY!");
21296    // FALL THROUGH
21297  case X86ISD::SETCC:
21298    // Set the condition code or opposite one if necessary.
21299    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
21300    if (needOppositeCond)
21301      CC = X86::GetOppositeBranchCondition(CC);
21302    return SetCC.getOperand(1);
21303  case X86ISD::CMOV: {
21304    // Check whether false/true value has canonical one, i.e. 0 or 1.
21305    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
21306    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
21307    // Quit if true value is not a constant.
21308    if (!TVal)
21309      return SDValue();
21310    // Quit if false value is not a constant.
21311    if (!FVal) {
21312      SDValue Op = SetCC.getOperand(0);
21313      // Skip 'zext' or 'trunc' node.
21314      if (Op.getOpcode() == ISD::ZERO_EXTEND ||
21315          Op.getOpcode() == ISD::TRUNCATE)
21316        Op = Op.getOperand(0);
21317      // A special case for rdrand/rdseed, where 0 is set if false cond is
21318      // found.
21319      if ((Op.getOpcode() != X86ISD::RDRAND &&
21320           Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
21321        return SDValue();
21322    }
21323    // Quit if false value is not the constant 0 or 1.
21324    bool FValIsFalse = true;
21325    if (FVal && FVal->getZExtValue() != 0) {
21326      if (FVal->getZExtValue() != 1)
21327        return SDValue();
21328      // If FVal is 1, opposite cond is needed.
21329      needOppositeCond = !needOppositeCond;
21330      FValIsFalse = false;
21331    }
21332    // Quit if TVal is not the constant opposite of FVal.
21333    if (FValIsFalse && TVal->getZExtValue() != 1)
21334      return SDValue();
21335    if (!FValIsFalse && TVal->getZExtValue() != 0)
21336      return SDValue();
21337    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
21338    if (needOppositeCond)
21339      CC = X86::GetOppositeBranchCondition(CC);
21340    return SetCC.getOperand(3);
21341  }
21342  }
21343
21344  return SDValue();
21345}
21346
21347/// Check whether Cond is an AND/OR of SETCCs off of the same EFLAGS.
21348/// Match:
21349///   (X86or (X86setcc) (X86setcc))
21350///   (X86cmp (and (X86setcc) (X86setcc)), 0)
21351static bool checkBoolTestAndOrSetCCCombine(SDValue Cond, X86::CondCode &CC0,
21352                                           X86::CondCode &CC1, SDValue &Flags,
21353                                           bool &isAnd) {
21354  if (Cond->getOpcode() == X86ISD::CMP) {
21355    ConstantSDNode *CondOp1C = dyn_cast<ConstantSDNode>(Cond->getOperand(1));
21356    if (!CondOp1C || !CondOp1C->isNullValue())
21357      return false;
21358
21359    Cond = Cond->getOperand(0);
21360  }
21361
21362  isAnd = false;
21363
21364  SDValue SetCC0, SetCC1;
21365  switch (Cond->getOpcode()) {
21366  default: return false;
21367  case ISD::AND:
21368  case X86ISD::AND:
21369    isAnd = true;
21370    // fallthru
21371  case ISD::OR:
21372  case X86ISD::OR:
21373    SetCC0 = Cond->getOperand(0);
21374    SetCC1 = Cond->getOperand(1);
21375    break;
21376  };
21377
21378  // Make sure we have SETCC nodes, using the same flags value.
21379  if (SetCC0.getOpcode() != X86ISD::SETCC ||
21380      SetCC1.getOpcode() != X86ISD::SETCC ||
21381      SetCC0->getOperand(1) != SetCC1->getOperand(1))
21382    return false;
21383
21384  CC0 = (X86::CondCode)SetCC0->getConstantOperandVal(0);
21385  CC1 = (X86::CondCode)SetCC1->getConstantOperandVal(0);
21386  Flags = SetCC0->getOperand(1);
21387  return true;
21388}
21389
21390/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
21391static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
21392                                  TargetLowering::DAGCombinerInfo &DCI,
21393                                  const X86Subtarget *Subtarget) {
21394  SDLoc DL(N);
21395
21396  // If the flag operand isn't dead, don't touch this CMOV.
21397  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
21398    return SDValue();
21399
21400  SDValue FalseOp = N->getOperand(0);
21401  SDValue TrueOp = N->getOperand(1);
21402  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
21403  SDValue Cond = N->getOperand(3);
21404
21405  if (CC == X86::COND_E || CC == X86::COND_NE) {
21406    switch (Cond.getOpcode()) {
21407    default: break;
21408    case X86ISD::BSR:
21409    case X86ISD::BSF:
21410      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
21411      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
21412        return (CC == X86::COND_E) ? FalseOp : TrueOp;
21413    }
21414  }
21415
21416  SDValue Flags;
21417
21418  Flags = checkBoolTestSetCCCombine(Cond, CC);
21419  if (Flags.getNode() &&
21420      // Extra check as FCMOV only supports a subset of X86 cond.
21421      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
21422    SDValue Ops[] = { FalseOp, TrueOp,
21423                      DAG.getConstant(CC, MVT::i8), Flags };
21424    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops);
21425  }
21426
21427  // If this is a select between two integer constants, try to do some
21428  // optimizations.  Note that the operands are ordered the opposite of SELECT
21429  // operands.
21430  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
21431    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
21432      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
21433      // larger than FalseC (the false value).
21434      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
21435        CC = X86::GetOppositeBranchCondition(CC);
21436        std::swap(TrueC, FalseC);
21437        std::swap(TrueOp, FalseOp);
21438      }
21439
21440      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
21441      // This is efficient for any integer data type (including i8/i16) and
21442      // shift amount.
21443      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
21444        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
21445                           DAG.getConstant(CC, MVT::i8), Cond);
21446
21447        // Zero extend the condition if needed.
21448        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
21449
21450        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
21451        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
21452                           DAG.getConstant(ShAmt, MVT::i8));
21453        if (N->getNumValues() == 2)  // Dead flag value?
21454          return DCI.CombineTo(N, Cond, SDValue());
21455        return Cond;
21456      }
21457
21458      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
21459      // for any integer data type, including i8/i16.
21460      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
21461        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
21462                           DAG.getConstant(CC, MVT::i8), Cond);
21463
21464        // Zero extend the condition if needed.
21465        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
21466                           FalseC->getValueType(0), Cond);
21467        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
21468                           SDValue(FalseC, 0));
21469
21470        if (N->getNumValues() == 2)  // Dead flag value?
21471          return DCI.CombineTo(N, Cond, SDValue());
21472        return Cond;
21473      }
21474
21475      // Optimize cases that will turn into an LEA instruction.  This requires
21476      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
21477      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
21478        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
21479        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
21480
21481        bool isFastMultiplier = false;
21482        if (Diff < 10) {
21483          switch ((unsigned char)Diff) {
21484          default: break;
21485          case 1:  // result = add base, cond
21486          case 2:  // result = lea base(    , cond*2)
21487          case 3:  // result = lea base(cond, cond*2)
21488          case 4:  // result = lea base(    , cond*4)
21489          case 5:  // result = lea base(cond, cond*4)
21490          case 8:  // result = lea base(    , cond*8)
21491          case 9:  // result = lea base(cond, cond*8)
21492            isFastMultiplier = true;
21493            break;
21494          }
21495        }
21496
21497        if (isFastMultiplier) {
21498          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
21499          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
21500                             DAG.getConstant(CC, MVT::i8), Cond);
21501          // Zero extend the condition if needed.
21502          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
21503                             Cond);
21504          // Scale the condition by the difference.
21505          if (Diff != 1)
21506            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
21507                               DAG.getConstant(Diff, Cond.getValueType()));
21508
21509          // Add the base if non-zero.
21510          if (FalseC->getAPIntValue() != 0)
21511            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
21512                               SDValue(FalseC, 0));
21513          if (N->getNumValues() == 2)  // Dead flag value?
21514            return DCI.CombineTo(N, Cond, SDValue());
21515          return Cond;
21516        }
21517      }
21518    }
21519  }
21520
21521  // Handle these cases:
21522  //   (select (x != c), e, c) -> select (x != c), e, x),
21523  //   (select (x == c), c, e) -> select (x == c), x, e)
21524  // where the c is an integer constant, and the "select" is the combination
21525  // of CMOV and CMP.
21526  //
21527  // The rationale for this change is that the conditional-move from a constant
21528  // needs two instructions, however, conditional-move from a register needs
21529  // only one instruction.
21530  //
21531  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
21532  //  some instruction-combining opportunities. This opt needs to be
21533  //  postponed as late as possible.
21534  //
21535  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
21536    // the DCI.xxxx conditions are provided to postpone the optimization as
21537    // late as possible.
21538
21539    ConstantSDNode *CmpAgainst = nullptr;
21540    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
21541        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
21542        !isa<ConstantSDNode>(Cond.getOperand(0))) {
21543
21544      if (CC == X86::COND_NE &&
21545          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
21546        CC = X86::GetOppositeBranchCondition(CC);
21547        std::swap(TrueOp, FalseOp);
21548      }
21549
21550      if (CC == X86::COND_E &&
21551          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
21552        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
21553                          DAG.getConstant(CC, MVT::i8), Cond };
21554        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops);
21555      }
21556    }
21557  }
21558
21559  // Fold and/or of setcc's to double CMOV:
21560  //   (CMOV F, T, ((cc1 | cc2) != 0)) -> (CMOV (CMOV F, T, cc1), T, cc2)
21561  //   (CMOV F, T, ((cc1 & cc2) != 0)) -> (CMOV (CMOV T, F, !cc1), F, !cc2)
21562  //
21563  // This combine lets us generate:
21564  //   cmovcc1 (jcc1 if we don't have CMOV)
21565  //   cmovcc2 (same)
21566  // instead of:
21567  //   setcc1
21568  //   setcc2
21569  //   and/or
21570  //   cmovne (jne if we don't have CMOV)
21571  // When we can't use the CMOV instruction, it might increase branch
21572  // mispredicts.
21573  // When we can use CMOV, or when there is no mispredict, this improves
21574  // throughput and reduces register pressure.
21575  //
21576  if (CC == X86::COND_NE) {
21577    SDValue Flags;
21578    X86::CondCode CC0, CC1;
21579    bool isAndSetCC;
21580    if (checkBoolTestAndOrSetCCCombine(Cond, CC0, CC1, Flags, isAndSetCC)) {
21581      if (isAndSetCC) {
21582        std::swap(FalseOp, TrueOp);
21583        CC0 = X86::GetOppositeBranchCondition(CC0);
21584        CC1 = X86::GetOppositeBranchCondition(CC1);
21585      }
21586
21587      SDValue LOps[] = {FalseOp, TrueOp, DAG.getConstant(CC0, MVT::i8),
21588        Flags};
21589      SDValue LCMOV = DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), LOps);
21590      SDValue Ops[] = {LCMOV, TrueOp, DAG.getConstant(CC1, MVT::i8), Flags};
21591      SDValue CMOV = DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops);
21592      DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(CMOV.getNode(), 1));
21593      return CMOV;
21594    }
21595  }
21596
21597  return SDValue();
21598}
21599
21600static SDValue PerformINTRINSIC_WO_CHAINCombine(SDNode *N, SelectionDAG &DAG,
21601                                                const X86Subtarget *Subtarget) {
21602  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
21603  switch (IntNo) {
21604  default: return SDValue();
21605  // SSE/AVX/AVX2 blend intrinsics.
21606  case Intrinsic::x86_avx2_pblendvb:
21607    // Don't try to simplify this intrinsic if we don't have AVX2.
21608    if (!Subtarget->hasAVX2())
21609      return SDValue();
21610    // FALL-THROUGH
21611  case Intrinsic::x86_avx_blendv_pd_256:
21612  case Intrinsic::x86_avx_blendv_ps_256:
21613    // Don't try to simplify this intrinsic if we don't have AVX.
21614    if (!Subtarget->hasAVX())
21615      return SDValue();
21616    // FALL-THROUGH
21617  case Intrinsic::x86_sse41_blendvps:
21618  case Intrinsic::x86_sse41_blendvpd:
21619  case Intrinsic::x86_sse41_pblendvb: {
21620    SDValue Op0 = N->getOperand(1);
21621    SDValue Op1 = N->getOperand(2);
21622    SDValue Mask = N->getOperand(3);
21623
21624    // Don't try to simplify this intrinsic if we don't have SSE4.1.
21625    if (!Subtarget->hasSSE41())
21626      return SDValue();
21627
21628    // fold (blend A, A, Mask) -> A
21629    if (Op0 == Op1)
21630      return Op0;
21631    // fold (blend A, B, allZeros) -> A
21632    if (ISD::isBuildVectorAllZeros(Mask.getNode()))
21633      return Op0;
21634    // fold (blend A, B, allOnes) -> B
21635    if (ISD::isBuildVectorAllOnes(Mask.getNode()))
21636      return Op1;
21637
21638    // Simplify the case where the mask is a constant i32 value.
21639    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mask)) {
21640      if (C->isNullValue())
21641        return Op0;
21642      if (C->isAllOnesValue())
21643        return Op1;
21644    }
21645
21646    return SDValue();
21647  }
21648
21649  // Packed SSE2/AVX2 arithmetic shift immediate intrinsics.
21650  case Intrinsic::x86_sse2_psrai_w:
21651  case Intrinsic::x86_sse2_psrai_d:
21652  case Intrinsic::x86_avx2_psrai_w:
21653  case Intrinsic::x86_avx2_psrai_d:
21654  case Intrinsic::x86_sse2_psra_w:
21655  case Intrinsic::x86_sse2_psra_d:
21656  case Intrinsic::x86_avx2_psra_w:
21657  case Intrinsic::x86_avx2_psra_d: {
21658    SDValue Op0 = N->getOperand(1);
21659    SDValue Op1 = N->getOperand(2);
21660    EVT VT = Op0.getValueType();
21661    assert(VT.isVector() && "Expected a vector type!");
21662
21663    if (isa<BuildVectorSDNode>(Op1))
21664      Op1 = Op1.getOperand(0);
21665
21666    if (!isa<ConstantSDNode>(Op1))
21667      return SDValue();
21668
21669    EVT SVT = VT.getVectorElementType();
21670    unsigned SVTBits = SVT.getSizeInBits();
21671
21672    ConstantSDNode *CND = cast<ConstantSDNode>(Op1);
21673    const APInt &C = APInt(SVTBits, CND->getAPIntValue().getZExtValue());
21674    uint64_t ShAmt = C.getZExtValue();
21675
21676    // Don't try to convert this shift into a ISD::SRA if the shift
21677    // count is bigger than or equal to the element size.
21678    if (ShAmt >= SVTBits)
21679      return SDValue();
21680
21681    // Trivial case: if the shift count is zero, then fold this
21682    // into the first operand.
21683    if (ShAmt == 0)
21684      return Op0;
21685
21686    // Replace this packed shift intrinsic with a target independent
21687    // shift dag node.
21688    SDValue Splat = DAG.getConstant(C, VT);
21689    return DAG.getNode(ISD::SRA, SDLoc(N), VT, Op0, Splat);
21690  }
21691  }
21692}
21693
21694/// PerformMulCombine - Optimize a single multiply with constant into two
21695/// in order to implement it with two cheaper instructions, e.g.
21696/// LEA + SHL, LEA + LEA.
