X86ISelLowering.cpp revision 4ee451de366474b9c228b4e5fa573795a715216d
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/VectorExtras.h"
28#include "llvm/Analysis/ScalarEvolutionExpressions.h"
29#include "llvm/CodeGen/CallingConvLower.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/SelectionDAG.h"
34#include "llvm/CodeGen/SSARegMap.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/StringExtras.h"
40#include "llvm/ParameterAttributes.h"
41using namespace llvm;
42
43X86TargetLowering::X86TargetLowering(TargetMachine &TM)
44  : TargetLowering(TM) {
45  Subtarget = &TM.getSubtarget<X86Subtarget>();
46  X86ScalarSSEf64 = Subtarget->hasSSE2();
47  X86ScalarSSEf32 = Subtarget->hasSSE1();
48  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
49
50
51  RegInfo = TM.getRegisterInfo();
52
53  // Set up the TargetLowering object.
54
55  // X86 is weird, it always uses i8 for shift amounts and setcc results.
56  setShiftAmountType(MVT::i8);
57  setSetCCResultType(MVT::i8);
58  setSetCCResultContents(ZeroOrOneSetCCResult);
59  setSchedulingPreference(SchedulingForRegPressure);
60  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
61  setStackPointerRegisterToSaveRestore(X86StackPtr);
62
63  if (Subtarget->isTargetDarwin()) {
64    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
65    setUseUnderscoreSetJmp(false);
66    setUseUnderscoreLongJmp(false);
67  } else if (Subtarget->isTargetMingw()) {
68    // MS runtime is weird: it exports _setjmp, but longjmp!
69    setUseUnderscoreSetJmp(true);
70    setUseUnderscoreLongJmp(false);
71  } else {
72    setUseUnderscoreSetJmp(true);
73    setUseUnderscoreLongJmp(true);
74  }
75
76  // Set up the register classes.
77  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
78  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
79  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
80  if (Subtarget->is64Bit())
81    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
82
83  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
84
85  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
86  // operation.
87  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
88  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
89  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
90
91  if (Subtarget->is64Bit()) {
92    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
93    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
94  } else {
95    if (X86ScalarSSEf64)
96      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
97      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
98    else
99      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
100  }
101
102  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
103  // this operation.
104  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
105  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
106  // SSE has no i16 to fp conversion, only i32
107  if (X86ScalarSSEf32) {
108    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
109    // f32 and f64 cases are Legal, f80 case is not
110    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
111  } else {
112    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
113    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
114  }
115
116  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
117  // are Legal, f80 is custom lowered.
118  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
119  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
120
121  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
122  // this operation.
123  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
124  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
125
126  if (X86ScalarSSEf32) {
127    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
128    // f32 and f64 cases are Legal, f80 case is not
129    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
130  } else {
131    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
132    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
133  }
134
135  // Handle FP_TO_UINT by promoting the destination to a larger signed
136  // conversion.
137  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
138  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
139  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
140
141  if (Subtarget->is64Bit()) {
142    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
143    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
144  } else {
145    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
146      // Expand FP_TO_UINT into a select.
147      // FIXME: We would like to use a Custom expander here eventually to do
148      // the optimal thing for SSE vs. the default expansion in the legalizer.
149      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
150    else
151      // With SSE3 we can use fisttpll to convert to a signed i64.
152      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
153  }
154
155  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
156  if (!X86ScalarSSEf64) {
157    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
158    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
159  }
160
161  // Scalar integer multiply, multiply-high, divide, and remainder are
162  // lowered to use operations that produce two results, to match the
163  // available instructions. This exposes the two-result form to trivial
164  // CSE, which is able to combine x/y and x%y into a single instruction,
165  // for example. The single-result multiply instructions are introduced
166  // in X86ISelDAGToDAG.cpp, after CSE, for uses where the the high part
167  // is not needed.
168  setOperationAction(ISD::MUL             , MVT::i8    , Expand);
169  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
170  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
171  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
172  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
173  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
174  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
175  setOperationAction(ISD::MUL             , MVT::i16   , Expand);
176  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
177  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
178  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
179  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
180  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
181  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
182  setOperationAction(ISD::MUL             , MVT::i32   , Expand);
183  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
184  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
185  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
186  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
187  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
188  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
189  setOperationAction(ISD::MUL             , MVT::i64   , Expand);
190  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
191  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
192  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
193  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
194  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
195  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
196
197  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
198  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
199  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
200  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
201  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
202  if (Subtarget->is64Bit())
203    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
204  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
205  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
206  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
207  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
208  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
209  setOperationAction(ISD::FLT_ROUNDS       , MVT::i32  , Custom);
210
211  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
212  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
213  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
214  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
215  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
216  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
217  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
218  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
219  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
220  if (Subtarget->is64Bit()) {
221    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
222    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
223    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
224  }
225
226  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
227  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
228
229  // These should be promoted to a larger select which is supported.
230  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
231  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
232  // X86 wants to expand cmov itself.
233  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
234  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
235  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
236  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
237  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
238  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
239  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
240  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
241  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
242  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
243  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
244  if (Subtarget->is64Bit()) {
245    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
246    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
247  }
248  // X86 ret instruction may pop stack.
249  setOperationAction(ISD::RET             , MVT::Other, Custom);
250  if (!Subtarget->is64Bit())
251    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
252
253  // Darwin ABI issue.
254  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
255  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
256  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
257  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
258  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
259  if (Subtarget->is64Bit()) {
260    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
261    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
262    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
263    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
264  }
265  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
266  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
267  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
268  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
269  // X86 wants to expand memset / memcpy itself.
270  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
271  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
272
273  // Use the default ISD::LOCATION expansion.
274  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
275  // FIXME - use subtarget debug flags
276  if (!Subtarget->isTargetDarwin() &&
277      !Subtarget->isTargetELF() &&
278      !Subtarget->isTargetCygMing())
279    setOperationAction(ISD::LABEL, MVT::Other, Expand);
280
281  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
282  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
283  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
284  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
285  if (Subtarget->is64Bit()) {
286    // FIXME: Verify
287    setExceptionPointerRegister(X86::RAX);
288    setExceptionSelectorRegister(X86::RDX);
289  } else {
290    setExceptionPointerRegister(X86::EAX);
291    setExceptionSelectorRegister(X86::EDX);
292  }
293  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
294
295  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
296
297  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
298  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
299  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
300  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
301  if (Subtarget->is64Bit())
302    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
303  else
304    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
305
306  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
307  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
308  if (Subtarget->is64Bit())
309    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
310  if (Subtarget->isTargetCygMing())
311    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
312  else
313    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
314
315  if (X86ScalarSSEf64) {
316    // f32 and f64 use SSE.
317    // Set up the FP register classes.
318    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
319    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
320
321    // Use ANDPD to simulate FABS.
322    setOperationAction(ISD::FABS , MVT::f64, Custom);
323    setOperationAction(ISD::FABS , MVT::f32, Custom);
324
325    // Use XORP to simulate FNEG.
326    setOperationAction(ISD::FNEG , MVT::f64, Custom);
327    setOperationAction(ISD::FNEG , MVT::f32, Custom);
328
329    // Use ANDPD and ORPD to simulate FCOPYSIGN.
330    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
331    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
332
333    // We don't support sin/cos/fmod
334    setOperationAction(ISD::FSIN , MVT::f64, Expand);
335    setOperationAction(ISD::FCOS , MVT::f64, Expand);
336    setOperationAction(ISD::FREM , MVT::f64, Expand);
337    setOperationAction(ISD::FSIN , MVT::f32, Expand);
338    setOperationAction(ISD::FCOS , MVT::f32, Expand);
339    setOperationAction(ISD::FREM , MVT::f32, Expand);
340
341    // Expand FP immediates into loads from the stack, except for the special
342    // cases we handle.
343    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
344    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
345    addLegalFPImmediate(APFloat(+0.0)); // xorpd
346    addLegalFPImmediate(APFloat(+0.0f)); // xorps
347
348    // Conversions to long double (in X87) go through memory.
349    setConvertAction(MVT::f32, MVT::f80, Expand);
350    setConvertAction(MVT::f64, MVT::f80, Expand);
351
352    // Conversions from long double (in X87) go through memory.
353    setConvertAction(MVT::f80, MVT::f32, Expand);
354    setConvertAction(MVT::f80, MVT::f64, Expand);
355  } else if (X86ScalarSSEf32) {
356    // Use SSE for f32, x87 for f64.
357    // Set up the FP register classes.
358    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
359    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
360
361    // Use ANDPS to simulate FABS.
362    setOperationAction(ISD::FABS , MVT::f32, Custom);
363
364    // Use XORP to simulate FNEG.
365    setOperationAction(ISD::FNEG , MVT::f32, Custom);
366
367    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
368
369    // Use ANDPS and ORPS to simulate FCOPYSIGN.
370    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
371    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
372
373    // We don't support sin/cos/fmod
374    setOperationAction(ISD::FSIN , MVT::f32, Expand);
375    setOperationAction(ISD::FCOS , MVT::f32, Expand);
376    setOperationAction(ISD::FREM , MVT::f32, Expand);
377
378    // Expand FP immediates into loads from the stack, except for the special
379    // cases we handle.
380    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
381    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
382    addLegalFPImmediate(APFloat(+0.0f)); // xorps
383    addLegalFPImmediate(APFloat(+0.0)); // FLD0
384    addLegalFPImmediate(APFloat(+1.0)); // FLD1
385    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
386    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
387
388    // SSE->x87 conversions go through memory.
389    setConvertAction(MVT::f32, MVT::f64, Expand);
390    setConvertAction(MVT::f32, MVT::f80, Expand);
391
392    // x87->SSE truncations need to go through memory.
393    setConvertAction(MVT::f80, MVT::f32, Expand);
394    setConvertAction(MVT::f64, MVT::f32, Expand);
395    // And x87->x87 truncations also.
396    setConvertAction(MVT::f80, MVT::f64, Expand);
397
398    if (!UnsafeFPMath) {
399      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
400      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
401    }
402  } else {
403    // f32 and f64 in x87.
404    // Set up the FP register classes.
405    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
406    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
407
408    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
409    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
410    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
411    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
412
413    // Floating truncations need to go through memory.
414    setConvertAction(MVT::f80, MVT::f32, Expand);
415    setConvertAction(MVT::f64, MVT::f32, Expand);
416    setConvertAction(MVT::f80, MVT::f64, Expand);
417
418    if (!UnsafeFPMath) {
419      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
420      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
421    }
422
423    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
424    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
425    addLegalFPImmediate(APFloat(+0.0)); // FLD0
426    addLegalFPImmediate(APFloat(+1.0)); // FLD1
427    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
428    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
429    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
430    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
431    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
432    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
433  }
434
435  // Long double always uses X87.
436  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
437  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
438  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
439  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
440  if (!UnsafeFPMath) {
441    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
442    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
443  }
444
445  // Always use a library call for pow.
446  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
447  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
448  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
449
450  // First set operation action for all vector types to expand. Then we
451  // will selectively turn on ones that can be effectively codegen'd.
452  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
453       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
454    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
455    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
456    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
457    setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
458    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
459    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
460    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
461    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
462    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
463    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
464    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
465    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
466    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
467    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
468    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
469    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
470    setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
471    setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
472    setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
473    setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
474    setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
475    setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
476    setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
477    setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
478    setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
479    setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
480    setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
481    setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
482    setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
483    setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
484    setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
485    setOperationAction(ISD::SHL, (MVT::ValueType)VT, Expand);
486    setOperationAction(ISD::SRA, (MVT::ValueType)VT, Expand);
487    setOperationAction(ISD::SRL, (MVT::ValueType)VT, Expand);
488    setOperationAction(ISD::ROTL, (MVT::ValueType)VT, Expand);
489    setOperationAction(ISD::ROTR, (MVT::ValueType)VT, Expand);
490    setOperationAction(ISD::BSWAP, (MVT::ValueType)VT, Expand);
491  }
492
493  if (Subtarget->hasMMX()) {
494    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
495    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
496    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
497    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
498
499    // FIXME: add MMX packed arithmetics
500
501    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
502    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
503    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
504    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
505
506    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
507    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
508    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
509    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
510
511    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
512    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
513
514    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
515    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
516    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
517    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
518    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
519    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
520    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
521
522    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
523    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
524    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
525    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
526    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
527    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
528    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
529
530    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
531    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
532    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
533    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
534    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
535    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
536    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
537
538    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
539    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
540    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
541    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
542    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
543    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
544    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
545
546    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
547    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
548    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
549    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
550
551    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
552    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
553    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
554    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
555
556    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
557    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
558    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Custom);
559    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
560  }
561
562  if (Subtarget->hasSSE1()) {
563    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
564
565    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
566    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
567    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
568    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
569    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
570    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
571    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
572    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
573    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
574    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
575    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
576  }
577
578  if (Subtarget->hasSSE2()) {
579    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
580    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
581    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
582    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
583    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
584
585    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
586    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
587    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
588    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
589    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
590    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
591    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
592    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
593    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
594    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
595    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
596    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
597    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
598    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
599    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
600
601    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
602    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
603    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
604    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
605    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
606    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
607
608    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
609    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
610      // Do not attempt to custom lower non-power-of-2 vectors
611      if (!isPowerOf2_32(MVT::getVectorNumElements(VT)))
612        continue;
613      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
614      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
615      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
616    }
617    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
618    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
619    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
620    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
621    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
622    if (Subtarget->is64Bit())
623      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
624
625    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
626    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
627      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
628      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
629      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
630      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
631      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
632      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
633      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
634      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
635      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
636      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
637    }
638
639    // Custom lower v2i64 and v2f64 selects.
640    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
641    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
642    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
643    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
644  }
645
646  // We want to custom lower some of our intrinsics.
647  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
648
649  // We have target-specific dag combine patterns for the following nodes:
650  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
651  setTargetDAGCombine(ISD::SELECT);
652
653  computeRegisterProperties();
654
655  // FIXME: These should be based on subtarget info. Plus, the values should
656  // be smaller when we are in optimizing for size mode.
657  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
658  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
659  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
660  allowUnalignedMemoryAccesses = true; // x86 supports it!
661}
662
663
664/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
665/// jumptable.
666SDOperand X86TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
667                                                      SelectionDAG &DAG) const {
668  if (usesGlobalOffsetTable())
669    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
670  if (!Subtarget->isPICStyleRIPRel())
671    return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
672  return Table;
673}
674
675//===----------------------------------------------------------------------===//
676//               Return Value Calling Convention Implementation
677//===----------------------------------------------------------------------===//
678
679#include "X86GenCallingConv.inc"
680
681/// GetPossiblePreceedingTailCall - Get preceeding X86ISD::TAILCALL node if it
682/// exists skip possible ISD:TokenFactor.
683static SDOperand GetPossiblePreceedingTailCall(SDOperand Chain) {
684  if (Chain.getOpcode()==X86ISD::TAILCALL) {
685    return Chain;
686  } else if (Chain.getOpcode()==ISD::TokenFactor) {
687    if (Chain.getNumOperands() &&
688        Chain.getOperand(0).getOpcode()==X86ISD::TAILCALL)
689      return Chain.getOperand(0);
690  }
691  return Chain;
692}
693
694/// LowerRET - Lower an ISD::RET node.
695SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
696  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
697
698  SmallVector<CCValAssign, 16> RVLocs;
699  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
700  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
701  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
702  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
703
704  // If this is the first return lowered for this function, add the regs to the
705  // liveout set for the function.
706  if (DAG.getMachineFunction().liveout_empty()) {
707    for (unsigned i = 0; i != RVLocs.size(); ++i)
708      if (RVLocs[i].isRegLoc())
709        DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
710  }
711  SDOperand Chain = Op.getOperand(0);
712
713  // Handle tail call return.
714  Chain = GetPossiblePreceedingTailCall(Chain);
715  if (Chain.getOpcode() == X86ISD::TAILCALL) {
716    SDOperand TailCall = Chain;
717    SDOperand TargetAddress = TailCall.getOperand(1);
718    SDOperand StackAdjustment = TailCall.getOperand(2);
719    assert ( ((TargetAddress.getOpcode() == ISD::Register &&
720               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
721                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
722              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
723              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
724             "Expecting an global address, external symbol, or register");
725    assert( StackAdjustment.getOpcode() == ISD::Constant &&
726            "Expecting a const value");
727
728    SmallVector<SDOperand,8> Operands;
729    Operands.push_back(Chain.getOperand(0));
730    Operands.push_back(TargetAddress);
731    Operands.push_back(StackAdjustment);
732    // Copy registers used by the call. Last operand is a flag so it is not
733    // copied.
734    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
735      Operands.push_back(Chain.getOperand(i));
736    }
737    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
738                       Operands.size());
739  }
740
741  // Regular return.
742  SDOperand Flag;
743
744  // Copy the result values into the output registers.
745  if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
746      RVLocs[0].getLocReg() != X86::ST0) {
747    for (unsigned i = 0; i != RVLocs.size(); ++i) {
748      CCValAssign &VA = RVLocs[i];
749      assert(VA.isRegLoc() && "Can only return in registers!");
750      Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
751                               Flag);
752      Flag = Chain.getValue(1);
753    }
754  } else {
755    // We need to handle a destination of ST0 specially, because it isn't really
756    // a register.
757    SDOperand Value = Op.getOperand(1);
758
759    // If this is an FP return with ScalarSSE, we need to move the value from
760    // an XMM register onto the fp-stack.
761    if ((X86ScalarSSEf32 && RVLocs[0].getValVT()==MVT::f32) ||
762        (X86ScalarSSEf64 && RVLocs[0].getValVT()==MVT::f64)) {
763      SDOperand MemLoc;
764
765      // If this is a load into a scalarsse value, don't store the loaded value
766      // back to the stack, only to reload it: just replace the scalar-sse load.
767      if (ISD::isNON_EXTLoad(Value.Val) &&
768          (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
769        Chain  = Value.getOperand(0);
770        MemLoc = Value.getOperand(1);
771      } else {
772        // Spill the value to memory and reload it into top of stack.
773        unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
774        MachineFunction &MF = DAG.getMachineFunction();
775        int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
776        MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
777        Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
778      }
779      SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
780      SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
781      Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
782      Chain = Value.getValue(1);
783    }
784
785    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
786    SDOperand Ops[] = { Chain, Value };
787    Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
788    Flag = Chain.getValue(1);
789  }
790
791  SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
792  if (Flag.Val)
793    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
794  else
795    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
796}
797
798
799/// LowerCallResult - Lower the result values of an ISD::CALL into the
800/// appropriate copies out of appropriate physical registers.  This assumes that
801/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
802/// being lowered.  The returns a SDNode with the same number of values as the
803/// ISD::CALL.
804SDNode *X86TargetLowering::
805LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
806                unsigned CallingConv, SelectionDAG &DAG) {
807
808  // Assign locations to each value returned by this call.
809  SmallVector<CCValAssign, 16> RVLocs;
810  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
811  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
812  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
813
814  SmallVector<SDOperand, 8> ResultVals;
815
816  // Copy all of the result registers out of their specified physreg.
817  if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
818    for (unsigned i = 0; i != RVLocs.size(); ++i) {
819      Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
820                                 RVLocs[i].getValVT(), InFlag).getValue(1);
821      InFlag = Chain.getValue(2);
822      ResultVals.push_back(Chain.getValue(0));
823    }
824  } else {
825    // Copies from the FP stack are special, as ST0 isn't a valid register
826    // before the fp stackifier runs.
827
828    // Copy ST0 into an RFP register with FP_GET_RESULT.
829    SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
830    SDOperand GROps[] = { Chain, InFlag };
831    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
832    Chain  = RetVal.getValue(1);
833    InFlag = RetVal.getValue(2);
834
835    // If we are using ScalarSSE, store ST(0) to the stack and reload it into
836    // an XMM register.
837    if ((X86ScalarSSEf32 && RVLocs[0].getValVT() == MVT::f32) ||
838        (X86ScalarSSEf64 && RVLocs[0].getValVT() == MVT::f64)) {
839      SDOperand StoreLoc;
840      const Value *SrcVal = 0;
841      int SrcValOffset = 0;
842      MVT::ValueType RetStoreVT = RVLocs[0].getValVT();
843
844      // Determine where to store the value.  If the call result is directly
845      // used by a store, see if we can store directly into the location.  In
846      // this case, we'll end up producing a fst + movss[load] + movss[store] to
847      // the same location, and the two movss's will be nuked as dead.  This
848      // optimizes common things like "*D = atof(..)" to not need an
849      // intermediate stack slot.
850      if (SDOperand(TheCall, 0).hasOneUse() &&
851          SDOperand(TheCall, 1).hasOneUse()) {
852        // In addition to direct uses, we also support a FP_ROUND that uses the
853        // value, if it is directly stored somewhere.
854        SDNode *User = *TheCall->use_begin();
855        if (User->getOpcode() == ISD::FP_ROUND && User->hasOneUse())
856          User = *User->use_begin();
857
858        // Ok, we have one use of the value and one use of the chain.  See if
859        // they are the same node: a store.
860        if (StoreSDNode *N = dyn_cast<StoreSDNode>(User)) {
861          // Verify that the value being stored is either the call or a
862          // truncation of the call.
863          SDNode *StoreVal = N->getValue().Val;
864          if (StoreVal == TheCall)
865            ; // ok.
866          else if (StoreVal->getOpcode() == ISD::FP_ROUND &&
867                   StoreVal->hasOneUse() &&
868                   StoreVal->getOperand(0).Val == TheCall)
869            ; // ok.
870          else
871            N = 0;  // not ok.
872
873          if (N && N->getChain().Val == TheCall &&
874              !N->isVolatile() && !N->isTruncatingStore() &&
875              N->getAddressingMode() == ISD::UNINDEXED) {
876            StoreLoc = N->getBasePtr();
877            SrcVal = N->getSrcValue();
878            SrcValOffset = N->getSrcValueOffset();
879            RetStoreVT = N->getValue().getValueType();
880          }
881        }
882      }
883
884      // If we weren't able to optimize the result, just create a temporary
885      // stack slot.
886      if (StoreLoc.Val == 0) {
887        MachineFunction &MF = DAG.getMachineFunction();
888        int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
889        StoreLoc = DAG.getFrameIndex(SSFI, getPointerTy());
890      }
891
892      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
893      // shouldn't be necessary except that RFP cannot be live across
894      // multiple blocks (which could happen if a select gets lowered into
895      // multiple blocks and scheduled in between them). When stackifier is
896      // fixed, they can be uncoupled.
897      SDOperand Ops[] = {
898        Chain, RetVal, StoreLoc, DAG.getValueType(RetStoreVT), InFlag
899      };
900      Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
901      RetVal = DAG.getLoad(RetStoreVT, Chain,
902                           StoreLoc, SrcVal, SrcValOffset);
903      Chain = RetVal.getValue(1);
904
905      // If we optimized a truncate, then extend the result back to its desired
906      // type.
907      if (RVLocs[0].getValVT() != RetStoreVT)
908        RetVal = DAG.getNode(ISD::FP_EXTEND, RVLocs[0].getValVT(), RetVal);
909    }
910    ResultVals.push_back(RetVal);
911  }
912
913  // Merge everything together with a MERGE_VALUES node.
914  ResultVals.push_back(Chain);
915  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
916                     &ResultVals[0], ResultVals.size()).Val;
917}
918
919
920//===----------------------------------------------------------------------===//
921//                C & StdCall & Fast Calling Convention implementation
922//===----------------------------------------------------------------------===//
923//  StdCall calling convention seems to be standard for many Windows' API
924//  routines and around. It differs from C calling convention just a little:
925//  callee should clean up the stack, not caller. Symbols should be also
926//  decorated in some fancy way :) It doesn't support any vector arguments.
927//  For info on fast calling convention see Fast Calling Convention (tail call)
928//  implementation LowerX86_32FastCCCallTo.
929
930/// AddLiveIn - This helper function adds the specified physical register to the
931/// MachineFunction as a live in value.  It also creates a corresponding virtual
932/// register for it.
933static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
934                          const TargetRegisterClass *RC) {
935  assert(RC->contains(PReg) && "Not the correct regclass!");
936  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
937  MF.addLiveIn(PReg, VReg);
938  return VReg;
939}
940
941// align stack arguments according to platform alignment needed for tail calls
942unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG& DAG);
943
944SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
945                                              const CCValAssign &VA,
946                                              MachineFrameInfo *MFI,
947                                              SDOperand Root, unsigned i) {
948  // Create the nodes corresponding to a load from this parameter slot.
