X86ISelLowering.cpp revision 50e64cfe6e250dbe2528fc5bda75c68b04a8bc49
1f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
3f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//                     The LLVM Compiler Infrastructure
4f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
5f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// This file is distributed under the University of Illinois Open Source
6f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// License. See LICENSE.TXT for details.
7f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
8f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//===----------------------------------------------------------------------===//
9f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
10f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// This file defines the interfaces that X86 uses to lower LLVM code into a
11f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// selection DAG.
12f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
13f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//===----------------------------------------------------------------------===//
14f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
15f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#define DEBUG_TYPE "x86-isel"
16f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86ISelLowering.h"
17f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86.h"
18f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86InstrBuilder.h"
19f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86TargetMachine.h"
20f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86TargetObjectFile.h"
21f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "Utils/X86ShuffleDecode.h"
22f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CallingConv.h"
23f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Constants.h"
24f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/DerivedTypes.h"
25f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/GlobalAlias.h"
26f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/GlobalVariable.h"
27f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Function.h"
28f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Instructions.h"
29f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Intrinsics.h"
30f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/LLVMContext.h"
31f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/IntrinsicLowering.h"
32f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineFrameInfo.h"
33f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineFunction.h"
34f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineInstrBuilder.h"
35f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineJumpTableInfo.h"
36f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineModuleInfo.h"
37f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineRegisterInfo.h"
38f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/MC/MCAsmInfo.h"
39f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/MC/MCContext.h"
40f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/MC/MCExpr.h"
41f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/MC/MCSymbol.h"
42f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/SmallSet.h"
43f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/Statistic.h"
44f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/StringExtras.h"
45f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/VariadicFunction.h"
46f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/CallSite.h"
47f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/Debug.h"
48f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/ErrorHandling.h"
49f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/MathExtras.h"
50f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Target/TargetOptions.h"
51f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include <bitset>
52f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viveretteusing namespace llvm;
53f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
54f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan ViveretteSTATISTIC(NumTailCalls, "Number of tail calls");
55f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
56f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// Forward declarations.
57f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverettestatic SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
58f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                       SDValue V2);
59f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
60f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
61f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette/// sets things up to match to an AVX VEXTRACTF128 instruction or a
62f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette/// simple subregister reference.  Idx is an index in the 128 bits we
63f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette/// want.  It need not be aligned to a 128-bit bounday.  That makes
64f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette/// lowering EXTRACT_VECTOR_ELT operations easier.
65f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverettestatic SDValue Extract128BitVector(SDValue Vec,
66f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                   SDValue Idx,
67f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                   SelectionDAG &DAG,
68f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                   DebugLoc dl) {
69f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  EVT VT = Vec.getValueType();
70f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
71f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  EVT ElVT = VT.getVectorElementType();
72f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  int Factor = VT.getSizeInBits()/128;
73f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
74f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                  VT.getVectorNumElements()/Factor);
75f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
76f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Extract from UNDEF is UNDEF.
77f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Vec.getOpcode() == ISD::UNDEF)
78f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
79f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
80f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (isa<ConstantSDNode>(Idx)) {
81f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
82f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
83f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
84f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // we can match to VEXTRACTF128.
85f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
86f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
87f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // This is the index of the first element of the 128-bit chunk
88f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // we want.
89f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
90f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                 * ElemsPerChunk);
91f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
92f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
93f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
94f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                 VecIdx);
95f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
96f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    return Result;
97f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
98f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
99f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  return SDValue();
100f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette}
101f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
102f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
103f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette/// sets things up to match to an AVX VINSERTF128 instruction or a
104f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette/// simple superregister reference.  Idx is an index in the 128 bits
105f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette/// we want.  It need not be aligned to a 128-bit bounday.  That makes
106f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette/// lowering INSERT_VECTOR_ELT operations easier.
107f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverettestatic SDValue Insert128BitVector(SDValue Result,
108f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                  SDValue Vec,
109f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                  SDValue Idx,
110f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                  SelectionDAG &DAG,
111f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                  DebugLoc dl) {
112f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (isa<ConstantSDNode>(Idx)) {
113f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    EVT VT = Vec.getValueType();
114f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
115f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
116f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    EVT ElVT = VT.getVectorElementType();
117f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
118f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    EVT ResultVT = Result.getValueType();
119f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
120f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // Insert the relevant 128 bits.
121f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
122f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
123f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // This is the index of the first element of the 128-bit chunk
124f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // we want.
125f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
126f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                 * ElemsPerChunk);
127f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
128f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
129f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
130f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                         VecIdx);
131f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    return Result;
132f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
133f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
134f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  return SDValue();
135f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette}
136f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
137f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverettestatic TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
138f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
139f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  bool is64Bit = Subtarget->is64Bit();
140f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
141f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->isTargetEnvMacho()) {
142f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    if (is64Bit)
143f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      return new X8664_MachoTargetObjectFile();
144f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    return new TargetLoweringObjectFileMachO();
145f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
146f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
147f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->isTargetELF())
148f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    return new TargetLoweringObjectFileELF();
149f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
150f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    return new TargetLoweringObjectFileCOFF();
151f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  llvm_unreachable("unknown subtarget type");
152f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette}
153f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
154f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan ViveretteX86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
155f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  : TargetLowering(TM, createTLOF(TM)) {
156f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  Subtarget = &TM.getSubtarget<X86Subtarget>();
157f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  X86ScalarSSEf64 = Subtarget->hasSSE2();
158f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  X86ScalarSSEf32 = Subtarget->hasSSE1();
159f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
160f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
161f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  RegInfo = TM.getRegisterInfo();
162f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  TD = getTargetData();
163f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
164f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Set up the TargetLowering object.
165f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
166f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
167f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // X86 is weird, it always uses i8 for shift amounts and setcc results.
168f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setBooleanContents(ZeroOrOneBooleanContent);
169f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
170f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
171f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
172f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // For 64-bit since we have so many registers use the ILP scheduler, for
173f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // 32-bit code use the register pressure specific scheduling.
174f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // For 32 bit Atom, use Hybrid (register pressure + latency) scheduling.
175f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->is64Bit())
176f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setSchedulingPreference(Sched::ILP);
177f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  else if (Subtarget->isAtom())
178f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setSchedulingPreference(Sched::Hybrid);
179f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  else
180f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setSchedulingPreference(Sched::RegPressure);
181f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setStackPointerRegisterToSaveRestore(X86StackPtr);
182f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
183f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
184f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // Setup Windows compiler runtime calls.
185f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
186f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
187f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallName(RTLIB::SREM_I64, "_allrem");
188f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallName(RTLIB::UREM_I64, "_aullrem");
189f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallName(RTLIB::MUL_I64, "_allmul");
190f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
191f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
192f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
193f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
194f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
195f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
196f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // The _ftol2 runtime function has an unusual calling conv, which
197f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // is modeled by a special pseudo-instruction.
198f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
199f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
200f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
201f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
202f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
203f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
204f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->isTargetDarwin()) {
205f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
206f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreSetJmp(false);
207f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreLongJmp(false);
208f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else if (Subtarget->isTargetMingw()) {
209f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // MS runtime is weird: it exports _setjmp, but longjmp!
210f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreSetJmp(true);
211f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreLongJmp(false);
212f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else {
213f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreSetJmp(true);
214f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreLongJmp(true);
215f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
216f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
217f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Set up the register classes.
218f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
219f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
220f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
221f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->is64Bit())
222f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
223f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
224f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
225f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
226f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // We don't accept any truncstore of integer registers.
227f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
228f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
229f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
230f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
231f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
232f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
233f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
234f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // SETOEQ and SETUNE require checking two conditions.
235f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
236f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
237f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
238f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
239f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
240f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
241f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
242f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
243f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // operation.
244f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
245f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
246f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
247f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
248f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->is64Bit()) {
249f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
250f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
251f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else if (!TM.Options.UseSoftFloat) {
252f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // We have an algorithm for SSE2->double, and we turn this into a
253f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // 64-bit FILD followed by conditional FADD for other targets.
254f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
255f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // We have an algorithm for SSE2, and we turn this into a 64-bit
256f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // FILD for other targets.
257f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
258f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
259f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
260f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
261f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // this operation.
262f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
263f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
264f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
265f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (!TM.Options.UseSoftFloat) {
266f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // SSE has no i16 to fp conversion, only i32
267f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    if (X86ScalarSSEf32) {
268f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
269f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      // f32 and f64 cases are Legal, f80 case is not
270f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
271f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    } else {
272f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
273f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
274f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    }
275f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else {
276f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
277f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
278f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
279f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
280f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
281f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // are Legal, f80 is custom lowered.
282f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
283f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
284f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
285f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
286f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // this operation.
287f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
288f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
289f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
290f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (X86ScalarSSEf32) {
291f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
292f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // f32 and f64 cases are Legal, f80 case is not
293f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
294f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else {
295f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
296f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
297f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
298f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
299f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Handle FP_TO_UINT by promoting the destination to a larger signed
300f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // conversion.
301f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
302f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
303f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
304f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
305f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->is64Bit()) {
306f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
307f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
308f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else if (!TM.Options.UseSoftFloat) {
309f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // Since AVX is a superset of SSE3, only check for SSE here.
310f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
311f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      // Expand FP_TO_UINT into a select.
312f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      // FIXME: We would like to use a Custom expander here eventually to do
313f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      // the optimal thing for SSE vs. the default expansion in the legalizer.
314f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
315f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    else
316f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      // With SSE3 we can use fisttpll to convert to a signed i64; without
317f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      // SSE, we're stuck with a fistpll.
318f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
319f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
320f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
321f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (isTargetFTOL()) {
322f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // Use the _ftol2 runtime function, which has a pseudo-instruction
323f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // to handle its weird calling convention.
324f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
325f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
326f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
327f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
328f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (!X86ScalarSSEf64) {
329f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
330f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
331f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    if (Subtarget->is64Bit()) {
332f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
333f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      // Without SSE, i64->f64 goes through memory.
334f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
335f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    }
336f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
337f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
338f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Scalar integer divide and remainder are lowered to use operations that
339f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // produce two results, to match the available instructions. This exposes
340f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // the two-result form to trivial CSE, which is able to combine x/y and x%y
341f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // into a single instruction.
342f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  //
343f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Scalar integer multiply-high is also lowered to use two-result
344f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // operations, to match the available instructions. However, plain multiply
345  // (low) operations are left as Legal, as there are single-result
346  // instructions for this in x86. Using the two-result multiply instructions
347  // when both high and low results are needed must be arranged by dagcombine.
348  for (unsigned i = 0, e = 4; i != e; ++i) {
349    MVT VT = IntVTs[i];
350    setOperationAction(ISD::MULHS, VT, Expand);
351    setOperationAction(ISD::MULHU, VT, Expand);
352    setOperationAction(ISD::SDIV, VT, Expand);
353    setOperationAction(ISD::UDIV, VT, Expand);
354    setOperationAction(ISD::SREM, VT, Expand);
355    setOperationAction(ISD::UREM, VT, Expand);
356
357    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
358    setOperationAction(ISD::ADDC, VT, Custom);
359    setOperationAction(ISD::ADDE, VT, Custom);
360    setOperationAction(ISD::SUBC, VT, Custom);
361    setOperationAction(ISD::SUBE, VT, Custom);
362  }
363
364  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
365  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
366  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
367  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
368  if (Subtarget->is64Bit())
369    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
370  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
371  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
373  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
374  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
375  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
377  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
378
379  // Promote the i8 variants and force them on up to i32 which has a shorter
380  // encoding.
381  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
382  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
383  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
384  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
385  if (Subtarget->hasBMI()) {
386    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
387    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
388    if (Subtarget->is64Bit())
389      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
390  } else {
391    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
392    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
393    if (Subtarget->is64Bit())
394      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
395  }
396
397  if (Subtarget->hasLZCNT()) {
398    // When promoting the i8 variants, force them to i32 for a shorter
399    // encoding.
400    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
401    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
402    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
403    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
404    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
405    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
406    if (Subtarget->is64Bit())
407      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
408  } else {
409    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
410    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
411    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
412    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
413    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
414    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
415    if (Subtarget->is64Bit()) {
416      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
417      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
418    }
419  }
420
421  if (Subtarget->hasPOPCNT()) {
422    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
423  } else {
424    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
425    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
426    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
427    if (Subtarget->is64Bit())
428      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
429  }
430
431  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
432  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
433
434  // These should be promoted to a larger select which is supported.
435  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
436  // X86 wants to expand cmov itself.
437  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
438  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
439  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
440  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
441  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
442  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
443  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
444  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
445  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
446  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
447  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
448  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
449  if (Subtarget->is64Bit()) {
450    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
451    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
452  }
453  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
454
455  // Darwin ABI issue.
456  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
457  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
458  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
459  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
460  if (Subtarget->is64Bit())
461    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
462  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
463  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
464  if (Subtarget->is64Bit()) {
465    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
466    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
467    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
468    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
469    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
470  }
471  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
472  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
473  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
474  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
475  if (Subtarget->is64Bit()) {
476    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
477    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
478    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
479  }
480
481  if (Subtarget->hasSSE1())
482    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
483
484  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
485  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
486
487  // On X86 and X86-64, atomic operations are lowered to locked instructions.
488  // Locked instructions, in turn, have implicit fence semantics (all memory
489  // operations are flushed before issuing the locked instruction, and they
490  // are not buffered), so we can fold away the common pattern of
491  // fence-atomic-fence.
492  setShouldFoldAtomicFences(true);
493
494  // Expand certain atomics
495  for (unsigned i = 0, e = 4; i != e; ++i) {
496    MVT VT = IntVTs[i];
497    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
498    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
499    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
500  }
501
502  if (!Subtarget->is64Bit()) {
503    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
505    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
511  }
512
513  if (Subtarget->hasCmpxchg16b()) {
514    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
515  }
516
517  // FIXME - use subtarget debug flags
518  if (!Subtarget->isTargetDarwin() &&
519      !Subtarget->isTargetELF() &&
520      !Subtarget->isTargetCygMing()) {
521    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
522  }
523
524  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
525  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
526  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
527  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
528  if (Subtarget->is64Bit()) {
529    setExceptionPointerRegister(X86::RAX);
530    setExceptionSelectorRegister(X86::RDX);
531  } else {
532    setExceptionPointerRegister(X86::EAX);
533    setExceptionSelectorRegister(X86::EDX);
534  }
535  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
536  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
537
538  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
539  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
540
541  setOperationAction(ISD::TRAP, MVT::Other, Legal);
542
543  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
544  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
545  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
546  if (Subtarget->is64Bit()) {
547    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
548    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
549  } else {
550    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
551    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
552  }
553
554  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
555  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
556
557  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
558    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
559                       MVT::i64 : MVT::i32, Custom);
560  else if (TM.Options.EnableSegmentedStacks)
561    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
562                       MVT::i64 : MVT::i32, Custom);
563  else
564    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
565                       MVT::i64 : MVT::i32, Expand);
566
567  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
568    // f32 and f64 use SSE.
569    // Set up the FP register classes.
570    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
571    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
572
573    // Use ANDPD to simulate FABS.
574    setOperationAction(ISD::FABS , MVT::f64, Custom);
575    setOperationAction(ISD::FABS , MVT::f32, Custom);
576
577    // Use XORP to simulate FNEG.
578    setOperationAction(ISD::FNEG , MVT::f64, Custom);
579    setOperationAction(ISD::FNEG , MVT::f32, Custom);
580
581    // Use ANDPD and ORPD to simulate FCOPYSIGN.
582    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
583    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
584
585    // Lower this to FGETSIGNx86 plus an AND.
586    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
587    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
588
589    // We don't support sin/cos/fmod
590    setOperationAction(ISD::FSIN , MVT::f64, Expand);
591    setOperationAction(ISD::FCOS , MVT::f64, Expand);
592    setOperationAction(ISD::FSIN , MVT::f32, Expand);
593    setOperationAction(ISD::FCOS , MVT::f32, Expand);
594
595    // Expand FP immediates into loads from the stack, except for the special
596    // cases we handle.
597    addLegalFPImmediate(APFloat(+0.0)); // xorpd
598    addLegalFPImmediate(APFloat(+0.0f)); // xorps
599  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
600    // Use SSE for f32, x87 for f64.
601    // Set up the FP register classes.
602    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
603    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
604
605    // Use ANDPS to simulate FABS.
606    setOperationAction(ISD::FABS , MVT::f32, Custom);
607
608    // Use XORP to simulate FNEG.
609    setOperationAction(ISD::FNEG , MVT::f32, Custom);
610
611    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
612
613    // Use ANDPS and ORPS to simulate FCOPYSIGN.
614    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
615    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
616
617    // We don't support sin/cos/fmod
618    setOperationAction(ISD::FSIN , MVT::f32, Expand);
619    setOperationAction(ISD::FCOS , MVT::f32, Expand);
620
621    // Special cases we handle for FP constants.
622    addLegalFPImmediate(APFloat(+0.0f)); // xorps
623    addLegalFPImmediate(APFloat(+0.0)); // FLD0
624    addLegalFPImmediate(APFloat(+1.0)); // FLD1
625    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
626    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
627
628    if (!TM.Options.UnsafeFPMath) {
629      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
630      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
631    }
632  } else if (!TM.Options.UseSoftFloat) {
633    // f32 and f64 in x87.
634    // Set up the FP register classes.
635    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
636    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
637
638    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
639    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
640    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
641    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
642
643    if (!TM.Options.UnsafeFPMath) {
644      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
645      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
646    }
647    addLegalFPImmediate(APFloat(+0.0)); // FLD0
648    addLegalFPImmediate(APFloat(+1.0)); // FLD1
649    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
650    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
651    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
652    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
653    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
654    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
655  }
656
657  // We don't support FMA.
658  setOperationAction(ISD::FMA, MVT::f64, Expand);
659  setOperationAction(ISD::FMA, MVT::f32, Expand);
660
661  // Long double always uses X87.
662  if (!TM.Options.UseSoftFloat) {
663    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
664    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
665    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
666    {
667      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
668      addLegalFPImmediate(TmpFlt);  // FLD0
669      TmpFlt.changeSign();
670      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
671
672      bool ignored;
673      APFloat TmpFlt2(+1.0);
674      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
675                      &ignored);
676      addLegalFPImmediate(TmpFlt2);  // FLD1
677      TmpFlt2.changeSign();
678      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
679    }
680
681    if (!TM.Options.UnsafeFPMath) {
682      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
683      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
684    }
685
686    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
687    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
688    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
689    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
690    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
691    setOperationAction(ISD::FMA, MVT::f80, Expand);
692  }
693
694  // Always use a library call for pow.
695  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
696  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
697  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
698
699  setOperationAction(ISD::FLOG, MVT::f80, Expand);
700  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
701  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
702  setOperationAction(ISD::FEXP, MVT::f80, Expand);
703  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
704
705  // First set operation action for all vector types to either promote
706  // (for widening) or expand (for scalarization). Then we will selectively
707  // turn on ones that can be effectively codegen'd.
708  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
709       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
710    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
725    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
727    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
728    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
762    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
767    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
768         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
769      setTruncStoreAction((MVT::SimpleValueType)VT,
770                          (MVT::SimpleValueType)InnerVT, Expand);
771    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
772    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
773    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
774  }
775
776  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
777  // with -msoft-float, disable use of MMX as well.
778  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
779    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
780    // No operations on x86mmx supported, everything uses intrinsics.
781  }
782
783  // MMX-sized vectors (other than x86mmx) are expected to be expanded
784  // into smaller operations.
785  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
786  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
787  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
788  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
789  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
790  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
791  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
792  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
793  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
794  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
795  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
796  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
797  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
798  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
799  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
800  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
801  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
802  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
803  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
804  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
805  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
806  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
807  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
808  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
809  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
810  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
811  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
812  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
813  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
814
815  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
816    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
817
818    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
819    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
820    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
821    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
822    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
823    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
824    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
825    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
826    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
827    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
828    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
829    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
830  }
831
832  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
833    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
834
835    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
836    // registers cannot be used even for integer operations.
837    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
838    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
839    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
840    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
841
842    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
843    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
844    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
845    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
846    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
847    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
848    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
849    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
850    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
851    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
852    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
853    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
854    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
855    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
856    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
857    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
858
859    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
860    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
861    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
862    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
863
864    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
865    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
866    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
867    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
868    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
869
870    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
871    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
872    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
873    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
874    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
875
876    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
877    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
878      EVT VT = (MVT::SimpleValueType)i;
879      // Do not attempt to custom lower non-power-of-2 vectors
880      if (!isPowerOf2_32(VT.getVectorNumElements()))
881        continue;
882      // Do not attempt to custom lower non-128-bit vectors
883      if (!VT.is128BitVector())
884        continue;
885      setOperationAction(ISD::BUILD_VECTOR,
886                         VT.getSimpleVT().SimpleTy, Custom);
887      setOperationAction(ISD::VECTOR_SHUFFLE,
888                         VT.getSimpleVT().SimpleTy, Custom);
889      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
890                         VT.getSimpleVT().SimpleTy, Custom);
891    }
892
893    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
894    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
895    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
896    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
897    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
898    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
899
900    if (Subtarget->is64Bit()) {
901      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
902      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
903    }
904
905    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
906    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
907      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
908      EVT VT = SVT;
909
910      // Do not attempt to promote non-128-bit vectors
911      if (!VT.is128BitVector())
912        continue;
913
914      setOperationAction(ISD::AND,    SVT, Promote);
915      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
916      setOperationAction(ISD::OR,     SVT, Promote);
917      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
918      setOperationAction(ISD::XOR,    SVT, Promote);
919      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
920      setOperationAction(ISD::LOAD,   SVT, Promote);
921      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
922      setOperationAction(ISD::SELECT, SVT, Promote);
923      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
924    }
925
926    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
927
928    // Custom lower v2i64 and v2f64 selects.
929    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
930    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
931    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
932    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
933
934    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
935    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
936  }
937
938  if (Subtarget->hasSSE41()) {
939    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
940    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
941    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
942    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
943    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
944    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
945    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
946    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
947    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
948    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
949
950    // FIXME: Do we need to handle scalar-to-vector here?
951    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
952
953    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
954    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
955    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
956    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
957    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
958
959    // i8 and i16 vectors are custom , because the source register and source
960    // source memory operand types are not the same width.  f32 vectors are
961    // custom since the immediate controlling the insert encodes additional
962    // information.
963    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
964    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
965    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
966    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
967
968    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
969    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
970    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
971    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
972
973    // FIXME: these should be Legal but thats only for the case where
974    // the index is constant.  For now custom expand to deal with that.
975    if (Subtarget->is64Bit()) {
976      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
977      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
978    }
979  }
980
981  if (Subtarget->hasSSE2()) {
982    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
983    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
984
985    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
986    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
987
988    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
989    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
990
991    if (Subtarget->hasAVX2()) {
992      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
993      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
994
995      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
996      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
997
998      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
999    } else {
1000      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1001      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1002
1003      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1004      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1005
1006      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1007    }
1008  }
1009
1010  if (Subtarget->hasSSE42())
1011    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1012
1013  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1014    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
1015    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1016    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
1017    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
1018    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
1019    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
1020
1021    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1022    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1023    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1024
1025    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1026    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1027    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1028    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1029    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1030    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1031
1032    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1033    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1034    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1035    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1036    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1037    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1038
1039    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1040    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1041    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1042
1043    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1044    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1045    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1046    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1047    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1048    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1049
1050    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1051    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1052
1053    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1054    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1055
1056    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1057    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1058
1059    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1060    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1061    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1062    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1063
1064    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1065    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1066    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1067
1068    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1069    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1070    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1071    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1072
1073    if (Subtarget->hasAVX2()) {
1074      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1075      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1076      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1077      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1078
1079      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1080      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1081      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1082      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1083
1084      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1085      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1086      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1087      // Don't lower v32i8 because there is no 128-bit byte mul
1088
1089      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1090
1091      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1092      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1093
1094      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1095      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1096
1097      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1098    } else {
1099      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1100      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1101      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1102      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1103
1104      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1105      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1106      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1107      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1108
1109      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1110      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1111      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1112      // Don't lower v32i8 because there is no 128-bit byte mul
1113
1114      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1115      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1116
1117      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1118      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1119
1120      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1121    }
1122
1123    // Custom lower several nodes for 256-bit types.
1124    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1125                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1126      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1127      EVT VT = SVT;
1128
1129      // Extract subvector is special because the value type
1130      // (result) is 128-bit but the source is 256-bit wide.
1131      if (VT.is128BitVector())
1132        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1133
1134      // Do not attempt to custom lower other non-256-bit vectors
1135      if (!VT.is256BitVector())
1136        continue;
1137
1138      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1139      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1140      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1141      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1142      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1143      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1144    }
1145
1146    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1147    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1148      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1149      EVT VT = SVT;
1150
1151      // Do not attempt to promote non-256-bit vectors
1152      if (!VT.is256BitVector())
1153        continue;
1154
1155      setOperationAction(ISD::AND,    SVT, Promote);
1156      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1157      setOperationAction(ISD::OR,     SVT, Promote);
1158      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1159      setOperationAction(ISD::XOR,    SVT, Promote);
1160      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1161      setOperationAction(ISD::LOAD,   SVT, Promote);
1162      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1163      setOperationAction(ISD::SELECT, SVT, Promote);
1164      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1165    }
1166  }
1167
1168  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1169  // of this type with custom code.
1170  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1171         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1172    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1173                       Custom);
1174  }
1175
1176  // We want to custom lower some of our intrinsics.
1177  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1178
1179
1180  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1181  // handle type legalization for these operations here.
1182  //
1183  // FIXME: We really should do custom legalization for addition and
1184  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1185  // than generic legalization for 64-bit multiplication-with-overflow, though.
1186  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1187    // Add/Sub/Mul with overflow operations are custom lowered.
1188    MVT VT = IntVTs[i];
1189    setOperationAction(ISD::SADDO, VT, Custom);
1190    setOperationAction(ISD::UADDO, VT, Custom);
1191    setOperationAction(ISD::SSUBO, VT, Custom);
1192    setOperationAction(ISD::USUBO, VT, Custom);
1193    setOperationAction(ISD::SMULO, VT, Custom);
1194    setOperationAction(ISD::UMULO, VT, Custom);
1195  }
1196
1197  // There are no 8-bit 3-address imul/mul instructions
1198  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1199  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1200
1201  if (!Subtarget->is64Bit()) {
1202    // These libcalls are not available in 32-bit.
1203    setLibcallName(RTLIB::SHL_I128, 0);
1204    setLibcallName(RTLIB::SRL_I128, 0);
1205    setLibcallName(RTLIB::SRA_I128, 0);
1206  }
1207
1208  // We have target-specific dag combine patterns for the following nodes:
1209  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1210  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1211  setTargetDAGCombine(ISD::VSELECT);
1212  setTargetDAGCombine(ISD::SELECT);
1213  setTargetDAGCombine(ISD::SHL);
1214  setTargetDAGCombine(ISD::SRA);
1215  setTargetDAGCombine(ISD::SRL);
1216  setTargetDAGCombine(ISD::OR);
1217  setTargetDAGCombine(ISD::AND);
1218  setTargetDAGCombine(ISD::ADD);
1219  setTargetDAGCombine(ISD::FADD);
1220  setTargetDAGCombine(ISD::FSUB);
1221  setTargetDAGCombine(ISD::SUB);
1222  setTargetDAGCombine(ISD::LOAD);
1223  setTargetDAGCombine(ISD::STORE);
1224  setTargetDAGCombine(ISD::ZERO_EXTEND);
1225  setTargetDAGCombine(ISD::SIGN_EXTEND);
1226  setTargetDAGCombine(ISD::TRUNCATE);
1227  setTargetDAGCombine(ISD::SINT_TO_FP);
1228  if (Subtarget->is64Bit())
1229    setTargetDAGCombine(ISD::MUL);
1230  if (Subtarget->hasBMI())
1231    setTargetDAGCombine(ISD::XOR);
1232
1233  computeRegisterProperties();
1234
1235  // On Darwin, -Os means optimize for size without hurting performance,
1236  // do not reduce the limit.
1237  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1238  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1239  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1240  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1241  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1242  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1243  setPrefLoopAlignment(4); // 2^4 bytes.
1244  benefitFromCodePlacementOpt = true;
1245
1246  setPrefFunctionAlignment(4); // 2^4 bytes.
1247}
1248
1249
1250EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1251  if (!VT.isVector()) return MVT::i8;
1252  return VT.changeVectorElementTypeToInteger();
1253}
1254
1255
1256/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1257/// the desired ByVal argument alignment.
1258static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1259  if (MaxAlign == 16)
1260    return;
1261  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1262    if (VTy->getBitWidth() == 128)
1263      MaxAlign = 16;
1264  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1265    unsigned EltAlign = 0;
1266    getMaxByValAlign(ATy->getElementType(), EltAlign);
1267    if (EltAlign > MaxAlign)
1268      MaxAlign = EltAlign;
1269  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1270    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1271      unsigned EltAlign = 0;
1272      getMaxByValAlign(STy->getElementType(i), EltAlign);
1273      if (EltAlign > MaxAlign)
1274        MaxAlign = EltAlign;
1275      if (MaxAlign == 16)
1276        break;
1277    }
1278  }
1279  return;
1280}
1281
1282/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1283/// function arguments in the caller parameter area. For X86, aggregates
1284/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1285/// are at 4-byte boundaries.
1286unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1287  if (Subtarget->is64Bit()) {
1288    // Max of 8 and alignment of type.
1289    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1290    if (TyAlign > 8)
1291      return TyAlign;
1292    return 8;
1293  }
1294
1295  unsigned Align = 4;
1296  if (Subtarget->hasSSE1())
1297    getMaxByValAlign(Ty, Align);
1298  return Align;
1299}
1300
1301/// getOptimalMemOpType - Returns the target specific optimal type for load
1302/// and store operations as a result of memset, memcpy, and memmove
1303/// lowering. If DstAlign is zero that means it's safe to destination
1304/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1305/// means there isn't a need to check it against alignment requirement,
1306/// probably because the source does not need to be loaded. If
1307/// 'IsZeroVal' is true, that means it's safe to return a
1308/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1309/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1310/// constant so it does not need to be loaded.
1311/// It returns EVT::Other if the type should be determined using generic
1312/// target-independent logic.
1313EVT
1314X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1315                                       unsigned DstAlign, unsigned SrcAlign,
1316                                       bool IsZeroVal,
1317                                       bool MemcpyStrSrc,
1318                                       MachineFunction &MF) const {
1319  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1320  // linux.  This is because the stack realignment code can't handle certain
1321  // cases like PR2962.  This should be removed when PR2962 is fixed.
1322  const Function *F = MF.getFunction();
1323  if (IsZeroVal &&
1324      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1325    if (Size >= 16 &&
1326        (Subtarget->isUnalignedMemAccessFast() ||
1327         ((DstAlign == 0 || DstAlign >= 16) &&
1328          (SrcAlign == 0 || SrcAlign >= 16))) &&
1329        Subtarget->getStackAlignment() >= 16) {
1330      if (Subtarget->getStackAlignment() >= 32) {
1331        if (Subtarget->hasAVX2())
1332          return MVT::v8i32;
1333        if (Subtarget->hasAVX())
1334          return MVT::v8f32;
1335      }
1336      if (Subtarget->hasSSE2())
1337        return MVT::v4i32;
1338      if (Subtarget->hasSSE1())
1339        return MVT::v4f32;
1340    } else if (!MemcpyStrSrc && Size >= 8 &&
1341               !Subtarget->is64Bit() &&
1342               Subtarget->getStackAlignment() >= 8 &&
1343               Subtarget->hasSSE2()) {
1344      // Do not use f64 to lower memcpy if source is string constant. It's
1345      // better to use i32 to avoid the loads.
1346      return MVT::f64;
1347    }
1348  }
1349  if (Subtarget->is64Bit() && Size >= 8)
1350    return MVT::i64;
1351  return MVT::i32;
1352}
1353
1354/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1355/// current function.  The returned value is a member of the
1356/// MachineJumpTableInfo::JTEntryKind enum.
1357unsigned X86TargetLowering::getJumpTableEncoding() const {
1358  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1359  // symbol.
1360  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1361      Subtarget->isPICStyleGOT())
1362    return MachineJumpTableInfo::EK_Custom32;
1363
1364  // Otherwise, use the normal jump table encoding heuristics.
1365  return TargetLowering::getJumpTableEncoding();
1366}
1367
1368const MCExpr *
1369X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1370                                             const MachineBasicBlock *MBB,
1371                                             unsigned uid,MCContext &Ctx) const{
1372  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1373         Subtarget->isPICStyleGOT());
1374  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1375  // entries.
1376  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1377                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1378}
1379
1380/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1381/// jumptable.
1382SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1383                                                    SelectionDAG &DAG) const {
1384  if (!Subtarget->is64Bit())
1385    // This doesn't have DebugLoc associated with it, but is not really the
1386    // same as a Register.
1387    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1388  return Table;
1389}
1390
1391/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1392/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1393/// MCExpr.
1394const MCExpr *X86TargetLowering::
1395getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1396                             MCContext &Ctx) const {
1397  // X86-64 uses RIP relative addressing based on the jump table label.
1398  if (Subtarget->isPICStyleRIPRel())
1399    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1400
1401  // Otherwise, the reference is relative to the PIC base.
1402  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1403}
1404
1405// FIXME: Why this routine is here? Move to RegInfo!
1406std::pair<const TargetRegisterClass*, uint8_t>
1407X86TargetLowering::findRepresentativeClass(EVT VT) const{
1408  const TargetRegisterClass *RRC = 0;
1409  uint8_t Cost = 1;
1410  switch (VT.getSimpleVT().SimpleTy) {
1411  default:
1412    return TargetLowering::findRepresentativeClass(VT);
1413  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1414    RRC = (Subtarget->is64Bit()
1415           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1416    break;
1417  case MVT::x86mmx:
1418    RRC = X86::VR64RegisterClass;
1419    break;
1420  case MVT::f32: case MVT::f64:
1421  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1422  case MVT::v4f32: case MVT::v2f64:
1423  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1424  case MVT::v4f64:
1425    RRC = X86::VR128RegisterClass;
1426    break;
1427  }
1428  return std::make_pair(RRC, Cost);
1429}
1430
1431bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1432                                               unsigned &Offset) const {
1433  if (!Subtarget->isTargetLinux())
1434    return false;
1435
1436  if (Subtarget->is64Bit()) {
1437    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1438    Offset = 0x28;
1439    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1440      AddressSpace = 256;
1441    else
1442      AddressSpace = 257;
1443  } else {
1444    // %gs:0x14 on i386
1445    Offset = 0x14;
1446    AddressSpace = 256;
1447  }
1448  return true;
1449}
1450
1451
1452//===----------------------------------------------------------------------===//
1453//               Return Value Calling Convention Implementation
1454//===----------------------------------------------------------------------===//
1455
1456#include "X86GenCallingConv.inc"
1457
1458bool
1459X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1460				  MachineFunction &MF, bool isVarArg,
1461                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1462                        LLVMContext &Context) const {
1463  SmallVector<CCValAssign, 16> RVLocs;
1464  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1465                 RVLocs, Context);
1466  return CCInfo.CheckReturn(Outs, RetCC_X86);
1467}
1468
1469SDValue
1470X86TargetLowering::LowerReturn(SDValue Chain,
1471                               CallingConv::ID CallConv, bool isVarArg,
1472                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1473                               const SmallVectorImpl<SDValue> &OutVals,
1474                               DebugLoc dl, SelectionDAG &DAG) const {
1475  MachineFunction &MF = DAG.getMachineFunction();
1476  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1477
1478  SmallVector<CCValAssign, 16> RVLocs;
1479  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1480                 RVLocs, *DAG.getContext());
1481  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1482
1483  // Add the regs to the liveout set for the function.
1484  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1485  for (unsigned i = 0; i != RVLocs.size(); ++i)
1486    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1487      MRI.addLiveOut(RVLocs[i].getLocReg());
1488
1489  SDValue Flag;
1490
1491  SmallVector<SDValue, 6> RetOps;
1492  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1493  // Operand #1 = Bytes To Pop
1494  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1495                   MVT::i16));
1496
1497  // Copy the result values into the output registers.
1498  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1499    CCValAssign &VA = RVLocs[i];
1500    assert(VA.isRegLoc() && "Can only return in registers!");
1501    SDValue ValToCopy = OutVals[i];
1502    EVT ValVT = ValToCopy.getValueType();
1503
1504    // If this is x86-64, and we disabled SSE, we can't return FP values,
1505    // or SSE or MMX vectors.
1506    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1507         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1508          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1509      report_fatal_error("SSE register return with SSE disabled");
1510    }
1511    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1512    // llvm-gcc has never done it right and no one has noticed, so this
1513    // should be OK for now.
1514    if (ValVT == MVT::f64 &&
1515        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1516      report_fatal_error("SSE2 register return with SSE2 disabled");
1517
1518    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1519    // the RET instruction and handled by the FP Stackifier.
1520    if (VA.getLocReg() == X86::ST0 ||
1521        VA.getLocReg() == X86::ST1) {
1522      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1523      // change the value to the FP stack register class.
1524      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1525        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1526      RetOps.push_back(ValToCopy);
1527      // Don't emit a copytoreg.
1528      continue;
1529    }
1530
1531    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1532    // which is returned in RAX / RDX.
1533    if (Subtarget->is64Bit()) {
1534      if (ValVT == MVT::x86mmx) {
1535        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1536          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1537          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1538                                  ValToCopy);
1539          // If we don't have SSE2 available, convert to v4f32 so the generated
1540          // register is legal.
1541          if (!Subtarget->hasSSE2())
1542            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1543        }
1544      }
1545    }
1546
1547    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1548    Flag = Chain.getValue(1);
1549  }
1550
1551  // The x86-64 ABI for returning structs by value requires that we copy
1552  // the sret argument into %rax for the return. We saved the argument into
1553  // a virtual register in the entry block, so now we copy the value out
1554  // and into %rax.
1555  if (Subtarget->is64Bit() &&
1556      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1557    MachineFunction &MF = DAG.getMachineFunction();
1558    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1559    unsigned Reg = FuncInfo->getSRetReturnReg();
1560    assert(Reg &&
1561           "SRetReturnReg should have been set in LowerFormalArguments().");
1562    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1563
1564    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1565    Flag = Chain.getValue(1);
1566
1567    // RAX now acts like a return value.
1568    MRI.addLiveOut(X86::RAX);
1569  }
1570
1571  RetOps[0] = Chain;  // Update chain.
1572
1573  // Add the flag if we have it.
1574  if (Flag.getNode())
1575    RetOps.push_back(Flag);
1576
1577  return DAG.getNode(X86ISD::RET_FLAG, dl,
1578                     MVT::Other, &RetOps[0], RetOps.size());
1579}
1580
1581bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1582  if (N->getNumValues() != 1)
1583    return false;
1584  if (!N->hasNUsesOfValue(1, 0))
1585    return false;
1586
1587  SDValue TCChain = Chain;
1588  SDNode *Copy = *N->use_begin();
1589  if (Copy->getOpcode() == ISD::CopyToReg) {
1590    // If the copy has a glue operand, we conservatively assume it isn't safe to
1591    // perform a tail call.
1592    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1593      return false;
1594    TCChain = Copy->getOperand(0);
1595  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1596    return false;
1597
1598  bool HasRet = false;
1599  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1600       UI != UE; ++UI) {
1601    if (UI->getOpcode() != X86ISD::RET_FLAG)
1602      return false;
1603    HasRet = true;
1604  }
1605
1606  if (!HasRet)
1607    return false;
1608
1609  Chain = TCChain;
1610  return true;
1611}
1612
1613EVT
1614X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1615                                            ISD::NodeType ExtendKind) const {
1616  MVT ReturnMVT;
1617  // TODO: Is this also valid on 32-bit?
1618  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1619    ReturnMVT = MVT::i8;
1620  else
1621    ReturnMVT = MVT::i32;
1622
1623  EVT MinVT = getRegisterType(Context, ReturnMVT);
1624  return VT.bitsLT(MinVT) ? MinVT : VT;
1625}
1626
1627/// LowerCallResult - Lower the result values of a call into the
1628/// appropriate copies out of appropriate physical registers.
1629///
1630SDValue
1631X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1632                                   CallingConv::ID CallConv, bool isVarArg,
1633                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1634                                   DebugLoc dl, SelectionDAG &DAG,
1635                                   SmallVectorImpl<SDValue> &InVals) const {
1636
1637  // Assign locations to each value returned by this call.
1638  SmallVector<CCValAssign, 16> RVLocs;
1639  bool Is64Bit = Subtarget->is64Bit();
1640  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1641		 getTargetMachine(), RVLocs, *DAG.getContext());
1642  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1643
1644  // Copy all of the result registers out of their specified physreg.
1645  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1646    CCValAssign &VA = RVLocs[i];
1647    EVT CopyVT = VA.getValVT();
1648
1649    // If this is x86-64, and we disabled SSE, we can't return FP values
1650    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1651        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1652      report_fatal_error("SSE register return with SSE disabled");
1653    }
1654
1655    SDValue Val;
1656
1657    // If this is a call to a function that returns an fp value on the floating
1658    // point stack, we must guarantee the the value is popped from the stack, so
1659    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1660    // if the return value is not used. We use the FpPOP_RETVAL instruction
1661    // instead.
1662    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1663      // If we prefer to use the value in xmm registers, copy it out as f80 and
1664      // use a truncate to move it from fp stack reg to xmm reg.
1665      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1666      SDValue Ops[] = { Chain, InFlag };
1667      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1668                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1669      Val = Chain.getValue(0);
1670
1671      // Round the f80 to the right size, which also moves it to the appropriate
1672      // xmm register.
1673      if (CopyVT != VA.getValVT())
1674        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1675                          // This truncation won't change the value.
1676                          DAG.getIntPtrConstant(1));
1677    } else {
1678      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1679                                 CopyVT, InFlag).getValue(1);
1680      Val = Chain.getValue(0);
1681    }
1682    InFlag = Chain.getValue(2);
1683    InVals.push_back(Val);
1684  }
1685
1686  return Chain;
1687}
1688
1689
1690//===----------------------------------------------------------------------===//
1691//                C & StdCall & Fast Calling Convention implementation
1692//===----------------------------------------------------------------------===//
1693//  StdCall calling convention seems to be standard for many Windows' API
1694//  routines and around. It differs from C calling convention just a little:
1695//  callee should clean up the stack, not caller. Symbols should be also
1696//  decorated in some fancy way :) It doesn't support any vector arguments.
1697//  For info on fast calling convention see Fast Calling Convention (tail call)
1698//  implementation LowerX86_32FastCCCallTo.
1699
1700/// CallIsStructReturn - Determines whether a call uses struct return
1701/// semantics.
1702static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1703  if (Outs.empty())
1704    return false;
1705
1706  return Outs[0].Flags.isSRet();
1707}
1708
1709/// ArgsAreStructReturn - Determines whether a function uses struct
1710/// return semantics.
1711static bool
1712ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1713  if (Ins.empty())
1714    return false;
1715
1716  return Ins[0].Flags.isSRet();
1717}
1718
1719/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1720/// by "Src" to address "Dst" with size and alignment information specified by
1721/// the specific parameter attribute. The copy will be passed as a byval
1722/// function parameter.
1723static SDValue
1724CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1725                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1726                          DebugLoc dl) {
1727  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1728
1729  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1730                       /*isVolatile*/false, /*AlwaysInline=*/true,
1731                       MachinePointerInfo(), MachinePointerInfo());
1732}
1733
1734/// IsTailCallConvention - Return true if the calling convention is one that
1735/// supports tail call optimization.
1736static bool IsTailCallConvention(CallingConv::ID CC) {
1737  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1738}
1739
1740bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1741  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1742    return false;
1743
1744  CallSite CS(CI);
1745  CallingConv::ID CalleeCC = CS.getCallingConv();
1746  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1747    return false;
1748
1749  return true;
1750}
1751
1752/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1753/// a tailcall target by changing its ABI.
1754static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1755                                   bool GuaranteedTailCallOpt) {
1756  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1757}
1758
1759SDValue
1760X86TargetLowering::LowerMemArgument(SDValue Chain,
1761                                    CallingConv::ID CallConv,
1762                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1763                                    DebugLoc dl, SelectionDAG &DAG,
1764                                    const CCValAssign &VA,
1765                                    MachineFrameInfo *MFI,
1766                                    unsigned i) const {
1767  // Create the nodes corresponding to a load from this parameter slot.
1768  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1769  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1770                              getTargetMachine().Options.GuaranteedTailCallOpt);
1771  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1772  EVT ValVT;
1773
1774  // If value is passed by pointer we have address passed instead of the value
1775  // itself.
1776  if (VA.getLocInfo() == CCValAssign::Indirect)
1777    ValVT = VA.getLocVT();
1778  else
1779    ValVT = VA.getValVT();
1780
1781  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1782  // changed with more analysis.
1783  // In case of tail call optimization mark all arguments mutable. Since they
1784  // could be overwritten by lowering of arguments in case of a tail call.
1785  if (Flags.isByVal()) {
1786    unsigned Bytes = Flags.getByValSize();
1787    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1788    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1789    return DAG.getFrameIndex(FI, getPointerTy());
1790  } else {
1791    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1792                                    VA.getLocMemOffset(), isImmutable);
1793    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1794    return DAG.getLoad(ValVT, dl, Chain, FIN,
1795                       MachinePointerInfo::getFixedStack(FI),
1796                       false, false, false, 0);
1797  }
1798}
1799
1800SDValue
1801X86TargetLowering::LowerFormalArguments(SDValue Chain,
1802                                        CallingConv::ID CallConv,
1803                                        bool isVarArg,
1804                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1805                                        DebugLoc dl,
1806                                        SelectionDAG &DAG,
1807                                        SmallVectorImpl<SDValue> &InVals)
1808                                          const {
1809  MachineFunction &MF = DAG.getMachineFunction();
1810  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1811
1812  const Function* Fn = MF.getFunction();
1813  if (Fn->hasExternalLinkage() &&
1814      Subtarget->isTargetCygMing() &&
1815      Fn->getName() == "main")
1816    FuncInfo->setForceFramePointer(true);
1817
1818  MachineFrameInfo *MFI = MF.getFrameInfo();
1819  bool Is64Bit = Subtarget->is64Bit();
1820  bool IsWindows = Subtarget->isTargetWindows();
1821  bool IsWin64 = Subtarget->isTargetWin64();
1822
1823  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1824         "Var args not supported with calling convention fastcc or ghc");
1825
1826  // Assign locations to all of the incoming arguments.
1827  SmallVector<CCValAssign, 16> ArgLocs;
1828  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1829                 ArgLocs, *DAG.getContext());
1830
1831  // Allocate shadow area for Win64
1832  if (IsWin64) {
1833    CCInfo.AllocateStack(32, 8);
1834  }
1835
1836  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1837
1838  unsigned LastVal = ~0U;
1839  SDValue ArgValue;
1840  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1841    CCValAssign &VA = ArgLocs[i];
1842    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1843    // places.
1844    assert(VA.getValNo() != LastVal &&
1845           "Don't support value assigned to multiple locs yet");
1846    (void)LastVal;
1847    LastVal = VA.getValNo();
1848
1849    if (VA.isRegLoc()) {
1850      EVT RegVT = VA.getLocVT();
1851      const TargetRegisterClass *RC;
1852      if (RegVT == MVT::i32)
1853        RC = X86::GR32RegisterClass;
1854      else if (Is64Bit && RegVT == MVT::i64)
1855        RC = X86::GR64RegisterClass;
1856      else if (RegVT == MVT::f32)
1857        RC = X86::FR32RegisterClass;
1858      else if (RegVT == MVT::f64)
1859        RC = X86::FR64RegisterClass;
1860      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1861        RC = X86::VR256RegisterClass;
1862      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1863        RC = X86::VR128RegisterClass;
1864      else if (RegVT == MVT::x86mmx)
1865        RC = X86::VR64RegisterClass;
1866      else
1867        llvm_unreachable("Unknown argument type!");
1868
1869      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1870      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1871
1872      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1873      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1874      // right size.
1875      if (VA.getLocInfo() == CCValAssign::SExt)
1876        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1877                               DAG.getValueType(VA.getValVT()));
1878      else if (VA.getLocInfo() == CCValAssign::ZExt)
1879        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1880                               DAG.getValueType(VA.getValVT()));
1881      else if (VA.getLocInfo() == CCValAssign::BCvt)
1882        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1883
1884      if (VA.isExtInLoc()) {
1885        // Handle MMX values passed in XMM regs.
1886        if (RegVT.isVector()) {
1887          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1888                                 ArgValue);
1889        } else
1890          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1891      }
1892    } else {
1893      assert(VA.isMemLoc());
1894      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1895    }
1896
1897    // If value is passed via pointer - do a load.
1898    if (VA.getLocInfo() == CCValAssign::Indirect)
1899      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1900                             MachinePointerInfo(), false, false, false, 0);
1901
1902    InVals.push_back(ArgValue);
1903  }
1904
1905  // The x86-64 ABI for returning structs by value requires that we copy
1906  // the sret argument into %rax for the return. Save the argument into
1907  // a virtual register so that we can access it from the return points.
1908  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1909    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1910    unsigned Reg = FuncInfo->getSRetReturnReg();
1911    if (!Reg) {
1912      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1913      FuncInfo->setSRetReturnReg(Reg);
1914    }
1915    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1916    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1917  }
1918
1919  unsigned StackSize = CCInfo.getNextStackOffset();
1920  // Align stack specially for tail calls.
1921  if (FuncIsMadeTailCallSafe(CallConv,
1922                             MF.getTarget().Options.GuaranteedTailCallOpt))
1923    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1924
1925  // If the function takes variable number of arguments, make a frame index for
1926  // the start of the first vararg value... for expansion of llvm.va_start.
1927  if (isVarArg) {
1928    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1929                    CallConv != CallingConv::X86_ThisCall)) {
1930      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1931    }
1932    if (Is64Bit) {
1933      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1934
1935      // FIXME: We should really autogenerate these arrays
1936      static const uint16_t GPR64ArgRegsWin64[] = {
1937        X86::RCX, X86::RDX, X86::R8,  X86::R9
1938      };
1939      static const uint16_t GPR64ArgRegs64Bit[] = {
1940        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1941      };
1942      static const uint16_t XMMArgRegs64Bit[] = {
1943        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1944        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1945      };
1946      const uint16_t *GPR64ArgRegs;
1947      unsigned NumXMMRegs = 0;
1948
1949      if (IsWin64) {
1950        // The XMM registers which might contain var arg parameters are shadowed
1951        // in their paired GPR.  So we only need to save the GPR to their home
1952        // slots.