21697static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
21698                                 TargetLowering::DAGCombinerInfo &DCI) {
21699  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
21700    return SDValue();
21701
21702  EVT VT = N->getValueType(0);
21703  if (VT != MVT::i64 && VT != MVT::i32)
21704    return SDValue();
21705
21706  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
21707  if (!C)
21708    return SDValue();
21709  uint64_t MulAmt = C->getZExtValue();
21710  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
21711    return SDValue();
21712
21713  uint64_t MulAmt1 = 0;
21714  uint64_t MulAmt2 = 0;
21715  if ((MulAmt % 9) == 0) {
21716    MulAmt1 = 9;
21717    MulAmt2 = MulAmt / 9;
21718  } else if ((MulAmt % 5) == 0) {
21719    MulAmt1 = 5;
21720    MulAmt2 = MulAmt / 5;
21721  } else if ((MulAmt % 3) == 0) {
21722    MulAmt1 = 3;
21723    MulAmt2 = MulAmt / 3;
21724  }
21725  if (MulAmt2 &&
21726      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
21727    SDLoc DL(N);
21728
21729    if (isPowerOf2_64(MulAmt2) &&
21730        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
21731      // If second multiplifer is pow2, issue it first. We want the multiply by
21732      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
21733      // is an add.
21734      std::swap(MulAmt1, MulAmt2);
21735
21736    SDValue NewMul;
21737    if (isPowerOf2_64(MulAmt1))
21738      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
21739                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
21740    else
21741      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
21742                           DAG.getConstant(MulAmt1, VT));
21743
21744    if (isPowerOf2_64(MulAmt2))
21745      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
21746                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
21747    else
21748      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
21749                           DAG.getConstant(MulAmt2, VT));
21750
21751    // Do not add new nodes to DAG combiner worklist.
21752    DCI.CombineTo(N, NewMul, false);
21753  }
21754  return SDValue();
21755}
21756
21757static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
21758  SDValue N0 = N->getOperand(0);
21759  SDValue N1 = N->getOperand(1);
21760  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
21761  EVT VT = N0.getValueType();
21762
21763  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
21764  // since the result of setcc_c is all zero's or all ones.
21765  if (VT.isInteger() && !VT.isVector() &&
21766      N1C && N0.getOpcode() == ISD::AND &&
21767      N0.getOperand(1).getOpcode() == ISD::Constant) {
21768    SDValue N00 = N0.getOperand(0);
21769    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
21770        ((N00.getOpcode() == ISD::ANY_EXTEND ||
21771          N00.getOpcode() == ISD::ZERO_EXTEND) &&
21772         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
21773      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
21774      APInt ShAmt = N1C->getAPIntValue();
21775      Mask = Mask.shl(ShAmt);
21776      if (Mask != 0)
21777        return DAG.getNode(ISD::AND, SDLoc(N), VT,
21778                           N00, DAG.getConstant(Mask, VT));
21779    }
21780  }
21781
21782  // Hardware support for vector shifts is sparse which makes us scalarize the
21783  // vector operations in many cases. Also, on sandybridge ADD is faster than
21784  // shl.
21785  // (shl V, 1) -> add V,V
21786  if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
21787    if (auto *N1SplatC = N1BV->getConstantSplatNode()) {
21788      assert(N0.getValueType().isVector() && "Invalid vector shift type");
21789      // We shift all of the values by one. In many cases we do not have
21790      // hardware support for this operation. This is better expressed as an ADD
21791      // of two values.
21792      if (N1SplatC->getZExtValue() == 1)
21793        return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
21794    }
21795
21796  return SDValue();
21797}
21798
21799/// \brief Returns a vector of 0s if the node in input is a vector logical
21800/// shift by a constant amount which is known to be bigger than or equal
21801/// to the vector element size in bits.
21802static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG,
21803                                      const X86Subtarget *Subtarget) {
21804  EVT VT = N->getValueType(0);
21805
21806  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
21807      (!Subtarget->hasInt256() ||
21808       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
21809    return SDValue();
21810
21811  SDValue Amt = N->getOperand(1);
21812  SDLoc DL(N);
21813  if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Amt))
21814    if (auto *AmtSplat = AmtBV->getConstantSplatNode()) {
21815      APInt ShiftAmt = AmtSplat->getAPIntValue();
21816      unsigned MaxAmount = VT.getVectorElementType().getSizeInBits();
21817
21818      // SSE2/AVX2 logical shifts always return a vector of 0s
21819      // if the shift amount is bigger than or equal to
21820      // the element size. The constant shift amount will be
21821      // encoded as a 8-bit immediate.
21822      if (ShiftAmt.trunc(8).uge(MaxAmount))
21823        return getZeroVector(VT, Subtarget, DAG, DL);
21824    }
21825
21826  return SDValue();
21827}
21828
21829/// PerformShiftCombine - Combine shifts.
21830static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
21831                                   TargetLowering::DAGCombinerInfo &DCI,
21832                                   const X86Subtarget *Subtarget) {
21833  if (N->getOpcode() == ISD::SHL) {
21834    SDValue V = PerformSHLCombine(N, DAG);
21835    if (V.getNode()) return V;
21836  }
21837
21838  if (N->getOpcode() != ISD::SRA) {
21839    // Try to fold this logical shift into a zero vector.
21840    SDValue V = performShiftToAllZeros(N, DAG, Subtarget);
21841    if (V.getNode()) return V;
21842  }
21843
21844  return SDValue();
21845}
21846
21847// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
21848// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
21849// and friends.  Likewise for OR -> CMPNEQSS.
21850static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
21851                            TargetLowering::DAGCombinerInfo &DCI,
21852                            const X86Subtarget *Subtarget) {
21853  unsigned opcode;
21854
21855  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
21856  // we're requiring SSE2 for both.
21857  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
21858    SDValue N0 = N->getOperand(0);
21859    SDValue N1 = N->getOperand(1);
21860    SDValue CMP0 = N0->getOperand(1);
21861    SDValue CMP1 = N1->getOperand(1);
21862    SDLoc DL(N);
21863
21864    // The SETCCs should both refer to the same CMP.
21865    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
21866      return SDValue();
21867
21868    SDValue CMP00 = CMP0->getOperand(0);
21869    SDValue CMP01 = CMP0->getOperand(1);
21870    EVT     VT    = CMP00.getValueType();
21871
21872    if (VT == MVT::f32 || VT == MVT::f64) {
21873      bool ExpectingFlags = false;
21874      // Check for any users that want flags:
21875      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
21876           !ExpectingFlags && UI != UE; ++UI)
21877        switch (UI->getOpcode()) {
21878        default:
21879        case ISD::BR_CC:
21880        case ISD::BRCOND:
21881        case ISD::SELECT:
21882          ExpectingFlags = true;
21883          break;
21884        case ISD::CopyToReg:
21885        case ISD::SIGN_EXTEND:
21886        case ISD::ZERO_EXTEND:
21887        case ISD::ANY_EXTEND:
21888          break;
21889        }
21890
21891      if (!ExpectingFlags) {
21892        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
21893        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
21894
21895        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
21896          X86::CondCode tmp = cc0;
21897          cc0 = cc1;
21898          cc1 = tmp;
21899        }
21900
21901        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
21902            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
21903          // FIXME: need symbolic constants for these magic numbers.
21904          // See X86ATTInstPrinter.cpp:printSSECC().
21905          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
21906          if (Subtarget->hasAVX512()) {
21907            SDValue FSetCC = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CMP00,
21908                                         CMP01, DAG.getConstant(x86cc, MVT::i8));
21909            if (N->getValueType(0) != MVT::i1)
21910              return DAG.getNode(ISD::ZERO_EXTEND, DL, N->getValueType(0),
21911                                 FSetCC);
21912            return FSetCC;
21913          }
21914          SDValue OnesOrZeroesF = DAG.getNode(X86ISD::FSETCC, DL,
21915                                              CMP00.getValueType(), CMP00, CMP01,
21916                                              DAG.getConstant(x86cc, MVT::i8));
21917
21918          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
21919          MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32;
21920
21921          if (is64BitFP && !Subtarget->is64Bit()) {
21922            // On a 32-bit target, we cannot bitcast the 64-bit float to a
21923            // 64-bit integer, since that's not a legal type. Since
21924            // OnesOrZeroesF is all ones of all zeroes, we don't need all the
21925            // bits, but can do this little dance to extract the lowest 32 bits
21926            // and work with those going forward.
21927            SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64,
21928                                           OnesOrZeroesF);
21929            SDValue Vector32 = DAG.getNode(ISD::BITCAST, DL, MVT::v4f32,
21930                                           Vector64);
21931            OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32,
21932                                        Vector32, DAG.getIntPtrConstant(0));
21933            IntVT = MVT::i32;
21934          }
21935
21936          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, IntVT, OnesOrZeroesF);
21937          SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI,
21938                                      DAG.getConstant(1, IntVT));
21939          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
21940          return OneBitOfTruth;
21941        }
21942      }
21943    }
21944  }
21945  return SDValue();
21946}
21947
21948/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
21949/// so it can be folded inside ANDNP.
21950static bool CanFoldXORWithAllOnes(const SDNode *N) {
21951  EVT VT = N->getValueType(0);
21952
21953  // Match direct AllOnes for 128 and 256-bit vectors
21954  if (ISD::isBuildVectorAllOnes(N))
21955    return true;
21956
21957  // Look through a bit convert.
21958  if (N->getOpcode() == ISD::BITCAST)
21959    N = N->getOperand(0).getNode();
21960
21961  // Sometimes the operand may come from a insert_subvector building a 256-bit
21962  // allones vector
21963  if (VT.is256BitVector() &&
21964      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
21965    SDValue V1 = N->getOperand(0);
21966    SDValue V2 = N->getOperand(1);
21967
21968    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
21969        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
21970        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
21971        ISD::isBuildVectorAllOnes(V2.getNode()))
21972      return true;
21973  }
21974
21975  return false;
21976}
21977
21978// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
21979// register. In most cases we actually compare or select YMM-sized registers
21980// and mixing the two types creates horrible code. This method optimizes
21981// some of the transition sequences.
21982static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
21983                                 TargetLowering::DAGCombinerInfo &DCI,
21984                                 const X86Subtarget *Subtarget) {
21985  EVT VT = N->getValueType(0);
21986  if (!VT.is256BitVector())
21987    return SDValue();
21988
21989  assert((N->getOpcode() == ISD::ANY_EXTEND ||
21990          N->getOpcode() == ISD::ZERO_EXTEND ||
21991          N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
21992
21993  SDValue Narrow = N->getOperand(0);
21994  EVT NarrowVT = Narrow->getValueType(0);
21995  if (!NarrowVT.is128BitVector())
21996    return SDValue();
21997
21998  if (Narrow->getOpcode() != ISD::XOR &&
21999      Narrow->getOpcode() != ISD::AND &&
22000      Narrow->getOpcode() != ISD::OR)
22001    return SDValue();
22002
22003  SDValue N0  = Narrow->getOperand(0);
22004  SDValue N1  = Narrow->getOperand(1);
22005  SDLoc DL(Narrow);
22006
22007  // The Left side has to be a trunc.
22008  if (N0.getOpcode() != ISD::TRUNCATE)
22009    return SDValue();
22010
22011  // The type of the truncated inputs.
22012  EVT WideVT = N0->getOperand(0)->getValueType(0);
22013  if (WideVT != VT)
22014    return SDValue();
22015
22016  // The right side has to be a 'trunc' or a constant vector.
22017  bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
22018  ConstantSDNode *RHSConstSplat = nullptr;
22019  if (auto *RHSBV = dyn_cast<BuildVectorSDNode>(N1))
22020    RHSConstSplat = RHSBV->getConstantSplatNode();
22021  if (!RHSTrunc && !RHSConstSplat)
22022    return SDValue();
22023
22024  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
22025
22026  if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
22027    return SDValue();
22028
22029  // Set N0 and N1 to hold the inputs to the new wide operation.
22030  N0 = N0->getOperand(0);
22031  if (RHSConstSplat) {
22032    N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(),
22033                     SDValue(RHSConstSplat, 0));
22034    SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
22035    N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, C);
22036  } else if (RHSTrunc) {
22037    N1 = N1->getOperand(0);
22038  }
22039
22040  // Generate the wide operation.
22041  SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
22042  unsigned Opcode = N->getOpcode();
22043  switch (Opcode) {
22044  case ISD::ANY_EXTEND:
22045    return Op;
22046  case ISD::ZERO_EXTEND: {
22047    unsigned InBits = NarrowVT.getScalarType().getSizeInBits();
22048    APInt Mask = APInt::getAllOnesValue(InBits);
22049    Mask = Mask.zext(VT.getScalarType().getSizeInBits());
22050    return DAG.getNode(ISD::AND, DL, VT,
22051                       Op, DAG.getConstant(Mask, VT));
22052  }
22053  case ISD::SIGN_EXTEND:
22054    return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
22055                       Op, DAG.getValueType(NarrowVT));
22056  default:
22057    llvm_unreachable("Unexpected opcode");
22058  }
22059}
22060
22061static SDValue VectorZextCombine(SDNode *N, SelectionDAG &DAG,
22062                                 TargetLowering::DAGCombinerInfo &DCI,
22063                                 const X86Subtarget *Subtarget) {
22064  SDValue N0 = N->getOperand(0);
22065  SDValue N1 = N->getOperand(1);
22066  SDLoc DL(N);
22067
22068  // A vector zext_in_reg may be represented as a shuffle,
22069  // feeding into a bitcast (this represents anyext) feeding into
22070  // an and with a mask.
22071  // We'd like to try to combine that into a shuffle with zero
22072  // plus a bitcast, removing the and.
22073  if (N0.getOpcode() != ISD::BITCAST ||
22074      N0.getOperand(0).getOpcode() != ISD::VECTOR_SHUFFLE)
22075    return SDValue();
22076
22077  // The other side of the AND should be a splat of 2^C, where C
22078  // is the number of bits in the source type.
22079  if (N1.getOpcode() == ISD::BITCAST)
22080    N1 = N1.getOperand(0);
22081  if (N1.getOpcode() != ISD::BUILD_VECTOR)
22082    return SDValue();
22083  BuildVectorSDNode *Vector = cast<BuildVectorSDNode>(N1);
22084
22085  ShuffleVectorSDNode *Shuffle = cast<ShuffleVectorSDNode>(N0.getOperand(0));
22086  EVT SrcType = Shuffle->getValueType(0);
22087
22088  // We expect a single-source shuffle
22089  if (Shuffle->getOperand(1)->getOpcode() != ISD::UNDEF)
22090    return SDValue();
22091
22092  unsigned SrcSize = SrcType.getScalarSizeInBits();
22093
22094  APInt SplatValue, SplatUndef;
22095  unsigned SplatBitSize;
22096  bool HasAnyUndefs;
22097  if (!Vector->isConstantSplat(SplatValue, SplatUndef,
22098                                SplatBitSize, HasAnyUndefs))
22099    return SDValue();
22100
22101  unsigned ResSize = N1.getValueType().getScalarSizeInBits();
22102  // Make sure the splat matches the mask we expect
22103  if (SplatBitSize > ResSize ||
22104      (SplatValue + 1).exactLogBase2() != (int)SrcSize)
22105    return SDValue();
22106
22107  // Make sure the input and output size make sense
22108  if (SrcSize >= ResSize || ResSize % SrcSize)
22109    return SDValue();
22110
22111  // We expect a shuffle of the form <0, u, u, u, 1, u, u, u...>
22112  // The number of u's between each two values depends on the ratio between
22113  // the source and dest type.