949  int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
950                                  VA.getLocMemOffset());
951  SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
952
953  unsigned Flags =  cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
954
955  if (Flags & ISD::ParamFlags::ByVal)
956    return FIN;
957  else
958    return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
959}
960
961SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
962                                               bool isStdCall) {
963  unsigned NumArgs = Op.Val->getNumValues() - 1;
964  MachineFunction &MF = DAG.getMachineFunction();
965  MachineFrameInfo *MFI = MF.getFrameInfo();
966  SDOperand Root = Op.getOperand(0);
967  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
968  unsigned CC = MF.getFunction()->getCallingConv();
969  // Assign locations to all of the incoming arguments.
970  SmallVector<CCValAssign, 16> ArgLocs;
971  CCState CCInfo(CC, isVarArg,
972                 getTargetMachine(), ArgLocs);
973  // Check for possible tail call calling convention.
974  if (CC == CallingConv::Fast && PerformTailCallOpt)
975    CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_TailCall);
976  else
977    CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
978
979  SmallVector<SDOperand, 8> ArgValues;
980  unsigned LastVal = ~0U;
981  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
982    CCValAssign &VA = ArgLocs[i];
983    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
984    // places.
985    assert(VA.getValNo() != LastVal &&
986           "Don't support value assigned to multiple locs yet");
987    LastVal = VA.getValNo();
988
989    if (VA.isRegLoc()) {
990      MVT::ValueType RegVT = VA.getLocVT();
991      TargetRegisterClass *RC;
992      if (RegVT == MVT::i32)
993        RC = X86::GR32RegisterClass;
994      else {
995        assert(MVT::isVector(RegVT));
996        RC = X86::VR128RegisterClass;
997      }
998
999      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1000      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1001
1002      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1003      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1004      // right size.
1005      if (VA.getLocInfo() == CCValAssign::SExt)
1006        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1007                               DAG.getValueType(VA.getValVT()));
1008      else if (VA.getLocInfo() == CCValAssign::ZExt)
1009        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1010                               DAG.getValueType(VA.getValVT()));
1011
1012      if (VA.getLocInfo() != CCValAssign::Full)
1013        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1014
1015      ArgValues.push_back(ArgValue);
1016    } else {
1017      assert(VA.isMemLoc());
1018      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
1019    }
1020  }
1021
1022  unsigned StackSize = CCInfo.getNextStackOffset();
1023  // align stack specially for tail calls
1024  if (CC==CallingConv::Fast)
1025    StackSize = GetAlignedArgumentStackSize(StackSize,DAG);
1026
1027  ArgValues.push_back(Root);
1028
1029  // If the function takes variable number of arguments, make a frame index for
1030  // the start of the first vararg value... for expansion of llvm.va_start.
1031  if (isVarArg)
1032    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1033
1034  // Tail call calling convention (CallingConv::Fast) does not support varargs.
1035  assert( !(isVarArg && CC == CallingConv::Fast) &&
1036         "CallingConv::Fast does not support varargs.");
1037
1038  if (isStdCall && !isVarArg &&
1039      (CC==CallingConv::Fast && PerformTailCallOpt || CC!=CallingConv::Fast)) {
1040    BytesToPopOnReturn  = StackSize;    // Callee pops everything..
1041    BytesCallerReserves = 0;
1042  } else {
1043    BytesToPopOnReturn  = 0; // Callee pops nothing.
1044
1045    // If this is an sret function, the return should pop the hidden pointer.
1046    if (NumArgs &&
1047        (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
1048         ISD::ParamFlags::StructReturn))
1049      BytesToPopOnReturn = 4;
1050
1051    BytesCallerReserves = StackSize;
1052  }
1053
1054  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
1055
1056  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1057  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1058
1059  // Return the new list of results.
1060  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1061                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1062}
1063
1064SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
1065                                            unsigned CC) {
1066  SDOperand Chain     = Op.getOperand(0);
1067  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1068  SDOperand Callee    = Op.getOperand(4);
1069  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1070
1071  // Analyze operands of the call, assigning locations to each operand.
1072  SmallVector<CCValAssign, 16> ArgLocs;
1073  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1074  if(CC==CallingConv::Fast && PerformTailCallOpt)
1075    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_TailCall);
1076  else
1077    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
1078
1079  // Get a count of how many bytes are to be pushed on the stack.
1080  unsigned NumBytes = CCInfo.getNextStackOffset();
1081  if (CC==CallingConv::Fast)
1082    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1083
1084  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1085
1086  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1087  SmallVector<SDOperand, 8> MemOpChains;
1088
1089  SDOperand StackPtr;
1090
1091  // Walk the register/memloc assignments, inserting copies/loads.
1092  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1093    CCValAssign &VA = ArgLocs[i];
1094    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1095
1096    // Promote the value if needed.
1097    switch (VA.getLocInfo()) {
1098    default: assert(0 && "Unknown loc info!");
1099    case CCValAssign::Full: break;
1100    case CCValAssign::SExt:
1101      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1102      break;
1103    case CCValAssign::ZExt:
1104      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1105      break;
1106    case CCValAssign::AExt:
1107      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1108      break;
1109    }
1110
1111    if (VA.isRegLoc()) {
1112      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1113    } else {
1114      assert(VA.isMemLoc());
1115      if (StackPtr.Val == 0)
1116        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1117
1118      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1119                                             Arg));
1120    }
1121  }
1122
1123  // If the first argument is an sret pointer, remember it.
1124  bool isSRet = NumOps &&
1125    (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
1126     ISD::ParamFlags::StructReturn);
1127
1128  if (!MemOpChains.empty())
1129    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1130                        &MemOpChains[0], MemOpChains.size());
1131
1132  // Build a sequence of copy-to-reg nodes chained together with token chain
1133  // and flag operands which copy the outgoing args into registers.
1134  SDOperand InFlag;
1135  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1136    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1137                             InFlag);
1138    InFlag = Chain.getValue(1);
1139  }
1140
1141  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1142  // GOT pointer.
1143  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1144      Subtarget->isPICStyleGOT()) {
1145    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1146                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1147                             InFlag);
1148    InFlag = Chain.getValue(1);
1149  }
1150
1151  // If the callee is a GlobalAddress node (quite common, every direct call is)
1152  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1153  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1154    // We should use extra load for direct calls to dllimported functions in
1155    // non-JIT mode.
1156    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1157                                        getTargetMachine(), true))
1158      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1159  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1160    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1161
1162  // Returns a chain & a flag for retval copy to use.
1163  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1164  SmallVector<SDOperand, 8> Ops;
1165  Ops.push_back(Chain);
1166  Ops.push_back(Callee);
1167
1168  // Add argument registers to the end of the list so that they are known live
1169  // into the call.
1170  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1171    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1172                                  RegsToPass[i].second.getValueType()));
1173
1174  // Add an implicit use GOT pointer in EBX.
1175  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1176      Subtarget->isPICStyleGOT())
1177    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1178
1179  if (InFlag.Val)
1180    Ops.push_back(InFlag);
1181
1182  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1183  InFlag = Chain.getValue(1);
1184
1185  // Create the CALLSEQ_END node.
1186  unsigned NumBytesForCalleeToPush = 0;
1187
1188  if (CC == CallingConv::X86_StdCall ||
1189      (CC == CallingConv::Fast && PerformTailCallOpt)) {
1190    if (isVarArg)
1191      NumBytesForCalleeToPush = isSRet ? 4 : 0;
1192    else
1193      NumBytesForCalleeToPush = NumBytes;
1194    assert(!(isVarArg && CC==CallingConv::Fast) &&
1195            "CallingConv::Fast does not support varargs.");
1196  } else {
1197    // If this is is a call to a struct-return function, the callee
1198    // pops the hidden struct pointer, so we have to push it back.
1199    // This is common for Darwin/X86, Linux & Mingw32 targets.
1200    NumBytesForCalleeToPush = isSRet ? 4 : 0;
1201  }
1202
1203  Chain = DAG.getCALLSEQ_END(Chain,
1204                             DAG.getConstant(NumBytes, getPointerTy()),
1205                             DAG.getConstant(NumBytesForCalleeToPush,
1206                                             getPointerTy()),
1207                             InFlag);
1208  InFlag = Chain.getValue(1);
1209
1210  // Handle result values, copying them out of physregs into vregs that we
1211  // return.
1212  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1213}
1214
1215
1216//===----------------------------------------------------------------------===//
1217//                   FastCall Calling Convention implementation
1218//===----------------------------------------------------------------------===//
1219//
1220// The X86 'fastcall' calling convention passes up to two integer arguments in
1221// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
1222// and requires that the callee pop its arguments off the stack (allowing proper
1223// tail calls), and has the same return value conventions as C calling convs.
1224//
1225// This calling convention always arranges for the callee pop value to be 8n+4
1226// bytes, which is needed for tail recursion elimination and stack alignment
1227// reasons.
1228SDOperand
1229X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
1230  MachineFunction &MF = DAG.getMachineFunction();
1231  MachineFrameInfo *MFI = MF.getFrameInfo();
1232  SDOperand Root = Op.getOperand(0);
1233  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1234
1235  // Assign locations to all of the incoming arguments.
1236  SmallVector<CCValAssign, 16> ArgLocs;
1237  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1238                 getTargetMachine(), ArgLocs);
1239  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
1240
1241  SmallVector<SDOperand, 8> ArgValues;
1242  unsigned LastVal = ~0U;
1243  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1244    CCValAssign &VA = ArgLocs[i];
1245    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1246    // places.
1247    assert(VA.getValNo() != LastVal &&
1248           "Don't support value assigned to multiple locs yet");
1249    LastVal = VA.getValNo();
1250
1251    if (VA.isRegLoc()) {
1252      MVT::ValueType RegVT = VA.getLocVT();
1253      TargetRegisterClass *RC;
1254      if (RegVT == MVT::i32)
1255        RC = X86::GR32RegisterClass;
1256      else {
1257        assert(MVT::isVector(RegVT));
1258        RC = X86::VR128RegisterClass;
1259      }
1260
1261      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1262      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1263
1264      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1265      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1266      // right size.
1267      if (VA.getLocInfo() == CCValAssign::SExt)
1268        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1269                               DAG.getValueType(VA.getValVT()));
1270      else if (VA.getLocInfo() == CCValAssign::ZExt)
1271        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1272                               DAG.getValueType(VA.getValVT()));
1273
1274      if (VA.getLocInfo() != CCValAssign::Full)
1275        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1276
1277      ArgValues.push_back(ArgValue);
1278    } else {
1279      assert(VA.isMemLoc());
1280      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
1281    }
1282  }
1283
1284  ArgValues.push_back(Root);
1285
1286  unsigned StackSize = CCInfo.getNextStackOffset();
1287
1288  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1289    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1290    // arguments and the arguments after the retaddr has been pushed are
1291    // aligned.
1292    if ((StackSize & 7) == 0)
1293      StackSize += 4;
1294  }
1295
1296  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1297  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
1298  BytesToPopOnReturn = StackSize;  // Callee pops all stack arguments.
1299  BytesCallerReserves = 0;
1300
1301  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1302  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1303
1304  // Return the new list of results.
1305  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1306                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1307}
1308
1309SDOperand
1310X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1311                                    const SDOperand &StackPtr,
1312                                    const CCValAssign &VA,
1313                                    SDOperand Chain,
1314                                    SDOperand Arg) {
1315  SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1316  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1317  SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1318  unsigned Flags    = cast<ConstantSDNode>(FlagsOp)->getValue();
1319  if (Flags & ISD::ParamFlags::ByVal) {
1320    unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1321                           ISD::ParamFlags::ByValAlignOffs);
1322
1323    unsigned  Size = (Flags & ISD::ParamFlags::ByValSize) >>
1324        ISD::ParamFlags::ByValSizeOffs;
1325
1326    SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1327    SDOperand  SizeNode = DAG.getConstant(Size, MVT::i32);
1328    SDOperand AlwaysInline = DAG.getConstant(1, MVT::i32);
1329
1330    return DAG.getMemcpy(Chain, PtrOff, Arg, SizeNode, AlignNode,
1331                         AlwaysInline);
1332  } else {
1333    return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1334  }
1335}
1336
1337SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1338                                               unsigned CC) {
1339  SDOperand Chain     = Op.getOperand(0);
1340  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1341  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1342  SDOperand Callee    = Op.getOperand(4);
1343
1344  // Analyze operands of the call, assigning locations to each operand.
1345  SmallVector<CCValAssign, 16> ArgLocs;
1346  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1347  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1348
1349  // Get a count of how many bytes are to be pushed on the stack.
1350  unsigned NumBytes = CCInfo.getNextStackOffset();
1351
1352  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1353    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1354    // arguments and the arguments after the retaddr has been pushed are
1355    // aligned.
1356    if ((NumBytes & 7) == 0)
1357      NumBytes += 4;
1358  }
1359
1360  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1361
1362  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1363  SmallVector<SDOperand, 8> MemOpChains;
1364
1365  SDOperand StackPtr;
1366
1367  // Walk the register/memloc assignments, inserting copies/loads.
1368  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1369    CCValAssign &VA = ArgLocs[i];
1370    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1371
1372    // Promote the value if needed.
1373    switch (VA.getLocInfo()) {
1374      default: assert(0 && "Unknown loc info!");
1375      case CCValAssign::Full: break;
1376      case CCValAssign::SExt:
1377        Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1378        break;
1379      case CCValAssign::ZExt:
1380        Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1381        break;
1382      case CCValAssign::AExt:
1383        Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1384        break;
1385    }
1386
1387    if (VA.isRegLoc()) {
1388      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1389    } else {
1390      assert(VA.isMemLoc());
1391      if (StackPtr.Val == 0)
1392        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1393
1394      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1395                                             Arg));
1396    }
1397  }
1398
1399  if (!MemOpChains.empty())
1400    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1401                        &MemOpChains[0], MemOpChains.size());
1402
1403  // Build a sequence of copy-to-reg nodes chained together with token chain
1404  // and flag operands which copy the outgoing args into registers.
1405  SDOperand InFlag;
1406  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1407    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1408                             InFlag);
1409    InFlag = Chain.getValue(1);
1410  }
1411
1412  // If the callee is a GlobalAddress node (quite common, every direct call is)
1413  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1414  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1415    // We should use extra load for direct calls to dllimported functions in
1416    // non-JIT mode.
1417    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1418                                        getTargetMachine(), true))
1419      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1420  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1421    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1422
1423  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1424  // GOT pointer.
1425  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1426      Subtarget->isPICStyleGOT()) {
1427    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1428                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1429                             InFlag);
1430    InFlag = Chain.getValue(1);
1431  }
1432
1433  // Returns a chain & a flag for retval copy to use.
1434  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1435  SmallVector<SDOperand, 8> Ops;
1436  Ops.push_back(Chain);
1437  Ops.push_back(Callee);
1438
1439  // Add argument registers to the end of the list so that they are known live
1440  // into the call.
1441  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1442    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1443                                  RegsToPass[i].second.getValueType()));
1444
1445  // Add an implicit use GOT pointer in EBX.
1446  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1447      Subtarget->isPICStyleGOT())
1448    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1449
1450  if (InFlag.Val)
1451    Ops.push_back(InFlag);
1452
1453  assert(isTailCall==false && "no tail call here");
1454  Chain = DAG.getNode(X86ISD::CALL,
1455                      NodeTys, &Ops[0], Ops.size());
1456  InFlag = Chain.getValue(1);
1457
1458  // Returns a flag for retval copy to use.
1459  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1460  Ops.clear();
1461  Ops.push_back(Chain);
1462  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1463  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1464  Ops.push_back(InFlag);
1465  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1466  InFlag = Chain.getValue(1);
1467
1468  // Handle result values, copying them out of physregs into vregs that we
1469  // return.
1470  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1471}
1472
1473//===----------------------------------------------------------------------===//
1474//                Fast Calling Convention (tail call) implementation
1475//===----------------------------------------------------------------------===//
1476
1477//  Like std call, callee cleans arguments, convention except that ECX is
1478//  reserved for storing the tail called function address. Only 2 registers are
1479//  free for argument passing (inreg). Tail call optimization is performed
1480//  provided:
1481//                * tailcallopt is enabled
1482//                * caller/callee are fastcc
1483//                * elf/pic is disabled OR
1484//                * elf/pic enabled + callee is in module + callee has
1485//                  visibility protected or hidden
1486//  To keep the stack aligned according to platform abi the function
1487//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1488//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1489//  If a tail called function callee has more arguments than the caller the
1490//  caller needs to make sure that there is room to move the RETADDR to. This is
1491//  achieved by reserving an area the size of the argument delta right after the
1492//  original REtADDR, but before the saved framepointer or the spilled registers
1493//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1494//  stack layout:
1495//    arg1
1496//    arg2
1497//    RETADDR
1498//    [ new RETADDR
1499//      move area ]
1500//    (possible EBP)
1501//    ESI
1502//    EDI
1503//    local1 ..
1504
1505/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1506/// for a 16 byte align requirement.
1507unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1508                                                        SelectionDAG& DAG) {
1509  if (PerformTailCallOpt) {
1510    MachineFunction &MF = DAG.getMachineFunction();
1511    const TargetMachine &TM = MF.getTarget();
1512    const TargetFrameInfo &TFI = *TM.getFrameInfo();
1513    unsigned StackAlignment = TFI.getStackAlignment();
1514    uint64_t AlignMask = StackAlignment - 1;
1515    int64_t Offset = StackSize;
1516    unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
1517    if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1518      // Number smaller than 12 so just add the difference.
1519      Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1520    } else {
1521      // Mask out lower bits, add stackalignment once plus the 12 bytes.
1522      Offset = ((~AlignMask) & Offset) + StackAlignment +
1523        (StackAlignment-SlotSize);
1524    }
1525    StackSize = Offset;
1526  }
1527  return StackSize;
1528}
1529
1530/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1531/// following the call is a return. A function is eligible if caller/callee
1532/// calling conventions match, currently only fastcc supports tail calls, and
1533/// the function CALL is immediatly followed by a RET.
1534bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call,
1535                                                      SDOperand Ret,
1536                                                      SelectionDAG& DAG) const {
1537  if (!PerformTailCallOpt)
1538    return false;
1539
1540  // Check whether CALL node immediatly preceeds the RET node and whether the
1541  // return uses the result of the node or is a void return.
1542  unsigned NumOps = Ret.getNumOperands();
1543  if ((NumOps == 1 &&
1544       (Ret.getOperand(0) == SDOperand(Call.Val,1) ||
1545        Ret.getOperand(0) == SDOperand(Call.Val,0))) ||
1546      (NumOps > 1 &&
1547       Ret.getOperand(0) == SDOperand(Call.Val,Call.Val->getNumValues()-1) &&
1548       Ret.getOperand(1) == SDOperand(Call.Val,0))) {
1549    MachineFunction &MF = DAG.getMachineFunction();
1550    unsigned CallerCC = MF.getFunction()->getCallingConv();
1551    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1552    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1553      SDOperand Callee = Call.getOperand(4);
1554      // On elf/pic %ebx needs to be livein.
1555      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1556          !Subtarget->isPICStyleGOT())
1557        return true;
1558
1559      // Can only do local tail calls with PIC.
1560      GlobalValue * GV = 0;
1561      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1562      if(G != 0 &&
1563         (GV = G->getGlobal()) &&
1564         (GV->hasHiddenVisibility() || GV->hasProtectedVisibility()))
1565        return true;
1566    }
1567  }
1568
1569  return false;
1570}
1571
1572SDOperand X86TargetLowering::LowerX86_TailCallTo(SDOperand Op,
1573                                                     SelectionDAG &DAG,
1574                                                     unsigned CC) {
1575  SDOperand Chain     = Op.getOperand(0);
1576  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1577  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1578  SDOperand Callee    = Op.getOperand(4);
1579  bool is64Bit        = Subtarget->is64Bit();
1580
1581  assert(isTailCall && PerformTailCallOpt && "Should only emit tail calls.");
1582
1583  // Analyze operands of the call, assigning locations to each operand.
1584  SmallVector<CCValAssign, 16> ArgLocs;
1585  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1586  if (is64Bit)
1587    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_TailCall);
1588  else
1589    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_TailCall);
1590
1591
1592  // Lower arguments at fp - stackoffset + fpdiff.
1593  MachineFunction &MF = DAG.getMachineFunction();
1594
1595  unsigned NumBytesToBePushed =
1596    GetAlignedArgumentStackSize(CCInfo.getNextStackOffset(), DAG);
1597
1598  unsigned NumBytesCallerPushed =
1599    MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1600  int FPDiff = NumBytesCallerPushed - NumBytesToBePushed;
1601
1602  // Set the delta of movement of the returnaddr stackslot.
1603  // But only set if delta is greater than previous delta.
1604  if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1605    MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1606
1607  Chain = DAG.
1608   getCALLSEQ_START(Chain, DAG.getConstant(NumBytesToBePushed, getPointerTy()));
1609
1610  // Adjust the Return address stack slot.
1611  SDOperand RetAddrFrIdx, NewRetAddrFrIdx;
1612  if (FPDiff) {
1613    MVT::ValueType VT = is64Bit ? MVT::i64 : MVT::i32;
1614    RetAddrFrIdx = getReturnAddressFrameIndex(DAG);
1615    // Load the "old" Return address.
1616    RetAddrFrIdx =
1617      DAG.getLoad(VT, Chain,RetAddrFrIdx, NULL, 0);
1618    // Calculate the new stack slot for the return address.
1619    int SlotSize = is64Bit ? 8 : 4;
1620    int NewReturnAddrFI =
1621      MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1622    NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1623    Chain = SDOperand(RetAddrFrIdx.Val, 1);
1624  }
1625
1626  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1627  SmallVector<SDOperand, 8> MemOpChains;
1628  SmallVector<SDOperand, 8> MemOpChains2;
1629  SDOperand FramePtr, StackPtr;
1630  SDOperand PtrOff;
1631  SDOperand FIN;
1632  int FI = 0;
1633
1634  // Walk the register/memloc assignments, inserting copies/loads.  Lower
1635  // arguments first to the stack slot where they would normally - in case of a
1636  // normal function call - be.
1637  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1638    CCValAssign &VA = ArgLocs[i];
1639    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1640
1641    // Promote the value if needed.
1642    switch (VA.getLocInfo()) {
1643    default: assert(0 && "Unknown loc info!");
1644    case CCValAssign::Full: break;
1645    case CCValAssign::SExt:
1646      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1647      break;
1648    case CCValAssign::ZExt:
1649      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1650      break;
1651    case CCValAssign::AExt:
1652      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1653      break;
1654    }
1655
1656    if (VA.isRegLoc()) {
1657      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1658    } else {
1659      assert(VA.isMemLoc());
1660      if (StackPtr.Val == 0)
1661        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1662
1663      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1664                                             Arg));
1665    }
1666  }
1667
1668  if (!MemOpChains.empty())
1669    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1670                        &MemOpChains[0], MemOpChains.size());
1671
1672  // Build a sequence of copy-to-reg nodes chained together with token chain
1673  // and flag operands which copy the outgoing args into registers.
1674  SDOperand InFlag;
1675  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1676    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1677                             InFlag);
1678    InFlag = Chain.getValue(1);
1679  }
1680  InFlag = SDOperand();
1681
1682  // Copy from stack slots to stack slot of a tail called function. This needs
1683  // to be done because if we would lower the arguments directly to their real
1684  // stack slot we might end up overwriting each other.
1685  // TODO: To make this more efficient (sometimes saving a store/load) we could
1686  // analyse the arguments and emit this store/load/store sequence only for
1687  // arguments which would be overwritten otherwise.
1688  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1689    CCValAssign &VA = ArgLocs[i];
1690    if (!VA.isRegLoc()) {
1691      SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1692      unsigned Flags    = cast<ConstantSDNode>(FlagsOp)->getValue();
1693
1694      // Get source stack slot.
1695      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1696      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1697      // Create frame index.
1698      int32_t Offset = VA.getLocMemOffset()+FPDiff;
1699      uint32_t OpSize = (MVT::getSizeInBits(VA.getLocVT())+7)/8;
1700      FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1701      FIN = DAG.getFrameIndex(FI, MVT::i32);
1702      if (Flags & ISD::ParamFlags::ByVal) {
1703        // Copy relative to framepointer.
1704        unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1705                               ISD::ParamFlags::ByValAlignOffs);
1706
1707        unsigned  Size = (Flags & ISD::ParamFlags::ByValSize) >>
1708          ISD::ParamFlags::ByValSizeOffs;
1709
1710        SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1711        SDOperand  SizeNode = DAG.getConstant(Size, MVT::i32);
1712        SDOperand AlwaysInline = DAG.getConstant(1, MVT::i1);
1713
1714        MemOpChains2.push_back(DAG.getMemcpy(Chain, FIN, PtrOff, SizeNode,
1715                                             AlignNode,AlwaysInline));
1716      } else {
1717        SDOperand LoadedArg = DAG.getLoad(VA.getValVT(), Chain, PtrOff, NULL,0);
1718        // Store relative to framepointer.