1953        TotalNumIntRegs = 4;
1954        GPR64ArgRegs = GPR64ArgRegsWin64;
1955      } else {
1956        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1957        GPR64ArgRegs = GPR64ArgRegs64Bit;
1958
1959        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1960                                                TotalNumXMMRegs);
1961      }
1962      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1963                                                       TotalNumIntRegs);
1964
1965      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1966      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1967             "SSE register cannot be used when SSE is disabled!");
1968      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1969               NoImplicitFloatOps) &&
1970             "SSE register cannot be used when SSE is disabled!");
1971      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1972          !Subtarget->hasSSE1())
1973        // Kernel mode asks for SSE to be disabled, so don't push them
1974        // on the stack.
1975        TotalNumXMMRegs = 0;
1976
1977      if (IsWin64) {
1978        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1979        // Get to the caller-allocated home save location.  Add 8 to account
1980        // for the return address.
1981        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1982        FuncInfo->setRegSaveFrameIndex(
1983          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1984        // Fixup to set vararg frame on shadow area (4 x i64).
1985        if (NumIntRegs < 4)
1986          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1987      } else {
1988        // For X86-64, if there are vararg parameters that are passed via
1989        // registers, then we must store them to their spots on the stack so
1990        // they may be loaded by deferencing the result of va_next.
1991        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1992        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1993        FuncInfo->setRegSaveFrameIndex(
1994          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1995                               false));
1996      }
1997
1998      // Store the integer parameter registers.
1999      SmallVector<SDValue, 8> MemOps;
2000      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2001                                        getPointerTy());
2002      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2003      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2004        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2005                                  DAG.getIntPtrConstant(Offset));
2006        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2007                                     X86::GR64RegisterClass);
2008        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2009        SDValue Store =
2010          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2011                       MachinePointerInfo::getFixedStack(
2012                         FuncInfo->getRegSaveFrameIndex(), Offset),
2013                       false, false, 0);
2014        MemOps.push_back(Store);
2015        Offset += 8;
2016      }
2017
2018      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2019        // Now store the XMM (fp + vector) parameter registers.
2020        SmallVector<SDValue, 11> SaveXMMOps;
2021        SaveXMMOps.push_back(Chain);
2022
2023        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
2024        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2025        SaveXMMOps.push_back(ALVal);
2026
2027        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2028                               FuncInfo->getRegSaveFrameIndex()));
2029        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2030                               FuncInfo->getVarArgsFPOffset()));
2031
2032        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2033          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2034                                       X86::VR128RegisterClass);
2035          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2036          SaveXMMOps.push_back(Val);
2037        }
2038        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2039                                     MVT::Other,
2040                                     &SaveXMMOps[0], SaveXMMOps.size()));
2041      }
2042
2043      if (!MemOps.empty())
2044        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2045                            &MemOps[0], MemOps.size());
2046    }
2047  }
2048
2049  // Some CCs need callee pop.
2050  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2051                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2052    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2053  } else {
2054    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2055    // If this is an sret function, the return should pop the hidden pointer.
2056    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2057        ArgsAreStructReturn(Ins))
2058      FuncInfo->setBytesToPopOnReturn(4);
2059  }
2060
2061  if (!Is64Bit) {
2062    // RegSaveFrameIndex is X86-64 only.
2063    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2064    if (CallConv == CallingConv::X86_FastCall ||
2065        CallConv == CallingConv::X86_ThisCall)
2066      // fastcc functions can't have varargs.
2067      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2068  }
2069
2070  FuncInfo->setArgumentStackSize(StackSize);
2071
2072  return Chain;
2073}
2074
2075SDValue
2076X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2077                                    SDValue StackPtr, SDValue Arg,
2078                                    DebugLoc dl, SelectionDAG &DAG,
2079                                    const CCValAssign &VA,
2080                                    ISD::ArgFlagsTy Flags) const {
2081  unsigned LocMemOffset = VA.getLocMemOffset();
2082  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2083  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2084  if (Flags.isByVal())
2085    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2086
2087  return DAG.getStore(Chain, dl, Arg, PtrOff,
2088                      MachinePointerInfo::getStack(LocMemOffset),
2089                      false, false, 0);
2090}
2091
2092/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2093/// optimization is performed and it is required.
2094SDValue
2095X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2096                                           SDValue &OutRetAddr, SDValue Chain,
2097                                           bool IsTailCall, bool Is64Bit,
2098                                           int FPDiff, DebugLoc dl) const {
2099  // Adjust the Return address stack slot.
2100  EVT VT = getPointerTy();
2101  OutRetAddr = getReturnAddressFrameIndex(DAG);
2102
2103  // Load the "old" Return address.
2104  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2105                           false, false, false, 0);
2106  return SDValue(OutRetAddr.getNode(), 1);
2107}
2108
2109/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2110/// optimization is performed and it is required (FPDiff!=0).
2111static SDValue
2112EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2113                         SDValue Chain, SDValue RetAddrFrIdx,
2114                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2115  // Store the return address to the appropriate stack slot.
2116  if (!FPDiff) return Chain;
2117  // Calculate the new stack slot for the return address.
2118  int SlotSize = Is64Bit ? 8 : 4;
2119  int NewReturnAddrFI =
2120    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2121  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2122  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2123  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2124                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2125                       false, false, 0);
2126  return Chain;
2127}
2128
2129SDValue
2130X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2131                             CallingConv::ID CallConv, bool isVarArg,
2132                             bool doesNotRet, bool &isTailCall,
2133                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2134                             const SmallVectorImpl<SDValue> &OutVals,
2135                             const SmallVectorImpl<ISD::InputArg> &Ins,
2136                             DebugLoc dl, SelectionDAG &DAG,
2137                             SmallVectorImpl<SDValue> &InVals) const {
2138  MachineFunction &MF = DAG.getMachineFunction();
2139  bool Is64Bit        = Subtarget->is64Bit();
2140  bool IsWin64        = Subtarget->isTargetWin64();
2141  bool IsWindows      = Subtarget->isTargetWindows();
2142  bool IsStructRet    = CallIsStructReturn(Outs);
2143  bool IsSibcall      = false;
2144
2145  if (MF.getTarget().Options.DisableTailCalls)
2146    isTailCall = false;
2147
2148  if (isTailCall) {
2149    // Check if it's really possible to do a tail call.
2150    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2151                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2152                                                   Outs, OutVals, Ins, DAG);
2153
2154    // Sibcalls are automatically detected tailcalls which do not require
2155    // ABI changes.
2156    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2157      IsSibcall = true;
2158
2159    if (isTailCall)
2160      ++NumTailCalls;
2161  }
2162
2163  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2164         "Var args not supported with calling convention fastcc or ghc");
2165
2166  // Analyze operands of the call, assigning locations to each operand.
2167  SmallVector<CCValAssign, 16> ArgLocs;
2168  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2169                 ArgLocs, *DAG.getContext());
2170
2171  // Allocate shadow area for Win64
2172  if (IsWin64) {
2173    CCInfo.AllocateStack(32, 8);
2174  }
2175
2176  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2177
2178  // Get a count of how many bytes are to be pushed on the stack.
2179  unsigned NumBytes = CCInfo.getNextStackOffset();
2180  if (IsSibcall)
2181    // This is a sibcall. The memory operands are available in caller's
2182    // own caller's stack.
2183    NumBytes = 0;
2184  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2185           IsTailCallConvention(CallConv))
2186    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2187
2188  int FPDiff = 0;
2189  if (isTailCall && !IsSibcall) {
2190    // Lower arguments at fp - stackoffset + fpdiff.
2191    unsigned NumBytesCallerPushed =
2192      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2193    FPDiff = NumBytesCallerPushed - NumBytes;
2194
2195    // Set the delta of movement of the returnaddr stackslot.
2196    // But only set if delta is greater than previous delta.
2197    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2198      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2199  }
2200
2201  if (!IsSibcall)
2202    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2203
2204  SDValue RetAddrFrIdx;
2205  // Load return address for tail calls.
2206  if (isTailCall && FPDiff)
2207    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2208                                    Is64Bit, FPDiff, dl);
2209
2210  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2211  SmallVector<SDValue, 8> MemOpChains;
2212  SDValue StackPtr;
2213
2214  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2215  // of tail call optimization arguments are handle later.
2216  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2217    CCValAssign &VA = ArgLocs[i];
2218    EVT RegVT = VA.getLocVT();
2219    SDValue Arg = OutVals[i];
2220    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2221    bool isByVal = Flags.isByVal();
2222
2223    // Promote the value if needed.
2224    switch (VA.getLocInfo()) {
2225    default: llvm_unreachable("Unknown loc info!");
2226    case CCValAssign::Full: break;
2227    case CCValAssign::SExt:
2228      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2229      break;
2230    case CCValAssign::ZExt:
2231      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2232      break;
2233    case CCValAssign::AExt:
2234      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2235        // Special case: passing MMX values in XMM registers.
2236        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2237        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2238        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2239      } else
2240        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2241      break;
2242    case CCValAssign::BCvt:
2243      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2244      break;
2245    case CCValAssign::Indirect: {
2246      // Store the argument.
2247      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2248      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2249      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2250                           MachinePointerInfo::getFixedStack(FI),
2251                           false, false, 0);
2252      Arg = SpillSlot;
2253      break;
2254    }
2255    }
2256
2257    if (VA.isRegLoc()) {
2258      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2259      if (isVarArg && IsWin64) {
2260        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2261        // shadow reg if callee is a varargs function.
2262        unsigned ShadowReg = 0;
2263        switch (VA.getLocReg()) {
2264        case X86::XMM0: ShadowReg = X86::RCX; break;
2265        case X86::XMM1: ShadowReg = X86::RDX; break;
2266        case X86::XMM2: ShadowReg = X86::R8; break;
2267        case X86::XMM3: ShadowReg = X86::R9; break;
2268        }
2269        if (ShadowReg)
2270          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2271      }
2272    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2273      assert(VA.isMemLoc());
2274      if (StackPtr.getNode() == 0)
2275        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2276      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2277                                             dl, DAG, VA, Flags));
2278    }
2279  }
2280
2281  if (!MemOpChains.empty())
2282    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2283                        &MemOpChains[0], MemOpChains.size());
2284
2285  // Build a sequence of copy-to-reg nodes chained together with token chain
2286  // and flag operands which copy the outgoing args into registers.
2287  SDValue InFlag;
2288  // Tail call byval lowering might overwrite argument registers so in case of
2289  // tail call optimization the copies to registers are lowered later.
2290  if (!isTailCall)
2291    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2292      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2293                               RegsToPass[i].second, InFlag);
2294      InFlag = Chain.getValue(1);
2295    }
2296
2297  if (Subtarget->isPICStyleGOT()) {
2298    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2299    // GOT pointer.
2300    if (!isTailCall) {
2301      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2302                               DAG.getNode(X86ISD::GlobalBaseReg,
2303                                           DebugLoc(), getPointerTy()),
2304                               InFlag);
2305      InFlag = Chain.getValue(1);
2306    } else {
2307      // If we are tail calling and generating PIC/GOT style code load the
2308      // address of the callee into ECX. The value in ecx is used as target of
2309      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2310      // for tail calls on PIC/GOT architectures. Normally we would just put the
2311      // address of GOT into ebx and then call target@PLT. But for tail calls
2312      // ebx would be restored (since ebx is callee saved) before jumping to the
2313      // target@PLT.
2314
2315      // Note: The actual moving to ECX is done further down.
2316      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2317      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2318          !G->getGlobal()->hasProtectedVisibility())
2319        Callee = LowerGlobalAddress(Callee, DAG);
2320      else if (isa<ExternalSymbolSDNode>(Callee))
2321        Callee = LowerExternalSymbol(Callee, DAG);
2322    }
2323  }
2324
2325  if (Is64Bit && isVarArg && !IsWin64) {
2326    // From AMD64 ABI document:
2327    // For calls that may call functions that use varargs or stdargs
2328    // (prototype-less calls or calls to functions containing ellipsis (...) in
2329    // the declaration) %al is used as hidden argument to specify the number
2330    // of SSE registers used. The contents of %al do not need to match exactly
2331    // the number of registers, but must be an ubound on the number of SSE
2332    // registers used and is in the range 0 - 8 inclusive.
2333
2334    // Count the number of XMM registers allocated.
2335    static const uint16_t XMMArgRegs[] = {
2336      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2337      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2338    };
2339    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2340    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2341           && "SSE registers cannot be used when SSE is disabled");
2342
2343    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2344                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2345    InFlag = Chain.getValue(1);
2346  }
2347
2348
2349  // For tail calls lower the arguments to the 'real' stack slot.
2350  if (isTailCall) {
2351    // Force all the incoming stack arguments to be loaded from the stack
2352    // before any new outgoing arguments are stored to the stack, because the
2353    // outgoing stack slots may alias the incoming argument stack slots, and
2354    // the alias isn't otherwise explicit. This is slightly more conservative
2355    // than necessary, because it means that each store effectively depends
2356    // on every argument instead of just those arguments it would clobber.
2357    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2358
2359    SmallVector<SDValue, 8> MemOpChains2;
2360    SDValue FIN;
2361    int FI = 0;
2362    // Do not flag preceding copytoreg stuff together with the following stuff.
2363    InFlag = SDValue();
2364    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2365      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2366        CCValAssign &VA = ArgLocs[i];
2367        if (VA.isRegLoc())
2368          continue;
2369        assert(VA.isMemLoc());
2370        SDValue Arg = OutVals[i];
2371        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2372        // Create frame index.
2373        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2374        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2375        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2376        FIN = DAG.getFrameIndex(FI, getPointerTy());
2377
2378        if (Flags.isByVal()) {
2379          // Copy relative to framepointer.
2380          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2381          if (StackPtr.getNode() == 0)
2382            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2383                                          getPointerTy());
2384          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2385
2386          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2387                                                           ArgChain,
2388                                                           Flags, DAG, dl));
2389        } else {
2390          // Store relative to framepointer.
2391          MemOpChains2.push_back(
2392            DAG.getStore(ArgChain, dl, Arg, FIN,
2393                         MachinePointerInfo::getFixedStack(FI),
2394                         false, false, 0));
2395        }
2396      }
2397    }
2398
2399    if (!MemOpChains2.empty())
2400      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2401                          &MemOpChains2[0], MemOpChains2.size());
2402
2403    // Copy arguments to their registers.
2404    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2405      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2406                               RegsToPass[i].second, InFlag);
2407      InFlag = Chain.getValue(1);
2408    }
2409    InFlag =SDValue();
2410
2411    // Store the return address to the appropriate stack slot.
2412    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2413                                     FPDiff, dl);
2414  }
2415
2416  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2417    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2418    // In the 64-bit large code model, we have to make all calls
2419    // through a register, since the call instruction's 32-bit
2420    // pc-relative offset may not be large enough to hold the whole
2421    // address.
2422  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2423    // If the callee is a GlobalAddress node (quite common, every direct call
2424    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2425    // it.
2426
2427    // We should use extra load for direct calls to dllimported functions in
2428    // non-JIT mode.
2429    const GlobalValue *GV = G->getGlobal();
2430    if (!GV->hasDLLImportLinkage()) {
2431      unsigned char OpFlags = 0;
2432      bool ExtraLoad = false;
2433      unsigned WrapperKind = ISD::DELETED_NODE;
2434
2435      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2436      // external symbols most go through the PLT in PIC mode.  If the symbol
2437      // has hidden or protected visibility, or if it is static or local, then
2438      // we don't need to use the PLT - we can directly call it.
2439      if (Subtarget->isTargetELF() &&
2440          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2441          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2442        OpFlags = X86II::MO_PLT;
2443      } else if (Subtarget->isPICStyleStubAny() &&
2444                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2445                 (!Subtarget->getTargetTriple().isMacOSX() ||
2446                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2447        // PC-relative references to external symbols should go through $stub,
2448        // unless we're building with the leopard linker or later, which
2449        // automatically synthesizes these stubs.
2450        OpFlags = X86II::MO_DARWIN_STUB;
2451      } else if (Subtarget->isPICStyleRIPRel() &&
2452                 isa<Function>(GV) &&
2453                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2454        // If the function is marked as non-lazy, generate an indirect call
2455        // which loads from the GOT directly. This avoids runtime overhead
2456        // at the cost of eager binding (and one extra byte of encoding).
2457        OpFlags = X86II::MO_GOTPCREL;
2458        WrapperKind = X86ISD::WrapperRIP;
2459        ExtraLoad = true;
2460      }
2461
2462      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2463                                          G->getOffset(), OpFlags);
2464
2465      // Add a wrapper if needed.
2466      if (WrapperKind != ISD::DELETED_NODE)
2467        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2468      // Add extra indirection if needed.
2469      if (ExtraLoad)
2470        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2471                             MachinePointerInfo::getGOT(),
2472                             false, false, false, 0);
2473    }
2474  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2475    unsigned char OpFlags = 0;
2476
2477    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2478    // external symbols should go through the PLT.
2479    if (Subtarget->isTargetELF() &&
2480        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2481      OpFlags = X86II::MO_PLT;
2482    } else if (Subtarget->isPICStyleStubAny() &&
2483               (!Subtarget->getTargetTriple().isMacOSX() ||
2484                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2485      // PC-relative references to external symbols should go through $stub,
2486      // unless we're building with the leopard linker or later, which
2487      // automatically synthesizes these stubs.
2488      OpFlags = X86II::MO_DARWIN_STUB;
2489    }
2490
2491    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2492                                         OpFlags);
2493  }
2494
2495  // Returns a chain & a flag for retval copy to use.
2496  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2497  SmallVector<SDValue, 8> Ops;
2498
2499  if (!IsSibcall && isTailCall) {
2500    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2501                           DAG.getIntPtrConstant(0, true), InFlag);
2502    InFlag = Chain.getValue(1);
2503  }
2504
2505  Ops.push_back(Chain);
2506  Ops.push_back(Callee);
2507
2508  if (isTailCall)
2509    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2510
2511  // Add argument registers to the end of the list so that they are known live
2512  // into the call.
2513  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2514    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2515                                  RegsToPass[i].second.getValueType()));
2516
2517  // Add an implicit use GOT pointer in EBX.
2518  if (!isTailCall && Subtarget->isPICStyleGOT())
2519    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2520
2521  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2522  if (Is64Bit && isVarArg && !IsWin64)
2523    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2524
2525  // Add a register mask operand representing the call-preserved registers.
2526  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2527  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2528  assert(Mask && "Missing call preserved mask for calling convention");
2529  Ops.push_back(DAG.getRegisterMask(Mask));
2530
2531  if (InFlag.getNode())
2532    Ops.push_back(InFlag);
2533
2534  if (isTailCall) {
2535    // We used to do:
2536    //// If this is the first return lowered for this function, add the regs
2537    //// to the liveout set for the function.
2538    // This isn't right, although it's probably harmless on x86; liveouts
2539    // should be computed from returns not tail calls.  Consider a void
2540    // function making a tail call to a function returning int.
2541    return DAG.getNode(X86ISD::TC_RETURN, dl,
2542                       NodeTys, &Ops[0], Ops.size());
2543  }
2544
2545  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2546  InFlag = Chain.getValue(1);
2547
2548  // Create the CALLSEQ_END node.
2549  unsigned NumBytesForCalleeToPush;
2550  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2551                       getTargetMachine().Options.GuaranteedTailCallOpt))
2552    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2553  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2554           IsStructRet)
2555    // If this is a call to a struct-return function, the callee
2556    // pops the hidden struct pointer, so we have to push it back.
2557    // This is common for Darwin/X86, Linux & Mingw32 targets.
2558    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2559    NumBytesForCalleeToPush = 4;
2560  else
2561    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2562
2563  // Returns a flag for retval copy to use.
2564  if (!IsSibcall) {
2565    Chain = DAG.getCALLSEQ_END(Chain,
2566                               DAG.getIntPtrConstant(NumBytes, true),
2567                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2568                                                     true),
2569                               InFlag);
2570    InFlag = Chain.getValue(1);
2571  }
2572
2573  // Handle result values, copying them out of physregs into vregs that we
2574  // return.
2575  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2576                         Ins, dl, DAG, InVals);
2577}
2578
2579
2580//===----------------------------------------------------------------------===//
2581//                Fast Calling Convention (tail call) implementation
2582//===----------------------------------------------------------------------===//
2583
2584//  Like std call, callee cleans arguments, convention except that ECX is
2585//  reserved for storing the tail called function address. Only 2 registers are
2586//  free for argument passing (inreg). Tail call optimization is performed
2587//  provided:
2588//                * tailcallopt is enabled
2589//                * caller/callee are fastcc
2590//  On X86_64 architecture with GOT-style position independent code only local
2591//  (within module) calls are supported at the moment.
2592//  To keep the stack aligned according to platform abi the function
2593//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2594//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2595//  If a tail called function callee has more arguments than the caller the
2596//  caller needs to make sure that there is room to move the RETADDR to. This is
2597//  achieved by reserving an area the size of the argument delta right after the
2598//  original REtADDR, but before the saved framepointer or the spilled registers
2599//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2600//  stack layout:
2601//    arg1
2602//    arg2
2603//    RETADDR
2604//    [ new RETADDR
2605//      move area ]
2606//    (possible EBP)
2607//    ESI
2608//    EDI
2609//    local1 ..
2610
2611/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2612/// for a 16 byte align requirement.
2613unsigned
2614X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2615                                               SelectionDAG& DAG) const {
2616  MachineFunction &MF = DAG.getMachineFunction();
2617  const TargetMachine &TM = MF.getTarget();
2618  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2619  unsigned StackAlignment = TFI.getStackAlignment();
2620  uint64_t AlignMask = StackAlignment - 1;
2621  int64_t Offset = StackSize;
2622  uint64_t SlotSize = TD->getPointerSize();
2623  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2624    // Number smaller than 12 so just add the difference.
2625    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2626  } else {
2627    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2628    Offset = ((~AlignMask) & Offset) + StackAlignment +
2629      (StackAlignment-SlotSize);
2630  }
2631  return Offset;
2632}
2633
2634/// MatchingStackOffset - Return true if the given stack call argument is
2635/// already available in the same position (relatively) of the caller's
2636/// incoming argument stack.
2637static
2638bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2639                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2640                         const X86InstrInfo *TII) {
2641  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2642  int FI = INT_MAX;
2643  if (Arg.getOpcode() == ISD::CopyFromReg) {
2644    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2645    if (!TargetRegisterInfo::isVirtualRegister(VR))
2646      return false;
2647    MachineInstr *Def = MRI->getVRegDef(VR);
2648    if (!Def)
2649      return false;
2650    if (!Flags.isByVal()) {
2651      if (!TII->isLoadFromStackSlot(Def, FI))
2652        return false;
2653    } else {
2654      unsigned Opcode = Def->getOpcode();
2655      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2656          Def->getOperand(1).isFI()) {
2657        FI = Def->getOperand(1).getIndex();
2658        Bytes = Flags.getByValSize();
2659      } else
2660        return false;
2661    }
2662  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2663    if (Flags.isByVal())
2664      // ByVal argument is passed in as a pointer but it's now being
2665      // dereferenced. e.g.
2666      // define @foo(%struct.X* %A) {
2667      //   tail call @bar(%struct.X* byval %A)
2668      // }
2669      return false;
2670    SDValue Ptr = Ld->getBasePtr();
2671    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2672    if (!FINode)
2673      return false;
2674    FI = FINode->getIndex();
2675  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2676    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2677    FI = FINode->getIndex();
2678    Bytes = Flags.getByValSize();
2679  } else
2680    return false;
2681
2682  assert(FI != INT_MAX);
2683  if (!MFI->isFixedObjectIndex(FI))
2684    return false;
2685  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2686}
2687
2688/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2689/// for tail call optimization. Targets which want to do tail call
2690/// optimization should implement this function.
2691bool
2692X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2693                                                     CallingConv::ID CalleeCC,
2694                                                     bool isVarArg,
2695                                                     bool isCalleeStructRet,
2696                                                     bool isCallerStructRet,
2697                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2698                                    const SmallVectorImpl<SDValue> &OutVals,
2699                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2700                                                     SelectionDAG& DAG) const {
2701  if (!IsTailCallConvention(CalleeCC) &&
2702      CalleeCC != CallingConv::C)
2703    return false;
2704
2705  // If -tailcallopt is specified, make fastcc functions tail-callable.
2706  const MachineFunction &MF = DAG.getMachineFunction();
2707  const Function *CallerF = DAG.getMachineFunction().getFunction();
2708  CallingConv::ID CallerCC = CallerF->getCallingConv();
2709  bool CCMatch = CallerCC == CalleeCC;
2710
2711  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2712    if (IsTailCallConvention(CalleeCC) && CCMatch)
2713      return true;
2714    return false;
2715  }
2716
2717  // Look for obvious safe cases to perform tail call optimization that do not
2718  // require ABI changes. This is what gcc calls sibcall.
2719
2720  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2721  // emit a special epilogue.
2722  if (RegInfo->needsStackRealignment(MF))
2723    return false;
2724
2725  // Also avoid sibcall optimization if either caller or callee uses struct
2726  // return semantics.
2727  if (isCalleeStructRet || isCallerStructRet)
2728    return false;
2729
2730  // An stdcall caller is expected to clean up its arguments; the callee
2731  // isn't going to do that.
2732  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2733    return false;
2734
2735  // Do not sibcall optimize vararg calls unless all arguments are passed via
2736  // registers.
2737  if (isVarArg && !Outs.empty()) {
2738
2739    // Optimizing for varargs on Win64 is unlikely to be safe without
2740    // additional testing.
2741    if (Subtarget->isTargetWin64())
2742      return false;
2743
2744    SmallVector<CCValAssign, 16> ArgLocs;
2745    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2746		   getTargetMachine(), ArgLocs, *DAG.getContext());
2747
2748    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2749    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2750      if (!ArgLocs[i].isRegLoc())
2751        return false;
2752  }
2753
2754  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2755  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2756  // this into a sibcall.
2757  bool Unused = false;
2758  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2759    if (!Ins[i].Used) {
2760      Unused = true;
2761      break;
2762    }
2763  }
2764  if (Unused) {
2765    SmallVector<CCValAssign, 16> RVLocs;
2766    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2767		   getTargetMachine(), RVLocs, *DAG.getContext());
2768    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2769    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2770      CCValAssign &VA = RVLocs[i];
2771      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2772        return false;
2773    }
2774  }
2775
2776  // If the calling conventions do not match, then we'd better make sure the
2777  // results are returned in the same way as what the caller expects.
2778  if (!CCMatch) {
2779    SmallVector<CCValAssign, 16> RVLocs1;
2780    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2781		    getTargetMachine(), RVLocs1, *DAG.getContext());
2782    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2783
2784    SmallVector<CCValAssign, 16> RVLocs2;
2785    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2786		    getTargetMachine(), RVLocs2, *DAG.getContext());
2787    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2788
2789    if (RVLocs1.size() != RVLocs2.size())
2790      return false;
2791    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2792      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2793        return false;
2794      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2795        return false;
2796      if (RVLocs1[i].isRegLoc()) {
2797        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2798          return false;
2799      } else {
2800        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2801          return false;
2802      }
2803    }
2804  }
2805
2806  // If the callee takes no arguments then go on to check the results of the
2807  // call.
2808  if (!Outs.empty()) {
2809    // Check if stack adjustment is needed. For now, do not do this if any
2810    // argument is passed on the stack.
2811    SmallVector<CCValAssign, 16> ArgLocs;
2812    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2813		   getTargetMachine(), ArgLocs, *DAG.getContext());
2814
2815    // Allocate shadow area for Win64
2816    if (Subtarget->isTargetWin64()) {
2817      CCInfo.AllocateStack(32, 8);
2818    }
2819
2820    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2821    if (CCInfo.getNextStackOffset()) {
2822      MachineFunction &MF = DAG.getMachineFunction();
2823      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2824        return false;
2825
2826      // Check if the arguments are already laid out in the right way as
2827      // the caller's fixed stack objects.
2828      MachineFrameInfo *MFI = MF.getFrameInfo();
2829      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2830      const X86InstrInfo *TII =
2831        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2832      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2833        CCValAssign &VA = ArgLocs[i];
2834        SDValue Arg = OutVals[i];
2835        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2836        if (VA.getLocInfo() == CCValAssign::Indirect)
2837          return false;
2838        if (!VA.isRegLoc()) {
2839          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2840                                   MFI, MRI, TII))
2841            return false;
2842        }
2843      }
2844    }
2845
2846    // If the tailcall address may be in a register, then make sure it's
2847    // possible to register allocate for it. In 32-bit, the call address can
2848    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2849    // callee-saved registers are restored. These happen to be the same
2850    // registers used to pass 'inreg' arguments so watch out for those.
2851    if (!Subtarget->is64Bit() &&
2852        !isa<GlobalAddressSDNode>(Callee) &&
2853        !isa<ExternalSymbolSDNode>(Callee)) {
2854      unsigned NumInRegs = 0;
2855      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2856        CCValAssign &VA = ArgLocs[i];
2857        if (!VA.isRegLoc())
2858          continue;
2859        unsigned Reg = VA.getLocReg();
2860        switch (Reg) {
2861        default: break;
2862        case X86::EAX: case X86::EDX: case X86::ECX:
2863          if (++NumInRegs == 3)
2864            return false;
2865          break;
2866        }
2867      }
2868    }
2869  }
2870
2871  return true;
2872}
2873
2874FastISel *
2875X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2876  return X86::createFastISel(funcInfo);
2877}
2878
2879
2880//===----------------------------------------------------------------------===//
2881//                           Other Lowering Hooks
2882//===----------------------------------------------------------------------===//
2883
2884static bool MayFoldLoad(SDValue Op) {
2885  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2886}
2887
2888static bool MayFoldIntoStore(SDValue Op) {
2889  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2890}
2891
2892static bool isTargetShuffle(unsigned Opcode) {
2893  switch(Opcode) {
2894  default: return false;
2895  case X86ISD::PSHUFD:
2896  case X86ISD::PSHUFHW:
2897  case X86ISD::PSHUFLW:
2898  case X86ISD::SHUFP:
2899  case X86ISD::PALIGN:
2900  case X86ISD::MOVLHPS:
2901  case X86ISD::MOVLHPD:
2902  case X86ISD::MOVHLPS:
2903  case X86ISD::MOVLPS:
2904  case X86ISD::MOVLPD:
2905  case X86ISD::MOVSHDUP:
2906  case X86ISD::MOVSLDUP:
2907  case X86ISD::MOVDDUP:
2908  case X86ISD::MOVSS:
2909  case X86ISD::MOVSD:
2910  case X86ISD::UNPCKL:
2911  case X86ISD::UNPCKH:
2912  case X86ISD::VPERMILP:
2913  case X86ISD::VPERM2X128:
2914    return true;
2915  }
2916}
2917
2918static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2919                                    SDValue V1, SelectionDAG &DAG) {
2920  switch(Opc) {
2921  default: llvm_unreachable("Unknown x86 shuffle node");
2922  case X86ISD::MOVSHDUP:
2923  case X86ISD::MOVSLDUP:
2924  case X86ISD::MOVDDUP:
2925    return DAG.getNode(Opc, dl, VT, V1);
2926  }
2927}
2928
2929static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2930                                    SDValue V1, unsigned TargetMask,
2931                                    SelectionDAG &DAG) {
2932  switch(Opc) {
2933  default: llvm_unreachable("Unknown x86 shuffle node");
2934  case X86ISD::PSHUFD:
2935  case X86ISD::PSHUFHW:
2936  case X86ISD::PSHUFLW:
2937  case X86ISD::VPERMILP:
2938    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2939  }
2940}
2941
2942static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2943                                    SDValue V1, SDValue V2, unsigned TargetMask,
2944                                    SelectionDAG &DAG) {
2945  switch(Opc) {
2946  default: llvm_unreachable("Unknown x86 shuffle node");
2947  case X86ISD::PALIGN:
2948  case X86ISD::SHUFP:
2949  case X86ISD::VPERM2X128:
2950    return DAG.getNode(Opc, dl, VT, V1, V2,
2951                       DAG.getConstant(TargetMask, MVT::i8));
2952  }
2953}
2954
2955static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2956                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2957  switch(Opc) {
2958  default: llvm_unreachable("Unknown x86 shuffle node");
2959  case X86ISD::MOVLHPS:
2960  case X86ISD::MOVLHPD:
2961  case X86ISD::MOVHLPS:
2962  case X86ISD::MOVLPS:
2963  case X86ISD::MOVLPD:
2964  case X86ISD::MOVSS:
2965  case X86ISD::MOVSD:
2966  case X86ISD::UNPCKL:
2967  case X86ISD::UNPCKH:
2968    return DAG.getNode(Opc, dl, VT, V1, V2);
2969  }
2970}
2971
2972SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2973  MachineFunction &MF = DAG.getMachineFunction();
2974  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2975  int ReturnAddrIndex = FuncInfo->getRAIndex();
2976
2977  if (ReturnAddrIndex == 0) {
2978    // Set up a frame object for the return address.
2979    uint64_t SlotSize = TD->getPointerSize();
2980    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2981                                                           false);
2982    FuncInfo->setRAIndex(ReturnAddrIndex);
2983  }
2984
2985  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2986}
2987
2988
2989bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2990                                       bool hasSymbolicDisplacement) {
2991  // Offset should fit into 32 bit immediate field.
2992  if (!isInt<32>(Offset))
2993    return false;
2994
2995  // If we don't have a symbolic displacement - we don't have any extra
2996  // restrictions.
2997  if (!hasSymbolicDisplacement)
2998    return true;
2999
3000  // FIXME: Some tweaks might be needed for medium code model.
3001  if (M != CodeModel::Small && M != CodeModel::Kernel)
3002    return false;
3003
3004  // For small code model we assume that latest object is 16MB before end of 31
3005  // bits boundary. We may also accept pretty large negative constants knowing
3006  // that all objects are in the positive half of address space.
3007  if (M == CodeModel::Small && Offset < 16*1024*1024)
3008    return true;
3009
3010  // For kernel code model we know that all object resist in the negative half
3011  // of 32bits address space. We may not accept negative offsets, since they may
3012  // be just off and we may accept pretty large positive ones.
3013  if (M == CodeModel::Kernel && Offset > 0)
3014    return true;
3015
3016  return false;
3017}
3018
3019/// isCalleePop - Determines whether the callee is required to pop its
3020/// own arguments. Callee pop is necessary to support tail calls.
3021bool X86::isCalleePop(CallingConv::ID CallingConv,
3022                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3023  if (IsVarArg)
3024    return false;
3025
3026  switch (CallingConv) {
3027  default:
3028    return false;
3029  case CallingConv::X86_StdCall:
3030    return !is64Bit;
3031  case CallingConv::X86_FastCall:
3032    return !is64Bit;
3033  case CallingConv::X86_ThisCall:
3034    return !is64Bit;
3035  case CallingConv::Fast:
3036    return TailCallOpt;
3037  case CallingConv::GHC:
3038    return TailCallOpt;
3039  }
3040}
3041
3042/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3043/// specific condition code, returning the condition code and the LHS/RHS of the
3044/// comparison to make.
3045static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3046                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3047  if (!isFP) {
3048    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3049      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3050        // X > -1   -> X == 0, jump !sign.
3051        RHS = DAG.getConstant(0, RHS.getValueType());
3052        return X86::COND_NS;
3053      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3054        // X < 0   -> X == 0, jump on sign.
3055        return X86::COND_S;
3056      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3057        // X < 1   -> X <= 0
3058        RHS = DAG.getConstant(0, RHS.getValueType());
3059        return X86::COND_LE;
3060      }
3061    }
3062
3063    switch (SetCCOpcode) {
3064    default: llvm_unreachable("Invalid integer condition!");
3065    case ISD::SETEQ:  return X86::COND_E;
3066    case ISD::SETGT:  return X86::COND_G;
3067    case ISD::SETGE:  return X86::COND_GE;
3068    case ISD::SETLT:  return X86::COND_L;
3069    case ISD::SETLE:  return X86::COND_LE;
3070    case ISD::SETNE:  return X86::COND_NE;
3071    case ISD::SETULT: return X86::COND_B;
3072    case ISD::SETUGT: return X86::COND_A;
3073    case ISD::SETULE: return X86::COND_BE;
3074    case ISD::SETUGE: return X86::COND_AE;
3075    }
3076  }
3077
3078  // First determine if it is required or is profitable to flip the operands.
3079
3080  // If LHS is a foldable load, but RHS is not, flip the condition.
3081  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3082      !ISD::isNON_EXTLoad(RHS.getNode())) {
3083    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3084    std::swap(LHS, RHS);
3085  }
3086
3087  switch (SetCCOpcode) {
3088  default: break;
3089  case ISD::SETOLT:
3090  case ISD::SETOLE:
3091  case ISD::SETUGT:
3092  case ISD::SETUGE:
3093    std::swap(LHS, RHS);
3094    break;
3095  }
3096
3097  // On a floating point condition, the flags are set as follows:
3098  // ZF  PF  CF   op
3099  //  0 | 0 | 0 | X > Y
3100  //  0 | 0 | 1 | X < Y
3101  //  1 | 0 | 0 | X == Y
3102  //  1 | 1 | 1 | unordered
3103  switch (SetCCOpcode) {
3104  default: llvm_unreachable("Condcode should be pre-legalized away");
3105  case ISD::SETUEQ:
3106  case ISD::SETEQ:   return X86::COND_E;
3107  case ISD::SETOLT:              // flipped
3108  case ISD::SETOGT:
3109  case ISD::SETGT:   return X86::COND_A;
3110  case ISD::SETOLE:              // flipped
3111  case ISD::SETOGE:
3112  case ISD::SETGE:   return X86::COND_AE;
3113  case ISD::SETUGT:              // flipped
3114  case ISD::SETULT:
3115  case ISD::SETLT:   return X86::COND_B;
3116  case ISD::SETUGE:              // flipped
3117  case ISD::SETULE:
3118  case ISD::SETLE:   return X86::COND_BE;
3119  case ISD::SETONE:
3120  case ISD::SETNE:   return X86::COND_NE;
3121  case ISD::SETUO:   return X86::COND_P;
3122  case ISD::SETO:    return X86::COND_NP;
3123  case ISD::SETOEQ:
3124  case ISD::SETUNE:  return X86::COND_INVALID;
3125  }
3126}
3127
3128/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3129/// code. Current x86 isa includes the following FP cmov instructions:
3130/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3131static bool hasFPCMov(unsigned X86CC) {
3132  switch (X86CC) {
3133  default:
3134    return false;
3135  case X86::COND_B:
3136  case X86::COND_BE:
3137  case X86::COND_E:
3138  case X86::COND_P:
3139  case X86::COND_A:
3140  case X86::COND_AE:
3141  case X86::COND_NE:
3142  case X86::COND_NP:
3143    return true;
3144  }
3145}
3146
3147/// isFPImmLegal - Returns true if the target can instruction select the
3148/// specified FP immediate natively. If false, the legalizer will
3149/// materialize the FP immediate as a load from a constant pool.
3150bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3151  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3152    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3153      return true;
3154  }
3155  return false;
3156}
3157
3158/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3159/// the specified range (L, H].
3160static bool isUndefOrInRange(int Val, int Low, int Hi) {
3161  return (Val < 0) || (Val >= Low && Val < Hi);
3162}
3163
3164/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3165/// specified value.
3166static bool isUndefOrEqual(int Val, int CmpVal) {
3167  if (Val < 0 || Val == CmpVal)
3168    return true;
3169  return false;
3170}
3171
3172/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3173/// from position Pos and ending in Pos+Size, falls within the specified
3174/// sequential range (L, L+Pos]. or is undef.
3175static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3176                                       int Pos, int Size, int Low) {
3177  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3178    if (!isUndefOrEqual(Mask[i], Low))
3179      return false;
3180  return true;
3181}
3182
3183/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3184/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3185/// the second operand.
3186static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3187  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3188    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3189  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3190    return (Mask[0] < 2 && Mask[1] < 2);
3191  return false;
3192}
3193
3194/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3195/// is suitable for input to PSHUFHW.
3196static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT) {
3197  if (VT != MVT::v8i16)
3198    return false;
3199
3200  // Lower quadword copied in order or undef.
3201  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3202    return false;
3203
3204  // Upper quadword shuffled.
3205  for (unsigned i = 4; i != 8; ++i)
3206    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3207      return false;
3208
3209  return true;
3210}
3211
3212/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3213/// is suitable for input to PSHUFLW.
3214static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT) {
3215  if (VT != MVT::v8i16)
3216    return false;
3217
3218  // Upper quadword copied in order.
3219  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3220    return false;
3221
3222  // Lower quadword shuffled.
3223  for (unsigned i = 0; i != 4; ++i)
3224    if (Mask[i] >= 4)
3225      return false;
3226
3227  return true;
3228}
3229
3230/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3231/// is suitable for input to PALIGNR.
3232static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3233                          const X86Subtarget *Subtarget) {
3234  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3235      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3236    return false;
3237
3238  unsigned NumElts = VT.getVectorNumElements();
3239  unsigned NumLanes = VT.getSizeInBits()/128;
3240  unsigned NumLaneElts = NumElts/NumLanes;
3241
3242  // Do not handle 64-bit element shuffles with palignr.
3243  if (NumLaneElts == 2)
3244    return false;
3245
3246  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3247    unsigned i;
3248    for (i = 0; i != NumLaneElts; ++i) {
3249      if (Mask[i+l] >= 0)
3250        break;
3251    }
3252
3253    // Lane is all undef, go to next lane
3254    if (i == NumLaneElts)
3255      continue;
3256
3257    int Start = Mask[i+l];
3258
3259    // Make sure its in this lane in one of the sources
3260    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3261        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3262      return false;
3263
3264    // If not lane 0, then we must match lane 0
3265    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3266      return false;
3267
3268    // Correct second source to be contiguous with first source
3269    if (Start >= (int)NumElts)
3270      Start -= NumElts - NumLaneElts;
3271
3272    // Make sure we're shifting in the right direction.
3273    if (Start <= (int)(i+l))
3274      return false;
3275
3276    Start -= i;
3277
3278    // Check the rest of the elements to see if they are consecutive.
3279    for (++i; i != NumLaneElts; ++i) {
3280      int Idx = Mask[i+l];
3281
3282      // Make sure its in this lane
3283      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3284          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3285        return false;
3286
3287      // If not lane 0, then we must match lane 0
3288      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3289        return false;
3290
3291      if (Idx >= (int)NumElts)
3292        Idx -= NumElts - NumLaneElts;
3293
3294      if (!isUndefOrEqual(Idx, Start+i))
3295        return false;
3296
3297    }
3298  }
3299
3300  return true;
3301}
3302
3303/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3304/// the two vector operands have swapped position.
3305static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3306                                     unsigned NumElems) {
3307  for (unsigned i = 0; i != NumElems; ++i) {
3308    int idx = Mask[i];
3309    if (idx < 0)
3310      continue;
3311    else if (idx < (int)NumElems)
3312      Mask[i] = idx + NumElems;
3313    else
3314      Mask[i] = idx - NumElems;
3315  }
3316}
3317
3318/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3319/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3320/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3321/// reverse of what x86 shuffles want.
3322static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3323                        bool Commuted = false) {
3324  if (!HasAVX && VT.getSizeInBits() == 256)
3325    return false;
3326
3327  unsigned NumElems = VT.getVectorNumElements();
3328  unsigned NumLanes = VT.getSizeInBits()/128;
3329  unsigned NumLaneElems = NumElems/NumLanes;
3330
3331  if (NumLaneElems != 2 && NumLaneElems != 4)
3332    return false;
3333
3334  // VSHUFPSY divides the resulting vector into 4 chunks.
3335  // The sources are also splitted into 4 chunks, and each destination
3336  // chunk must come from a different source chunk.
3337  //
3338  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3339  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3340  //
3341  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3342  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3343  //
3344  // VSHUFPDY divides the resulting vector into 4 chunks.
3345  // The sources are also splitted into 4 chunks, and each destination
3346  // chunk must come from a different source chunk.
3347  //
3348  //  SRC1 =>      X3       X2       X1       X0
3349  //  SRC2 =>      Y3       Y2       Y1       Y0
3350  //
3351  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3352  //
3353  unsigned HalfLaneElems = NumLaneElems/2;
3354  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3355    for (unsigned i = 0; i != NumLaneElems; ++i) {
3356      int Idx = Mask[i+l];
3357      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3358      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3359        return false;
3360      // For VSHUFPSY, the mask of the second half must be the same as the
3361      // first but with the appropriate offsets. This works in the same way as
3362      // VPERMILPS works with masks.
3363      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3364        continue;
3365      if (!isUndefOrEqual(Idx, Mask[i]+l))
3366        return false;
3367    }
3368  }
3369
3370  return true;
3371}
3372
3373/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3374/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3375static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3376  unsigned NumElems = VT.getVectorNumElements();
3377
3378  if (VT.getSizeInBits() != 128)
3379    return false;
3380
3381  if (NumElems != 4)
3382    return false;
3383
3384  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3385  return isUndefOrEqual(Mask[0], 6) &&
3386         isUndefOrEqual(Mask[1], 7) &&
3387         isUndefOrEqual(Mask[2], 2) &&
3388         isUndefOrEqual(Mask[3], 3);
3389}
3390
3391/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3392/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3393/// <2, 3, 2, 3>
3394static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3395  unsigned NumElems = VT.getVectorNumElements();
3396
3397  if (VT.getSizeInBits() != 128)
3398    return false;
3399
3400  if (NumElems != 4)
3401    return false;
3402
3403  return isUndefOrEqual(Mask[0], 2) &&
3404         isUndefOrEqual(Mask[1], 3) &&
3405         isUndefOrEqual(Mask[2], 2) &&
3406         isUndefOrEqual(Mask[3], 3);
3407}
3408
3409/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3410/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3411static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3412  if (VT.getSizeInBits() != 128)
3413    return false;
3414
3415  unsigned NumElems = VT.getVectorNumElements();
3416
3417  if (NumElems != 2 && NumElems != 4)
3418    return false;
3419
3420  for (unsigned i = 0; i != NumElems/2; ++i)
3421    if (!isUndefOrEqual(Mask[i], i + NumElems))
3422      return false;
3423
3424  for (unsigned i = NumElems/2; i != NumElems; ++i)
3425    if (!isUndefOrEqual(Mask[i], i))
3426      return false;
3427
3428  return true;
3429}
3430
3431/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3432/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3433static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3434  unsigned NumElems = VT.getVectorNumElements();
3435
3436  if ((NumElems != 2 && NumElems != 4)
3437      || VT.getSizeInBits() > 128)
3438    return false;
3439
3440  for (unsigned i = 0; i != NumElems/2; ++i)
3441    if (!isUndefOrEqual(Mask[i], i))
3442      return false;
3443
3444  for (unsigned i = 0; i != NumElems/2; ++i)
3445    if (!isUndefOrEqual(Mask[i + NumElems/2], i + NumElems))
3446      return false;
3447
3448  return true;
3449}
3450
3451/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3452/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3453static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3454                         bool HasAVX2, bool V2IsSplat = false) {
3455  unsigned NumElts = VT.getVectorNumElements();
3456
3457  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3458         "Unsupported vector type for unpckh");
3459
3460  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3461      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3462    return false;
3463
3464  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3465  // independently on 128-bit lanes.
3466  unsigned NumLanes = VT.getSizeInBits()/128;
3467  unsigned NumLaneElts = NumElts/NumLanes;
3468
3469  for (unsigned l = 0; l != NumLanes; ++l) {
3470    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3471         i != (l+1)*NumLaneElts;
3472         i += 2, ++j) {
3473      int BitI  = Mask[i];
3474      int BitI1 = Mask[i+1];
3475      if (!isUndefOrEqual(BitI, j))
3476        return false;
3477      if (V2IsSplat) {
3478        if (!isUndefOrEqual(BitI1, NumElts))
3479          return false;
3480      } else {
3481        if (!isUndefOrEqual(BitI1, j + NumElts))
3482          return false;
3483      }
3484    }
3485  }
3486
3487  return true;
3488}
3489
3490/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3491/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3492static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3493                         bool HasAVX2, bool V2IsSplat = false) {
3494  unsigned NumElts = VT.getVectorNumElements();
3495
3496  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3497         "Unsupported vector type for unpckh");
3498
3499  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3500      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3501    return false;
3502
3503  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3504  // independently on 128-bit lanes.
3505  unsigned NumLanes = VT.getSizeInBits()/128;
3506  unsigned NumLaneElts = NumElts/NumLanes;
3507
3508  for (unsigned l = 0; l != NumLanes; ++l) {
3509    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3510         i != (l+1)*NumLaneElts; i += 2, ++j) {
3511      int BitI  = Mask[i];
3512      int BitI1 = Mask[i+1];
3513      if (!isUndefOrEqual(BitI, j))
3514        return false;
3515      if (V2IsSplat) {
3516        if (isUndefOrEqual(BitI1, NumElts))
3517          return false;
3518      } else {
3519        if (!isUndefOrEqual(BitI1, j+NumElts))
3520          return false;
3521      }
3522    }
3523  }
3524  return true;
3525}
3526
3527/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3528/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3529/// <0, 0, 1, 1>
3530static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3531                                  bool HasAVX2) {
3532  unsigned NumElts = VT.getVectorNumElements();
3533
3534  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3535         "Unsupported vector type for unpckh");
3536
3537  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3538      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3539    return false;
3540
3541  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3542  // FIXME: Need a better way to get rid of this, there's no latency difference
3543  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3544  // the former later. We should also remove the "_undef" special mask.
3545  if (NumElts == 4 && VT.getSizeInBits() == 256)
3546    return false;
3547
3548  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3549  // independently on 128-bit lanes.
3550  unsigned NumLanes = VT.getSizeInBits()/128;
3551  unsigned NumLaneElts = NumElts/NumLanes;
3552
3553  for (unsigned l = 0; l != NumLanes; ++l) {
3554    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3555         i != (l+1)*NumLaneElts;
3556         i += 2, ++j) {
3557      int BitI  = Mask[i];
3558      int BitI1 = Mask[i+1];
3559
3560      if (!isUndefOrEqual(BitI, j))
3561        return false;
3562      if (!isUndefOrEqual(BitI1, j))
3563        return false;
3564    }
3565  }
3566
3567  return true;
3568}
3569
3570/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3571/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3572/// <2, 2, 3, 3>
3573static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3574  unsigned NumElts = VT.getVectorNumElements();
3575
3576  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3577         "Unsupported vector type for unpckh");
3578
3579  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3580      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3581    return false;
3582
3583  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3584  // independently on 128-bit lanes.