22114  unsigned ZextRatio = ResSize / SrcSize;
22115  bool IsZext = true;
22116  for (unsigned i = 0; i < SrcType.getVectorNumElements(); ++i) {
22117    if (i % ZextRatio) {
22118      if (Shuffle->getMaskElt(i) > 0) {
22119        // Expected undef
22120        IsZext = false;
22121        break;
22122      }
22123    } else {
22124      if (Shuffle->getMaskElt(i) != (int)(i / ZextRatio)) {
22125        // Expected element number
22126        IsZext = false;
22127        break;
22128      }
22129    }
22130  }
22131
22132  if (!IsZext)
22133    return SDValue();
22134
22135  // Ok, perform the transformation - replace the shuffle with
22136  // a shuffle of the form <0, k, k, k, 1, k, k, k> with zero
22137  // (instead of undef) where the k elements come from the zero vector.
22138  SmallVector<int, 8> Mask;
22139  unsigned NumElems = SrcType.getVectorNumElements();
22140  for (unsigned i = 0; i < NumElems; ++i)
22141    if (i % ZextRatio)
22142      Mask.push_back(NumElems);
22143    else
22144      Mask.push_back(i / ZextRatio);
22145
22146  SDValue NewShuffle = DAG.getVectorShuffle(Shuffle->getValueType(0), DL,
22147    Shuffle->getOperand(0), DAG.getConstant(0, SrcType), Mask);
22148  return DAG.getNode(ISD::BITCAST, DL,  N0.getValueType(), NewShuffle);
22149}
22150
22151static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
22152                                 TargetLowering::DAGCombinerInfo &DCI,
22153                                 const X86Subtarget *Subtarget) {
22154  if (DCI.isBeforeLegalizeOps())
22155    return SDValue();
22156
22157  if (SDValue Zext = VectorZextCombine(N, DAG, DCI, Subtarget))
22158    return Zext;
22159
22160  if (SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget))
22161    return R;
22162
22163  EVT VT = N->getValueType(0);
22164  SDValue N0 = N->getOperand(0);
22165  SDValue N1 = N->getOperand(1);
22166  SDLoc DL(N);
22167
22168  // Create BEXTR instructions
22169  // BEXTR is ((X >> imm) & (2**size-1))
22170  if (VT == MVT::i32 || VT == MVT::i64) {
22171    // Check for BEXTR.
22172    if ((Subtarget->hasBMI() || Subtarget->hasTBM()) &&
22173        (N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::SRL)) {
22174      ConstantSDNode *MaskNode = dyn_cast<ConstantSDNode>(N1);
22175      ConstantSDNode *ShiftNode = dyn_cast<ConstantSDNode>(N0.getOperand(1));
22176      if (MaskNode && ShiftNode) {
22177        uint64_t Mask = MaskNode->getZExtValue();
22178        uint64_t Shift = ShiftNode->getZExtValue();
22179        if (isMask_64(Mask)) {
22180          uint64_t MaskSize = countPopulation(Mask);
22181          if (Shift + MaskSize <= VT.getSizeInBits())
22182            return DAG.getNode(X86ISD::BEXTR, DL, VT, N0.getOperand(0),
22183                               DAG.getConstant(Shift | (MaskSize << 8), VT));
22184        }
22185      }
22186    } // BEXTR
22187
22188    return SDValue();
22189  }
22190
22191  // Want to form ANDNP nodes:
22192  // 1) In the hopes of then easily combining them with OR and AND nodes
22193  //    to form PBLEND/PSIGN.
22194  // 2) To match ANDN packed intrinsics
22195  if (VT != MVT::v2i64 && VT != MVT::v4i64)
22196    return SDValue();
22197
22198  // Check LHS for vnot
22199  if (N0.getOpcode() == ISD::XOR &&
22200      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
22201      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
22202    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
22203
22204  // Check RHS for vnot
22205  if (N1.getOpcode() == ISD::XOR &&
22206      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
22207      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
22208    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
22209
22210  return SDValue();
22211}
22212
22213static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
22214                                TargetLowering::DAGCombinerInfo &DCI,
22215                                const X86Subtarget *Subtarget) {
22216  if (DCI.isBeforeLegalizeOps())
22217    return SDValue();
22218
22219  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
22220  if (R.getNode())
22221    return R;
22222
22223  SDValue N0 = N->getOperand(0);
22224  SDValue N1 = N->getOperand(1);
22225  EVT VT = N->getValueType(0);
22226
22227  // look for psign/blend
22228  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
22229    if (!Subtarget->hasSSSE3() ||
22230        (VT == MVT::v4i64 && !Subtarget->hasInt256()))
22231      return SDValue();
22232
22233    // Canonicalize pandn to RHS
22234    if (N0.getOpcode() == X86ISD::ANDNP)
22235      std::swap(N0, N1);
22236    // or (and (m, y), (pandn m, x))
22237    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
22238      SDValue Mask = N1.getOperand(0);
22239      SDValue X    = N1.getOperand(1);
22240      SDValue Y;
22241      if (N0.getOperand(0) == Mask)
22242        Y = N0.getOperand(1);
22243      if (N0.getOperand(1) == Mask)
22244        Y = N0.getOperand(0);
22245
22246      // Check to see if the mask appeared in both the AND and ANDNP and
22247      if (!Y.getNode())
22248        return SDValue();
22249
22250      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
22251      // Look through mask bitcast.
22252      if (Mask.getOpcode() == ISD::BITCAST)
22253        Mask = Mask.getOperand(0);
22254      if (X.getOpcode() == ISD::BITCAST)
22255        X = X.getOperand(0);
22256      if (Y.getOpcode() == ISD::BITCAST)
22257        Y = Y.getOperand(0);
22258
22259      EVT MaskVT = Mask.getValueType();
22260
22261      // Validate that the Mask operand is a vector sra node.
22262      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
22263      // there is no psrai.b
22264      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
22265      unsigned SraAmt = ~0;
22266      if (Mask.getOpcode() == ISD::SRA) {
22267        if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Mask.getOperand(1)))
22268          if (auto *AmtConst = AmtBV->getConstantSplatNode())
22269            SraAmt = AmtConst->getZExtValue();
22270      } else if (Mask.getOpcode() == X86ISD::VSRAI) {
22271        SDValue SraC = Mask.getOperand(1);
22272        SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
22273      }
22274      if ((SraAmt + 1) != EltBits)
22275        return SDValue();
22276
22277      SDLoc DL(N);
22278
22279      // Now we know we at least have a plendvb with the mask val.  See if
22280      // we can form a psignb/w/d.
22281      // psign = x.type == y.type == mask.type && y = sub(0, x);
22282      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
22283          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
22284          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
22285        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
22286               "Unsupported VT for PSIGN");
22287        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
22288        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
22289      }
22290      // PBLENDVB only available on SSE 4.1
22291      if (!Subtarget->hasSSE41())
22292        return SDValue();
22293
22294      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
22295
22296      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
22297      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
22298      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
22299      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
22300      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
22301    }
22302  }
22303
22304  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
22305    return SDValue();
22306
22307  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
22308  MachineFunction &MF = DAG.getMachineFunction();
22309  bool OptForSize =
22310      MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize);
22311
22312  // SHLD/SHRD instructions have lower register pressure, but on some
22313  // platforms they have higher latency than the equivalent
22314  // series of shifts/or that would otherwise be generated.
22315  // Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions
22316  // have higher latencies and we are not optimizing for size.
22317  if (!OptForSize && Subtarget->isSHLDSlow())
22318    return SDValue();
22319
22320  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
22321    std::swap(N0, N1);
22322  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
22323    return SDValue();
22324  if (!N0.hasOneUse() || !N1.hasOneUse())
22325    return SDValue();
22326
22327  SDValue ShAmt0 = N0.getOperand(1);
22328  if (ShAmt0.getValueType() != MVT::i8)
22329    return SDValue();
22330  SDValue ShAmt1 = N1.getOperand(1);
22331  if (ShAmt1.getValueType() != MVT::i8)
22332    return SDValue();
22333  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
22334    ShAmt0 = ShAmt0.getOperand(0);
22335  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
22336    ShAmt1 = ShAmt1.getOperand(0);
22337
22338  SDLoc DL(N);
22339  unsigned Opc = X86ISD::SHLD;
22340  SDValue Op0 = N0.getOperand(0);
22341  SDValue Op1 = N1.getOperand(0);
22342  if (ShAmt0.getOpcode() == ISD::SUB) {
22343    Opc = X86ISD::SHRD;
22344    std::swap(Op0, Op1);
22345    std::swap(ShAmt0, ShAmt1);
22346  }
22347
22348  unsigned Bits = VT.getSizeInBits();
22349  if (ShAmt1.getOpcode() == ISD::SUB) {
22350    SDValue Sum = ShAmt1.getOperand(0);
22351    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
22352      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
22353      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
22354        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
22355      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
22356        return DAG.getNode(Opc, DL, VT,
22357                           Op0, Op1,
22358                           DAG.getNode(ISD::TRUNCATE, DL,
22359                                       MVT::i8, ShAmt0));
22360    }
22361  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
22362    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
22363    if (ShAmt0C &&
22364        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
22365      return DAG.getNode(Opc, DL, VT,
22366                         N0.getOperand(0), N1.getOperand(0),
22367                         DAG.getNode(ISD::TRUNCATE, DL,
22368                                       MVT::i8, ShAmt0));
22369  }
22370
22371  return SDValue();
22372}
22373
22374// Generate NEG and CMOV for integer abs.
22375static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
22376  EVT VT = N->getValueType(0);
22377
22378  // Since X86 does not have CMOV for 8-bit integer, we don't convert
22379  // 8-bit integer abs to NEG and CMOV.
22380  if (VT.isInteger() && VT.getSizeInBits() == 8)
22381    return SDValue();
22382
22383  SDValue N0 = N->getOperand(0);
22384  SDValue N1 = N->getOperand(1);
22385  SDLoc DL(N);
22386
22387  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
22388  // and change it to SUB and CMOV.
22389  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
22390      N0.getOpcode() == ISD::ADD &&
22391      N0.getOperand(1) == N1 &&
22392      N1.getOpcode() == ISD::SRA &&
22393      N1.getOperand(0) == N0.getOperand(0))
22394    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
22395      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
22396        // Generate SUB & CMOV.
22397        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
22398                                  DAG.getConstant(0, VT), N0.getOperand(0));
22399
22400        SDValue Ops[] = { N0.getOperand(0), Neg,
22401                          DAG.getConstant(X86::COND_GE, MVT::i8),
22402                          SDValue(Neg.getNode(), 1) };
22403        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue), Ops);
22404      }
22405  return SDValue();
22406}
22407
22408// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
22409static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
22410                                 TargetLowering::DAGCombinerInfo &DCI,
22411                                 const X86Subtarget *Subtarget) {
22412  if (DCI.isBeforeLegalizeOps())
22413    return SDValue();
22414
22415  if (Subtarget->hasCMov()) {
22416    SDValue RV = performIntegerAbsCombine(N, DAG);
22417    if (RV.getNode())
22418      return RV;
22419  }
22420
22421  return SDValue();
22422}
22423
22424/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
22425static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
22426                                  TargetLowering::DAGCombinerInfo &DCI,
22427                                  const X86Subtarget *Subtarget) {
22428  LoadSDNode *Ld = cast<LoadSDNode>(N);
22429  EVT RegVT = Ld->getValueType(0);
22430  EVT MemVT = Ld->getMemoryVT();
22431  SDLoc dl(Ld);
22432  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
22433
22434  // For chips with slow 32-byte unaligned loads, break the 32-byte operation
22435  // into two 16-byte operations.
22436  ISD::LoadExtType Ext = Ld->getExtensionType();
22437  unsigned Alignment = Ld->getAlignment();
22438  bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8;
22439  if (RegVT.is256BitVector() && Subtarget->isUnalignedMem32Slow() &&
22440      !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
22441    unsigned NumElems = RegVT.getVectorNumElements();
22442    if (NumElems < 2)
22443      return SDValue();
22444
22445    SDValue Ptr = Ld->getBasePtr();
22446    SDValue Increment = DAG.getConstant(16, TLI.getPointerTy());
22447
22448    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
22449                                  NumElems/2);
22450    SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
22451                                Ld->getPointerInfo(), Ld->isVolatile(),
22452                                Ld->isNonTemporal(), Ld->isInvariant(),
22453                                Alignment);
22454    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
22455    SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
22456                                Ld->getPointerInfo(), Ld->isVolatile(),
22457                                Ld->isNonTemporal(), Ld->isInvariant(),
22458                                std::min(16U, Alignment));
22459    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
22460                             Load1.getValue(1),
22461                             Load2.getValue(1));
22462
22463    SDValue NewVec = DAG.getUNDEF(RegVT);
22464    NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
22465    NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
22466    return DCI.CombineTo(N, NewVec, TF, true);
22467  }
22468
22469  return SDValue();
22470}
22471
22472/// PerformMLOADCombine - Resolve extending loads
22473static SDValue PerformMLOADCombine(SDNode *N, SelectionDAG &DAG,
22474                                   TargetLowering::DAGCombinerInfo &DCI,
22475                                   const X86Subtarget *Subtarget) {
22476  MaskedLoadSDNode *Mld = cast<MaskedLoadSDNode>(N);
22477  if (Mld->getExtensionType() != ISD::SEXTLOAD)
22478    return SDValue();
22479
22480  EVT VT = Mld->getValueType(0);
22481  unsigned NumElems = VT.getVectorNumElements();
22482  EVT LdVT = Mld->getMemoryVT();
22483  SDLoc dl(Mld);
22484
22485  assert(LdVT != VT && "Cannot extend to the same type");
22486  unsigned ToSz = VT.getVectorElementType().getSizeInBits();
22487  unsigned FromSz = LdVT.getVectorElementType().getSizeInBits();
22488  // From, To sizes and ElemCount must be pow of two
22489  assert (isPowerOf2_32(NumElems * FromSz * ToSz) &&
22490    "Unexpected size for extending masked load");
22491
22492  unsigned SizeRatio  = ToSz / FromSz;
22493  assert(SizeRatio * NumElems * FromSz == VT.getSizeInBits());
22494
22495  // Create a type on which we perform the shuffle
22496  EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
22497          LdVT.getScalarType(), NumElems*SizeRatio);
22498  assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
22499
22500  // Convert Src0 value
22501  SDValue WideSrc0 = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Mld->getSrc0());
22502  if (Mld->getSrc0().getOpcode() != ISD::UNDEF) {
22503    SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
22504    for (unsigned i = 0; i != NumElems; ++i)
22505      ShuffleVec[i] = i * SizeRatio;
22506
22507    // Can't shuffle using an illegal type.