1719        MemOpChains2.push_back(DAG.getStore(Chain, LoadedArg, FIN, NULL, 0));
1720      }
1721    }
1722  }
1723
1724  if (!MemOpChains2.empty())
1725    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1726                        &MemOpChains2[0], MemOpChains.size());
1727
1728  // Store the return address to the appropriate stack slot.
1729  if (FPDiff)
1730    Chain = DAG.getStore(Chain,RetAddrFrIdx, NewRetAddrFrIdx, NULL, 0);
1731
1732  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1733  // GOT pointer.
1734  // Does not work with tail call since ebx is not restored correctly by
1735  // tailcaller. TODO: at least for x86 - verify for x86-64
1736
1737  // If the callee is a GlobalAddress node (quite common, every direct call is)
1738  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1739  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1740    // We should use extra load for direct calls to dllimported functions in
1741    // non-JIT mode.
1742    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1743                                        getTargetMachine(), true))
1744      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1745  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1746    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1747  else {
1748    assert(Callee.getOpcode() == ISD::LOAD &&
1749           "Function destination must be loaded into virtual register");
1750    unsigned Opc = is64Bit ? X86::R9 : X86::ECX;
1751
1752    Chain = DAG.getCopyToReg(Chain,
1753                             DAG.getRegister(Opc, getPointerTy()) ,
1754                             Callee,InFlag);
1755    Callee = DAG.getRegister(Opc, getPointerTy());
1756    // Add register as live out.
1757    DAG.getMachineFunction().addLiveOut(Opc);
1758  }
1759
1760  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1761  SmallVector<SDOperand, 8> Ops;
1762
1763  Ops.push_back(Chain);
1764  Ops.push_back(DAG.getConstant(NumBytesToBePushed, getPointerTy()));
1765  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1766  if (InFlag.Val)
1767    Ops.push_back(InFlag);
1768  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1769  InFlag = Chain.getValue(1);
1770
1771  // Returns a chain & a flag for retval copy to use.
1772  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1773  Ops.clear();
1774  Ops.push_back(Chain);
1775  Ops.push_back(Callee);
1776  Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1777  // Add argument registers to the end of the list so that they are known live
1778  // into the call.
1779  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1780    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1781                                  RegsToPass[i].second.getValueType()));
1782  if (InFlag.Val)
1783    Ops.push_back(InFlag);
1784  assert(InFlag.Val &&
1785         "Flag must be set. Depend on flag being set in LowerRET");
1786  Chain = DAG.getNode(X86ISD::TAILCALL,
1787                      Op.Val->getVTList(), &Ops[0], Ops.size());
1788
1789  return SDOperand(Chain.Val, Op.ResNo);
1790}
1791
1792//===----------------------------------------------------------------------===//
1793//                 X86-64 C Calling Convention implementation
1794//===----------------------------------------------------------------------===//
1795
1796SDOperand
1797X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1798  MachineFunction &MF = DAG.getMachineFunction();
1799  MachineFrameInfo *MFI = MF.getFrameInfo();
1800  SDOperand Root = Op.getOperand(0);
1801  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1802  unsigned CC= MF.getFunction()->getCallingConv();
1803
1804  static const unsigned GPR64ArgRegs[] = {
1805    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1806  };
1807  static const unsigned XMMArgRegs[] = {
1808    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1809    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1810  };
1811
1812
1813  // Assign locations to all of the incoming arguments.
1814  SmallVector<CCValAssign, 16> ArgLocs;
1815  CCState CCInfo(CC, isVarArg,
1816                 getTargetMachine(), ArgLocs);
1817  if (CC == CallingConv::Fast && PerformTailCallOpt)
1818    CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_TailCall);
1819  else
1820    CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1821
1822  SmallVector<SDOperand, 8> ArgValues;
1823  unsigned LastVal = ~0U;
1824  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1825    CCValAssign &VA = ArgLocs[i];
1826    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1827    // places.
1828    assert(VA.getValNo() != LastVal &&
1829           "Don't support value assigned to multiple locs yet");
1830    LastVal = VA.getValNo();
1831
1832    if (VA.isRegLoc()) {
1833      MVT::ValueType RegVT = VA.getLocVT();
1834      TargetRegisterClass *RC;
1835      if (RegVT == MVT::i32)
1836        RC = X86::GR32RegisterClass;
1837      else if (RegVT == MVT::i64)
1838        RC = X86::GR64RegisterClass;
1839      else if (RegVT == MVT::f32)
1840        RC = X86::FR32RegisterClass;
1841      else if (RegVT == MVT::f64)
1842        RC = X86::FR64RegisterClass;
1843      else {
1844        assert(MVT::isVector(RegVT));
1845        if (MVT::getSizeInBits(RegVT) == 64) {
1846          RC = X86::GR64RegisterClass;       // MMX values are passed in GPRs.
1847          RegVT = MVT::i64;
1848        } else
1849          RC = X86::VR128RegisterClass;
1850      }
1851
1852      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1853      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1854
1855      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1856      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1857      // right size.
1858      if (VA.getLocInfo() == CCValAssign::SExt)
1859        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1860                               DAG.getValueType(VA.getValVT()));
1861      else if (VA.getLocInfo() == CCValAssign::ZExt)
1862        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1863                               DAG.getValueType(VA.getValVT()));
1864
1865      if (VA.getLocInfo() != CCValAssign::Full)
1866        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1867
1868      // Handle MMX values passed in GPRs.
1869      if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1870          MVT::getSizeInBits(RegVT) == 64)
1871        ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1872
1873      ArgValues.push_back(ArgValue);
1874    } else {
1875      assert(VA.isMemLoc());
1876      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
1877    }
1878  }
1879
1880  unsigned StackSize = CCInfo.getNextStackOffset();
1881  if (CC==CallingConv::Fast)
1882    StackSize =GetAlignedArgumentStackSize(StackSize, DAG);
1883
1884  // If the function takes variable number of arguments, make a frame index for
1885  // the start of the first vararg value... for expansion of llvm.va_start.
1886  if (isVarArg) {
1887    assert(CC!=CallingConv::Fast
1888           && "Var arg not supported with calling convention fastcc");
1889    unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1890    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1891
1892    // For X86-64, if there are vararg parameters that are passed via
1893    // registers, then we must store them to their spots on the stack so they
1894    // may be loaded by deferencing the result of va_next.
1895    VarArgsGPOffset = NumIntRegs * 8;
1896    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1897    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1898    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1899
1900    // Store the integer parameter registers.
1901    SmallVector<SDOperand, 8> MemOps;
1902    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1903    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1904                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1905    for (; NumIntRegs != 6; ++NumIntRegs) {
1906      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1907                                X86::GR64RegisterClass);
1908      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1909      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1910      MemOps.push_back(Store);
1911      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1912                        DAG.getConstant(8, getPointerTy()));
1913    }
1914
1915    // Now store the XMM (fp + vector) parameter registers.
1916    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1917                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1918    for (; NumXMMRegs != 8; ++NumXMMRegs) {
1919      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1920                                X86::VR128RegisterClass);
1921      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1922      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1923      MemOps.push_back(Store);
1924      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1925                        DAG.getConstant(16, getPointerTy()));
1926    }
1927    if (!MemOps.empty())
1928        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1929                           &MemOps[0], MemOps.size());
1930  }
1931
1932  ArgValues.push_back(Root);
1933  // Tail call convention (fastcc) needs callee pop.
1934  if (CC == CallingConv::Fast && PerformTailCallOpt) {
1935    BytesToPopOnReturn = StackSize;  // Callee pops everything.
1936    BytesCallerReserves = 0;
1937  } else {
1938    BytesToPopOnReturn = 0;  // Callee pops nothing.
1939    BytesCallerReserves = StackSize;
1940  }
1941  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1942  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1943
1944  // Return the new list of results.
1945  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1946                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1947}
1948
1949SDOperand
1950X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1951                                        unsigned CC) {
1952  SDOperand Chain     = Op.getOperand(0);
1953  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1954  SDOperand Callee    = Op.getOperand(4);
1955
1956  // Analyze operands of the call, assigning locations to each operand.
1957  SmallVector<CCValAssign, 16> ArgLocs;
1958  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1959  if (CC==CallingConv::Fast && PerformTailCallOpt)
1960    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_TailCall);
1961  else
1962    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1963
1964  // Get a count of how many bytes are to be pushed on the stack.
1965  unsigned NumBytes = CCInfo.getNextStackOffset();
1966  if (CC == CallingConv::Fast)
1967    NumBytes = GetAlignedArgumentStackSize(NumBytes,DAG);
1968
1969  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1970
1971  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1972  SmallVector<SDOperand, 8> MemOpChains;
1973
1974  SDOperand StackPtr;
1975
1976  // Walk the register/memloc assignments, inserting copies/loads.
1977  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1978    CCValAssign &VA = ArgLocs[i];
1979    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1980
1981    // Promote the value if needed.
1982    switch (VA.getLocInfo()) {
1983    default: assert(0 && "Unknown loc info!");
1984    case CCValAssign::Full: break;
1985    case CCValAssign::SExt:
1986      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1987      break;
1988    case CCValAssign::ZExt:
1989      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1990      break;
1991    case CCValAssign::AExt:
1992      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1993      break;
1994    }
1995
1996    if (VA.isRegLoc()) {
1997      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1998    } else {
1999      assert(VA.isMemLoc());
2000      if (StackPtr.Val == 0)
2001        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
2002
2003      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
2004                                             Arg));
2005    }
2006  }
2007
2008  if (!MemOpChains.empty())
2009    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2010                        &MemOpChains[0], MemOpChains.size());
2011
2012  // Build a sequence of copy-to-reg nodes chained together with token chain
2013  // and flag operands which copy the outgoing args into registers.
2014  SDOperand InFlag;
2015  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2016    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
2017                             InFlag);
2018    InFlag = Chain.getValue(1);
2019  }
2020
2021  if (isVarArg) {
2022    assert ( CallingConv::Fast != CC &&
2023             "Var args not supported with calling convention fastcc");
2024
2025    // From AMD64 ABI document:
2026    // For calls that may call functions that use varargs or stdargs
2027    // (prototype-less calls or calls to functions containing ellipsis (...) in
2028    // the declaration) %al is used as hidden argument to specify the number
2029    // of SSE registers used. The contents of %al do not need to match exactly
2030    // the number of registers, but must be an ubound on the number of SSE
2031    // registers used and is in the range 0 - 8 inclusive.
2032
2033    // Count the number of XMM registers allocated.
2034    static const unsigned XMMArgRegs[] = {
2035      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2036      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2037    };
2038    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2039
2040    Chain = DAG.getCopyToReg(Chain, X86::AL,
2041                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2042    InFlag = Chain.getValue(1);
2043  }
2044
2045  // If the callee is a GlobalAddress node (quite common, every direct call is)
2046  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
2047  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2048    // We should use extra load for direct calls to dllimported functions in
2049    // non-JIT mode.
2050    if (getTargetMachine().getCodeModel() != CodeModel::Large
2051        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
2052                                           getTargetMachine(), true))
2053      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
2054  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2055    if (getTargetMachine().getCodeModel() != CodeModel::Large)
2056      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
2057
2058  // Returns a chain & a flag for retval copy to use.
2059  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2060  SmallVector<SDOperand, 8> Ops;
2061  Ops.push_back(Chain);
2062  Ops.push_back(Callee);
2063
2064  // Add argument registers to the end of the list so that they are known live
2065  // into the call.
2066  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2067    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2068                                  RegsToPass[i].second.getValueType()));
2069
2070  if (InFlag.Val)
2071    Ops.push_back(InFlag);
2072
2073  Chain = DAG.getNode(X86ISD::CALL,
2074                      NodeTys, &Ops[0], Ops.size());
2075  InFlag = Chain.getValue(1);
2076  int NumBytesForCalleeToPush = 0;
2077   if (CC==CallingConv::Fast && PerformTailCallOpt) {
2078    NumBytesForCalleeToPush = NumBytes;  // Callee pops everything
2079  } else {
2080    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2081  }
2082  // Returns a flag for retval copy to use.
2083  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2084  Ops.clear();
2085  Ops.push_back(Chain);
2086  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
2087  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
2088  Ops.push_back(InFlag);
2089  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
2090  InFlag = Chain.getValue(1);
2091
2092  // Handle result values, copying them out of physregs into vregs that we
2093  // return.
2094  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
2095}
2096
2097
2098//===----------------------------------------------------------------------===//
2099//                           Other Lowering Hooks
2100//===----------------------------------------------------------------------===//
2101
2102
2103SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2104  MachineFunction &MF = DAG.getMachineFunction();
2105  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2106  int ReturnAddrIndex = FuncInfo->getRAIndex();
2107
2108  if (ReturnAddrIndex == 0) {
2109    // Set up a frame object for the return address.
2110    if (Subtarget->is64Bit())
2111      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
2112    else
2113      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
2114
2115    FuncInfo->setRAIndex(ReturnAddrIndex);
2116  }
2117
2118  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2119}
2120
2121
2122
2123/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
2124/// specific condition code. It returns a false if it cannot do a direct
2125/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
2126/// needed.
2127static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2128                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
2129                           SelectionDAG &DAG) {
2130  X86CC = X86::COND_INVALID;
2131  if (!isFP) {
2132    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2133      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2134        // X > -1   -> X == 0, jump !sign.
2135        RHS = DAG.getConstant(0, RHS.getValueType());
2136        X86CC = X86::COND_NS;
2137        return true;
2138      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2139        // X < 0   -> X == 0, jump on sign.
2140        X86CC = X86::COND_S;
2141        return true;
2142      } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
2143        // X < 1   -> X <= 0
2144        RHS = DAG.getConstant(0, RHS.getValueType());
2145        X86CC = X86::COND_LE;
2146        return true;
2147      }
2148    }
2149
2150    switch (SetCCOpcode) {
2151    default: break;
2152    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
2153    case ISD::SETGT:  X86CC = X86::COND_G;  break;
2154    case ISD::SETGE:  X86CC = X86::COND_GE; break;
2155    case ISD::SETLT:  X86CC = X86::COND_L;  break;
2156    case ISD::SETLE:  X86CC = X86::COND_LE; break;
2157    case ISD::SETNE:  X86CC = X86::COND_NE; break;
2158    case ISD::SETULT: X86CC = X86::COND_B;  break;
2159    case ISD::SETUGT: X86CC = X86::COND_A;  break;
2160    case ISD::SETULE: X86CC = X86::COND_BE; break;
2161    case ISD::SETUGE: X86CC = X86::COND_AE; break;
2162    }
2163  } else {
2164    // On a floating point condition, the flags are set as follows:
2165    // ZF  PF  CF   op
2166    //  0 | 0 | 0 | X > Y
2167    //  0 | 0 | 1 | X < Y
2168    //  1 | 0 | 0 | X == Y
2169    //  1 | 1 | 1 | unordered
2170    bool Flip = false;
2171    switch (SetCCOpcode) {
2172    default: break;
2173    case ISD::SETUEQ:
2174    case ISD::SETEQ: X86CC = X86::COND_E;  break;
2175    case ISD::SETOLT: Flip = true; // Fallthrough
2176    case ISD::SETOGT:
2177    case ISD::SETGT: X86CC = X86::COND_A;  break;
2178    case ISD::SETOLE: Flip = true; // Fallthrough
2179    case ISD::SETOGE:
2180    case ISD::SETGE: X86CC = X86::COND_AE; break;
2181    case ISD::SETUGT: Flip = true; // Fallthrough
2182    case ISD::SETULT:
2183    case ISD::SETLT: X86CC = X86::COND_B;  break;
2184    case ISD::SETUGE: Flip = true; // Fallthrough
2185    case ISD::SETULE:
2186    case ISD::SETLE: X86CC = X86::COND_BE; break;
2187    case ISD::SETONE:
2188    case ISD::SETNE: X86CC = X86::COND_NE; break;
2189    case ISD::SETUO: X86CC = X86::COND_P;  break;
2190    case ISD::SETO:  X86CC = X86::COND_NP; break;
2191    }
2192    if (Flip)
2193      std::swap(LHS, RHS);
2194  }
2195
2196  return X86CC != X86::COND_INVALID;
2197}
2198
2199/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2200/// code. Current x86 isa includes the following FP cmov instructions:
2201/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2202static bool hasFPCMov(unsigned X86CC) {
2203  switch (X86CC) {
2204  default:
2205    return false;
2206  case X86::COND_B:
2207  case X86::COND_BE:
2208  case X86::COND_E:
2209  case X86::COND_P:
2210  case X86::COND_A:
2211  case X86::COND_AE:
2212  case X86::COND_NE:
2213  case X86::COND_NP:
2214    return true;
2215  }
2216}
2217
2218/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2219/// true if Op is undef or if its value falls within the specified range (L, H].
2220static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
2221  if (Op.getOpcode() == ISD::UNDEF)
2222    return true;
2223
2224  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
2225  return (Val >= Low && Val < Hi);
2226}
2227
2228/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2229/// true if Op is undef or if its value equal to the specified value.
2230static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
2231  if (Op.getOpcode() == ISD::UNDEF)
2232    return true;
2233  return cast<ConstantSDNode>(Op)->getValue() == Val;
2234}
2235
2236/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2237/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2238bool X86::isPSHUFDMask(SDNode *N) {
2239  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2240
2241  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
2242    return false;
2243
2244  // Check if the value doesn't reference the second vector.
2245  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2246    SDOperand Arg = N->getOperand(i);
2247    if (Arg.getOpcode() == ISD::UNDEF) continue;
2248    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2249    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
2250      return false;
2251  }
2252
2253  return true;
2254}
2255
2256/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2257/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2258bool X86::isPSHUFHWMask(SDNode *N) {
2259  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2260
2261  if (N->getNumOperands() != 8)
2262    return false;
2263
2264  // Lower quadword copied in order.
2265  for (unsigned i = 0; i != 4; ++i) {
2266    SDOperand Arg = N->getOperand(i);
2267    if (Arg.getOpcode() == ISD::UNDEF) continue;
2268    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2269    if (cast<ConstantSDNode>(Arg)->getValue() != i)
2270      return false;
2271  }
2272
2273  // Upper quadword shuffled.
2274  for (unsigned i = 4; i != 8; ++i) {
2275    SDOperand Arg = N->getOperand(i);
2276    if (Arg.getOpcode() == ISD::UNDEF) continue;
2277    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2278    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2279    if (Val < 4 || Val > 7)
2280      return false;
2281  }
2282
2283  return true;
2284}
2285
2286/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2287/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2288bool X86::isPSHUFLWMask(SDNode *N) {
2289  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2290
2291  if (N->getNumOperands() != 8)
2292    return false;
2293
2294  // Upper quadword copied in order.
2295  for (unsigned i = 4; i != 8; ++i)
2296    if (!isUndefOrEqual(N->getOperand(i), i))
2297      return false;
2298
2299  // Lower quadword shuffled.
2300  for (unsigned i = 0; i != 4; ++i)
2301    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2302      return false;
2303
2304  return true;
2305}
2306
2307/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2308/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2309static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
2310  if (NumElems != 2 && NumElems != 4) return false;
2311
2312  unsigned Half = NumElems / 2;
2313  for (unsigned i = 0; i < Half; ++i)
2314    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2315      return false;
2316  for (unsigned i = Half; i < NumElems; ++i)
2317    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2318      return false;
2319
2320  return true;
2321}
2322
2323bool X86::isSHUFPMask(SDNode *N) {
2324  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2325  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2326}
2327
2328/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2329/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2330/// half elements to come from vector 1 (which would equal the dest.) and
2331/// the upper half to come from vector 2.
2332static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
2333  if (NumOps != 2 && NumOps != 4) return false;
2334
2335  unsigned Half = NumOps / 2;
2336  for (unsigned i = 0; i < Half; ++i)
2337    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2338      return false;
2339  for (unsigned i = Half; i < NumOps; ++i)
2340    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2341      return false;
2342  return true;
2343}
2344
2345static bool isCommutedSHUFP(SDNode *N) {
2346  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2347  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2348}
2349
2350/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2351/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2352bool X86::isMOVHLPSMask(SDNode *N) {
2353  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2354
2355  if (N->getNumOperands() != 4)
2356    return false;
2357
2358  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2359  return isUndefOrEqual(N->getOperand(0), 6) &&
2360         isUndefOrEqual(N->getOperand(1), 7) &&
2361         isUndefOrEqual(N->getOperand(2), 2) &&
2362         isUndefOrEqual(N->getOperand(3), 3);
2363}
2364
2365/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2366/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2367/// <2, 3, 2, 3>
2368bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2369  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2370
2371  if (N->getNumOperands() != 4)
2372    return false;
2373
2374  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2375  return isUndefOrEqual(N->getOperand(0), 2) &&
2376         isUndefOrEqual(N->getOperand(1), 3) &&
2377         isUndefOrEqual(N->getOperand(2), 2) &&
2378         isUndefOrEqual(N->getOperand(3), 3);
2379}
2380
2381/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2382/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2383bool X86::isMOVLPMask(SDNode *N) {
2384  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2385
2386  unsigned NumElems = N->getNumOperands();
2387  if (NumElems != 2 && NumElems != 4)
2388    return false;
2389
2390  for (unsigned i = 0; i < NumElems/2; ++i)
2391    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2392      return false;
2393
2394  for (unsigned i = NumElems/2; i < NumElems; ++i)
2395    if (!isUndefOrEqual(N->getOperand(i), i))
2396      return false;
2397
2398  return true;
2399}
2400
2401/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2402/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2403/// and MOVLHPS.
2404bool X86::isMOVHPMask(SDNode *N) {
2405  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2406
2407  unsigned NumElems = N->getNumOperands();
2408  if (NumElems != 2 && NumElems != 4)
2409    return false;
2410
2411  for (unsigned i = 0; i < NumElems/2; ++i)
2412    if (!isUndefOrEqual(N->getOperand(i), i))
2413      return false;
2414
2415  for (unsigned i = 0; i < NumElems/2; ++i) {
2416    SDOperand Arg = N->getOperand(i + NumElems/2);
2417    if (!isUndefOrEqual(Arg, i + NumElems))
2418      return false;
2419  }
2420
2421  return true;
2422}
2423
2424/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2425/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2426bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
2427                         bool V2IsSplat = false) {
2428  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2429    return false;
2430
2431  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2432    SDOperand BitI  = Elts[i];
2433    SDOperand BitI1 = Elts[i+1];
2434    if (!isUndefOrEqual(BitI, j))
2435      return false;
2436    if (V2IsSplat) {
2437      if (isUndefOrEqual(BitI1, NumElts))
2438        return false;
2439    } else {
2440      if (!isUndefOrEqual(BitI1, j + NumElts))
2441        return false;
2442    }
2443  }
2444
2445  return true;
2446}
2447
2448bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2449  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2450  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2451}
2452
2453/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2454/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2455bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
2456                         bool V2IsSplat = false) {
2457  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2458    return false;
2459
2460  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2461    SDOperand BitI  = Elts[i];
2462    SDOperand BitI1 = Elts[i+1];
2463    if (!isUndefOrEqual(BitI, j + NumElts/2))
2464      return false;
2465    if (V2IsSplat) {
2466      if (isUndefOrEqual(BitI1, NumElts))
2467        return false;
2468    } else {
2469      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2470        return false;
2471    }
2472  }
2473
2474  return true;
2475}
2476
2477bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2478  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2479  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2480}
2481
2482/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2483/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2484/// <0, 0, 1, 1>
2485bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2486  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2487
2488  unsigned NumElems = N->getNumOperands();
2489  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2490    return false;
2491
2492  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2493    SDOperand BitI  = N->getOperand(i);
2494    SDOperand BitI1 = N->getOperand(i+1);
2495
2496    if (!isUndefOrEqual(BitI, j))
2497      return false;
2498    if (!isUndefOrEqual(BitI1, j))
2499      return false;
2500  }
2501
2502  return true;
2503}
2504
2505/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2506/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2507/// <2, 2, 3, 3>
2508bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2509  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2510
2511  unsigned NumElems = N->getNumOperands();
2512  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2513    return false;
2514
2515  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2516    SDOperand BitI  = N->getOperand(i);
2517    SDOperand BitI1 = N->getOperand(i + 1);
2518
2519    if (!isUndefOrEqual(BitI, j))
2520      return false;
2521    if (!isUndefOrEqual(BitI1, j))
2522      return false;
2523  }
2524
2525  return true;
2526}
2527
2528/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2529/// specifies a shuffle of elements that is suitable for input to MOVSS,
2530/// MOVSD, and MOVD, i.e. setting the lowest element.