3585  unsigned NumLanes = VT.getSizeInBits()/128;
3586  unsigned NumLaneElts = NumElts/NumLanes;
3587
3588  for (unsigned l = 0; l != NumLanes; ++l) {
3589    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3590         i != (l+1)*NumLaneElts; i += 2, ++j) {
3591      int BitI  = Mask[i];
3592      int BitI1 = Mask[i+1];
3593      if (!isUndefOrEqual(BitI, j))
3594        return false;
3595      if (!isUndefOrEqual(BitI1, j))
3596        return false;
3597    }
3598  }
3599  return true;
3600}
3601
3602/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3603/// specifies a shuffle of elements that is suitable for input to MOVSS,
3604/// MOVSD, and MOVD, i.e. setting the lowest element.
3605static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3606  if (VT.getVectorElementType().getSizeInBits() < 32)
3607    return false;
3608  if (VT.getSizeInBits() == 256)
3609    return false;
3610
3611  unsigned NumElts = VT.getVectorNumElements();
3612
3613  if (!isUndefOrEqual(Mask[0], NumElts))
3614    return false;
3615
3616  for (unsigned i = 1; i != NumElts; ++i)
3617    if (!isUndefOrEqual(Mask[i], i))
3618      return false;
3619
3620  return true;
3621}
3622
3623/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3624/// as permutations between 128-bit chunks or halves. As an example: this
3625/// shuffle bellow:
3626///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3627/// The first half comes from the second half of V1 and the second half from the
3628/// the second half of V2.
3629static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3630  if (!HasAVX || VT.getSizeInBits() != 256)
3631    return false;
3632
3633  // The shuffle result is divided into half A and half B. In total the two
3634  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3635  // B must come from C, D, E or F.
3636  unsigned HalfSize = VT.getVectorNumElements()/2;
3637  bool MatchA = false, MatchB = false;
3638
3639  // Check if A comes from one of C, D, E, F.
3640  for (unsigned Half = 0; Half != 4; ++Half) {
3641    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3642      MatchA = true;
3643      break;
3644    }
3645  }
3646
3647  // Check if B comes from one of C, D, E, F.
3648  for (unsigned Half = 0; Half != 4; ++Half) {
3649    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3650      MatchB = true;
3651      break;
3652    }
3653  }
3654
3655  return MatchA && MatchB;
3656}
3657
3658/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3659/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3660static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3661  EVT VT = SVOp->getValueType(0);
3662
3663  unsigned HalfSize = VT.getVectorNumElements()/2;
3664
3665  unsigned FstHalf = 0, SndHalf = 0;
3666  for (unsigned i = 0; i < HalfSize; ++i) {
3667    if (SVOp->getMaskElt(i) > 0) {
3668      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3669      break;
3670    }
3671  }
3672  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3673    if (SVOp->getMaskElt(i) > 0) {
3674      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3675      break;
3676    }
3677  }
3678
3679  return (FstHalf | (SndHalf << 4));
3680}
3681
3682/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3683/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3684/// Note that VPERMIL mask matching is different depending whether theunderlying
3685/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3686/// to the same elements of the low, but to the higher half of the source.
3687/// In VPERMILPD the two lanes could be shuffled independently of each other
3688/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3689static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3690  if (!HasAVX)
3691    return false;
3692
3693  unsigned NumElts = VT.getVectorNumElements();
3694  // Only match 256-bit with 32/64-bit types
3695  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3696    return false;
3697
3698  unsigned NumLanes = VT.getSizeInBits()/128;
3699  unsigned LaneSize = NumElts/NumLanes;
3700  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3701    for (unsigned i = 0; i != LaneSize; ++i) {
3702      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3703        return false;
3704      if (NumElts != 8 || l == 0)
3705        continue;
3706      // VPERMILPS handling
3707      if (Mask[i] < 0)
3708        continue;
3709      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3710        return false;
3711    }
3712  }
3713
3714  return true;
3715}
3716
3717/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3718/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3719/// element of vector 2 and the other elements to come from vector 1 in order.
3720static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3721                               bool V2IsSplat = false, bool V2IsUndef = false) {
3722  unsigned NumOps = VT.getVectorNumElements();
3723  if (VT.getSizeInBits() == 256)
3724    return false;
3725  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3726    return false;
3727
3728  if (!isUndefOrEqual(Mask[0], 0))
3729    return false;
3730
3731  for (unsigned i = 1; i != NumOps; ++i)
3732    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3733          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3734          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3735      return false;
3736
3737  return true;
3738}
3739
3740/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3741/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3742/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3743static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3744                           const X86Subtarget *Subtarget) {
3745  if (!Subtarget->hasSSE3())
3746    return false;
3747
3748  unsigned NumElems = VT.getVectorNumElements();
3749
3750  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3751      (VT.getSizeInBits() == 256 && NumElems != 8))
3752    return false;
3753
3754  // "i+1" is the value the indexed mask element must have
3755  for (unsigned i = 0; i != NumElems; i += 2)
3756    if (!isUndefOrEqual(Mask[i], i+1) ||
3757        !isUndefOrEqual(Mask[i+1], i+1))
3758      return false;
3759
3760  return true;
3761}
3762
3763/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3764/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3765/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3766static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3767                           const X86Subtarget *Subtarget) {
3768  if (!Subtarget->hasSSE3())
3769    return false;
3770
3771  unsigned NumElems = VT.getVectorNumElements();
3772
3773  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3774      (VT.getSizeInBits() == 256 && NumElems != 8))
3775    return false;
3776
3777  // "i" is the value the indexed mask element must have
3778  for (unsigned i = 0; i != NumElems; i += 2)
3779    if (!isUndefOrEqual(Mask[i], i) ||
3780        !isUndefOrEqual(Mask[i+1], i))
3781      return false;
3782
3783  return true;
3784}
3785
3786/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3787/// specifies a shuffle of elements that is suitable for input to 256-bit
3788/// version of MOVDDUP.
3789static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3790  unsigned NumElts = VT.getVectorNumElements();
3791
3792  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3793    return false;
3794
3795  for (unsigned i = 0; i != NumElts/2; ++i)
3796    if (!isUndefOrEqual(Mask[i], 0))
3797      return false;
3798  for (unsigned i = NumElts/2; i != NumElts; ++i)
3799    if (!isUndefOrEqual(Mask[i], NumElts/2))
3800      return false;
3801  return true;
3802}
3803
3804/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3805/// specifies a shuffle of elements that is suitable for input to 128-bit
3806/// version of MOVDDUP.
3807static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3808  if (VT.getSizeInBits() != 128)
3809    return false;
3810
3811  unsigned e = VT.getVectorNumElements() / 2;
3812  for (unsigned i = 0; i != e; ++i)
3813    if (!isUndefOrEqual(Mask[i], i))
3814      return false;
3815  for (unsigned i = 0; i != e; ++i)
3816    if (!isUndefOrEqual(Mask[e+i], i))
3817      return false;
3818  return true;
3819}
3820
3821/// isVEXTRACTF128Index - Return true if the specified
3822/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3823/// suitable for input to VEXTRACTF128.
3824bool X86::isVEXTRACTF128Index(SDNode *N) {
3825  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3826    return false;
3827
3828  // The index should be aligned on a 128-bit boundary.
3829  uint64_t Index =
3830    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3831
3832  unsigned VL = N->getValueType(0).getVectorNumElements();
3833  unsigned VBits = N->getValueType(0).getSizeInBits();
3834  unsigned ElSize = VBits / VL;
3835  bool Result = (Index * ElSize) % 128 == 0;
3836
3837  return Result;
3838}
3839
3840/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3841/// operand specifies a subvector insert that is suitable for input to
3842/// VINSERTF128.
3843bool X86::isVINSERTF128Index(SDNode *N) {
3844  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3845    return false;
3846
3847  // The index should be aligned on a 128-bit boundary.
3848  uint64_t Index =
3849    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3850
3851  unsigned VL = N->getValueType(0).getVectorNumElements();
3852  unsigned VBits = N->getValueType(0).getSizeInBits();
3853  unsigned ElSize = VBits / VL;
3854  bool Result = (Index * ElSize) % 128 == 0;
3855
3856  return Result;
3857}
3858
3859/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3860/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3861/// Handles 128-bit and 256-bit.
3862static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3863  EVT VT = N->getValueType(0);
3864
3865  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3866         "Unsupported vector type for PSHUF/SHUFP");
3867
3868  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3869  // independently on 128-bit lanes.
3870  unsigned NumElts = VT.getVectorNumElements();
3871  unsigned NumLanes = VT.getSizeInBits()/128;
3872  unsigned NumLaneElts = NumElts/NumLanes;
3873
3874  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3875         "Only supports 2 or 4 elements per lane");
3876
3877  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3878  unsigned Mask = 0;
3879  for (unsigned i = 0; i != NumElts; ++i) {
3880    int Elt = N->getMaskElt(i);
3881    if (Elt < 0) continue;
3882    Elt %= NumLaneElts;
3883    unsigned ShAmt = i << Shift;
3884    if (ShAmt >= 8) ShAmt -= 8;
3885    Mask |= Elt << ShAmt;
3886  }
3887
3888  return Mask;
3889}
3890
3891/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3892/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3893static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
3894  unsigned Mask = 0;
3895  // 8 nodes, but we only care about the last 4.
3896  for (unsigned i = 7; i >= 4; --i) {
3897    int Val = N->getMaskElt(i);
3898    if (Val >= 0)
3899      Mask |= (Val - 4);
3900    if (i != 4)
3901      Mask <<= 2;
3902  }
3903  return Mask;
3904}
3905
3906/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3907/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3908static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
3909  unsigned Mask = 0;
3910  // 8 nodes, but we only care about the first 4.
3911  for (int i = 3; i >= 0; --i) {
3912    int Val = N->getMaskElt(i);
3913    if (Val >= 0)
3914      Mask |= Val;
3915    if (i != 0)
3916      Mask <<= 2;
3917  }
3918  return Mask;
3919}
3920
3921/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3922/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3923static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
3924  EVT VT = SVOp->getValueType(0);
3925  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
3926
3927  unsigned NumElts = VT.getVectorNumElements();
3928  unsigned NumLanes = VT.getSizeInBits()/128;
3929  unsigned NumLaneElts = NumElts/NumLanes;
3930
3931  int Val = 0;
3932  unsigned i;
3933  for (i = 0; i != NumElts; ++i) {
3934    Val = SVOp->getMaskElt(i);
3935    if (Val >= 0)
3936      break;
3937  }
3938  if (Val >= (int)NumElts)
3939    Val -= NumElts - NumLaneElts;
3940
3941  assert(Val - i > 0 && "PALIGNR imm should be positive");
3942  return (Val - i) * EltSize;
3943}
3944
3945/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3946/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3947/// instructions.
3948unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3949  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3950    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3951
3952  uint64_t Index =
3953    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3954
3955  EVT VecVT = N->getOperand(0).getValueType();
3956  EVT ElVT = VecVT.getVectorElementType();
3957
3958  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3959  return Index / NumElemsPerChunk;
3960}
3961
3962/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3963/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3964/// instructions.
3965unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3966  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3967    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3968
3969  uint64_t Index =
3970    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3971
3972  EVT VecVT = N->getValueType(0);
3973  EVT ElVT = VecVT.getVectorElementType();
3974
3975  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3976  return Index / NumElemsPerChunk;
3977}
3978
3979/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3980/// constant +0.0.
3981bool X86::isZeroNode(SDValue Elt) {
3982  return ((isa<ConstantSDNode>(Elt) &&
3983           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3984          (isa<ConstantFPSDNode>(Elt) &&
3985           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3986}
3987
3988/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3989/// their permute mask.
3990static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3991                                    SelectionDAG &DAG) {
3992  EVT VT = SVOp->getValueType(0);
3993  unsigned NumElems = VT.getVectorNumElements();
3994  SmallVector<int, 8> MaskVec;
3995
3996  for (unsigned i = 0; i != NumElems; ++i) {
3997    int idx = SVOp->getMaskElt(i);
3998    if (idx < 0)
3999      MaskVec.push_back(idx);
4000    else if (idx < (int)NumElems)
4001      MaskVec.push_back(idx + NumElems);
4002    else
4003      MaskVec.push_back(idx - NumElems);
4004  }
4005  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4006                              SVOp->getOperand(0), &MaskVec[0]);
4007}
4008
4009/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4010/// match movhlps. The lower half elements should come from upper half of
4011/// V1 (and in order), and the upper half elements should come from the upper
4012/// half of V2 (and in order).
4013static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4014  if (VT.getSizeInBits() != 128)
4015    return false;
4016  if (VT.getVectorNumElements() != 4)
4017    return false;
4018  for (unsigned i = 0, e = 2; i != e; ++i)
4019    if (!isUndefOrEqual(Mask[i], i+2))
4020      return false;
4021  for (unsigned i = 2; i != 4; ++i)
4022    if (!isUndefOrEqual(Mask[i], i+4))
4023      return false;
4024  return true;
4025}
4026
4027/// isScalarLoadToVector - Returns true if the node is a scalar load that
4028/// is promoted to a vector. It also returns the LoadSDNode by reference if
4029/// required.
4030static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4031  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4032    return false;
4033  N = N->getOperand(0).getNode();
4034  if (!ISD::isNON_EXTLoad(N))
4035    return false;
4036  if (LD)
4037    *LD = cast<LoadSDNode>(N);
4038  return true;
4039}
4040
4041// Test whether the given value is a vector value which will be legalized
4042// into a load.
4043static bool WillBeConstantPoolLoad(SDNode *N) {
4044  if (N->getOpcode() != ISD::BUILD_VECTOR)
4045    return false;
4046
4047  // Check for any non-constant elements.
4048  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4049    switch (N->getOperand(i).getNode()->getOpcode()) {
4050    case ISD::UNDEF:
4051    case ISD::ConstantFP:
4052    case ISD::Constant:
4053      break;
4054    default:
4055      return false;
4056    }
4057
4058  // Vectors of all-zeros and all-ones are materialized with special
4059  // instructions rather than being loaded.
4060  return !ISD::isBuildVectorAllZeros(N) &&
4061         !ISD::isBuildVectorAllOnes(N);
4062}
4063
4064/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4065/// match movlp{s|d}. The lower half elements should come from lower half of
4066/// V1 (and in order), and the upper half elements should come from the upper
4067/// half of V2 (and in order). And since V1 will become the source of the
4068/// MOVLP, it must be either a vector load or a scalar load to vector.
4069static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4070                               ArrayRef<int> Mask, EVT VT) {
4071  if (VT.getSizeInBits() != 128)
4072    return false;
4073
4074  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4075    return false;
4076  // Is V2 is a vector load, don't do this transformation. We will try to use
4077  // load folding shufps op.
4078  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4079    return false;
4080
4081  unsigned NumElems = VT.getVectorNumElements();
4082
4083  if (NumElems != 2 && NumElems != 4)
4084    return false;
4085  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4086    if (!isUndefOrEqual(Mask[i], i))
4087      return false;
4088  for (unsigned i = NumElems/2; i != NumElems; ++i)
4089    if (!isUndefOrEqual(Mask[i], i+NumElems))
4090      return false;
4091  return true;
4092}
4093
4094/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4095/// all the same.
4096static bool isSplatVector(SDNode *N) {
4097  if (N->getOpcode() != ISD::BUILD_VECTOR)
4098    return false;
4099
4100  SDValue SplatValue = N->getOperand(0);
4101  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4102    if (N->getOperand(i) != SplatValue)
4103      return false;
4104  return true;
4105}
4106
4107/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4108/// to an zero vector.
4109/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4110static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4111  SDValue V1 = N->getOperand(0);
4112  SDValue V2 = N->getOperand(1);
4113  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4114  for (unsigned i = 0; i != NumElems; ++i) {
4115    int Idx = N->getMaskElt(i);
4116    if (Idx >= (int)NumElems) {
4117      unsigned Opc = V2.getOpcode();
4118      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4119        continue;
4120      if (Opc != ISD::BUILD_VECTOR ||
4121          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4122        return false;
4123    } else if (Idx >= 0) {
4124      unsigned Opc = V1.getOpcode();
4125      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4126        continue;
4127      if (Opc != ISD::BUILD_VECTOR ||
4128          !X86::isZeroNode(V1.getOperand(Idx)))
4129        return false;
4130    }
4131  }
4132  return true;
4133}
4134
4135/// getZeroVector - Returns a vector of specified type with all zero elements.
4136///
4137static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4138                             SelectionDAG &DAG, DebugLoc dl) {
4139  assert(VT.isVector() && "Expected a vector type");
4140
4141  // Always build SSE zero vectors as <4 x i32> bitcasted
4142  // to their dest type. This ensures they get CSE'd.
4143  SDValue Vec;
4144  if (VT.getSizeInBits() == 128) {  // SSE
4145    if (Subtarget->hasSSE2()) {  // SSE2
4146      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4147      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4148    } else { // SSE1
4149      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4150      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4151    }
4152  } else if (VT.getSizeInBits() == 256) { // AVX
4153    if (Subtarget->hasAVX2()) { // AVX2
4154      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4155      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4156      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4157    } else {
4158      // 256-bit logic and arithmetic instructions in AVX are all
4159      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4160      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4161      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4162      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4163    }
4164  }
4165  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4166}
4167
4168/// getOnesVector - Returns a vector of specified type with all bits set.
4169/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4170/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4171/// Then bitcast to their original type, ensuring they get CSE'd.
4172static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4173                             DebugLoc dl) {
4174  assert(VT.isVector() && "Expected a vector type");
4175  assert((VT.is128BitVector() || VT.is256BitVector())
4176         && "Expected a 128-bit or 256-bit vector type");
4177
4178  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4179  SDValue Vec;
4180  if (VT.getSizeInBits() == 256) {
4181    if (HasAVX2) { // AVX2
4182      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4183      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4184    } else { // AVX
4185      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4186      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4187                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4188      Vec = Insert128BitVector(InsV, Vec,
4189                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4190    }
4191  } else {
4192    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4193  }
4194
4195  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4196}
4197
4198/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4199/// that point to V2 points to its first element.
4200static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4201  for (unsigned i = 0; i != NumElems; ++i) {
4202    if (Mask[i] > (int)NumElems) {
4203      Mask[i] = NumElems;
4204    }
4205  }
4206}
4207
4208/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4209/// operation of specified width.
4210static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4211                       SDValue V2) {
4212  unsigned NumElems = VT.getVectorNumElements();
4213  SmallVector<int, 8> Mask;
4214  Mask.push_back(NumElems);
4215  for (unsigned i = 1; i != NumElems; ++i)
4216    Mask.push_back(i);
4217  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4218}
4219
4220/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4221static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4222                          SDValue V2) {
4223  unsigned NumElems = VT.getVectorNumElements();
4224  SmallVector<int, 8> Mask;
4225  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4226    Mask.push_back(i);
4227    Mask.push_back(i + NumElems);
4228  }
4229  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4230}
4231
4232/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4233static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4234                          SDValue V2) {
4235  unsigned NumElems = VT.getVectorNumElements();
4236  unsigned Half = NumElems/2;
4237  SmallVector<int, 8> Mask;
4238  for (unsigned i = 0; i != Half; ++i) {
4239    Mask.push_back(i + Half);
4240    Mask.push_back(i + NumElems + Half);
4241  }
4242  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4243}
4244
4245// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4246// a generic shuffle instruction because the target has no such instructions.
4247// Generate shuffles which repeat i16 and i8 several times until they can be
4248// represented by v4f32 and then be manipulated by target suported shuffles.
4249static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4250  EVT VT = V.getValueType();
4251  int NumElems = VT.getVectorNumElements();
4252  DebugLoc dl = V.getDebugLoc();
4253
4254  while (NumElems > 4) {
4255    if (EltNo < NumElems/2) {
4256      V = getUnpackl(DAG, dl, VT, V, V);
4257    } else {
4258      V = getUnpackh(DAG, dl, VT, V, V);
4259      EltNo -= NumElems/2;
4260    }
4261    NumElems >>= 1;
4262  }
4263  return V;
4264}
4265
4266/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4267static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4268  EVT VT = V.getValueType();
4269  DebugLoc dl = V.getDebugLoc();
4270  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4271         && "Vector size not supported");
4272
4273  if (VT.getSizeInBits() == 128) {
4274    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4275    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4276    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4277                             &SplatMask[0]);
4278  } else {
4279    // To use VPERMILPS to splat scalars, the second half of indicies must
4280    // refer to the higher part, which is a duplication of the lower one,
4281    // because VPERMILPS can only handle in-lane permutations.
4282    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4283                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4284
4285    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4286    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4287                             &SplatMask[0]);
4288  }
4289
4290  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4291}
4292
4293/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4294static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4295  EVT SrcVT = SV->getValueType(0);
4296  SDValue V1 = SV->getOperand(0);
4297  DebugLoc dl = SV->getDebugLoc();
4298
4299  int EltNo = SV->getSplatIndex();
4300  int NumElems = SrcVT.getVectorNumElements();
4301  unsigned Size = SrcVT.getSizeInBits();
4302
4303  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4304          "Unknown how to promote splat for type");
4305
4306  // Extract the 128-bit part containing the splat element and update
4307  // the splat element index when it refers to the higher register.
4308  if (Size == 256) {
4309    unsigned Idx = (EltNo >= NumElems/2) ? NumElems/2 : 0;
4310    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4311    if (Idx > 0)
4312      EltNo -= NumElems/2;
4313  }
4314
4315  // All i16 and i8 vector types can't be used directly by a generic shuffle
4316  // instruction because the target has no such instruction. Generate shuffles
4317  // which repeat i16 and i8 several times until they fit in i32, and then can
4318  // be manipulated by target suported shuffles.
4319  EVT EltVT = SrcVT.getVectorElementType();
4320  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4321    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4322
4323  // Recreate the 256-bit vector and place the same 128-bit vector
4324  // into the low and high part. This is necessary because we want
4325  // to use VPERM* to shuffle the vectors
4326  if (Size == 256) {
4327    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4328                         DAG.getConstant(0, MVT::i32), DAG, dl);
4329    V1 = Insert128BitVector(InsV, V1,
4330               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4331  }
4332
4333  return getLegalSplat(DAG, V1, EltNo);
4334}
4335
4336/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4337/// vector of zero or undef vector.  This produces a shuffle where the low
4338/// element of V2 is swizzled into the zero/undef vector, landing at element
4339/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4340static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4341                                           bool IsZero,
4342                                           const X86Subtarget *Subtarget,
4343                                           SelectionDAG &DAG) {
4344  EVT VT = V2.getValueType();
4345  SDValue V1 = IsZero
4346    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4347  unsigned NumElems = VT.getVectorNumElements();
4348  SmallVector<int, 16> MaskVec;
4349  for (unsigned i = 0; i != NumElems; ++i)
4350    // If this is the insertion idx, put the low elt of V2 here.
4351    MaskVec.push_back(i == Idx ? NumElems : i);
4352  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4353}
4354
4355/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4356/// target specific opcode. Returns true if the Mask could be calculated.
4357/// Sets IsUnary to true if only uses one source.
4358static bool getTargetShuffleMask(SDNode *N, EVT VT,
4359                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4360  unsigned NumElems = VT.getVectorNumElements();
4361  SDValue ImmN;
4362
4363  IsUnary = false;
4364  switch(N->getOpcode()) {
4365  case X86ISD::SHUFP:
4366    ImmN = N->getOperand(N->getNumOperands()-1);
4367    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4368    break;
4369  case X86ISD::UNPCKH:
4370    DecodeUNPCKHMask(VT, Mask);
4371    break;
4372  case X86ISD::UNPCKL:
4373    DecodeUNPCKLMask(VT, Mask);
4374    break;
4375  case X86ISD::MOVHLPS:
4376    DecodeMOVHLPSMask(NumElems, Mask);
4377    break;
4378  case X86ISD::MOVLHPS:
4379    DecodeMOVLHPSMask(NumElems, Mask);
4380    break;
4381  case X86ISD::PSHUFD:
4382  case X86ISD::VPERMILP:
4383    ImmN = N->getOperand(N->getNumOperands()-1);
4384    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4385    IsUnary = true;
4386    break;
4387  case X86ISD::PSHUFHW:
4388    ImmN = N->getOperand(N->getNumOperands()-1);
4389    DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4390    IsUnary = true;
4391    break;
4392  case X86ISD::PSHUFLW:
4393    ImmN = N->getOperand(N->getNumOperands()-1);
4394    DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4395    IsUnary = true;
4396    break;
4397  case X86ISD::MOVSS:
4398  case X86ISD::MOVSD: {
4399    // The index 0 always comes from the first element of the second source,
4400    // this is why MOVSS and MOVSD are used in the first place. The other
4401    // elements come from the other positions of the first source vector
4402    Mask.push_back(NumElems);
4403    for (unsigned i = 1; i != NumElems; ++i) {
4404      Mask.push_back(i);
4405    }
4406    break;
4407  }
4408  case X86ISD::VPERM2X128:
4409    ImmN = N->getOperand(N->getNumOperands()-1);
4410    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4411    break;
4412  case X86ISD::MOVDDUP:
4413  case X86ISD::MOVLHPD:
4414  case X86ISD::MOVLPD:
4415  case X86ISD::MOVLPS:
4416  case X86ISD::MOVSHDUP:
4417  case X86ISD::MOVSLDUP:
4418  case X86ISD::PALIGN:
4419    // Not yet implemented
4420    return false;
4421  default: llvm_unreachable("unknown target shuffle node");
4422  }
4423
4424  return true;
4425}
4426
4427/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4428/// element of the result of the vector shuffle.
4429static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4430                                   unsigned Depth) {
4431  if (Depth == 6)
4432    return SDValue();  // Limit search depth.
4433
4434  SDValue V = SDValue(N, 0);
4435  EVT VT = V.getValueType();
4436  unsigned Opcode = V.getOpcode();
4437
4438  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4439  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4440    int Elt = SV->getMaskElt(Index);
4441
4442    if (Elt < 0)
4443      return DAG.getUNDEF(VT.getVectorElementType());
4444
4445    unsigned NumElems = VT.getVectorNumElements();
4446    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4447                                         : SV->getOperand(1);
4448    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4449  }
4450
4451  // Recurse into target specific vector shuffles to find scalars.
4452  if (isTargetShuffle(Opcode)) {
4453    unsigned NumElems = VT.getVectorNumElements();
4454    SmallVector<int, 16> ShuffleMask;
4455    SDValue ImmN;
4456    bool IsUnary;
4457
4458    if (!getTargetShuffleMask(N, VT, ShuffleMask, IsUnary))
4459      return SDValue();
4460
4461    int Elt = ShuffleMask[Index];
4462    if (Elt < 0)
4463      return DAG.getUNDEF(VT.getVectorElementType());
4464
4465    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4466                                           : N->getOperand(1);
4467    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4468                               Depth+1);
4469  }
4470
4471  // Actual nodes that may contain scalar elements
4472  if (Opcode == ISD::BITCAST) {
4473    V = V.getOperand(0);
4474    EVT SrcVT = V.getValueType();
4475    unsigned NumElems = VT.getVectorNumElements();
4476
4477    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4478      return SDValue();
4479  }
4480
4481  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4482    return (Index == 0) ? V.getOperand(0)
4483                        : DAG.getUNDEF(VT.getVectorElementType());
4484
4485  if (V.getOpcode() == ISD::BUILD_VECTOR)
4486    return V.getOperand(Index);
4487
4488  return SDValue();
4489}
4490
4491/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4492/// shuffle operation which come from a consecutively from a zero. The
4493/// search can start in two different directions, from left or right.
4494static
4495unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4496                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4497  unsigned i;
4498  for (i = 0; i != NumElems; ++i) {
4499    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4500    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4501    if (!(Elt.getNode() &&
4502         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4503      break;
4504  }
4505
4506  return i;
4507}
4508
4509/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4510/// correspond consecutively to elements from one of the vector operands,
4511/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4512static
4513bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4514                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4515                              unsigned NumElems, unsigned &OpNum) {
4516  bool SeenV1 = false;
4517  bool SeenV2 = false;
4518
4519  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4520    int Idx = SVOp->getMaskElt(i);
4521    // Ignore undef indicies
4522    if (Idx < 0)
4523      continue;
4524
4525    if (Idx < (int)NumElems)
4526      SeenV1 = true;
4527    else
4528      SeenV2 = true;
4529
4530    // Only accept consecutive elements from the same vector
4531    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4532      return false;
4533  }
4534
4535  OpNum = SeenV1 ? 0 : 1;
4536  return true;
4537}
4538
4539/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4540/// logical left shift of a vector.
4541static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4542                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4543  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4544  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4545              false /* check zeros from right */, DAG);
4546  unsigned OpSrc;
4547
4548  if (!NumZeros)
4549    return false;
4550
4551  // Considering the elements in the mask that are not consecutive zeros,
4552  // check if they consecutively come from only one of the source vectors.
4553  //
4554  //               V1 = {X, A, B, C}     0
4555  //                         \  \  \    /
4556  //   vector_shuffle V1, V2 <1, 2, 3, X>
4557  //
4558  if (!isShuffleMaskConsecutive(SVOp,
4559            0,                   // Mask Start Index
4560            NumElems-NumZeros,   // Mask End Index(exclusive)
4561            NumZeros,            // Where to start looking in the src vector
4562            NumElems,            // Number of elements in vector
4563            OpSrc))              // Which source operand ?
4564    return false;
4565
4566  isLeft = false;
4567  ShAmt = NumZeros;
4568  ShVal = SVOp->getOperand(OpSrc);
4569  return true;
4570}
4571
4572/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4573/// logical left shift of a vector.
4574static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4575                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4576  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4577  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4578              true /* check zeros from left */, DAG);
4579  unsigned OpSrc;
4580
4581  if (!NumZeros)
4582    return false;
4583
4584  // Considering the elements in the mask that are not consecutive zeros,
4585  // check if they consecutively come from only one of the source vectors.
4586  //
4587  //                           0    { A, B, X, X } = V2
4588  //                          / \    /  /
4589  //   vector_shuffle V1, V2 <X, X, 4, 5>
4590  //
4591  if (!isShuffleMaskConsecutive(SVOp,
4592            NumZeros,     // Mask Start Index
4593            NumElems,     // Mask End Index(exclusive)
4594            0,            // Where to start looking in the src vector
4595            NumElems,     // Number of elements in vector
4596            OpSrc))       // Which source operand ?
4597    return false;
4598
4599  isLeft = true;
4600  ShAmt = NumZeros;
4601  ShVal = SVOp->getOperand(OpSrc);
4602  return true;
4603}
4604
4605/// isVectorShift - Returns true if the shuffle can be implemented as a
4606/// logical left or right shift of a vector.
4607static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4608                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4609  // Although the logic below support any bitwidth size, there are no
4610  // shift instructions which handle more than 128-bit vectors.
4611  if (SVOp->getValueType(0).getSizeInBits() > 128)
4612    return false;
4613
4614  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4615      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4616    return true;
4617
4618  return false;
4619}
4620
4621/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4622///
4623static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4624                                       unsigned NumNonZero, unsigned NumZero,
4625                                       SelectionDAG &DAG,
4626                                       const X86Subtarget* Subtarget,
4627                                       const TargetLowering &TLI) {
4628  if (NumNonZero > 8)
4629    return SDValue();
4630
4631  DebugLoc dl = Op.getDebugLoc();
4632  SDValue V(0, 0);
4633  bool First = true;
4634  for (unsigned i = 0; i < 16; ++i) {
4635    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4636    if (ThisIsNonZero && First) {
4637      if (NumZero)
4638        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4639      else
4640        V = DAG.getUNDEF(MVT::v8i16);
4641      First = false;
4642    }
4643
4644    if ((i & 1) != 0) {
4645      SDValue ThisElt(0, 0), LastElt(0, 0);
4646      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4647      if (LastIsNonZero) {
4648        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4649                              MVT::i16, Op.getOperand(i-1));
4650      }
4651      if (ThisIsNonZero) {
4652        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4653        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4654                              ThisElt, DAG.getConstant(8, MVT::i8));
4655        if (LastIsNonZero)
4656          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4657      } else
4658        ThisElt = LastElt;
4659
4660      if (ThisElt.getNode())
4661        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4662                        DAG.getIntPtrConstant(i/2));
4663    }
4664  }
4665
4666  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4667}
4668
4669/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4670///
4671static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4672                                     unsigned NumNonZero, unsigned NumZero,
4673                                     SelectionDAG &DAG,
4674                                     const X86Subtarget* Subtarget,
4675                                     const TargetLowering &TLI) {
4676  if (NumNonZero > 4)
4677    return SDValue();
4678
4679  DebugLoc dl = Op.getDebugLoc();
4680  SDValue V(0, 0);
4681  bool First = true;
4682  for (unsigned i = 0; i < 8; ++i) {
4683    bool isNonZero = (NonZeros & (1 << i)) != 0;
4684    if (isNonZero) {
4685      if (First) {
4686        if (NumZero)
4687          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4688        else
4689          V = DAG.getUNDEF(MVT::v8i16);
4690        First = false;
4691      }
4692      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4693                      MVT::v8i16, V, Op.getOperand(i),
4694                      DAG.getIntPtrConstant(i));
4695    }
4696  }
4697
4698  return V;
4699}
4700
4701/// getVShift - Return a vector logical shift node.
4702///
4703static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4704                         unsigned NumBits, SelectionDAG &DAG,
4705                         const TargetLowering &TLI, DebugLoc dl) {
4706  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4707  EVT ShVT = MVT::v2i64;
4708  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4709  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4710  return DAG.getNode(ISD::BITCAST, dl, VT,
4711                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4712                             DAG.getConstant(NumBits,
4713                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4714}
4715
4716SDValue
4717X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4718                                          SelectionDAG &DAG) const {
4719
4720  // Check if the scalar load can be widened into a vector load. And if
4721  // the address is "base + cst" see if the cst can be "absorbed" into
4722  // the shuffle mask.
4723  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4724    SDValue Ptr = LD->getBasePtr();
4725    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4726      return SDValue();
4727    EVT PVT = LD->getValueType(0);
4728    if (PVT != MVT::i32 && PVT != MVT::f32)
4729      return SDValue();
4730
4731    int FI = -1;
4732    int64_t Offset = 0;
4733    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4734      FI = FINode->getIndex();
4735      Offset = 0;
4736    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4737               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4738      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4739      Offset = Ptr.getConstantOperandVal(1);
4740      Ptr = Ptr.getOperand(0);
4741    } else {
4742      return SDValue();
4743    }
4744
4745    // FIXME: 256-bit vector instructions don't require a strict alignment,
4746    // improve this code to support it better.
4747    unsigned RequiredAlign = VT.getSizeInBits()/8;
4748    SDValue Chain = LD->getChain();
4749    // Make sure the stack object alignment is at least 16 or 32.
4750    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4751    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4752      if (MFI->isFixedObjectIndex(FI)) {
4753        // Can't change the alignment. FIXME: It's possible to compute
4754        // the exact stack offset and reference FI + adjust offset instead.
4755        // If someone *really* cares about this. That's the way to implement it.
4756        return SDValue();
4757      } else {
4758        MFI->setObjectAlignment(FI, RequiredAlign);
4759      }
4760    }
4761
4762    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4763    // Ptr + (Offset & ~15).
4764    if (Offset < 0)
4765      return SDValue();
4766    if ((Offset % RequiredAlign) & 3)
4767      return SDValue();
4768    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4769    if (StartOffset)
4770      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4771                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4772
4773    int EltNo = (Offset - StartOffset) >> 2;
4774    int NumElems = VT.getVectorNumElements();
4775
4776    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4777    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4778                             LD->getPointerInfo().getWithOffset(StartOffset),
4779                             false, false, false, 0);
4780
4781    SmallVector<int, 8> Mask;
4782    for (int i = 0; i < NumElems; ++i)
4783      Mask.push_back(EltNo);
4784
4785    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4786  }
4787
4788  return SDValue();
4789}
4790
4791/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4792/// vector of type 'VT', see if the elements can be replaced by a single large
4793/// load which has the same value as a build_vector whose operands are 'elts'.
4794///
4795/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4796///
4797/// FIXME: we'd also like to handle the case where the last elements are zero
4798/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4799/// There's even a handy isZeroNode for that purpose.
4800static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4801                                        DebugLoc &DL, SelectionDAG &DAG) {
4802  EVT EltVT = VT.getVectorElementType();
4803  unsigned NumElems = Elts.size();
4804
4805  LoadSDNode *LDBase = NULL;
4806  unsigned LastLoadedElt = -1U;
4807
4808  // For each element in the initializer, see if we've found a load or an undef.
4809  // If we don't find an initial load element, or later load elements are
4810  // non-consecutive, bail out.
4811  for (unsigned i = 0; i < NumElems; ++i) {
4812    SDValue Elt = Elts[i];
4813
4814    if (!Elt.getNode() ||
4815        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4816      return SDValue();
4817    if (!LDBase) {
4818      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4819        return SDValue();
4820      LDBase = cast<LoadSDNode>(Elt.getNode());
4821      LastLoadedElt = i;
4822      continue;
4823    }
4824    if (Elt.getOpcode() == ISD::UNDEF)
4825      continue;
4826
4827    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4828    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4829      return SDValue();
4830    LastLoadedElt = i;
4831  }
4832
4833  // If we have found an entire vector of loads and undefs, then return a large
4834  // load of the entire vector width starting at the base pointer.  If we found
4835  // consecutive loads for the low half, generate a vzext_load node.
4836  if (LastLoadedElt == NumElems - 1) {
4837    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4838      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4839                         LDBase->getPointerInfo(),
4840                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4841                         LDBase->isInvariant(), 0);
4842    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4843                       LDBase->getPointerInfo(),
4844                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4845                       LDBase->isInvariant(), LDBase->getAlignment());
4846  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4847             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4848    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4849    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4850    SDValue ResNode =
4851        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4852                                LDBase->getPointerInfo(),
4853                                LDBase->getAlignment(),
4854                                false/*isVolatile*/, true/*ReadMem*/,
4855                                false/*WriteMem*/);
4856    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4857  }
4858  return SDValue();
4859}
4860
4861/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
4862/// to generate a splat value for the following cases:
4863/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
4864/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4865/// a scalar load, or a constant.
4866/// The VBROADCAST node is returned when a pattern is found,
4867/// or SDValue() otherwise.
4868SDValue
4869X86TargetLowering::LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const {
4870  if (!Subtarget->hasAVX())
4871    return SDValue();
4872
4873  EVT VT = Op.getValueType();
4874  DebugLoc dl = Op.getDebugLoc();
4875
4876  SDValue Ld;
4877  bool ConstSplatVal;
4878
4879  switch (Op.getOpcode()) {
4880    default:
4881      // Unknown pattern found.
4882      return SDValue();
4883
4884    case ISD::BUILD_VECTOR: {
4885      // The BUILD_VECTOR node must be a splat.
4886      if (!isSplatVector(Op.getNode()))
4887        return SDValue();
4888
4889      Ld = Op.getOperand(0);
4890      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4891                     Ld.getOpcode() == ISD::ConstantFP);
4892
4893      // The suspected load node has several users. Make sure that all
4894      // of its users are from the BUILD_VECTOR node.
4895      // Constants may have multiple users.
4896      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4897        return SDValue();
4898      break;
4899    }
4900
4901    case ISD::VECTOR_SHUFFLE: {
4902      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4903
4904      // Shuffles must have a splat mask where the first element is
4905      // broadcasted.
4906      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4907        return SDValue();
4908
4909      SDValue Sc = Op.getOperand(0);
4910      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
4911        return SDValue();
4912
4913      Ld = Sc.getOperand(0);
4914      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4915                       Ld.getOpcode() == ISD::ConstantFP);
4916
4917      // The scalar_to_vector node and the suspected
4918      // load node must have exactly one user.
4919      // Constants may have multiple users.
4920      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
4921        return SDValue();
4922      break;
4923    }
4924  }
4925
4926  bool Is256 = VT.getSizeInBits() == 256;
4927  bool Is128 = VT.getSizeInBits() == 128;
4928
4929  // Handle the broadcasting a single constant scalar from the constant pool
4930  // into a vector. On Sandybridge it is still better to load a constant vector
4931  // from the constant pool and not to broadcast it from a scalar.
4932  if (ConstSplatVal && Subtarget->hasAVX2()) {
4933    EVT CVT = Ld.getValueType();
4934    assert(!CVT.isVector() && "Must not broadcast a vector type");
4935    unsigned ScalarSize = CVT.getSizeInBits();
4936
4937    if ((Is256 && (ScalarSize == 32 || ScalarSize == 64)) ||
4938        (Is128 && (ScalarSize == 32))) {
4939
4940      const Constant *C = 0;
4941      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
4942        C = CI->getConstantIntValue();
4943      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
4944        C = CF->getConstantFPValue();
4945
4946      assert(C && "Invalid constant type");
4947
4948      SDValue CP = DAG.getConstantPool(C, getPointerTy());
4949      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
4950      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
4951                         MachinePointerInfo::getConstantPool(),
4952                         false, false, false, Alignment);
4953
4954      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4955    }
4956  }
4957
4958  // The scalar source must be a normal load.
4959  if (!ISD::isNormalLoad(Ld.getNode()))
4960    return SDValue();
4961
4962  // Reject loads that have uses of the chain result
4963  if (Ld->hasAnyUseOfValue(1))
4964    return SDValue();
4965
4966  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
4967
4968  // VBroadcast to YMM
4969  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
4970    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4971
4972  // VBroadcast to XMM
4973  if (Is128 && (ScalarSize == 32))
4974    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4975
4976  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
4977  // double since there is vbroadcastsd xmm
4978  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
4979    // VBroadcast to YMM
4980    if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
4981      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4982
4983    // VBroadcast to XMM
4984    if (Is128 && (ScalarSize ==  8 || ScalarSize == 16 || ScalarSize == 64))
4985      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4986  }
4987
4988  // Unsupported broadcast.
4989  return SDValue();
4990}
4991
4992SDValue
4993X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4994  DebugLoc dl = Op.getDebugLoc();
4995
4996  EVT VT = Op.getValueType();
4997  EVT ExtVT = VT.getVectorElementType();
4998  unsigned NumElems = Op.getNumOperands();
4999
5000  // Vectors containing all zeros can be matched by pxor and xorps later
5001  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5002    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5003    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5004    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5005      return Op;
5006
5007    return getZeroVector(VT, Subtarget, DAG, dl);
5008  }
5009
5010  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5011  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5012  // vpcmpeqd on 256-bit vectors.
5013  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5014    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5015      return Op;
5016
5017    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5018  }
5019
5020  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5021  if (Broadcast.getNode())
5022    return Broadcast;
5023
5024  unsigned EVTBits = ExtVT.getSizeInBits();
5025
5026  unsigned NumZero  = 0;
5027  unsigned NumNonZero = 0;
5028  unsigned NonZeros = 0;
5029  bool IsAllConstants = true;
5030  SmallSet<SDValue, 8> Values;
5031  for (unsigned i = 0; i < NumElems; ++i) {
5032    SDValue Elt = Op.getOperand(i);
5033    if (Elt.getOpcode() == ISD::UNDEF)
5034      continue;
5035    Values.insert(Elt);
5036    if (Elt.getOpcode() != ISD::Constant &&
5037        Elt.getOpcode() != ISD::ConstantFP)
5038      IsAllConstants = false;
5039    if (X86::isZeroNode(Elt))
5040      NumZero++;
5041    else {
5042      NonZeros |= (1 << i);
5043      NumNonZero++;
5044    }
5045  }
5046
5047  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5048  if (NumNonZero == 0)
5049    return DAG.getUNDEF(VT);
5050
5051  // Special case for single non-zero, non-undef, element.
5052  if (NumNonZero == 1) {
5053    unsigned Idx = CountTrailingZeros_32(NonZeros);
5054    SDValue Item = Op.getOperand(Idx);
5055
5056    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5057    // the value are obviously zero, truncate the value to i32 and do the
5058    // insertion that way.  Only do this if the value is non-constant or if the
5059    // value is a constant being inserted into element 0.  It is cheaper to do
5060    // a constant pool load than it is to do a movd + shuffle.
5061    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5062        (!IsAllConstants || Idx == 0)) {
5063      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5064        // Handle SSE only.
5065        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5066        EVT VecVT = MVT::v4i32;
5067        unsigned VecElts = 4;
5068
5069        // Truncate the value (which may itself be a constant) to i32, and
5070        // convert it to a vector with movd (S2V+shuffle to zero extend).
5071        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5072        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5073        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5074
5075        // Now we have our 32-bit value zero extended in the low element of
5076        // a vector.  If Idx != 0, swizzle it into place.
5077        if (Idx != 0) {
5078          SmallVector<int, 4> Mask;
5079          Mask.push_back(Idx);
5080          for (unsigned i = 1; i != VecElts; ++i)
5081            Mask.push_back(i);
5082          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5083                                      DAG.getUNDEF(Item.getValueType()),
5084                                      &Mask[0]);
5085        }
5086        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5087      }
5088    }
5089
5090    // If we have a constant or non-constant insertion into the low element of
5091    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5092    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5093    // depending on what the source datatype is.
5094    if (Idx == 0) {
5095      if (NumZero == 0)
5096        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5097
5098      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5099          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5100        if (VT.getSizeInBits() == 256) {
5101          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5102          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5103                             Item, DAG.getIntPtrConstant(0));
5104        }
5105        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5106        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5107        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5108        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5109      }
5110
5111      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5112        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5113        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5114        if (VT.getSizeInBits() == 256) {
5115          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5116          Item = Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5117                                    DAG, dl);
5118        } else {
5119          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5120          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5121        }
5122        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5123      }
5124    }
5125
5126    // Is it a vector logical left shift?
5127    if (NumElems == 2 && Idx == 1 &&
5128        X86::isZeroNode(Op.getOperand(0)) &&
5129        !X86::isZeroNode(Op.getOperand(1))) {
5130      unsigned NumBits = VT.getSizeInBits();
5131      return getVShift(true, VT,
5132                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5133                                   VT, Op.getOperand(1)),
5134                       NumBits/2, DAG, *this, dl);
5135    }
5136
5137    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5138      return SDValue();
5139
5140    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5141    // is a non-constant being inserted into an element other than the low one,
5142    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5143    // movd/movss) to move this into the low element, then shuffle it into
5144    // place.
5145    if (EVTBits == 32) {
5146      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5147
5148      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5149      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5150      SmallVector<int, 8> MaskVec;
5151      for (unsigned i = 0; i < NumElems; i++)
5152        MaskVec.push_back(i == Idx ? 0 : 1);
5153      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5154    }
5155  }
5156
5157  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5158  if (Values.size() == 1) {
5159    if (EVTBits == 32) {
5160      // Instead of a shuffle like this:
5161      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5162      // Check if it's possible to issue this instead.
5163      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5164      unsigned Idx = CountTrailingZeros_32(NonZeros);
5165      SDValue Item = Op.getOperand(Idx);
5166      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5167        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5168    }
5169    return SDValue();
5170  }
5171
5172  // A vector full of immediates; various special cases are already
5173  // handled, so this is best done with a single constant-pool load.
5174  if (IsAllConstants)
5175    return SDValue();
5176
5177  // For AVX-length vectors, build the individual 128-bit pieces and use
5178  // shuffles to put them in place.
5179  if (VT.getSizeInBits() == 256) {
5180    SmallVector<SDValue, 32> V;
5181    for (unsigned i = 0; i != NumElems; ++i)
5182      V.push_back(Op.getOperand(i));
5183
5184    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5185
5186    // Build both the lower and upper subvector.
5187    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5188    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5189                                NumElems/2);
5190
5191    // Recreate the wider vector with the lower and upper part.
5192    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5193                                DAG.getConstant(0, MVT::i32), DAG, dl);
5194    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5195                              DAG, dl);
5196  }
5197
5198  // Let legalizer expand 2-wide build_vectors.
5199  if (EVTBits == 64) {
5200    if (NumNonZero == 1) {
5201      // One half is zero or undef.
5202      unsigned Idx = CountTrailingZeros_32(NonZeros);
5203      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5204                                 Op.getOperand(Idx));
5205      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5206    }
5207    return SDValue();
5208  }
5209
5210  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5211  if (EVTBits == 8 && NumElems == 16) {
5212    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5213                                        Subtarget, *this);
5214    if (V.getNode()) return V;
5215  }
5216
5217  if (EVTBits == 16 && NumElems == 8) {
5218    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5219                                      Subtarget, *this);
5220    if (V.getNode()) return V;
5221  }
5222
5223  // If element VT is == 32 bits, turn it into a number of shuffles.
5224  SmallVector<SDValue, 8> V(NumElems);
5225  if (NumElems == 4 && NumZero > 0) {
5226    for (unsigned i = 0; i < 4; ++i) {
5227      bool isZero = !(NonZeros & (1 << i));
5228      if (isZero)
5229        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5230      else
5231        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5232    }
5233
5234    for (unsigned i = 0; i < 2; ++i) {
5235      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5236        default: break;
5237        case 0:
5238          V[i] = V[i*2];  // Must be a zero vector.
5239          break;
5240        case 1:
5241          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5242          break;
5243        case 2:
5244          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5245          break;
5246        case 3:
5247          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5248          break;
5249      }
5250    }
5251
5252    bool Reverse1 = (NonZeros & 0x3) == 2;
5253    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5254    int MaskVec[] = {
5255      Reverse1 ? 1 : 0,
5256      Reverse1 ? 0 : 1,
5257      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5258      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5259    };
5260    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5261  }
5262
5263  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5264    // Check for a build vector of consecutive loads.
5265    for (unsigned i = 0; i < NumElems; ++i)
5266      V[i] = Op.getOperand(i);
5267
5268    // Check for elements which are consecutive loads.
5269    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5270    if (LD.getNode())
5271      return LD;
5272
5273    // For SSE 4.1, use insertps to put the high elements into the low element.
5274    if (getSubtarget()->hasSSE41()) {
5275      SDValue Result;
5276      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5277        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5278      else
5279        Result = DAG.getUNDEF(VT);
5280
5281      for (unsigned i = 1; i < NumElems; ++i) {
5282        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5283        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5284                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5285      }
5286      return Result;
5287    }
5288
5289    // Otherwise, expand into a number of unpckl*, start by extending each of
5290    // our (non-undef) elements to the full vector width with the element in the
5291    // bottom slot of the vector (which generates no code for SSE).
5292    for (unsigned i = 0; i < NumElems; ++i) {
5293      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5294        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5295      else
5296        V[i] = DAG.getUNDEF(VT);
5297    }
5298
5299    // Next, we iteratively mix elements, e.g. for v4f32:
5300    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5301    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5302    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5303    unsigned EltStride = NumElems >> 1;
5304    while (EltStride != 0) {
5305      for (unsigned i = 0; i < EltStride; ++i) {
5306        // If V[i+EltStride] is undef and this is the first round of mixing,
5307        // then it is safe to just drop this shuffle: V[i] is already in the
5308        // right place, the one element (since it's the first round) being
5309        // inserted as undef can be dropped.  This isn't safe for successive
5310        // rounds because they will permute elements within both vectors.