22508    assert (DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT)
22509	    && "WideVecVT should be legal");
22510    WideSrc0 = DAG.getVectorShuffle(WideVecVT, dl, WideSrc0,
22511                                    DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
22512  }
22513  // Prepare the new mask
22514  SDValue NewMask;
22515  SDValue Mask = Mld->getMask();
22516  if (Mask.getValueType() == VT) {
22517    // Mask and original value have the same type
22518    NewMask = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Mask);
22519    SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
22520    for (unsigned i = 0; i != NumElems; ++i)
22521      ShuffleVec[i] = i * SizeRatio;
22522    for (unsigned i = NumElems; i != NumElems*SizeRatio; ++i)
22523      ShuffleVec[i] = NumElems*SizeRatio;
22524    NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask,
22525                                   DAG.getConstant(0, WideVecVT),
22526                                   &ShuffleVec[0]);
22527  }
22528  else {
22529    assert(Mask.getValueType().getVectorElementType() == MVT::i1);
22530    unsigned WidenNumElts = NumElems*SizeRatio;
22531    unsigned MaskNumElts = VT.getVectorNumElements();
22532    EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(),  MVT::i1,
22533                                     WidenNumElts);
22534
22535    unsigned NumConcat = WidenNumElts / MaskNumElts;
22536    SmallVector<SDValue, 16> Ops(NumConcat);
22537    SDValue ZeroVal = DAG.getConstant(0, Mask.getValueType());
22538    Ops[0] = Mask;
22539    for (unsigned i = 1; i != NumConcat; ++i)
22540      Ops[i] = ZeroVal;
22541
22542    NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops);
22543  }
22544
22545  SDValue WideLd = DAG.getMaskedLoad(WideVecVT, dl, Mld->getChain(),
22546                                     Mld->getBasePtr(), NewMask, WideSrc0,
22547                                     Mld->getMemoryVT(), Mld->getMemOperand(),
22548                                     ISD::NON_EXTLOAD);
22549  SDValue NewVec = DAG.getNode(X86ISD::VSEXT, dl, VT, WideLd);
22550  return DCI.CombineTo(N, NewVec, WideLd.getValue(1), true);
22551
22552}
22553/// PerformMSTORECombine - Resolve truncating stores
22554static SDValue PerformMSTORECombine(SDNode *N, SelectionDAG &DAG,
22555                                    const X86Subtarget *Subtarget) {
22556  MaskedStoreSDNode *Mst = cast<MaskedStoreSDNode>(N);
22557  if (!Mst->isTruncatingStore())
22558    return SDValue();
22559
22560  EVT VT = Mst->getValue().getValueType();
22561  unsigned NumElems = VT.getVectorNumElements();
22562  EVT StVT = Mst->getMemoryVT();
22563  SDLoc dl(Mst);
22564
22565  assert(StVT != VT && "Cannot truncate to the same type");
22566  unsigned FromSz = VT.getVectorElementType().getSizeInBits();
22567  unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
22568
22569  // From, To sizes and ElemCount must be pow of two
22570  assert (isPowerOf2_32(NumElems * FromSz * ToSz) &&
22571    "Unexpected size for truncating masked store");
22572  // We are going to use the original vector elt for storing.
22573  // Accumulated smaller vector elements must be a multiple of the store size.
22574  assert (((NumElems * FromSz) % ToSz) == 0 &&
22575          "Unexpected ratio for truncating masked store");
22576
22577  unsigned SizeRatio  = FromSz / ToSz;
22578  assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
22579
22580  // Create a type on which we perform the shuffle
22581  EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
22582          StVT.getScalarType(), NumElems*SizeRatio);
22583
22584  assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
22585
22586  SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Mst->getValue());
22587  SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
22588  for (unsigned i = 0; i != NumElems; ++i)
22589    ShuffleVec[i] = i * SizeRatio;
22590
22591  // Can't shuffle using an illegal type.
22592  assert (DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT)
22593	  && "WideVecVT should be legal");
22594
22595  SDValue TruncatedVal = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
22596                                        DAG.getUNDEF(WideVecVT),
22597                                        &ShuffleVec[0]);
22598
22599  SDValue NewMask;
22600  SDValue Mask = Mst->getMask();
22601  if (Mask.getValueType() == VT) {
22602    // Mask and original value have the same type
22603    NewMask = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Mask);
22604    for (unsigned i = 0; i != NumElems; ++i)
22605      ShuffleVec[i] = i * SizeRatio;
22606    for (unsigned i = NumElems; i != NumElems*SizeRatio; ++i)
22607      ShuffleVec[i] = NumElems*SizeRatio;
22608    NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask,
22609                                   DAG.getConstant(0, WideVecVT),
22610                                   &ShuffleVec[0]);
22611  }
22612  else {
22613    assert(Mask.getValueType().getVectorElementType() == MVT::i1);
22614    unsigned WidenNumElts = NumElems*SizeRatio;
22615    unsigned MaskNumElts = VT.getVectorNumElements();
22616    EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(),  MVT::i1,
22617                                     WidenNumElts);
22618
22619    unsigned NumConcat = WidenNumElts / MaskNumElts;
22620    SmallVector<SDValue, 16> Ops(NumConcat);
22621    SDValue ZeroVal = DAG.getConstant(0, Mask.getValueType());
22622    Ops[0] = Mask;
22623    for (unsigned i = 1; i != NumConcat; ++i)
22624      Ops[i] = ZeroVal;
22625
22626    NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops);
22627  }
22628
22629  return DAG.getMaskedStore(Mst->getChain(), dl, TruncatedVal, Mst->getBasePtr(),
22630                            NewMask, StVT, Mst->getMemOperand(), false);
22631}
22632/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
22633static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
22634                                   const X86Subtarget *Subtarget) {
22635  StoreSDNode *St = cast<StoreSDNode>(N);
22636  EVT VT = St->getValue().getValueType();
22637  EVT StVT = St->getMemoryVT();
22638  SDLoc dl(St);
22639  SDValue StoredVal = St->getOperand(1);
22640  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
22641
22642  // If we are saving a concatenation of two XMM registers and 32-byte stores
22643  // are slow, such as on Sandy Bridge, perform two 16-byte stores.
22644  unsigned Alignment = St->getAlignment();
22645  bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8;
22646  if (VT.is256BitVector() && Subtarget->isUnalignedMem32Slow() &&
22647      StVT == VT && !IsAligned) {
22648    unsigned NumElems = VT.getVectorNumElements();
22649    if (NumElems < 2)
22650      return SDValue();
22651
22652    SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
22653    SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
22654
22655    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
22656    SDValue Ptr0 = St->getBasePtr();
22657    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
22658
22659    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
22660                                St->getPointerInfo(), St->isVolatile(),
22661                                St->isNonTemporal(), Alignment);
22662    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
22663                                St->getPointerInfo(), St->isVolatile(),
22664                                St->isNonTemporal(),
22665                                std::min(16U, Alignment));
22666    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
22667  }
22668
22669  // Optimize trunc store (of multiple scalars) to shuffle and store.
22670  // First, pack all of the elements in one place. Next, store to memory
22671  // in fewer chunks.
22672  if (St->isTruncatingStore() && VT.isVector()) {
22673    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
22674    unsigned NumElems = VT.getVectorNumElements();
22675    assert(StVT != VT && "Cannot truncate to the same type");
22676    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
22677    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
22678
22679    // From, To sizes and ElemCount must be pow of two
22680    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
22681    // We are going to use the original vector elt for storing.
22682    // Accumulated smaller vector elements must be a multiple of the store size.
22683    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
22684
22685    unsigned SizeRatio  = FromSz / ToSz;
22686
22687    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
22688
22689    // Create a type on which we perform the shuffle
22690    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
22691            StVT.getScalarType(), NumElems*SizeRatio);
22692
22693    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
22694
22695    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
22696    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
22697    for (unsigned i = 0; i != NumElems; ++i)
22698      ShuffleVec[i] = i * SizeRatio;
22699
22700    // Can't shuffle using an illegal type.
22701    if (!TLI.isTypeLegal(WideVecVT))
22702      return SDValue();
22703
22704    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
22705                                         DAG.getUNDEF(WideVecVT),
22706                                         &ShuffleVec[0]);
22707    // At this point all of the data is stored at the bottom of the
22708    // register. We now need to save it to mem.
22709
22710    // Find the largest store unit
22711    MVT StoreType = MVT::i8;
22712    for (MVT Tp : MVT::integer_valuetypes()) {
22713      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
22714        StoreType = Tp;
22715    }
22716
22717    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
22718    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
22719        (64 <= NumElems * ToSz))
22720      StoreType = MVT::f64;
22721
22722    // Bitcast the original vector into a vector of store-size units
22723    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
22724            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
22725    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
22726    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
22727    SmallVector<SDValue, 8> Chains;
22728    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
22729                                        TLI.getPointerTy());
22730    SDValue Ptr = St->getBasePtr();
22731
22732    // Perform one or more big stores into memory.
22733    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
22734      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
22735                                   StoreType, ShuffWide,
22736                                   DAG.getIntPtrConstant(i));
22737      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
22738                                St->getPointerInfo(), St->isVolatile(),
22739                                St->isNonTemporal(), St->getAlignment());
22740      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
22741      Chains.push_back(Ch);
22742    }
22743
22744    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
22745  }
22746
22747  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
22748  // the FP state in cases where an emms may be missing.
22749  // A preferable solution to the general problem is to figure out the right
22750  // places to insert EMMS.  This qualifies as a quick hack.
22751
22752  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
22753  if (VT.getSizeInBits() != 64)
22754    return SDValue();
22755
22756  const Function *F = DAG.getMachineFunction().getFunction();
22757  bool NoImplicitFloatOps = F->hasFnAttribute(Attribute::NoImplicitFloat);
22758  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
22759                     && Subtarget->hasSSE2();
22760  if ((VT.isVector() ||
22761       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
22762      isa<LoadSDNode>(St->getValue()) &&
22763      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
22764      St->getChain().hasOneUse() && !St->isVolatile()) {
22765    SDNode* LdVal = St->getValue().getNode();
22766    LoadSDNode *Ld = nullptr;
22767    int TokenFactorIndex = -1;
22768    SmallVector<SDValue, 8> Ops;
22769    SDNode* ChainVal = St->getChain().getNode();
22770    // Must be a store of a load.  We currently handle two cases:  the load
22771    // is a direct child, and it's under an intervening TokenFactor.  It is
22772    // possible to dig deeper under nested TokenFactors.
22773    if (ChainVal == LdVal)
22774      Ld = cast<LoadSDNode>(St->getChain());
22775    else if (St->getValue().hasOneUse() &&
22776             ChainVal->getOpcode() == ISD::TokenFactor) {
22777      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
22778        if (ChainVal->getOperand(i).getNode() == LdVal) {
22779          TokenFactorIndex = i;
22780          Ld = cast<LoadSDNode>(St->getValue());
22781        } else
22782          Ops.push_back(ChainVal->getOperand(i));
22783      }
22784    }
22785
22786    if (!Ld || !ISD::isNormalLoad(Ld))
22787      return SDValue();
22788
22789    // If this is not the MMX case, i.e. we are just turning i64 load/store
22790    // into f64 load/store, avoid the transformation if there are multiple
22791    // uses of the loaded value.
22792    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
22793      return SDValue();
22794
22795    SDLoc LdDL(Ld);
22796    SDLoc StDL(N);
22797    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
22798    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
22799    // pair instead.
22800    if (Subtarget->is64Bit() || F64IsLegal) {
22801      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
22802      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
22803                                  Ld->getPointerInfo(), Ld->isVolatile(),
22804                                  Ld->isNonTemporal(), Ld->isInvariant(),
22805                                  Ld->getAlignment());
22806      SDValue NewChain = NewLd.getValue(1);
22807      if (TokenFactorIndex != -1) {
22808        Ops.push_back(NewChain);
22809        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops);
22810      }
22811      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
22812                          St->getPointerInfo(),
22813                          St->isVolatile(), St->isNonTemporal(),
22814                          St->getAlignment());
22815    }
22816
22817    // Otherwise, lower to two pairs of 32-bit loads / stores.
22818    SDValue LoAddr = Ld->getBasePtr();
22819    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
22820                                 DAG.getConstant(4, MVT::i32));
22821
22822    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
22823                               Ld->getPointerInfo(),
22824                               Ld->isVolatile(), Ld->isNonTemporal(),
22825                               Ld->isInvariant(), Ld->getAlignment());
22826    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
22827                               Ld->getPointerInfo().getWithOffset(4),
22828                               Ld->isVolatile(), Ld->isNonTemporal(),
22829                               Ld->isInvariant(),
22830                               MinAlign(Ld->getAlignment(), 4));
22831
22832    SDValue NewChain = LoLd.getValue(1);
22833    if (TokenFactorIndex != -1) {
22834      Ops.push_back(LoLd);
22835      Ops.push_back(HiLd);
22836      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops);
22837    }
22838
22839    LoAddr = St->getBasePtr();
22840    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
22841                         DAG.getConstant(4, MVT::i32));
22842
22843    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
22844                                St->getPointerInfo(),
22845                                St->isVolatile(), St->isNonTemporal(),
22846                                St->getAlignment());
22847    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
22848                                St->getPointerInfo().getWithOffset(4),
22849                                St->isVolatile(),
22850                                St->isNonTemporal(),
22851                                MinAlign(St->getAlignment(), 4));
22852    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
22853  }
22854  return SDValue();
22855}
22856
22857/// Return 'true' if this vector operation is "horizontal"
22858/// and return the operands for the horizontal operation in LHS and RHS.  A
22859/// horizontal operation performs the binary operation on successive elements
22860/// of its first operand, then on successive elements of its second operand,
22861/// returning the resulting values in a vector.  For example, if
22862///   A = < float a0, float a1, float a2, float a3 >
22863/// and
22864///   B = < float b0, float b1, float b2, float b3 >
22865/// then the result of doing a horizontal operation on A and B is
22866///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
22867/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
22868/// A horizontal-op B, for some already available A and B, and if so then LHS is
22869/// set to A, RHS to B, and the routine returns 'true'.
22870/// Note that the binary operation should have the property that if one of the
22871/// operands is UNDEF then the result is UNDEF.
22872static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
22873  // Look for the following pattern: if
22874  //   A = < float a0, float a1, float a2, float a3 >
22875  //   B = < float b0, float b1, float b2, float b3 >
22876  // and
22877  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
22878  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
22879  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
22880  // which is A horizontal-op B.
22881
22882  // At least one of the operands should be a vector shuffle.
22883  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
22884      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
22885    return false;
22886
22887  MVT VT = LHS.getSimpleValueType();
22888
22889  assert((VT.is128BitVector() || VT.is256BitVector()) &&
22890         "Unsupported vector type for horizontal add/sub");
22891
22892  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
22893  // operate independently on 128-bit lanes.
22894  unsigned NumElts = VT.getVectorNumElements();
22895  unsigned NumLanes = VT.getSizeInBits()/128;
22896  unsigned NumLaneElts = NumElts / NumLanes;
22897  assert((NumLaneElts % 2 == 0) &&
22898         "Vector type should have an even number of elements in each lane");
22899  unsigned HalfLaneElts = NumLaneElts/2;
22900
22901  // View LHS in the form
22902  //   LHS = VECTOR_SHUFFLE A, B, LMask
22903  // If LHS is not a shuffle then pretend it is the shuffle
22904  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
22905  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
22906  // type VT.