2531static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
2532  if (NumElts != 2 && NumElts != 4)
2533    return false;
2534
2535  if (!isUndefOrEqual(Elts[0], NumElts))
2536    return false;
2537
2538  for (unsigned i = 1; i < NumElts; ++i) {
2539    if (!isUndefOrEqual(Elts[i], i))
2540      return false;
2541  }
2542
2543  return true;
2544}
2545
2546bool X86::isMOVLMask(SDNode *N) {
2547  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2548  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2549}
2550
2551/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2552/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2553/// element of vector 2 and the other elements to come from vector 1 in order.
2554static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2555                           bool V2IsSplat = false,
2556                           bool V2IsUndef = false) {
2557  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2558    return false;
2559
2560  if (!isUndefOrEqual(Ops[0], 0))
2561    return false;
2562
2563  for (unsigned i = 1; i < NumOps; ++i) {
2564    SDOperand Arg = Ops[i];
2565    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2566          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2567          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2568      return false;
2569  }
2570
2571  return true;
2572}
2573
2574static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2575                           bool V2IsUndef = false) {
2576  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2577  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2578                        V2IsSplat, V2IsUndef);
2579}
2580
2581/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2582/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2583bool X86::isMOVSHDUPMask(SDNode *N) {
2584  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2585
2586  if (N->getNumOperands() != 4)
2587    return false;
2588
2589  // Expect 1, 1, 3, 3
2590  for (unsigned i = 0; i < 2; ++i) {
2591    SDOperand Arg = N->getOperand(i);
2592    if (Arg.getOpcode() == ISD::UNDEF) continue;
2593    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2594    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2595    if (Val != 1) return false;
2596  }
2597
2598  bool HasHi = false;
2599  for (unsigned i = 2; i < 4; ++i) {
2600    SDOperand Arg = N->getOperand(i);
2601    if (Arg.getOpcode() == ISD::UNDEF) continue;
2602    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2603    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2604    if (Val != 3) return false;
2605    HasHi = true;
2606  }
2607
2608  // Don't use movshdup if it can be done with a shufps.
2609  return HasHi;
2610}
2611
2612/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2613/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2614bool X86::isMOVSLDUPMask(SDNode *N) {
2615  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2616
2617  if (N->getNumOperands() != 4)
2618    return false;
2619
2620  // Expect 0, 0, 2, 2
2621  for (unsigned i = 0; i < 2; ++i) {
2622    SDOperand Arg = N->getOperand(i);
2623    if (Arg.getOpcode() == ISD::UNDEF) continue;
2624    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2625    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2626    if (Val != 0) return false;
2627  }
2628
2629  bool HasHi = false;
2630  for (unsigned i = 2; i < 4; ++i) {
2631    SDOperand Arg = N->getOperand(i);
2632    if (Arg.getOpcode() == ISD::UNDEF) continue;
2633    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2634    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2635    if (Val != 2) return false;
2636    HasHi = true;
2637  }
2638
2639  // Don't use movshdup if it can be done with a shufps.
2640  return HasHi;
2641}
2642
2643/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2644/// specifies a identity operation on the LHS or RHS.
2645static bool isIdentityMask(SDNode *N, bool RHS = false) {
2646  unsigned NumElems = N->getNumOperands();
2647  for (unsigned i = 0; i < NumElems; ++i)
2648    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2649      return false;
2650  return true;
2651}
2652
2653/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2654/// a splat of a single element.
2655static bool isSplatMask(SDNode *N) {
2656  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2657
2658  // This is a splat operation if each element of the permute is the same, and
2659  // if the value doesn't reference the second vector.
2660  unsigned NumElems = N->getNumOperands();
2661  SDOperand ElementBase;
2662  unsigned i = 0;
2663  for (; i != NumElems; ++i) {
2664    SDOperand Elt = N->getOperand(i);
2665    if (isa<ConstantSDNode>(Elt)) {
2666      ElementBase = Elt;
2667      break;
2668    }
2669  }
2670
2671  if (!ElementBase.Val)
2672    return false;
2673
2674  for (; i != NumElems; ++i) {
2675    SDOperand Arg = N->getOperand(i);
2676    if (Arg.getOpcode() == ISD::UNDEF) continue;
2677    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2678    if (Arg != ElementBase) return false;
2679  }
2680
2681  // Make sure it is a splat of the first vector operand.
2682  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2683}
2684
2685/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2686/// a splat of a single element and it's a 2 or 4 element mask.
2687bool X86::isSplatMask(SDNode *N) {
2688  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2689
2690  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2691  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2692    return false;
2693  return ::isSplatMask(N);
2694}
2695
2696/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2697/// specifies a splat of zero element.
2698bool X86::isSplatLoMask(SDNode *N) {
2699  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2700
2701  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2702    if (!isUndefOrEqual(N->getOperand(i), 0))
2703      return false;
2704  return true;
2705}
2706
2707/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2708/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2709/// instructions.
2710unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2711  unsigned NumOperands = N->getNumOperands();
2712  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2713  unsigned Mask = 0;
2714  for (unsigned i = 0; i < NumOperands; ++i) {
2715    unsigned Val = 0;
2716    SDOperand Arg = N->getOperand(NumOperands-i-1);
2717    if (Arg.getOpcode() != ISD::UNDEF)
2718      Val = cast<ConstantSDNode>(Arg)->getValue();
2719    if (Val >= NumOperands) Val -= NumOperands;
2720    Mask |= Val;
2721    if (i != NumOperands - 1)
2722      Mask <<= Shift;
2723  }
2724
2725  return Mask;
2726}
2727
2728/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2729/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2730/// instructions.
2731unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2732  unsigned Mask = 0;
2733  // 8 nodes, but we only care about the last 4.
2734  for (unsigned i = 7; i >= 4; --i) {
2735    unsigned Val = 0;
2736    SDOperand Arg = N->getOperand(i);
2737    if (Arg.getOpcode() != ISD::UNDEF)
2738      Val = cast<ConstantSDNode>(Arg)->getValue();
2739    Mask |= (Val - 4);
2740    if (i != 4)
2741      Mask <<= 2;
2742  }
2743
2744  return Mask;
2745}
2746
2747/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2748/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2749/// instructions.
2750unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2751  unsigned Mask = 0;
2752  // 8 nodes, but we only care about the first 4.
2753  for (int i = 3; i >= 0; --i) {
2754    unsigned Val = 0;
2755    SDOperand Arg = N->getOperand(i);
2756    if (Arg.getOpcode() != ISD::UNDEF)
2757      Val = cast<ConstantSDNode>(Arg)->getValue();
2758    Mask |= Val;
2759    if (i != 0)
2760      Mask <<= 2;
2761  }
2762
2763  return Mask;
2764}
2765
2766/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2767/// specifies a 8 element shuffle that can be broken into a pair of
2768/// PSHUFHW and PSHUFLW.
2769static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2770  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2771
2772  if (N->getNumOperands() != 8)
2773    return false;
2774
2775  // Lower quadword shuffled.
2776  for (unsigned i = 0; i != 4; ++i) {
2777    SDOperand Arg = N->getOperand(i);
2778    if (Arg.getOpcode() == ISD::UNDEF) continue;
2779    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2780    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2781    if (Val >= 4)
2782      return false;
2783  }
2784
2785  // Upper quadword shuffled.
2786  for (unsigned i = 4; i != 8; ++i) {
2787    SDOperand Arg = N->getOperand(i);
2788    if (Arg.getOpcode() == ISD::UNDEF) continue;
2789    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2790    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2791    if (Val < 4 || Val > 7)
2792      return false;
2793  }
2794
2795  return true;
2796}
2797
2798/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2799/// values in ther permute mask.
2800static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2801                                      SDOperand &V2, SDOperand &Mask,
2802                                      SelectionDAG &DAG) {
2803  MVT::ValueType VT = Op.getValueType();
2804  MVT::ValueType MaskVT = Mask.getValueType();
2805  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2806  unsigned NumElems = Mask.getNumOperands();
2807  SmallVector<SDOperand, 8> MaskVec;
2808
2809  for (unsigned i = 0; i != NumElems; ++i) {
2810    SDOperand Arg = Mask.getOperand(i);
2811    if (Arg.getOpcode() == ISD::UNDEF) {
2812      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2813      continue;
2814    }
2815    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2816    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2817    if (Val < NumElems)
2818      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2819    else
2820      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2821  }
2822
2823  std::swap(V1, V2);
2824  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2825  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2826}
2827
2828/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2829/// the two vector operands have swapped position.
2830static
2831SDOperand CommuteVectorShuffleMask(SDOperand Mask, SelectionDAG &DAG) {
2832  MVT::ValueType MaskVT = Mask.getValueType();
2833  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2834  unsigned NumElems = Mask.getNumOperands();
2835  SmallVector<SDOperand, 8> MaskVec;
2836  for (unsigned i = 0; i != NumElems; ++i) {
2837    SDOperand Arg = Mask.getOperand(i);
2838    if (Arg.getOpcode() == ISD::UNDEF) {
2839      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2840      continue;
2841    }
2842    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2843    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2844    if (Val < NumElems)
2845      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2846    else
2847      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2848  }
2849  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2850}
2851
2852
2853/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2854/// match movhlps. The lower half elements should come from upper half of
2855/// V1 (and in order), and the upper half elements should come from the upper
2856/// half of V2 (and in order).
2857static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2858  unsigned NumElems = Mask->getNumOperands();
2859  if (NumElems != 4)
2860    return false;
2861  for (unsigned i = 0, e = 2; i != e; ++i)
2862    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2863      return false;
2864  for (unsigned i = 2; i != 4; ++i)
2865    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2866      return false;
2867  return true;
2868}
2869
2870/// isScalarLoadToVector - Returns true if the node is a scalar load that
2871/// is promoted to a vector.
2872static inline bool isScalarLoadToVector(SDNode *N) {
2873  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2874    N = N->getOperand(0).Val;
2875    return ISD::isNON_EXTLoad(N);
2876  }
2877  return false;
2878}
2879
2880/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2881/// match movlp{s|d}. The lower half elements should come from lower half of
2882/// V1 (and in order), and the upper half elements should come from the upper
2883/// half of V2 (and in order). And since V1 will become the source of the
2884/// MOVLP, it must be either a vector load or a scalar load to vector.
2885static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2886  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2887    return false;
2888  // Is V2 is a vector load, don't do this transformation. We will try to use
2889  // load folding shufps op.
2890  if (ISD::isNON_EXTLoad(V2))
2891    return false;
2892
2893  unsigned NumElems = Mask->getNumOperands();
2894  if (NumElems != 2 && NumElems != 4)
2895    return false;
2896  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2897    if (!isUndefOrEqual(Mask->getOperand(i), i))
2898      return false;
2899  for (unsigned i = NumElems/2; i != NumElems; ++i)
2900    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2901      return false;
2902  return true;
2903}
2904
2905/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2906/// all the same.
2907static bool isSplatVector(SDNode *N) {
2908  if (N->getOpcode() != ISD::BUILD_VECTOR)
2909    return false;
2910
2911  SDOperand SplatValue = N->getOperand(0);
2912  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2913    if (N->getOperand(i) != SplatValue)
2914      return false;
2915  return true;
2916}
2917
2918/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2919/// to an undef.
2920static bool isUndefShuffle(SDNode *N) {
2921  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2922    return false;
2923
2924  SDOperand V1 = N->getOperand(0);
2925  SDOperand V2 = N->getOperand(1);
2926  SDOperand Mask = N->getOperand(2);
2927  unsigned NumElems = Mask.getNumOperands();
2928  for (unsigned i = 0; i != NumElems; ++i) {
2929    SDOperand Arg = Mask.getOperand(i);
2930    if (Arg.getOpcode() != ISD::UNDEF) {
2931      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2932      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2933        return false;
2934      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2935        return false;
2936    }
2937  }
2938  return true;
2939}
2940
2941/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2942/// constant +0.0.
2943static inline bool isZeroNode(SDOperand Elt) {
2944  return ((isa<ConstantSDNode>(Elt) &&
2945           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2946          (isa<ConstantFPSDNode>(Elt) &&
2947           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2948}
2949
2950/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2951/// to an zero vector.
2952static bool isZeroShuffle(SDNode *N) {
2953  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2954    return false;
2955
2956  SDOperand V1 = N->getOperand(0);
2957  SDOperand V2 = N->getOperand(1);
2958  SDOperand Mask = N->getOperand(2);
2959  unsigned NumElems = Mask.getNumOperands();
2960  for (unsigned i = 0; i != NumElems; ++i) {
2961    SDOperand Arg = Mask.getOperand(i);
2962    if (Arg.getOpcode() == ISD::UNDEF)
2963      continue;
2964
2965    unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2966    if (Idx < NumElems) {
2967      unsigned Opc = V1.Val->getOpcode();
2968      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.Val))
2969        continue;
2970      if (Opc != ISD::BUILD_VECTOR ||
2971          !isZeroNode(V1.Val->getOperand(Idx)))
2972        return false;
2973    } else if (Idx >= NumElems) {
2974      unsigned Opc = V2.Val->getOpcode();
2975      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.Val))
2976        continue;
2977      if (Opc != ISD::BUILD_VECTOR ||
2978          !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2979        return false;
2980    }
2981  }
2982  return true;
2983}
2984
2985/// getZeroVector - Returns a vector of specified type with all zero elements.
2986///
2987static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2988  assert(MVT::isVector(VT) && "Expected a vector type");
2989
2990  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2991  // type.  This ensures they get CSE'd.
2992  SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
2993  SDOperand Vec;
2994  if (MVT::getSizeInBits(VT) == 64)  // MMX
2995    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2996  else                                              // SSE
2997    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2998  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2999}
3000
3001/// getOnesVector - Returns a vector of specified type with all bits set.
3002///
3003static SDOperand getOnesVector(MVT::ValueType VT, SelectionDAG &DAG) {
3004  assert(MVT::isVector(VT) && "Expected a vector type");
3005
3006  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3007  // type.  This ensures they get CSE'd.
3008  SDOperand Cst = DAG.getTargetConstant(~0U, MVT::i32);
3009  SDOperand Vec;
3010  if (MVT::getSizeInBits(VT) == 64)  // MMX
3011    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
3012  else                                              // SSE
3013    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
3014  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
3015}
3016
3017
3018/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3019/// that point to V2 points to its first element.
3020static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
3021  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
3022
3023  bool Changed = false;
3024  SmallVector<SDOperand, 8> MaskVec;
3025  unsigned NumElems = Mask.getNumOperands();
3026  for (unsigned i = 0; i != NumElems; ++i) {
3027    SDOperand Arg = Mask.getOperand(i);
3028    if (Arg.getOpcode() != ISD::UNDEF) {
3029      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
3030      if (Val > NumElems) {
3031        Arg = DAG.getConstant(NumElems, Arg.getValueType());
3032        Changed = true;
3033      }
3034    }
3035    MaskVec.push_back(Arg);
3036  }
3037
3038  if (Changed)
3039    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
3040                       &MaskVec[0], MaskVec.size());
3041  return Mask;
3042}
3043
3044/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3045/// operation of specified width.
3046static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
3047  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3048  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3049
3050  SmallVector<SDOperand, 8> MaskVec;
3051  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
3052  for (unsigned i = 1; i != NumElems; ++i)
3053    MaskVec.push_back(DAG.getConstant(i, BaseVT));
3054  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3055}
3056
3057/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
3058/// of specified width.
3059static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
3060  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3061  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3062  SmallVector<SDOperand, 8> MaskVec;
3063  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3064    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
3065    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
3066  }
3067  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3068}
3069
3070/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
3071/// of specified width.
3072static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
3073  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3074  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3075  unsigned Half = NumElems/2;
3076  SmallVector<SDOperand, 8> MaskVec;
3077  for (unsigned i = 0; i != Half; ++i) {
3078    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
3079    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
3080  }
3081  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3082}
3083
3084/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
3085///
3086static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
3087  SDOperand V1 = Op.getOperand(0);
3088  SDOperand Mask = Op.getOperand(2);
3089  MVT::ValueType VT = Op.getValueType();
3090  unsigned NumElems = Mask.getNumOperands();
3091  Mask = getUnpacklMask(NumElems, DAG);
3092  while (NumElems != 4) {
3093    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
3094    NumElems >>= 1;
3095  }
3096  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
3097
3098  Mask = getZeroVector(MVT::v4i32, DAG);
3099  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
3100                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
3101  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
3102}
3103
3104/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3105/// vector of zero or undef vector.  This produces a shuffle where the low
3106/// element of V2 is swizzled into the zero/undef vector, landing at element
3107/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3108static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
3109                                             unsigned NumElems, unsigned Idx,
3110                                             bool isZero, SelectionDAG &DAG) {
3111  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
3112  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3113  MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
3114  SmallVector<SDOperand, 16> MaskVec;
3115  for (unsigned i = 0; i != NumElems; ++i)
3116    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
3117      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
3118    else
3119      MaskVec.push_back(DAG.getConstant(i, EVT));
3120  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3121                               &MaskVec[0], MaskVec.size());
3122  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3123}
3124
3125/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3126///
3127static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
3128                                       unsigned NumNonZero, unsigned NumZero,
3129                                       SelectionDAG &DAG, TargetLowering &TLI) {
3130  if (NumNonZero > 8)
3131    return SDOperand();
3132
3133  SDOperand V(0, 0);
3134  bool First = true;
3135  for (unsigned i = 0; i < 16; ++i) {
3136    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3137    if (ThisIsNonZero && First) {
3138      if (NumZero)
3139        V = getZeroVector(MVT::v8i16, DAG);
3140      else
3141        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3142      First = false;
3143    }
3144
3145    if ((i & 1) != 0) {
3146      SDOperand ThisElt(0, 0), LastElt(0, 0);
3147      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3148      if (LastIsNonZero) {
3149        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3150      }
3151      if (ThisIsNonZero) {
3152        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3153        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3154                              ThisElt, DAG.getConstant(8, MVT::i8));
3155        if (LastIsNonZero)
3156          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3157      } else
3158        ThisElt = LastElt;
3159
3160      if (ThisElt.Val)
3161        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3162                        DAG.getConstant(i/2, TLI.getPointerTy()));
3163    }
3164  }
3165
3166  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3167}
3168
3169/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3170///
3171static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
3172                                       unsigned NumNonZero, unsigned NumZero,
3173                                       SelectionDAG &DAG, TargetLowering &TLI) {
3174  if (NumNonZero > 4)
3175    return SDOperand();
3176
3177  SDOperand V(0, 0);
3178  bool First = true;
3179  for (unsigned i = 0; i < 8; ++i) {
3180    bool isNonZero = (NonZeros & (1 << i)) != 0;
3181    if (isNonZero) {
3182      if (First) {
3183        if (NumZero)
3184          V = getZeroVector(MVT::v8i16, DAG);
3185        else
3186          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3187        First = false;
3188      }
3189      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3190                      DAG.getConstant(i, TLI.getPointerTy()));
3191    }
3192  }
3193
3194  return V;
3195}
3196
3197SDOperand
3198X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3199  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3200  if (ISD::isBuildVectorAllZeros(Op.Val) || ISD::isBuildVectorAllOnes(Op.Val)) {
3201    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3202    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3203    // eliminated on x86-32 hosts.
3204    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3205      return Op;
3206
3207    if (ISD::isBuildVectorAllOnes(Op.Val))
3208      return getOnesVector(Op.getValueType(), DAG);
3209    return getZeroVector(Op.getValueType(), DAG);
3210  }
3211
3212  MVT::ValueType VT = Op.getValueType();
3213  MVT::ValueType EVT = MVT::getVectorElementType(VT);
3214  unsigned EVTBits = MVT::getSizeInBits(EVT);
3215
3216  unsigned NumElems = Op.getNumOperands();
3217  unsigned NumZero  = 0;
3218  unsigned NumNonZero = 0;
3219  unsigned NonZeros = 0;
3220  bool HasNonImms = false;
3221  SmallSet<SDOperand, 8> Values;
3222  for (unsigned i = 0; i < NumElems; ++i) {
3223    SDOperand Elt = Op.getOperand(i);
3224    if (Elt.getOpcode() == ISD::UNDEF)
3225      continue;
3226    Values.insert(Elt);
3227    if (Elt.getOpcode() != ISD::Constant &&
3228        Elt.getOpcode() != ISD::ConstantFP)
3229      HasNonImms = true;
3230    if (isZeroNode(Elt))
3231      NumZero++;
3232    else {
3233      NonZeros |= (1 << i);
3234      NumNonZero++;
3235    }
3236  }
3237
3238  if (NumNonZero == 0) {
3239    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3240    return DAG.getNode(ISD::UNDEF, VT);
3241  }
3242
3243  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3244  if (Values.size() == 1)
3245    return SDOperand();
3246
3247  // Special case for single non-zero element.
3248  if (NumNonZero == 1 && NumElems <= 4) {
3249    unsigned Idx = CountTrailingZeros_32(NonZeros);
3250    SDOperand Item = Op.getOperand(Idx);
3251    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3252    if (Idx == 0)
3253      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3254      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
3255                                         NumZero > 0, DAG);
3256    else if (!HasNonImms) // Otherwise, it's better to do a constpool load.
3257      return SDOperand();
3258
3259    if (EVTBits == 32) {
3260      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3261      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
3262                                         DAG);
3263      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3264      MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3265      SmallVector<SDOperand, 8> MaskVec;
3266      for (unsigned i = 0; i < NumElems; i++)
3267        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3268      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3269                                   &MaskVec[0], MaskVec.size());
3270      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3271                         DAG.getNode(ISD::UNDEF, VT), Mask);
3272    }
3273  }
3274
3275  // A vector full of immediates; various special cases are already
3276  // handled, so this is best done with a single constant-pool load.
3277  if (!HasNonImms)
3278    return SDOperand();
3279
3280  // Let legalizer expand 2-wide build_vectors.
3281  if (EVTBits == 64)
3282    return SDOperand();
3283
3284  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3285  if (EVTBits == 8 && NumElems == 16) {
3286    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3287                                        *this);
3288    if (V.Val) return V;
3289  }
3290
3291  if (EVTBits == 16 && NumElems == 8) {
3292    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3293                                        *this);
3294    if (V.Val) return V;
3295  }
3296
3297  // If element VT is == 32 bits, turn it into a number of shuffles.
3298  SmallVector<SDOperand, 8> V;
3299  V.resize(NumElems);
3300  if (NumElems == 4 && NumZero > 0) {
3301    for (unsigned i = 0; i < 4; ++i) {
3302      bool isZero = !(NonZeros & (1 << i));
3303      if (isZero)
3304        V[i] = getZeroVector(VT, DAG);
3305      else
3306        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3307    }
3308
3309    for (unsigned i = 0; i < 2; ++i) {
3310      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3311        default: break;
3312        case 0:
3313          V[i] = V[i*2];  // Must be a zero vector.
3314          break;
3315        case 1:
3316          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3317                             getMOVLMask(NumElems, DAG));
3318          break;
3319        case 2:
3320          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3321                             getMOVLMask(NumElems, DAG));
3322          break;
3323        case 3:
3324          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3325                             getUnpacklMask(NumElems, DAG));
3326          break;
3327      }
3328    }
3329
3330    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
3331    // clears the upper bits.
3332    // FIXME: we can do the same for v4f32 case when we know both parts of
3333    // the lower half come from scalar_to_vector (loadf32). We should do
3334    // that in post legalizer dag combiner with target specific hooks.
3335    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
3336      return V[0];
3337    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3338    MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
3339    SmallVector<SDOperand, 8> MaskVec;
3340    bool Reverse = (NonZeros & 0x3) == 2;
3341    for (unsigned i = 0; i < 2; ++i)
3342      if (Reverse)
3343        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3344      else
3345        MaskVec.push_back(DAG.getConstant(i, EVT));
3346    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3347    for (unsigned i = 0; i < 2; ++i)
3348      if (Reverse)
3349        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3350      else
3351        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3352    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3353                                     &MaskVec[0], MaskVec.size());
3354    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3355  }
3356
3357  if (Values.size() > 2) {
3358    // Expand into a number of unpckl*.