5311        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5312            EltStride == NumElems/2)
5313          continue;
5314
5315        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5316      }
5317      EltStride >>= 1;
5318    }
5319    return V[0];
5320  }
5321  return SDValue();
5322}
5323
5324// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5325// them in a MMX register.  This is better than doing a stack convert.
5326static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5327  DebugLoc dl = Op.getDebugLoc();
5328  EVT ResVT = Op.getValueType();
5329
5330  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5331         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5332  int Mask[2];
5333  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5334  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5335  InVec = Op.getOperand(1);
5336  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5337    unsigned NumElts = ResVT.getVectorNumElements();
5338    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5339    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5340                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5341  } else {
5342    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5343    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5344    Mask[0] = 0; Mask[1] = 2;
5345    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5346  }
5347  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5348}
5349
5350// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5351// to create 256-bit vectors from two other 128-bit ones.
5352static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5353  DebugLoc dl = Op.getDebugLoc();
5354  EVT ResVT = Op.getValueType();
5355
5356  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5357
5358  SDValue V1 = Op.getOperand(0);
5359  SDValue V2 = Op.getOperand(1);
5360  unsigned NumElems = ResVT.getVectorNumElements();
5361
5362  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5363                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5364  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5365                            DAG, dl);
5366}
5367
5368SDValue
5369X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5370  EVT ResVT = Op.getValueType();
5371
5372  assert(Op.getNumOperands() == 2);
5373  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5374         "Unsupported CONCAT_VECTORS for value type");
5375
5376  // We support concatenate two MMX registers and place them in a MMX register.
5377  // This is better than doing a stack convert.
5378  if (ResVT.is128BitVector())
5379    return LowerMMXCONCAT_VECTORS(Op, DAG);
5380
5381  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5382  // from two other 128-bit ones.
5383  return LowerAVXCONCAT_VECTORS(Op, DAG);
5384}
5385
5386// Try to lower a shuffle node into a simple blend instruction.
5387static SDValue LowerVECTOR_SHUFFLEtoBlend(SDValue Op,
5388                                          const X86Subtarget *Subtarget,
5389                                          SelectionDAG &DAG, EVT PtrTy) {
5390  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5391  SDValue V1 = SVOp->getOperand(0);
5392  SDValue V2 = SVOp->getOperand(1);
5393  DebugLoc dl = SVOp->getDebugLoc();
5394  EVT VT = Op.getValueType();
5395  EVT InVT = V1.getValueType();
5396  EVT EltVT = VT.getVectorElementType();
5397  int MaskSize = VT.getVectorNumElements();
5398  int InSize = InVT.getVectorNumElements();
5399
5400  if (!Subtarget->hasSSE41())
5401    return SDValue();
5402
5403  if (MaskSize != InSize)
5404    return SDValue();
5405
5406  int ISDNo = 0;
5407  MVT OpTy;
5408
5409  switch (VT.getSimpleVT().SimpleTy) {
5410  default: return SDValue();
5411  case MVT::v8i16:
5412           ISDNo = X86ISD::BLENDPW;
5413           OpTy = MVT::v8i16;
5414           break;
5415  case MVT::v4i32:
5416  case MVT::v4f32:
5417           ISDNo = X86ISD::BLENDPS;
5418           OpTy = MVT::v4f32;
5419           break;
5420  case MVT::v2i64:
5421  case MVT::v2f64:
5422           ISDNo = X86ISD::BLENDPD;
5423           OpTy = MVT::v2f64;
5424           break;
5425  case MVT::v8i32:
5426  case MVT::v8f32:
5427           if (!Subtarget->hasAVX())
5428             return SDValue();
5429           ISDNo = X86ISD::BLENDPS;
5430           OpTy = MVT::v8f32;
5431           break;
5432  case MVT::v4i64:
5433  case MVT::v4f64:
5434           if (!Subtarget->hasAVX())
5435             return SDValue();
5436           ISDNo = X86ISD::BLENDPD;
5437           OpTy = MVT::v4f64;
5438           break;
5439  case MVT::v16i16:
5440           if (!Subtarget->hasAVX2())
5441             return SDValue();
5442           ISDNo = X86ISD::BLENDPW;
5443           OpTy = MVT::v16i16;
5444           break;
5445  }
5446  assert(ISDNo && "Invalid Op Number");
5447
5448  unsigned MaskVals = 0;
5449
5450  for (int i = 0; i < MaskSize; ++i) {
5451    int EltIdx = SVOp->getMaskElt(i);
5452    if (EltIdx == i || EltIdx == -1)
5453      MaskVals |= (1<<i);
5454    else if (EltIdx == (i + MaskSize))
5455      continue; // Bit is set to zero;
5456    else return SDValue();
5457  }
5458
5459  V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1);
5460  V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2);
5461  SDValue Ret =  DAG.getNode(ISDNo, dl, OpTy, V1, V2,
5462                             DAG.getConstant(MaskVals, MVT::i32));
5463  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5464}
5465
5466// v8i16 shuffles - Prefer shuffles in the following order:
5467// 1. [all]   pshuflw, pshufhw, optional move
5468// 2. [ssse3] 1 x pshufb
5469// 3. [ssse3] 2 x pshufb + 1 x por
5470// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5471SDValue
5472X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5473                                            SelectionDAG &DAG) const {
5474  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5475  SDValue V1 = SVOp->getOperand(0);
5476  SDValue V2 = SVOp->getOperand(1);
5477  DebugLoc dl = SVOp->getDebugLoc();
5478  SmallVector<int, 8> MaskVals;
5479
5480  // Determine if more than 1 of the words in each of the low and high quadwords
5481  // of the result come from the same quadword of one of the two inputs.  Undef
5482  // mask values count as coming from any quadword, for better codegen.
5483  unsigned LoQuad[] = { 0, 0, 0, 0 };
5484  unsigned HiQuad[] = { 0, 0, 0, 0 };
5485  std::bitset<4> InputQuads;
5486  for (unsigned i = 0; i < 8; ++i) {
5487    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5488    int EltIdx = SVOp->getMaskElt(i);
5489    MaskVals.push_back(EltIdx);
5490    if (EltIdx < 0) {
5491      ++Quad[0];
5492      ++Quad[1];
5493      ++Quad[2];
5494      ++Quad[3];
5495      continue;
5496    }
5497    ++Quad[EltIdx / 4];
5498    InputQuads.set(EltIdx / 4);
5499  }
5500
5501  int BestLoQuad = -1;
5502  unsigned MaxQuad = 1;
5503  for (unsigned i = 0; i < 4; ++i) {
5504    if (LoQuad[i] > MaxQuad) {
5505      BestLoQuad = i;
5506      MaxQuad = LoQuad[i];
5507    }
5508  }
5509
5510  int BestHiQuad = -1;
5511  MaxQuad = 1;
5512  for (unsigned i = 0; i < 4; ++i) {
5513    if (HiQuad[i] > MaxQuad) {
5514      BestHiQuad = i;
5515      MaxQuad = HiQuad[i];
5516    }
5517  }
5518
5519  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5520  // of the two input vectors, shuffle them into one input vector so only a
5521  // single pshufb instruction is necessary. If There are more than 2 input
5522  // quads, disable the next transformation since it does not help SSSE3.
5523  bool V1Used = InputQuads[0] || InputQuads[1];
5524  bool V2Used = InputQuads[2] || InputQuads[3];
5525  if (Subtarget->hasSSSE3()) {
5526    if (InputQuads.count() == 2 && V1Used && V2Used) {
5527      BestLoQuad = InputQuads[0] ? 0 : 1;
5528      BestHiQuad = InputQuads[2] ? 2 : 3;
5529    }
5530    if (InputQuads.count() > 2) {
5531      BestLoQuad = -1;
5532      BestHiQuad = -1;
5533    }
5534  }
5535
5536  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5537  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5538  // words from all 4 input quadwords.
5539  SDValue NewV;
5540  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5541    int MaskV[] = {
5542      BestLoQuad < 0 ? 0 : BestLoQuad,
5543      BestHiQuad < 0 ? 1 : BestHiQuad
5544    };
5545    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5546                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5547                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5548    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5549
5550    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5551    // source words for the shuffle, to aid later transformations.
5552    bool AllWordsInNewV = true;
5553    bool InOrder[2] = { true, true };
5554    for (unsigned i = 0; i != 8; ++i) {
5555      int idx = MaskVals[i];
5556      if (idx != (int)i)
5557        InOrder[i/4] = false;
5558      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5559        continue;
5560      AllWordsInNewV = false;
5561      break;
5562    }
5563
5564    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5565    if (AllWordsInNewV) {
5566      for (int i = 0; i != 8; ++i) {
5567        int idx = MaskVals[i];
5568        if (idx < 0)
5569          continue;
5570        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5571        if ((idx != i) && idx < 4)
5572          pshufhw = false;
5573        if ((idx != i) && idx > 3)
5574          pshuflw = false;
5575      }
5576      V1 = NewV;
5577      V2Used = false;
5578      BestLoQuad = 0;
5579      BestHiQuad = 1;
5580    }
5581
5582    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5583    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5584    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5585      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5586      unsigned TargetMask = 0;
5587      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5588                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5589      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5590      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5591                             getShufflePSHUFLWImmediate(SVOp);
5592      V1 = NewV.getOperand(0);
5593      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5594    }
5595  }
5596
5597  // If we have SSSE3, and all words of the result are from 1 input vector,
5598  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5599  // is present, fall back to case 4.
5600  if (Subtarget->hasSSSE3()) {
5601    SmallVector<SDValue,16> pshufbMask;
5602
5603    // If we have elements from both input vectors, set the high bit of the
5604    // shuffle mask element to zero out elements that come from V2 in the V1
5605    // mask, and elements that come from V1 in the V2 mask, so that the two
5606    // results can be OR'd together.
5607    bool TwoInputs = V1Used && V2Used;
5608    for (unsigned i = 0; i != 8; ++i) {
5609      int EltIdx = MaskVals[i] * 2;
5610      if (TwoInputs && (EltIdx >= 16)) {
5611        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5612        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5613        continue;
5614      }
5615      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5616      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5617    }
5618    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5619    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5620                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5621                                 MVT::v16i8, &pshufbMask[0], 16));
5622    if (!TwoInputs)
5623      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5624
5625    // Calculate the shuffle mask for the second input, shuffle it, and
5626    // OR it with the first shuffled input.
5627    pshufbMask.clear();
5628    for (unsigned i = 0; i != 8; ++i) {
5629      int EltIdx = MaskVals[i] * 2;
5630      if (EltIdx < 16) {
5631        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5632        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5633        continue;
5634      }
5635      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5636      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5637    }
5638    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5639    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5640                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5641                                 MVT::v16i8, &pshufbMask[0], 16));
5642    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5643    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5644  }
5645
5646  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5647  // and update MaskVals with new element order.
5648  std::bitset<8> InOrder;
5649  if (BestLoQuad >= 0) {
5650    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5651    for (int i = 0; i != 4; ++i) {
5652      int idx = MaskVals[i];
5653      if (idx < 0) {
5654        InOrder.set(i);
5655      } else if ((idx / 4) == BestLoQuad) {
5656        MaskV[i] = idx & 3;
5657        InOrder.set(i);
5658      }
5659    }
5660    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5661                                &MaskV[0]);
5662
5663    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5664      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5665      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5666                                  NewV.getOperand(0),
5667                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5668    }
5669  }
5670
5671  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5672  // and update MaskVals with the new element order.
5673  if (BestHiQuad >= 0) {
5674    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5675    for (unsigned i = 4; i != 8; ++i) {
5676      int idx = MaskVals[i];
5677      if (idx < 0) {
5678        InOrder.set(i);
5679      } else if ((idx / 4) == BestHiQuad) {
5680        MaskV[i] = (idx & 3) + 4;
5681        InOrder.set(i);
5682      }
5683    }
5684    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5685                                &MaskV[0]);
5686
5687    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5688      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5689      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5690                                  NewV.getOperand(0),
5691                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5692    }
5693  }
5694
5695  // In case BestHi & BestLo were both -1, which means each quadword has a word
5696  // from each of the four input quadwords, calculate the InOrder bitvector now
5697  // before falling through to the insert/extract cleanup.
5698  if (BestLoQuad == -1 && BestHiQuad == -1) {
5699    NewV = V1;
5700    for (int i = 0; i != 8; ++i)
5701      if (MaskVals[i] < 0 || MaskVals[i] == i)
5702        InOrder.set(i);
5703  }
5704
5705  // The other elements are put in the right place using pextrw and pinsrw.
5706  for (unsigned i = 0; i != 8; ++i) {
5707    if (InOrder[i])
5708      continue;
5709    int EltIdx = MaskVals[i];
5710    if (EltIdx < 0)
5711      continue;
5712    SDValue ExtOp = (EltIdx < 8)
5713    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5714                  DAG.getIntPtrConstant(EltIdx))
5715    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5716                  DAG.getIntPtrConstant(EltIdx - 8));
5717    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5718                       DAG.getIntPtrConstant(i));
5719  }
5720  return NewV;
5721}
5722
5723// v16i8 shuffles - Prefer shuffles in the following order:
5724// 1. [ssse3] 1 x pshufb
5725// 2. [ssse3] 2 x pshufb + 1 x por
5726// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5727static
5728SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5729                                 SelectionDAG &DAG,
5730                                 const X86TargetLowering &TLI) {
5731  SDValue V1 = SVOp->getOperand(0);
5732  SDValue V2 = SVOp->getOperand(1);
5733  DebugLoc dl = SVOp->getDebugLoc();
5734  ArrayRef<int> MaskVals = SVOp->getMask();
5735
5736  // If we have SSSE3, case 1 is generated when all result bytes come from
5737  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5738  // present, fall back to case 3.
5739  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5740  bool V1Only = true;
5741  bool V2Only = true;
5742  for (unsigned i = 0; i < 16; ++i) {
5743    int EltIdx = MaskVals[i];
5744    if (EltIdx < 0)
5745      continue;
5746    if (EltIdx < 16)
5747      V2Only = false;
5748    else
5749      V1Only = false;
5750  }
5751
5752  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5753  if (TLI.getSubtarget()->hasSSSE3()) {
5754    SmallVector<SDValue,16> pshufbMask;
5755
5756    // If all result elements are from one input vector, then only translate
5757    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5758    //
5759    // Otherwise, we have elements from both input vectors, and must zero out
5760    // elements that come from V2 in the first mask, and V1 in the second mask
5761    // so that we can OR them together.
5762    bool TwoInputs = !(V1Only || V2Only);
5763    for (unsigned i = 0; i != 16; ++i) {
5764      int EltIdx = MaskVals[i];
5765      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5766        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5767        continue;
5768      }
5769      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5770    }
5771    // If all the elements are from V2, assign it to V1 and return after
5772    // building the first pshufb.
5773    if (V2Only)
5774      V1 = V2;
5775    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5776                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5777                                 MVT::v16i8, &pshufbMask[0], 16));
5778    if (!TwoInputs)
5779      return V1;
5780
5781    // Calculate the shuffle mask for the second input, shuffle it, and
5782    // OR it with the first shuffled input.
5783    pshufbMask.clear();
5784    for (unsigned i = 0; i != 16; ++i) {
5785      int EltIdx = MaskVals[i];
5786      if (EltIdx < 16) {
5787        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5788        continue;
5789      }
5790      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5791    }
5792    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5793                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5794                                 MVT::v16i8, &pshufbMask[0], 16));
5795    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5796  }
5797
5798  // No SSSE3 - Calculate in place words and then fix all out of place words
5799  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5800  // the 16 different words that comprise the two doublequadword input vectors.
5801  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5802  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5803  SDValue NewV = V2Only ? V2 : V1;
5804  for (int i = 0; i != 8; ++i) {
5805    int Elt0 = MaskVals[i*2];
5806    int Elt1 = MaskVals[i*2+1];
5807
5808    // This word of the result is all undef, skip it.
5809    if (Elt0 < 0 && Elt1 < 0)
5810      continue;
5811
5812    // This word of the result is already in the correct place, skip it.
5813    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5814      continue;
5815    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5816      continue;
5817
5818    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5819    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5820    SDValue InsElt;
5821
5822    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5823    // using a single extract together, load it and store it.
5824    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5825      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5826                           DAG.getIntPtrConstant(Elt1 / 2));
5827      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5828                        DAG.getIntPtrConstant(i));
5829      continue;
5830    }
5831
5832    // If Elt1 is defined, extract it from the appropriate source.  If the
5833    // source byte is not also odd, shift the extracted word left 8 bits
5834    // otherwise clear the bottom 8 bits if we need to do an or.
5835    if (Elt1 >= 0) {
5836      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5837                           DAG.getIntPtrConstant(Elt1 / 2));
5838      if ((Elt1 & 1) == 0)
5839        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5840                             DAG.getConstant(8,
5841                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5842      else if (Elt0 >= 0)
5843        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5844                             DAG.getConstant(0xFF00, MVT::i16));
5845    }
5846    // If Elt0 is defined, extract it from the appropriate source.  If the
5847    // source byte is not also even, shift the extracted word right 8 bits. If
5848    // Elt1 was also defined, OR the extracted values together before
5849    // inserting them in the result.
5850    if (Elt0 >= 0) {
5851      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5852                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5853      if ((Elt0 & 1) != 0)
5854        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5855                              DAG.getConstant(8,
5856                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5857      else if (Elt1 >= 0)
5858        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5859                             DAG.getConstant(0x00FF, MVT::i16));
5860      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5861                         : InsElt0;
5862    }
5863    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5864                       DAG.getIntPtrConstant(i));
5865  }
5866  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5867}
5868
5869/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5870/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5871/// done when every pair / quad of shuffle mask elements point to elements in
5872/// the right sequence. e.g.
5873/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5874static
5875SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5876                                 SelectionDAG &DAG, DebugLoc dl) {
5877  EVT VT = SVOp->getValueType(0);
5878  SDValue V1 = SVOp->getOperand(0);
5879  SDValue V2 = SVOp->getOperand(1);
5880  unsigned NumElems = VT.getVectorNumElements();
5881  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5882  EVT NewVT;
5883  switch (VT.getSimpleVT().SimpleTy) {
5884  default: llvm_unreachable("Unexpected!");
5885  case MVT::v4f32: NewVT = MVT::v2f64; break;
5886  case MVT::v4i32: NewVT = MVT::v2i64; break;
5887  case MVT::v8i16: NewVT = MVT::v4i32; break;
5888  case MVT::v16i8: NewVT = MVT::v4i32; break;
5889  }
5890
5891  int Scale = NumElems / NewWidth;
5892  SmallVector<int, 8> MaskVec;
5893  for (unsigned i = 0; i < NumElems; i += Scale) {
5894    int StartIdx = -1;
5895    for (int j = 0; j < Scale; ++j) {
5896      int EltIdx = SVOp->getMaskElt(i+j);
5897      if (EltIdx < 0)
5898        continue;
5899      if (StartIdx == -1)
5900        StartIdx = EltIdx - (EltIdx % Scale);
5901      if (EltIdx != StartIdx + j)
5902        return SDValue();
5903    }
5904    if (StartIdx == -1)
5905      MaskVec.push_back(-1);
5906    else
5907      MaskVec.push_back(StartIdx / Scale);
5908  }
5909
5910  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5911  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5912  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5913}
5914
5915/// getVZextMovL - Return a zero-extending vector move low node.
5916///
5917static SDValue getVZextMovL(EVT VT, EVT OpVT,
5918                            SDValue SrcOp, SelectionDAG &DAG,
5919                            const X86Subtarget *Subtarget, DebugLoc dl) {
5920  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5921    LoadSDNode *LD = NULL;
5922    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5923      LD = dyn_cast<LoadSDNode>(SrcOp);
5924    if (!LD) {
5925      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5926      // instead.
5927      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5928      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5929          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5930          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5931          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5932        // PR2108
5933        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5934        return DAG.getNode(ISD::BITCAST, dl, VT,
5935                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5936                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5937                                                   OpVT,
5938                                                   SrcOp.getOperand(0)
5939                                                          .getOperand(0))));
5940      }
5941    }
5942  }
5943
5944  return DAG.getNode(ISD::BITCAST, dl, VT,
5945                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5946                                 DAG.getNode(ISD::BITCAST, dl,
5947                                             OpVT, SrcOp)));
5948}
5949
5950/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5951/// which could not be matched by any known target speficic shuffle
5952static SDValue
5953LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5954  EVT VT = SVOp->getValueType(0);
5955
5956  unsigned NumElems = VT.getVectorNumElements();
5957  unsigned NumLaneElems = NumElems / 2;
5958
5959  DebugLoc dl = SVOp->getDebugLoc();
5960  MVT EltVT = VT.getVectorElementType().getSimpleVT();
5961  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
5962  SDValue Shufs[2];
5963
5964  SmallVector<int, 16> Mask;
5965  for (unsigned l = 0; l < 2; ++l) {
5966    // Build a shuffle mask for the output, discovering on the fly which
5967    // input vectors to use as shuffle operands (recorded in InputUsed).
5968    // If building a suitable shuffle vector proves too hard, then bail
5969    // out with useBuildVector set.
5970    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
5971    unsigned LaneStart = l * NumLaneElems;
5972    for (unsigned i = 0; i != NumLaneElems; ++i) {
5973      // The mask element.  This indexes into the input.
5974      int Idx = SVOp->getMaskElt(i+LaneStart);
5975      if (Idx < 0) {
5976        // the mask element does not index into any input vector.
5977        Mask.push_back(-1);
5978        continue;
5979      }
5980
5981      // The input vector this mask element indexes into.
5982      int Input = Idx / NumLaneElems;
5983
5984      // Turn the index into an offset from the start of the input vector.
5985      Idx -= Input * NumLaneElems;
5986
5987      // Find or create a shuffle vector operand to hold this input.
5988      unsigned OpNo;
5989      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
5990        if (InputUsed[OpNo] == Input)
5991          // This input vector is already an operand.
5992          break;
5993        if (InputUsed[OpNo] < 0) {
5994          // Create a new operand for this input vector.
5995          InputUsed[OpNo] = Input;
5996          break;
5997        }
5998      }
5999
6000      if (OpNo >= array_lengthof(InputUsed)) {
6001        // More than two input vectors used! Give up.
6002        return SDValue();
6003      }
6004
6005      // Add the mask index for the new shuffle vector.
6006      Mask.push_back(Idx + OpNo * NumLaneElems);
6007    }
6008
6009    if (InputUsed[0] < 0) {
6010      // No input vectors were used! The result is undefined.
6011      Shufs[l] = DAG.getUNDEF(NVT);
6012    } else {
6013      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6014                   DAG.getConstant((InputUsed[0] % 2) * NumLaneElems, MVT::i32),
6015                                   DAG, dl);
6016      // If only one input was used, use an undefined vector for the other.
6017      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6018        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6019                   DAG.getConstant((InputUsed[1] % 2) * NumLaneElems, MVT::i32),
6020                                   DAG, dl);
6021      // At least one input vector was used. Create a new shuffle vector.
6022      Shufs[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6023    }
6024
6025    Mask.clear();
6026  }
6027
6028  // Concatenate the result back
6029  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Shufs[0],
6030                                 DAG.getConstant(0, MVT::i32), DAG, dl);
6031  return Insert128BitVector(V, Shufs[1],DAG.getConstant(NumLaneElems, MVT::i32),
6032                            DAG, dl);
6033}
6034
6035/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6036/// 4 elements, and match them with several different shuffle types.
6037static SDValue
6038LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6039  SDValue V1 = SVOp->getOperand(0);
6040  SDValue V2 = SVOp->getOperand(1);
6041  DebugLoc dl = SVOp->getDebugLoc();
6042  EVT VT = SVOp->getValueType(0);
6043
6044  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6045
6046  std::pair<int, int> Locs[4];
6047  int Mask1[] = { -1, -1, -1, -1 };
6048  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6049
6050  unsigned NumHi = 0;
6051  unsigned NumLo = 0;
6052  for (unsigned i = 0; i != 4; ++i) {
6053    int Idx = PermMask[i];
6054    if (Idx < 0) {
6055      Locs[i] = std::make_pair(-1, -1);
6056    } else {
6057      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6058      if (Idx < 4) {
6059        Locs[i] = std::make_pair(0, NumLo);
6060        Mask1[NumLo] = Idx;
6061        NumLo++;
6062      } else {
6063        Locs[i] = std::make_pair(1, NumHi);
6064        if (2+NumHi < 4)
6065          Mask1[2+NumHi] = Idx;
6066        NumHi++;
6067      }
6068    }
6069  }
6070
6071  if (NumLo <= 2 && NumHi <= 2) {
6072    // If no more than two elements come from either vector. This can be
6073    // implemented with two shuffles. First shuffle gather the elements.
6074    // The second shuffle, which takes the first shuffle as both of its
6075    // vector operands, put the elements into the right order.
6076    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6077
6078    int Mask2[] = { -1, -1, -1, -1 };
6079
6080    for (unsigned i = 0; i != 4; ++i)
6081      if (Locs[i].first != -1) {
6082        unsigned Idx = (i < 2) ? 0 : 4;
6083        Idx += Locs[i].first * 2 + Locs[i].second;
6084        Mask2[i] = Idx;
6085      }
6086
6087    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6088  } else if (NumLo == 3 || NumHi == 3) {
6089    // Otherwise, we must have three elements from one vector, call it X, and
6090    // one element from the other, call it Y.  First, use a shufps to build an
6091    // intermediate vector with the one element from Y and the element from X
6092    // that will be in the same half in the final destination (the indexes don't
6093    // matter). Then, use a shufps to build the final vector, taking the half
6094    // containing the element from Y from the intermediate, and the other half
6095    // from X.
6096    if (NumHi == 3) {
6097      // Normalize it so the 3 elements come from V1.
6098      CommuteVectorShuffleMask(PermMask, 4);
6099      std::swap(V1, V2);
6100    }
6101
6102    // Find the element from V2.
6103    unsigned HiIndex;
6104    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6105      int Val = PermMask[HiIndex];
6106      if (Val < 0)
6107        continue;
6108      if (Val >= 4)
6109        break;
6110    }
6111
6112    Mask1[0] = PermMask[HiIndex];
6113    Mask1[1] = -1;
6114    Mask1[2] = PermMask[HiIndex^1];
6115    Mask1[3] = -1;
6116    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6117
6118    if (HiIndex >= 2) {
6119      Mask1[0] = PermMask[0];
6120      Mask1[1] = PermMask[1];
6121      Mask1[2] = HiIndex & 1 ? 6 : 4;
6122      Mask1[3] = HiIndex & 1 ? 4 : 6;
6123      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6124    } else {
6125      Mask1[0] = HiIndex & 1 ? 2 : 0;
6126      Mask1[1] = HiIndex & 1 ? 0 : 2;
6127      Mask1[2] = PermMask[2];
6128      Mask1[3] = PermMask[3];
6129      if (Mask1[2] >= 0)
6130        Mask1[2] += 4;
6131      if (Mask1[3] >= 0)
6132        Mask1[3] += 4;
6133      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6134    }
6135  }
6136
6137  // Break it into (shuffle shuffle_hi, shuffle_lo).
6138  int LoMask[] = { -1, -1, -1, -1 };
6139  int HiMask[] = { -1, -1, -1, -1 };
6140
6141  int *MaskPtr = LoMask;
6142  unsigned MaskIdx = 0;
6143  unsigned LoIdx = 0;
6144  unsigned HiIdx = 2;
6145  for (unsigned i = 0; i != 4; ++i) {
6146    if (i == 2) {
6147      MaskPtr = HiMask;
6148      MaskIdx = 1;
6149      LoIdx = 0;
6150      HiIdx = 2;
6151    }
6152    int Idx = PermMask[i];
6153    if (Idx < 0) {
6154      Locs[i] = std::make_pair(-1, -1);
6155    } else if (Idx < 4) {
6156      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6157      MaskPtr[LoIdx] = Idx;
6158      LoIdx++;
6159    } else {
6160      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6161      MaskPtr[HiIdx] = Idx;
6162      HiIdx++;
6163    }
6164  }
6165
6166  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6167  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6168  int MaskOps[] = { -1, -1, -1, -1 };
6169  for (unsigned i = 0; i != 4; ++i)
6170    if (Locs[i].first != -1)
6171      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6172  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6173}
6174
6175static bool MayFoldVectorLoad(SDValue V) {
6176  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6177    V = V.getOperand(0);
6178  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6179    V = V.getOperand(0);
6180  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6181      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6182    // BUILD_VECTOR (load), undef
6183    V = V.getOperand(0);
6184  if (MayFoldLoad(V))
6185    return true;
6186  return false;
6187}
6188
6189// FIXME: the version above should always be used. Since there's
6190// a bug where several vector shuffles can't be folded because the
6191// DAG is not updated during lowering and a node claims to have two
6192// uses while it only has one, use this version, and let isel match
6193// another instruction if the load really happens to have more than
6194// one use. Remove this version after this bug get fixed.
6195// rdar://8434668, PR8156
6196static bool RelaxedMayFoldVectorLoad(SDValue V) {
6197  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6198    V = V.getOperand(0);
6199  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6200    V = V.getOperand(0);
6201  if (ISD::isNormalLoad(V.getNode()))
6202    return true;
6203  return false;
6204}
6205
6206static
6207SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6208  EVT VT = Op.getValueType();
6209
6210  // Canonizalize to v2f64.
6211  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6212  return DAG.getNode(ISD::BITCAST, dl, VT,
6213                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6214                                          V1, DAG));
6215}
6216
6217static
6218SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6219                        bool HasSSE2) {
6220  SDValue V1 = Op.getOperand(0);
6221  SDValue V2 = Op.getOperand(1);
6222  EVT VT = Op.getValueType();
6223
6224  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6225
6226  if (HasSSE2 && VT == MVT::v2f64)
6227    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6228
6229  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6230  return DAG.getNode(ISD::BITCAST, dl, VT,
6231                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6232                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6233                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6234}
6235
6236static
6237SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6238  SDValue V1 = Op.getOperand(0);
6239  SDValue V2 = Op.getOperand(1);
6240  EVT VT = Op.getValueType();
6241
6242  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6243         "unsupported shuffle type");
6244
6245  if (V2.getOpcode() == ISD::UNDEF)
6246    V2 = V1;
6247
6248  // v4i32 or v4f32
6249  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6250}
6251
6252static
6253SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6254  SDValue V1 = Op.getOperand(0);
6255  SDValue V2 = Op.getOperand(1);
6256  EVT VT = Op.getValueType();
6257  unsigned NumElems = VT.getVectorNumElements();
6258
6259  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6260  // operand of these instructions is only memory, so check if there's a
6261  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6262  // same masks.
6263  bool CanFoldLoad = false;
6264
6265  // Trivial case, when V2 comes from a load.
6266  if (MayFoldVectorLoad(V2))
6267    CanFoldLoad = true;
6268
6269  // When V1 is a load, it can be folded later into a store in isel, example:
6270  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6271  //    turns into:
6272  //  (MOVLPSmr addr:$src1, VR128:$src2)
6273  // So, recognize this potential and also use MOVLPS or MOVLPD
6274  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6275    CanFoldLoad = true;
6276
6277  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6278  if (CanFoldLoad) {
6279    if (HasSSE2 && NumElems == 2)
6280      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6281
6282    if (NumElems == 4)
6283      // If we don't care about the second element, procede to use movss.
6284      if (SVOp->getMaskElt(1) != -1)
6285        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6286  }
6287
6288  // movl and movlp will both match v2i64, but v2i64 is never matched by
6289  // movl earlier because we make it strict to avoid messing with the movlp load
6290  // folding logic (see the code above getMOVLP call). Match it here then,
6291  // this is horrible, but will stay like this until we move all shuffle
6292  // matching to x86 specific nodes. Note that for the 1st condition all
6293  // types are matched with movsd.
6294  if (HasSSE2) {
6295    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6296    // as to remove this logic from here, as much as possible
6297    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6298      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6299    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6300  }
6301
6302  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6303
6304  // Invert the operand order and use SHUFPS to match it.
6305  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6306                              getShuffleSHUFImmediate(SVOp), DAG);
6307}
6308
6309SDValue
6310X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6311  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6312  EVT VT = Op.getValueType();
6313  DebugLoc dl = Op.getDebugLoc();
6314  SDValue V1 = Op.getOperand(0);
6315  SDValue V2 = Op.getOperand(1);
6316
6317  if (isZeroShuffle(SVOp))
6318    return getZeroVector(VT, Subtarget, DAG, dl);
6319
6320  // Handle splat operations
6321  if (SVOp->isSplat()) {
6322    unsigned NumElem = VT.getVectorNumElements();
6323    int Size = VT.getSizeInBits();
6324
6325    // Use vbroadcast whenever the splat comes from a foldable load
6326    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6327    if (Broadcast.getNode())
6328      return Broadcast;
6329
6330    // Handle splats by matching through known shuffle masks
6331    if ((Size == 128 && NumElem <= 4) ||
6332        (Size == 256 && NumElem < 8))
6333      return SDValue();
6334
6335    // All remaning splats are promoted to target supported vector shuffles.
6336    return PromoteSplat(SVOp, DAG);
6337  }
6338
6339  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6340  // do it!
6341  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6342    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6343    if (NewOp.getNode())
6344      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6345  } else if ((VT == MVT::v4i32 ||
6346             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6347    // FIXME: Figure out a cleaner way to do this.
6348    // Try to make use of movq to zero out the top part.
6349    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6350      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6351      if (NewOp.getNode()) {
6352        EVT NewVT = NewOp.getValueType();
6353        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6354                               NewVT, true, false))
6355          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6356                              DAG, Subtarget, dl);
6357      }
6358    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6359      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6360      if (NewOp.getNode()) {
6361        EVT NewVT = NewOp.getValueType();
6362        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6363          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6364                              DAG, Subtarget, dl);
6365      }
6366    }
6367  }
6368  return SDValue();
6369}
6370
6371SDValue
6372X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6373  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6374  SDValue V1 = Op.getOperand(0);
6375  SDValue V2 = Op.getOperand(1);
6376  EVT VT = Op.getValueType();
6377  DebugLoc dl = Op.getDebugLoc();
6378  unsigned NumElems = VT.getVectorNumElements();
6379  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6380  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6381  bool V1IsSplat = false;
6382  bool V2IsSplat = false;
6383  bool HasSSE2 = Subtarget->hasSSE2();
6384  bool HasAVX    = Subtarget->hasAVX();
6385  bool HasAVX2   = Subtarget->hasAVX2();
6386  MachineFunction &MF = DAG.getMachineFunction();
6387  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6388
6389  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6390
6391  if (V1IsUndef && V2IsUndef)
6392    return DAG.getUNDEF(VT);
6393
6394  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6395
6396  // Vector shuffle lowering takes 3 steps:
6397  //
6398  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6399  //    narrowing and commutation of operands should be handled.
6400  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6401  //    shuffle nodes.
6402  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6403  //    so the shuffle can be broken into other shuffles and the legalizer can
6404  //    try the lowering again.
6405  //
6406  // The general idea is that no vector_shuffle operation should be left to
6407  // be matched during isel, all of them must be converted to a target specific
6408  // node here.
6409
6410  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6411  // narrowing and commutation of operands should be handled. The actual code
6412  // doesn't include all of those, work in progress...
6413  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6414  if (NewOp.getNode())
6415    return NewOp;
6416
6417  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6418
6419  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6420  // unpckh_undef). Only use pshufd if speed is more important than size.
6421  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6422    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6423  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6424    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6425
6426  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6427      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6428    return getMOVDDup(Op, dl, V1, DAG);
6429
6430  if (isMOVHLPS_v_undef_Mask(M, VT))
6431    return getMOVHighToLow(Op, dl, DAG);
6432
6433  // Use to match splats
6434  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6435      (VT == MVT::v2f64 || VT == MVT::v2i64))
6436    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6437
6438  if (isPSHUFDMask(M, VT)) {
6439    // The actual implementation will match the mask in the if above and then
6440    // during isel it can match several different instructions, not only pshufd
6441    // as its name says, sad but true, emulate the behavior for now...
6442    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6443      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6444
6445    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6446
6447    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6448      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6449
6450    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6451      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6452
6453    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6454                                TargetMask, DAG);
6455  }
6456
6457  // Check if this can be converted into a logical shift.
6458  bool isLeft = false;
6459  unsigned ShAmt = 0;
6460  SDValue ShVal;
6461  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6462  if (isShift && ShVal.hasOneUse()) {
6463    // If the shifted value has multiple uses, it may be cheaper to use
6464    // v_set0 + movlhps or movhlps, etc.
6465    EVT EltVT = VT.getVectorElementType();
6466    ShAmt *= EltVT.getSizeInBits();
6467    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6468  }
6469
6470  if (isMOVLMask(M, VT)) {
6471    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6472      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6473    if (!isMOVLPMask(M, VT)) {
6474      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6475        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6476
6477      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6478        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6479    }
6480  }
6481
6482  // FIXME: fold these into legal mask.
6483  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6484    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6485
6486  if (isMOVHLPSMask(M, VT))
6487    return getMOVHighToLow(Op, dl, DAG);
6488
6489  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6490    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6491
6492  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6493    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6494
6495  if (isMOVLPMask(M, VT))
6496    return getMOVLP(Op, dl, DAG, HasSSE2);
6497
6498  if (ShouldXformToMOVHLPS(M, VT) ||
6499      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6500    return CommuteVectorShuffle(SVOp, DAG);
6501
6502  if (isShift) {
6503    // No better options. Use a vshldq / vsrldq.
6504    EVT EltVT = VT.getVectorElementType();
6505    ShAmt *= EltVT.getSizeInBits();
6506    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6507  }
6508
6509  bool Commuted = false;
6510  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6511  // 1,1,1,1 -> v8i16 though.
6512  V1IsSplat = isSplatVector(V1.getNode());
6513  V2IsSplat = isSplatVector(V2.getNode());
6514
6515  // Canonicalize the splat or undef, if present, to be on the RHS.
6516  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6517    CommuteVectorShuffleMask(M, NumElems);
6518    std::swap(V1, V2);
6519    std::swap(V1IsSplat, V2IsSplat);
6520    Commuted = true;
6521  }
6522
6523  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6524    // Shuffling low element of v1 into undef, just return v1.
6525    if (V2IsUndef)
6526      return V1;
6527    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6528    // the instruction selector will not match, so get a canonical MOVL with
6529    // swapped operands to undo the commute.
6530    return getMOVL(DAG, dl, VT, V2, V1);
6531  }
6532
6533  if (isUNPCKLMask(M, VT, HasAVX2))
6534    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6535
6536  if (isUNPCKHMask(M, VT, HasAVX2))
6537    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6538
6539  if (V2IsSplat) {
6540    // Normalize mask so all entries that point to V2 points to its first
6541    // element then try to match unpck{h|l} again. If match, return a
6542    // new vector_shuffle with the corrected mask.p
6543    SmallVector<int, 8> NewMask(M.begin(), M.end());
6544    NormalizeMask(NewMask, NumElems);
6545    if (isUNPCKLMask(NewMask, VT, HasAVX2, true)) {
6546      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6547    } else if (isUNPCKHMask(NewMask, VT, HasAVX2, true)) {
6548      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6549    }
6550  }
6551
6552  if (Commuted) {
6553    // Commute is back and try unpck* again.
6554    // FIXME: this seems wrong.
6555    CommuteVectorShuffleMask(M, NumElems);
6556    std::swap(V1, V2);
6557    std::swap(V1IsSplat, V2IsSplat);
6558    Commuted = false;
6559
6560    if (isUNPCKLMask(M, VT, HasAVX2))
6561      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6562
6563    if (isUNPCKHMask(M, VT, HasAVX2))
6564      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6565  }
6566
6567  // Normalize the node to match x86 shuffle ops if needed
6568  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6569    return CommuteVectorShuffle(SVOp, DAG);
6570
6571  // The checks below are all present in isShuffleMaskLegal, but they are
6572  // inlined here right now to enable us to directly emit target specific
6573  // nodes, and remove one by one until they don't return Op anymore.
6574
6575  if (isPALIGNRMask(M, VT, Subtarget))
6576    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6577                                getShufflePALIGNRImmediate(SVOp),
6578                                DAG);
6579
6580  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6581      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6582    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6583      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6584  }
6585
6586  if (isPSHUFHWMask(M, VT))
6587    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6588                                getShufflePSHUFHWImmediate(SVOp),
6589                                DAG);
6590
6591  if (isPSHUFLWMask(M, VT))
6592    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6593                                getShufflePSHUFLWImmediate(SVOp),
6594                                DAG);
6595
6596  if (isSHUFPMask(M, VT, HasAVX))
6597    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6598                                getShuffleSHUFImmediate(SVOp), DAG);
6599
6600  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6601    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6602  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6603    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6604
6605  //===--------------------------------------------------------------------===//
6606  // Generate target specific nodes for 128 or 256-bit shuffles only
6607  // supported in the AVX instruction set.
6608  //
6609
6610  // Handle VMOVDDUPY permutations
6611  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6612    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6613
6614  // Handle VPERMILPS/D* permutations
6615  if (isVPERMILPMask(M, VT, HasAVX)) {
6616    if (HasAVX2 && VT == MVT::v8i32)
6617      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6618                                  getShuffleSHUFImmediate(SVOp), DAG);
6619    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6620                                getShuffleSHUFImmediate(SVOp), DAG);
6621  }
6622
6623  // Handle VPERM2F128/VPERM2I128 permutations
6624  if (isVPERM2X128Mask(M, VT, HasAVX))
6625    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6626                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6627
6628  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(Op, Subtarget, DAG, getPointerTy());
6629  if (BlendOp.getNode())
6630    return BlendOp;
6631
6632  //===--------------------------------------------------------------------===//
6633  // Since no target specific shuffle was selected for this generic one,
6634  // lower it into other known shuffles. FIXME: this isn't true yet, but
6635  // this is the plan.
6636  //
6637
6638  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6639  if (VT == MVT::v8i16) {
6640    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6641    if (NewOp.getNode())
6642      return NewOp;
6643  }
6644
6645  if (VT == MVT::v16i8) {
6646    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6647    if (NewOp.getNode())
6648      return NewOp;
6649  }
6650
6651  // Handle all 128-bit wide vectors with 4 elements, and match them with
6652  // several different shuffle types.
6653  if (NumElems == 4 && VT.getSizeInBits() == 128)
6654    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6655
6656  // Handle general 256-bit shuffles
6657  if (VT.is256BitVector())
6658    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6659
6660  return SDValue();
6661}
6662
6663SDValue
6664X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6665                                                SelectionDAG &DAG) const {
6666  EVT VT = Op.getValueType();
6667  DebugLoc dl = Op.getDebugLoc();
6668
6669  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6670    return SDValue();
6671
6672  if (VT.getSizeInBits() == 8) {
6673    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6674                                    Op.getOperand(0), Op.getOperand(1));
6675    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6676                                    DAG.getValueType(VT));
6677    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6678  } else if (VT.getSizeInBits() == 16) {
6679    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6680    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6681    if (Idx == 0)
6682      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6683                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6684                                     DAG.getNode(ISD::BITCAST, dl,
6685                                                 MVT::v4i32,
6686                                                 Op.getOperand(0)),
6687                                     Op.getOperand(1)));
6688    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6689                                    Op.getOperand(0), Op.getOperand(1));
6690    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6691                                    DAG.getValueType(VT));
6692    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6693  } else if (VT == MVT::f32) {
6694    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6695    // the result back to FR32 register. It's only worth matching if the
6696    // result has a single use which is a store or a bitcast to i32.  And in
6697    // the case of a store, it's not worth it if the index is a constant 0,
6698    // because a MOVSSmr can be used instead, which is smaller and faster.
6699    if (!Op.hasOneUse())
6700      return SDValue();
6701    SDNode *User = *Op.getNode()->use_begin();
6702    if ((User->getOpcode() != ISD::STORE ||
6703         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6704          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6705        (User->getOpcode() != ISD::BITCAST ||
6706         User->getValueType(0) != MVT::i32))
6707      return SDValue();
6708    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6709                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6710                                              Op.getOperand(0)),
6711                                              Op.getOperand(1));
6712    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6713  } else if (VT == MVT::i32 || VT == MVT::i64) {
6714    // ExtractPS/pextrq works with constant index.
6715    if (isa<ConstantSDNode>(Op.getOperand(1)))
6716      return Op;
6717  }
6718  return SDValue();
6719}
6720
6721
6722SDValue
6723X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6724                                           SelectionDAG &DAG) const {
6725  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6726    return SDValue();
6727
6728  SDValue Vec = Op.getOperand(0);
6729  EVT VecVT = Vec.getValueType();
6730
6731  // If this is a 256-bit vector result, first extract the 128-bit vector and
6732  // then extract the element from the 128-bit vector.
6733  if (VecVT.getSizeInBits() == 256) {
6734    DebugLoc dl = Op.getNode()->getDebugLoc();
6735    unsigned NumElems = VecVT.getVectorNumElements();
6736    SDValue Idx = Op.getOperand(1);
6737    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6738
6739    // Get the 128-bit vector.
6740    bool Upper = IdxVal >= NumElems/2;
6741    Vec = Extract128BitVector(Vec,
6742                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6743
6744    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6745                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6746  }
6747
6748  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6749
6750  if (Subtarget->hasSSE41()) {
6751    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6752    if (Res.getNode())
6753      return Res;
6754  }
6755
6756  EVT VT = Op.getValueType();
6757  DebugLoc dl = Op.getDebugLoc();
6758  // TODO: handle v16i8.
6759  if (VT.getSizeInBits() == 16) {
6760    SDValue Vec = Op.getOperand(0);
6761    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6762    if (Idx == 0)
6763      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6764                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6765                                     DAG.getNode(ISD::BITCAST, dl,
6766                                                 MVT::v4i32, Vec),
6767                                     Op.getOperand(1)));
6768    // Transform it so it match pextrw which produces a 32-bit result.
6769    EVT EltVT = MVT::i32;
6770    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6771                                    Op.getOperand(0), Op.getOperand(1));
6772    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6773                                    DAG.getValueType(VT));
6774    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6775  } else if (VT.getSizeInBits() == 32) {
6776    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6777    if (Idx == 0)
6778      return Op;
6779
6780    // SHUFPS the element to the lowest double word, then movss.
6781    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6782    EVT VVT = Op.getOperand(0).getValueType();
6783    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6784                                       DAG.getUNDEF(VVT), Mask);
6785    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6786                       DAG.getIntPtrConstant(0));
6787  } else if (VT.getSizeInBits() == 64) {
6788    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6789    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6790    //        to match extract_elt for f64.
6791    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6792    if (Idx == 0)
6793      return Op;
6794
6795    // UNPCKHPD the element to the lowest double word, then movsd.
6796    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6797    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6798    int Mask[2] = { 1, -1 };
6799    EVT VVT = Op.getOperand(0).getValueType();
6800    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6801                                       DAG.getUNDEF(VVT), Mask);
6802    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6803                       DAG.getIntPtrConstant(0));
6804  }
6805
6806  return SDValue();
6807}
6808
6809SDValue
6810X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6811                                               SelectionDAG &DAG) const {
6812  EVT VT = Op.getValueType();
6813  EVT EltVT = VT.getVectorElementType();
6814  DebugLoc dl = Op.getDebugLoc();
6815
6816  SDValue N0 = Op.getOperand(0);
6817  SDValue N1 = Op.getOperand(1);
6818  SDValue N2 = Op.getOperand(2);
6819
6820  if (VT.getSizeInBits() == 256)
6821    return SDValue();
6822
6823  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6824      isa<ConstantSDNode>(N2)) {
6825    unsigned Opc;
6826    if (VT == MVT::v8i16)
6827      Opc = X86ISD::PINSRW;
6828    else if (VT == MVT::v16i8)
6829      Opc = X86ISD::PINSRB;
6830    else
6831      Opc = X86ISD::PINSRB;
6832
6833    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6834    // argument.
6835    if (N1.getValueType() != MVT::i32)
6836      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6837    if (N2.getValueType() != MVT::i32)
6838      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6839    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6840  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6841    // Bits [7:6] of the constant are the source select.  This will always be
6842    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6843    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6844    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6845    // Bits [5:4] of the constant are the destination select.  This is the
6846    //  value of the incoming immediate.
6847    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6848    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6849    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6850    // Create this as a scalar to vector..
6851    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6852    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6853  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6854             isa<ConstantSDNode>(N2)) {
6855    // PINSR* works with constant index.
6856    return Op;
6857  }
6858  return SDValue();
6859}
6860
6861SDValue
6862X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6863  EVT VT = Op.getValueType();
6864  EVT EltVT = VT.getVectorElementType();
6865
6866  DebugLoc dl = Op.getDebugLoc();
6867  SDValue N0 = Op.getOperand(0);
6868  SDValue N1 = Op.getOperand(1);
6869  SDValue N2 = Op.getOperand(2);
6870
6871  // If this is a 256-bit vector result, first extract the 128-bit vector,
6872  // insert the element into the extracted half and then place it back.
6873  if (VT.getSizeInBits() == 256) {
6874    if (!isa<ConstantSDNode>(N2))
6875      return SDValue();
6876
6877    // Get the desired 128-bit vector half.
6878    unsigned NumElems = VT.getVectorNumElements();
6879    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6880    bool Upper = IdxVal >= NumElems/2;
6881    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6882    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6883
6884    // Insert the element into the desired half.
6885    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6886                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6887
6888    // Insert the changed part back to the 256-bit vector
6889    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6890  }
6891
6892  if (Subtarget->hasSSE41())
6893    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6894
6895  if (EltVT == MVT::i8)
6896    return SDValue();
6897
6898  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6899    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6900    // as its second argument.
6901    if (N1.getValueType() != MVT::i32)
6902      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6903    if (N2.getValueType() != MVT::i32)
6904      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6905    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6906  }
6907  return SDValue();
6908}
6909
6910SDValue
6911X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6912  LLVMContext *Context = DAG.getContext();
6913  DebugLoc dl = Op.getDebugLoc();
6914  EVT OpVT = Op.getValueType();
6915
6916  // If this is a 256-bit vector result, first insert into a 128-bit
6917  // vector and then insert into the 256-bit vector.
6918  if (OpVT.getSizeInBits() > 128) {
6919    // Insert into a 128-bit vector.
6920    EVT VT128 = EVT::getVectorVT(*Context,
6921                                 OpVT.getVectorElementType(),
6922                                 OpVT.getVectorNumElements() / 2);
6923
6924    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6925
6926    // Insert the 128-bit vector.