22907  SDValue A, B;
22908  SmallVector<int, 16> LMask(NumElts);
22909  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
22910    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
22911      A = LHS.getOperand(0);
22912    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
22913      B = LHS.getOperand(1);
22914    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
22915    std::copy(Mask.begin(), Mask.end(), LMask.begin());
22916  } else {
22917    if (LHS.getOpcode() != ISD::UNDEF)
22918      A = LHS;
22919    for (unsigned i = 0; i != NumElts; ++i)
22920      LMask[i] = i;
22921  }
22922
22923  // Likewise, view RHS in the form
22924  //   RHS = VECTOR_SHUFFLE C, D, RMask
22925  SDValue C, D;
22926  SmallVector<int, 16> RMask(NumElts);
22927  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
22928    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
22929      C = RHS.getOperand(0);
22930    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
22931      D = RHS.getOperand(1);
22932    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
22933    std::copy(Mask.begin(), Mask.end(), RMask.begin());
22934  } else {
22935    if (RHS.getOpcode() != ISD::UNDEF)
22936      C = RHS;
22937    for (unsigned i = 0; i != NumElts; ++i)
22938      RMask[i] = i;
22939  }
22940
22941  // Check that the shuffles are both shuffling the same vectors.
22942  if (!(A == C && B == D) && !(A == D && B == C))
22943    return false;
22944
22945  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
22946  if (!A.getNode() && !B.getNode())
22947    return false;
22948
22949  // If A and B occur in reverse order in RHS, then "swap" them (which means
22950  // rewriting the mask).
22951  if (A != C)
22952    ShuffleVectorSDNode::commuteMask(RMask);
22953
22954  // At this point LHS and RHS are equivalent to
22955  //   LHS = VECTOR_SHUFFLE A, B, LMask
22956  //   RHS = VECTOR_SHUFFLE A, B, RMask
22957  // Check that the masks correspond to performing a horizontal operation.
22958  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
22959    for (unsigned i = 0; i != NumLaneElts; ++i) {
22960      int LIdx = LMask[i+l], RIdx = RMask[i+l];
22961
22962      // Ignore any UNDEF components.
22963      if (LIdx < 0 || RIdx < 0 ||
22964          (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
22965          (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
22966        continue;
22967
22968      // Check that successive elements are being operated on.  If not, this is
22969      // not a horizontal operation.
22970      unsigned Src = (i/HalfLaneElts); // each lane is split between srcs
22971      int Index = 2*(i%HalfLaneElts) + NumElts*Src + l;
22972      if (!(LIdx == Index && RIdx == Index + 1) &&
22973          !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
22974        return false;
22975    }
22976  }
22977
22978  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
22979  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
22980  return true;
22981}
22982
22983/// Do target-specific dag combines on floating point adds.
22984static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
22985                                  const X86Subtarget *Subtarget) {
22986  EVT VT = N->getValueType(0);
22987  SDValue LHS = N->getOperand(0);
22988  SDValue RHS = N->getOperand(1);
22989
22990  // Try to synthesize horizontal adds from adds of shuffles.
22991  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
22992       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
22993      isHorizontalBinOp(LHS, RHS, true))
22994    return DAG.getNode(X86ISD::FHADD, SDLoc(N), VT, LHS, RHS);
22995  return SDValue();
22996}
22997
22998/// Do target-specific dag combines on floating point subs.
22999static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
23000                                  const X86Subtarget *Subtarget) {
23001  EVT VT = N->getValueType(0);
23002  SDValue LHS = N->getOperand(0);
23003  SDValue RHS = N->getOperand(1);
23004
23005  // Try to synthesize horizontal subs from subs of shuffles.
23006  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
23007       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
23008      isHorizontalBinOp(LHS, RHS, false))
23009    return DAG.getNode(X86ISD::FHSUB, SDLoc(N), VT, LHS, RHS);
23010  return SDValue();
23011}
23012
23013/// Do target-specific dag combines on X86ISD::FOR and X86ISD::FXOR nodes.
23014static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
23015  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
23016
23017  // F[X]OR(0.0, x) -> x
23018  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
23019    if (C->getValueAPF().isPosZero())
23020      return N->getOperand(1);
23021
23022  // F[X]OR(x, 0.0) -> x
23023  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
23024    if (C->getValueAPF().isPosZero())
23025      return N->getOperand(0);
23026  return SDValue();
23027}
23028
23029/// Do target-specific dag combines on X86ISD::FMIN and X86ISD::FMAX nodes.
23030static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
23031  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
23032
23033  // Only perform optimizations if UnsafeMath is used.
23034  if (!DAG.getTarget().Options.UnsafeFPMath)
23035    return SDValue();
23036
23037  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
23038  // into FMINC and FMAXC, which are Commutative operations.
23039  unsigned NewOp = 0;
23040  switch (N->getOpcode()) {
23041    default: llvm_unreachable("unknown opcode");
23042    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
23043    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
23044  }
23045
23046  return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
23047                     N->getOperand(0), N->getOperand(1));
23048}
23049
23050/// Do target-specific dag combines on X86ISD::FAND nodes.
23051static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
23052  // FAND(0.0, x) -> 0.0
23053  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
23054    if (C->getValueAPF().isPosZero())
23055      return N->getOperand(0);
23056
23057  // FAND(x, 0.0) -> 0.0
23058  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
23059    if (C->getValueAPF().isPosZero())
23060      return N->getOperand(1);
23061
23062  return SDValue();
23063}
23064
23065/// Do target-specific dag combines on X86ISD::FANDN nodes
23066static SDValue PerformFANDNCombine(SDNode *N, SelectionDAG &DAG) {
23067  // FANDN(0.0, x) -> x
23068  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
23069    if (C->getValueAPF().isPosZero())
23070      return N->getOperand(1);
23071
23072  // FANDN(x, 0.0) -> 0.0
23073  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
23074    if (C->getValueAPF().isPosZero())
23075      return N->getOperand(1);
23076
23077  return SDValue();
23078}
23079
23080static SDValue PerformBTCombine(SDNode *N,
23081                                SelectionDAG &DAG,
23082                                TargetLowering::DAGCombinerInfo &DCI) {
23083  // BT ignores high bits in the bit index operand.
23084  SDValue Op1 = N->getOperand(1);
23085  if (Op1.hasOneUse()) {
23086    unsigned BitWidth = Op1.getValueSizeInBits();
23087    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
23088    APInt KnownZero, KnownOne;
23089    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
23090                                          !DCI.isBeforeLegalizeOps());
23091    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
23092    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
23093        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
23094      DCI.CommitTargetLoweringOpt(TLO);
23095  }
23096  return SDValue();
23097}
23098
23099static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
23100  SDValue Op = N->getOperand(0);
23101  if (Op.getOpcode() == ISD::BITCAST)
23102    Op = Op.getOperand(0);
23103  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
23104  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
23105      VT.getVectorElementType().getSizeInBits() ==
23106      OpVT.getVectorElementType().getSizeInBits()) {
23107    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
23108  }
23109  return SDValue();
23110}
23111
23112static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
23113                                               const X86Subtarget *Subtarget) {
23114  EVT VT = N->getValueType(0);
23115  if (!VT.isVector())
23116    return SDValue();
23117
23118  SDValue N0 = N->getOperand(0);
23119  SDValue N1 = N->getOperand(1);
23120  EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
23121  SDLoc dl(N);
23122
23123  // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
23124  // both SSE and AVX2 since there is no sign-extended shift right
23125  // operation on a vector with 64-bit elements.
23126  //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
23127  // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
23128  if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
23129      N0.getOpcode() == ISD::SIGN_EXTEND)) {
23130    SDValue N00 = N0.getOperand(0);
23131
23132    // EXTLOAD has a better solution on AVX2,
23133    // it may be replaced with X86ISD::VSEXT node.
23134    if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256())
23135      if (!ISD::isNormalLoad(N00.getNode()))
23136        return SDValue();
23137
23138    if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
23139        SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
23140                                  N00, N1);
23141      return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
23142    }
23143  }
23144  return SDValue();
23145}
23146
23147static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
23148                                  TargetLowering::DAGCombinerInfo &DCI,
23149                                  const X86Subtarget *Subtarget) {
23150  SDValue N0 = N->getOperand(0);
23151  EVT VT = N->getValueType(0);
23152
23153  // (i8,i32 sext (sdivrem (i8 x, i8 y)) ->
23154  // (i8,i32 (sdivrem_sext_hreg (i8 x, i8 y)
23155  // This exposes the sext to the sdivrem lowering, so that it directly extends
23156  // from AH (which we otherwise need to do contortions to access).
23157  if (N0.getOpcode() == ISD::SDIVREM && N0.getResNo() == 1 &&
23158      N0.getValueType() == MVT::i8 && VT == MVT::i32) {
23159    SDLoc dl(N);
23160    SDVTList NodeTys = DAG.getVTList(MVT::i8, VT);
23161    SDValue R = DAG.getNode(X86ISD::SDIVREM8_SEXT_HREG, dl, NodeTys,
23162                            N0.getOperand(0), N0.getOperand(1));
23163    DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0));
23164    return R.getValue(1);
23165  }
23166
23167  if (!DCI.isBeforeLegalizeOps())
23168    return SDValue();
23169
23170  if (!Subtarget->hasFp256())
23171    return SDValue();
23172
23173  if (VT.isVector() && VT.getSizeInBits() == 256) {
23174    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
23175    if (R.getNode())
23176      return R;
23177  }
23178
23179  return SDValue();
23180}
23181
23182static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
23183                                 const X86Subtarget* Subtarget) {
23184  SDLoc dl(N);
23185  EVT VT = N->getValueType(0);
23186
23187  // Let legalize expand this if it isn't a legal type yet.
23188  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
23189    return SDValue();
23190
23191  EVT ScalarVT = VT.getScalarType();
23192  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
23193      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
23194    return SDValue();
23195
23196  SDValue A = N->getOperand(0);
23197  SDValue B = N->getOperand(1);
23198  SDValue C = N->getOperand(2);
23199
23200  bool NegA = (A.getOpcode() == ISD::FNEG);
23201  bool NegB = (B.getOpcode() == ISD::FNEG);
23202  bool NegC = (C.getOpcode() == ISD::FNEG);
23203
23204  // Negative multiplication when NegA xor NegB
23205  bool NegMul = (NegA != NegB);
23206  if (NegA)
23207    A = A.getOperand(0);
23208  if (NegB)
23209    B = B.getOperand(0);
23210  if (NegC)
23211    C = C.getOperand(0);
23212
23213  unsigned Opcode;
23214  if (!NegMul)
23215    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
23216  else
23217    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
23218
23219  return DAG.getNode(Opcode, dl, VT, A, B, C);
23220}
23221
23222static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
23223                                  TargetLowering::DAGCombinerInfo &DCI,
23224                                  const X86Subtarget *Subtarget) {
23225  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
23226  //           (and (i32 x86isd::setcc_carry), 1)
23227  // This eliminates the zext. This transformation is necessary because
23228  // ISD::SETCC is always legalized to i8.
23229  SDLoc dl(N);
23230  SDValue N0 = N->getOperand(0);
23231  EVT VT = N->getValueType(0);
23232
23233  if (N0.getOpcode() == ISD::AND &&
23234      N0.hasOneUse() &&
23235      N0.getOperand(0).hasOneUse()) {
23236    SDValue N00 = N0.getOperand(0);
23237    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
23238      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
23239      if (!C || C->getZExtValue() != 1)
23240        return SDValue();
23241      return DAG.getNode(ISD::AND, dl, VT,
23242                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
23243                                     N00.getOperand(0), N00.getOperand(1)),
23244                         DAG.getConstant(1, VT));
23245    }
23246  }
23247
23248  if (N0.getOpcode() == ISD::TRUNCATE &&
23249      N0.hasOneUse() &&
23250      N0.getOperand(0).hasOneUse()) {
23251    SDValue N00 = N0.getOperand(0);
23252    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
23253      return DAG.getNode(ISD::AND, dl, VT,
23254                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
23255                                     N00.getOperand(0), N00.getOperand(1)),
23256                         DAG.getConstant(1, VT));
23257    }
23258  }
23259  if (VT.is256BitVector()) {
23260    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
23261    if (R.getNode())
23262      return R;
23263  }
23264
23265  // (i8,i32 zext (udivrem (i8 x, i8 y)) ->
23266  // (i8,i32 (udivrem_zext_hreg (i8 x, i8 y)
23267  // This exposes the zext to the udivrem lowering, so that it directly extends
23268  // from AH (which we otherwise need to do contortions to access).
23269  if (N0.getOpcode() == ISD::UDIVREM &&
23270      N0.getResNo() == 1 && N0.getValueType() == MVT::i8 &&
23271      (VT == MVT::i32 || VT == MVT::i64)) {
23272    SDVTList NodeTys = DAG.getVTList(MVT::i8, VT);
23273    SDValue R = DAG.getNode(X86ISD::UDIVREM8_ZEXT_HREG, dl, NodeTys,
23274                            N0.getOperand(0), N0.getOperand(1));
23275    DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0));
23276    return R.getValue(1);
23277  }
23278
23279  return SDValue();
23280}
23281
23282// Optimize x == -y --> x+y == 0
23283//          x != -y --> x+y != 0
23284static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG,
23285                                      const X86Subtarget* Subtarget) {
23286  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
23287  SDValue LHS = N->getOperand(0);
23288  SDValue RHS = N->getOperand(1);
23289  EVT VT = N->getValueType(0);
23290  SDLoc DL(N);
23291
23292  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
23293    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
23294      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
23295        SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N), LHS.getValueType(), RHS,
23296                                   LHS.getOperand(1));
23297        return DAG.getSetCC(SDLoc(N), N->getValueType(0), addV,
23298                            DAG.getConstant(0, addV.getValueType()), CC);
23299      }
23300  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
23301    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
23302      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
23303        SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N), RHS.getValueType(), LHS,
23304                                   RHS.getOperand(1));
23305        return DAG.getSetCC(SDLoc(N), N->getValueType(0), addV,
23306                            DAG.getConstant(0, addV.getValueType()), CC);
23307      }
23308
23309  if (VT.getScalarType() == MVT::i1 &&
23310      (CC == ISD::SETNE || CC == ISD::SETEQ || ISD::isSignedIntSetCC(CC))) {
23311    bool IsSEXT0 =
23312        (LHS.getOpcode() == ISD::SIGN_EXTEND) &&
23313        (LHS.getOperand(0).getValueType().getScalarType() == MVT::i1);
23314    bool IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode());
23315
23316    if (!IsSEXT0 || !IsVZero1) {
23317      // Swap the operands and update the condition code.