3359    // e.g. for v4f32
3360    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3361    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3362    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3363    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3364    for (unsigned i = 0; i < NumElems; ++i)
3365      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3366    NumElems >>= 1;
3367    while (NumElems != 0) {
3368      for (unsigned i = 0; i < NumElems; ++i)
3369        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3370                           UnpckMask);
3371      NumElems >>= 1;
3372    }
3373    return V[0];
3374  }
3375
3376  return SDOperand();
3377}
3378
3379static
3380SDOperand LowerVECTOR_SHUFFLEv8i16(SDOperand V1, SDOperand V2,
3381                                   SDOperand PermMask, SelectionDAG &DAG,
3382                                   TargetLowering &TLI) {
3383  SDOperand NewV;
3384  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(8);
3385  MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3386  MVT::ValueType PtrVT = TLI.getPointerTy();
3387  SmallVector<SDOperand, 8> MaskElts(PermMask.Val->op_begin(),
3388                                     PermMask.Val->op_end());
3389
3390  // First record which half of which vector the low elements come from.
3391  SmallVector<unsigned, 4> LowQuad(4);
3392  for (unsigned i = 0; i < 4; ++i) {
3393    SDOperand Elt = MaskElts[i];
3394    if (Elt.getOpcode() == ISD::UNDEF)
3395      continue;
3396    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3397    int QuadIdx = EltIdx / 4;
3398    ++LowQuad[QuadIdx];
3399  }
3400  int BestLowQuad = -1;
3401  unsigned MaxQuad = 1;
3402  for (unsigned i = 0; i < 4; ++i) {
3403    if (LowQuad[i] > MaxQuad) {
3404      BestLowQuad = i;
3405      MaxQuad = LowQuad[i];
3406    }
3407  }
3408
3409  // Record which half of which vector the high elements come from.
3410  SmallVector<unsigned, 4> HighQuad(4);
3411  for (unsigned i = 4; i < 8; ++i) {
3412    SDOperand Elt = MaskElts[i];
3413    if (Elt.getOpcode() == ISD::UNDEF)
3414      continue;
3415    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3416    int QuadIdx = EltIdx / 4;
3417    ++HighQuad[QuadIdx];
3418  }
3419  int BestHighQuad = -1;
3420  MaxQuad = 1;
3421  for (unsigned i = 0; i < 4; ++i) {
3422    if (HighQuad[i] > MaxQuad) {
3423      BestHighQuad = i;
3424      MaxQuad = HighQuad[i];
3425    }
3426  }
3427
3428  // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
3429  if (BestLowQuad != -1 || BestHighQuad != -1) {
3430    // First sort the 4 chunks in order using shufpd.
3431    SmallVector<SDOperand, 8> MaskVec;
3432    if (BestLowQuad != -1)
3433      MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
3434    else
3435      MaskVec.push_back(DAG.getConstant(0, MVT::i32));
3436    if (BestHighQuad != -1)
3437      MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
3438    else
3439      MaskVec.push_back(DAG.getConstant(1, MVT::i32));
3440    SDOperand Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
3441    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
3442                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
3443                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
3444    NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
3445
3446    // Now sort high and low parts separately.
3447    BitVector InOrder(8);
3448    if (BestLowQuad != -1) {
3449      // Sort lower half in order using PSHUFLW.
3450      MaskVec.clear();
3451      bool AnyOutOrder = false;
3452      for (unsigned i = 0; i != 4; ++i) {
3453        SDOperand Elt = MaskElts[i];
3454        if (Elt.getOpcode() == ISD::UNDEF) {
3455          MaskVec.push_back(Elt);
3456          InOrder.set(i);
3457        } else {
3458          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3459          if (EltIdx != i)
3460            AnyOutOrder = true;
3461          MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
3462          // If this element is in the right place after this shuffle, then
3463          // remember it.
3464          if ((int)(EltIdx / 4) == BestLowQuad)
3465            InOrder.set(i);
3466        }
3467      }
3468      if (AnyOutOrder) {
3469        for (unsigned i = 4; i != 8; ++i)
3470          MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3471        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3472        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3473      }
3474    }
3475
3476    if (BestHighQuad != -1) {
3477      // Sort high half in order using PSHUFHW if possible.
3478      MaskVec.clear();
3479      for (unsigned i = 0; i != 4; ++i)
3480        MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3481      bool AnyOutOrder = false;
3482      for (unsigned i = 4; i != 8; ++i) {
3483        SDOperand Elt = MaskElts[i];
3484        if (Elt.getOpcode() == ISD::UNDEF) {
3485          MaskVec.push_back(Elt);
3486          InOrder.set(i);
3487        } else {
3488          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3489          if (EltIdx != i)
3490            AnyOutOrder = true;
3491          MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
3492          // If this element is in the right place after this shuffle, then
3493          // remember it.
3494          if ((int)(EltIdx / 4) == BestHighQuad)
3495            InOrder.set(i);
3496        }
3497      }
3498      if (AnyOutOrder) {
3499        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3500        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3501      }
3502    }
3503
3504    // The other elements are put in the right place using pextrw and pinsrw.
3505    for (unsigned i = 0; i != 8; ++i) {
3506      if (InOrder[i])
3507        continue;
3508      SDOperand Elt = MaskElts[i];
3509      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3510      if (EltIdx == i)
3511        continue;
3512      SDOperand ExtOp = (EltIdx < 8)
3513        ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3514                      DAG.getConstant(EltIdx, PtrVT))
3515        : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3516                      DAG.getConstant(EltIdx - 8, PtrVT));
3517      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3518                         DAG.getConstant(i, PtrVT));
3519    }
3520    return NewV;
3521  }
3522
3523  // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use
3524  ///as few as possible.
3525  // First, let's find out how many elements are already in the right order.
3526  unsigned V1InOrder = 0;
3527  unsigned V1FromV1 = 0;
3528  unsigned V2InOrder = 0;
3529  unsigned V2FromV2 = 0;
3530  SmallVector<SDOperand, 8> V1Elts;
3531  SmallVector<SDOperand, 8> V2Elts;
3532  for (unsigned i = 0; i < 8; ++i) {
3533    SDOperand Elt = MaskElts[i];
3534    if (Elt.getOpcode() == ISD::UNDEF) {
3535      V1Elts.push_back(Elt);
3536      V2Elts.push_back(Elt);
3537      ++V1InOrder;
3538      ++V2InOrder;
3539      continue;
3540    }
3541    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3542    if (EltIdx == i) {
3543      V1Elts.push_back(Elt);
3544      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3545      ++V1InOrder;
3546    } else if (EltIdx == i+8) {
3547      V1Elts.push_back(Elt);
3548      V2Elts.push_back(DAG.getConstant(i, MaskEVT));
3549      ++V2InOrder;
3550    } else if (EltIdx < 8) {
3551      V1Elts.push_back(Elt);
3552      ++V1FromV1;
3553    } else {
3554      V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
3555      ++V2FromV2;
3556    }
3557  }
3558
3559  if (V2InOrder > V1InOrder) {
3560    PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3561    std::swap(V1, V2);
3562    std::swap(V1Elts, V2Elts);
3563    std::swap(V1FromV1, V2FromV2);
3564  }
3565
3566  if ((V1FromV1 + V1InOrder) != 8) {
3567    // Some elements are from V2.
3568    if (V1FromV1) {
3569      // If there are elements that are from V1 but out of place,
3570      // then first sort them in place
3571      SmallVector<SDOperand, 8> MaskVec;
3572      for (unsigned i = 0; i < 8; ++i) {
3573        SDOperand Elt = V1Elts[i];
3574        if (Elt.getOpcode() == ISD::UNDEF) {
3575          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3576          continue;
3577        }
3578        unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3579        if (EltIdx >= 8)
3580          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3581        else
3582          MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
3583      }
3584      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3585      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
3586    }
3587
3588    NewV = V1;
3589    for (unsigned i = 0; i < 8; ++i) {
3590      SDOperand Elt = V1Elts[i];
3591      if (Elt.getOpcode() == ISD::UNDEF)
3592        continue;
3593      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3594      if (EltIdx < 8)
3595        continue;
3596      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3597                                    DAG.getConstant(EltIdx - 8, PtrVT));
3598      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3599                         DAG.getConstant(i, PtrVT));
3600    }
3601    return NewV;
3602  } else {
3603    // All elements are from V1.
3604    NewV = V1;
3605    for (unsigned i = 0; i < 8; ++i) {
3606      SDOperand Elt = V1Elts[i];
3607      if (Elt.getOpcode() == ISD::UNDEF)
3608        continue;
3609      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3610      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3611                                    DAG.getConstant(EltIdx, PtrVT));
3612      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3613                         DAG.getConstant(i, PtrVT));
3614    }
3615    return NewV;
3616  }
3617}
3618
3619/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3620/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3621/// done when every pair / quad of shuffle mask elements point to elements in
3622/// the right sequence. e.g.
3623/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3624static
3625SDOperand RewriteAsNarrowerShuffle(SDOperand V1, SDOperand V2,
3626                                MVT::ValueType VT,
3627                                SDOperand PermMask, SelectionDAG &DAG,
3628                                TargetLowering &TLI) {
3629  unsigned NumElems = PermMask.getNumOperands();
3630  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3631  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3632  MVT::ValueType NewVT = MaskVT;
3633  switch (VT) {
3634  case MVT::v4f32: NewVT = MVT::v2f64; break;
3635  case MVT::v4i32: NewVT = MVT::v2i64; break;
3636  case MVT::v8i16: NewVT = MVT::v4i32; break;
3637  case MVT::v16i8: NewVT = MVT::v4i32; break;
3638  default: assert(false && "Unexpected!");
3639  }
3640
3641  if (NewWidth == 2)
3642    if (MVT::isInteger(VT))
3643      NewVT = MVT::v2i64;
3644    else
3645      NewVT = MVT::v2f64;
3646  unsigned Scale = NumElems / NewWidth;
3647  SmallVector<SDOperand, 8> MaskVec;
3648  for (unsigned i = 0; i < NumElems; i += Scale) {
3649    unsigned StartIdx = ~0U;
3650    for (unsigned j = 0; j < Scale; ++j) {
3651      SDOperand Elt = PermMask.getOperand(i+j);
3652      if (Elt.getOpcode() == ISD::UNDEF)
3653        continue;
3654      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3655      if (StartIdx == ~0U)
3656        StartIdx = EltIdx - (EltIdx % Scale);
3657      if (EltIdx != StartIdx + j)
3658        return SDOperand();
3659    }
3660    if (StartIdx == ~0U)
3661      MaskVec.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
3662    else
3663      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MVT::i32));
3664  }
3665
3666  V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
3667  V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
3668  return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
3669                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3670                                 &MaskVec[0], MaskVec.size()));
3671}
3672
3673SDOperand
3674X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3675  SDOperand V1 = Op.getOperand(0);
3676  SDOperand V2 = Op.getOperand(1);
3677  SDOperand PermMask = Op.getOperand(2);
3678  MVT::ValueType VT = Op.getValueType();
3679  unsigned NumElems = PermMask.getNumOperands();
3680  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3681  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3682  bool V1IsSplat = false;
3683  bool V2IsSplat = false;
3684
3685  if (isUndefShuffle(Op.Val))
3686    return DAG.getNode(ISD::UNDEF, VT);
3687
3688  if (isZeroShuffle(Op.Val))
3689    return getZeroVector(VT, DAG);
3690
3691  if (isIdentityMask(PermMask.Val))
3692    return V1;
3693  else if (isIdentityMask(PermMask.Val, true))
3694    return V2;
3695
3696  if (isSplatMask(PermMask.Val)) {
3697    if (NumElems <= 4) return Op;
3698    // Promote it to a v4i32 splat.
3699    return PromoteSplat(Op, DAG);
3700  }
3701
3702  // If the shuffle can be profitably rewritten as a narrower shuffle, then
3703  // do it!
3704  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
3705    SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3706    if (NewOp.Val)
3707      return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3708  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
3709    // FIXME: Figure out a cleaner way to do this.
3710    // Try to make use of movq to zero out the top part.
3711    if (ISD::isBuildVectorAllZeros(V2.Val)) {
3712      SDOperand NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3713      if (NewOp.Val) {
3714        SDOperand NewV1 = NewOp.getOperand(0);
3715        SDOperand NewV2 = NewOp.getOperand(1);
3716        SDOperand NewMask = NewOp.getOperand(2);
3717        if (isCommutedMOVL(NewMask.Val, true, false)) {
3718          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
3719          NewOp = DAG.getNode(ISD::VECTOR_SHUFFLE, NewOp.getValueType(),
3720                              NewV1, NewV2, getMOVLMask(2, DAG));
3721          return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3722        }
3723      }
3724    } else if (ISD::isBuildVectorAllZeros(V1.Val)) {
3725      SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3726      if (NewOp.Val && X86::isMOVLMask(NewOp.getOperand(2).Val))
3727        return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3728    }
3729  }
3730
3731  if (X86::isMOVLMask(PermMask.Val))
3732    return (V1IsUndef) ? V2 : Op;
3733
3734  if (X86::isMOVSHDUPMask(PermMask.Val) ||
3735      X86::isMOVSLDUPMask(PermMask.Val) ||
3736      X86::isMOVHLPSMask(PermMask.Val) ||
3737      X86::isMOVHPMask(PermMask.Val) ||
3738      X86::isMOVLPMask(PermMask.Val))
3739    return Op;
3740
3741  if (ShouldXformToMOVHLPS(PermMask.Val) ||
3742      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3743    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3744
3745  bool Commuted = false;
3746  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
3747  // 1,1,1,1 -> v8i16 though.
3748  V1IsSplat = isSplatVector(V1.Val);
3749  V2IsSplat = isSplatVector(V2.Val);
3750
3751  // Canonicalize the splat or undef, if present, to be on the RHS.
3752  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3753    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3754    std::swap(V1IsSplat, V2IsSplat);
3755    std::swap(V1IsUndef, V2IsUndef);
3756    Commuted = true;
3757  }
3758
3759  // FIXME: Figure out a cleaner way to do this.
3760  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3761    if (V2IsUndef) return V1;
3762    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3763    if (V2IsSplat) {
3764      // V2 is a splat, so the mask may be malformed. That is, it may point
3765      // to any V2 element. The instruction selectior won't like this. Get
3766      // a corrected mask and commute to form a proper MOVS{S|D}.
3767      SDOperand NewMask = getMOVLMask(NumElems, DAG);
3768      if (NewMask.Val != PermMask.Val)
3769        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3770    }
3771    return Op;
3772  }
3773
3774  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3775      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3776      X86::isUNPCKLMask(PermMask.Val) ||
3777      X86::isUNPCKHMask(PermMask.Val))
3778    return Op;
3779
3780  if (V2IsSplat) {
3781    // Normalize mask so all entries that point to V2 points to its first
3782    // element then try to match unpck{h|l} again. If match, return a
3783    // new vector_shuffle with the corrected mask.
3784    SDOperand NewMask = NormalizeMask(PermMask, DAG);
3785    if (NewMask.Val != PermMask.Val) {
3786      if (X86::isUNPCKLMask(PermMask.Val, true)) {
3787        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3788        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3789      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3790        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3791        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3792      }
3793    }
3794  }
3795
3796  // Normalize the node to match x86 shuffle ops if needed
3797  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3798      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3799
3800  if (Commuted) {
3801    // Commute is back and try unpck* again.
3802    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3803    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3804        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3805        X86::isUNPCKLMask(PermMask.Val) ||
3806        X86::isUNPCKHMask(PermMask.Val))
3807      return Op;
3808  }
3809
3810  // If VT is integer, try PSHUF* first, then SHUFP*.
3811  if (MVT::isInteger(VT)) {
3812    // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
3813    // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
3814    if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
3815         X86::isPSHUFDMask(PermMask.Val)) ||
3816        X86::isPSHUFHWMask(PermMask.Val) ||
3817        X86::isPSHUFLWMask(PermMask.Val)) {
3818      if (V2.getOpcode() != ISD::UNDEF)
3819        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3820                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3821      return Op;
3822    }
3823
3824    if (X86::isSHUFPMask(PermMask.Val) &&
3825        MVT::getSizeInBits(VT) != 64)    // Don't do this for MMX.
3826      return Op;
3827  } else {
3828    // Floating point cases in the other order.
3829    if (X86::isSHUFPMask(PermMask.Val))
3830      return Op;
3831    if (X86::isPSHUFDMask(PermMask.Val) ||
3832        X86::isPSHUFHWMask(PermMask.Val) ||
3833        X86::isPSHUFLWMask(PermMask.Val)) {
3834      if (V2.getOpcode() != ISD::UNDEF)
3835        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3836                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3837      return Op;
3838    }
3839  }
3840
3841  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
3842  if (VT == MVT::v8i16) {
3843    SDOperand NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
3844    if (NewOp.Val)
3845      return NewOp;
3846  }
3847
3848  // Handle all 4 wide cases with a number of shuffles.
3849  if (NumElems == 4 && MVT::getSizeInBits(VT) != 64) {
3850    // Don't do this for MMX.
3851    MVT::ValueType MaskVT = PermMask.getValueType();
3852    MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3853    SmallVector<std::pair<int, int>, 8> Locs;
3854    Locs.reserve(NumElems);
3855    SmallVector<SDOperand, 8> Mask1(NumElems,
3856                                    DAG.getNode(ISD::UNDEF, MaskEVT));
3857    SmallVector<SDOperand, 8> Mask2(NumElems,
3858                                    DAG.getNode(ISD::UNDEF, MaskEVT));
3859    unsigned NumHi = 0;
3860    unsigned NumLo = 0;
3861    // If no more than two elements come from either vector. This can be
3862    // implemented with two shuffles. First shuffle gather the elements.
3863    // The second shuffle, which takes the first shuffle as both of its
3864    // vector operands, put the elements into the right order.
3865    for (unsigned i = 0; i != NumElems; ++i) {
3866      SDOperand Elt = PermMask.getOperand(i);
3867      if (Elt.getOpcode() == ISD::UNDEF) {
3868        Locs[i] = std::make_pair(-1, -1);
3869      } else {
3870        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3871        if (Val < NumElems) {
3872          Locs[i] = std::make_pair(0, NumLo);
3873          Mask1[NumLo] = Elt;
3874          NumLo++;
3875        } else {
3876          Locs[i] = std::make_pair(1, NumHi);
3877          if (2+NumHi < NumElems)
3878            Mask1[2+NumHi] = Elt;
3879          NumHi++;
3880        }
3881      }
3882    }
3883    if (NumLo <= 2 && NumHi <= 2) {
3884      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3885                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3886                                   &Mask1[0], Mask1.size()));
3887      for (unsigned i = 0; i != NumElems; ++i) {
3888        if (Locs[i].first == -1)
3889          continue;
3890        else {
3891          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3892          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3893          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3894        }
3895      }
3896
3897      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3898                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3899                                     &Mask2[0], Mask2.size()));
3900    }
3901
3902    // Break it into (shuffle shuffle_hi, shuffle_lo).
3903    Locs.clear();
3904    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3905    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3906    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3907    unsigned MaskIdx = 0;
3908    unsigned LoIdx = 0;
3909    unsigned HiIdx = NumElems/2;
3910    for (unsigned i = 0; i != NumElems; ++i) {
3911      if (i == NumElems/2) {
3912        MaskPtr = &HiMask;
3913        MaskIdx = 1;
3914        LoIdx = 0;
3915        HiIdx = NumElems/2;
3916      }
3917      SDOperand Elt = PermMask.getOperand(i);
3918      if (Elt.getOpcode() == ISD::UNDEF) {
3919        Locs[i] = std::make_pair(-1, -1);
3920      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3921        Locs[i] = std::make_pair(MaskIdx, LoIdx);
3922        (*MaskPtr)[LoIdx] = Elt;
3923        LoIdx++;
3924      } else {
3925        Locs[i] = std::make_pair(MaskIdx, HiIdx);
3926        (*MaskPtr)[HiIdx] = Elt;
3927        HiIdx++;
3928      }
3929    }
3930
3931    SDOperand LoShuffle =
3932      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3933                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3934                              &LoMask[0], LoMask.size()));
3935    SDOperand HiShuffle =
3936      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3937                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3938                              &HiMask[0], HiMask.size()));
3939    SmallVector<SDOperand, 8> MaskOps;
3940    for (unsigned i = 0; i != NumElems; ++i) {
3941      if (Locs[i].first == -1) {
3942        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3943      } else {
3944        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3945        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3946      }
3947    }
3948    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3949                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3950                                   &MaskOps[0], MaskOps.size()));
3951  }
3952
3953  return SDOperand();
3954}
3955
3956SDOperand
3957X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3958  if (!isa<ConstantSDNode>(Op.getOperand(1)))
3959    return SDOperand();
3960
3961  MVT::ValueType VT = Op.getValueType();
3962  // TODO: handle v16i8.
3963  if (MVT::getSizeInBits(VT) == 16) {
3964    SDOperand Vec = Op.getOperand(0);
3965    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3966    if (Idx == 0)
3967      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
3968                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
3969                                 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
3970                                     Op.getOperand(1)));
3971    // Transform it so it match pextrw which produces a 32-bit result.
3972    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3973    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3974                                    Op.getOperand(0), Op.getOperand(1));
3975    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3976                                    DAG.getValueType(VT));
3977    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3978  } else if (MVT::getSizeInBits(VT) == 32) {
3979    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3980    if (Idx == 0)
3981      return Op;
3982    // SHUFPS the element to the lowest double word, then movss.
3983    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3984    SmallVector<SDOperand, 8> IdxVec;
3985    IdxVec.
3986      push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3987    IdxVec.
3988      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3989    IdxVec.
3990      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3991    IdxVec.
3992      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3993    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3994                                 &IdxVec[0], IdxVec.size());
3995    SDOperand Vec = Op.getOperand(0);
3996    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3997                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3998    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3999                       DAG.getConstant(0, getPointerTy()));
4000  } else if (MVT::getSizeInBits(VT) == 64) {
4001    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4002    if (Idx == 0)
4003      return Op;
4004
4005    // UNPCKHPD the element to the lowest double word, then movsd.
4006    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4007    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4008    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
4009    SmallVector<SDOperand, 8> IdxVec;
4010    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
4011    IdxVec.
4012      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
4013    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4014                                 &IdxVec[0], IdxVec.size());
4015    SDOperand Vec = Op.getOperand(0);
4016    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4017                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4018    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4019                       DAG.getConstant(0, getPointerTy()));
4020  }
4021
4022  return SDOperand();
4023}
4024
4025SDOperand
4026X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
4027  MVT::ValueType VT = Op.getValueType();
4028  MVT::ValueType EVT = MVT::getVectorElementType(VT);
4029  if (EVT == MVT::i8)
4030    return SDOperand();
4031
4032  SDOperand N0 = Op.getOperand(0);
4033  SDOperand N1 = Op.getOperand(1);
4034  SDOperand N2 = Op.getOperand(2);
4035
4036  if (MVT::getSizeInBits(EVT) == 16) {
4037    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4038    // as its second argument.
4039    if (N1.getValueType() != MVT::i32)
4040      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4041    if (N2.getValueType() != MVT::i32)
4042      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
4043    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
4044  }
4045
4046  N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
4047  unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
4048  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
4049  MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
4050  SmallVector<SDOperand, 4> MaskVec;
4051  for (unsigned i = 0; i < 4; ++i)
4052    MaskVec.push_back(DAG.getConstant((i == Idx) ? i+4 : i, MaskEVT));
4053  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
4054                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4055                                 &MaskVec[0], MaskVec.size()));
4056}
4057
4058SDOperand
4059X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
4060  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
4061  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
4062}
4063
4064// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4065// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4066// one of the above mentioned nodes. It has to be wrapped because otherwise
4067// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4068// be used to form addressing mode. These wrapped nodes will be selected
4069// into MOV32ri.
4070SDOperand
4071X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
4072  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4073  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
4074                                               getPointerTy(),
4075                                               CP->getAlignment());
4076  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4077  // With PIC, the address is actually $g + Offset.
4078  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4079      !Subtarget->isPICStyleRIPRel()) {
4080    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4081                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4082                         Result);
4083  }
4084
4085  return Result;
4086}
4087
4088SDOperand
4089X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
4090  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4091  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
4092  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4093  // With PIC, the address is actually $g + Offset.
4094  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4095      !Subtarget->isPICStyleRIPRel()) {
4096    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4097                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4098                         Result);
4099  }
4100
4101  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4102  // load the value at address GV, not the value of GV itself. This means that
4103  // the GlobalAddress must be in the base or index register of the address, not
4104  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4105  // The same applies for external symbols during PIC codegen
4106  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
4107    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
4108
4109  return Result;
4110}
4111
4112// Lower ISD::GlobalTLSAddress using the "general dynamic" model
4113static SDOperand
4114LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4115                              const MVT::ValueType PtrVT) {
4116  SDOperand InFlag;
4117  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
4118                                     DAG.getNode(X86ISD::GlobalBaseReg,
4119                                                 PtrVT), InFlag);
4120  InFlag = Chain.getValue(1);
4121
4122  // emit leal symbol@TLSGD(,%ebx,1), %eax
4123  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4124  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4125                                             GA->getValueType(0),
4126                                             GA->getOffset());
4127  SDOperand Ops[] = { Chain,  TGA, InFlag };
4128  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
4129  InFlag = Result.getValue(2);
4130  Chain = Result.getValue(1);
4131
4132  // call ___tls_get_addr. This function receives its argument in
4133  // the register EAX.