6927    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6928                              DAG.getConstant(0, MVT::i32),
6929                              DAG, dl);
6930  }
6931
6932  if (Op.getValueType() == MVT::v1i64 &&
6933      Op.getOperand(0).getValueType() == MVT::i64)
6934    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6935
6936  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6937  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6938         "Expected an SSE type!");
6939  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6940                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6941}
6942
6943// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6944// a simple subregister reference or explicit instructions to grab
6945// upper bits of a vector.
6946SDValue
6947X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6948  if (Subtarget->hasAVX()) {
6949    DebugLoc dl = Op.getNode()->getDebugLoc();
6950    SDValue Vec = Op.getNode()->getOperand(0);
6951    SDValue Idx = Op.getNode()->getOperand(1);
6952
6953    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6954        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6955        return Extract128BitVector(Vec, Idx, DAG, dl);
6956    }
6957  }
6958  return SDValue();
6959}
6960
6961// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6962// simple superregister reference or explicit instructions to insert
6963// the upper bits of a vector.
6964SDValue
6965X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6966  if (Subtarget->hasAVX()) {
6967    DebugLoc dl = Op.getNode()->getDebugLoc();
6968    SDValue Vec = Op.getNode()->getOperand(0);
6969    SDValue SubVec = Op.getNode()->getOperand(1);
6970    SDValue Idx = Op.getNode()->getOperand(2);
6971
6972    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6973        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6974      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6975    }
6976  }
6977  return SDValue();
6978}
6979
6980// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
6981// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
6982// one of the above mentioned nodes. It has to be wrapped because otherwise
6983// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
6984// be used to form addressing mode. These wrapped nodes will be selected
6985// into MOV32ri.
6986SDValue
6987X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
6988  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
6989
6990  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6991  // global base reg.
6992  unsigned char OpFlag = 0;
6993  unsigned WrapperKind = X86ISD::Wrapper;
6994  CodeModel::Model M = getTargetMachine().getCodeModel();
6995
6996  if (Subtarget->isPICStyleRIPRel() &&
6997      (M == CodeModel::Small || M == CodeModel::Kernel))
6998    WrapperKind = X86ISD::WrapperRIP;
6999  else if (Subtarget->isPICStyleGOT())
7000    OpFlag = X86II::MO_GOTOFF;
7001  else if (Subtarget->isPICStyleStubPIC())
7002    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7003
7004  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7005                                             CP->getAlignment(),
7006                                             CP->getOffset(), OpFlag);
7007  DebugLoc DL = CP->getDebugLoc();
7008  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7009  // With PIC, the address is actually $g + Offset.
7010  if (OpFlag) {
7011    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7012                         DAG.getNode(X86ISD::GlobalBaseReg,
7013                                     DebugLoc(), getPointerTy()),
7014                         Result);
7015  }
7016
7017  return Result;
7018}
7019
7020SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7021  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7022
7023  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7024  // global base reg.
7025  unsigned char OpFlag = 0;
7026  unsigned WrapperKind = X86ISD::Wrapper;
7027  CodeModel::Model M = getTargetMachine().getCodeModel();
7028
7029  if (Subtarget->isPICStyleRIPRel() &&
7030      (M == CodeModel::Small || M == CodeModel::Kernel))
7031    WrapperKind = X86ISD::WrapperRIP;
7032  else if (Subtarget->isPICStyleGOT())
7033    OpFlag = X86II::MO_GOTOFF;
7034  else if (Subtarget->isPICStyleStubPIC())
7035    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7036
7037  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7038                                          OpFlag);
7039  DebugLoc DL = JT->getDebugLoc();
7040  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7041
7042  // With PIC, the address is actually $g + Offset.
7043  if (OpFlag)
7044    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7045                         DAG.getNode(X86ISD::GlobalBaseReg,
7046                                     DebugLoc(), getPointerTy()),
7047                         Result);
7048
7049  return Result;
7050}
7051
7052SDValue
7053X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7054  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7055
7056  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7057  // global base reg.
7058  unsigned char OpFlag = 0;
7059  unsigned WrapperKind = X86ISD::Wrapper;
7060  CodeModel::Model M = getTargetMachine().getCodeModel();
7061
7062  if (Subtarget->isPICStyleRIPRel() &&
7063      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7064    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7065      OpFlag = X86II::MO_GOTPCREL;
7066    WrapperKind = X86ISD::WrapperRIP;
7067  } else if (Subtarget->isPICStyleGOT()) {
7068    OpFlag = X86II::MO_GOT;
7069  } else if (Subtarget->isPICStyleStubPIC()) {
7070    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7071  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7072    OpFlag = X86II::MO_DARWIN_NONLAZY;
7073  }
7074
7075  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7076
7077  DebugLoc DL = Op.getDebugLoc();
7078  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7079
7080
7081  // With PIC, the address is actually $g + Offset.
7082  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7083      !Subtarget->is64Bit()) {
7084    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7085                         DAG.getNode(X86ISD::GlobalBaseReg,
7086                                     DebugLoc(), getPointerTy()),
7087                         Result);
7088  }
7089
7090  // For symbols that require a load from a stub to get the address, emit the
7091  // load.
7092  if (isGlobalStubReference(OpFlag))
7093    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7094                         MachinePointerInfo::getGOT(), false, false, false, 0);
7095
7096  return Result;
7097}
7098
7099SDValue
7100X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7101  // Create the TargetBlockAddressAddress node.
7102  unsigned char OpFlags =
7103    Subtarget->ClassifyBlockAddressReference();
7104  CodeModel::Model M = getTargetMachine().getCodeModel();
7105  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7106  DebugLoc dl = Op.getDebugLoc();
7107  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7108                                       /*isTarget=*/true, OpFlags);
7109
7110  if (Subtarget->isPICStyleRIPRel() &&
7111      (M == CodeModel::Small || M == CodeModel::Kernel))
7112    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7113  else
7114    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7115
7116  // With PIC, the address is actually $g + Offset.
7117  if (isGlobalRelativeToPICBase(OpFlags)) {
7118    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7119                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7120                         Result);
7121  }
7122
7123  return Result;
7124}
7125
7126SDValue
7127X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7128                                      int64_t Offset,
7129                                      SelectionDAG &DAG) const {
7130  // Create the TargetGlobalAddress node, folding in the constant
7131  // offset if it is legal.
7132  unsigned char OpFlags =
7133    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7134  CodeModel::Model M = getTargetMachine().getCodeModel();
7135  SDValue Result;
7136  if (OpFlags == X86II::MO_NO_FLAG &&
7137      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7138    // A direct static reference to a global.
7139    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7140    Offset = 0;
7141  } else {
7142    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7143  }
7144
7145  if (Subtarget->isPICStyleRIPRel() &&
7146      (M == CodeModel::Small || M == CodeModel::Kernel))
7147    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7148  else
7149    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7150
7151  // With PIC, the address is actually $g + Offset.
7152  if (isGlobalRelativeToPICBase(OpFlags)) {
7153    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7154                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7155                         Result);
7156  }
7157
7158  // For globals that require a load from a stub to get the address, emit the
7159  // load.
7160  if (isGlobalStubReference(OpFlags))
7161    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7162                         MachinePointerInfo::getGOT(), false, false, false, 0);
7163
7164  // If there was a non-zero offset that we didn't fold, create an explicit
7165  // addition for it.
7166  if (Offset != 0)
7167    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7168                         DAG.getConstant(Offset, getPointerTy()));
7169
7170  return Result;
7171}
7172
7173SDValue
7174X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7175  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7176  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7177  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7178}
7179
7180static SDValue
7181GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7182           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7183           unsigned char OperandFlags) {
7184  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7185  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7186  DebugLoc dl = GA->getDebugLoc();
7187  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7188                                           GA->getValueType(0),
7189                                           GA->getOffset(),
7190                                           OperandFlags);
7191  if (InFlag) {
7192    SDValue Ops[] = { Chain,  TGA, *InFlag };
7193    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7194  } else {
7195    SDValue Ops[]  = { Chain, TGA };
7196    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7197  }
7198
7199  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7200  MFI->setAdjustsStack(true);
7201
7202  SDValue Flag = Chain.getValue(1);
7203  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7204}
7205
7206// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7207static SDValue
7208LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7209                                const EVT PtrVT) {
7210  SDValue InFlag;
7211  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7212  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7213                                     DAG.getNode(X86ISD::GlobalBaseReg,
7214                                                 DebugLoc(), PtrVT), InFlag);
7215  InFlag = Chain.getValue(1);
7216
7217  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7218}
7219
7220// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7221static SDValue
7222LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7223                                const EVT PtrVT) {
7224  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7225                    X86::RAX, X86II::MO_TLSGD);
7226}
7227
7228// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7229// "local exec" model.
7230static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7231                                   const EVT PtrVT, TLSModel::Model model,
7232                                   bool is64Bit) {
7233  DebugLoc dl = GA->getDebugLoc();
7234
7235  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7236  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7237                                                         is64Bit ? 257 : 256));
7238
7239  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7240                                      DAG.getIntPtrConstant(0),
7241                                      MachinePointerInfo(Ptr),
7242                                      false, false, false, 0);
7243
7244  unsigned char OperandFlags = 0;
7245  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7246  // initialexec.
7247  unsigned WrapperKind = X86ISD::Wrapper;
7248  if (model == TLSModel::LocalExec) {
7249    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7250  } else if (is64Bit) {
7251    assert(model == TLSModel::InitialExec);
7252    OperandFlags = X86II::MO_GOTTPOFF;
7253    WrapperKind = X86ISD::WrapperRIP;
7254  } else {
7255    assert(model == TLSModel::InitialExec);
7256    OperandFlags = X86II::MO_INDNTPOFF;
7257  }
7258
7259  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7260  // exec)
7261  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7262                                           GA->getValueType(0),
7263                                           GA->getOffset(), OperandFlags);
7264  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7265
7266  if (model == TLSModel::InitialExec)
7267    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7268                         MachinePointerInfo::getGOT(), false, false, false, 0);
7269
7270  // The address of the thread local variable is the add of the thread
7271  // pointer with the offset of the variable.
7272  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7273}
7274
7275SDValue
7276X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7277
7278  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7279  const GlobalValue *GV = GA->getGlobal();
7280
7281  if (Subtarget->isTargetELF()) {
7282    // TODO: implement the "local dynamic" model
7283    // TODO: implement the "initial exec"model for pic executables
7284
7285    // If GV is an alias then use the aliasee for determining
7286    // thread-localness.
7287    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7288      GV = GA->resolveAliasedGlobal(false);
7289
7290    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7291
7292    switch (model) {
7293      case TLSModel::GeneralDynamic:
7294      case TLSModel::LocalDynamic: // not implemented
7295        if (Subtarget->is64Bit())
7296          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7297        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7298
7299      case TLSModel::InitialExec:
7300      case TLSModel::LocalExec:
7301        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7302                                   Subtarget->is64Bit());
7303    }
7304  } else if (Subtarget->isTargetDarwin()) {
7305    // Darwin only has one model of TLS.  Lower to that.
7306    unsigned char OpFlag = 0;
7307    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7308                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7309
7310    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7311    // global base reg.
7312    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7313                  !Subtarget->is64Bit();
7314    if (PIC32)
7315      OpFlag = X86II::MO_TLVP_PIC_BASE;
7316    else
7317      OpFlag = X86II::MO_TLVP;
7318    DebugLoc DL = Op.getDebugLoc();
7319    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7320                                                GA->getValueType(0),
7321                                                GA->getOffset(), OpFlag);
7322    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7323
7324    // With PIC32, the address is actually $g + Offset.
7325    if (PIC32)
7326      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7327                           DAG.getNode(X86ISD::GlobalBaseReg,
7328                                       DebugLoc(), getPointerTy()),
7329                           Offset);
7330
7331    // Lowering the machine isd will make sure everything is in the right
7332    // location.
7333    SDValue Chain = DAG.getEntryNode();
7334    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7335    SDValue Args[] = { Chain, Offset };
7336    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7337
7338    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7339    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7340    MFI->setAdjustsStack(true);
7341
7342    // And our return value (tls address) is in the standard call return value
7343    // location.
7344    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7345    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7346                              Chain.getValue(1));
7347  } else if (Subtarget->isTargetWindows()) {
7348    // Just use the implicit TLS architecture
7349    // Need to generate someting similar to:
7350    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7351    //                                  ; from TEB
7352    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7353    //   mov     rcx, qword [rdx+rcx*8]
7354    //   mov     eax, .tls$:tlsvar
7355    //   [rax+rcx] contains the address
7356    // Windows 64bit: gs:0x58
7357    // Windows 32bit: fs:__tls_array
7358
7359    // If GV is an alias then use the aliasee for determining
7360    // thread-localness.
7361    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7362      GV = GA->resolveAliasedGlobal(false);
7363    DebugLoc dl = GA->getDebugLoc();
7364    SDValue Chain = DAG.getEntryNode();
7365
7366    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7367    // %gs:0x58 (64-bit).
7368    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7369                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7370                                                             256)
7371                                        : Type::getInt32PtrTy(*DAG.getContext(),
7372                                                              257));
7373
7374    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7375                                        Subtarget->is64Bit()
7376                                        ? DAG.getIntPtrConstant(0x58)
7377                                        : DAG.getExternalSymbol("_tls_array",
7378                                                                getPointerTy()),
7379                                        MachinePointerInfo(Ptr),
7380                                        false, false, false, 0);
7381
7382    // Load the _tls_index variable
7383    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7384    if (Subtarget->is64Bit())
7385      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7386                           IDX, MachinePointerInfo(), MVT::i32,
7387                           false, false, 0);
7388    else
7389      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7390                        false, false, false, 0);
7391
7392    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7393		                            getPointerTy());
7394    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7395
7396    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7397    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7398                      false, false, false, 0);
7399
7400    // Get the offset of start of .tls section
7401    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7402                                             GA->getValueType(0),
7403                                             GA->getOffset(), X86II::MO_SECREL);
7404    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7405
7406    // The address of the thread local variable is the add of the thread
7407    // pointer with the offset of the variable.
7408    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7409  }
7410
7411  llvm_unreachable("TLS not implemented for this target.");
7412}
7413
7414
7415/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7416/// and take a 2 x i32 value to shift plus a shift amount.
7417SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7418  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7419  EVT VT = Op.getValueType();
7420  unsigned VTBits = VT.getSizeInBits();
7421  DebugLoc dl = Op.getDebugLoc();
7422  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7423  SDValue ShOpLo = Op.getOperand(0);
7424  SDValue ShOpHi = Op.getOperand(1);
7425  SDValue ShAmt  = Op.getOperand(2);
7426  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7427                                     DAG.getConstant(VTBits - 1, MVT::i8))
7428                       : DAG.getConstant(0, VT);
7429
7430  SDValue Tmp2, Tmp3;
7431  if (Op.getOpcode() == ISD::SHL_PARTS) {
7432    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7433    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7434  } else {
7435    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7436    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7437  }
7438
7439  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7440                                DAG.getConstant(VTBits, MVT::i8));
7441  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7442                             AndNode, DAG.getConstant(0, MVT::i8));
7443
7444  SDValue Hi, Lo;
7445  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7446  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7447  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7448
7449  if (Op.getOpcode() == ISD::SHL_PARTS) {
7450    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7451    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7452  } else {
7453    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7454    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7455  }
7456
7457  SDValue Ops[2] = { Lo, Hi };
7458  return DAG.getMergeValues(Ops, 2, dl);
7459}
7460
7461SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7462                                           SelectionDAG &DAG) const {
7463  EVT SrcVT = Op.getOperand(0).getValueType();
7464
7465  if (SrcVT.isVector())
7466    return SDValue();
7467
7468  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7469         "Unknown SINT_TO_FP to lower!");
7470
7471  // These are really Legal; return the operand so the caller accepts it as
7472  // Legal.
7473  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7474    return Op;
7475  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7476      Subtarget->is64Bit()) {
7477    return Op;
7478  }
7479
7480  DebugLoc dl = Op.getDebugLoc();
7481  unsigned Size = SrcVT.getSizeInBits()/8;
7482  MachineFunction &MF = DAG.getMachineFunction();
7483  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7484  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7485  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7486                               StackSlot,
7487                               MachinePointerInfo::getFixedStack(SSFI),
7488                               false, false, 0);
7489  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7490}
7491
7492SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7493                                     SDValue StackSlot,
7494                                     SelectionDAG &DAG) const {
7495  // Build the FILD
7496  DebugLoc DL = Op.getDebugLoc();
7497  SDVTList Tys;
7498  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7499  if (useSSE)
7500    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7501  else
7502    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7503
7504  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7505
7506  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7507  MachineMemOperand *MMO;
7508  if (FI) {
7509    int SSFI = FI->getIndex();
7510    MMO =
7511      DAG.getMachineFunction()
7512      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7513                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7514  } else {
7515    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7516    StackSlot = StackSlot.getOperand(1);
7517  }
7518  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7519  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7520                                           X86ISD::FILD, DL,
7521                                           Tys, Ops, array_lengthof(Ops),
7522                                           SrcVT, MMO);
7523
7524  if (useSSE) {
7525    Chain = Result.getValue(1);
7526    SDValue InFlag = Result.getValue(2);
7527
7528    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7529    // shouldn't be necessary except that RFP cannot be live across
7530    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7531    MachineFunction &MF = DAG.getMachineFunction();
7532    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7533    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7534    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7535    Tys = DAG.getVTList(MVT::Other);
7536    SDValue Ops[] = {
7537      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7538    };
7539    MachineMemOperand *MMO =
7540      DAG.getMachineFunction()
7541      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7542                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7543
7544    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7545                                    Ops, array_lengthof(Ops),
7546                                    Op.getValueType(), MMO);
7547    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7548                         MachinePointerInfo::getFixedStack(SSFI),
7549                         false, false, false, 0);
7550  }
7551
7552  return Result;
7553}
7554
7555// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7556SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7557                                               SelectionDAG &DAG) const {
7558  // This algorithm is not obvious. Here it is what we're trying to output:
7559  /*
7560     movq       %rax,  %xmm0
7561     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7562     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7563     #ifdef __SSE3__
7564       haddpd   %xmm0, %xmm0
7565     #else
7566       pshufd   $0x4e, %xmm0, %xmm1
7567       addpd    %xmm1, %xmm0
7568     #endif
7569  */
7570
7571  DebugLoc dl = Op.getDebugLoc();
7572  LLVMContext *Context = DAG.getContext();
7573
7574  // Build some magic constants.
7575  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7576  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7577  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7578
7579  SmallVector<Constant*,2> CV1;
7580  CV1.push_back(
7581        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7582  CV1.push_back(
7583        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7584  Constant *C1 = ConstantVector::get(CV1);
7585  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7586
7587  // Load the 64-bit value into an XMM register.
7588  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7589                            Op.getOperand(0));
7590  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7591                              MachinePointerInfo::getConstantPool(),
7592                              false, false, false, 16);
7593  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7594                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7595                              CLod0);
7596
7597  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7598                              MachinePointerInfo::getConstantPool(),
7599                              false, false, false, 16);
7600  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7601  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7602  SDValue Result;
7603
7604  if (Subtarget->hasSSE3()) {
7605    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7606    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7607  } else {
7608    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7609    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7610                                           S2F, 0x4E, DAG);
7611    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7612                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7613                         Sub);
7614  }
7615
7616  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7617                     DAG.getIntPtrConstant(0));
7618}
7619
7620// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7621SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7622                                               SelectionDAG &DAG) const {
7623  DebugLoc dl = Op.getDebugLoc();
7624  // FP constant to bias correct the final result.
7625  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7626                                   MVT::f64);
7627
7628  // Load the 32-bit value into an XMM register.
7629  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7630                             Op.getOperand(0));
7631
7632  // Zero out the upper parts of the register.
7633  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7634
7635  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7636                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7637                     DAG.getIntPtrConstant(0));
7638
7639  // Or the load with the bias.
7640  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7641                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7642                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7643                                                   MVT::v2f64, Load)),
7644                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7645                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7646                                                   MVT::v2f64, Bias)));
7647  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7648                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7649                   DAG.getIntPtrConstant(0));
7650
7651  // Subtract the bias.
7652  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7653
7654  // Handle final rounding.
7655  EVT DestVT = Op.getValueType();
7656
7657  if (DestVT.bitsLT(MVT::f64)) {
7658    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7659                       DAG.getIntPtrConstant(0));
7660  } else if (DestVT.bitsGT(MVT::f64)) {
7661    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7662  }
7663
7664  // Handle final rounding.
7665  return Sub;
7666}
7667
7668SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7669                                           SelectionDAG &DAG) const {
7670  SDValue N0 = Op.getOperand(0);
7671  DebugLoc dl = Op.getDebugLoc();
7672
7673  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7674  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7675  // the optimization here.
7676  if (DAG.SignBitIsZero(N0))
7677    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7678
7679  EVT SrcVT = N0.getValueType();
7680  EVT DstVT = Op.getValueType();
7681  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7682    return LowerUINT_TO_FP_i64(Op, DAG);
7683  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7684    return LowerUINT_TO_FP_i32(Op, DAG);
7685  else if (Subtarget->is64Bit() &&
7686           SrcVT == MVT::i64 && DstVT == MVT::f32)
7687    return SDValue();
7688
7689  // Make a 64-bit buffer, and use it to build an FILD.
7690  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7691  if (SrcVT == MVT::i32) {
7692    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7693    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7694                                     getPointerTy(), StackSlot, WordOff);
7695    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7696                                  StackSlot, MachinePointerInfo(),
7697                                  false, false, 0);
7698    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7699                                  OffsetSlot, MachinePointerInfo(),
7700                                  false, false, 0);
7701    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7702    return Fild;
7703  }
7704
7705  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7706  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7707                               StackSlot, MachinePointerInfo(),
7708                               false, false, 0);
7709  // For i64 source, we need to add the appropriate power of 2 if the input
7710  // was negative.  This is the same as the optimization in
7711  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7712  // we must be careful to do the computation in x87 extended precision, not
7713  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7714  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7715  MachineMemOperand *MMO =
7716    DAG.getMachineFunction()
7717    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7718                          MachineMemOperand::MOLoad, 8, 8);
7719
7720  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7721  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7722  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7723                                         MVT::i64, MMO);
7724
7725  APInt FF(32, 0x5F800000ULL);
7726
7727  // Check whether the sign bit is set.
7728  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7729                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7730                                 ISD::SETLT);
7731
7732  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7733  SDValue FudgePtr = DAG.getConstantPool(
7734                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7735                                         getPointerTy());
7736
7737  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7738  SDValue Zero = DAG.getIntPtrConstant(0);
7739  SDValue Four = DAG.getIntPtrConstant(4);
7740  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7741                               Zero, Four);
7742  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7743
7744  // Load the value out, extending it from f32 to f80.
7745  // FIXME: Avoid the extend by constructing the right constant pool?
7746  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7747                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7748                                 MVT::f32, false, false, 4);
7749  // Extend everything to 80 bits to force it to be done on x87.
7750  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7751  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7752}
7753
7754std::pair<SDValue,SDValue> X86TargetLowering::
7755FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
7756  DebugLoc DL = Op.getDebugLoc();
7757
7758  EVT DstTy = Op.getValueType();
7759
7760  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
7761    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7762    DstTy = MVT::i64;
7763  }
7764
7765  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7766         DstTy.getSimpleVT() >= MVT::i16 &&
7767         "Unknown FP_TO_INT to lower!");
7768
7769  // These are really Legal.
7770  if (DstTy == MVT::i32 &&
7771      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7772    return std::make_pair(SDValue(), SDValue());
7773  if (Subtarget->is64Bit() &&
7774      DstTy == MVT::i64 &&
7775      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7776    return std::make_pair(SDValue(), SDValue());
7777
7778  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
7779  // stack slot, or into the FTOL runtime function.
7780  MachineFunction &MF = DAG.getMachineFunction();
7781  unsigned MemSize = DstTy.getSizeInBits()/8;
7782  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7783  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7784
7785  unsigned Opc;
7786  if (!IsSigned && isIntegerTypeFTOL(DstTy))
7787    Opc = X86ISD::WIN_FTOL;
7788  else
7789    switch (DstTy.getSimpleVT().SimpleTy) {
7790    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7791    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7792    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7793    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7794    }
7795
7796  SDValue Chain = DAG.getEntryNode();
7797  SDValue Value = Op.getOperand(0);
7798  EVT TheVT = Op.getOperand(0).getValueType();
7799  // FIXME This causes a redundant load/store if the SSE-class value is already
7800  // in memory, such as if it is on the callstack.
7801  if (isScalarFPTypeInSSEReg(TheVT)) {
7802    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7803    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7804                         MachinePointerInfo::getFixedStack(SSFI),
7805                         false, false, 0);
7806    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7807    SDValue Ops[] = {
7808      Chain, StackSlot, DAG.getValueType(TheVT)
7809    };
7810
7811    MachineMemOperand *MMO =
7812      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7813                              MachineMemOperand::MOLoad, MemSize, MemSize);
7814    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7815                                    DstTy, MMO);
7816    Chain = Value.getValue(1);
7817    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7818    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7819  }
7820
7821  MachineMemOperand *MMO =
7822    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7823                            MachineMemOperand::MOStore, MemSize, MemSize);
7824
7825  if (Opc != X86ISD::WIN_FTOL) {
7826    // Build the FP_TO_INT*_IN_MEM
7827    SDValue Ops[] = { Chain, Value, StackSlot };
7828    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7829                                           Ops, 3, DstTy, MMO);
7830    return std::make_pair(FIST, StackSlot);
7831  } else {
7832    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
7833      DAG.getVTList(MVT::Other, MVT::Glue),
7834      Chain, Value);
7835    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
7836      MVT::i32, ftol.getValue(1));
7837    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
7838      MVT::i32, eax.getValue(2));
7839    SDValue Ops[] = { eax, edx };
7840    SDValue pair = IsReplace
7841      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
7842      : DAG.getMergeValues(Ops, 2, DL);
7843    return std::make_pair(pair, SDValue());
7844  }
7845}
7846
7847SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7848                                           SelectionDAG &DAG) const {
7849  if (Op.getValueType().isVector())
7850    return SDValue();
7851
7852  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7853    /*IsSigned=*/ true, /*IsReplace=*/ false);
7854  SDValue FIST = Vals.first, StackSlot = Vals.second;
7855  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7856  if (FIST.getNode() == 0) return Op;
7857
7858  if (StackSlot.getNode())
7859    // Load the result.
7860    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7861                       FIST, StackSlot, MachinePointerInfo(),
7862                       false, false, false, 0);
7863  else
7864    // The node is the result.
7865    return FIST;
7866}
7867
7868SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7869                                           SelectionDAG &DAG) const {
7870  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7871    /*IsSigned=*/ false, /*IsReplace=*/ false);
7872  SDValue FIST = Vals.first, StackSlot = Vals.second;
7873  assert(FIST.getNode() && "Unexpected failure");
7874
7875  if (StackSlot.getNode())
7876    // Load the result.
7877    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7878                       FIST, StackSlot, MachinePointerInfo(),
7879                       false, false, false, 0);
7880  else
7881    // The node is the result.
7882    return FIST;
7883}
7884
7885SDValue X86TargetLowering::LowerFABS(SDValue Op,
7886                                     SelectionDAG &DAG) const {
7887  LLVMContext *Context = DAG.getContext();
7888  DebugLoc dl = Op.getDebugLoc();
7889  EVT VT = Op.getValueType();
7890  EVT EltVT = VT;
7891  if (VT.isVector())
7892    EltVT = VT.getVectorElementType();
7893  Constant *C;
7894  if (EltVT == MVT::f64) {
7895    C = ConstantVector::getSplat(2,
7896                ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7897  } else {
7898    C = ConstantVector::getSplat(4,
7899               ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7900  }
7901  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7902  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7903                             MachinePointerInfo::getConstantPool(),
7904                             false, false, false, 16);
7905  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7906}
7907
7908SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7909  LLVMContext *Context = DAG.getContext();
7910  DebugLoc dl = Op.getDebugLoc();
7911  EVT VT = Op.getValueType();
7912  EVT EltVT = VT;
7913  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7914  if (VT.isVector()) {
7915    EltVT = VT.getVectorElementType();
7916    NumElts = VT.getVectorNumElements();
7917  }
7918  Constant *C;
7919  if (EltVT == MVT::f64)
7920    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7921  else
7922    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7923  C = ConstantVector::getSplat(NumElts, C);
7924  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7925  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7926                             MachinePointerInfo::getConstantPool(),
7927                             false, false, false, 16);
7928  if (VT.isVector()) {
7929    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7930    return DAG.getNode(ISD::BITCAST, dl, VT,
7931                       DAG.getNode(ISD::XOR, dl, XORVT,
7932                    DAG.getNode(ISD::BITCAST, dl, XORVT,
7933                                Op.getOperand(0)),
7934                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7935  } else {
7936    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7937  }
7938}
7939
7940SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7941  LLVMContext *Context = DAG.getContext();
7942  SDValue Op0 = Op.getOperand(0);
7943  SDValue Op1 = Op.getOperand(1);
7944  DebugLoc dl = Op.getDebugLoc();
7945  EVT VT = Op.getValueType();
7946  EVT SrcVT = Op1.getValueType();
7947
7948  // If second operand is smaller, extend it first.
7949  if (SrcVT.bitsLT(VT)) {
7950    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7951    SrcVT = VT;
7952  }
7953  // And if it is bigger, shrink it first.
7954  if (SrcVT.bitsGT(VT)) {
7955    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7956    SrcVT = VT;
7957  }
7958
7959  // At this point the operands and the result should have the same
7960  // type, and that won't be f80 since that is not custom lowered.
7961
7962  // First get the sign bit of second operand.
7963  SmallVector<Constant*,4> CV;
7964  if (SrcVT == MVT::f64) {
7965    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7966    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7967  } else {
7968    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7969    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7970    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7971    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7972  }
7973  Constant *C = ConstantVector::get(CV);
7974  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7975  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7976                              MachinePointerInfo::getConstantPool(),
7977                              false, false, false, 16);
7978  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7979
7980  // Shift sign bit right or left if the two operands have different types.
7981  if (SrcVT.bitsGT(VT)) {
7982    // Op0 is MVT::f32, Op1 is MVT::f64.
7983    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7984    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7985                          DAG.getConstant(32, MVT::i32));
7986    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7987    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7988                          DAG.getIntPtrConstant(0));
7989  }
7990
7991  // Clear first operand sign bit.
7992  CV.clear();
7993  if (VT == MVT::f64) {
7994    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7995    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7996  } else {
7997    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7998    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7999    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8000    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8001  }
8002  C = ConstantVector::get(CV);
8003  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8004  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8005                              MachinePointerInfo::getConstantPool(),
8006                              false, false, false, 16);
8007  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8008
8009  // Or the value with the sign bit.
8010  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8011}
8012
8013SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8014  SDValue N0 = Op.getOperand(0);
8015  DebugLoc dl = Op.getDebugLoc();
8016  EVT VT = Op.getValueType();
8017
8018  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8019  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8020                                  DAG.getConstant(1, VT));
8021  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8022}
8023
8024/// Emit nodes that will be selected as "test Op0,Op0", or something
8025/// equivalent.
8026SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8027                                    SelectionDAG &DAG) const {
8028  DebugLoc dl = Op.getDebugLoc();
8029
8030  // CF and OF aren't always set the way we want. Determine which
8031  // of these we need.
8032  bool NeedCF = false;
8033  bool NeedOF = false;
8034  switch (X86CC) {
8035  default: break;
8036  case X86::COND_A: case X86::COND_AE:
8037  case X86::COND_B: case X86::COND_BE:
8038    NeedCF = true;
8039    break;
8040  case X86::COND_G: case X86::COND_GE:
8041  case X86::COND_L: case X86::COND_LE:
8042  case X86::COND_O: case X86::COND_NO:
8043    NeedOF = true;
8044    break;
8045  }
8046
8047  // See if we can use the EFLAGS value from the operand instead of
8048  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8049  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8050  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8051    // Emit a CMP with 0, which is the TEST pattern.
8052    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8053                       DAG.getConstant(0, Op.getValueType()));
8054
8055  unsigned Opcode = 0;
8056  unsigned NumOperands = 0;
8057  switch (Op.getNode()->getOpcode()) {
8058  case ISD::ADD:
8059    // Due to an isel shortcoming, be conservative if this add is likely to be
8060    // selected as part of a load-modify-store instruction. When the root node
8061    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8062    // uses of other nodes in the match, such as the ADD in this case. This
8063    // leads to the ADD being left around and reselected, with the result being
8064    // two adds in the output.  Alas, even if none our users are stores, that
8065    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8066    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8067    // climbing the DAG back to the root, and it doesn't seem to be worth the
8068    // effort.
8069    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8070         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8071      if (UI->getOpcode() != ISD::CopyToReg &&
8072          UI->getOpcode() != ISD::SETCC &&
8073          UI->getOpcode() != ISD::STORE)
8074        goto default_case;
8075
8076    if (ConstantSDNode *C =
8077        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8078      // An add of one will be selected as an INC.
8079      if (C->getAPIntValue() == 1) {
8080        Opcode = X86ISD::INC;
8081        NumOperands = 1;
8082        break;
8083      }
8084
8085      // An add of negative one (subtract of one) will be selected as a DEC.
8086      if (C->getAPIntValue().isAllOnesValue()) {
8087        Opcode = X86ISD::DEC;
8088        NumOperands = 1;
8089        break;
8090      }
8091    }
8092
8093    // Otherwise use a regular EFLAGS-setting add.
8094    Opcode = X86ISD::ADD;
8095    NumOperands = 2;
8096    break;
8097  case ISD::AND: {
8098    // If the primary and result isn't used, don't bother using X86ISD::AND,
8099    // because a TEST instruction will be better.
8100    bool NonFlagUse = false;
8101    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8102           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8103      SDNode *User = *UI;
8104      unsigned UOpNo = UI.getOperandNo();
8105      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8106        // Look pass truncate.
8107        UOpNo = User->use_begin().getOperandNo();
8108        User = *User->use_begin();
8109      }
8110
8111      if (User->getOpcode() != ISD::BRCOND &&
8112          User->getOpcode() != ISD::SETCC &&
8113          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8114        NonFlagUse = true;
8115        break;
8116      }
8117    }
8118
8119    if (!NonFlagUse)
8120      break;
8121  }
8122    // FALL THROUGH
8123  case ISD::SUB:
8124  case ISD::OR:
8125  case ISD::XOR:
8126    // Due to the ISEL shortcoming noted above, be conservative if this op is
8127    // likely to be selected as part of a load-modify-store instruction.
8128    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8129           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8130      if (UI->getOpcode() == ISD::STORE)
8131        goto default_case;
8132
8133    // Otherwise use a regular EFLAGS-setting instruction.
8134    switch (Op.getNode()->getOpcode()) {
8135    default: llvm_unreachable("unexpected operator!");
8136    case ISD::SUB: Opcode = X86ISD::SUB; break;
8137    case ISD::OR:  Opcode = X86ISD::OR;  break;
8138    case ISD::XOR: Opcode = X86ISD::XOR; break;
8139    case ISD::AND: Opcode = X86ISD::AND; break;
8140    }
8141
8142    NumOperands = 2;
8143    break;
8144  case X86ISD::ADD:
8145  case X86ISD::SUB:
8146  case X86ISD::INC:
8147  case X86ISD::DEC:
8148  case X86ISD::OR:
8149  case X86ISD::XOR:
8150  case X86ISD::AND:
8151    return SDValue(Op.getNode(), 1);
8152  default:
8153  default_case:
8154    break;
8155  }
8156
8157  if (Opcode == 0)
8158    // Emit a CMP with 0, which is the TEST pattern.
8159    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8160                       DAG.getConstant(0, Op.getValueType()));
8161
8162  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8163  SmallVector<SDValue, 4> Ops;
8164  for (unsigned i = 0; i != NumOperands; ++i)
8165    Ops.push_back(Op.getOperand(i));
8166
8167  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8168  DAG.ReplaceAllUsesWith(Op, New);
8169  return SDValue(New.getNode(), 1);
8170}
8171
8172/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8173/// equivalent.
8174SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8175                                   SelectionDAG &DAG) const {
8176  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8177    if (C->getAPIntValue() == 0)
8178      return EmitTest(Op0, X86CC, DAG);
8179
8180  DebugLoc dl = Op0.getDebugLoc();
8181  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8182}
8183
8184/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8185/// if it's possible.
8186SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8187                                     DebugLoc dl, SelectionDAG &DAG) const {
8188  SDValue Op0 = And.getOperand(0);
8189  SDValue Op1 = And.getOperand(1);
8190  if (Op0.getOpcode() == ISD::TRUNCATE)
8191    Op0 = Op0.getOperand(0);
8192  if (Op1.getOpcode() == ISD::TRUNCATE)
8193    Op1 = Op1.getOperand(0);
8194
8195  SDValue LHS, RHS;
8196  if (Op1.getOpcode() == ISD::SHL)
8197    std::swap(Op0, Op1);
8198  if (Op0.getOpcode() == ISD::SHL) {
8199    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8200      if (And00C->getZExtValue() == 1) {
8201        // If we looked past a truncate, check that it's only truncating away
8202        // known zeros.
8203        unsigned BitWidth = Op0.getValueSizeInBits();
8204        unsigned AndBitWidth = And.getValueSizeInBits();
8205        if (BitWidth > AndBitWidth) {
8206          APInt Zeros, Ones;
8207          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8208          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8209            return SDValue();
8210        }
8211        LHS = Op1;
8212        RHS = Op0.getOperand(1);
8213      }
8214  } else if (Op1.getOpcode() == ISD::Constant) {
8215    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8216    uint64_t AndRHSVal = AndRHS->getZExtValue();
8217    SDValue AndLHS = Op0;
8218
8219    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8220      LHS = AndLHS.getOperand(0);
8221      RHS = AndLHS.getOperand(1);
8222    }
8223
8224    // Use BT if the immediate can't be encoded in a TEST instruction.
8225    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8226      LHS = AndLHS;
8227      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8228    }
8229  }
8230
8231  if (LHS.getNode()) {
8232    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8233    // instruction.  Since the shift amount is in-range-or-undefined, we know
8234    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8235    // the encoding for the i16 version is larger than the i32 version.
8236    // Also promote i16 to i32 for performance / code size reason.
8237    if (LHS.getValueType() == MVT::i8 ||
8238        LHS.getValueType() == MVT::i16)
8239      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8240
8241    // If the operand types disagree, extend the shift amount to match.  Since
8242    // BT ignores high bits (like shifts) we can use anyextend.
8243    if (LHS.getValueType() != RHS.getValueType())
8244      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8245
8246    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8247    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8248    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8249                       DAG.getConstant(Cond, MVT::i8), BT);
8250  }
8251
8252  return SDValue();
8253}
8254
8255SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8256
8257  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8258
8259  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8260  SDValue Op0 = Op.getOperand(0);
8261  SDValue Op1 = Op.getOperand(1);
8262  DebugLoc dl = Op.getDebugLoc();
8263  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8264
8265  // Optimize to BT if possible.
8266  // Lower (X & (1 << N)) == 0 to BT(X, N).
8267  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8268  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8269  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8270      Op1.getOpcode() == ISD::Constant &&
8271      cast<ConstantSDNode>(Op1)->isNullValue() &&
8272      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8273    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8274    if (NewSetCC.getNode())
8275      return NewSetCC;
8276  }
8277
8278  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8279  // these.
8280  if (Op1.getOpcode() == ISD::Constant &&
8281      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8282       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8283      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8284
8285    // If the input is a setcc, then reuse the input setcc or use a new one with
8286    // the inverted condition.
8287    if (Op0.getOpcode() == X86ISD::SETCC) {
8288      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8289      bool Invert = (CC == ISD::SETNE) ^
8290        cast<ConstantSDNode>(Op1)->isNullValue();
8291      if (!Invert) return Op0;
8292
8293      CCode = X86::GetOppositeBranchCondition(CCode);
8294      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8295                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8296    }
8297  }
8298
8299  bool isFP = Op1.getValueType().isFloatingPoint();
8300  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8301  if (X86CC == X86::COND_INVALID)
8302    return SDValue();
8303
8304  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8305  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8306                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8307}
8308
8309// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8310// ones, and then concatenate the result back.
8311static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8312  EVT VT = Op.getValueType();
8313
8314  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8315         "Unsupported value type for operation");
8316
8317  int NumElems = VT.getVectorNumElements();
8318  DebugLoc dl = Op.getDebugLoc();
8319  SDValue CC = Op.getOperand(2);
8320  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8321  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8322
8323  // Extract the LHS vectors
8324  SDValue LHS = Op.getOperand(0);
8325  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8326  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8327
8328  // Extract the RHS vectors
8329  SDValue RHS = Op.getOperand(1);
8330  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8331  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8332
8333  // Issue the operation on the smaller types and concatenate the result back
8334  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8335  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8336  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8337                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8338                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8339}
8340
8341
8342SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8343  SDValue Cond;
8344  SDValue Op0 = Op.getOperand(0);
8345  SDValue Op1 = Op.getOperand(1);
8346  SDValue CC = Op.getOperand(2);
8347  EVT VT = Op.getValueType();
8348  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8349  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8350  DebugLoc dl = Op.getDebugLoc();
8351
8352  if (isFP) {
8353    unsigned SSECC = 8;
8354    EVT EltVT = Op0.getValueType().getVectorElementType();
8355    assert(EltVT == MVT::f32 || EltVT == MVT::f64); (void)EltVT;
8356
8357    bool Swap = false;
8358
8359    // SSE Condition code mapping:
8360    //  0 - EQ
8361    //  1 - LT
8362    //  2 - LE
8363    //  3 - UNORD
8364    //  4 - NEQ
8365    //  5 - NLT
8366    //  6 - NLE
8367    //  7 - ORD
8368    switch (SetCCOpcode) {
8369    default: break;
8370    case ISD::SETOEQ:
8371    case ISD::SETEQ:  SSECC = 0; break;
8372    case ISD::SETOGT:
8373    case ISD::SETGT: Swap = true; // Fallthrough
8374    case ISD::SETLT:
8375    case ISD::SETOLT: SSECC = 1; break;
8376    case ISD::SETOGE:
8377    case ISD::SETGE: Swap = true; // Fallthrough
8378    case ISD::SETLE:
8379    case ISD::SETOLE: SSECC = 2; break;
8380    case ISD::SETUO:  SSECC = 3; break;
8381    case ISD::SETUNE:
8382    case ISD::SETNE:  SSECC = 4; break;
8383    case ISD::SETULE: Swap = true;
8384    case ISD::SETUGE: SSECC = 5; break;
8385    case ISD::SETULT: Swap = true;
8386    case ISD::SETUGT: SSECC = 6; break;
8387    case ISD::SETO:   SSECC = 7; break;
8388    }
8389    if (Swap)
8390      std::swap(Op0, Op1);
8391
8392    // In the two special cases we can't handle, emit two comparisons.
8393    if (SSECC == 8) {
8394      if (SetCCOpcode == ISD::SETUEQ) {
8395        SDValue UNORD, EQ;
8396        UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8397                            DAG.getConstant(3, MVT::i8));
8398        EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8399                         DAG.getConstant(0, MVT::i8));
8400        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8401      } else if (SetCCOpcode == ISD::SETONE) {
8402        SDValue ORD, NEQ;
8403        ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8404                          DAG.getConstant(7, MVT::i8));
8405        NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8406                          DAG.getConstant(4, MVT::i8));
8407        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8408      }
8409      llvm_unreachable("Illegal FP comparison");
8410    }
8411    // Handle all other FP comparisons here.
8412    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8413                       DAG.getConstant(SSECC, MVT::i8));
8414  }
8415
8416  // Break 256-bit integer vector compare into smaller ones.
8417  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8418    return Lower256IntVSETCC(Op, DAG);
8419
8420  // We are handling one of the integer comparisons here.  Since SSE only has
8421  // GT and EQ comparisons for integer, swapping operands and multiple
8422  // operations may be required for some comparisons.
8423  unsigned Opc = 0;
8424  bool Swap = false, Invert = false, FlipSigns = false;
8425
8426  switch (SetCCOpcode) {
8427  default: break;
8428  case ISD::SETNE:  Invert = true;
8429  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8430  case ISD::SETLT:  Swap = true;
8431  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8432  case ISD::SETGE:  Swap = true;
8433  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8434  case ISD::SETULT: Swap = true;
8435  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8436  case ISD::SETUGE: Swap = true;
8437  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8438  }
8439  if (Swap)
8440    std::swap(Op0, Op1);
8441
8442  // Check that the operation in question is available (most are plain SSE2,
8443  // but PCMPGTQ and PCMPEQQ have different requirements).
8444  if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8445    return SDValue();
8446  if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8447    return SDValue();
8448
8449  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8450  // bits of the inputs before performing those operations.
8451  if (FlipSigns) {
8452    EVT EltVT = VT.getVectorElementType();
8453    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8454                                      EltVT);
8455    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8456    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8457                                    SignBits.size());
8458    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8459    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8460  }
8461
8462  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8463
8464  // If the logical-not of the result is required, perform that now.
8465  if (Invert)
8466    Result = DAG.getNOT(dl, Result, VT);
8467
8468  return Result;
8469}
8470
8471// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8472static bool isX86LogicalCmp(SDValue Op) {
8473  unsigned Opc = Op.getNode()->getOpcode();
8474  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8475    return true;
8476  if (Op.getResNo() == 1 &&
8477      (Opc == X86ISD::ADD ||
8478       Opc == X86ISD::SUB ||
8479       Opc == X86ISD::ADC ||
8480       Opc == X86ISD::SBB ||
8481       Opc == X86ISD::SMUL ||
8482       Opc == X86ISD::UMUL ||
8483       Opc == X86ISD::INC ||
8484       Opc == X86ISD::DEC ||
8485       Opc == X86ISD::OR ||
8486       Opc == X86ISD::XOR ||
8487       Opc == X86ISD::AND))
8488    return true;
8489
8490  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8491    return true;
8492
8493  return false;
8494}
8495
8496static bool isZero(SDValue V) {
8497  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8498  return C && C->isNullValue();
8499}
8500
8501static bool isAllOnes(SDValue V) {
8502  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8503  return C && C->isAllOnesValue();
8504}
8505
8506SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8507  bool addTest = true;
8508  SDValue Cond  = Op.getOperand(0);
8509  SDValue Op1 = Op.getOperand(1);
8510  SDValue Op2 = Op.getOperand(2);
8511  DebugLoc DL = Op.getDebugLoc();
8512  SDValue CC;
8513
8514  if (Cond.getOpcode() == ISD::SETCC) {
8515    SDValue NewCond = LowerSETCC(Cond, DAG);
8516    if (NewCond.getNode())
8517      Cond = NewCond;
8518  }
8519
8520  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8521  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8522  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8523  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8524  if (Cond.getOpcode() == X86ISD::SETCC &&
8525      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8526      isZero(Cond.getOperand(1).getOperand(1))) {
8527    SDValue Cmp = Cond.getOperand(1);
8528
8529    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8530
8531    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8532        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8533      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8534
8535      SDValue CmpOp0 = Cmp.getOperand(0);
8536      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8537                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8538
8539      SDValue Res =   // Res = 0 or -1.
8540        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8541                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8542
8543      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8544        Res = DAG.getNOT(DL, Res, Res.getValueType());
8545
8546      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8547      if (N2C == 0 || !N2C->isNullValue())
8548        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8549      return Res;
8550    }
8551  }
8552
8553  // Look past (and (setcc_carry (cmp ...)), 1).
8554  if (Cond.getOpcode() == ISD::AND &&
8555      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8556    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8557    if (C && C->getAPIntValue() == 1)
8558      Cond = Cond.getOperand(0);
8559  }
8560
8561  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8562  // setting operand in place of the X86ISD::SETCC.
8563  unsigned CondOpcode = Cond.getOpcode();
8564  if (CondOpcode == X86ISD::SETCC ||
8565      CondOpcode == X86ISD::SETCC_CARRY) {
8566    CC = Cond.getOperand(0);
8567
8568    SDValue Cmp = Cond.getOperand(1);
8569    unsigned Opc = Cmp.getOpcode();
8570    EVT VT = Op.getValueType();
8571
8572    bool IllegalFPCMov = false;
8573    if (VT.isFloatingPoint() && !VT.isVector() &&
8574        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8575      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8576
8577    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8578        Opc == X86ISD::BT) { // FIXME
8579      Cond = Cmp;
8580      addTest = false;
8581    }
8582  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8583             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8584             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8585              Cond.getOperand(0).getValueType() != MVT::i8)) {
8586    SDValue LHS = Cond.getOperand(0);
8587    SDValue RHS = Cond.getOperand(1);
8588    unsigned X86Opcode;
8589    unsigned X86Cond;
8590    SDVTList VTs;
8591    switch (CondOpcode) {
8592    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8593    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8594    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8595    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8596    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8597    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8598    default: llvm_unreachable("unexpected overflowing operator");
8599    }
8600    if (CondOpcode == ISD::UMULO)
8601      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8602                          MVT::i32);
8603    else
8604      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8605
8606    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8607
8608    if (CondOpcode == ISD::UMULO)
8609      Cond = X86Op.getValue(2);
8610    else
8611      Cond = X86Op.getValue(1);
8612
8613    CC = DAG.getConstant(X86Cond, MVT::i8);
8614    addTest = false;
8615  }
8616
8617  if (addTest) {
8618    // Look pass the truncate.
8619    if (Cond.getOpcode() == ISD::TRUNCATE)
8620      Cond = Cond.getOperand(0);
8621
8622    // We know the result of AND is compared against zero. Try to match
8623    // it to BT.
8624    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8625      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8626      if (NewSetCC.getNode()) {
8627        CC = NewSetCC.getOperand(0);
8628        Cond = NewSetCC.getOperand(1);
8629        addTest = false;
8630      }
8631    }
8632  }
8633
8634  if (addTest) {
8635    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8636    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8637  }
8638
8639  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8640  // a <  b ?  0 : -1 -> RES = setcc_carry
8641  // a >= b ? -1 :  0 -> RES = setcc_carry
8642  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8643  if (Cond.getOpcode() == X86ISD::CMP) {
8644    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8645
8646    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8647        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8648      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8649                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8650      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8651        return DAG.getNOT(DL, Res, Res.getValueType());
8652      return Res;
8653    }
8654  }
8655
8656  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8657  // condition is true.
8658  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8659  SDValue Ops[] = { Op2, Op1, CC, Cond };
8660  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8661}
8662
8663// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8664// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8665// from the AND / OR.
8666static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8667  Opc = Op.getOpcode();
8668  if (Opc != ISD::OR && Opc != ISD::AND)
8669    return false;
8670  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8671          Op.getOperand(0).hasOneUse() &&
8672          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8673          Op.getOperand(1).hasOneUse());
8674}
8675
8676// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8677// 1 and that the SETCC node has a single use.