23318      std::swap(LHS, RHS);
23319      CC = ISD::getSetCCSwappedOperands(CC);
23320
23321      IsSEXT0 = (LHS.getOpcode() == ISD::SIGN_EXTEND) &&
23322                (LHS.getOperand(0).getValueType().getScalarType() == MVT::i1);
23323      IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode());
23324    }
23325
23326    if (IsSEXT0 && IsVZero1) {
23327      assert(VT == LHS.getOperand(0).getValueType() &&
23328             "Uexpected operand type");
23329      if (CC == ISD::SETGT)
23330        return DAG.getConstant(0, VT);
23331      if (CC == ISD::SETLE)
23332        return DAG.getConstant(1, VT);
23333      if (CC == ISD::SETEQ || CC == ISD::SETGE)
23334        return DAG.getNOT(DL, LHS.getOperand(0), VT);
23335
23336      assert((CC == ISD::SETNE || CC == ISD::SETLT) &&
23337             "Unexpected condition code!");
23338      return LHS.getOperand(0);
23339    }
23340  }
23341
23342  return SDValue();
23343}
23344
23345static SDValue NarrowVectorLoadToElement(LoadSDNode *Load, unsigned Index,
23346                                         SelectionDAG &DAG) {
23347  SDLoc dl(Load);
23348  MVT VT = Load->getSimpleValueType(0);
23349  MVT EVT = VT.getVectorElementType();
23350  SDValue Addr = Load->getOperand(1);
23351  SDValue NewAddr = DAG.getNode(
23352      ISD::ADD, dl, Addr.getSimpleValueType(), Addr,
23353      DAG.getConstant(Index * EVT.getStoreSize(), Addr.getSimpleValueType()));
23354
23355  SDValue NewLoad =
23356      DAG.getLoad(EVT, dl, Load->getChain(), NewAddr,
23357                  DAG.getMachineFunction().getMachineMemOperand(
23358                      Load->getMemOperand(), 0, EVT.getStoreSize()));
23359  return NewLoad;
23360}
23361
23362static SDValue PerformINSERTPSCombine(SDNode *N, SelectionDAG &DAG,
23363                                      const X86Subtarget *Subtarget) {
23364  SDLoc dl(N);
23365  MVT VT = N->getOperand(1)->getSimpleValueType(0);
23366  assert((VT == MVT::v4f32 || VT == MVT::v4i32) &&
23367         "X86insertps is only defined for v4x32");
23368
23369  SDValue Ld = N->getOperand(1);
23370  if (MayFoldLoad(Ld)) {
23371    // Extract the countS bits from the immediate so we can get the proper
23372    // address when narrowing the vector load to a specific element.
23373    // When the second source op is a memory address, insertps doesn't use
23374    // countS and just gets an f32 from that address.
23375    unsigned DestIndex =
23376        cast<ConstantSDNode>(N->getOperand(2))->getZExtValue() >> 6;
23377
23378    Ld = NarrowVectorLoadToElement(cast<LoadSDNode>(Ld), DestIndex, DAG);
23379
23380    // Create this as a scalar to vector to match the instruction pattern.
23381    SDValue LoadScalarToVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Ld);
23382    // countS bits are ignored when loading from memory on insertps, which
23383    // means we don't need to explicitly set them to 0.
23384    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N->getOperand(0),
23385                       LoadScalarToVector, N->getOperand(2));
23386  }
23387  return SDValue();
23388}
23389
23390static SDValue PerformBLENDICombine(SDNode *N, SelectionDAG &DAG) {
23391  SDValue V0 = N->getOperand(0);
23392  SDValue V1 = N->getOperand(1);
23393  SDLoc DL(N);
23394  EVT VT = N->getValueType(0);
23395
23396  // Canonicalize a v2f64 blend with a mask of 2 by swapping the vector
23397  // operands and changing the mask to 1. This saves us a bunch of
23398  // pattern-matching possibilities related to scalar math ops in SSE/AVX.
23399  // x86InstrInfo knows how to commute this back after instruction selection
23400  // if it would help register allocation.
23401
23402  // TODO: If optimizing for size or a processor that doesn't suffer from
23403  // partial register update stalls, this should be transformed into a MOVSD
23404  // instruction because a MOVSD is 1-2 bytes smaller than a BLENDPD.
23405
23406  if (VT == MVT::v2f64)
23407    if (auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(2)))
23408      if (Mask->getZExtValue() == 2 && !isShuffleFoldableLoad(V0)) {
23409        SDValue NewMask = DAG.getConstant(1, MVT::i8);
23410        return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V0, NewMask);
23411      }
23412
23413  return SDValue();
23414}
23415
23416// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
23417// as "sbb reg,reg", since it can be extended without zext and produces
23418// an all-ones bit which is more useful than 0/1 in some cases.
23419static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG,
23420                               MVT VT) {
23421  if (VT == MVT::i8)
23422    return DAG.getNode(ISD::AND, DL, VT,
23423                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
23424                                   DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
23425                       DAG.getConstant(1, VT));
23426  assert (VT == MVT::i1 && "Unexpected type for SECCC node");
23427  return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1,
23428                     DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
23429                                 DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS));
23430}
23431
23432// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
23433static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
23434                                   TargetLowering::DAGCombinerInfo &DCI,
23435                                   const X86Subtarget *Subtarget) {
23436  SDLoc DL(N);
23437  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
23438  SDValue EFLAGS = N->getOperand(1);
23439
23440  if (CC == X86::COND_A) {
23441    // Try to convert COND_A into COND_B in an attempt to facilitate
23442    // materializing "setb reg".
23443    //
23444    // Do not flip "e > c", where "c" is a constant, because Cmp instruction
23445    // cannot take an immediate as its first operand.
23446    //
23447    if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
23448        EFLAGS.getValueType().isInteger() &&
23449        !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
23450      SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
23451                                   EFLAGS.getNode()->getVTList(),
23452                                   EFLAGS.getOperand(1), EFLAGS.getOperand(0));
23453      SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
23454      return MaterializeSETB(DL, NewEFLAGS, DAG, N->getSimpleValueType(0));
23455    }
23456  }
23457
23458  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
23459  // a zext and produces an all-ones bit which is more useful than 0/1 in some
23460  // cases.
23461  if (CC == X86::COND_B)
23462    return MaterializeSETB(DL, EFLAGS, DAG, N->getSimpleValueType(0));
23463
23464  SDValue Flags;
23465
23466  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
23467  if (Flags.getNode()) {
23468    SDValue Cond = DAG.getConstant(CC, MVT::i8);
23469    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
23470  }
23471
23472  return SDValue();
23473}
23474
23475// Optimize branch condition evaluation.
23476//
23477static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
23478                                    TargetLowering::DAGCombinerInfo &DCI,
23479                                    const X86Subtarget *Subtarget) {
23480  SDLoc DL(N);
23481  SDValue Chain = N->getOperand(0);
23482  SDValue Dest = N->getOperand(1);
23483  SDValue EFLAGS = N->getOperand(3);
23484  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
23485
23486  SDValue Flags;
23487
23488  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
23489  if (Flags.getNode()) {
23490    SDValue Cond = DAG.getConstant(CC, MVT::i8);
23491    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
23492                       Flags);
23493  }
23494
23495  return SDValue();
23496}
23497
23498static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
23499                                                         SelectionDAG &DAG) {
23500  // Take advantage of vector comparisons producing 0 or -1 in each lane to
23501  // optimize away operation when it's from a constant.
23502  //
23503  // The general transformation is:
23504  //    UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
23505  //       AND(VECTOR_CMP(x,y), constant2)
23506  //    constant2 = UNARYOP(constant)
23507
23508  // Early exit if this isn't a vector operation, the operand of the
23509  // unary operation isn't a bitwise AND, or if the sizes of the operations
23510  // aren't the same.
23511  EVT VT = N->getValueType(0);
23512  if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
23513      N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
23514      VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
23515    return SDValue();
23516
23517  // Now check that the other operand of the AND is a constant. We could
23518  // make the transformation for non-constant splats as well, but it's unclear
23519  // that would be a benefit as it would not eliminate any operations, just
23520  // perform one more step in scalar code before moving to the vector unit.
23521  if (BuildVectorSDNode *BV =
23522          dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
23523    // Bail out if the vector isn't a constant.
23524    if (!BV->isConstant())
23525      return SDValue();
23526
23527    // Everything checks out. Build up the new and improved node.
23528    SDLoc DL(N);
23529    EVT IntVT = BV->getValueType(0);
23530    // Create a new constant of the appropriate type for the transformed
23531    // DAG.
23532    SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
23533    // The AND node needs bitcasts to/from an integer vector type around it.
23534    SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
23535    SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
23536                                 N->getOperand(0)->getOperand(0), MaskConst);
23537    SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
23538    return Res;
23539  }
23540
23541  return SDValue();
23542}
23543
23544static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
23545                                        const X86Subtarget *Subtarget) {
23546  // First try to optimize away the conversion entirely when it's
23547  // conditionally from a constant. Vectors only.
23548  SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG);
23549  if (Res != SDValue())
23550    return Res;
23551
23552  // Now move on to more general possibilities.
23553  SDValue Op0 = N->getOperand(0);
23554  EVT InVT = Op0->getValueType(0);
23555
23556  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
23557  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
23558    SDLoc dl(N);
23559    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
23560    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
23561    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
23562  }
23563
23564  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
23565  // a 32-bit target where SSE doesn't support i64->FP operations.
23566  if (Op0.getOpcode() == ISD::LOAD) {
23567    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
23568    EVT VT = Ld->getValueType(0);
23569    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
23570        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
23571        !Subtarget->is64Bit() && VT == MVT::i64) {
23572      SDValue FILDChain = Subtarget->getTargetLowering()->BuildFILD(
23573          SDValue(N, 0), Ld->getValueType(0), Ld->getChain(), Op0, DAG);
23574      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
23575      return FILDChain;
23576    }
23577  }
23578  return SDValue();
23579}
23580
23581// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
23582static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
23583                                 X86TargetLowering::DAGCombinerInfo &DCI) {
23584  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
23585  // the result is either zero or one (depending on the input carry bit).
23586  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
23587  if (X86::isZeroNode(N->getOperand(0)) &&
23588      X86::isZeroNode(N->getOperand(1)) &&
23589      // We don't have a good way to replace an EFLAGS use, so only do this when
23590      // dead right now.
23591      SDValue(N, 1).use_empty()) {
23592    SDLoc DL(N);
23593    EVT VT = N->getValueType(0);
23594    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
23595    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
23596                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
23597                                           DAG.getConstant(X86::COND_B,MVT::i8),
23598                                           N->getOperand(2)),
23599                               DAG.getConstant(1, VT));
23600    return DCI.CombineTo(N, Res1, CarryOut);
23601  }
23602
23603  return SDValue();
23604}
23605
23606// fold (add Y, (sete  X, 0)) -> adc  0, Y
23607//      (add Y, (setne X, 0)) -> sbb -1, Y
23608//      (sub (sete  X, 0), Y) -> sbb  0, Y
23609//      (sub (setne X, 0), Y) -> adc -1, Y
23610static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
23611  SDLoc DL(N);
23612
23613  // Look through ZExts.
23614  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
23615  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
23616    return SDValue();
23617
23618  SDValue SetCC = Ext.getOperand(0);
23619  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
23620    return SDValue();
23621
23622  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
23623  if (CC != X86::COND_E && CC != X86::COND_NE)
23624    return SDValue();
23625
23626  SDValue Cmp = SetCC.getOperand(1);
23627  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
23628      !X86::isZeroNode(Cmp.getOperand(1)) ||
23629      !Cmp.getOperand(0).getValueType().isInteger())
23630    return SDValue();
23631
23632  SDValue CmpOp0 = Cmp.getOperand(0);
23633  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
23634                               DAG.getConstant(1, CmpOp0.getValueType()));
23635
23636  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
23637  if (CC == X86::COND_NE)
23638    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
23639                       DL, OtherVal.getValueType(), OtherVal,
23640                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
23641  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
23642                     DL, OtherVal.getValueType(), OtherVal,
23643                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
23644}
23645
23646/// PerformADDCombine - Do target-specific dag combines on integer adds.
23647static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
23648                                 const X86Subtarget *Subtarget) {
23649  EVT VT = N->getValueType(0);
23650  SDValue Op0 = N->getOperand(0);
23651  SDValue Op1 = N->getOperand(1);
23652
23653  // Try to synthesize horizontal adds from adds of shuffles.
23654  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
23655       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
23656      isHorizontalBinOp(Op0, Op1, true))
23657    return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1);
23658
23659  return OptimizeConditionalInDecrement(N, DAG);
23660}
23661
23662static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
23663                                 const X86Subtarget *Subtarget) {
23664  SDValue Op0 = N->getOperand(0);
23665  SDValue Op1 = N->getOperand(1);
23666
23667  // X86 can't encode an immediate LHS of a sub. See if we can push the
23668  // negation into a preceding instruction.
23669  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
23670    // If the RHS of the sub is a XOR with one use and a constant, invert the
23671    // immediate. Then add one to the LHS of the sub so we can turn
23672    // X-Y -> X+~Y+1, saving one register.
23673    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
23674        isa<ConstantSDNode>(Op1.getOperand(1))) {
23675      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
23676      EVT VT = Op0.getValueType();
23677      SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
23678                                   Op1.getOperand(0),
23679                                   DAG.getConstant(~XorC, VT));
23680      return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
23681                         DAG.getConstant(C->getAPIntValue()+1, VT));
23682    }
23683  }
23684
23685  // Try to synthesize horizontal adds from adds of shuffles.
23686  EVT VT = N->getValueType(0);
23687  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
23688       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
23689      isHorizontalBinOp(Op0, Op1, true))
23690    return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1);
23691
23692  return OptimizeConditionalInDecrement(N, DAG);
23693}
23694
23695/// performVZEXTCombine - Performs build vector combines
23696static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
23697                                   TargetLowering::DAGCombinerInfo &DCI,
23698                                   const X86Subtarget *Subtarget) {
23699  SDLoc DL(N);
23700  MVT VT = N->getSimpleValueType(0);
23701  SDValue Op = N->getOperand(0);
23702  MVT OpVT = Op.getSimpleValueType();
23703  MVT OpEltVT = OpVT.getVectorElementType();
23704  unsigned InputBits = OpEltVT.getSizeInBits() * VT.getVectorNumElements();
23705
23706  // (vzext (bitcast (vzext (x)) -> (vzext x)
23707  SDValue V = Op;
23708  while (V.getOpcode() == ISD::BITCAST)
23709    V = V.getOperand(0);
23710
23711  if (V != Op && V.getOpcode() == X86ISD::VZEXT) {
23712    MVT InnerVT = V.getSimpleValueType();
23713    MVT InnerEltVT = InnerVT.getVectorElementType();
23714
23715    // If the element sizes match exactly, we can just do one larger vzext. This
23716    // is always an exact type match as vzext operates on integer types.
23717    if (OpEltVT == InnerEltVT) {
23718      assert(OpVT == InnerVT && "Types must match for vzext!");
23719      return DAG.getNode(X86ISD::VZEXT, DL, VT, V.getOperand(0));
23720    }
23721
23722    // The only other way we can combine them is if only a single element of the
23723    // inner vzext is used in the input to the outer vzext.
23724    if (InnerEltVT.getSizeInBits() < InputBits)
23725      return SDValue();
23726
23727    // In this case, the inner vzext is completely dead because we're going to
23728    // only look at bits inside of the low element. Just do the outer vzext on
23729    // a bitcast of the input to the inner.
23730    return DAG.getNode(X86ISD::VZEXT, DL, VT,
23731                       DAG.getNode(ISD::BITCAST, DL, OpVT, V));
23732  }
23733
23734  // Check if we can bypass extracting and re-inserting an element of an input
23735  // vector. Essentialy:
23736  // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
23737  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR &&
23738      V.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
23739      V.getOperand(0).getSimpleValueType().getSizeInBits() == InputBits) {
23740    SDValue ExtractedV = V.getOperand(0);
23741    SDValue OrigV = ExtractedV.getOperand(0);
23742    if (auto *ExtractIdx = dyn_cast<ConstantSDNode>(ExtractedV.getOperand(1)))
23743      if (ExtractIdx->getZExtValue() == 0) {
23744        MVT OrigVT = OrigV.getSimpleValueType();
23745        // Extract a subvector if necessary...