4134  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
4135  InFlag = Chain.getValue(1);
4136
4137  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4138  SDOperand Ops1[] = { Chain,
4139                      DAG.getTargetExternalSymbol("___tls_get_addr",
4140                                                  PtrVT),
4141                      DAG.getRegister(X86::EAX, PtrVT),
4142                      DAG.getRegister(X86::EBX, PtrVT),
4143                      InFlag };
4144  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
4145  InFlag = Chain.getValue(1);
4146
4147  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
4148}
4149
4150// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4151// "local exec" model.
4152static SDOperand
4153LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4154                         const MVT::ValueType PtrVT) {
4155  // Get the Thread Pointer
4156  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
4157  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4158  // exec)
4159  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4160                                             GA->getValueType(0),
4161                                             GA->getOffset());
4162  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
4163
4164  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
4165    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
4166
4167  // The address of the thread local variable is the add of the thread
4168  // pointer with the offset of the variable.
4169  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
4170}
4171
4172SDOperand
4173X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
4174  // TODO: implement the "local dynamic" model
4175  // TODO: implement the "initial exec"model for pic executables
4176  assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
4177         "TLS not implemented for non-ELF and 64-bit targets");
4178  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4179  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
4180  // otherwise use the "Local Exec"TLS Model
4181  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4182    return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
4183  else
4184    return LowerToTLSExecModel(GA, DAG, getPointerTy());
4185}
4186
4187SDOperand
4188X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
4189  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4190  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4191  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4192  // With PIC, the address is actually $g + Offset.
4193  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4194      !Subtarget->isPICStyleRIPRel()) {
4195    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4196                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4197                         Result);
4198  }
4199
4200  return Result;
4201}
4202
4203SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
4204  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4205  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4206  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4207  // With PIC, the address is actually $g + Offset.
4208  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4209      !Subtarget->isPICStyleRIPRel()) {
4210    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4211                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4212                         Result);
4213  }
4214
4215  return Result;
4216}
4217
4218/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4219/// take a 2 x i32 value to shift plus a shift amount.
4220SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
4221  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
4222         "Not an i64 shift!");
4223  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4224  SDOperand ShOpLo = Op.getOperand(0);
4225  SDOperand ShOpHi = Op.getOperand(1);
4226  SDOperand ShAmt  = Op.getOperand(2);
4227  SDOperand Tmp1 = isSRA ?
4228    DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
4229    DAG.getConstant(0, MVT::i32);
4230
4231  SDOperand Tmp2, Tmp3;
4232  if (Op.getOpcode() == ISD::SHL_PARTS) {
4233    Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
4234    Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
4235  } else {
4236    Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
4237    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
4238  }
4239
4240  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4241  SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
4242                                  DAG.getConstant(32, MVT::i8));
4243  SDOperand Cond = DAG.getNode(X86ISD::CMP, MVT::i32,
4244                               AndNode, DAG.getConstant(0, MVT::i8));
4245
4246  SDOperand Hi, Lo;
4247  SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4248  VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
4249  SmallVector<SDOperand, 4> Ops;
4250  if (Op.getOpcode() == ISD::SHL_PARTS) {
4251    Ops.push_back(Tmp2);
4252    Ops.push_back(Tmp3);
4253    Ops.push_back(CC);
4254    Ops.push_back(Cond);
4255    Hi = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
4256
4257    Ops.clear();
4258    Ops.push_back(Tmp3);
4259    Ops.push_back(Tmp1);
4260    Ops.push_back(CC);
4261    Ops.push_back(Cond);
4262    Lo = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
4263  } else {
4264    Ops.push_back(Tmp2);
4265    Ops.push_back(Tmp3);
4266    Ops.push_back(CC);
4267    Ops.push_back(Cond);
4268    Lo = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
4269
4270    Ops.clear();
4271    Ops.push_back(Tmp3);
4272    Ops.push_back(Tmp1);
4273    Ops.push_back(CC);
4274    Ops.push_back(Cond);
4275    Hi = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
4276  }
4277
4278  VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
4279  Ops.clear();
4280  Ops.push_back(Lo);
4281  Ops.push_back(Hi);
4282  return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
4283}
4284
4285SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
4286  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
4287         Op.getOperand(0).getValueType() >= MVT::i16 &&
4288         "Unknown SINT_TO_FP to lower!");
4289
4290  SDOperand Result;
4291  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
4292  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
4293  MachineFunction &MF = DAG.getMachineFunction();
4294  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4295  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4296  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
4297                                 StackSlot, NULL, 0);
4298
4299  // These are really Legal; caller falls through into that case.
4300  if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f32 && X86ScalarSSEf32)
4301    return Result;
4302  if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f64 && X86ScalarSSEf64)
4303    return Result;
4304  if (SrcVT==MVT::i64 && Op.getValueType() != MVT::f80 &&
4305      Subtarget->is64Bit())
4306    return Result;
4307
4308  // Build the FILD
4309  SDVTList Tys;
4310  bool useSSE = (X86ScalarSSEf32 && Op.getValueType() == MVT::f32) ||
4311                (X86ScalarSSEf64 && Op.getValueType() == MVT::f64);
4312  if (useSSE)
4313    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4314  else
4315    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4316  SmallVector<SDOperand, 8> Ops;
4317  Ops.push_back(Chain);
4318  Ops.push_back(StackSlot);
4319  Ops.push_back(DAG.getValueType(SrcVT));
4320  Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
4321                       Tys, &Ops[0], Ops.size());
4322
4323  if (useSSE) {
4324    Chain = Result.getValue(1);
4325    SDOperand InFlag = Result.getValue(2);
4326
4327    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4328    // shouldn't be necessary except that RFP cannot be live across
4329    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4330    MachineFunction &MF = DAG.getMachineFunction();
4331    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4332    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4333    Tys = DAG.getVTList(MVT::Other);
4334    SmallVector<SDOperand, 8> Ops;
4335    Ops.push_back(Chain);
4336    Ops.push_back(Result);
4337    Ops.push_back(StackSlot);
4338    Ops.push_back(DAG.getValueType(Op.getValueType()));
4339    Ops.push_back(InFlag);
4340    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4341    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
4342  }
4343
4344  return Result;
4345}
4346
4347std::pair<SDOperand,SDOperand> X86TargetLowering::
4348FP_TO_SINTHelper(SDOperand Op, SelectionDAG &DAG) {
4349  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
4350         "Unknown FP_TO_SINT to lower!");
4351
4352  // These are really Legal.
4353  if (Op.getValueType() == MVT::i32 &&
4354      X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32)
4355    return std::make_pair(SDOperand(), SDOperand());
4356  if (Op.getValueType() == MVT::i32 &&
4357      X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)
4358    return std::make_pair(SDOperand(), SDOperand());
4359  if (Subtarget->is64Bit() &&
4360      Op.getValueType() == MVT::i64 &&
4361      Op.getOperand(0).getValueType() != MVT::f80)
4362    return std::make_pair(SDOperand(), SDOperand());
4363
4364  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4365  // stack slot.
4366  MachineFunction &MF = DAG.getMachineFunction();
4367  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
4368  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4369  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4370  unsigned Opc;
4371  switch (Op.getValueType()) {
4372  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4373  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4374  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4375  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4376  }
4377
4378  SDOperand Chain = DAG.getEntryNode();
4379  SDOperand Value = Op.getOperand(0);
4380  if ((X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32) ||
4381      (X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)) {
4382    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4383    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
4384    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4385    SDOperand Ops[] = {
4386      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4387    };
4388    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
4389    Chain = Value.getValue(1);
4390    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4391    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4392  }
4393
4394  // Build the FP_TO_INT*_IN_MEM
4395  SDOperand Ops[] = { Chain, Value, StackSlot };
4396  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
4397
4398  return std::make_pair(FIST, StackSlot);
4399}
4400
4401SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
4402  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(Op, DAG);
4403  SDOperand FIST = Vals.first, StackSlot = Vals.second;
4404  if (FIST.Val == 0) return SDOperand();
4405
4406  // Load the result.
4407  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4408}
4409
4410SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) {
4411  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(SDOperand(N, 0), DAG);
4412  SDOperand FIST = Vals.first, StackSlot = Vals.second;
4413  if (FIST.Val == 0) return 0;
4414
4415  // Return an i64 load from the stack slot.
4416  SDOperand Res = DAG.getLoad(MVT::i64, FIST, StackSlot, NULL, 0);
4417
4418  // Use a MERGE_VALUES node to drop the chain result value.
4419  return DAG.getNode(ISD::MERGE_VALUES, MVT::i64, Res).Val;
4420}
4421
4422SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
4423  MVT::ValueType VT = Op.getValueType();
4424  MVT::ValueType EltVT = VT;
4425  if (MVT::isVector(VT))
4426    EltVT = MVT::getVectorElementType(VT);
4427  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
4428  std::vector<Constant*> CV;
4429  if (EltVT == MVT::f64) {
4430    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
4431    CV.push_back(C);
4432    CV.push_back(C);
4433  } else {
4434    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
4435    CV.push_back(C);
4436    CV.push_back(C);
4437    CV.push_back(C);
4438    CV.push_back(C);
4439  }
4440  Constant *C = ConstantVector::get(CV);
4441  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4442  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4443                               false, 16);
4444  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4445}
4446
4447SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
4448  MVT::ValueType VT = Op.getValueType();
4449  MVT::ValueType EltVT = VT;
4450  unsigned EltNum = 1;
4451  if (MVT::isVector(VT)) {
4452    EltVT = MVT::getVectorElementType(VT);
4453    EltNum = MVT::getVectorNumElements(VT);
4454  }
4455  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
4456  std::vector<Constant*> CV;
4457  if (EltVT == MVT::f64) {
4458    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
4459    CV.push_back(C);
4460    CV.push_back(C);
4461  } else {
4462    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
4463    CV.push_back(C);
4464    CV.push_back(C);
4465    CV.push_back(C);
4466    CV.push_back(C);
4467  }
4468  Constant *C = ConstantVector::get(CV);
4469  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4470  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4471                               false, 16);
4472  if (MVT::isVector(VT)) {
4473    return DAG.getNode(ISD::BIT_CONVERT, VT,
4474                       DAG.getNode(ISD::XOR, MVT::v2i64,
4475                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4476                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4477  } else {
4478    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4479  }
4480}
4481
4482SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
4483  SDOperand Op0 = Op.getOperand(0);
4484  SDOperand Op1 = Op.getOperand(1);
4485  MVT::ValueType VT = Op.getValueType();
4486  MVT::ValueType SrcVT = Op1.getValueType();
4487  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
4488
4489  // If second operand is smaller, extend it first.
4490  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
4491    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4492    SrcVT = VT;
4493    SrcTy = MVT::getTypeForValueType(SrcVT);
4494  }
4495  // And if it is bigger, shrink it first.
4496  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4497    Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1);
4498    SrcVT = VT;
4499    SrcTy = MVT::getTypeForValueType(SrcVT);
4500  }
4501
4502  // At this point the operands and the result should have the same
4503  // type, and that won't be f80 since that is not custom lowered.
4504
4505  // First get the sign bit of second operand.
4506  std::vector<Constant*> CV;
4507  if (SrcVT == MVT::f64) {
4508    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
4509    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
4510  } else {
4511    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
4512    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4513    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4514    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4515  }
4516  Constant *C = ConstantVector::get(CV);
4517  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4518  SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
4519                                false, 16);
4520  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4521
4522  // Shift sign bit right or left if the two operands have different types.
4523  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4524    // Op0 is MVT::f32, Op1 is MVT::f64.
4525    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4526    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4527                          DAG.getConstant(32, MVT::i32));
4528    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4529    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4530                          DAG.getConstant(0, getPointerTy()));
4531  }
4532
4533  // Clear first operand sign bit.
4534  CV.clear();
4535  if (VT == MVT::f64) {
4536    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
4537    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
4538  } else {
4539    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
4540    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4541    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4542    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4543  }
4544  C = ConstantVector::get(CV);
4545  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4546  SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4547                                false, 16);
4548  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4549
4550  // Or the value with the sign bit.
4551  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4552}
4553
4554SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
4555  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
4556  SDOperand Cond;
4557  SDOperand Op0 = Op.getOperand(0);
4558  SDOperand Op1 = Op.getOperand(1);
4559  SDOperand CC = Op.getOperand(2);
4560  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4561  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
4562  unsigned X86CC;
4563
4564  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
4565                     Op0, Op1, DAG)) {
4566    Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4567    return DAG.getNode(X86ISD::SETCC, MVT::i8,
4568                       DAG.getConstant(X86CC, MVT::i8), Cond);
4569  }
4570
4571  assert(isFP && "Illegal integer SetCC!");
4572
4573  Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4574  switch (SetCCOpcode) {
4575  default: assert(false && "Illegal floating point SetCC!");
4576  case ISD::SETOEQ: {  // !PF & ZF
4577    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4578                                 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
4579    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4580                                 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4581    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4582  }
4583  case ISD::SETUNE: {  // PF | !ZF
4584    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4585                                 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
4586    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4587                                 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4588    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4589  }
4590  }
4591}
4592
4593
4594SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4595  bool addTest = true;
4596  SDOperand Cond  = Op.getOperand(0);
4597  SDOperand CC;
4598
4599  if (Cond.getOpcode() == ISD::SETCC)
4600    Cond = LowerSETCC(Cond, DAG);
4601
4602  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4603  // setting operand in place of the X86ISD::SETCC.
4604  if (Cond.getOpcode() == X86ISD::SETCC) {
4605    CC = Cond.getOperand(0);
4606
4607    SDOperand Cmp = Cond.getOperand(1);
4608    unsigned Opc = Cmp.getOpcode();
4609    MVT::ValueType VT = Op.getValueType();
4610    bool IllegalFPCMov = false;
4611    if (VT == MVT::f32 && !X86ScalarSSEf32)
4612      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4613    else if (VT == MVT::f64 && !X86ScalarSSEf64)
4614      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4615    else if (VT == MVT::f80)
4616      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4617    if ((Opc == X86ISD::CMP ||
4618         Opc == X86ISD::COMI ||
4619         Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
4620      Cond = Cmp;
4621      addTest = false;
4622    }
4623  }
4624
4625  if (addTest) {
4626    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4627    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4628  }
4629
4630  const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4631                                                    MVT::Flag);
4632  SmallVector<SDOperand, 4> Ops;
4633  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4634  // condition is true.
4635  Ops.push_back(Op.getOperand(2));
4636  Ops.push_back(Op.getOperand(1));
4637  Ops.push_back(CC);
4638  Ops.push_back(Cond);
4639  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
4640}
4641
4642SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4643  bool addTest = true;
4644  SDOperand Chain = Op.getOperand(0);
4645  SDOperand Cond  = Op.getOperand(1);
4646  SDOperand Dest  = Op.getOperand(2);
4647  SDOperand CC;
4648
4649  if (Cond.getOpcode() == ISD::SETCC)
4650    Cond = LowerSETCC(Cond, DAG);
4651
4652  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4653  // setting operand in place of the X86ISD::SETCC.
4654  if (Cond.getOpcode() == X86ISD::SETCC) {
4655    CC = Cond.getOperand(0);
4656
4657    SDOperand Cmp = Cond.getOperand(1);
4658    unsigned Opc = Cmp.getOpcode();
4659    if (Opc == X86ISD::CMP ||
4660        Opc == X86ISD::COMI ||
4661        Opc == X86ISD::UCOMI) {
4662      Cond = Cmp;
4663      addTest = false;
4664    }
4665  }
4666
4667  if (addTest) {
4668    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4669    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4670  }
4671  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
4672                     Chain, Op.getOperand(2), CC, Cond);
4673}
4674
4675SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
4676  unsigned CallingConv = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4677  bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
4678
4679   if (Subtarget->is64Bit())
4680     if(CallingConv==CallingConv::Fast && isTailCall && PerformTailCallOpt)
4681       return LowerX86_TailCallTo(Op, DAG, CallingConv);
4682     else
4683       return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
4684  else
4685    switch (CallingConv) {
4686    default:
4687      assert(0 && "Unsupported calling convention");
4688    case CallingConv::Fast:
4689      if (isTailCall && PerformTailCallOpt)
4690        return LowerX86_TailCallTo(Op, DAG, CallingConv);
4691      else
4692        return LowerCCCCallTo(Op,DAG, CallingConv);
4693    case CallingConv::C:
4694    case CallingConv::X86_StdCall:
4695      return LowerCCCCallTo(Op, DAG, CallingConv);
4696    case CallingConv::X86_FastCall:
4697      return LowerFastCCCallTo(Op, DAG, CallingConv);
4698    }
4699}
4700
4701
4702// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
4703// Calls to _alloca is needed to probe the stack when allocating more than 4k
4704// bytes in one go. Touching the stack at 4K increments is necessary to ensure
4705// that the guard pages used by the OS virtual memory manager are allocated in
4706// correct sequence.
4707SDOperand
4708X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
4709                                           SelectionDAG &DAG) {
4710  assert(Subtarget->isTargetCygMing() &&
4711         "This should be used only on Cygwin/Mingw targets");
4712
4713  // Get the inputs.
4714  SDOperand Chain = Op.getOperand(0);
4715  SDOperand Size  = Op.getOperand(1);
4716  // FIXME: Ensure alignment here
4717
4718  SDOperand Flag;
4719
4720  MVT::ValueType IntPtr = getPointerTy();
4721  MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
4722
4723  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
4724  Flag = Chain.getValue(1);
4725
4726  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4727  SDOperand Ops[] = { Chain,
4728                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
4729                      DAG.getRegister(X86::EAX, IntPtr),
4730                      Flag };
4731  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
4732  Flag = Chain.getValue(1);
4733
4734  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
4735
4736  std::vector<MVT::ValueType> Tys;
4737  Tys.push_back(SPTy);
4738  Tys.push_back(MVT::Other);
4739  SDOperand Ops1[2] = { Chain.getValue(0), Chain };
4740  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
4741}
4742
4743SDOperand
4744X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
4745  MachineFunction &MF = DAG.getMachineFunction();
4746  const Function* Fn = MF.getFunction();
4747  if (Fn->hasExternalLinkage() &&
4748      Subtarget->isTargetCygMing() &&
4749      Fn->getName() == "main")
4750    MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
4751
4752  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4753  if (Subtarget->is64Bit())
4754    return LowerX86_64CCCArguments(Op, DAG);
4755  else
4756    switch(CC) {
4757    default:
4758      assert(0 && "Unsupported calling convention");
4759    case CallingConv::Fast:
4760      return LowerCCCArguments(Op,DAG, true);
4761      // Falls through
4762    case CallingConv::C:
4763      return LowerCCCArguments(Op, DAG);
4764    case CallingConv::X86_StdCall:
4765      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
4766      return LowerCCCArguments(Op, DAG, true);
4767    case CallingConv::X86_FastCall:
4768      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
4769      return LowerFastCCArguments(Op, DAG);
4770    }
4771}
4772
4773SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4774  SDOperand InFlag(0, 0);
4775  SDOperand Chain = Op.getOperand(0);
4776  unsigned Align =
4777    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4778  if (Align == 0) Align = 1;
4779
4780  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4781  // If not DWORD aligned or size is more than the threshold, call memset.
4782  // The libc version is likely to be faster for these cases. It can use the
4783  // address value and run time information about the CPU.
4784  if ((Align & 3) != 0 ||
4785      (I && I->getValue() > Subtarget->getMaxInlineSizeThreshold())) {
4786    MVT::ValueType IntPtr = getPointerTy();
4787    const Type *IntPtrTy = getTargetData()->getIntPtrType();
4788    TargetLowering::ArgListTy Args;
4789    TargetLowering::ArgListEntry Entry;
4790    Entry.Node = Op.getOperand(1);
4791    Entry.Ty = IntPtrTy;
4792    Args.push_back(Entry);
4793    // Extend the unsigned i8 argument to be an int value for the call.
4794    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4795    Entry.Ty = IntPtrTy;
4796    Args.push_back(Entry);
4797    Entry.Node = Op.getOperand(3);
4798    Args.push_back(Entry);
4799    std::pair<SDOperand,SDOperand> CallResult =
4800      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4801                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4802    return CallResult.second;
4803  }
4804
4805  MVT::ValueType AVT;
4806  SDOperand Count;
4807  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4808  unsigned BytesLeft = 0;
4809  bool TwoRepStos = false;
4810  if (ValC) {
4811    unsigned ValReg;
4812    uint64_t Val = ValC->getValue() & 255;
4813
4814    // If the value is a constant, then we can potentially use larger sets.
4815    switch (Align & 3) {
4816      case 2:   // WORD aligned
4817        AVT = MVT::i16;
4818        ValReg = X86::AX;
4819        Val = (Val << 8) | Val;
4820        break;
4821      case 0:  // DWORD aligned
4822        AVT = MVT::i32;
4823        ValReg = X86::EAX;
4824        Val = (Val << 8)  | Val;
4825        Val = (Val << 16) | Val;
4826        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
4827          AVT = MVT::i64;
4828          ValReg = X86::RAX;
4829          Val = (Val << 32) | Val;
4830        }
4831        break;
4832      default:  // Byte aligned
4833        AVT = MVT::i8;
4834        ValReg = X86::AL;
4835        Count = Op.getOperand(3);
4836        break;
4837    }
4838
4839    if (AVT > MVT::i8) {
4840      if (I) {
4841        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4842        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4843        BytesLeft = I->getValue() % UBytes;
4844      } else {
4845        assert(AVT >= MVT::i32 &&
4846               "Do not use rep;stos if not at least DWORD aligned");
4847        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4848                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4849        TwoRepStos = true;
4850      }
4851    }
4852
4853    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4854                              InFlag);
4855    InFlag = Chain.getValue(1);
4856  } else {
4857    AVT = MVT::i8;
4858    Count  = Op.getOperand(3);
4859    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4860    InFlag = Chain.getValue(1);
4861  }
4862
4863  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4864                            Count, InFlag);
4865  InFlag = Chain.getValue(1);
4866  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4867                            Op.getOperand(1), InFlag);
4868  InFlag = Chain.getValue(1);
4869
4870  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4871  SmallVector<SDOperand, 8> Ops;
4872  Ops.push_back(Chain);
4873  Ops.push_back(DAG.getValueType(AVT));
4874  Ops.push_back(InFlag);
4875  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4876
4877  if (TwoRepStos) {
4878    InFlag = Chain.getValue(1);
4879    Count = Op.getOperand(3);
4880    MVT::ValueType CVT = Count.getValueType();
4881    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4882                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4883    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4884                              Left, InFlag);
4885    InFlag = Chain.getValue(1);
4886    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4887    Ops.clear();
4888    Ops.push_back(Chain);
4889    Ops.push_back(DAG.getValueType(MVT::i8));
4890    Ops.push_back(InFlag);
4891    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4892  } else if (BytesLeft) {
4893    // Issue stores for the last 1 - 7 bytes.