8678static bool isXor1OfSetCC(SDValue Op) {
8679  if (Op.getOpcode() != ISD::XOR)
8680    return false;
8681  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8682  if (N1C && N1C->getAPIntValue() == 1) {
8683    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8684      Op.getOperand(0).hasOneUse();
8685  }
8686  return false;
8687}
8688
8689SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8690  bool addTest = true;
8691  SDValue Chain = Op.getOperand(0);
8692  SDValue Cond  = Op.getOperand(1);
8693  SDValue Dest  = Op.getOperand(2);
8694  DebugLoc dl = Op.getDebugLoc();
8695  SDValue CC;
8696  bool Inverted = false;
8697
8698  if (Cond.getOpcode() == ISD::SETCC) {
8699    // Check for setcc([su]{add,sub,mul}o == 0).
8700    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8701        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8702        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8703        Cond.getOperand(0).getResNo() == 1 &&
8704        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8705         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8706         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8707         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8708         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8709         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8710      Inverted = true;
8711      Cond = Cond.getOperand(0);
8712    } else {
8713      SDValue NewCond = LowerSETCC(Cond, DAG);
8714      if (NewCond.getNode())
8715        Cond = NewCond;
8716    }
8717  }
8718#if 0
8719  // FIXME: LowerXALUO doesn't handle these!!
8720  else if (Cond.getOpcode() == X86ISD::ADD  ||
8721           Cond.getOpcode() == X86ISD::SUB  ||
8722           Cond.getOpcode() == X86ISD::SMUL ||
8723           Cond.getOpcode() == X86ISD::UMUL)
8724    Cond = LowerXALUO(Cond, DAG);
8725#endif
8726
8727  // Look pass (and (setcc_carry (cmp ...)), 1).
8728  if (Cond.getOpcode() == ISD::AND &&
8729      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8730    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8731    if (C && C->getAPIntValue() == 1)
8732      Cond = Cond.getOperand(0);
8733  }
8734
8735  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8736  // setting operand in place of the X86ISD::SETCC.
8737  unsigned CondOpcode = Cond.getOpcode();
8738  if (CondOpcode == X86ISD::SETCC ||
8739      CondOpcode == X86ISD::SETCC_CARRY) {
8740    CC = Cond.getOperand(0);
8741
8742    SDValue Cmp = Cond.getOperand(1);
8743    unsigned Opc = Cmp.getOpcode();
8744    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8745    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8746      Cond = Cmp;
8747      addTest = false;
8748    } else {
8749      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8750      default: break;
8751      case X86::COND_O:
8752      case X86::COND_B:
8753        // These can only come from an arithmetic instruction with overflow,
8754        // e.g. SADDO, UADDO.
8755        Cond = Cond.getNode()->getOperand(1);
8756        addTest = false;
8757        break;
8758      }
8759    }
8760  }
8761  CondOpcode = Cond.getOpcode();
8762  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8763      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8764      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8765       Cond.getOperand(0).getValueType() != MVT::i8)) {
8766    SDValue LHS = Cond.getOperand(0);
8767    SDValue RHS = Cond.getOperand(1);
8768    unsigned X86Opcode;
8769    unsigned X86Cond;
8770    SDVTList VTs;
8771    switch (CondOpcode) {
8772    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8773    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8774    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8775    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8776    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8777    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8778    default: llvm_unreachable("unexpected overflowing operator");
8779    }
8780    if (Inverted)
8781      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8782    if (CondOpcode == ISD::UMULO)
8783      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8784                          MVT::i32);
8785    else
8786      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8787
8788    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8789
8790    if (CondOpcode == ISD::UMULO)
8791      Cond = X86Op.getValue(2);
8792    else
8793      Cond = X86Op.getValue(1);
8794
8795    CC = DAG.getConstant(X86Cond, MVT::i8);
8796    addTest = false;
8797  } else {
8798    unsigned CondOpc;
8799    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8800      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8801      if (CondOpc == ISD::OR) {
8802        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8803        // two branches instead of an explicit OR instruction with a
8804        // separate test.
8805        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8806            isX86LogicalCmp(Cmp)) {
8807          CC = Cond.getOperand(0).getOperand(0);
8808          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8809                              Chain, Dest, CC, Cmp);
8810          CC = Cond.getOperand(1).getOperand(0);
8811          Cond = Cmp;
8812          addTest = false;
8813        }
8814      } else { // ISD::AND
8815        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8816        // two branches instead of an explicit AND instruction with a
8817        // separate test. However, we only do this if this block doesn't
8818        // have a fall-through edge, because this requires an explicit
8819        // jmp when the condition is false.
8820        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8821            isX86LogicalCmp(Cmp) &&
8822            Op.getNode()->hasOneUse()) {
8823          X86::CondCode CCode =
8824            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8825          CCode = X86::GetOppositeBranchCondition(CCode);
8826          CC = DAG.getConstant(CCode, MVT::i8);
8827          SDNode *User = *Op.getNode()->use_begin();
8828          // Look for an unconditional branch following this conditional branch.
8829          // We need this because we need to reverse the successors in order
8830          // to implement FCMP_OEQ.
8831          if (User->getOpcode() == ISD::BR) {
8832            SDValue FalseBB = User->getOperand(1);
8833            SDNode *NewBR =
8834              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8835            assert(NewBR == User);
8836            (void)NewBR;
8837            Dest = FalseBB;
8838
8839            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8840                                Chain, Dest, CC, Cmp);
8841            X86::CondCode CCode =
8842              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8843            CCode = X86::GetOppositeBranchCondition(CCode);
8844            CC = DAG.getConstant(CCode, MVT::i8);
8845            Cond = Cmp;
8846            addTest = false;
8847          }
8848        }
8849      }
8850    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8851      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8852      // It should be transformed during dag combiner except when the condition
8853      // is set by a arithmetics with overflow node.
8854      X86::CondCode CCode =
8855        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8856      CCode = X86::GetOppositeBranchCondition(CCode);
8857      CC = DAG.getConstant(CCode, MVT::i8);
8858      Cond = Cond.getOperand(0).getOperand(1);
8859      addTest = false;
8860    } else if (Cond.getOpcode() == ISD::SETCC &&
8861               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8862      // For FCMP_OEQ, we can emit
8863      // two branches instead of an explicit AND instruction with a
8864      // separate test. However, we only do this if this block doesn't
8865      // have a fall-through edge, because this requires an explicit
8866      // jmp when the condition is false.
8867      if (Op.getNode()->hasOneUse()) {
8868        SDNode *User = *Op.getNode()->use_begin();
8869        // Look for an unconditional branch following this conditional branch.
8870        // We need this because we need to reverse the successors in order
8871        // to implement FCMP_OEQ.
8872        if (User->getOpcode() == ISD::BR) {
8873          SDValue FalseBB = User->getOperand(1);
8874          SDNode *NewBR =
8875            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8876          assert(NewBR == User);
8877          (void)NewBR;
8878          Dest = FalseBB;
8879
8880          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8881                                    Cond.getOperand(0), Cond.getOperand(1));
8882          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8883          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8884                              Chain, Dest, CC, Cmp);
8885          CC = DAG.getConstant(X86::COND_P, MVT::i8);
8886          Cond = Cmp;
8887          addTest = false;
8888        }
8889      }
8890    } else if (Cond.getOpcode() == ISD::SETCC &&
8891               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8892      // For FCMP_UNE, we can emit
8893      // two branches instead of an explicit AND instruction with a
8894      // separate test. However, we only do this if this block doesn't
8895      // have a fall-through edge, because this requires an explicit
8896      // jmp when the condition is false.
8897      if (Op.getNode()->hasOneUse()) {
8898        SDNode *User = *Op.getNode()->use_begin();
8899        // Look for an unconditional branch following this conditional branch.
8900        // We need this because we need to reverse the successors in order
8901        // to implement FCMP_UNE.
8902        if (User->getOpcode() == ISD::BR) {
8903          SDValue FalseBB = User->getOperand(1);
8904          SDNode *NewBR =
8905            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8906          assert(NewBR == User);
8907          (void)NewBR;
8908
8909          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8910                                    Cond.getOperand(0), Cond.getOperand(1));
8911          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8912          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8913                              Chain, Dest, CC, Cmp);
8914          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8915          Cond = Cmp;
8916          addTest = false;
8917          Dest = FalseBB;
8918        }
8919      }
8920    }
8921  }
8922
8923  if (addTest) {
8924    // Look pass the truncate.
8925    if (Cond.getOpcode() == ISD::TRUNCATE)
8926      Cond = Cond.getOperand(0);
8927
8928    // We know the result of AND is compared against zero. Try to match
8929    // it to BT.
8930    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8931      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8932      if (NewSetCC.getNode()) {
8933        CC = NewSetCC.getOperand(0);
8934        Cond = NewSetCC.getOperand(1);
8935        addTest = false;
8936      }
8937    }
8938  }
8939
8940  if (addTest) {
8941    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8942    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8943  }
8944  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8945                     Chain, Dest, CC, Cond);
8946}
8947
8948
8949// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8950// Calls to _alloca is needed to probe the stack when allocating more than 4k
8951// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8952// that the guard pages used by the OS virtual memory manager are allocated in
8953// correct sequence.
8954SDValue
8955X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8956                                           SelectionDAG &DAG) const {
8957  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8958          getTargetMachine().Options.EnableSegmentedStacks) &&
8959         "This should be used only on Windows targets or when segmented stacks "
8960         "are being used");
8961  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8962  DebugLoc dl = Op.getDebugLoc();
8963
8964  // Get the inputs.
8965  SDValue Chain = Op.getOperand(0);
8966  SDValue Size  = Op.getOperand(1);
8967  // FIXME: Ensure alignment here
8968
8969  bool Is64Bit = Subtarget->is64Bit();
8970  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8971
8972  if (getTargetMachine().Options.EnableSegmentedStacks) {
8973    MachineFunction &MF = DAG.getMachineFunction();
8974    MachineRegisterInfo &MRI = MF.getRegInfo();
8975
8976    if (Is64Bit) {
8977      // The 64 bit implementation of segmented stacks needs to clobber both r10
8978      // r11. This makes it impossible to use it along with nested parameters.
8979      const Function *F = MF.getFunction();
8980
8981      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8982           I != E; I++)
8983        if (I->hasNestAttr())
8984          report_fatal_error("Cannot use segmented stacks with functions that "
8985                             "have nested arguments.");
8986    }
8987
8988    const TargetRegisterClass *AddrRegClass =
8989      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8990    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8991    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8992    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8993                                DAG.getRegister(Vreg, SPTy));
8994    SDValue Ops1[2] = { Value, Chain };
8995    return DAG.getMergeValues(Ops1, 2, dl);
8996  } else {
8997    SDValue Flag;
8998    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8999
9000    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9001    Flag = Chain.getValue(1);
9002    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9003
9004    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9005    Flag = Chain.getValue(1);
9006
9007    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9008
9009    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9010    return DAG.getMergeValues(Ops1, 2, dl);
9011  }
9012}
9013
9014SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9015  MachineFunction &MF = DAG.getMachineFunction();
9016  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9017
9018  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9019  DebugLoc DL = Op.getDebugLoc();
9020
9021  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9022    // vastart just stores the address of the VarArgsFrameIndex slot into the
9023    // memory location argument.
9024    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9025                                   getPointerTy());
9026    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9027                        MachinePointerInfo(SV), false, false, 0);
9028  }
9029
9030  // __va_list_tag:
9031  //   gp_offset         (0 - 6 * 8)
9032  //   fp_offset         (48 - 48 + 8 * 16)
9033  //   overflow_arg_area (point to parameters coming in memory).
9034  //   reg_save_area
9035  SmallVector<SDValue, 8> MemOps;
9036  SDValue FIN = Op.getOperand(1);
9037  // Store gp_offset
9038  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9039                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9040                                               MVT::i32),
9041                               FIN, MachinePointerInfo(SV), false, false, 0);
9042  MemOps.push_back(Store);
9043
9044  // Store fp_offset
9045  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9046                    FIN, DAG.getIntPtrConstant(4));
9047  Store = DAG.getStore(Op.getOperand(0), DL,
9048                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9049                                       MVT::i32),
9050                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9051  MemOps.push_back(Store);
9052
9053  // Store ptr to overflow_arg_area
9054  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9055                    FIN, DAG.getIntPtrConstant(4));
9056  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9057                                    getPointerTy());
9058  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9059                       MachinePointerInfo(SV, 8),
9060                       false, false, 0);
9061  MemOps.push_back(Store);
9062
9063  // Store ptr to reg_save_area.
9064  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9065                    FIN, DAG.getIntPtrConstant(8));
9066  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9067                                    getPointerTy());
9068  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9069                       MachinePointerInfo(SV, 16), false, false, 0);
9070  MemOps.push_back(Store);
9071  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9072                     &MemOps[0], MemOps.size());
9073}
9074
9075SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9076  assert(Subtarget->is64Bit() &&
9077         "LowerVAARG only handles 64-bit va_arg!");
9078  assert((Subtarget->isTargetLinux() ||
9079          Subtarget->isTargetDarwin()) &&
9080          "Unhandled target in LowerVAARG");
9081  assert(Op.getNode()->getNumOperands() == 4);
9082  SDValue Chain = Op.getOperand(0);
9083  SDValue SrcPtr = Op.getOperand(1);
9084  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9085  unsigned Align = Op.getConstantOperandVal(3);
9086  DebugLoc dl = Op.getDebugLoc();
9087
9088  EVT ArgVT = Op.getNode()->getValueType(0);
9089  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9090  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9091  uint8_t ArgMode;
9092
9093  // Decide which area this value should be read from.
9094  // TODO: Implement the AMD64 ABI in its entirety. This simple
9095  // selection mechanism works only for the basic types.
9096  if (ArgVT == MVT::f80) {
9097    llvm_unreachable("va_arg for f80 not yet implemented");
9098  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9099    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9100  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9101    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9102  } else {
9103    llvm_unreachable("Unhandled argument type in LowerVAARG");
9104  }
9105
9106  if (ArgMode == 2) {
9107    // Sanity Check: Make sure using fp_offset makes sense.
9108    assert(!getTargetMachine().Options.UseSoftFloat &&
9109           !(DAG.getMachineFunction()
9110                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9111           Subtarget->hasSSE1());
9112  }
9113
9114  // Insert VAARG_64 node into the DAG
9115  // VAARG_64 returns two values: Variable Argument Address, Chain
9116  SmallVector<SDValue, 11> InstOps;
9117  InstOps.push_back(Chain);
9118  InstOps.push_back(SrcPtr);
9119  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9120  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9121  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9122  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9123  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9124                                          VTs, &InstOps[0], InstOps.size(),
9125                                          MVT::i64,
9126                                          MachinePointerInfo(SV),
9127                                          /*Align=*/0,
9128                                          /*Volatile=*/false,
9129                                          /*ReadMem=*/true,
9130                                          /*WriteMem=*/true);
9131  Chain = VAARG.getValue(1);
9132
9133  // Load the next argument and return it
9134  return DAG.getLoad(ArgVT, dl,
9135                     Chain,
9136                     VAARG,
9137                     MachinePointerInfo(),
9138                     false, false, false, 0);
9139}
9140
9141SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9142  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9143  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9144  SDValue Chain = Op.getOperand(0);
9145  SDValue DstPtr = Op.getOperand(1);
9146  SDValue SrcPtr = Op.getOperand(2);
9147  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9148  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9149  DebugLoc DL = Op.getDebugLoc();
9150
9151  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9152                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9153                       false,
9154                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9155}
9156
9157// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9158// may or may not be a constant. Takes immediate version of shift as input.
9159static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9160                                   SDValue SrcOp, SDValue ShAmt,
9161                                   SelectionDAG &DAG) {
9162  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9163
9164  if (isa<ConstantSDNode>(ShAmt)) {
9165    switch (Opc) {
9166      default: llvm_unreachable("Unknown target vector shift node");
9167      case X86ISD::VSHLI:
9168      case X86ISD::VSRLI:
9169      case X86ISD::VSRAI:
9170        return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9171    }
9172  }
9173
9174  // Change opcode to non-immediate version
9175  switch (Opc) {
9176    default: llvm_unreachable("Unknown target vector shift node");
9177    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9178    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9179    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9180  }
9181
9182  // Need to build a vector containing shift amount
9183  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9184  SDValue ShOps[4];
9185  ShOps[0] = ShAmt;
9186  ShOps[1] = DAG.getConstant(0, MVT::i32);
9187  ShOps[2] = DAG.getUNDEF(MVT::i32);
9188  ShOps[3] = DAG.getUNDEF(MVT::i32);
9189  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9190  ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9191  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9192}
9193
9194SDValue
9195X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9196  DebugLoc dl = Op.getDebugLoc();
9197  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9198  switch (IntNo) {
9199  default: return SDValue();    // Don't custom lower most intrinsics.
9200  // Comparison intrinsics.
9201  case Intrinsic::x86_sse_comieq_ss:
9202  case Intrinsic::x86_sse_comilt_ss:
9203  case Intrinsic::x86_sse_comile_ss:
9204  case Intrinsic::x86_sse_comigt_ss:
9205  case Intrinsic::x86_sse_comige_ss:
9206  case Intrinsic::x86_sse_comineq_ss:
9207  case Intrinsic::x86_sse_ucomieq_ss:
9208  case Intrinsic::x86_sse_ucomilt_ss:
9209  case Intrinsic::x86_sse_ucomile_ss:
9210  case Intrinsic::x86_sse_ucomigt_ss:
9211  case Intrinsic::x86_sse_ucomige_ss:
9212  case Intrinsic::x86_sse_ucomineq_ss:
9213  case Intrinsic::x86_sse2_comieq_sd:
9214  case Intrinsic::x86_sse2_comilt_sd:
9215  case Intrinsic::x86_sse2_comile_sd:
9216  case Intrinsic::x86_sse2_comigt_sd:
9217  case Intrinsic::x86_sse2_comige_sd:
9218  case Intrinsic::x86_sse2_comineq_sd:
9219  case Intrinsic::x86_sse2_ucomieq_sd:
9220  case Intrinsic::x86_sse2_ucomilt_sd:
9221  case Intrinsic::x86_sse2_ucomile_sd:
9222  case Intrinsic::x86_sse2_ucomigt_sd:
9223  case Intrinsic::x86_sse2_ucomige_sd:
9224  case Intrinsic::x86_sse2_ucomineq_sd: {
9225    unsigned Opc = 0;
9226    ISD::CondCode CC = ISD::SETCC_INVALID;
9227    switch (IntNo) {
9228    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9229    case Intrinsic::x86_sse_comieq_ss:
9230    case Intrinsic::x86_sse2_comieq_sd:
9231      Opc = X86ISD::COMI;
9232      CC = ISD::SETEQ;
9233      break;
9234    case Intrinsic::x86_sse_comilt_ss:
9235    case Intrinsic::x86_sse2_comilt_sd:
9236      Opc = X86ISD::COMI;
9237      CC = ISD::SETLT;
9238      break;
9239    case Intrinsic::x86_sse_comile_ss:
9240    case Intrinsic::x86_sse2_comile_sd:
9241      Opc = X86ISD::COMI;
9242      CC = ISD::SETLE;
9243      break;
9244    case Intrinsic::x86_sse_comigt_ss:
9245    case Intrinsic::x86_sse2_comigt_sd:
9246      Opc = X86ISD::COMI;
9247      CC = ISD::SETGT;
9248      break;
9249    case Intrinsic::x86_sse_comige_ss:
9250    case Intrinsic::x86_sse2_comige_sd:
9251      Opc = X86ISD::COMI;
9252      CC = ISD::SETGE;
9253      break;
9254    case Intrinsic::x86_sse_comineq_ss:
9255    case Intrinsic::x86_sse2_comineq_sd:
9256      Opc = X86ISD::COMI;
9257      CC = ISD::SETNE;
9258      break;
9259    case Intrinsic::x86_sse_ucomieq_ss:
9260    case Intrinsic::x86_sse2_ucomieq_sd:
9261      Opc = X86ISD::UCOMI;
9262      CC = ISD::SETEQ;
9263      break;
9264    case Intrinsic::x86_sse_ucomilt_ss:
9265    case Intrinsic::x86_sse2_ucomilt_sd:
9266      Opc = X86ISD::UCOMI;
9267      CC = ISD::SETLT;
9268      break;
9269    case Intrinsic::x86_sse_ucomile_ss:
9270    case Intrinsic::x86_sse2_ucomile_sd:
9271      Opc = X86ISD::UCOMI;
9272      CC = ISD::SETLE;
9273      break;
9274    case Intrinsic::x86_sse_ucomigt_ss:
9275    case Intrinsic::x86_sse2_ucomigt_sd:
9276      Opc = X86ISD::UCOMI;
9277      CC = ISD::SETGT;
9278      break;
9279    case Intrinsic::x86_sse_ucomige_ss:
9280    case Intrinsic::x86_sse2_ucomige_sd:
9281      Opc = X86ISD::UCOMI;
9282      CC = ISD::SETGE;
9283      break;
9284    case Intrinsic::x86_sse_ucomineq_ss:
9285    case Intrinsic::x86_sse2_ucomineq_sd:
9286      Opc = X86ISD::UCOMI;
9287      CC = ISD::SETNE;
9288      break;
9289    }
9290
9291    SDValue LHS = Op.getOperand(1);
9292    SDValue RHS = Op.getOperand(2);
9293    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9294    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9295    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9296    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9297                                DAG.getConstant(X86CC, MVT::i8), Cond);
9298    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9299  }
9300  // XOP comparison intrinsics
9301  case Intrinsic::x86_xop_vpcomltb:
9302  case Intrinsic::x86_xop_vpcomltw:
9303  case Intrinsic::x86_xop_vpcomltd:
9304  case Intrinsic::x86_xop_vpcomltq:
9305  case Intrinsic::x86_xop_vpcomltub:
9306  case Intrinsic::x86_xop_vpcomltuw:
9307  case Intrinsic::x86_xop_vpcomltud:
9308  case Intrinsic::x86_xop_vpcomltuq:
9309  case Intrinsic::x86_xop_vpcomleb:
9310  case Intrinsic::x86_xop_vpcomlew:
9311  case Intrinsic::x86_xop_vpcomled:
9312  case Intrinsic::x86_xop_vpcomleq:
9313  case Intrinsic::x86_xop_vpcomleub:
9314  case Intrinsic::x86_xop_vpcomleuw:
9315  case Intrinsic::x86_xop_vpcomleud:
9316  case Intrinsic::x86_xop_vpcomleuq:
9317  case Intrinsic::x86_xop_vpcomgtb:
9318  case Intrinsic::x86_xop_vpcomgtw:
9319  case Intrinsic::x86_xop_vpcomgtd:
9320  case Intrinsic::x86_xop_vpcomgtq:
9321  case Intrinsic::x86_xop_vpcomgtub:
9322  case Intrinsic::x86_xop_vpcomgtuw:
9323  case Intrinsic::x86_xop_vpcomgtud:
9324  case Intrinsic::x86_xop_vpcomgtuq:
9325  case Intrinsic::x86_xop_vpcomgeb:
9326  case Intrinsic::x86_xop_vpcomgew:
9327  case Intrinsic::x86_xop_vpcomged:
9328  case Intrinsic::x86_xop_vpcomgeq:
9329  case Intrinsic::x86_xop_vpcomgeub:
9330  case Intrinsic::x86_xop_vpcomgeuw:
9331  case Intrinsic::x86_xop_vpcomgeud:
9332  case Intrinsic::x86_xop_vpcomgeuq:
9333  case Intrinsic::x86_xop_vpcomeqb:
9334  case Intrinsic::x86_xop_vpcomeqw:
9335  case Intrinsic::x86_xop_vpcomeqd:
9336  case Intrinsic::x86_xop_vpcomeqq:
9337  case Intrinsic::x86_xop_vpcomequb:
9338  case Intrinsic::x86_xop_vpcomequw:
9339  case Intrinsic::x86_xop_vpcomequd:
9340  case Intrinsic::x86_xop_vpcomequq:
9341  case Intrinsic::x86_xop_vpcomneb:
9342  case Intrinsic::x86_xop_vpcomnew:
9343  case Intrinsic::x86_xop_vpcomned:
9344  case Intrinsic::x86_xop_vpcomneq:
9345  case Intrinsic::x86_xop_vpcomneub:
9346  case Intrinsic::x86_xop_vpcomneuw:
9347  case Intrinsic::x86_xop_vpcomneud:
9348  case Intrinsic::x86_xop_vpcomneuq:
9349  case Intrinsic::x86_xop_vpcomfalseb:
9350  case Intrinsic::x86_xop_vpcomfalsew:
9351  case Intrinsic::x86_xop_vpcomfalsed:
9352  case Intrinsic::x86_xop_vpcomfalseq:
9353  case Intrinsic::x86_xop_vpcomfalseub:
9354  case Intrinsic::x86_xop_vpcomfalseuw:
9355  case Intrinsic::x86_xop_vpcomfalseud:
9356  case Intrinsic::x86_xop_vpcomfalseuq:
9357  case Intrinsic::x86_xop_vpcomtrueb:
9358  case Intrinsic::x86_xop_vpcomtruew:
9359  case Intrinsic::x86_xop_vpcomtrued:
9360  case Intrinsic::x86_xop_vpcomtrueq:
9361  case Intrinsic::x86_xop_vpcomtrueub:
9362  case Intrinsic::x86_xop_vpcomtrueuw:
9363  case Intrinsic::x86_xop_vpcomtrueud:
9364  case Intrinsic::x86_xop_vpcomtrueuq: {
9365    unsigned CC = 0;
9366    unsigned Opc = 0;
9367
9368    switch (IntNo) {
9369    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9370    case Intrinsic::x86_xop_vpcomltb:
9371    case Intrinsic::x86_xop_vpcomltw:
9372    case Intrinsic::x86_xop_vpcomltd:
9373    case Intrinsic::x86_xop_vpcomltq:
9374      CC = 0;
9375      Opc = X86ISD::VPCOM;
9376      break;
9377    case Intrinsic::x86_xop_vpcomltub:
9378    case Intrinsic::x86_xop_vpcomltuw:
9379    case Intrinsic::x86_xop_vpcomltud:
9380    case Intrinsic::x86_xop_vpcomltuq:
9381      CC = 0;
9382      Opc = X86ISD::VPCOMU;
9383      break;
9384    case Intrinsic::x86_xop_vpcomleb:
9385    case Intrinsic::x86_xop_vpcomlew:
9386    case Intrinsic::x86_xop_vpcomled:
9387    case Intrinsic::x86_xop_vpcomleq:
9388      CC = 1;
9389      Opc = X86ISD::VPCOM;
9390      break;
9391    case Intrinsic::x86_xop_vpcomleub:
9392    case Intrinsic::x86_xop_vpcomleuw:
9393    case Intrinsic::x86_xop_vpcomleud:
9394    case Intrinsic::x86_xop_vpcomleuq:
9395      CC = 1;
9396      Opc = X86ISD::VPCOMU;
9397      break;
9398    case Intrinsic::x86_xop_vpcomgtb:
9399    case Intrinsic::x86_xop_vpcomgtw:
9400    case Intrinsic::x86_xop_vpcomgtd:
9401    case Intrinsic::x86_xop_vpcomgtq:
9402      CC = 2;
9403      Opc = X86ISD::VPCOM;
9404      break;
9405    case Intrinsic::x86_xop_vpcomgtub:
9406    case Intrinsic::x86_xop_vpcomgtuw:
9407    case Intrinsic::x86_xop_vpcomgtud:
9408    case Intrinsic::x86_xop_vpcomgtuq:
9409      CC = 2;
9410      Opc = X86ISD::VPCOMU;
9411      break;
9412    case Intrinsic::x86_xop_vpcomgeb:
9413    case Intrinsic::x86_xop_vpcomgew:
9414    case Intrinsic::x86_xop_vpcomged:
9415    case Intrinsic::x86_xop_vpcomgeq:
9416      CC = 3;
9417      Opc = X86ISD::VPCOM;
9418      break;
9419    case Intrinsic::x86_xop_vpcomgeub:
9420    case Intrinsic::x86_xop_vpcomgeuw:
9421    case Intrinsic::x86_xop_vpcomgeud:
9422    case Intrinsic::x86_xop_vpcomgeuq:
9423      CC = 3;
9424      Opc = X86ISD::VPCOMU;
9425      break;
9426    case Intrinsic::x86_xop_vpcomeqb:
9427    case Intrinsic::x86_xop_vpcomeqw:
9428    case Intrinsic::x86_xop_vpcomeqd:
9429    case Intrinsic::x86_xop_vpcomeqq:
9430      CC = 4;
9431      Opc = X86ISD::VPCOM;
9432      break;
9433    case Intrinsic::x86_xop_vpcomequb:
9434    case Intrinsic::x86_xop_vpcomequw:
9435    case Intrinsic::x86_xop_vpcomequd:
9436    case Intrinsic::x86_xop_vpcomequq:
9437      CC = 4;
9438      Opc = X86ISD::VPCOMU;
9439      break;
9440    case Intrinsic::x86_xop_vpcomneb:
9441    case Intrinsic::x86_xop_vpcomnew:
9442    case Intrinsic::x86_xop_vpcomned:
9443    case Intrinsic::x86_xop_vpcomneq:
9444      CC = 5;
9445      Opc = X86ISD::VPCOM;
9446      break;
9447    case Intrinsic::x86_xop_vpcomneub:
9448    case Intrinsic::x86_xop_vpcomneuw:
9449    case Intrinsic::x86_xop_vpcomneud:
9450    case Intrinsic::x86_xop_vpcomneuq:
9451      CC = 5;
9452      Opc = X86ISD::VPCOMU;
9453      break;
9454    case Intrinsic::x86_xop_vpcomfalseb:
9455    case Intrinsic::x86_xop_vpcomfalsew:
9456    case Intrinsic::x86_xop_vpcomfalsed:
9457    case Intrinsic::x86_xop_vpcomfalseq:
9458      CC = 6;
9459      Opc = X86ISD::VPCOM;
9460      break;
9461    case Intrinsic::x86_xop_vpcomfalseub:
9462    case Intrinsic::x86_xop_vpcomfalseuw:
9463    case Intrinsic::x86_xop_vpcomfalseud:
9464    case Intrinsic::x86_xop_vpcomfalseuq:
9465      CC = 6;
9466      Opc = X86ISD::VPCOMU;
9467      break;
9468    case Intrinsic::x86_xop_vpcomtrueb:
9469    case Intrinsic::x86_xop_vpcomtruew:
9470    case Intrinsic::x86_xop_vpcomtrued:
9471    case Intrinsic::x86_xop_vpcomtrueq:
9472      CC = 7;
9473      Opc = X86ISD::VPCOM;
9474      break;
9475    case Intrinsic::x86_xop_vpcomtrueub:
9476    case Intrinsic::x86_xop_vpcomtrueuw:
9477    case Intrinsic::x86_xop_vpcomtrueud:
9478    case Intrinsic::x86_xop_vpcomtrueuq:
9479      CC = 7;
9480      Opc = X86ISD::VPCOMU;
9481      break;
9482    }
9483
9484    SDValue LHS = Op.getOperand(1);
9485    SDValue RHS = Op.getOperand(2);
9486    return DAG.getNode(Opc, dl, Op.getValueType(), LHS, RHS,
9487                       DAG.getConstant(CC, MVT::i8));
9488  }
9489
9490  // Arithmetic intrinsics.
9491  case Intrinsic::x86_sse2_pmulu_dq:
9492  case Intrinsic::x86_avx2_pmulu_dq:
9493    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9494                       Op.getOperand(1), Op.getOperand(2));
9495  case Intrinsic::x86_sse3_hadd_ps:
9496  case Intrinsic::x86_sse3_hadd_pd:
9497  case Intrinsic::x86_avx_hadd_ps_256:
9498  case Intrinsic::x86_avx_hadd_pd_256:
9499    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9500                       Op.getOperand(1), Op.getOperand(2));
9501  case Intrinsic::x86_sse3_hsub_ps:
9502  case Intrinsic::x86_sse3_hsub_pd:
9503  case Intrinsic::x86_avx_hsub_ps_256:
9504  case Intrinsic::x86_avx_hsub_pd_256:
9505    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9506                       Op.getOperand(1), Op.getOperand(2));
9507  case Intrinsic::x86_ssse3_phadd_w_128:
9508  case Intrinsic::x86_ssse3_phadd_d_128:
9509  case Intrinsic::x86_avx2_phadd_w:
9510  case Intrinsic::x86_avx2_phadd_d:
9511    return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
9512                       Op.getOperand(1), Op.getOperand(2));
9513  case Intrinsic::x86_ssse3_phsub_w_128:
9514  case Intrinsic::x86_ssse3_phsub_d_128:
9515  case Intrinsic::x86_avx2_phsub_w:
9516  case Intrinsic::x86_avx2_phsub_d:
9517    return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
9518                       Op.getOperand(1), Op.getOperand(2));
9519  case Intrinsic::x86_avx2_psllv_d:
9520  case Intrinsic::x86_avx2_psllv_q:
9521  case Intrinsic::x86_avx2_psllv_d_256:
9522  case Intrinsic::x86_avx2_psllv_q_256:
9523    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9524                      Op.getOperand(1), Op.getOperand(2));
9525  case Intrinsic::x86_avx2_psrlv_d:
9526  case Intrinsic::x86_avx2_psrlv_q:
9527  case Intrinsic::x86_avx2_psrlv_d_256:
9528  case Intrinsic::x86_avx2_psrlv_q_256:
9529    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9530                      Op.getOperand(1), Op.getOperand(2));
9531  case Intrinsic::x86_avx2_psrav_d:
9532  case Intrinsic::x86_avx2_psrav_d_256:
9533    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9534                      Op.getOperand(1), Op.getOperand(2));
9535  case Intrinsic::x86_ssse3_pshuf_b_128:
9536  case Intrinsic::x86_avx2_pshuf_b:
9537    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9538                       Op.getOperand(1), Op.getOperand(2));
9539  case Intrinsic::x86_ssse3_psign_b_128:
9540  case Intrinsic::x86_ssse3_psign_w_128:
9541  case Intrinsic::x86_ssse3_psign_d_128:
9542  case Intrinsic::x86_avx2_psign_b:
9543  case Intrinsic::x86_avx2_psign_w:
9544  case Intrinsic::x86_avx2_psign_d:
9545    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9546                       Op.getOperand(1), Op.getOperand(2));
9547  case Intrinsic::x86_sse41_insertps:
9548    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9549                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9550  case Intrinsic::x86_avx_vperm2f128_ps_256:
9551  case Intrinsic::x86_avx_vperm2f128_pd_256:
9552  case Intrinsic::x86_avx_vperm2f128_si_256:
9553  case Intrinsic::x86_avx2_vperm2i128:
9554    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9555                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9556  case Intrinsic::x86_avx_vpermil_ps:
9557  case Intrinsic::x86_avx_vpermil_pd:
9558  case Intrinsic::x86_avx_vpermil_ps_256:
9559  case Intrinsic::x86_avx_vpermil_pd_256:
9560    return DAG.getNode(X86ISD::VPERMILP, dl, Op.getValueType(),
9561                       Op.getOperand(1), Op.getOperand(2));
9562
9563  // ptest and testp intrinsics. The intrinsic these come from are designed to
9564  // return an integer value, not just an instruction so lower it to the ptest
9565  // or testp pattern and a setcc for the result.
9566  case Intrinsic::x86_sse41_ptestz:
9567  case Intrinsic::x86_sse41_ptestc:
9568  case Intrinsic::x86_sse41_ptestnzc:
9569  case Intrinsic::x86_avx_ptestz_256:
9570  case Intrinsic::x86_avx_ptestc_256:
9571  case Intrinsic::x86_avx_ptestnzc_256:
9572  case Intrinsic::x86_avx_vtestz_ps:
9573  case Intrinsic::x86_avx_vtestc_ps:
9574  case Intrinsic::x86_avx_vtestnzc_ps:
9575  case Intrinsic::x86_avx_vtestz_pd:
9576  case Intrinsic::x86_avx_vtestc_pd:
9577  case Intrinsic::x86_avx_vtestnzc_pd:
9578  case Intrinsic::x86_avx_vtestz_ps_256:
9579  case Intrinsic::x86_avx_vtestc_ps_256:
9580  case Intrinsic::x86_avx_vtestnzc_ps_256:
9581  case Intrinsic::x86_avx_vtestz_pd_256:
9582  case Intrinsic::x86_avx_vtestc_pd_256:
9583  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9584    bool IsTestPacked = false;
9585    unsigned X86CC = 0;
9586    switch (IntNo) {
9587    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9588    case Intrinsic::x86_avx_vtestz_ps:
9589    case Intrinsic::x86_avx_vtestz_pd:
9590    case Intrinsic::x86_avx_vtestz_ps_256:
9591    case Intrinsic::x86_avx_vtestz_pd_256:
9592      IsTestPacked = true; // Fallthrough
9593    case Intrinsic::x86_sse41_ptestz:
9594    case Intrinsic::x86_avx_ptestz_256:
9595      // ZF = 1
9596      X86CC = X86::COND_E;
9597      break;
9598    case Intrinsic::x86_avx_vtestc_ps:
9599    case Intrinsic::x86_avx_vtestc_pd:
9600    case Intrinsic::x86_avx_vtestc_ps_256:
9601    case Intrinsic::x86_avx_vtestc_pd_256:
9602      IsTestPacked = true; // Fallthrough
9603    case Intrinsic::x86_sse41_ptestc:
9604    case Intrinsic::x86_avx_ptestc_256:
9605      // CF = 1
9606      X86CC = X86::COND_B;
9607      break;
9608    case Intrinsic::x86_avx_vtestnzc_ps:
9609    case Intrinsic::x86_avx_vtestnzc_pd:
9610    case Intrinsic::x86_avx_vtestnzc_ps_256:
9611    case Intrinsic::x86_avx_vtestnzc_pd_256:
9612      IsTestPacked = true; // Fallthrough
9613    case Intrinsic::x86_sse41_ptestnzc:
9614    case Intrinsic::x86_avx_ptestnzc_256:
9615      // ZF and CF = 0
9616      X86CC = X86::COND_A;
9617      break;
9618    }
9619
9620    SDValue LHS = Op.getOperand(1);
9621    SDValue RHS = Op.getOperand(2);
9622    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9623    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9624    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9625    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9626    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9627  }
9628
9629  // SSE/AVX shift intrinsics
9630  case Intrinsic::x86_sse2_psll_w:
9631  case Intrinsic::x86_sse2_psll_d:
9632  case Intrinsic::x86_sse2_psll_q:
9633  case Intrinsic::x86_avx2_psll_w:
9634  case Intrinsic::x86_avx2_psll_d:
9635  case Intrinsic::x86_avx2_psll_q:
9636    return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
9637                       Op.getOperand(1), Op.getOperand(2));
9638  case Intrinsic::x86_sse2_psrl_w:
9639  case Intrinsic::x86_sse2_psrl_d:
9640  case Intrinsic::x86_sse2_psrl_q:
9641  case Intrinsic::x86_avx2_psrl_w:
9642  case Intrinsic::x86_avx2_psrl_d:
9643  case Intrinsic::x86_avx2_psrl_q:
9644    return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
9645                       Op.getOperand(1), Op.getOperand(2));
9646  case Intrinsic::x86_sse2_psra_w:
9647  case Intrinsic::x86_sse2_psra_d:
9648  case Intrinsic::x86_avx2_psra_w:
9649  case Intrinsic::x86_avx2_psra_d:
9650    return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
9651                       Op.getOperand(1), Op.getOperand(2));
9652  case Intrinsic::x86_sse2_pslli_w:
9653  case Intrinsic::x86_sse2_pslli_d:
9654  case Intrinsic::x86_sse2_pslli_q:
9655  case Intrinsic::x86_avx2_pslli_w:
9656  case Intrinsic::x86_avx2_pslli_d:
9657  case Intrinsic::x86_avx2_pslli_q:
9658    return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
9659                               Op.getOperand(1), Op.getOperand(2), DAG);
9660  case Intrinsic::x86_sse2_psrli_w:
9661  case Intrinsic::x86_sse2_psrli_d:
9662  case Intrinsic::x86_sse2_psrli_q:
9663  case Intrinsic::x86_avx2_psrli_w:
9664  case Intrinsic::x86_avx2_psrli_d:
9665  case Intrinsic::x86_avx2_psrli_q:
9666    return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
9667                               Op.getOperand(1), Op.getOperand(2), DAG);
9668  case Intrinsic::x86_sse2_psrai_w:
9669  case Intrinsic::x86_sse2_psrai_d:
9670  case Intrinsic::x86_avx2_psrai_w:
9671  case Intrinsic::x86_avx2_psrai_d:
9672    return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
9673                               Op.getOperand(1), Op.getOperand(2), DAG);
9674  // Fix vector shift instructions where the last operand is a non-immediate
9675  // i32 value.
9676  case Intrinsic::x86_mmx_pslli_w:
9677  case Intrinsic::x86_mmx_pslli_d:
9678  case Intrinsic::x86_mmx_pslli_q:
9679  case Intrinsic::x86_mmx_psrli_w:
9680  case Intrinsic::x86_mmx_psrli_d:
9681  case Intrinsic::x86_mmx_psrli_q:
9682  case Intrinsic::x86_mmx_psrai_w:
9683  case Intrinsic::x86_mmx_psrai_d: {
9684    SDValue ShAmt = Op.getOperand(2);
9685    if (isa<ConstantSDNode>(ShAmt))
9686      return SDValue();
9687
9688    unsigned NewIntNo = 0;
9689    switch (IntNo) {
9690    case Intrinsic::x86_mmx_pslli_w:
9691      NewIntNo = Intrinsic::x86_mmx_psll_w;
9692      break;
9693    case Intrinsic::x86_mmx_pslli_d:
9694      NewIntNo = Intrinsic::x86_mmx_psll_d;
9695      break;
9696    case Intrinsic::x86_mmx_pslli_q:
9697      NewIntNo = Intrinsic::x86_mmx_psll_q;
9698      break;
9699    case Intrinsic::x86_mmx_psrli_w:
9700      NewIntNo = Intrinsic::x86_mmx_psrl_w;
9701      break;
9702    case Intrinsic::x86_mmx_psrli_d:
9703      NewIntNo = Intrinsic::x86_mmx_psrl_d;
9704      break;
9705    case Intrinsic::x86_mmx_psrli_q:
9706      NewIntNo = Intrinsic::x86_mmx_psrl_q;
9707      break;
9708    case Intrinsic::x86_mmx_psrai_w:
9709      NewIntNo = Intrinsic::x86_mmx_psra_w;
9710      break;
9711    case Intrinsic::x86_mmx_psrai_d:
9712      NewIntNo = Intrinsic::x86_mmx_psra_d;
9713      break;
9714    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9715    }
9716
9717    // The vector shift intrinsics with scalars uses 32b shift amounts but
9718    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9719    // to be zero.
9720    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
9721                         DAG.getConstant(0, MVT::i32));
9722// FIXME this must be lowered to get rid of the invalid type.
9723
9724    EVT VT = Op.getValueType();
9725    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9726    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9727                       DAG.getConstant(NewIntNo, MVT::i32),
9728                       Op.getOperand(1), ShAmt);
9729  }
9730  }
9731}
9732
9733SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9734                                           SelectionDAG &DAG) const {
9735  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9736  MFI->setReturnAddressIsTaken(true);
9737
9738  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9739  DebugLoc dl = Op.getDebugLoc();
9740
9741  if (Depth > 0) {
9742    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9743    SDValue Offset =
9744      DAG.getConstant(TD->getPointerSize(),
9745                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9746    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9747                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9748                                   FrameAddr, Offset),
9749                       MachinePointerInfo(), false, false, false, 0);
9750  }
9751
9752  // Just load the return address.
9753  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9754  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9755                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9756}
9757
9758SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9759  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9760  MFI->setFrameAddressIsTaken(true);
9761
9762  EVT VT = Op.getValueType();
9763  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9764  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9765  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9766  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9767  while (Depth--)
9768    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9769                            MachinePointerInfo(),
9770                            false, false, false, 0);
9771  return FrameAddr;
9772}
9773
9774SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9775                                                     SelectionDAG &DAG) const {
9776  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9777}
9778
9779SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9780  MachineFunction &MF = DAG.getMachineFunction();
9781  SDValue Chain     = Op.getOperand(0);
9782  SDValue Offset    = Op.getOperand(1);
9783  SDValue Handler   = Op.getOperand(2);
9784  DebugLoc dl       = Op.getDebugLoc();
9785
9786  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9787                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9788                                     getPointerTy());
9789  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9790
9791  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9792                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9793  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9794  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9795                       false, false, 0);
9796  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9797  MF.getRegInfo().addLiveOut(StoreAddrReg);
9798
9799  return DAG.getNode(X86ISD::EH_RETURN, dl,
9800                     MVT::Other,
9801                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9802}
9803
9804SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9805                                                  SelectionDAG &DAG) const {
9806  return Op.getOperand(0);
9807}
9808
9809SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9810                                                SelectionDAG &DAG) const {
9811  SDValue Root = Op.getOperand(0);
9812  SDValue Trmp = Op.getOperand(1); // trampoline
9813  SDValue FPtr = Op.getOperand(2); // nested function
9814  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9815  DebugLoc dl  = Op.getDebugLoc();
9816
9817  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9818
9819  if (Subtarget->is64Bit()) {
9820    SDValue OutChains[6];
9821
9822    // Large code-model.
9823    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9824    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9825
9826    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9827    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9828
9829    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9830
9831    // Load the pointer to the nested function into R11.
9832    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9833    SDValue Addr = Trmp;
9834    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9835                                Addr, MachinePointerInfo(TrmpAddr),
9836                                false, false, 0);
9837
9838    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9839                       DAG.getConstant(2, MVT::i64));
9840    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9841                                MachinePointerInfo(TrmpAddr, 2),
9842                                false, false, 2);
9843
9844    // Load the 'nest' parameter value into R10.
9845    // R10 is specified in X86CallingConv.td
9846    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9847    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9848                       DAG.getConstant(10, MVT::i64));
9849    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9850                                Addr, MachinePointerInfo(TrmpAddr, 10),
9851                                false, false, 0);
9852
9853    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9854                       DAG.getConstant(12, MVT::i64));
9855    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9856                                MachinePointerInfo(TrmpAddr, 12),
9857                                false, false, 2);
9858
9859    // Jump to the nested function.
9860    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9861    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9862                       DAG.getConstant(20, MVT::i64));
9863    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9864                                Addr, MachinePointerInfo(TrmpAddr, 20),
9865                                false, false, 0);
9866
9867    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9868    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9869                       DAG.getConstant(22, MVT::i64));
9870    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9871                                MachinePointerInfo(TrmpAddr, 22),
9872                                false, false, 0);
9873
9874    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9875  } else {
9876    const Function *Func =
9877      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9878    CallingConv::ID CC = Func->getCallingConv();
9879    unsigned NestReg;
9880
9881    switch (CC) {
9882    default:
9883      llvm_unreachable("Unsupported calling convention");
9884    case CallingConv::C:
9885    case CallingConv::X86_StdCall: {
9886      // Pass 'nest' parameter in ECX.
9887      // Must be kept in sync with X86CallingConv.td
9888      NestReg = X86::ECX;
9889
9890      // Check that ECX wasn't needed by an 'inreg' parameter.
9891      FunctionType *FTy = Func->getFunctionType();
9892      const AttrListPtr &Attrs = Func->getAttributes();
9893
9894      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9895        unsigned InRegCount = 0;
9896        unsigned Idx = 1;
9897
9898        for (FunctionType::param_iterator I = FTy->param_begin(),
9899             E = FTy->param_end(); I != E; ++I, ++Idx)
9900          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9901            // FIXME: should only count parameters that are lowered to integers.
9902            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9903
9904        if (InRegCount > 2) {
9905          report_fatal_error("Nest register in use - reduce number of inreg"
9906                             " parameters!");
9907        }
9908      }
9909      break;
9910    }
9911    case CallingConv::X86_FastCall:
9912    case CallingConv::X86_ThisCall:
9913    case CallingConv::Fast:
9914      // Pass 'nest' parameter in EAX.
9915      // Must be kept in sync with X86CallingConv.td
9916      NestReg = X86::EAX;
9917      break;
9918    }
9919
9920    SDValue OutChains[4];
9921    SDValue Addr, Disp;
9922
9923    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9924                       DAG.getConstant(10, MVT::i32));
9925    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9926
9927    // This is storing the opcode for MOV32ri.
9928    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9929    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9930    OutChains[0] = DAG.getStore(Root, dl,
9931                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9932                                Trmp, MachinePointerInfo(TrmpAddr),
9933                                false, false, 0);
9934
9935    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9936                       DAG.getConstant(1, MVT::i32));
9937    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9938                                MachinePointerInfo(TrmpAddr, 1),
9939                                false, false, 1);
9940
9941    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9942    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9943                       DAG.getConstant(5, MVT::i32));
9944    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9945                                MachinePointerInfo(TrmpAddr, 5),
9946                                false, false, 1);
9947
9948    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9949                       DAG.getConstant(6, MVT::i32));
9950    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9951                                MachinePointerInfo(TrmpAddr, 6),
9952                                false, false, 1);
9953
9954    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9955  }
9956}
9957
9958SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9959                                            SelectionDAG &DAG) const {
9960  /*
9961   The rounding mode is in bits 11:10 of FPSR, and has the following
9962   settings:
9963     00 Round to nearest
9964     01 Round to -inf
9965     10 Round to +inf
9966     11 Round to 0
9967
9968  FLT_ROUNDS, on the other hand, expects the following:
9969    -1 Undefined
9970     0 Round to 0
9971     1 Round to nearest
9972     2 Round to +inf
9973     3 Round to -inf
9974
9975  To perform the conversion, we do:
9976    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9977  */
9978
9979  MachineFunction &MF = DAG.getMachineFunction();
9980  const TargetMachine &TM = MF.getTarget();
9981  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9982  unsigned StackAlignment = TFI.getStackAlignment();
9983  EVT VT = Op.getValueType();
9984  DebugLoc DL = Op.getDebugLoc();
9985
9986  // Save FP Control Word to stack slot
9987  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9988  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9989
9990
9991  MachineMemOperand *MMO =
9992   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9993                           MachineMemOperand::MOStore, 2, 2);
9994
9995  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9996  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9997                                          DAG.getVTList(MVT::Other),
9998                                          Ops, 2, MVT::i16, MMO);
9999
10000  // Load FP Control Word from stack slot
10001  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
10002                            MachinePointerInfo(), false, false, false, 0);
10003
10004  // Transform as necessary
10005  SDValue CWD1 =
10006    DAG.getNode(ISD::SRL, DL, MVT::i16,
10007                DAG.getNode(ISD::AND, DL, MVT::i16,
10008                            CWD, DAG.getConstant(0x800, MVT::i16)),
10009                DAG.getConstant(11, MVT::i8));
10010  SDValue CWD2 =
10011    DAG.getNode(ISD::SRL, DL, MVT::i16,
10012                DAG.getNode(ISD::AND, DL, MVT::i16,
10013                            CWD, DAG.getConstant(0x400, MVT::i16)),
10014                DAG.getConstant(9, MVT::i8));
10015
10016  SDValue RetVal =
10017    DAG.getNode(ISD::AND, DL, MVT::i16,
10018                DAG.getNode(ISD::ADD, DL, MVT::i16,
10019                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10020                            DAG.getConstant(1, MVT::i16)),
10021                DAG.getConstant(3, MVT::i16));
10022
10023
10024  return DAG.getNode((VT.getSizeInBits() < 16 ?