23746        if (OrigVT.getSizeInBits() > OpVT.getSizeInBits()) {
23747          int Ratio = OrigVT.getSizeInBits() / OpVT.getSizeInBits();
23748          OrigVT = MVT::getVectorVT(OrigVT.getVectorElementType(),
23749                                    OrigVT.getVectorNumElements() / Ratio);
23750          OrigV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigVT, OrigV,
23751                              DAG.getIntPtrConstant(0));
23752        }
23753        Op = DAG.getNode(ISD::BITCAST, DL, OpVT, OrigV);
23754        return DAG.getNode(X86ISD::VZEXT, DL, VT, Op);
23755      }
23756  }
23757
23758  return SDValue();
23759}
23760
23761SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
23762                                             DAGCombinerInfo &DCI) const {
23763  SelectionDAG &DAG = DCI.DAG;
23764  switch (N->getOpcode()) {
23765  default: break;
23766  case ISD::EXTRACT_VECTOR_ELT:
23767    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
23768  case ISD::VSELECT:
23769  case ISD::SELECT:
23770  case X86ISD::SHRUNKBLEND:
23771    return PerformSELECTCombine(N, DAG, DCI, Subtarget);
23772  case ISD::BITCAST:        return PerformBITCASTCombine(N, DAG);
23773  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
23774  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
23775  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
23776  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
23777  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
23778  case ISD::SHL:
23779  case ISD::SRA:
23780  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
23781  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
23782  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
23783  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
23784  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
23785  case ISD::MLOAD:          return PerformMLOADCombine(N, DAG, DCI, Subtarget);
23786  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
23787  case ISD::MSTORE:         return PerformMSTORECombine(N, DAG, Subtarget);
23788  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, Subtarget);
23789  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
23790  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
23791  case X86ISD::FXOR:
23792  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
23793  case X86ISD::FMIN:
23794  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
23795  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
23796  case X86ISD::FANDN:       return PerformFANDNCombine(N, DAG);
23797  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
23798  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
23799  case ISD::ANY_EXTEND:
23800  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
23801  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
23802  case ISD::SIGN_EXTEND_INREG:
23803    return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
23804  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
23805  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG, Subtarget);
23806  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
23807  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
23808  case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
23809  case X86ISD::SHUFP:       // Handle all target specific shuffles
23810  case X86ISD::PALIGNR:
23811  case X86ISD::UNPCKH:
23812  case X86ISD::UNPCKL:
23813  case X86ISD::MOVHLPS:
23814  case X86ISD::MOVLHPS:
23815  case X86ISD::PSHUFB:
23816  case X86ISD::PSHUFD:
23817  case X86ISD::PSHUFHW:
23818  case X86ISD::PSHUFLW:
23819  case X86ISD::MOVSS:
23820  case X86ISD::MOVSD:
23821  case X86ISD::VPERMILPI:
23822  case X86ISD::VPERM2X128:
23823  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
23824  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
23825  case ISD::INTRINSIC_WO_CHAIN:
23826    return PerformINTRINSIC_WO_CHAINCombine(N, DAG, Subtarget);
23827  case X86ISD::INSERTPS: {
23828    if (getTargetMachine().getOptLevel() > CodeGenOpt::None)
23829      return PerformINSERTPSCombine(N, DAG, Subtarget);
23830    break;
23831  }
23832  case X86ISD::BLENDI:    return PerformBLENDICombine(N, DAG);
23833  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DAG, Subtarget);
23834  }
23835
23836  return SDValue();
23837}
23838
23839/// isTypeDesirableForOp - Return true if the target has native support for
23840/// the specified value type and it is 'desirable' to use the type for the
23841/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
23842/// instruction encodings are longer and some i16 instructions are slow.
23843bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
23844  if (!isTypeLegal(VT))
23845    return false;
23846  if (VT != MVT::i16)
23847    return true;
23848
23849  switch (Opc) {
23850  default:
23851    return true;
23852  case ISD::LOAD:
23853  case ISD::SIGN_EXTEND:
23854  case ISD::ZERO_EXTEND:
23855  case ISD::ANY_EXTEND:
23856  case ISD::SHL:
23857  case ISD::SRL:
23858  case ISD::SUB:
23859  case ISD::ADD:
23860  case ISD::MUL:
23861  case ISD::AND:
23862  case ISD::OR:
23863  case ISD::XOR:
23864    return false;
23865  }
23866}
23867
23868/// IsDesirableToPromoteOp - This method query the target whether it is
23869/// beneficial for dag combiner to promote the specified node. If true, it
23870/// should return the desired promotion type by reference.
23871bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
23872  EVT VT = Op.getValueType();
23873  if (VT != MVT::i16)
23874    return false;
23875
23876  bool Promote = false;
23877  bool Commute = false;
23878  switch (Op.getOpcode()) {
23879  default: break;
23880  case ISD::LOAD: {
23881    LoadSDNode *LD = cast<LoadSDNode>(Op);
23882    // If the non-extending load has a single use and it's not live out, then it
23883    // might be folded.
23884    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
23885                                                     Op.hasOneUse()*/) {
23886      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
23887             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
23888        // The only case where we'd want to promote LOAD (rather then it being
23889        // promoted as an operand is when it's only use is liveout.
23890        if (UI->getOpcode() != ISD::CopyToReg)
23891          return false;
23892      }
23893    }
23894    Promote = true;
23895    break;
23896  }
23897  case ISD::SIGN_EXTEND:
23898  case ISD::ZERO_EXTEND:
23899  case ISD::ANY_EXTEND:
23900    Promote = true;
23901    break;
23902  case ISD::SHL:
23903  case ISD::SRL: {
23904    SDValue N0 = Op.getOperand(0);
23905    // Look out for (store (shl (load), x)).
23906    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
23907      return false;
23908    Promote = true;
23909    break;
23910  }
23911  case ISD::ADD:
23912  case ISD::MUL:
23913  case ISD::AND:
23914  case ISD::OR:
23915  case ISD::XOR:
23916    Commute = true;
23917    // fallthrough
23918  case ISD::SUB: {
23919    SDValue N0 = Op.getOperand(0);
23920    SDValue N1 = Op.getOperand(1);
23921    if (!Commute && MayFoldLoad(N1))
23922      return false;
23923    // Avoid disabling potential load folding opportunities.
23924    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
23925      return false;
23926    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
23927      return false;
23928    Promote = true;
23929  }
23930  }
23931
23932  PVT = MVT::i32;
23933  return Promote;
23934}
23935
23936//===----------------------------------------------------------------------===//
23937//                           X86 Inline Assembly Support
23938//===----------------------------------------------------------------------===//
23939
23940// Helper to match a string separated by whitespace.
23941static bool matchAsm(StringRef S, ArrayRef<const char *> Pieces) {
23942  S = S.substr(S.find_first_not_of(" \t")); // Skip leading whitespace.
23943
23944  for (StringRef Piece : Pieces) {
23945    if (!S.startswith(Piece)) // Check if the piece matches.
23946      return false;
23947
23948    S = S.substr(Piece.size());
23949    StringRef::size_type Pos = S.find_first_not_of(" \t");
23950    if (Pos == 0) // We matched a prefix.
23951      return false;
23952
23953    S = S.substr(Pos);
23954  }
23955
23956  return S.empty();
23957}
23958
23959static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) {
23960
23961  if (AsmPieces.size() == 3 || AsmPieces.size() == 4) {
23962    if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") &&
23963        std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") &&
23964        std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) {
23965
23966      if (AsmPieces.size() == 3)
23967        return true;
23968      else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}"))
23969        return true;
23970    }
23971  }
23972  return false;
23973}
23974
23975bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
23976  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
23977
23978  std::string AsmStr = IA->getAsmString();
23979
23980  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
23981  if (!Ty || Ty->getBitWidth() % 16 != 0)
23982    return false;
23983
23984  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
23985  SmallVector<StringRef, 4> AsmPieces;
23986  SplitString(AsmStr, AsmPieces, ";\n");
23987
23988  switch (AsmPieces.size()) {
23989  default: return false;
23990  case 1:
23991    // FIXME: this should verify that we are targeting a 486 or better.  If not,
23992    // we will turn this bswap into something that will be lowered to logical
23993    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
23994    // lower so don't worry about this.
23995    // bswap $0
23996    if (matchAsm(AsmPieces[0], {"bswap", "$0"}) ||
23997        matchAsm(AsmPieces[0], {"bswapl", "$0"}) ||
23998        matchAsm(AsmPieces[0], {"bswapq", "$0"}) ||
23999        matchAsm(AsmPieces[0], {"bswap", "${0:q}"}) ||
24000        matchAsm(AsmPieces[0], {"bswapl", "${0:q}"}) ||
24001        matchAsm(AsmPieces[0], {"bswapq", "${0:q}"})) {
24002      // No need to check constraints, nothing other than the equivalent of
24003      // "=r,0" would be valid here.
24004      return IntrinsicLowering::LowerToByteSwap(CI);
24005    }
24006
24007    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
24008    if (CI->getType()->isIntegerTy(16) &&
24009        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
24010        (matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) ||
24011         matchAsm(AsmPieces[0], {"rolw", "$$8,", "${0:w}"}))) {
24012      AsmPieces.clear();
24013      const std::string &ConstraintsStr = IA->getConstraintString();
24014      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
24015      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
24016      if (clobbersFlagRegisters(AsmPieces))
24017        return IntrinsicLowering::LowerToByteSwap(CI);
24018    }
24019    break;
24020  case 3:
24021    if (CI->getType()->isIntegerTy(32) &&
24022        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
24023        matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) &&
24024        matchAsm(AsmPieces[1], {"rorl", "$$16,", "$0"}) &&
24025        matchAsm(AsmPieces[2], {"rorw", "$$8,", "${0:w}"})) {
24026      AsmPieces.clear();
24027      const std::string &ConstraintsStr = IA->getConstraintString();
24028      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
24029      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
24030      if (clobbersFlagRegisters(AsmPieces))
24031        return IntrinsicLowering::LowerToByteSwap(CI);
24032    }
24033
24034    if (CI->getType()->isIntegerTy(64)) {
24035      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
24036      if (Constraints.size() >= 2 &&
24037          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
24038          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
24039        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
24040        if (matchAsm(AsmPieces[0], {"bswap", "%eax"}) &&
24041            matchAsm(AsmPieces[1], {"bswap", "%edx"}) &&
24042            matchAsm(AsmPieces[2], {"xchgl", "%eax,", "%edx"}))
24043          return IntrinsicLowering::LowerToByteSwap(CI);
24044      }
24045    }
24046    break;
24047  }
24048  return false;
24049}
24050
24051/// getConstraintType - Given a constraint letter, return the type of
24052/// constraint it is for this target.
24053X86TargetLowering::ConstraintType
24054X86TargetLowering::getConstraintType(const std::string &Constraint) const {
24055  if (Constraint.size() == 1) {
24056    switch (Constraint[0]) {
24057    case 'R':
24058    case 'q':
24059    case 'Q':
24060    case 'f':
24061    case 't':
24062    case 'u':
24063    case 'y':
24064    case 'x':
24065    case 'Y':
24066    case 'l':
24067      return C_RegisterClass;
24068    case 'a':
24069    case 'b':
24070    case 'c':
24071    case 'd':
24072    case 'S':
24073    case 'D':
24074    case 'A':
24075      return C_Register;
24076    case 'I':
24077    case 'J':
24078    case 'K':
24079    case 'L':
24080    case 'M':
24081    case 'N':
24082    case 'G':
24083    case 'C':
24084    case 'e':
24085    case 'Z':
24086      return C_Other;
24087    default:
24088      break;
24089    }
24090  }
24091  return TargetLowering::getConstraintType(Constraint);
24092}
24093
24094/// Examine constraint type and operand type and determine a weight value.
24095/// This object must already have been set up with the operand type
24096/// and the current alternative constraint selected.
24097TargetLowering::ConstraintWeight
24098  X86TargetLowering::getSingleConstraintMatchWeight(
24099    AsmOperandInfo &info, const char *constraint) const {
24100  ConstraintWeight weight = CW_Invalid;
24101  Value *CallOperandVal = info.CallOperandVal;
24102    // If we don't have a value, we can't do a match,
24103    // but allow it at the lowest weight.
24104  if (!CallOperandVal)
24105    return CW_Default;
24106  Type *type = CallOperandVal->getType();
24107  // Look at the constraint type.
24108  switch (*constraint) {
24109  default:
24110    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
24111  case 'R':
24112  case 'q':
24113  case 'Q':
24114  case 'a':
24115  case 'b':
24116  case 'c':
24117  case 'd':
24118  case 'S':
24119  case 'D':
24120  case 'A':
24121    if (CallOperandVal->getType()->isIntegerTy())
24122      weight = CW_SpecificReg;
24123    break;
24124  case 'f':
24125  case 't':
24126  case 'u':
24127    if (type->isFloatingPointTy())
24128      weight = CW_SpecificReg;
24129    break;
24130  case 'y':
24131    if (type->isX86_MMXTy() && Subtarget->hasMMX())
24132      weight = CW_SpecificReg;
24133    break;
24134  case 'x':
24135  case 'Y':
24136    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
24137        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
24138      weight = CW_Register;
24139    break;
24140  case 'I':
24141    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
24142      if (C->getZExtValue() <= 31)
24143        weight = CW_Constant;
24144    }
24145    break;
24146  case 'J':
24147    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
24148      if (C->getZExtValue() <= 63)
24149        weight = CW_Constant;
24150    }
24151    break;
24152  case 'K':
24153    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
24154      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
24155        weight = CW_Constant;
24156    }
24157    break;
24158  case 'L':
24159    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
24160      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
24161        weight = CW_Constant;
24162    }
24163    break;
24164  case 'M':
24165    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
24166      if (C->getZExtValue() <= 3)
24167        weight = CW_Constant;
24168    }
24169    break;
24170  case 'N':
24171    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
24172      if (C->getZExtValue() <= 0xff)
24173        weight = CW_Constant;
24174    }
24175    break;
24176  case 'G':
24177  case 'C':
24178    if (dyn_cast<ConstantFP>(CallOperandVal)) {
24179      weight = CW_Constant;
24180    }
24181    break;
24182  case 'e':
24183    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
24184      if ((C->getSExtValue() >= -0x80000000LL) &&
24185          (C->getSExtValue() <= 0x7fffffffLL))
24186        weight = CW_Constant;
24187    }
24188    break;
24189  case 'Z':
24190    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
24191      if (C->getZExtValue() <= 0xffffffff)
24192        weight = CW_Constant;
24193    }
24194    break;
24195  }
24196  return weight;
24197}
24198
24199/// LowerXConstraint - try to replace an X constraint, which matches anything,
24200/// with another that has more specific requirements based on the type of the
24201/// corresponding operand.
24202const char *X86TargetLowering::
24203LowerXConstraint(EVT ConstraintVT) const {
24204  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
24205  // 'f' like normal targets.
24206  if (ConstraintVT.isFloatingPoint()) {
24207    if (Subtarget->hasSSE2())
24208      return "Y";
24209    if (Subtarget->hasSSE1())
24210      return "x";
24211  }
24212
24213  return TargetLowering::LowerXConstraint(ConstraintVT);
24214}
24215
24216/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
24217/// vector.  If it is invalid, don't add anything to Ops.