4894    SDOperand Value;
4895    unsigned Val = ValC->getValue() & 255;
4896    unsigned Offset = I->getValue() - BytesLeft;
4897    SDOperand DstAddr = Op.getOperand(1);
4898    MVT::ValueType AddrVT = DstAddr.getValueType();
4899    if (BytesLeft >= 4) {
4900      Val = (Val << 8)  | Val;
4901      Val = (Val << 16) | Val;
4902      Value = DAG.getConstant(Val, MVT::i32);
4903      Chain = DAG.getStore(Chain, Value,
4904                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4905                                       DAG.getConstant(Offset, AddrVT)),
4906                           NULL, 0);
4907      BytesLeft -= 4;
4908      Offset += 4;
4909    }
4910    if (BytesLeft >= 2) {
4911      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4912      Chain = DAG.getStore(Chain, Value,
4913                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4914                                       DAG.getConstant(Offset, AddrVT)),
4915                           NULL, 0);
4916      BytesLeft -= 2;
4917      Offset += 2;
4918    }
4919    if (BytesLeft == 1) {
4920      Value = DAG.getConstant(Val, MVT::i8);
4921      Chain = DAG.getStore(Chain, Value,
4922                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4923                                       DAG.getConstant(Offset, AddrVT)),
4924                           NULL, 0);
4925    }
4926  }
4927
4928  return Chain;
4929}
4930
4931SDOperand X86TargetLowering::LowerMEMCPYInline(SDOperand Chain,
4932                                               SDOperand Dest,
4933                                               SDOperand Source,
4934                                               unsigned Size,
4935                                               unsigned Align,
4936                                               SelectionDAG &DAG) {
4937  MVT::ValueType AVT;
4938  unsigned BytesLeft = 0;
4939  switch (Align & 3) {
4940    case 2:   // WORD aligned
4941      AVT = MVT::i16;
4942      break;
4943    case 0:  // DWORD aligned
4944      AVT = MVT::i32;
4945      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
4946        AVT = MVT::i64;
4947      break;
4948    default:  // Byte aligned
4949      AVT = MVT::i8;
4950      break;
4951  }
4952
4953  unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4954  SDOperand Count = DAG.getConstant(Size / UBytes, getPointerTy());
4955  BytesLeft = Size % UBytes;
4956
4957  SDOperand InFlag(0, 0);
4958  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4959                            Count, InFlag);
4960  InFlag = Chain.getValue(1);
4961  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4962                            Dest, InFlag);
4963  InFlag = Chain.getValue(1);
4964  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4965                            Source, InFlag);
4966  InFlag = Chain.getValue(1);
4967
4968  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4969  SmallVector<SDOperand, 8> Ops;
4970  Ops.push_back(Chain);
4971  Ops.push_back(DAG.getValueType(AVT));
4972  Ops.push_back(InFlag);
4973  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4974
4975  if (BytesLeft) {
4976    // Issue loads and stores for the last 1 - 7 bytes.
4977    unsigned Offset = Size - BytesLeft;
4978    SDOperand DstAddr = Dest;
4979    MVT::ValueType DstVT = DstAddr.getValueType();
4980    SDOperand SrcAddr = Source;
4981    MVT::ValueType SrcVT = SrcAddr.getValueType();
4982    SDOperand Value;
4983    if (BytesLeft >= 4) {
4984      Value = DAG.getLoad(MVT::i32, Chain,
4985                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4986                                      DAG.getConstant(Offset, SrcVT)),
4987                          NULL, 0);
4988      Chain = Value.getValue(1);
4989      Chain = DAG.getStore(Chain, Value,
4990                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4991                                       DAG.getConstant(Offset, DstVT)),
4992                           NULL, 0);
4993      BytesLeft -= 4;
4994      Offset += 4;
4995    }
4996    if (BytesLeft >= 2) {
4997      Value = DAG.getLoad(MVT::i16, Chain,
4998                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4999                                      DAG.getConstant(Offset, SrcVT)),
5000                          NULL, 0);
5001      Chain = Value.getValue(1);
5002      Chain = DAG.getStore(Chain, Value,
5003                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
5004                                       DAG.getConstant(Offset, DstVT)),
5005                           NULL, 0);
5006      BytesLeft -= 2;
5007      Offset += 2;
5008    }
5009
5010    if (BytesLeft == 1) {
5011      Value = DAG.getLoad(MVT::i8, Chain,
5012                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
5013                                      DAG.getConstant(Offset, SrcVT)),
5014                          NULL, 0);
5015      Chain = Value.getValue(1);
5016      Chain = DAG.getStore(Chain, Value,
5017                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
5018                                       DAG.getConstant(Offset, DstVT)),
5019                           NULL, 0);
5020    }
5021  }
5022
5023  return Chain;
5024}
5025
5026/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain
5027SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){
5028  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5029  SDOperand TheChain = N->getOperand(0);
5030  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
5031  if (Subtarget->is64Bit()) {
5032    SDOperand rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
5033    SDOperand rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX,
5034                                       MVT::i64, rax.getValue(2));
5035    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
5036                                DAG.getConstant(32, MVT::i8));
5037    SDOperand Ops[] = {
5038      DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1)
5039    };
5040
5041    Tys = DAG.getVTList(MVT::i64, MVT::Other);
5042    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
5043  }
5044
5045  SDOperand eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
5046  SDOperand edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX,
5047                                       MVT::i32, eax.getValue(2));
5048  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
5049  SDOperand Ops[] = { eax, edx };
5050  Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2);
5051
5052  // Use a MERGE_VALUES to return the value and chain.
5053  Ops[1] = edx.getValue(1);
5054  Tys = DAG.getVTList(MVT::i64, MVT::Other);
5055  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
5056}
5057
5058SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
5059  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
5060
5061  if (!Subtarget->is64Bit()) {
5062    // vastart just stores the address of the VarArgsFrameIndex slot into the
5063    // memory location argument.
5064    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5065    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
5066                        SV->getOffset());
5067  }
5068
5069  // __va_list_tag:
5070  //   gp_offset         (0 - 6 * 8)
5071  //   fp_offset         (48 - 48 + 8 * 16)
5072  //   overflow_arg_area (point to parameters coming in memory).
5073  //   reg_save_area
5074  SmallVector<SDOperand, 8> MemOps;
5075  SDOperand FIN = Op.getOperand(1);
5076  // Store gp_offset
5077  SDOperand Store = DAG.getStore(Op.getOperand(0),
5078                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
5079                                 FIN, SV->getValue(), SV->getOffset());
5080  MemOps.push_back(Store);
5081
5082  // Store fp_offset
5083  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
5084                    DAG.getConstant(4, getPointerTy()));
5085  Store = DAG.getStore(Op.getOperand(0),
5086                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
5087                       FIN, SV->getValue(), SV->getOffset());
5088  MemOps.push_back(Store);
5089
5090  // Store ptr to overflow_arg_area
5091  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
5092                    DAG.getConstant(4, getPointerTy()));
5093  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5094  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
5095                       SV->getOffset());
5096  MemOps.push_back(Store);
5097
5098  // Store ptr to reg_save_area.
5099  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
5100                    DAG.getConstant(8, getPointerTy()));
5101  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
5102  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
5103                       SV->getOffset());
5104  MemOps.push_back(Store);
5105  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
5106}
5107
5108SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
5109  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5110  SDOperand Chain = Op.getOperand(0);
5111  SDOperand DstPtr = Op.getOperand(1);
5112  SDOperand SrcPtr = Op.getOperand(2);
5113  SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
5114  SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
5115
5116  SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
5117                       SrcSV->getValue(), SrcSV->getOffset());
5118  Chain = SrcPtr.getValue(1);
5119  for (unsigned i = 0; i < 3; ++i) {
5120    SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
5121                                SrcSV->getValue(), SrcSV->getOffset());
5122    Chain = Val.getValue(1);
5123    Chain = DAG.getStore(Chain, Val, DstPtr,
5124                         DstSV->getValue(), DstSV->getOffset());
5125    if (i == 2)
5126      break;
5127    SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
5128                         DAG.getConstant(8, getPointerTy()));
5129    DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
5130                         DAG.getConstant(8, getPointerTy()));
5131  }
5132  return Chain;
5133}
5134
5135SDOperand
5136X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
5137  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
5138  switch (IntNo) {
5139  default: return SDOperand();    // Don't custom lower most intrinsics.
5140    // Comparison intrinsics.
5141  case Intrinsic::x86_sse_comieq_ss:
5142  case Intrinsic::x86_sse_comilt_ss:
5143  case Intrinsic::x86_sse_comile_ss:
5144  case Intrinsic::x86_sse_comigt_ss:
5145  case Intrinsic::x86_sse_comige_ss:
5146  case Intrinsic::x86_sse_comineq_ss:
5147  case Intrinsic::x86_sse_ucomieq_ss:
5148  case Intrinsic::x86_sse_ucomilt_ss:
5149  case Intrinsic::x86_sse_ucomile_ss:
5150  case Intrinsic::x86_sse_ucomigt_ss:
5151  case Intrinsic::x86_sse_ucomige_ss:
5152  case Intrinsic::x86_sse_ucomineq_ss:
5153  case Intrinsic::x86_sse2_comieq_sd:
5154  case Intrinsic::x86_sse2_comilt_sd:
5155  case Intrinsic::x86_sse2_comile_sd:
5156  case Intrinsic::x86_sse2_comigt_sd:
5157  case Intrinsic::x86_sse2_comige_sd:
5158  case Intrinsic::x86_sse2_comineq_sd:
5159  case Intrinsic::x86_sse2_ucomieq_sd:
5160  case Intrinsic::x86_sse2_ucomilt_sd:
5161  case Intrinsic::x86_sse2_ucomile_sd:
5162  case Intrinsic::x86_sse2_ucomigt_sd:
5163  case Intrinsic::x86_sse2_ucomige_sd:
5164  case Intrinsic::x86_sse2_ucomineq_sd: {
5165    unsigned Opc = 0;
5166    ISD::CondCode CC = ISD::SETCC_INVALID;
5167    switch (IntNo) {
5168    default: break;
5169    case Intrinsic::x86_sse_comieq_ss:
5170    case Intrinsic::x86_sse2_comieq_sd:
5171      Opc = X86ISD::COMI;
5172      CC = ISD::SETEQ;
5173      break;
5174    case Intrinsic::x86_sse_comilt_ss:
5175    case Intrinsic::x86_sse2_comilt_sd:
5176      Opc = X86ISD::COMI;
5177      CC = ISD::SETLT;
5178      break;
5179    case Intrinsic::x86_sse_comile_ss:
5180    case Intrinsic::x86_sse2_comile_sd:
5181      Opc = X86ISD::COMI;
5182      CC = ISD::SETLE;
5183      break;
5184    case Intrinsic::x86_sse_comigt_ss:
5185    case Intrinsic::x86_sse2_comigt_sd:
5186      Opc = X86ISD::COMI;
5187      CC = ISD::SETGT;
5188      break;
5189    case Intrinsic::x86_sse_comige_ss:
5190    case Intrinsic::x86_sse2_comige_sd:
5191      Opc = X86ISD::COMI;
5192      CC = ISD::SETGE;
5193      break;
5194    case Intrinsic::x86_sse_comineq_ss:
5195    case Intrinsic::x86_sse2_comineq_sd:
5196      Opc = X86ISD::COMI;
5197      CC = ISD::SETNE;
5198      break;
5199    case Intrinsic::x86_sse_ucomieq_ss:
5200    case Intrinsic::x86_sse2_ucomieq_sd:
5201      Opc = X86ISD::UCOMI;
5202      CC = ISD::SETEQ;
5203      break;
5204    case Intrinsic::x86_sse_ucomilt_ss:
5205    case Intrinsic::x86_sse2_ucomilt_sd:
5206      Opc = X86ISD::UCOMI;
5207      CC = ISD::SETLT;
5208      break;
5209    case Intrinsic::x86_sse_ucomile_ss:
5210    case Intrinsic::x86_sse2_ucomile_sd:
5211      Opc = X86ISD::UCOMI;
5212      CC = ISD::SETLE;
5213      break;
5214    case Intrinsic::x86_sse_ucomigt_ss:
5215    case Intrinsic::x86_sse2_ucomigt_sd:
5216      Opc = X86ISD::UCOMI;
5217      CC = ISD::SETGT;
5218      break;
5219    case Intrinsic::x86_sse_ucomige_ss:
5220    case Intrinsic::x86_sse2_ucomige_sd:
5221      Opc = X86ISD::UCOMI;
5222      CC = ISD::SETGE;
5223      break;
5224    case Intrinsic::x86_sse_ucomineq_ss:
5225    case Intrinsic::x86_sse2_ucomineq_sd:
5226      Opc = X86ISD::UCOMI;
5227      CC = ISD::SETNE;
5228      break;
5229    }
5230
5231    unsigned X86CC;
5232    SDOperand LHS = Op.getOperand(1);
5233    SDOperand RHS = Op.getOperand(2);
5234    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
5235
5236    SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
5237    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
5238                                  DAG.getConstant(X86CC, MVT::i8), Cond);
5239    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
5240  }
5241  }
5242}
5243
5244SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
5245  // Depths > 0 not supported yet!
5246  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5247    return SDOperand();
5248
5249  // Just load the return address
5250  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
5251  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
5252}
5253
5254SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
5255  // Depths > 0 not supported yet!
5256  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5257    return SDOperand();
5258
5259  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
5260  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
5261                     DAG.getConstant(4, getPointerTy()));
5262}
5263
5264SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
5265                                                       SelectionDAG &DAG) {
5266  // Is not yet supported on x86-64
5267  if (Subtarget->is64Bit())
5268    return SDOperand();
5269
5270  return DAG.getConstant(8, getPointerTy());
5271}
5272
5273SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
5274{
5275  assert(!Subtarget->is64Bit() &&
5276         "Lowering of eh_return builtin is not supported yet on x86-64");
5277
5278  MachineFunction &MF = DAG.getMachineFunction();
5279  SDOperand Chain     = Op.getOperand(0);
5280  SDOperand Offset    = Op.getOperand(1);
5281  SDOperand Handler   = Op.getOperand(2);
5282
5283  SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
5284                                    getPointerTy());
5285
5286  SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
5287                                    DAG.getConstant(-4UL, getPointerTy()));
5288  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
5289  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
5290  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
5291  MF.addLiveOut(X86::ECX);
5292
5293  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
5294                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
5295}
5296
5297SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
5298                                             SelectionDAG &DAG) {
5299  SDOperand Root = Op.getOperand(0);
5300  SDOperand Trmp = Op.getOperand(1); // trampoline
5301  SDOperand FPtr = Op.getOperand(2); // nested function
5302  SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
5303
5304  SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
5305
5306  if (Subtarget->is64Bit()) {
5307    return SDOperand(); // not yet supported
5308  } else {
5309    Function *Func = (Function *)
5310      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
5311    unsigned CC = Func->getCallingConv();
5312    unsigned NestReg;
5313
5314    switch (CC) {
5315    default:
5316      assert(0 && "Unsupported calling convention");
5317    case CallingConv::C:
5318    case CallingConv::X86_StdCall: {
5319      // Pass 'nest' parameter in ECX.
5320      // Must be kept in sync with X86CallingConv.td
5321      NestReg = X86::ECX;
5322
5323      // Check that ECX wasn't needed by an 'inreg' parameter.
5324      const FunctionType *FTy = Func->getFunctionType();
5325      const ParamAttrsList *Attrs = Func->getParamAttrs();
5326
5327      if (Attrs && !Func->isVarArg()) {
5328        unsigned InRegCount = 0;
5329        unsigned Idx = 1;
5330
5331        for (FunctionType::param_iterator I = FTy->param_begin(),
5332             E = FTy->param_end(); I != E; ++I, ++Idx)
5333          if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
5334            // FIXME: should only count parameters that are lowered to integers.
5335            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
5336
5337        if (InRegCount > 2) {
5338          cerr << "Nest register in use - reduce number of inreg parameters!\n";
5339          abort();
5340        }
5341      }
5342      break;
5343    }
5344    case CallingConv::X86_FastCall:
5345      // Pass 'nest' parameter in EAX.
5346      // Must be kept in sync with X86CallingConv.td
5347      NestReg = X86::EAX;
5348      break;
5349    }
5350
5351    const X86InstrInfo *TII =
5352      ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
5353
5354    SDOperand OutChains[4];
5355    SDOperand Addr, Disp;
5356
5357    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
5358    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
5359
5360    unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
5361    unsigned char N86Reg  = ((X86RegisterInfo*)RegInfo)->getX86RegNum(NestReg);
5362    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
5363                                Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
5364
5365    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
5366    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
5367                                TrmpSV->getOffset() + 1, false, 1);
5368
5369    unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
5370    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
5371    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
5372                                TrmpSV->getValue() + 5, TrmpSV->getOffset());
5373
5374    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
5375    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
5376                                TrmpSV->getOffset() + 6, false, 1);
5377
5378    SDOperand Ops[] =
5379      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
5380    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
5381  }
5382}
5383
5384SDOperand X86TargetLowering::LowerFLT_ROUNDS(SDOperand Op, SelectionDAG &DAG) {
5385  /*
5386   The rounding mode is in bits 11:10 of FPSR, and has the following
5387   settings:
5388     00 Round to nearest
5389     01 Round to -inf
5390     10 Round to +inf
5391     11 Round to 0
5392
5393  FLT_ROUNDS, on the other hand, expects the following:
5394    -1 Undefined
5395     0 Round to 0
5396     1 Round to nearest
5397     2 Round to +inf
5398     3 Round to -inf
5399
5400  To perform the conversion, we do:
5401    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
5402  */
5403
5404  MachineFunction &MF = DAG.getMachineFunction();
5405  const TargetMachine &TM = MF.getTarget();
5406  const TargetFrameInfo &TFI = *TM.getFrameInfo();
5407  unsigned StackAlignment = TFI.getStackAlignment();
5408  MVT::ValueType VT = Op.getValueType();
5409
5410  // Save FP Control Word to stack slot
5411  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
5412  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5413
5414  SDOperand Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
5415                                DAG.getEntryNode(), StackSlot);
5416
5417  // Load FP Control Word from stack slot
5418  SDOperand CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
5419
5420  // Transform as necessary
5421  SDOperand CWD1 =
5422    DAG.getNode(ISD::SRL, MVT::i16,
5423                DAG.getNode(ISD::AND, MVT::i16,
5424                            CWD, DAG.getConstant(0x800, MVT::i16)),
5425                DAG.getConstant(11, MVT::i8));
5426  SDOperand CWD2 =
5427    DAG.getNode(ISD::SRL, MVT::i16,
5428                DAG.getNode(ISD::AND, MVT::i16,
5429                            CWD, DAG.getConstant(0x400, MVT::i16)),
5430                DAG.getConstant(9, MVT::i8));
5431
5432  SDOperand RetVal =
5433    DAG.getNode(ISD::AND, MVT::i16,
5434                DAG.getNode(ISD::ADD, MVT::i16,
5435                            DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
5436                            DAG.getConstant(1, MVT::i16)),
5437                DAG.getConstant(3, MVT::i16));
5438
5439
5440  return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
5441                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
5442}
5443
5444SDOperand X86TargetLowering::LowerCTLZ(SDOperand Op, SelectionDAG &DAG) {
5445  MVT::ValueType VT = Op.getValueType();
5446  MVT::ValueType OpVT = VT;
5447  unsigned NumBits = MVT::getSizeInBits(VT);
5448
5449  Op = Op.getOperand(0);
5450  if (VT == MVT::i8) {
5451    // Zero extend to i32 since there is not an i8 bsr.
5452    OpVT = MVT::i32;
5453    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5454  }
5455
5456  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
5457  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5458  Op = DAG.getNode(X86ISD::BSR, VTs, Op);
5459
5460  // If src is zero (i.e. bsr sets ZF), returns NumBits.
5461  SmallVector<SDOperand, 4> Ops;
5462  Ops.push_back(Op);
5463  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
5464  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5465  Ops.push_back(Op.getValue(1));
5466  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5467
5468  // Finally xor with NumBits-1.
5469  Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
5470
5471  if (VT == MVT::i8)
5472    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5473  return Op;
5474}
5475
5476SDOperand X86TargetLowering::LowerCTTZ(SDOperand Op, SelectionDAG &DAG) {
5477  MVT::ValueType VT = Op.getValueType();
5478  MVT::ValueType OpVT = VT;
5479  unsigned NumBits = MVT::getSizeInBits(VT);
5480
5481  Op = Op.getOperand(0);
5482  if (VT == MVT::i8) {
5483    OpVT = MVT::i32;
5484    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5485  }
5486
5487  // Issue a bsf (scan bits forward) which also sets EFLAGS.
5488  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5489  Op = DAG.getNode(X86ISD::BSF, VTs, Op);
5490
5491  // If src is zero (i.e. bsf sets ZF), returns NumBits.
5492  SmallVector<SDOperand, 4> Ops;
5493  Ops.push_back(Op);
5494  Ops.push_back(DAG.getConstant(NumBits, OpVT));
5495  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5496  Ops.push_back(Op.getValue(1));
5497  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5498
5499  if (VT == MVT::i8)
5500    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5501  return Op;
5502}
5503
5504/// LowerOperation - Provide custom lowering hooks for some operations.
5505///
5506SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
5507  switch (Op.getOpcode()) {
5508  default: assert(0 && "Should not custom lower this!");
5509  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5510  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5511  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5512  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
5513  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5514  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5515  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5516  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5517  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
5518  case ISD::SHL_PARTS:
5519  case ISD::SRA_PARTS:
5520  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
5521  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
5522  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
5523  case ISD::FABS:               return LowerFABS(Op, DAG);
5524  case ISD::FNEG:               return LowerFNEG(Op, DAG);
5525  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
5526  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5527  case ISD::SELECT:             return LowerSELECT(Op, DAG);
5528  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
5529  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5530  case ISD::CALL:               return LowerCALL(Op, DAG);
5531  case ISD::RET:                return LowerRET(Op, DAG);
5532  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
5533  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
5534  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
5535  case ISD::VASTART:            return LowerVASTART(Op, DAG);
5536  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
5537  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5538  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5539  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5540  case ISD::FRAME_TO_ARGS_OFFSET:
5541                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
5542  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
5543  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
5544  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
5545  case ISD::FLT_ROUNDS:         return LowerFLT_ROUNDS(Op, DAG);
5546  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
5547  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
5548
5549  // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands.
5550  case ISD::READCYCLECOUNTER:
5551    return SDOperand(ExpandREADCYCLECOUNTER(Op.Val, DAG), 0);
5552  }
5553}
5554
5555/// ExpandOperation - Provide custom lowering hooks for expanding operations.
5556SDNode *X86TargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
5557  switch (N->getOpcode()) {
5558  default: assert(0 && "Should not custom lower this!");
5559  case ISD::FP_TO_SINT:         return ExpandFP_TO_SINT(N, DAG);
5560  case ISD::READCYCLECOUNTER:   return ExpandREADCYCLECOUNTER(N, DAG);
5561  }
5562}
5563
5564const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
5565  switch (Opcode) {
5566  default: return NULL;
5567  case X86ISD::BSF:                return "X86ISD::BSF";
5568  case X86ISD::BSR:                return "X86ISD::BSR";
5569  case X86ISD::SHLD:               return "X86ISD::SHLD";
5570  case X86ISD::SHRD:               return "X86ISD::SHRD";
5571  case X86ISD::FAND:               return "X86ISD::FAND";
5572  case X86ISD::FOR:                return "X86ISD::FOR";
5573  case X86ISD::FXOR:               return "X86ISD::FXOR";
5574  case X86ISD::FSRL:               return "X86ISD::FSRL";
5575  case X86ISD::FILD:               return "X86ISD::FILD";
5576  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
5577  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
5578  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
5579  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
5580  case X86ISD::FLD:                return "X86ISD::FLD";
5581  case X86ISD::FST:                return "X86ISD::FST";
5582  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
5583  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
5584  case X86ISD::CALL:               return "X86ISD::CALL";
5585  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
5586  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
5587  case X86ISD::CMP:                return "X86ISD::CMP";
5588  case X86ISD::COMI:               return "X86ISD::COMI";
5589  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
5590  case X86ISD::SETCC:              return "X86ISD::SETCC";
5591  case X86ISD::CMOV:               return "X86ISD::CMOV";
5592  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
5593  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
5594  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
5595  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
5596  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
5597  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
5598  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
5599  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
5600  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
5601  case X86ISD::FMAX:               return "X86ISD::FMAX";
5602  case X86ISD::FMIN:               return "X86ISD::FMIN";
5603  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
5604  case X86ISD::FRCP:               return "X86ISD::FRCP";
5605  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
5606  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
5607  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
5608  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
5609  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
5610  }
5611}
5612
5613// isLegalAddressingMode - Return true if the addressing mode represented
5614// by AM is legal for this target, for a load/store of the specified type.
5615bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
5616                                              const Type *Ty) const {
5617  // X86 supports extremely general addressing modes.
5618
5619  // X86 allows a sign-extended 32-bit immediate field as a displacement.
5620  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
5621    return false;
5622
5623  if (AM.BaseGV) {
5624    // We can only fold this if we don't need an extra load.
5625    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
5626      return false;
5627
5628    // X86-64 only supports addr of globals in small code model.
5629    if (Subtarget->is64Bit()) {
5630      if (getTargetMachine().getCodeModel() != CodeModel::Small)
5631        return false;
5632      // If lower 4G is not available, then we must use rip-relative addressing.
5633      if (AM.BaseOffs || AM.Scale > 1)
5634        return false;
5635    }
5636  }
5637
5638  switch (AM.Scale) {
5639  case 0:
5640  case 1:
5641  case 2:
5642  case 4:
5643  case 8:
5644    // These scales always work.