10025                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10026}
10027
10028SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
10029  EVT VT = Op.getValueType();
10030  EVT OpVT = VT;
10031  unsigned NumBits = VT.getSizeInBits();
10032  DebugLoc dl = Op.getDebugLoc();
10033
10034  Op = Op.getOperand(0);
10035  if (VT == MVT::i8) {
10036    // Zero extend to i32 since there is not an i8 bsr.
10037    OpVT = MVT::i32;
10038    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10039  }
10040
10041  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10042  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10043  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10044
10045  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10046  SDValue Ops[] = {
10047    Op,
10048    DAG.getConstant(NumBits+NumBits-1, OpVT),
10049    DAG.getConstant(X86::COND_E, MVT::i8),
10050    Op.getValue(1)
10051  };
10052  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10053
10054  // Finally xor with NumBits-1.
10055  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10056
10057  if (VT == MVT::i8)
10058    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10059  return Op;
10060}
10061
10062SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
10063                                                SelectionDAG &DAG) const {
10064  EVT VT = Op.getValueType();
10065  EVT OpVT = VT;
10066  unsigned NumBits = VT.getSizeInBits();
10067  DebugLoc dl = Op.getDebugLoc();
10068
10069  Op = Op.getOperand(0);
10070  if (VT == MVT::i8) {
10071    // Zero extend to i32 since there is not an i8 bsr.
10072    OpVT = MVT::i32;
10073    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10074  }
10075
10076  // Issue a bsr (scan bits in reverse).
10077  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10078  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10079
10080  // And xor with NumBits-1.
10081  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10082
10083  if (VT == MVT::i8)
10084    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10085  return Op;
10086}
10087
10088SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10089  EVT VT = Op.getValueType();
10090  unsigned NumBits = VT.getSizeInBits();
10091  DebugLoc dl = Op.getDebugLoc();
10092  Op = Op.getOperand(0);
10093
10094  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10095  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10096  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10097
10098  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10099  SDValue Ops[] = {
10100    Op,
10101    DAG.getConstant(NumBits, VT),
10102    DAG.getConstant(X86::COND_E, MVT::i8),
10103    Op.getValue(1)
10104  };
10105  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10106}
10107
10108// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10109// ones, and then concatenate the result back.
10110static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10111  EVT VT = Op.getValueType();
10112
10113  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10114         "Unsupported value type for operation");
10115
10116  int NumElems = VT.getVectorNumElements();
10117  DebugLoc dl = Op.getDebugLoc();
10118  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10119  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10120
10121  // Extract the LHS vectors
10122  SDValue LHS = Op.getOperand(0);
10123  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10124  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10125
10126  // Extract the RHS vectors
10127  SDValue RHS = Op.getOperand(1);
10128  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
10129  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
10130
10131  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10132  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10133
10134  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10135                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10136                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10137}
10138
10139SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10140  assert(Op.getValueType().getSizeInBits() == 256 &&
10141         Op.getValueType().isInteger() &&
10142         "Only handle AVX 256-bit vector integer operation");
10143  return Lower256IntArith(Op, DAG);
10144}
10145
10146SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10147  assert(Op.getValueType().getSizeInBits() == 256 &&
10148         Op.getValueType().isInteger() &&
10149         "Only handle AVX 256-bit vector integer operation");
10150  return Lower256IntArith(Op, DAG);
10151}
10152
10153SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10154  EVT VT = Op.getValueType();
10155
10156  // Decompose 256-bit ops into smaller 128-bit ops.
10157  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10158    return Lower256IntArith(Op, DAG);
10159
10160  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10161         "Only know how to lower V2I64/V4I64 multiply");
10162
10163  DebugLoc dl = Op.getDebugLoc();
10164
10165  //  Ahi = psrlqi(a, 32);
10166  //  Bhi = psrlqi(b, 32);
10167  //
10168  //  AloBlo = pmuludq(a, b);
10169  //  AloBhi = pmuludq(a, Bhi);
10170  //  AhiBlo = pmuludq(Ahi, b);
10171
10172  //  AloBhi = psllqi(AloBhi, 32);
10173  //  AhiBlo = psllqi(AhiBlo, 32);
10174  //  return AloBlo + AloBhi + AhiBlo;
10175
10176  SDValue A = Op.getOperand(0);
10177  SDValue B = Op.getOperand(1);
10178
10179  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10180
10181  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10182  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10183
10184  // Bit cast to 32-bit vectors for MULUDQ
10185  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10186  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10187  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10188  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10189  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10190
10191  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10192  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10193  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10194
10195  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10196  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10197
10198  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10199  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10200}
10201
10202SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10203
10204  EVT VT = Op.getValueType();
10205  DebugLoc dl = Op.getDebugLoc();
10206  SDValue R = Op.getOperand(0);
10207  SDValue Amt = Op.getOperand(1);
10208  LLVMContext *Context = DAG.getContext();
10209
10210  if (!Subtarget->hasSSE2())
10211    return SDValue();
10212
10213  // Optimize shl/srl/sra with constant shift amount.
10214  if (isSplatVector(Amt.getNode())) {
10215    SDValue SclrAmt = Amt->getOperand(0);
10216    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10217      uint64_t ShiftAmt = C->getZExtValue();
10218
10219      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10220          (Subtarget->hasAVX2() &&
10221           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10222        if (Op.getOpcode() == ISD::SHL)
10223          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10224                             DAG.getConstant(ShiftAmt, MVT::i32));
10225        if (Op.getOpcode() == ISD::SRL)
10226          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10227                             DAG.getConstant(ShiftAmt, MVT::i32));
10228        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10229          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10230                             DAG.getConstant(ShiftAmt, MVT::i32));
10231      }
10232
10233      if (VT == MVT::v16i8) {
10234        if (Op.getOpcode() == ISD::SHL) {
10235          // Make a large shift.
10236          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10237                                    DAG.getConstant(ShiftAmt, MVT::i32));
10238          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10239          // Zero out the rightmost bits.
10240          SmallVector<SDValue, 16> V(16,
10241                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10242                                                     MVT::i8));
10243          return DAG.getNode(ISD::AND, dl, VT, SHL,
10244                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10245        }
10246        if (Op.getOpcode() == ISD::SRL) {
10247          // Make a large shift.
10248          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10249                                    DAG.getConstant(ShiftAmt, MVT::i32));
10250          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10251          // Zero out the leftmost bits.
10252          SmallVector<SDValue, 16> V(16,
10253                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10254                                                     MVT::i8));
10255          return DAG.getNode(ISD::AND, dl, VT, SRL,
10256                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10257        }
10258        if (Op.getOpcode() == ISD::SRA) {
10259          if (ShiftAmt == 7) {
10260            // R s>> 7  ===  R s< 0
10261            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10262            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10263          }
10264
10265          // R s>> a === ((R u>> a) ^ m) - m
10266          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10267          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10268                                                         MVT::i8));
10269          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10270          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10271          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10272          return Res;
10273        }
10274      }
10275
10276      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10277        if (Op.getOpcode() == ISD::SHL) {
10278          // Make a large shift.
10279          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10280                                    DAG.getConstant(ShiftAmt, MVT::i32));
10281          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10282          // Zero out the rightmost bits.
10283          SmallVector<SDValue, 32> V(32,
10284                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10285                                                     MVT::i8));
10286          return DAG.getNode(ISD::AND, dl, VT, SHL,
10287                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10288        }
10289        if (Op.getOpcode() == ISD::SRL) {
10290          // Make a large shift.
10291          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10292                                    DAG.getConstant(ShiftAmt, MVT::i32));
10293          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10294          // Zero out the leftmost bits.
10295          SmallVector<SDValue, 32> V(32,
10296                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10297                                                     MVT::i8));
10298          return DAG.getNode(ISD::AND, dl, VT, SRL,
10299                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10300        }
10301        if (Op.getOpcode() == ISD::SRA) {
10302          if (ShiftAmt == 7) {
10303            // R s>> 7  ===  R s< 0
10304            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10305            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10306          }
10307
10308          // R s>> a === ((R u>> a) ^ m) - m
10309          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10310          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10311                                                         MVT::i8));
10312          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10313          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10314          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10315          return Res;
10316        }
10317      }
10318    }
10319  }
10320
10321  // Lower SHL with variable shift amount.
10322  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10323    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10324                     DAG.getConstant(23, MVT::i32));
10325
10326    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10327    Constant *C = ConstantDataVector::get(*Context, CV);
10328    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10329    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10330                                 MachinePointerInfo::getConstantPool(),
10331                                 false, false, false, 16);
10332
10333    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10334    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10335    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10336    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10337  }
10338  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10339    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10340
10341    // a = a << 5;
10342    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10343                     DAG.getConstant(5, MVT::i32));
10344    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10345
10346    // Turn 'a' into a mask suitable for VSELECT
10347    SDValue VSelM = DAG.getConstant(0x80, VT);
10348    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10349    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10350
10351    SDValue CM1 = DAG.getConstant(0x0f, VT);
10352    SDValue CM2 = DAG.getConstant(0x3f, VT);
10353
10354    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10355    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10356    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10357                            DAG.getConstant(4, MVT::i32), DAG);
10358    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10359    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10360
10361    // a += a
10362    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10363    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10364    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10365
10366    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10367    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10368    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10369                            DAG.getConstant(2, MVT::i32), DAG);
10370    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10371    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10372
10373    // a += a
10374    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10375    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10376    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10377
10378    // return VSELECT(r, r+r, a);
10379    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10380                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10381    return R;
10382  }
10383
10384  // Decompose 256-bit shifts into smaller 128-bit shifts.
10385  if (VT.getSizeInBits() == 256) {
10386    unsigned NumElems = VT.getVectorNumElements();
10387    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10388    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10389
10390    // Extract the two vectors
10391    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10392    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10393                                     DAG, dl);
10394
10395    // Recreate the shift amount vectors
10396    SDValue Amt1, Amt2;
10397    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10398      // Constant shift amount
10399      SmallVector<SDValue, 4> Amt1Csts;
10400      SmallVector<SDValue, 4> Amt2Csts;
10401      for (unsigned i = 0; i != NumElems/2; ++i)
10402        Amt1Csts.push_back(Amt->getOperand(i));
10403      for (unsigned i = NumElems/2; i != NumElems; ++i)
10404        Amt2Csts.push_back(Amt->getOperand(i));
10405
10406      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10407                                 &Amt1Csts[0], NumElems/2);
10408      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10409                                 &Amt2Csts[0], NumElems/2);
10410    } else {
10411      // Variable shift amount
10412      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10413      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10414                                 DAG, dl);
10415    }
10416
10417    // Issue new vector shifts for the smaller types
10418    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10419    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10420
10421    // Concatenate the result back
10422    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10423  }
10424
10425  return SDValue();
10426}
10427
10428SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10429  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10430  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10431  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10432  // has only one use.
10433  SDNode *N = Op.getNode();
10434  SDValue LHS = N->getOperand(0);
10435  SDValue RHS = N->getOperand(1);
10436  unsigned BaseOp = 0;
10437  unsigned Cond = 0;
10438  DebugLoc DL = Op.getDebugLoc();
10439  switch (Op.getOpcode()) {
10440  default: llvm_unreachable("Unknown ovf instruction!");
10441  case ISD::SADDO:
10442    // A subtract of one will be selected as a INC. Note that INC doesn't
10443    // set CF, so we can't do this for UADDO.
10444    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10445      if (C->isOne()) {
10446        BaseOp = X86ISD::INC;
10447        Cond = X86::COND_O;
10448        break;
10449      }
10450    BaseOp = X86ISD::ADD;
10451    Cond = X86::COND_O;
10452    break;
10453  case ISD::UADDO:
10454    BaseOp = X86ISD::ADD;
10455    Cond = X86::COND_B;
10456    break;
10457  case ISD::SSUBO:
10458    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10459    // set CF, so we can't do this for USUBO.
10460    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10461      if (C->isOne()) {
10462        BaseOp = X86ISD::DEC;
10463        Cond = X86::COND_O;
10464        break;
10465      }
10466    BaseOp = X86ISD::SUB;
10467    Cond = X86::COND_O;
10468    break;
10469  case ISD::USUBO:
10470    BaseOp = X86ISD::SUB;
10471    Cond = X86::COND_B;
10472    break;
10473  case ISD::SMULO:
10474    BaseOp = X86ISD::SMUL;
10475    Cond = X86::COND_O;
10476    break;
10477  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10478    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10479                                 MVT::i32);
10480    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10481
10482    SDValue SetCC =
10483      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10484                  DAG.getConstant(X86::COND_O, MVT::i32),
10485                  SDValue(Sum.getNode(), 2));
10486
10487    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10488  }
10489  }
10490
10491  // Also sets EFLAGS.
10492  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10493  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10494
10495  SDValue SetCC =
10496    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10497                DAG.getConstant(Cond, MVT::i32),
10498                SDValue(Sum.getNode(), 1));
10499
10500  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10501}
10502
10503SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10504                                                  SelectionDAG &DAG) const {
10505  DebugLoc dl = Op.getDebugLoc();
10506  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10507  EVT VT = Op.getValueType();
10508
10509  if (!Subtarget->hasSSE2() || !VT.isVector())
10510    return SDValue();
10511
10512  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10513                      ExtraVT.getScalarType().getSizeInBits();
10514  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10515
10516  switch (VT.getSimpleVT().SimpleTy) {
10517    default: return SDValue();
10518    case MVT::v8i32:
10519    case MVT::v16i16:
10520      if (!Subtarget->hasAVX())
10521        return SDValue();
10522      if (!Subtarget->hasAVX2()) {
10523        // needs to be split
10524        int NumElems = VT.getVectorNumElements();
10525        SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10526        SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10527
10528        // Extract the LHS vectors
10529        SDValue LHS = Op.getOperand(0);
10530        SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10531        SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10532
10533        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10534        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10535
10536        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10537        int ExtraNumElems = ExtraVT.getVectorNumElements();
10538        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10539                                   ExtraNumElems/2);
10540        SDValue Extra = DAG.getValueType(ExtraVT);
10541
10542        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10543        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10544
10545        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10546      }
10547      // fall through
10548    case MVT::v4i32:
10549    case MVT::v8i16: {
10550      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10551                                         Op.getOperand(0), ShAmt, DAG);
10552      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10553    }
10554  }
10555}
10556
10557
10558SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10559  DebugLoc dl = Op.getDebugLoc();
10560
10561  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10562  // There isn't any reason to disable it if the target processor supports it.
10563  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10564    SDValue Chain = Op.getOperand(0);
10565    SDValue Zero = DAG.getConstant(0, MVT::i32);
10566    SDValue Ops[] = {
10567      DAG.getRegister(X86::ESP, MVT::i32), // Base
10568      DAG.getTargetConstant(1, MVT::i8),   // Scale
10569      DAG.getRegister(0, MVT::i32),        // Index
10570      DAG.getTargetConstant(0, MVT::i32),  // Disp
10571      DAG.getRegister(0, MVT::i32),        // Segment.
10572      Zero,
10573      Chain
10574    };
10575    SDNode *Res =
10576      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10577                          array_lengthof(Ops));
10578    return SDValue(Res, 0);
10579  }
10580
10581  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10582  if (!isDev)
10583    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10584
10585  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10586  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10587  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10588  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10589
10590  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10591  if (!Op1 && !Op2 && !Op3 && Op4)
10592    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10593
10594  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10595  if (Op1 && !Op2 && !Op3 && !Op4)
10596    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10597
10598  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10599  //           (MFENCE)>;
10600  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10601}
10602
10603SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10604                                             SelectionDAG &DAG) const {
10605  DebugLoc dl = Op.getDebugLoc();
10606  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10607    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10608  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10609    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10610
10611  // The only fence that needs an instruction is a sequentially-consistent
10612  // cross-thread fence.
10613  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10614    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10615    // no-sse2). There isn't any reason to disable it if the target processor
10616    // supports it.
10617    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10618      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10619
10620    SDValue Chain = Op.getOperand(0);
10621    SDValue Zero = DAG.getConstant(0, MVT::i32);
10622    SDValue Ops[] = {
10623      DAG.getRegister(X86::ESP, MVT::i32), // Base
10624      DAG.getTargetConstant(1, MVT::i8),   // Scale
10625      DAG.getRegister(0, MVT::i32),        // Index
10626      DAG.getTargetConstant(0, MVT::i32),  // Disp
10627      DAG.getRegister(0, MVT::i32),        // Segment.
10628      Zero,
10629      Chain
10630    };
10631    SDNode *Res =
10632      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10633                         array_lengthof(Ops));
10634    return SDValue(Res, 0);
10635  }
10636
10637  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10638  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10639}
10640
10641
10642SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10643  EVT T = Op.getValueType();
10644  DebugLoc DL = Op.getDebugLoc();
10645  unsigned Reg = 0;
10646  unsigned size = 0;
10647  switch(T.getSimpleVT().SimpleTy) {
10648  default: llvm_unreachable("Invalid value type!");
10649  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10650  case MVT::i16: Reg = X86::AX;  size = 2; break;
10651  case MVT::i32: Reg = X86::EAX; size = 4; break;
10652  case MVT::i64:
10653    assert(Subtarget->is64Bit() && "Node not type legal!");
10654    Reg = X86::RAX; size = 8;
10655    break;
10656  }
10657  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10658                                    Op.getOperand(2), SDValue());
10659  SDValue Ops[] = { cpIn.getValue(0),
10660                    Op.getOperand(1),
10661                    Op.getOperand(3),
10662                    DAG.getTargetConstant(size, MVT::i8),
10663                    cpIn.getValue(1) };
10664  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10665  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10666  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10667                                           Ops, 5, T, MMO);
10668  SDValue cpOut =
10669    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10670  return cpOut;
10671}
10672
10673SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10674                                                 SelectionDAG &DAG) const {
10675  assert(Subtarget->is64Bit() && "Result not type legalized?");
10676  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10677  SDValue TheChain = Op.getOperand(0);
10678  DebugLoc dl = Op.getDebugLoc();
10679  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10680  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10681  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10682                                   rax.getValue(2));
10683  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10684                            DAG.getConstant(32, MVT::i8));
10685  SDValue Ops[] = {
10686    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10687    rdx.getValue(1)
10688  };
10689  return DAG.getMergeValues(Ops, 2, dl);
10690}
10691
10692SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10693                                            SelectionDAG &DAG) const {
10694  EVT SrcVT = Op.getOperand(0).getValueType();
10695  EVT DstVT = Op.getValueType();
10696  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10697         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10698  assert((DstVT == MVT::i64 ||
10699          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10700         "Unexpected custom BITCAST");
10701  // i64 <=> MMX conversions are Legal.
10702  if (SrcVT==MVT::i64 && DstVT.isVector())
10703    return Op;
10704  if (DstVT==MVT::i64 && SrcVT.isVector())
10705    return Op;
10706  // MMX <=> MMX conversions are Legal.
10707  if (SrcVT.isVector() && DstVT.isVector())
10708    return Op;
10709  // All other conversions need to be expanded.
10710  return SDValue();
10711}
10712
10713SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10714  SDNode *Node = Op.getNode();
10715  DebugLoc dl = Node->getDebugLoc();
10716  EVT T = Node->getValueType(0);
10717  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10718                              DAG.getConstant(0, T), Node->getOperand(2));
10719  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10720                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10721                       Node->getOperand(0),
10722                       Node->getOperand(1), negOp,
10723                       cast<AtomicSDNode>(Node)->getSrcValue(),
10724                       cast<AtomicSDNode>(Node)->getAlignment(),
10725                       cast<AtomicSDNode>(Node)->getOrdering(),
10726                       cast<AtomicSDNode>(Node)->getSynchScope());
10727}
10728
10729static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10730  SDNode *Node = Op.getNode();
10731  DebugLoc dl = Node->getDebugLoc();
10732  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10733
10734  // Convert seq_cst store -> xchg
10735  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10736  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10737  //        (The only way to get a 16-byte store is cmpxchg16b)
10738  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10739  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10740      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10741    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10742                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10743                                 Node->getOperand(0),
10744                                 Node->getOperand(1), Node->getOperand(2),
10745                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10746                                 cast<AtomicSDNode>(Node)->getOrdering(),
10747                                 cast<AtomicSDNode>(Node)->getSynchScope());
10748    return Swap.getValue(1);
10749  }
10750  // Other atomic stores have a simple pattern.
10751  return Op;
10752}
10753
10754static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10755  EVT VT = Op.getNode()->getValueType(0);
10756
10757  // Let legalize expand this if it isn't a legal type yet.
10758  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10759    return SDValue();
10760
10761  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10762
10763  unsigned Opc;
10764  bool ExtraOp = false;
10765  switch (Op.getOpcode()) {
10766  default: llvm_unreachable("Invalid code");
10767  case ISD::ADDC: Opc = X86ISD::ADD; break;
10768  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10769  case ISD::SUBC: Opc = X86ISD::SUB; break;
10770  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10771  }
10772
10773  if (!ExtraOp)
10774    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10775                       Op.getOperand(1));
10776  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10777                     Op.getOperand(1), Op.getOperand(2));
10778}
10779
10780/// LowerOperation - Provide custom lowering hooks for some operations.
10781///
10782SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10783  switch (Op.getOpcode()) {
10784  default: llvm_unreachable("Should not custom lower this!");
10785  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10786  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10787  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10788  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10789  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10790  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10791  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10792  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10793  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10794  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10795  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10796  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10797  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10798  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10799  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10800  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10801  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10802  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10803  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10804  case ISD::SHL_PARTS:
10805  case ISD::SRA_PARTS:
10806  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10807  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10808  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10809  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10810  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10811  case ISD::FABS:               return LowerFABS(Op, DAG);
10812  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10813  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10814  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10815  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10816  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10817  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10818  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10819  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10820  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10821  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10822  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10823  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10824  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10825  case ISD::FRAME_TO_ARGS_OFFSET:
10826                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10827  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10828  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10829  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10830  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10831  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10832  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10833  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10834  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10835  case ISD::MUL:                return LowerMUL(Op, DAG);
10836  case ISD::SRA:
10837  case ISD::SRL:
10838  case ISD::SHL:                return LowerShift(Op, DAG);
10839  case ISD::SADDO:
10840  case ISD::UADDO:
10841  case ISD::SSUBO:
10842  case ISD::USUBO:
10843  case ISD::SMULO:
10844  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10845  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10846  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10847  case ISD::ADDC:
10848  case ISD::ADDE:
10849  case ISD::SUBC:
10850  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10851  case ISD::ADD:                return LowerADD(Op, DAG);
10852  case ISD::SUB:                return LowerSUB(Op, DAG);
10853  }
10854}
10855
10856static void ReplaceATOMIC_LOAD(SDNode *Node,
10857                                  SmallVectorImpl<SDValue> &Results,
10858                                  SelectionDAG &DAG) {
10859  DebugLoc dl = Node->getDebugLoc();
10860  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10861
10862  // Convert wide load -> cmpxchg8b/cmpxchg16b
10863  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10864  //        (The only way to get a 16-byte load is cmpxchg16b)
10865  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10866  SDValue Zero = DAG.getConstant(0, VT);
10867  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10868                               Node->getOperand(0),
10869                               Node->getOperand(1), Zero, Zero,
10870                               cast<AtomicSDNode>(Node)->getMemOperand(),
10871                               cast<AtomicSDNode>(Node)->getOrdering(),
10872                               cast<AtomicSDNode>(Node)->getSynchScope());
10873  Results.push_back(Swap.getValue(0));
10874  Results.push_back(Swap.getValue(1));
10875}
10876
10877void X86TargetLowering::
10878ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10879                        SelectionDAG &DAG, unsigned NewOp) const {
10880  DebugLoc dl = Node->getDebugLoc();
10881  assert (Node->getValueType(0) == MVT::i64 &&
10882          "Only know how to expand i64 atomics");
10883
10884  SDValue Chain = Node->getOperand(0);
10885  SDValue In1 = Node->getOperand(1);
10886  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10887                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10888  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10889                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10890  SDValue Ops[] = { Chain, In1, In2L, In2H };
10891  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10892  SDValue Result =
10893    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10894                            cast<MemSDNode>(Node)->getMemOperand());
10895  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10896  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10897  Results.push_back(Result.getValue(2));
10898}
10899
10900/// ReplaceNodeResults - Replace a node with an illegal result type
10901/// with a new node built out of custom code.
10902void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10903                                           SmallVectorImpl<SDValue>&Results,
10904                                           SelectionDAG &DAG) const {
10905  DebugLoc dl = N->getDebugLoc();
10906  switch (N->getOpcode()) {
10907  default:
10908    llvm_unreachable("Do not know how to custom type legalize this operation!");
10909  case ISD::SIGN_EXTEND_INREG:
10910  case ISD::ADDC:
10911  case ISD::ADDE:
10912  case ISD::SUBC:
10913  case ISD::SUBE:
10914    // We don't want to expand or promote these.
10915    return;
10916  case ISD::FP_TO_SINT:
10917  case ISD::FP_TO_UINT: {
10918    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
10919
10920    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
10921      return;
10922
10923    std::pair<SDValue,SDValue> Vals =
10924        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
10925    SDValue FIST = Vals.first, StackSlot = Vals.second;
10926    if (FIST.getNode() != 0) {
10927      EVT VT = N->getValueType(0);
10928      // Return a load from the stack slot.
10929      if (StackSlot.getNode() != 0)
10930        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10931                                      MachinePointerInfo(),
10932                                      false, false, false, 0));
10933      else
10934        Results.push_back(FIST);
10935    }
10936    return;
10937  }
10938  case ISD::READCYCLECOUNTER: {
10939    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10940    SDValue TheChain = N->getOperand(0);
10941    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10942    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10943                                     rd.getValue(1));
10944    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10945                                     eax.getValue(2));
10946    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10947    SDValue Ops[] = { eax, edx };
10948    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10949    Results.push_back(edx.getValue(1));
10950    return;
10951  }
10952  case ISD::ATOMIC_CMP_SWAP: {
10953    EVT T = N->getValueType(0);
10954    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10955    bool Regs64bit = T == MVT::i128;
10956    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10957    SDValue cpInL, cpInH;
10958    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10959                        DAG.getConstant(0, HalfT));
10960    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10961                        DAG.getConstant(1, HalfT));
10962    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10963                             Regs64bit ? X86::RAX : X86::EAX,
10964                             cpInL, SDValue());
10965    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10966                             Regs64bit ? X86::RDX : X86::EDX,
10967                             cpInH, cpInL.getValue(1));
10968    SDValue swapInL, swapInH;
10969    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10970                          DAG.getConstant(0, HalfT));
10971    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10972                          DAG.getConstant(1, HalfT));
10973    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10974                               Regs64bit ? X86::RBX : X86::EBX,
10975                               swapInL, cpInH.getValue(1));
10976    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10977                               Regs64bit ? X86::RCX : X86::ECX,
10978                               swapInH, swapInL.getValue(1));
10979    SDValue Ops[] = { swapInH.getValue(0),
10980                      N->getOperand(1),
10981                      swapInH.getValue(1) };
10982    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10983    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10984    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10985                                  X86ISD::LCMPXCHG8_DAG;
10986    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10987                                             Ops, 3, T, MMO);
10988    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10989                                        Regs64bit ? X86::RAX : X86::EAX,
10990                                        HalfT, Result.getValue(1));
10991    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10992                                        Regs64bit ? X86::RDX : X86::EDX,
10993                                        HalfT, cpOutL.getValue(2));
10994    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10995    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10996    Results.push_back(cpOutH.getValue(1));
10997    return;
10998  }
10999  case ISD::ATOMIC_LOAD_ADD:
11000    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
11001    return;
11002  case ISD::ATOMIC_LOAD_AND:
11003    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
11004    return;
11005  case ISD::ATOMIC_LOAD_NAND:
11006    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
11007    return;
11008  case ISD::ATOMIC_LOAD_OR:
11009    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
11010    return;
11011  case ISD::ATOMIC_LOAD_SUB:
11012    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
11013    return;
11014  case ISD::ATOMIC_LOAD_XOR:
11015    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
11016    return;
11017  case ISD::ATOMIC_SWAP:
11018    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
11019    return;
11020  case ISD::ATOMIC_LOAD:
11021    ReplaceATOMIC_LOAD(N, Results, DAG);
11022  }
11023}
11024
11025const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11026  switch (Opcode) {
11027  default: return NULL;
11028  case X86ISD::BSF:                return "X86ISD::BSF";
11029  case X86ISD::BSR:                return "X86ISD::BSR";
11030  case X86ISD::SHLD:               return "X86ISD::SHLD";
11031  case X86ISD::SHRD:               return "X86ISD::SHRD";
11032  case X86ISD::FAND:               return "X86ISD::FAND";
11033  case X86ISD::FOR:                return "X86ISD::FOR";
11034  case X86ISD::FXOR:               return "X86ISD::FXOR";
11035  case X86ISD::FSRL:               return "X86ISD::FSRL";
11036  case X86ISD::FILD:               return "X86ISD::FILD";
11037  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11038  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11039  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11040  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11041  case X86ISD::FLD:                return "X86ISD::FLD";
11042  case X86ISD::FST:                return "X86ISD::FST";
11043  case X86ISD::CALL:               return "X86ISD::CALL";
11044  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11045  case X86ISD::BT:                 return "X86ISD::BT";
11046  case X86ISD::CMP:                return "X86ISD::CMP";
11047  case X86ISD::COMI:               return "X86ISD::COMI";
11048  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11049  case X86ISD::SETCC:              return "X86ISD::SETCC";
11050  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11051  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11052  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11053  case X86ISD::CMOV:               return "X86ISD::CMOV";
11054  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11055  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11056  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11057  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11058  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11059  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11060  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11061  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11062  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11063  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11064  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11065  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11066  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11067  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11068  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11069  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11070  case X86ISD::BLENDPW:            return "X86ISD::BLENDPW";
11071  case X86ISD::BLENDPS:            return "X86ISD::BLENDPS";
11072  case X86ISD::BLENDPD:            return "X86ISD::BLENDPD";
11073  case X86ISD::HADD:               return "X86ISD::HADD";
11074  case X86ISD::HSUB:               return "X86ISD::HSUB";
11075  case X86ISD::FHADD:              return "X86ISD::FHADD";
11076  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11077  case X86ISD::FMAX:               return "X86ISD::FMAX";
11078  case X86ISD::FMIN:               return "X86ISD::FMIN";
11079  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11080  case X86ISD::FRCP:               return "X86ISD::FRCP";
11081  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11082  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11083  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11084  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11085  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11086  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11087  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11088  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11089  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11090  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11091  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11092  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11093  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11094  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11095  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11096  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11097  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11098  case X86ISD::VSHL:               return "X86ISD::VSHL";
11099  case X86ISD::VSRL:               return "X86ISD::VSRL";
11100  case X86ISD::VSRA:               return "X86ISD::VSRA";
11101  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11102  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11103  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11104  case X86ISD::CMPP:               return "X86ISD::CMPP";
11105  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11106  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11107  case X86ISD::ADD:                return "X86ISD::ADD";
11108  case X86ISD::SUB:                return "X86ISD::SUB";
11109  case X86ISD::ADC:                return "X86ISD::ADC";
11110  case X86ISD::SBB:                return "X86ISD::SBB";
11111  case X86ISD::SMUL:               return "X86ISD::SMUL";
11112  case X86ISD::UMUL:               return "X86ISD::UMUL";
11113  case X86ISD::INC:                return "X86ISD::INC";
11114  case X86ISD::DEC:                return "X86ISD::DEC";
11115  case X86ISD::OR:                 return "X86ISD::OR";
11116  case X86ISD::XOR:                return "X86ISD::XOR";
11117  case X86ISD::AND:                return "X86ISD::AND";
11118  case X86ISD::ANDN:               return "X86ISD::ANDN";
11119  case X86ISD::BLSI:               return "X86ISD::BLSI";
11120  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11121  case X86ISD::BLSR:               return "X86ISD::BLSR";
11122  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11123  case X86ISD::PTEST:              return "X86ISD::PTEST";
11124  case X86ISD::TESTP:              return "X86ISD::TESTP";
11125  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11126  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11127  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11128  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11129  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11130  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11131  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11132  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11133  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11134  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11135  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11136  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11137  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11138  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11139  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11140  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11141  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11142  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11143  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11144  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11145  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11146  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11147  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11148  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11149  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11150  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11151  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
11152  }
11153}
11154
11155// isLegalAddressingMode - Return true if the addressing mode represented
11156// by AM is legal for this target, for a load/store of the specified type.
11157bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11158                                              Type *Ty) const {
11159  // X86 supports extremely general addressing modes.
11160  CodeModel::Model M = getTargetMachine().getCodeModel();
11161  Reloc::Model R = getTargetMachine().getRelocationModel();
11162
11163  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11164  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11165    return false;
11166
11167  if (AM.BaseGV) {
11168    unsigned GVFlags =
11169      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11170
11171    // If a reference to this global requires an extra load, we can't fold it.
11172    if (isGlobalStubReference(GVFlags))
11173      return false;
11174
11175    // If BaseGV requires a register for the PIC base, we cannot also have a
11176    // BaseReg specified.
11177    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11178      return false;
11179
11180    // If lower 4G is not available, then we must use rip-relative addressing.
11181    if ((M != CodeModel::Small || R != Reloc::Static) &&
11182        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11183      return false;
11184  }
11185
11186  switch (AM.Scale) {
11187  case 0:
11188  case 1:
11189  case 2:
11190  case 4:
11191  case 8:
11192    // These scales always work.
11193    break;
11194  case 3:
11195  case 5:
11196  case 9:
11197    // These scales are formed with basereg+scalereg.  Only accept if there is
11198    // no basereg yet.
11199    if (AM.HasBaseReg)
11200      return false;
11201    break;
11202  default:  // Other stuff never works.
11203    return false;
11204  }
11205
11206  return true;
11207}
11208
11209
11210bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11211  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11212    return false;
11213  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11214  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11215  if (NumBits1 <= NumBits2)
11216    return false;
11217  return true;
11218}
11219
11220bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11221  if (!VT1.isInteger() || !VT2.isInteger())
11222    return false;
11223  unsigned NumBits1 = VT1.getSizeInBits();
11224  unsigned NumBits2 = VT2.getSizeInBits();
11225  if (NumBits1 <= NumBits2)
11226    return false;
11227  return true;
11228}
11229
11230bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11231  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11232  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11233}
11234
11235bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11236  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11237  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11238}
11239
11240bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11241  // i16 instructions are longer (0x66 prefix) and potentially slower.
11242  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11243}
11244
11245/// isShuffleMaskLegal - Targets can use this to indicate that they only
11246/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11247/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11248/// are assumed to be legal.
11249bool
11250X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11251                                      EVT VT) const {
11252  // Very little shuffling can be done for 64-bit vectors right now.
11253  if (VT.getSizeInBits() == 64)
11254    return false;
11255
11256  // FIXME: pshufb, blends, shifts.
11257  return (VT.getVectorNumElements() == 2 ||
11258          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11259          isMOVLMask(M, VT) ||
11260          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11261          isPSHUFDMask(M, VT) ||
11262          isPSHUFHWMask(M, VT) ||
11263          isPSHUFLWMask(M, VT) ||
11264          isPALIGNRMask(M, VT, Subtarget) ||
11265          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11266          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11267          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11268          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11269}
11270
11271bool
11272X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11273                                          EVT VT) const {
11274  unsigned NumElts = VT.getVectorNumElements();
11275  // FIXME: This collection of masks seems suspect.
11276  if (NumElts == 2)
11277    return true;
11278  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11279    return (isMOVLMask(Mask, VT)  ||
11280            isCommutedMOVLMask(Mask, VT, true) ||
11281            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11282            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11283  }
11284  return false;
11285}
11286
11287//===----------------------------------------------------------------------===//
11288//                           X86 Scheduler Hooks
11289//===----------------------------------------------------------------------===//
11290
11291// private utility function
11292MachineBasicBlock *
11293X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11294                                                       MachineBasicBlock *MBB,
11295                                                       unsigned regOpc,
11296                                                       unsigned immOpc,
11297                                                       unsigned LoadOpc,
11298                                                       unsigned CXchgOpc,
11299                                                       unsigned notOpc,
11300                                                       unsigned EAXreg,
11301                                                 const TargetRegisterClass *RC,
11302                                                       bool invSrc) const {
11303  // For the atomic bitwise operator, we generate
11304  //   thisMBB:
11305  //   newMBB:
11306  //     ld  t1 = [bitinstr.addr]
11307  //     op  t2 = t1, [bitinstr.val]
11308  //     mov EAX = t1
11309  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11310  //     bz  newMBB
11311  //     fallthrough -->nextMBB
11312  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11313  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11314  MachineFunction::iterator MBBIter = MBB;
11315  ++MBBIter;
11316
11317  /// First build the CFG
11318  MachineFunction *F = MBB->getParent();
11319  MachineBasicBlock *thisMBB = MBB;
11320  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11321  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11322  F->insert(MBBIter, newMBB);
11323  F->insert(MBBIter, nextMBB);
11324
11325  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11326  nextMBB->splice(nextMBB->begin(), thisMBB,
11327                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11328                  thisMBB->end());
11329  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11330
11331  // Update thisMBB to fall through to newMBB
11332  thisMBB->addSuccessor(newMBB);
11333
11334  // newMBB jumps to itself and fall through to nextMBB
11335  newMBB->addSuccessor(nextMBB);
11336  newMBB->addSuccessor(newMBB);
11337
11338  // Insert instructions into newMBB based on incoming instruction
11339  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11340         "unexpected number of operands");
11341  DebugLoc dl = bInstr->getDebugLoc();
11342  MachineOperand& destOper = bInstr->getOperand(0);
11343  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11344  int numArgs = bInstr->getNumOperands() - 1;
11345  for (int i=0; i < numArgs; ++i)
11346    argOpers[i] = &bInstr->getOperand(i+1);
11347
11348  // x86 address has 4 operands: base, index, scale, and displacement
11349  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11350  int valArgIndx = lastAddrIndx + 1;
11351
11352  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11353  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11354  for (int i=0; i <= lastAddrIndx; ++i)
11355    (*MIB).addOperand(*argOpers[i]);
11356
11357  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11358  if (invSrc) {
11359    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11360  }
11361  else
11362    tt = t1;
11363
11364  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11365  assert((argOpers[valArgIndx]->isReg() ||
11366          argOpers[valArgIndx]->isImm()) &&
11367         "invalid operand");
11368  if (argOpers[valArgIndx]->isReg())
11369    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11370  else
11371    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11372  MIB.addReg(tt);
11373  (*MIB).addOperand(*argOpers[valArgIndx]);
11374
11375  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11376  MIB.addReg(t1);
11377
11378  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11379  for (int i=0; i <= lastAddrIndx; ++i)
11380    (*MIB).addOperand(*argOpers[i]);
11381  MIB.addReg(t2);
11382  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11383  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11384                    bInstr->memoperands_end());
11385
11386  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11387  MIB.addReg(EAXreg);
11388
11389  // insert branch
11390  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11391
11392  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11393  return nextMBB;
11394}
11395
11396// private utility function:  64 bit atomics on 32 bit host.
11397MachineBasicBlock *
11398X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11399                                                       MachineBasicBlock *MBB,
11400                                                       unsigned regOpcL,
11401                                                       unsigned regOpcH,
11402                                                       unsigned immOpcL,
11403                                                       unsigned immOpcH,
11404                                                       bool invSrc) const {
11405  // For the atomic bitwise operator, we generate
11406  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11407  //     ld t1,t2 = [bitinstr.addr]
11408  //   newMBB:
11409  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11410  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11411  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11412  //     mov ECX, EBX <- t5, t6
11413  //     mov EAX, EDX <- t1, t2
11414  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11415  //     mov t3, t4 <- EAX, EDX
11416  //     bz  newMBB
11417  //     result in out1, out2
11418  //     fallthrough -->nextMBB
11419
11420  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11421  const unsigned LoadOpc = X86::MOV32rm;
11422  const unsigned NotOpc = X86::NOT32r;
11423  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11424  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11425  MachineFunction::iterator MBBIter = MBB;
11426  ++MBBIter;
11427
11428  /// First build the CFG
11429  MachineFunction *F = MBB->getParent();
11430  MachineBasicBlock *thisMBB = MBB;
11431  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11432  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11433  F->insert(MBBIter, newMBB);
11434  F->insert(MBBIter, nextMBB);
11435
11436  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11437  nextMBB->splice(nextMBB->begin(), thisMBB,
11438                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11439                  thisMBB->end());
11440  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11441
11442  // Update thisMBB to fall through to newMBB
11443  thisMBB->addSuccessor(newMBB);
11444
11445  // newMBB jumps to itself and fall through to nextMBB
11446  newMBB->addSuccessor(nextMBB);
11447  newMBB->addSuccessor(newMBB);
11448
11449  DebugLoc dl = bInstr->getDebugLoc();
11450  // Insert instructions into newMBB based on incoming instruction
11451  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11452  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11453         "unexpected number of operands");
11454  MachineOperand& dest1Oper = bInstr->getOperand(0);
11455  MachineOperand& dest2Oper = bInstr->getOperand(1);
11456  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11457  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11458    argOpers[i] = &bInstr->getOperand(i+2);
11459
11460    // We use some of the operands multiple times, so conservatively just
11461    // clear any kill flags that might be present.
11462    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11463      argOpers[i]->setIsKill(false);
11464  }
11465
11466  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11467  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11468
11469  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11470  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11471  for (int i=0; i <= lastAddrIndx; ++i)
11472    (*MIB).addOperand(*argOpers[i]);
11473  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11474  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11475  // add 4 to displacement.
11476  for (int i=0; i <= lastAddrIndx-2; ++i)
11477    (*MIB).addOperand(*argOpers[i]);
11478  MachineOperand newOp3 = *(argOpers[3]);
11479  if (newOp3.isImm())
11480    newOp3.setImm(newOp3.getImm()+4);
11481  else
11482    newOp3.setOffset(newOp3.getOffset()+4);
11483  (*MIB).addOperand(newOp3);
11484  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11485
11486  // t3/4 are defined later, at the bottom of the loop
11487  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11488  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11489  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11490    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11491  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11492    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11493
11494  // The subsequent operations should be using the destination registers of
11495  //the PHI instructions.
11496  if (invSrc) {
11497    t1 = F->getRegInfo().createVirtualRegister(RC);
11498    t2 = F->getRegInfo().createVirtualRegister(RC);
11499    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11500    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11501  } else {
11502    t1 = dest1Oper.getReg();
11503    t2 = dest2Oper.getReg();
11504  }
11505
11506  int valArgIndx = lastAddrIndx + 1;
11507  assert((argOpers[valArgIndx]->isReg() ||
11508          argOpers[valArgIndx]->isImm()) &&
11509         "invalid operand");
11510  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11511  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11512  if (argOpers[valArgIndx]->isReg())
11513    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11514  else
11515    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11516  if (regOpcL != X86::MOV32rr)
11517    MIB.addReg(t1);
11518  (*MIB).addOperand(*argOpers[valArgIndx]);
11519  assert(argOpers[valArgIndx + 1]->isReg() ==
11520         argOpers[valArgIndx]->isReg());
11521  assert(argOpers[valArgIndx + 1]->isImm() ==
11522         argOpers[valArgIndx]->isImm());
11523  if (argOpers[valArgIndx + 1]->isReg())
11524    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11525  else
11526    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11527  if (regOpcH != X86::MOV32rr)
11528    MIB.addReg(t2);
11529  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11530
11531  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11532  MIB.addReg(t1);
11533  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11534  MIB.addReg(t2);
11535
11536  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11537  MIB.addReg(t5);
11538  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11539  MIB.addReg(t6);
11540
11541  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11542  for (int i=0; i <= lastAddrIndx; ++i)
11543    (*MIB).addOperand(*argOpers[i]);
11544
11545  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11546  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11547                    bInstr->memoperands_end());
11548
11549  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11550  MIB.addReg(X86::EAX);
11551  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11552  MIB.addReg(X86::EDX);
11553
11554  // insert branch
11555  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11556
11557  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11558  return nextMBB;
11559}
11560
11561// private utility function
11562MachineBasicBlock *
11563X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11564                                                      MachineBasicBlock *MBB,
11565                                                      unsigned cmovOpc) const {
11566  // For the atomic min/max operator, we generate
11567  //   thisMBB:
11568  //   newMBB:
11569  //     ld t1 = [min/max.addr]
11570  //     mov t2 = [min/max.val]
11571  //     cmp  t1, t2
11572  //     cmov[cond] t2 = t1
11573  //     mov EAX = t1
11574  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11575  //     bz   newMBB
11576  //     fallthrough -->nextMBB
11577  //
11578  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11579  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11580  MachineFunction::iterator MBBIter = MBB;
11581  ++MBBIter;
11582
11583  /// First build the CFG
11584  MachineFunction *F = MBB->getParent();
11585  MachineBasicBlock *thisMBB = MBB;
11586  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11587  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11588  F->insert(MBBIter, newMBB);
11589  F->insert(MBBIter, nextMBB);
11590
11591  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11592  nextMBB->splice(nextMBB->begin(), thisMBB,
11593                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11594                  thisMBB->end());
11595  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11596
11597  // Update thisMBB to fall through to newMBB
11598  thisMBB->addSuccessor(newMBB);
11599
11600  // newMBB jumps to newMBB and fall through to nextMBB
11601  newMBB->addSuccessor(nextMBB);
11602  newMBB->addSuccessor(newMBB);
11603
11604  DebugLoc dl = mInstr->getDebugLoc();
11605  // Insert instructions into newMBB based on incoming instruction
11606  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11607         "unexpected number of operands");
11608  MachineOperand& destOper = mInstr->getOperand(0);
11609  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11610  int numArgs = mInstr->getNumOperands() - 1;
11611  for (int i=0; i < numArgs; ++i)
11612    argOpers[i] = &mInstr->getOperand(i+1);
11613
11614  // x86 address has 4 operands: base, index, scale, and displacement
11615  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11616  int valArgIndx = lastAddrIndx + 1;
11617
11618  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11619  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11620  for (int i=0; i <= lastAddrIndx; ++i)
11621    (*MIB).addOperand(*argOpers[i]);
11622
11623  // We only support register and immediate values
11624  assert((argOpers[valArgIndx]->isReg() ||
11625          argOpers[valArgIndx]->isImm()) &&
11626         "invalid operand");
11627
11628  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11629  if (argOpers[valArgIndx]->isReg())
11630    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11631  else
11632    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11633  (*MIB).addOperand(*argOpers[valArgIndx]);
11634
11635  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11636  MIB.addReg(t1);
11637
11638  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11639  MIB.addReg(t1);
11640  MIB.addReg(t2);
11641
11642  // Generate movc
11643  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11644  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11645  MIB.addReg(t2);
11646  MIB.addReg(t1);
11647
11648  // Cmp and exchange if none has modified the memory location
11649  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11650  for (int i=0; i <= lastAddrIndx; ++i)
11651    (*MIB).addOperand(*argOpers[i]);
11652  MIB.addReg(t3);
11653  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11654  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11655                    mInstr->memoperands_end());
11656
11657  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11658  MIB.addReg(X86::EAX);
11659
11660  // insert branch
11661  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11662
11663  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11664  return nextMBB;
11665}
11666
11667// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11668// or XMM0_V32I8 in AVX all of this code can be replaced with that
11669// in the .td file.
11670MachineBasicBlock *
11671X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11672                            unsigned numArgs, bool memArg) const {
11673  assert(Subtarget->hasSSE42() &&
11674         "Target must have SSE4.2 or AVX features enabled");
11675
11676  DebugLoc dl = MI->getDebugLoc();
11677  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11678  unsigned Opc;
11679  if (!Subtarget->hasAVX()) {
11680    if (memArg)
11681      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11682    else
11683      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11684  } else {
11685    if (memArg)
11686      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11687    else
11688      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11689  }
11690
11691  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11692  for (unsigned i = 0; i < numArgs; ++i) {
11693    MachineOperand &Op = MI->getOperand(i+1);
11694    if (!(Op.isReg() && Op.isImplicit()))
11695      MIB.addOperand(Op);
11696  }
11697  BuildMI(*BB, MI, dl,
11698    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11699             MI->getOperand(0).getReg())
11700    .addReg(X86::XMM0);
11701
11702  MI->eraseFromParent();
11703  return BB;
11704}
11705
11706MachineBasicBlock *
11707X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11708  DebugLoc dl = MI->getDebugLoc();
11709  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11710
11711  // Address into RAX/EAX, other two args into ECX, EDX.
11712  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11713  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11714  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11715  for (int i = 0; i < X86::AddrNumOperands; ++i)
11716    MIB.addOperand(MI->getOperand(i));
11717
11718  unsigned ValOps = X86::AddrNumOperands;
11719  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11720    .addReg(MI->getOperand(ValOps).getReg());
11721  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11722    .addReg(MI->getOperand(ValOps+1).getReg());
11723
11724  // The instruction doesn't actually take any operands though.
11725  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11726
11727  MI->eraseFromParent(); // The pseudo is gone now.
11728  return BB;
11729}
11730
11731MachineBasicBlock *
11732X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11733  DebugLoc dl = MI->getDebugLoc();
11734  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11735
11736  // First arg in ECX, the second in EAX.
11737  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11738    .addReg(MI->getOperand(0).getReg());
11739  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11740    .addReg(MI->getOperand(1).getReg());
11741
11742  // The instruction doesn't actually take any operands though.
11743  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11744
11745  MI->eraseFromParent(); // The pseudo is gone now.
11746  return BB;
11747}
11748
11749MachineBasicBlock *
11750X86TargetLowering::EmitVAARG64WithCustomInserter(
11751                   MachineInstr *MI,
11752                   MachineBasicBlock *MBB) const {
11753  // Emit va_arg instruction on X86-64.