24218void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
24219                                                     std::string &Constraint,
24220                                                     std::vector<SDValue>&Ops,
24221                                                     SelectionDAG &DAG) const {
24222  SDValue Result;
24223
24224  // Only support length 1 constraints for now.
24225  if (Constraint.length() > 1) return;
24226
24227  char ConstraintLetter = Constraint[0];
24228  switch (ConstraintLetter) {
24229  default: break;
24230  case 'I':
24231    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24232      if (C->getZExtValue() <= 31) {
24233        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
24234        break;
24235      }
24236    }
24237    return;
24238  case 'J':
24239    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24240      if (C->getZExtValue() <= 63) {
24241        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
24242        break;
24243      }
24244    }
24245    return;
24246  case 'K':
24247    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24248      if (isInt<8>(C->getSExtValue())) {
24249        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
24250        break;
24251      }
24252    }
24253    return;
24254  case 'L':
24255    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24256      if (C->getZExtValue() == 0xff || C->getZExtValue() == 0xffff ||
24257          (Subtarget->is64Bit() && C->getZExtValue() == 0xffffffff)) {
24258        Result = DAG.getTargetConstant(C->getSExtValue(), Op.getValueType());
24259        break;
24260      }
24261    }
24262    return;
24263  case 'M':
24264    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24265      if (C->getZExtValue() <= 3) {
24266        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
24267        break;
24268      }
24269    }
24270    return;
24271  case 'N':
24272    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24273      if (C->getZExtValue() <= 255) {
24274        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
24275        break;
24276      }
24277    }
24278    return;
24279  case 'O':
24280    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24281      if (C->getZExtValue() <= 127) {
24282        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
24283        break;
24284      }
24285    }
24286    return;
24287  case 'e': {
24288    // 32-bit signed value
24289    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24290      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
24291                                           C->getSExtValue())) {
24292        // Widen to 64 bits here to get it sign extended.
24293        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
24294        break;
24295      }
24296    // FIXME gcc accepts some relocatable values here too, but only in certain
24297    // memory models; it's complicated.
24298    }
24299    return;
24300  }
24301  case 'Z': {
24302    // 32-bit unsigned value
24303    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
24304      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
24305                                           C->getZExtValue())) {
24306        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
24307        break;
24308      }
24309    }
24310    // FIXME gcc accepts some relocatable values here too, but only in certain
24311    // memory models; it's complicated.
24312    return;
24313  }
24314  case 'i': {
24315    // Literal immediates are always ok.
24316    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
24317      // Widen to 64 bits here to get it sign extended.
24318      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
24319      break;
24320    }
24321
24322    // In any sort of PIC mode addresses need to be computed at runtime by
24323    // adding in a register or some sort of table lookup.  These can't
24324    // be used as immediates.
24325    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
24326      return;
24327
24328    // If we are in non-pic codegen mode, we allow the address of a global (with
24329    // an optional displacement) to be used with 'i'.
24330    GlobalAddressSDNode *GA = nullptr;
24331    int64_t Offset = 0;
24332
24333    // Match either (GA), (GA+C), (GA+C1+C2), etc.
24334    while (1) {
24335      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
24336        Offset += GA->getOffset();
24337        break;
24338      } else if (Op.getOpcode() == ISD::ADD) {
24339        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
24340          Offset += C->getZExtValue();
24341          Op = Op.getOperand(0);
24342          continue;
24343        }
24344      } else if (Op.getOpcode() == ISD::SUB) {
24345        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
24346          Offset += -C->getZExtValue();
24347          Op = Op.getOperand(0);
24348          continue;
24349        }
24350      }
24351
24352      // Otherwise, this isn't something we can handle, reject it.
24353      return;
24354    }
24355
24356    const GlobalValue *GV = GA->getGlobal();
24357    // If we require an extra load to get this address, as in PIC mode, we
24358    // can't accept it.
24359    if (isGlobalStubReference(
24360            Subtarget->ClassifyGlobalReference(GV, DAG.getTarget())))
24361      return;
24362
24363    Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
24364                                        GA->getValueType(0), Offset);
24365    break;
24366  }
24367  }
24368
24369  if (Result.getNode()) {
24370    Ops.push_back(Result);
24371    return;
24372  }
24373  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
24374}
24375
24376std::pair<unsigned, const TargetRegisterClass *>
24377X86TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
24378                                                const std::string &Constraint,
24379                                                MVT VT) const {
24380  // First, see if this is a constraint that directly corresponds to an LLVM
24381  // register class.
24382  if (Constraint.size() == 1) {
24383    // GCC Constraint Letters
24384    switch (Constraint[0]) {
24385    default: break;
24386      // TODO: Slight differences here in allocation order and leaving
24387      // RIP in the class. Do they matter any more here than they do
24388      // in the normal allocation?
24389    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
24390      if (Subtarget->is64Bit()) {
24391        if (VT == MVT::i32 || VT == MVT::f32)
24392          return std::make_pair(0U, &X86::GR32RegClass);
24393        if (VT == MVT::i16)
24394          return std::make_pair(0U, &X86::GR16RegClass);
24395        if (VT == MVT::i8 || VT == MVT::i1)
24396          return std::make_pair(0U, &X86::GR8RegClass);
24397        if (VT == MVT::i64 || VT == MVT::f64)
24398          return std::make_pair(0U, &X86::GR64RegClass);
24399        break;
24400      }
24401      // 32-bit fallthrough
24402    case 'Q':   // Q_REGS
24403      if (VT == MVT::i32 || VT == MVT::f32)
24404        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
24405      if (VT == MVT::i16)
24406        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
24407      if (VT == MVT::i8 || VT == MVT::i1)
24408        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
24409      if (VT == MVT::i64)
24410        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
24411      break;
24412    case 'r':   // GENERAL_REGS
24413    case 'l':   // INDEX_REGS
24414      if (VT == MVT::i8 || VT == MVT::i1)
24415        return std::make_pair(0U, &X86::GR8RegClass);
24416      if (VT == MVT::i16)
24417        return std::make_pair(0U, &X86::GR16RegClass);
24418      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
24419        return std::make_pair(0U, &X86::GR32RegClass);
24420      return std::make_pair(0U, &X86::GR64RegClass);
24421    case 'R':   // LEGACY_REGS
24422      if (VT == MVT::i8 || VT == MVT::i1)
24423        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
24424      if (VT == MVT::i16)
24425        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
24426      if (VT == MVT::i32 || !Subtarget->is64Bit())
24427        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
24428      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
24429    case 'f':  // FP Stack registers.
24430      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
24431      // value to the correct fpstack register class.
24432      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
24433        return std::make_pair(0U, &X86::RFP32RegClass);
24434      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
24435        return std::make_pair(0U, &X86::RFP64RegClass);
24436      return std::make_pair(0U, &X86::RFP80RegClass);
24437    case 'y':   // MMX_REGS if MMX allowed.
24438      if (!Subtarget->hasMMX()) break;
24439      return std::make_pair(0U, &X86::VR64RegClass);
24440    case 'Y':   // SSE_REGS if SSE2 allowed
24441      if (!Subtarget->hasSSE2()) break;
24442      // FALL THROUGH.
24443    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
24444      if (!Subtarget->hasSSE1()) break;
24445
24446      switch (VT.SimpleTy) {
24447      default: break;
24448      // Scalar SSE types.
24449      case MVT::f32:
24450      case MVT::i32:
24451        return std::make_pair(0U, &X86::FR32RegClass);
24452      case MVT::f64:
24453      case MVT::i64:
24454        return std::make_pair(0U, &X86::FR64RegClass);
24455      // Vector types.
24456      case MVT::v16i8:
24457      case MVT::v8i16:
24458      case MVT::v4i32:
24459      case MVT::v2i64:
24460      case MVT::v4f32:
24461      case MVT::v2f64:
24462        return std::make_pair(0U, &X86::VR128RegClass);
24463      // AVX types.
24464      case MVT::v32i8:
24465      case MVT::v16i16:
24466      case MVT::v8i32:
24467      case MVT::v4i64:
24468      case MVT::v8f32:
24469      case MVT::v4f64:
24470        return std::make_pair(0U, &X86::VR256RegClass);
24471      case MVT::v8f64:
24472      case MVT::v16f32:
24473      case MVT::v16i32:
24474      case MVT::v8i64:
24475        return std::make_pair(0U, &X86::VR512RegClass);
24476      }
24477      break;
24478    }
24479  }
24480
24481  // Use the default implementation in TargetLowering to convert the register
24482  // constraint into a member of a register class.
24483  std::pair<unsigned, const TargetRegisterClass*> Res;
24484  Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
24485
24486  // Not found as a standard register?
24487  if (!Res.second) {
24488    // Map st(0) -> st(7) -> ST0
24489    if (Constraint.size() == 7 && Constraint[0] == '{' &&
24490        tolower(Constraint[1]) == 's' &&
24491        tolower(Constraint[2]) == 't' &&
24492        Constraint[3] == '(' &&
24493        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
24494        Constraint[5] == ')' &&
24495        Constraint[6] == '}') {
24496
24497      Res.first = X86::FP0+Constraint[4]-'0';
24498      Res.second = &X86::RFP80RegClass;
24499      return Res;
24500    }
24501
24502    // GCC allows "st(0)" to be called just plain "st".
24503    if (StringRef("{st}").equals_lower(Constraint)) {
24504      Res.first = X86::FP0;
24505      Res.second = &X86::RFP80RegClass;
24506      return Res;
24507    }
24508
24509    // flags -> EFLAGS
24510    if (StringRef("{flags}").equals_lower(Constraint)) {
24511      Res.first = X86::EFLAGS;
24512      Res.second = &X86::CCRRegClass;
24513      return Res;
24514    }
24515
24516    // 'A' means EAX + EDX.
24517    if (Constraint == "A") {
24518      Res.first = X86::EAX;
24519      Res.second = &X86::GR32_ADRegClass;
24520      return Res;
24521    }
24522    return Res;
24523  }
24524
24525  // Otherwise, check to see if this is a register class of the wrong value
24526  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
24527  // turn into {ax},{dx}.
24528  if (Res.second->hasType(VT))
24529    return Res;   // Correct type already, nothing to do.
24530
24531  // All of the single-register GCC register classes map their values onto
24532  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
24533  // really want an 8-bit or 32-bit register, map to the appropriate register
24534  // class and return the appropriate register.
24535  if (Res.second == &X86::GR16RegClass) {
24536    if (VT == MVT::i8 || VT == MVT::i1) {
24537      unsigned DestReg = 0;
24538      switch (Res.first) {
24539      default: break;
24540      case X86::AX: DestReg = X86::AL; break;
24541      case X86::DX: DestReg = X86::DL; break;
24542      case X86::CX: DestReg = X86::CL; break;
24543      case X86::BX: DestReg = X86::BL; break;
24544      }
24545      if (DestReg) {
24546        Res.first = DestReg;
24547        Res.second = &X86::GR8RegClass;
24548      }
24549    } else if (VT == MVT::i32 || VT == MVT::f32) {
24550      unsigned DestReg = 0;
24551      switch (Res.first) {
24552      default: break;
24553      case X86::AX: DestReg = X86::EAX; break;
24554      case X86::DX: DestReg = X86::EDX; break;
24555      case X86::CX: DestReg = X86::ECX; break;
24556      case X86::BX: DestReg = X86::EBX; break;
24557      case X86::SI: DestReg = X86::ESI; break;
24558      case X86::DI: DestReg = X86::EDI; break;
24559      case X86::BP: DestReg = X86::EBP; break;
24560      case X86::SP: DestReg = X86::ESP; break;
24561      }
24562      if (DestReg) {
24563        Res.first = DestReg;
24564        Res.second = &X86::GR32RegClass;
24565      }
24566    } else if (VT == MVT::i64 || VT == MVT::f64) {
24567      unsigned DestReg = 0;
24568      switch (Res.first) {
24569      default: break;
24570      case X86::AX: DestReg = X86::RAX; break;
24571      case X86::DX: DestReg = X86::RDX; break;
24572      case X86::CX: DestReg = X86::RCX; break;
24573      case X86::BX: DestReg = X86::RBX; break;
24574      case X86::SI: DestReg = X86::RSI; break;
24575      case X86::DI: DestReg = X86::RDI; break;
24576      case X86::BP: DestReg = X86::RBP; break;
24577      case X86::SP: DestReg = X86::RSP; break;
24578      }
24579      if (DestReg) {
24580        Res.first = DestReg;
24581        Res.second = &X86::GR64RegClass;
24582      }
24583    }
24584  } else if (Res.second == &X86::FR32RegClass ||
24585             Res.second == &X86::FR64RegClass ||
24586             Res.second == &X86::VR128RegClass ||
24587             Res.second == &X86::VR256RegClass ||
24588             Res.second == &X86::FR32XRegClass ||
24589             Res.second == &X86::FR64XRegClass ||
24590             Res.second == &X86::VR128XRegClass ||
24591             Res.second == &X86::VR256XRegClass ||
24592             Res.second == &X86::VR512RegClass) {
24593    // Handle references to XMM physical registers that got mapped into the
24594    // wrong class.  This can happen with constraints like {xmm0} where the
24595    // target independent register mapper will just pick the first match it can
24596    // find, ignoring the required type.
24597
24598    if (VT == MVT::f32 || VT == MVT::i32)
24599      Res.second = &X86::FR32RegClass;
24600    else if (VT == MVT::f64 || VT == MVT::i64)
24601      Res.second = &X86::FR64RegClass;
24602    else if (X86::VR128RegClass.hasType(VT))
24603      Res.second = &X86::VR128RegClass;
24604    else if (X86::VR256RegClass.hasType(VT))
24605      Res.second = &X86::VR256RegClass;
24606    else if (X86::VR512RegClass.hasType(VT))
24607      Res.second = &X86::VR512RegClass;
24608  }
24609
24610  return Res;
24611}
24612
24613int X86TargetLowering::getScalingFactorCost(const AddrMode &AM,
24614                                            Type *Ty) const {
24615  // Scaling factors are not free at all.
24616  // An indexed folded instruction, i.e., inst (reg1, reg2, scale),
24617  // will take 2 allocations in the out of order engine instead of 1
24618  // for plain addressing mode, i.e. inst (reg1).
24619  // E.g.,
24620  // vaddps (%rsi,%drx), %ymm0, %ymm1
24621  // Requires two allocations (one for the load, one for the computation)
24622  // whereas:
24623  // vaddps (%rsi), %ymm0, %ymm1
24624  // Requires just 1 allocation, i.e., freeing allocations for other operations
24625  // and having less micro operations to execute.
24626  //
24627  // For some X86 architectures, this is even worse because for instance for
24628  // stores, the complex addressing mode forces the instruction to use the
24629  // "load" ports instead of the dedicated "store" port.
24630  // E.g., on Haswell:
24631  // vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3.
24632  // vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
24633  if (isLegalAddressingMode(AM, Ty))
24634    // Scale represents reg2 * scale, thus account for 1
24635    // as soon as we use a second register.
24636    return AM.Scale != 0;
24637  return -1;
24638}
24639
24640bool X86TargetLowering::isTargetFTOL() const {
24641  return Subtarget->isTargetKnownWindowsMSVC() && !Subtarget->is64Bit();
24642}
24643