5645    break;
5646  case 3:
5647  case 5:
5648  case 9:
5649    // These scales are formed with basereg+scalereg.  Only accept if there is
5650    // no basereg yet.
5651    if (AM.HasBaseReg)
5652      return false;
5653    break;
5654  default:  // Other stuff never works.
5655    return false;
5656  }
5657
5658  return true;
5659}
5660
5661
5662bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
5663  if (!Ty1->isInteger() || !Ty2->isInteger())
5664    return false;
5665  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
5666  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
5667  if (NumBits1 <= NumBits2)
5668    return false;
5669  return Subtarget->is64Bit() || NumBits1 < 64;
5670}
5671
5672bool X86TargetLowering::isTruncateFree(MVT::ValueType VT1,
5673                                       MVT::ValueType VT2) const {
5674  if (!MVT::isInteger(VT1) || !MVT::isInteger(VT2))
5675    return false;
5676  unsigned NumBits1 = MVT::getSizeInBits(VT1);
5677  unsigned NumBits2 = MVT::getSizeInBits(VT2);
5678  if (NumBits1 <= NumBits2)
5679    return false;
5680  return Subtarget->is64Bit() || NumBits1 < 64;
5681}
5682
5683/// isShuffleMaskLegal - Targets can use this to indicate that they only
5684/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5685/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5686/// are assumed to be legal.
5687bool
5688X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
5689  // Only do shuffles on 128-bit vector types for now.
5690  if (MVT::getSizeInBits(VT) == 64) return false;
5691  return (Mask.Val->getNumOperands() <= 4 ||
5692          isIdentityMask(Mask.Val) ||
5693          isIdentityMask(Mask.Val, true) ||
5694          isSplatMask(Mask.Val)  ||
5695          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
5696          X86::isUNPCKLMask(Mask.Val) ||
5697          X86::isUNPCKHMask(Mask.Val) ||
5698          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
5699          X86::isUNPCKH_v_undef_Mask(Mask.Val));
5700}
5701
5702bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
5703                                               MVT::ValueType EVT,
5704                                               SelectionDAG &DAG) const {
5705  unsigned NumElts = BVOps.size();
5706  // Only do shuffles on 128-bit vector types for now.
5707  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
5708  if (NumElts == 2) return true;
5709  if (NumElts == 4) {
5710    return (isMOVLMask(&BVOps[0], 4)  ||
5711            isCommutedMOVL(&BVOps[0], 4, true) ||
5712            isSHUFPMask(&BVOps[0], 4) ||
5713            isCommutedSHUFP(&BVOps[0], 4));
5714  }
5715  return false;
5716}
5717
5718//===----------------------------------------------------------------------===//
5719//                           X86 Scheduler Hooks
5720//===----------------------------------------------------------------------===//
5721
5722MachineBasicBlock *
5723X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
5724                                           MachineBasicBlock *BB) {
5725  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5726  switch (MI->getOpcode()) {
5727  default: assert(false && "Unexpected instr type to insert");
5728  case X86::CMOV_FR32:
5729  case X86::CMOV_FR64:
5730  case X86::CMOV_V4F32:
5731  case X86::CMOV_V2F64:
5732  case X86::CMOV_V2I64: {
5733    // To "insert" a SELECT_CC instruction, we actually have to insert the
5734    // diamond control-flow pattern.  The incoming instruction knows the
5735    // destination vreg to set, the condition code register to branch on, the
5736    // true/false values to select between, and a branch opcode to use.
5737    const BasicBlock *LLVM_BB = BB->getBasicBlock();
5738    ilist<MachineBasicBlock>::iterator It = BB;
5739    ++It;
5740
5741    //  thisMBB:
5742    //  ...
5743    //   TrueVal = ...
5744    //   cmpTY ccX, r1, r2
5745    //   bCC copy1MBB
5746    //   fallthrough --> copy0MBB
5747    MachineBasicBlock *thisMBB = BB;
5748    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
5749    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
5750    unsigned Opc =
5751      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
5752    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
5753    MachineFunction *F = BB->getParent();
5754    F->getBasicBlockList().insert(It, copy0MBB);
5755    F->getBasicBlockList().insert(It, sinkMBB);
5756    // Update machine-CFG edges by first adding all successors of the current
5757    // block to the new block which will contain the Phi node for the select.
5758    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
5759        e = BB->succ_end(); i != e; ++i)
5760      sinkMBB->addSuccessor(*i);
5761    // Next, remove all successors of the current block, and add the true
5762    // and fallthrough blocks as its successors.
5763    while(!BB->succ_empty())
5764      BB->removeSuccessor(BB->succ_begin());
5765    BB->addSuccessor(copy0MBB);
5766    BB->addSuccessor(sinkMBB);
5767
5768    //  copy0MBB:
5769    //   %FalseValue = ...
5770    //   # fallthrough to sinkMBB
5771    BB = copy0MBB;
5772
5773    // Update machine-CFG edges
5774    BB->addSuccessor(sinkMBB);
5775
5776    //  sinkMBB:
5777    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5778    //  ...
5779    BB = sinkMBB;
5780    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
5781      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5782      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5783
5784    delete MI;   // The pseudo instruction is gone now.
5785    return BB;
5786  }
5787
5788  case X86::FP32_TO_INT16_IN_MEM:
5789  case X86::FP32_TO_INT32_IN_MEM:
5790  case X86::FP32_TO_INT64_IN_MEM:
5791  case X86::FP64_TO_INT16_IN_MEM:
5792  case X86::FP64_TO_INT32_IN_MEM:
5793  case X86::FP64_TO_INT64_IN_MEM:
5794  case X86::FP80_TO_INT16_IN_MEM:
5795  case X86::FP80_TO_INT32_IN_MEM:
5796  case X86::FP80_TO_INT64_IN_MEM: {
5797    // Change the floating point control register to use "round towards zero"
5798    // mode when truncating to an integer value.
5799    MachineFunction *F = BB->getParent();
5800    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
5801    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
5802
5803    // Load the old value of the high byte of the control word...
5804    unsigned OldCW =
5805      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
5806    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
5807
5808    // Set the high part to be round to zero...
5809    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
5810      .addImm(0xC7F);
5811
5812    // Reload the modified control word now...
5813    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5814
5815    // Restore the memory image of control word to original value
5816    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
5817      .addReg(OldCW);
5818
5819    // Get the X86 opcode to use.
5820    unsigned Opc;
5821    switch (MI->getOpcode()) {
5822    default: assert(0 && "illegal opcode!");
5823    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
5824    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
5825    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
5826    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
5827    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
5828    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
5829    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
5830    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
5831    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
5832    }
5833
5834    X86AddressMode AM;
5835    MachineOperand &Op = MI->getOperand(0);
5836    if (Op.isRegister()) {
5837      AM.BaseType = X86AddressMode::RegBase;
5838      AM.Base.Reg = Op.getReg();
5839    } else {
5840      AM.BaseType = X86AddressMode::FrameIndexBase;
5841      AM.Base.FrameIndex = Op.getFrameIndex();
5842    }
5843    Op = MI->getOperand(1);
5844    if (Op.isImmediate())
5845      AM.Scale = Op.getImm();
5846    Op = MI->getOperand(2);
5847    if (Op.isImmediate())
5848      AM.IndexReg = Op.getImm();
5849    Op = MI->getOperand(3);
5850    if (Op.isGlobalAddress()) {
5851      AM.GV = Op.getGlobal();
5852    } else {
5853      AM.Disp = Op.getImm();
5854    }
5855    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
5856                      .addReg(MI->getOperand(4).getReg());
5857
5858    // Reload the original control word now.
5859    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5860
5861    delete MI;   // The pseudo instruction is gone now.
5862    return BB;
5863  }
5864  }
5865}
5866
5867//===----------------------------------------------------------------------===//
5868//                           X86 Optimization Hooks
5869//===----------------------------------------------------------------------===//
5870
5871void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
5872                                                       uint64_t Mask,
5873                                                       uint64_t &KnownZero,
5874                                                       uint64_t &KnownOne,
5875                                                       const SelectionDAG &DAG,
5876                                                       unsigned Depth) const {
5877  unsigned Opc = Op.getOpcode();
5878  assert((Opc >= ISD::BUILTIN_OP_END ||
5879          Opc == ISD::INTRINSIC_WO_CHAIN ||
5880          Opc == ISD::INTRINSIC_W_CHAIN ||
5881          Opc == ISD::INTRINSIC_VOID) &&
5882         "Should use MaskedValueIsZero if you don't know whether Op"
5883         " is a target node!");
5884
5885  KnownZero = KnownOne = 0;   // Don't know anything.
5886  switch (Opc) {
5887  default: break;
5888  case X86ISD::SETCC:
5889    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
5890    break;
5891  }
5892}
5893
5894/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5895/// element of the result of the vector shuffle.
5896static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
5897  MVT::ValueType VT = N->getValueType(0);
5898  SDOperand PermMask = N->getOperand(2);
5899  unsigned NumElems = PermMask.getNumOperands();
5900  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
5901  i %= NumElems;
5902  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5903    return (i == 0)
5904     ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5905  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
5906    SDOperand Idx = PermMask.getOperand(i);
5907    if (Idx.getOpcode() == ISD::UNDEF)
5908      return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5909    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
5910  }
5911  return SDOperand();
5912}
5913
5914/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
5915/// node is a GlobalAddress + an offset.
5916static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
5917  unsigned Opc = N->getOpcode();
5918  if (Opc == X86ISD::Wrapper) {
5919    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
5920      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
5921      return true;
5922    }
5923  } else if (Opc == ISD::ADD) {
5924    SDOperand N1 = N->getOperand(0);
5925    SDOperand N2 = N->getOperand(1);
5926    if (isGAPlusOffset(N1.Val, GA, Offset)) {
5927      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
5928      if (V) {
5929        Offset += V->getSignExtended();
5930        return true;
5931      }
5932    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
5933      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
5934      if (V) {
5935        Offset += V->getSignExtended();
5936        return true;
5937      }
5938    }
5939  }
5940  return false;
5941}
5942
5943/// isConsecutiveLoad - Returns true if N is loading from an address of Base
5944/// + Dist * Size.
5945static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
5946                              MachineFrameInfo *MFI) {
5947  if (N->getOperand(0).Val != Base->getOperand(0).Val)
5948    return false;
5949
5950  SDOperand Loc = N->getOperand(1);
5951  SDOperand BaseLoc = Base->getOperand(1);
5952  if (Loc.getOpcode() == ISD::FrameIndex) {
5953    if (BaseLoc.getOpcode() != ISD::FrameIndex)
5954      return false;
5955    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
5956    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
5957    int FS  = MFI->getObjectSize(FI);
5958    int BFS = MFI->getObjectSize(BFI);
5959    if (FS != BFS || FS != Size) return false;
5960    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
5961  } else {
5962    GlobalValue *GV1 = NULL;
5963    GlobalValue *GV2 = NULL;
5964    int64_t Offset1 = 0;
5965    int64_t Offset2 = 0;
5966    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
5967    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
5968    if (isGA1 && isGA2 && GV1 == GV2)
5969      return Offset1 == (Offset2 + Dist*Size);
5970  }
5971
5972  return false;
5973}
5974
5975static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
5976                              const X86Subtarget *Subtarget) {
5977  GlobalValue *GV;
5978  int64_t Offset;
5979  if (isGAPlusOffset(Base, GV, Offset))
5980    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
5981  else {
5982    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
5983    int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
5984    if (BFI < 0)
5985      // Fixed objects do not specify alignment, however the offsets are known.
5986      return ((Subtarget->getStackAlignment() % 16) == 0 &&
5987              (MFI->getObjectOffset(BFI) % 16) == 0);
5988    else
5989      return MFI->getObjectAlignment(BFI) >= 16;
5990  }
5991  return false;
5992}
5993
5994
5995/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5996/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5997/// if the load addresses are consecutive, non-overlapping, and in the right
5998/// order.
5999static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
6000                                       const X86Subtarget *Subtarget) {
6001  MachineFunction &MF = DAG.getMachineFunction();
6002  MachineFrameInfo *MFI = MF.getFrameInfo();
6003  MVT::ValueType VT = N->getValueType(0);
6004  MVT::ValueType EVT = MVT::getVectorElementType(VT);
6005  SDOperand PermMask = N->getOperand(2);
6006  int NumElems = (int)PermMask.getNumOperands();
6007  SDNode *Base = NULL;
6008  for (int i = 0; i < NumElems; ++i) {
6009    SDOperand Idx = PermMask.getOperand(i);
6010    if (Idx.getOpcode() == ISD::UNDEF) {
6011      if (!Base) return SDOperand();
6012    } else {
6013      SDOperand Arg =
6014        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
6015      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
6016        return SDOperand();
6017      if (!Base)
6018        Base = Arg.Val;
6019      else if (!isConsecutiveLoad(Arg.Val, Base,
6020                                  i, MVT::getSizeInBits(EVT)/8,MFI))
6021        return SDOperand();
6022    }
6023  }
6024
6025  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
6026  LoadSDNode *LD = cast<LoadSDNode>(Base);
6027  if (isAlign16) {
6028    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
6029                       LD->getSrcValueOffset(), LD->isVolatile());
6030  } else {
6031    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
6032                       LD->getSrcValueOffset(), LD->isVolatile(),
6033                       LD->getAlignment());
6034  }
6035}
6036
6037/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
6038static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
6039                                      const X86Subtarget *Subtarget) {
6040  SDOperand Cond = N->getOperand(0);
6041
6042  // If we have SSE[12] support, try to form min/max nodes.
6043  if (Subtarget->hasSSE2() &&
6044      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
6045    if (Cond.getOpcode() == ISD::SETCC) {
6046      // Get the LHS/RHS of the select.
6047      SDOperand LHS = N->getOperand(1);
6048      SDOperand RHS = N->getOperand(2);
6049      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
6050
6051      unsigned Opcode = 0;
6052      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
6053        switch (CC) {
6054        default: break;
6055        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
6056        case ISD::SETULE:
6057        case ISD::SETLE:
6058          if (!UnsafeFPMath) break;
6059          // FALL THROUGH.
6060        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
6061        case ISD::SETLT:
6062          Opcode = X86ISD::FMIN;
6063          break;
6064
6065        case ISD::SETOGT: // (X > Y) ? X : Y -> max
6066        case ISD::SETUGT:
6067        case ISD::SETGT:
6068          if (!UnsafeFPMath) break;
6069          // FALL THROUGH.
6070        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
6071        case ISD::SETGE:
6072          Opcode = X86ISD::FMAX;
6073          break;
6074        }
6075      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
6076        switch (CC) {
6077        default: break;
6078        case ISD::SETOGT: // (X > Y) ? Y : X -> min
6079        case ISD::SETUGT:
6080        case ISD::SETGT:
6081          if (!UnsafeFPMath) break;
6082          // FALL THROUGH.
6083        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
6084        case ISD::SETGE:
6085          Opcode = X86ISD::FMIN;
6086          break;
6087
6088        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
6089        case ISD::SETULE:
6090        case ISD::SETLE:
6091          if (!UnsafeFPMath) break;
6092          // FALL THROUGH.
6093        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
6094        case ISD::SETLT:
6095          Opcode = X86ISD::FMAX;
6096          break;
6097        }
6098      }
6099
6100      if (Opcode)
6101        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
6102    }
6103
6104  }
6105
6106  return SDOperand();
6107}
6108
6109
6110SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
6111                                               DAGCombinerInfo &DCI) const {
6112  SelectionDAG &DAG = DCI.DAG;
6113  switch (N->getOpcode()) {
6114  default: break;
6115  case ISD::VECTOR_SHUFFLE:
6116    return PerformShuffleCombine(N, DAG, Subtarget);
6117  case ISD::SELECT:
6118    return PerformSELECTCombine(N, DAG, Subtarget);
6119  }
6120
6121  return SDOperand();
6122}
6123
6124//===----------------------------------------------------------------------===//
6125//                           X86 Inline Assembly Support
6126//===----------------------------------------------------------------------===//
6127
6128/// getConstraintType - Given a constraint letter, return the type of
6129/// constraint it is for this target.
6130X86TargetLowering::ConstraintType
6131X86TargetLowering::getConstraintType(const std::string &Constraint) const {
6132  if (Constraint.size() == 1) {
6133    switch (Constraint[0]) {
6134    case 'A':
6135    case 'r':
6136    case 'R':
6137    case 'l':
6138    case 'q':
6139    case 'Q':
6140    case 'x':
6141    case 'Y':
6142      return C_RegisterClass;
6143    default:
6144      break;
6145    }
6146  }
6147  return TargetLowering::getConstraintType(Constraint);
6148}
6149
6150/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6151/// vector.  If it is invalid, don't add anything to Ops.
6152void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
6153                                                     char Constraint,
6154                                                     std::vector<SDOperand>&Ops,
6155                                                     SelectionDAG &DAG) {
6156  SDOperand Result(0, 0);
6157
6158  switch (Constraint) {
6159  default: break;
6160  case 'I':
6161    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
6162      if (C->getValue() <= 31) {
6163        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
6164        break;
6165      }
6166    }
6167    return;
6168  case 'N':
6169    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
6170      if (C->getValue() <= 255) {
6171        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
6172        break;
6173      }
6174    }
6175    return;
6176  case 'i': {
6177    // Literal immediates are always ok.
6178    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
6179      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
6180      break;
6181    }
6182
6183    // If we are in non-pic codegen mode, we allow the address of a global (with
6184    // an optional displacement) to be used with 'i'.
6185    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
6186    int64_t Offset = 0;
6187
6188    // Match either (GA) or (GA+C)
6189    if (GA) {
6190      Offset = GA->getOffset();
6191    } else if (Op.getOpcode() == ISD::ADD) {
6192      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6193      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
6194      if (C && GA) {
6195        Offset = GA->getOffset()+C->getValue();
6196      } else {
6197        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6198        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
6199        if (C && GA)
6200          Offset = GA->getOffset()+C->getValue();
6201        else
6202          C = 0, GA = 0;
6203      }
6204    }
6205
6206    if (GA) {
6207      // If addressing this global requires a load (e.g. in PIC mode), we can't
6208      // match.
6209      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
6210                                         false))
6211        return;
6212
6213      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
6214                                      Offset);
6215      Result = Op;
6216      break;
6217    }
6218
6219    // Otherwise, not valid for this mode.
6220    return;
6221  }
6222  }
6223
6224  if (Result.Val) {
6225    Ops.push_back(Result);
6226    return;
6227  }
6228  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6229}
6230
6231std::vector<unsigned> X86TargetLowering::
6232getRegClassForInlineAsmConstraint(const std::string &Constraint,
6233                                  MVT::ValueType VT) const {
6234  if (Constraint.size() == 1) {
6235    // FIXME: not handling fp-stack yet!
6236    switch (Constraint[0]) {      // GCC X86 Constraint Letters
6237    default: break;  // Unknown constraint letter
6238    case 'A':   // EAX/EDX
6239      if (VT == MVT::i32 || VT == MVT::i64)
6240        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
6241      break;
6242    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
6243    case 'Q':   // Q_REGS
6244      if (VT == MVT::i32)
6245        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
6246      else if (VT == MVT::i16)
6247        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
6248      else if (VT == MVT::i8)
6249        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
6250      else if (VT == MVT::i64)
6251        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
6252      break;
6253    }
6254  }
6255
6256  return std::vector<unsigned>();
6257}
6258
6259std::pair<unsigned, const TargetRegisterClass*>
6260X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
6261                                                MVT::ValueType VT) const {
6262  // First, see if this is a constraint that directly corresponds to an LLVM
6263  // register class.
6264  if (Constraint.size() == 1) {
6265    // GCC Constraint Letters
6266    switch (Constraint[0]) {
6267    default: break;
6268    case 'r':   // GENERAL_REGS
6269    case 'R':   // LEGACY_REGS
6270    case 'l':   // INDEX_REGS
6271      if (VT == MVT::i64 && Subtarget->is64Bit())
6272        return std::make_pair(0U, X86::GR64RegisterClass);
6273      if (VT == MVT::i32)
6274        return std::make_pair(0U, X86::GR32RegisterClass);
6275      else if (VT == MVT::i16)
6276        return std::make_pair(0U, X86::GR16RegisterClass);
6277      else if (VT == MVT::i8)
6278        return std::make_pair(0U, X86::GR8RegisterClass);
6279      break;
6280    case 'y':   // MMX_REGS if MMX allowed.
6281      if (!Subtarget->hasMMX()) break;
6282      return std::make_pair(0U, X86::VR64RegisterClass);
6283      break;
6284    case 'Y':   // SSE_REGS if SSE2 allowed
6285      if (!Subtarget->hasSSE2()) break;
6286      // FALL THROUGH.
6287    case 'x':   // SSE_REGS if SSE1 allowed
6288      if (!Subtarget->hasSSE1()) break;
6289
6290      switch (VT) {
6291      default: break;
6292      // Scalar SSE types.
6293      case MVT::f32:
6294      case MVT::i32:
6295        return std::make_pair(0U, X86::FR32RegisterClass);
6296      case MVT::f64:
6297      case MVT::i64:
6298        return std::make_pair(0U, X86::FR64RegisterClass);
6299      // Vector types.
6300      case MVT::v16i8:
6301      case MVT::v8i16:
6302      case MVT::v4i32:
6303      case MVT::v2i64:
6304      case MVT::v4f32:
6305      case MVT::v2f64:
6306        return std::make_pair(0U, X86::VR128RegisterClass);
6307      }
6308      break;
6309    }
6310  }
6311
6312  // Use the default implementation in TargetLowering to convert the register
6313  // constraint into a member of a register class.
6314  std::pair<unsigned, const TargetRegisterClass*> Res;
6315  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
6316
6317  // Not found as a standard register?
6318  if (Res.second == 0) {
6319    // GCC calls "st(0)" just plain "st".
6320    if (StringsEqualNoCase("{st}", Constraint)) {
6321      Res.first = X86::ST0;
6322      Res.second = X86::RFP80RegisterClass;
6323    }
6324
6325    return Res;
6326  }
6327
6328  // Otherwise, check to see if this is a register class of the wrong value
6329  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
6330  // turn into {ax},{dx}.
6331  if (Res.second->hasType(VT))
6332    return Res;   // Correct type already, nothing to do.
6333
6334  // All of the single-register GCC register classes map their values onto
6335  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
6336  // really want an 8-bit or 32-bit register, map to the appropriate register
6337  // class and return the appropriate register.
6338  if (Res.second != X86::GR16RegisterClass)
6339    return Res;
6340
6341  if (VT == MVT::i8) {
6342    unsigned DestReg = 0;
6343    switch (Res.first) {
6344    default: break;
6345    case X86::AX: DestReg = X86::AL; break;
6346    case X86::DX: DestReg = X86::DL; break;
6347    case X86::CX: DestReg = X86::CL; break;
6348    case X86::BX: DestReg = X86::BL; break;
6349    }
6350    if (DestReg) {
6351      Res.first = DestReg;
6352      Res.second = Res.second = X86::GR8RegisterClass;
6353    }
6354  } else if (VT == MVT::i32) {
6355    unsigned DestReg = 0;
6356    switch (Res.first) {
6357    default: break;
6358    case X86::AX: DestReg = X86::EAX; break;
6359    case X86::DX: DestReg = X86::EDX; break;
6360    case X86::CX: DestReg = X86::ECX; break;
6361    case X86::BX: DestReg = X86::EBX; break;
6362    case X86::SI: DestReg = X86::ESI; break;
6363    case X86::DI: DestReg = X86::EDI; break;
6364    case X86::BP: DestReg = X86::EBP; break;
6365    case X86::SP: DestReg = X86::ESP; break;
6366    }
6367    if (DestReg) {
6368      Res.first = DestReg;
6369      Res.second = Res.second = X86::GR32RegisterClass;
6370    }
6371  } else if (VT == MVT::i64) {
6372    unsigned DestReg = 0;
6373    switch (Res.first) {
6374    default: break;
6375    case X86::AX: DestReg = X86::RAX; break;
6376    case X86::DX: DestReg = X86::RDX; break;
6377    case X86::CX: DestReg = X86::RCX; break;
6378    case X86::BX: DestReg = X86::RBX; break;
6379    case X86::SI: DestReg = X86::RSI; break;
6380    case X86::DI: DestReg = X86::RDI; break;
6381    case X86::BP: DestReg = X86::RBP; break;
6382    case X86::SP: DestReg = X86::RSP; break;
6383    }
6384    if (DestReg) {
6385      Res.first = DestReg;
6386      Res.second = Res.second = X86::GR64RegisterClass;
6387    }
6388  }
6389
6390  return Res;
6391}
6392