11754
11755  // Operands to this pseudo-instruction:
11756  // 0  ) Output        : destination address (reg)
11757  // 1-5) Input         : va_list address (addr, i64mem)
11758  // 6  ) ArgSize       : Size (in bytes) of vararg type
11759  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11760  // 8  ) Align         : Alignment of type
11761  // 9  ) EFLAGS (implicit-def)
11762
11763  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11764  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11765
11766  unsigned DestReg = MI->getOperand(0).getReg();
11767  MachineOperand &Base = MI->getOperand(1);
11768  MachineOperand &Scale = MI->getOperand(2);
11769  MachineOperand &Index = MI->getOperand(3);
11770  MachineOperand &Disp = MI->getOperand(4);
11771  MachineOperand &Segment = MI->getOperand(5);
11772  unsigned ArgSize = MI->getOperand(6).getImm();
11773  unsigned ArgMode = MI->getOperand(7).getImm();
11774  unsigned Align = MI->getOperand(8).getImm();
11775
11776  // Memory Reference
11777  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11778  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11779  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11780
11781  // Machine Information
11782  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11783  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11784  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11785  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11786  DebugLoc DL = MI->getDebugLoc();
11787
11788  // struct va_list {
11789  //   i32   gp_offset
11790  //   i32   fp_offset
11791  //   i64   overflow_area (address)
11792  //   i64   reg_save_area (address)
11793  // }
11794  // sizeof(va_list) = 24
11795  // alignment(va_list) = 8
11796
11797  unsigned TotalNumIntRegs = 6;
11798  unsigned TotalNumXMMRegs = 8;
11799  bool UseGPOffset = (ArgMode == 1);
11800  bool UseFPOffset = (ArgMode == 2);
11801  unsigned MaxOffset = TotalNumIntRegs * 8 +
11802                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11803
11804  /* Align ArgSize to a multiple of 8 */
11805  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11806  bool NeedsAlign = (Align > 8);
11807
11808  MachineBasicBlock *thisMBB = MBB;
11809  MachineBasicBlock *overflowMBB;
11810  MachineBasicBlock *offsetMBB;
11811  MachineBasicBlock *endMBB;
11812
11813  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11814  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11815  unsigned OffsetReg = 0;
11816
11817  if (!UseGPOffset && !UseFPOffset) {
11818    // If we only pull from the overflow region, we don't create a branch.
11819    // We don't need to alter control flow.
11820    OffsetDestReg = 0; // unused
11821    OverflowDestReg = DestReg;
11822
11823    offsetMBB = NULL;
11824    overflowMBB = thisMBB;
11825    endMBB = thisMBB;
11826  } else {
11827    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11828    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11829    // If not, pull from overflow_area. (branch to overflowMBB)
11830    //
11831    //       thisMBB
11832    //         |     .
11833    //         |        .
11834    //     offsetMBB   overflowMBB
11835    //         |        .
11836    //         |     .
11837    //        endMBB
11838
11839    // Registers for the PHI in endMBB
11840    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11841    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11842
11843    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11844    MachineFunction *MF = MBB->getParent();
11845    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11846    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11847    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11848
11849    MachineFunction::iterator MBBIter = MBB;
11850    ++MBBIter;
11851
11852    // Insert the new basic blocks
11853    MF->insert(MBBIter, offsetMBB);
11854    MF->insert(MBBIter, overflowMBB);
11855    MF->insert(MBBIter, endMBB);
11856
11857    // Transfer the remainder of MBB and its successor edges to endMBB.
11858    endMBB->splice(endMBB->begin(), thisMBB,
11859                    llvm::next(MachineBasicBlock::iterator(MI)),
11860                    thisMBB->end());
11861    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11862
11863    // Make offsetMBB and overflowMBB successors of thisMBB
11864    thisMBB->addSuccessor(offsetMBB);
11865    thisMBB->addSuccessor(overflowMBB);
11866
11867    // endMBB is a successor of both offsetMBB and overflowMBB
11868    offsetMBB->addSuccessor(endMBB);
11869    overflowMBB->addSuccessor(endMBB);
11870
11871    // Load the offset value into a register
11872    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11873    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11874      .addOperand(Base)
11875      .addOperand(Scale)
11876      .addOperand(Index)
11877      .addDisp(Disp, UseFPOffset ? 4 : 0)
11878      .addOperand(Segment)
11879      .setMemRefs(MMOBegin, MMOEnd);
11880
11881    // Check if there is enough room left to pull this argument.
11882    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11883      .addReg(OffsetReg)
11884      .addImm(MaxOffset + 8 - ArgSizeA8);
11885
11886    // Branch to "overflowMBB" if offset >= max
11887    // Fall through to "offsetMBB" otherwise
11888    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11889      .addMBB(overflowMBB);
11890  }
11891
11892  // In offsetMBB, emit code to use the reg_save_area.
11893  if (offsetMBB) {
11894    assert(OffsetReg != 0);
11895
11896    // Read the reg_save_area address.
11897    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11898    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11899      .addOperand(Base)
11900      .addOperand(Scale)
11901      .addOperand(Index)
11902      .addDisp(Disp, 16)
11903      .addOperand(Segment)
11904      .setMemRefs(MMOBegin, MMOEnd);
11905
11906    // Zero-extend the offset
11907    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11908      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11909        .addImm(0)
11910        .addReg(OffsetReg)
11911        .addImm(X86::sub_32bit);
11912
11913    // Add the offset to the reg_save_area to get the final address.
11914    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11915      .addReg(OffsetReg64)
11916      .addReg(RegSaveReg);
11917
11918    // Compute the offset for the next argument
11919    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11920    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11921      .addReg(OffsetReg)
11922      .addImm(UseFPOffset ? 16 : 8);
11923
11924    // Store it back into the va_list.
11925    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11926      .addOperand(Base)
11927      .addOperand(Scale)
11928      .addOperand(Index)
11929      .addDisp(Disp, UseFPOffset ? 4 : 0)
11930      .addOperand(Segment)
11931      .addReg(NextOffsetReg)
11932      .setMemRefs(MMOBegin, MMOEnd);
11933
11934    // Jump to endMBB
11935    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11936      .addMBB(endMBB);
11937  }
11938
11939  //
11940  // Emit code to use overflow area
11941  //
11942
11943  // Load the overflow_area address into a register.
11944  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11945  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11946    .addOperand(Base)
11947    .addOperand(Scale)
11948    .addOperand(Index)
11949    .addDisp(Disp, 8)
11950    .addOperand(Segment)
11951    .setMemRefs(MMOBegin, MMOEnd);
11952
11953  // If we need to align it, do so. Otherwise, just copy the address
11954  // to OverflowDestReg.
11955  if (NeedsAlign) {
11956    // Align the overflow address
11957    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11958    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11959
11960    // aligned_addr = (addr + (align-1)) & ~(align-1)
11961    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11962      .addReg(OverflowAddrReg)
11963      .addImm(Align-1);
11964
11965    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11966      .addReg(TmpReg)
11967      .addImm(~(uint64_t)(Align-1));
11968  } else {
11969    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11970      .addReg(OverflowAddrReg);
11971  }
11972
11973  // Compute the next overflow address after this argument.
11974  // (the overflow address should be kept 8-byte aligned)
11975  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11976  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11977    .addReg(OverflowDestReg)
11978    .addImm(ArgSizeA8);
11979
11980  // Store the new overflow address.
11981  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11982    .addOperand(Base)
11983    .addOperand(Scale)
11984    .addOperand(Index)
11985    .addDisp(Disp, 8)
11986    .addOperand(Segment)
11987    .addReg(NextAddrReg)
11988    .setMemRefs(MMOBegin, MMOEnd);
11989
11990  // If we branched, emit the PHI to the front of endMBB.
11991  if (offsetMBB) {
11992    BuildMI(*endMBB, endMBB->begin(), DL,
11993            TII->get(X86::PHI), DestReg)
11994      .addReg(OffsetDestReg).addMBB(offsetMBB)
11995      .addReg(OverflowDestReg).addMBB(overflowMBB);
11996  }
11997
11998  // Erase the pseudo instruction
11999  MI->eraseFromParent();
12000
12001  return endMBB;
12002}
12003
12004MachineBasicBlock *
12005X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
12006                                                 MachineInstr *MI,
12007                                                 MachineBasicBlock *MBB) const {
12008  // Emit code to save XMM registers to the stack. The ABI says that the
12009  // number of registers to save is given in %al, so it's theoretically
12010  // possible to do an indirect jump trick to avoid saving all of them,
12011  // however this code takes a simpler approach and just executes all
12012  // of the stores if %al is non-zero. It's less code, and it's probably
12013  // easier on the hardware branch predictor, and stores aren't all that
12014  // expensive anyway.
12015
12016  // Create the new basic blocks. One block contains all the XMM stores,
12017  // and one block is the final destination regardless of whether any
12018  // stores were performed.
12019  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12020  MachineFunction *F = MBB->getParent();
12021  MachineFunction::iterator MBBIter = MBB;
12022  ++MBBIter;
12023  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12024  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12025  F->insert(MBBIter, XMMSaveMBB);
12026  F->insert(MBBIter, EndMBB);
12027
12028  // Transfer the remainder of MBB and its successor edges to EndMBB.
12029  EndMBB->splice(EndMBB->begin(), MBB,
12030                 llvm::next(MachineBasicBlock::iterator(MI)),
12031                 MBB->end());
12032  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12033
12034  // The original block will now fall through to the XMM save block.
12035  MBB->addSuccessor(XMMSaveMBB);
12036  // The XMMSaveMBB will fall through to the end block.
12037  XMMSaveMBB->addSuccessor(EndMBB);
12038
12039  // Now add the instructions.
12040  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12041  DebugLoc DL = MI->getDebugLoc();
12042
12043  unsigned CountReg = MI->getOperand(0).getReg();
12044  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12045  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12046
12047  if (!Subtarget->isTargetWin64()) {
12048    // If %al is 0, branch around the XMM save block.
12049    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12050    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12051    MBB->addSuccessor(EndMBB);
12052  }
12053
12054  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12055  // In the XMM save block, save all the XMM argument registers.
12056  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12057    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12058    MachineMemOperand *MMO =
12059      F->getMachineMemOperand(
12060          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12061        MachineMemOperand::MOStore,
12062        /*Size=*/16, /*Align=*/16);
12063    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12064      .addFrameIndex(RegSaveFrameIndex)
12065      .addImm(/*Scale=*/1)
12066      .addReg(/*IndexReg=*/0)
12067      .addImm(/*Disp=*/Offset)
12068      .addReg(/*Segment=*/0)
12069      .addReg(MI->getOperand(i).getReg())
12070      .addMemOperand(MMO);
12071  }
12072
12073  MI->eraseFromParent();   // The pseudo instruction is gone now.
12074
12075  return EndMBB;
12076}
12077
12078// The EFLAGS operand of SelectItr might be missing a kill marker
12079// because there were multiple uses of EFLAGS, and ISel didn't know
12080// which to mark. Figure out whether SelectItr should have had a
12081// kill marker, and set it if it should. Returns the correct kill
12082// marker value.
12083static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12084                                     MachineBasicBlock* BB,
12085                                     const TargetRegisterInfo* TRI) {
12086  // Scan forward through BB for a use/def of EFLAGS.
12087  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12088  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12089    const MachineInstr& mi = *miI;
12090    if (mi.readsRegister(X86::EFLAGS))
12091      return false;
12092    if (mi.definesRegister(X86::EFLAGS))
12093      break; // Should have kill-flag - update below.
12094  }
12095
12096  // If we hit the end of the block, check whether EFLAGS is live into a
12097  // successor.
12098  if (miI == BB->end()) {
12099    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12100                                          sEnd = BB->succ_end();
12101         sItr != sEnd; ++sItr) {
12102      MachineBasicBlock* succ = *sItr;
12103      if (succ->isLiveIn(X86::EFLAGS))
12104        return false;
12105    }
12106  }
12107
12108  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12109  // out. SelectMI should have a kill flag on EFLAGS.
12110  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12111  return true;
12112}
12113
12114MachineBasicBlock *
12115X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12116                                     MachineBasicBlock *BB) const {
12117  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12118  DebugLoc DL = MI->getDebugLoc();
12119
12120  // To "insert" a SELECT_CC instruction, we actually have to insert the
12121  // diamond control-flow pattern.  The incoming instruction knows the
12122  // destination vreg to set, the condition code register to branch on, the
12123  // true/false values to select between, and a branch opcode to use.
12124  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12125  MachineFunction::iterator It = BB;
12126  ++It;
12127
12128  //  thisMBB:
12129  //  ...
12130  //   TrueVal = ...
12131  //   cmpTY ccX, r1, r2
12132  //   bCC copy1MBB
12133  //   fallthrough --> copy0MBB
12134  MachineBasicBlock *thisMBB = BB;
12135  MachineFunction *F = BB->getParent();
12136  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12137  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12138  F->insert(It, copy0MBB);
12139  F->insert(It, sinkMBB);
12140
12141  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12142  // live into the sink and copy blocks.
12143  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12144  if (!MI->killsRegister(X86::EFLAGS) &&
12145      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12146    copy0MBB->addLiveIn(X86::EFLAGS);
12147    sinkMBB->addLiveIn(X86::EFLAGS);
12148  }
12149
12150  // Transfer the remainder of BB and its successor edges to sinkMBB.
12151  sinkMBB->splice(sinkMBB->begin(), BB,
12152                  llvm::next(MachineBasicBlock::iterator(MI)),
12153                  BB->end());
12154  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12155
12156  // Add the true and fallthrough blocks as its successors.
12157  BB->addSuccessor(copy0MBB);
12158  BB->addSuccessor(sinkMBB);
12159
12160  // Create the conditional branch instruction.
12161  unsigned Opc =
12162    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12163  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12164
12165  //  copy0MBB:
12166  //   %FalseValue = ...
12167  //   # fallthrough to sinkMBB
12168  copy0MBB->addSuccessor(sinkMBB);
12169
12170  //  sinkMBB:
12171  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12172  //  ...
12173  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12174          TII->get(X86::PHI), MI->getOperand(0).getReg())
12175    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12176    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12177
12178  MI->eraseFromParent();   // The pseudo instruction is gone now.
12179  return sinkMBB;
12180}
12181
12182MachineBasicBlock *
12183X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12184                                        bool Is64Bit) const {
12185  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12186  DebugLoc DL = MI->getDebugLoc();
12187  MachineFunction *MF = BB->getParent();
12188  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12189
12190  assert(getTargetMachine().Options.EnableSegmentedStacks);
12191
12192  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12193  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12194
12195  // BB:
12196  //  ... [Till the alloca]
12197  // If stacklet is not large enough, jump to mallocMBB
12198  //
12199  // bumpMBB:
12200  //  Allocate by subtracting from RSP
12201  //  Jump to continueMBB
12202  //
12203  // mallocMBB:
12204  //  Allocate by call to runtime
12205  //
12206  // continueMBB:
12207  //  ...
12208  //  [rest of original BB]
12209  //
12210
12211  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12212  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12213  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12214
12215  MachineRegisterInfo &MRI = MF->getRegInfo();
12216  const TargetRegisterClass *AddrRegClass =
12217    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12218
12219  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12220    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12221    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12222    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12223    sizeVReg = MI->getOperand(1).getReg(),
12224    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12225
12226  MachineFunction::iterator MBBIter = BB;
12227  ++MBBIter;
12228
12229  MF->insert(MBBIter, bumpMBB);
12230  MF->insert(MBBIter, mallocMBB);
12231  MF->insert(MBBIter, continueMBB);
12232
12233  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12234                      (MachineBasicBlock::iterator(MI)), BB->end());
12235  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12236
12237  // Add code to the main basic block to check if the stack limit has been hit,
12238  // and if so, jump to mallocMBB otherwise to bumpMBB.
12239  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12240  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12241    .addReg(tmpSPVReg).addReg(sizeVReg);
12242  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12243    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12244    .addReg(SPLimitVReg);
12245  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12246
12247  // bumpMBB simply decreases the stack pointer, since we know the current
12248  // stacklet has enough space.
12249  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12250    .addReg(SPLimitVReg);
12251  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12252    .addReg(SPLimitVReg);
12253  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12254
12255  // Calls into a routine in libgcc to allocate more space from the heap.
12256  const uint32_t *RegMask =
12257    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12258  if (Is64Bit) {
12259    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12260      .addReg(sizeVReg);
12261    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12262      .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI)
12263      .addRegMask(RegMask)
12264      .addReg(X86::RAX, RegState::ImplicitDefine);
12265  } else {
12266    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12267      .addImm(12);
12268    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12269    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12270      .addExternalSymbol("__morestack_allocate_stack_space")
12271      .addRegMask(RegMask)
12272      .addReg(X86::EAX, RegState::ImplicitDefine);
12273  }
12274
12275  if (!Is64Bit)
12276    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12277      .addImm(16);
12278
12279  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12280    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12281  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12282
12283  // Set up the CFG correctly.
12284  BB->addSuccessor(bumpMBB);
12285  BB->addSuccessor(mallocMBB);
12286  mallocMBB->addSuccessor(continueMBB);
12287  bumpMBB->addSuccessor(continueMBB);
12288
12289  // Take care of the PHI nodes.
12290  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12291          MI->getOperand(0).getReg())
12292    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12293    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12294
12295  // Delete the original pseudo instruction.
12296  MI->eraseFromParent();
12297
12298  // And we're done.
12299  return continueMBB;
12300}
12301
12302MachineBasicBlock *
12303X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12304                                          MachineBasicBlock *BB) const {
12305  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12306  DebugLoc DL = MI->getDebugLoc();
12307
12308  assert(!Subtarget->isTargetEnvMacho());
12309
12310  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12311  // non-trivial part is impdef of ESP.
12312
12313  if (Subtarget->isTargetWin64()) {
12314    if (Subtarget->isTargetCygMing()) {
12315      // ___chkstk(Mingw64):
12316      // Clobbers R10, R11, RAX and EFLAGS.
12317      // Updates RSP.
12318      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12319        .addExternalSymbol("___chkstk")
12320        .addReg(X86::RAX, RegState::Implicit)
12321        .addReg(X86::RSP, RegState::Implicit)
12322        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12323        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12324        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12325    } else {
12326      // __chkstk(MSVCRT): does not update stack pointer.
12327      // Clobbers R10, R11 and EFLAGS.
12328      // FIXME: RAX(allocated size) might be reused and not killed.
12329      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12330        .addExternalSymbol("__chkstk")
12331        .addReg(X86::RAX, RegState::Implicit)
12332        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12333      // RAX has the offset to subtracted from RSP.
12334      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12335        .addReg(X86::RSP)
12336        .addReg(X86::RAX);
12337    }
12338  } else {
12339    const char *StackProbeSymbol =
12340      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12341
12342    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12343      .addExternalSymbol(StackProbeSymbol)
12344      .addReg(X86::EAX, RegState::Implicit)
12345      .addReg(X86::ESP, RegState::Implicit)
12346      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12347      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12348      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12349  }
12350
12351  MI->eraseFromParent();   // The pseudo instruction is gone now.
12352  return BB;
12353}
12354
12355MachineBasicBlock *
12356X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12357                                      MachineBasicBlock *BB) const {
12358  // This is pretty easy.  We're taking the value that we received from
12359  // our load from the relocation, sticking it in either RDI (x86-64)
12360  // or EAX and doing an indirect call.  The return value will then
12361  // be in the normal return register.
12362  const X86InstrInfo *TII
12363    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12364  DebugLoc DL = MI->getDebugLoc();
12365  MachineFunction *F = BB->getParent();
12366
12367  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12368  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12369
12370  // Get a register mask for the lowered call.
12371  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
12372  // proper register mask.
12373  const uint32_t *RegMask =
12374    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12375  if (Subtarget->is64Bit()) {
12376    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12377                                      TII->get(X86::MOV64rm), X86::RDI)
12378    .addReg(X86::RIP)
12379    .addImm(0).addReg(0)
12380    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12381                      MI->getOperand(3).getTargetFlags())
12382    .addReg(0);
12383    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12384    addDirectMem(MIB, X86::RDI);
12385    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
12386  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12387    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12388                                      TII->get(X86::MOV32rm), X86::EAX)
12389    .addReg(0)
12390    .addImm(0).addReg(0)
12391    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12392                      MI->getOperand(3).getTargetFlags())
12393    .addReg(0);
12394    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12395    addDirectMem(MIB, X86::EAX);
12396    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12397  } else {
12398    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12399                                      TII->get(X86::MOV32rm), X86::EAX)
12400    .addReg(TII->getGlobalBaseReg(F))
12401    .addImm(0).addReg(0)
12402    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12403                      MI->getOperand(3).getTargetFlags())
12404    .addReg(0);
12405    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12406    addDirectMem(MIB, X86::EAX);
12407    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12408  }
12409
12410  MI->eraseFromParent(); // The pseudo instruction is gone now.
12411  return BB;
12412}
12413
12414MachineBasicBlock *
12415X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12416                                               MachineBasicBlock *BB) const {
12417  switch (MI->getOpcode()) {
12418  default: llvm_unreachable("Unexpected instr type to insert");
12419  case X86::TAILJMPd64:
12420  case X86::TAILJMPr64:
12421  case X86::TAILJMPm64:
12422    llvm_unreachable("TAILJMP64 would not be touched here.");
12423  case X86::TCRETURNdi64:
12424  case X86::TCRETURNri64:
12425  case X86::TCRETURNmi64:
12426    return BB;
12427  case X86::WIN_ALLOCA:
12428    return EmitLoweredWinAlloca(MI, BB);
12429  case X86::SEG_ALLOCA_32:
12430    return EmitLoweredSegAlloca(MI, BB, false);
12431  case X86::SEG_ALLOCA_64:
12432    return EmitLoweredSegAlloca(MI, BB, true);
12433  case X86::TLSCall_32:
12434  case X86::TLSCall_64:
12435    return EmitLoweredTLSCall(MI, BB);
12436  case X86::CMOV_GR8:
12437  case X86::CMOV_FR32:
12438  case X86::CMOV_FR64:
12439  case X86::CMOV_V4F32:
12440  case X86::CMOV_V2F64:
12441  case X86::CMOV_V2I64:
12442  case X86::CMOV_V8F32:
12443  case X86::CMOV_V4F64:
12444  case X86::CMOV_V4I64:
12445  case X86::CMOV_GR16:
12446  case X86::CMOV_GR32:
12447  case X86::CMOV_RFP32:
12448  case X86::CMOV_RFP64:
12449  case X86::CMOV_RFP80:
12450    return EmitLoweredSelect(MI, BB);
12451
12452  case X86::FP32_TO_INT16_IN_MEM:
12453  case X86::FP32_TO_INT32_IN_MEM:
12454  case X86::FP32_TO_INT64_IN_MEM:
12455  case X86::FP64_TO_INT16_IN_MEM:
12456  case X86::FP64_TO_INT32_IN_MEM:
12457  case X86::FP64_TO_INT64_IN_MEM:
12458  case X86::FP80_TO_INT16_IN_MEM:
12459  case X86::FP80_TO_INT32_IN_MEM:
12460  case X86::FP80_TO_INT64_IN_MEM: {
12461    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12462    DebugLoc DL = MI->getDebugLoc();
12463
12464    // Change the floating point control register to use "round towards zero"
12465    // mode when truncating to an integer value.
12466    MachineFunction *F = BB->getParent();
12467    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12468    addFrameReference(BuildMI(*BB, MI, DL,
12469                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12470
12471    // Load the old value of the high byte of the control word...
12472    unsigned OldCW =
12473      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12474    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12475                      CWFrameIdx);
12476
12477    // Set the high part to be round to zero...
12478    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12479      .addImm(0xC7F);
12480
12481    // Reload the modified control word now...
12482    addFrameReference(BuildMI(*BB, MI, DL,
12483                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12484
12485    // Restore the memory image of control word to original value
12486    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12487      .addReg(OldCW);
12488
12489    // Get the X86 opcode to use.
12490    unsigned Opc;
12491    switch (MI->getOpcode()) {
12492    default: llvm_unreachable("illegal opcode!");
12493    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12494    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12495    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12496    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12497    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12498    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12499    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12500    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12501    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12502    }
12503
12504    X86AddressMode AM;
12505    MachineOperand &Op = MI->getOperand(0);
12506    if (Op.isReg()) {
12507      AM.BaseType = X86AddressMode::RegBase;
12508      AM.Base.Reg = Op.getReg();
12509    } else {
12510      AM.BaseType = X86AddressMode::FrameIndexBase;
12511      AM.Base.FrameIndex = Op.getIndex();
12512    }
12513    Op = MI->getOperand(1);
12514    if (Op.isImm())
12515      AM.Scale = Op.getImm();
12516    Op = MI->getOperand(2);
12517    if (Op.isImm())
12518      AM.IndexReg = Op.getImm();
12519    Op = MI->getOperand(3);
12520    if (Op.isGlobal()) {
12521      AM.GV = Op.getGlobal();
12522    } else {
12523      AM.Disp = Op.getImm();
12524    }
12525    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12526                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12527
12528    // Reload the original control word now.
12529    addFrameReference(BuildMI(*BB, MI, DL,
12530                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12531
12532    MI->eraseFromParent();   // The pseudo instruction is gone now.
12533    return BB;
12534  }
12535    // String/text processing lowering.
12536  case X86::PCMPISTRM128REG:
12537  case X86::VPCMPISTRM128REG:
12538    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12539  case X86::PCMPISTRM128MEM:
12540  case X86::VPCMPISTRM128MEM:
12541    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12542  case X86::PCMPESTRM128REG:
12543  case X86::VPCMPESTRM128REG:
12544    return EmitPCMP(MI, BB, 5, false /* in mem */);
12545  case X86::PCMPESTRM128MEM:
12546  case X86::VPCMPESTRM128MEM:
12547    return EmitPCMP(MI, BB, 5, true /* in mem */);
12548
12549    // Thread synchronization.
12550  case X86::MONITOR:
12551    return EmitMonitor(MI, BB);
12552  case X86::MWAIT:
12553    return EmitMwait(MI, BB);
12554
12555    // Atomic Lowering.
12556  case X86::ATOMAND32:
12557    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12558                                               X86::AND32ri, X86::MOV32rm,
12559                                               X86::LCMPXCHG32,
12560                                               X86::NOT32r, X86::EAX,
12561                                               X86::GR32RegisterClass);
12562  case X86::ATOMOR32:
12563    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12564                                               X86::OR32ri, X86::MOV32rm,
12565                                               X86::LCMPXCHG32,
12566                                               X86::NOT32r, X86::EAX,
12567                                               X86::GR32RegisterClass);
12568  case X86::ATOMXOR32:
12569    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12570                                               X86::XOR32ri, X86::MOV32rm,
12571                                               X86::LCMPXCHG32,
12572                                               X86::NOT32r, X86::EAX,
12573                                               X86::GR32RegisterClass);
12574  case X86::ATOMNAND32:
12575    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12576                                               X86::AND32ri, X86::MOV32rm,
12577                                               X86::LCMPXCHG32,
12578                                               X86::NOT32r, X86::EAX,
12579                                               X86::GR32RegisterClass, true);
12580  case X86::ATOMMIN32:
12581    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12582  case X86::ATOMMAX32:
12583    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12584  case X86::ATOMUMIN32:
12585    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12586  case X86::ATOMUMAX32:
12587    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12588
12589  case X86::ATOMAND16:
12590    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12591                                               X86::AND16ri, X86::MOV16rm,
12592                                               X86::LCMPXCHG16,
12593                                               X86::NOT16r, X86::AX,
12594                                               X86::GR16RegisterClass);
12595  case X86::ATOMOR16:
12596    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12597                                               X86::OR16ri, X86::MOV16rm,
12598                                               X86::LCMPXCHG16,
12599                                               X86::NOT16r, X86::AX,
12600                                               X86::GR16RegisterClass);
12601  case X86::ATOMXOR16:
12602    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12603                                               X86::XOR16ri, X86::MOV16rm,
12604                                               X86::LCMPXCHG16,
12605                                               X86::NOT16r, X86::AX,
12606                                               X86::GR16RegisterClass);
12607  case X86::ATOMNAND16:
12608    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12609                                               X86::AND16ri, X86::MOV16rm,
12610                                               X86::LCMPXCHG16,
12611                                               X86::NOT16r, X86::AX,
12612                                               X86::GR16RegisterClass, true);
12613  case X86::ATOMMIN16:
12614    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12615  case X86::ATOMMAX16:
12616    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12617  case X86::ATOMUMIN16:
12618    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12619  case X86::ATOMUMAX16:
12620    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12621
12622  case X86::ATOMAND8:
12623    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12624                                               X86::AND8ri, X86::MOV8rm,
12625                                               X86::LCMPXCHG8,
12626                                               X86::NOT8r, X86::AL,
12627                                               X86::GR8RegisterClass);
12628  case X86::ATOMOR8:
12629    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12630                                               X86::OR8ri, X86::MOV8rm,
12631                                               X86::LCMPXCHG8,
12632                                               X86::NOT8r, X86::AL,
12633                                               X86::GR8RegisterClass);
12634  case X86::ATOMXOR8:
12635    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12636                                               X86::XOR8ri, X86::MOV8rm,
12637                                               X86::LCMPXCHG8,
12638                                               X86::NOT8r, X86::AL,
12639                                               X86::GR8RegisterClass);
12640  case X86::ATOMNAND8:
12641    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12642                                               X86::AND8ri, X86::MOV8rm,
12643                                               X86::LCMPXCHG8,
12644                                               X86::NOT8r, X86::AL,
12645                                               X86::GR8RegisterClass, true);
12646  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12647  // This group is for 64-bit host.
12648  case X86::ATOMAND64:
12649    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12650                                               X86::AND64ri32, X86::MOV64rm,
12651                                               X86::LCMPXCHG64,
12652                                               X86::NOT64r, X86::RAX,
12653                                               X86::GR64RegisterClass);
12654  case X86::ATOMOR64:
12655    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12656                                               X86::OR64ri32, X86::MOV64rm,
12657                                               X86::LCMPXCHG64,
12658                                               X86::NOT64r, X86::RAX,
12659                                               X86::GR64RegisterClass);
12660  case X86::ATOMXOR64:
12661    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12662                                               X86::XOR64ri32, X86::MOV64rm,
12663                                               X86::LCMPXCHG64,
12664                                               X86::NOT64r, X86::RAX,
12665                                               X86::GR64RegisterClass);
12666  case X86::ATOMNAND64:
12667    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12668                                               X86::AND64ri32, X86::MOV64rm,
12669                                               X86::LCMPXCHG64,
12670                                               X86::NOT64r, X86::RAX,
12671                                               X86::GR64RegisterClass, true);
12672  case X86::ATOMMIN64:
12673    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12674  case X86::ATOMMAX64:
12675    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12676  case X86::ATOMUMIN64:
12677    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12678  case X86::ATOMUMAX64:
12679    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12680
12681  // This group does 64-bit operations on a 32-bit host.
12682  case X86::ATOMAND6432:
12683    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12684                                               X86::AND32rr, X86::AND32rr,
12685                                               X86::AND32ri, X86::AND32ri,
12686                                               false);
12687  case X86::ATOMOR6432:
12688    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12689                                               X86::OR32rr, X86::OR32rr,
12690                                               X86::OR32ri, X86::OR32ri,
12691                                               false);
12692  case X86::ATOMXOR6432:
12693    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12694                                               X86::XOR32rr, X86::XOR32rr,
12695                                               X86::XOR32ri, X86::XOR32ri,
12696                                               false);
12697  case X86::ATOMNAND6432:
12698    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12699                                               X86::AND32rr, X86::AND32rr,
12700                                               X86::AND32ri, X86::AND32ri,
12701                                               true);
12702  case X86::ATOMADD6432:
12703    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12704                                               X86::ADD32rr, X86::ADC32rr,
12705                                               X86::ADD32ri, X86::ADC32ri,
12706                                               false);
12707  case X86::ATOMSUB6432:
12708    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12709                                               X86::SUB32rr, X86::SBB32rr,
12710                                               X86::SUB32ri, X86::SBB32ri,
12711                                               false);
12712  case X86::ATOMSWAP6432:
12713    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12714                                               X86::MOV32rr, X86::MOV32rr,
12715                                               X86::MOV32ri, X86::MOV32ri,
12716                                               false);
12717  case X86::VASTART_SAVE_XMM_REGS:
12718    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12719
12720  case X86::VAARG_64:
12721    return EmitVAARG64WithCustomInserter(MI, BB);
12722  }
12723}
12724
12725//===----------------------------------------------------------------------===//
12726//                           X86 Optimization Hooks
12727//===----------------------------------------------------------------------===//
12728
12729void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12730                                                       APInt &KnownZero,
12731                                                       APInt &KnownOne,
12732                                                       const SelectionDAG &DAG,
12733                                                       unsigned Depth) const {
12734  unsigned BitWidth = KnownZero.getBitWidth();
12735  unsigned Opc = Op.getOpcode();
12736  assert((Opc >= ISD::BUILTIN_OP_END ||
12737          Opc == ISD::INTRINSIC_WO_CHAIN ||
12738          Opc == ISD::INTRINSIC_W_CHAIN ||
12739          Opc == ISD::INTRINSIC_VOID) &&
12740         "Should use MaskedValueIsZero if you don't know whether Op"
12741         " is a target node!");
12742
12743  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
12744  switch (Opc) {
12745  default: break;
12746  case X86ISD::ADD:
12747  case X86ISD::SUB:
12748  case X86ISD::ADC:
12749  case X86ISD::SBB:
12750  case X86ISD::SMUL:
12751  case X86ISD::UMUL:
12752  case X86ISD::INC:
12753  case X86ISD::DEC:
12754  case X86ISD::OR:
12755  case X86ISD::XOR:
12756  case X86ISD::AND:
12757    // These nodes' second result is a boolean.
12758    if (Op.getResNo() == 0)
12759      break;
12760    // Fallthrough
12761  case X86ISD::SETCC:
12762    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
12763    break;
12764  case ISD::INTRINSIC_WO_CHAIN: {
12765    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12766    unsigned NumLoBits = 0;
12767    switch (IntId) {
12768    default: break;
12769    case Intrinsic::x86_sse_movmsk_ps:
12770    case Intrinsic::x86_avx_movmsk_ps_256:
12771    case Intrinsic::x86_sse2_movmsk_pd:
12772    case Intrinsic::x86_avx_movmsk_pd_256:
12773    case Intrinsic::x86_mmx_pmovmskb:
12774    case Intrinsic::x86_sse2_pmovmskb_128:
12775    case Intrinsic::x86_avx2_pmovmskb: {
12776      // High bits of movmskp{s|d}, pmovmskb are known zero.
12777      switch (IntId) {
12778        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12779        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12780        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12781        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12782        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12783        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12784        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12785        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12786      }
12787      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
12788      break;
12789    }
12790    }
12791    break;
12792  }
12793  }
12794}
12795
12796unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12797                                                         unsigned Depth) const {
12798  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12799  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12800    return Op.getValueType().getScalarType().getSizeInBits();
12801
12802  // Fallback case.
12803  return 1;
12804}
12805
12806/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12807/// node is a GlobalAddress + offset.
12808bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12809                                       const GlobalValue* &GA,
12810                                       int64_t &Offset) const {
12811  if (N->getOpcode() == X86ISD::Wrapper) {
12812    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12813      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12814      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12815      return true;
12816    }
12817  }
12818  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12819}
12820
12821/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12822/// same as extracting the high 128-bit part of 256-bit vector and then
12823/// inserting the result into the low part of a new 256-bit vector
12824static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12825  EVT VT = SVOp->getValueType(0);
12826  int NumElems = VT.getVectorNumElements();
12827
12828  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12829  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12830    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12831        SVOp->getMaskElt(j) >= 0)
12832      return false;
12833
12834  return true;
12835}
12836
12837/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12838/// same as extracting the low 128-bit part of 256-bit vector and then
12839/// inserting the result into the high part of a new 256-bit vector
12840static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12841  EVT VT = SVOp->getValueType(0);
12842  int NumElems = VT.getVectorNumElements();
12843
12844  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12845  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12846    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12847        SVOp->getMaskElt(j) >= 0)
12848      return false;
12849
12850  return true;
12851}
12852
12853/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12854static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12855                                        TargetLowering::DAGCombinerInfo &DCI,
12856                                        const X86Subtarget* Subtarget) {
12857  DebugLoc dl = N->getDebugLoc();
12858  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12859  SDValue V1 = SVOp->getOperand(0);
12860  SDValue V2 = SVOp->getOperand(1);
12861  EVT VT = SVOp->getValueType(0);
12862  int NumElems = VT.getVectorNumElements();
12863
12864  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12865      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12866    //
12867    //                   0,0,0,...
12868    //                      |
12869    //    V      UNDEF    BUILD_VECTOR    UNDEF
12870    //     \      /           \           /
12871    //  CONCAT_VECTOR         CONCAT_VECTOR
12872    //         \                  /
12873    //          \                /
12874    //          RESULT: V + zero extended
12875    //
12876    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12877        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12878        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12879      return SDValue();
12880
12881    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12882      return SDValue();
12883
12884    // To match the shuffle mask, the first half of the mask should
12885    // be exactly the first vector, and all the rest a splat with the
12886    // first element of the second one.
12887    for (int i = 0; i < NumElems/2; ++i)
12888      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12889          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12890        return SDValue();
12891
12892    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12893    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12894      SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
12895      SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
12896      SDValue ResNode =
12897        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
12898                                Ld->getMemoryVT(),
12899                                Ld->getPointerInfo(),
12900                                Ld->getAlignment(),
12901                                false/*isVolatile*/, true/*ReadMem*/,
12902                                false/*WriteMem*/);
12903      return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
12904    }
12905
12906    // Emit a zeroed vector and insert the desired subvector on its
12907    // first half.
12908    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
12909    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12910                         DAG.getConstant(0, MVT::i32), DAG, dl);
12911    return DCI.CombineTo(N, InsV);
12912  }
12913
12914  //===--------------------------------------------------------------------===//
12915  // Combine some shuffles into subvector extracts and inserts:
12916  //
12917
12918  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12919  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12920    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12921                                    DAG, dl);
12922    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12923                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12924    return DCI.CombineTo(N, InsV);
12925  }
12926
12927  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12928  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12929    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12930    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12931                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12932    return DCI.CombineTo(N, InsV);
12933  }
12934
12935  return SDValue();
12936}
12937
12938/// PerformShuffleCombine - Performs several different shuffle combines.
12939static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12940                                     TargetLowering::DAGCombinerInfo &DCI,
12941                                     const X86Subtarget *Subtarget) {
12942  DebugLoc dl = N->getDebugLoc();
12943  EVT VT = N->getValueType(0);
12944
12945  // Don't create instructions with illegal types after legalize types has run.
12946  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12947  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12948    return SDValue();
12949
12950  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12951  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12952      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12953    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
12954
12955  // Only handle 128 wide vector from here on.
12956  if (VT.getSizeInBits() != 128)
12957    return SDValue();
12958
12959  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12960  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12961  // consecutive, non-overlapping, and in the right order.
12962  SmallVector<SDValue, 16> Elts;
12963  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12964    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12965
12966  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12967}
12968
12969
12970/// PerformTruncateCombine - Converts truncate operation to
12971/// a sequence of vector shuffle operations.
12972/// It is possible when we truncate 256-bit vector to 128-bit vector
12973
12974SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
12975                                                  DAGCombinerInfo &DCI) const {
12976  if (!DCI.isBeforeLegalizeOps())
12977    return SDValue();
12978
12979  if (!Subtarget->hasAVX()) return SDValue();
12980
12981  EVT VT = N->getValueType(0);
12982  SDValue Op = N->getOperand(0);
12983  EVT OpVT = Op.getValueType();
12984  DebugLoc dl = N->getDebugLoc();
12985
12986  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
12987
12988    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
12989                          DAG.getIntPtrConstant(0));
12990
12991    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
12992                          DAG.getIntPtrConstant(2));
12993
12994    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
12995    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
12996
12997    // PSHUFD
12998    int ShufMask1[] = {0, 2, 0, 0};
12999
13000    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, DAG.getUNDEF(VT),
13001                                ShufMask1);
13002    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, DAG.getUNDEF(VT),
13003                                ShufMask1);
13004
13005    // MOVLHPS
13006    int ShufMask2[] = {0, 1, 4, 5};
13007
13008    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
13009  }
13010  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
13011
13012    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13013                          DAG.getIntPtrConstant(0));
13014
13015    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13016                          DAG.getIntPtrConstant(4));
13017
13018    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
13019    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
13020
13021    // PSHUFB
13022    int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
13023                      -1, -1, -1, -1, -1, -1, -1, -1};
13024
13025    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo,
13026                                DAG.getUNDEF(MVT::v16i8),
13027                                ShufMask1);
13028    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi,
13029                                DAG.getUNDEF(MVT::v16i8),
13030                                ShufMask1);
13031
13032    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13033    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13034
13035    // MOVLHPS
13036    int ShufMask2[] = {0, 1, 4, 5};
13037
13038    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
13039    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
13040  }
13041
13042  return SDValue();
13043}
13044
13045/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
13046/// specific shuffle of a load can be folded into a single element load.
13047/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
13048/// shuffles have been customed lowered so we need to handle those here.
13049static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
13050                                         TargetLowering::DAGCombinerInfo &DCI) {
13051  if (DCI.isBeforeLegalizeOps())
13052    return SDValue();
13053
13054  SDValue InVec = N->getOperand(0);
13055  SDValue EltNo = N->getOperand(1);
13056
13057  if (!isa<ConstantSDNode>(EltNo))
13058    return SDValue();
13059
13060  EVT VT = InVec.getValueType();
13061
13062  bool HasShuffleIntoBitcast = false;
13063  if (InVec.getOpcode() == ISD::BITCAST) {
13064    // Don't duplicate a load with other uses.
13065    if (!InVec.hasOneUse())
13066      return SDValue();
13067    EVT BCVT = InVec.getOperand(0).getValueType();
13068    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
13069      return SDValue();
13070    InVec = InVec.getOperand(0);
13071    HasShuffleIntoBitcast = true;
13072  }
13073
13074  if (!isTargetShuffle(InVec.getOpcode()))
13075    return SDValue();
13076
13077  // Don't duplicate a load with other uses.
13078  if (!InVec.hasOneUse())
13079    return SDValue();
13080
13081  SmallVector<int, 16> ShuffleMask;
13082  bool UnaryShuffle;
13083  if (!getTargetShuffleMask(InVec.getNode(), VT, ShuffleMask, UnaryShuffle))
13084    return SDValue();
13085
13086  // Select the input vector, guarding against out of range extract vector.
13087  unsigned NumElems = VT.getVectorNumElements();
13088  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
13089  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
13090  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
13091                                         : InVec.getOperand(1);
13092
13093  // If inputs to shuffle are the same for both ops, then allow 2 uses
13094  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
13095
13096  if (LdNode.getOpcode() == ISD::BITCAST) {
13097    // Don't duplicate a load with other uses.
13098    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
13099      return SDValue();
13100
13101    AllowedUses = 1; // only allow 1 load use if we have a bitcast
13102    LdNode = LdNode.getOperand(0);
13103  }
13104
13105  if (!ISD::isNormalLoad(LdNode.getNode()))
13106    return SDValue();
13107
13108  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
13109
13110  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
13111    return SDValue();
13112
13113  if (HasShuffleIntoBitcast) {
13114    // If there's a bitcast before the shuffle, check if the load type and
13115    // alignment is valid.
13116    unsigned Align = LN0->getAlignment();
13117    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13118    unsigned NewAlign = TLI.getTargetData()->
13119      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
13120
13121    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
13122      return SDValue();
13123  }
13124
13125  // All checks match so transform back to vector_shuffle so that DAG combiner
13126  // can finish the job
13127  DebugLoc dl = N->getDebugLoc();
13128
13129  // Create shuffle node taking into account the case that its a unary shuffle
13130  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
13131  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
13132                                 InVec.getOperand(0), Shuffle,
13133                                 &ShuffleMask[0]);
13134  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
13135  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
13136                     EltNo);
13137}
13138
13139/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13140/// generation and convert it from being a bunch of shuffles and extracts
13141/// to a simple store and scalar loads to extract the elements.
13142static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13143                                         TargetLowering::DAGCombinerInfo &DCI) {
13144  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
13145  if (NewOp.getNode())
13146    return NewOp;
13147
13148  SDValue InputVector = N->getOperand(0);
13149
13150  // Only operate on vectors of 4 elements, where the alternative shuffling
13151  // gets to be more expensive.
13152  if (InputVector.getValueType() != MVT::v4i32)
13153    return SDValue();
13154
13155  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13156  // single use which is a sign-extend or zero-extend, and all elements are
13157  // used.
13158  SmallVector<SDNode *, 4> Uses;
13159  unsigned ExtractedElements = 0;
13160  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13161       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13162    if (UI.getUse().getResNo() != InputVector.getResNo())
13163      return SDValue();
13164
13165    SDNode *Extract = *UI;
13166    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13167      return SDValue();
13168
13169    if (Extract->getValueType(0) != MVT::i32)
13170      return SDValue();
13171    if (!Extract->hasOneUse())
13172      return SDValue();
13173    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13174        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13175      return SDValue();
13176    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13177      return SDValue();
13178
13179    // Record which element was extracted.
13180    ExtractedElements |=
13181      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13182
13183    Uses.push_back(Extract);
13184  }
13185
13186  // If not all the elements were used, this may not be worthwhile.
13187  if (ExtractedElements != 15)
13188    return SDValue();
13189
13190  // Ok, we've now decided to do the transformation.
13191  DebugLoc dl = InputVector.getDebugLoc();
13192
13193  // Store the value to a temporary stack slot.
13194  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13195  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13196                            MachinePointerInfo(), false, false, 0);
13197
13198  // Replace each use (extract) with a load of the appropriate element.
13199  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13200       UE = Uses.end(); UI != UE; ++UI) {
13201    SDNode *Extract = *UI;
13202
13203    // cOMpute the element's address.
13204    SDValue Idx = Extract->getOperand(1);
13205    unsigned EltSize =
13206        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13207    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13208    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13209    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13210
13211    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13212                                     StackPtr, OffsetVal);
13213
13214    // Load the scalar.
13215    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13216                                     ScalarAddr, MachinePointerInfo(),
13217                                     false, false, false, 0);
13218
13219    // Replace the exact with the load.
13220    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13221  }
13222
13223  // The replacement was made in place; don't return anything.
13224  return SDValue();
13225}
13226
13227/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13228/// nodes.
13229static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13230                                    TargetLowering::DAGCombinerInfo &DCI,
13231                                    const X86Subtarget *Subtarget) {
13232
13233
13234  DebugLoc DL = N->getDebugLoc();
13235  SDValue Cond = N->getOperand(0);
13236  // Get the LHS/RHS of the select.
13237  SDValue LHS = N->getOperand(1);
13238  SDValue RHS = N->getOperand(2);
13239  EVT VT = LHS.getValueType();
13240
13241  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13242  // instructions match the semantics of the common C idiom x<y?x:y but not
13243  // x<=y?x:y, because of how they handle negative zero (which can be
13244  // ignored in unsafe-math mode).
13245  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13246      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13247      (Subtarget->hasSSE2() ||
13248       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13249    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13250
13251    unsigned Opcode = 0;
13252    // Check for x CC y ? x : y.
13253    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13254        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13255      switch (CC) {
13256      default: break;
13257      case ISD::SETULT:
13258        // Converting this to a min would handle NaNs incorrectly, and swapping
13259        // the operands would cause it to handle comparisons between positive
13260        // and negative zero incorrectly.
13261        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13262          if (!DAG.getTarget().Options.UnsafeFPMath &&
13263              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13264            break;
13265          std::swap(LHS, RHS);
13266        }
13267        Opcode = X86ISD::FMIN;
13268        break;
13269      case ISD::SETOLE:
13270        // Converting this to a min would handle comparisons between positive
13271        // and negative zero incorrectly.
13272        if (!DAG.getTarget().Options.UnsafeFPMath &&
13273            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13274          break;
13275        Opcode = X86ISD::FMIN;
13276        break;
13277      case ISD::SETULE:
13278        // Converting this to a min would handle both negative zeros and NaNs
13279        // incorrectly, but we can swap the operands to fix both.
13280        std::swap(LHS, RHS);
13281      case ISD::SETOLT:
13282      case ISD::SETLT:
13283      case ISD::SETLE:
13284        Opcode = X86ISD::FMIN;
13285        break;
13286
13287      case ISD::SETOGE:
13288        // Converting this to a max would handle comparisons between positive
13289        // and negative zero incorrectly.
13290        if (!DAG.getTarget().Options.UnsafeFPMath &&
13291            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13292          break;
13293        Opcode = X86ISD::FMAX;
13294        break;
13295      case ISD::SETUGT:
13296        // Converting this to a max would handle NaNs incorrectly, and swapping
13297        // the operands would cause it to handle comparisons between positive
13298        // and negative zero incorrectly.
13299        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13300          if (!DAG.getTarget().Options.UnsafeFPMath &&
13301              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13302            break;
13303          std::swap(LHS, RHS);
13304        }
13305        Opcode = X86ISD::FMAX;
13306        break;
13307      case ISD::SETUGE:
13308        // Converting this to a max would handle both negative zeros and NaNs
13309        // incorrectly, but we can swap the operands to fix both.
13310        std::swap(LHS, RHS);
13311      case ISD::SETOGT:
13312      case ISD::SETGT:
13313      case ISD::SETGE:
13314        Opcode = X86ISD::FMAX;
13315        break;
13316      }
13317    // Check for x CC y ? y : x -- a min/max with reversed arms.
13318    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13319               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13320      switch (CC) {
13321      default: break;
13322      case ISD::SETOGE:
13323        // Converting this to a min would handle comparisons between positive
13324        // and negative zero incorrectly, and swapping the operands would
13325        // cause it to handle NaNs incorrectly.
13326        if (!DAG.getTarget().Options.UnsafeFPMath &&
13327            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13328          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13329            break;
13330          std::swap(LHS, RHS);
13331        }
13332        Opcode = X86ISD::FMIN;
13333        break;
13334      case ISD::SETUGT:
13335        // Converting this to a min would handle NaNs incorrectly.
13336        if (!DAG.getTarget().Options.UnsafeFPMath &&
13337            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13338          break;
13339        Opcode = X86ISD::FMIN;
13340        break;
13341      case ISD::SETUGE:
13342        // Converting this to a min would handle both negative zeros and NaNs
13343        // incorrectly, but we can swap the operands to fix both.
13344        std::swap(LHS, RHS);
13345      case ISD::SETOGT:
13346      case ISD::SETGT:
13347      case ISD::SETGE:
13348        Opcode = X86ISD::FMIN;
13349        break;
13350
13351      case ISD::SETULT:
13352        // Converting this to a max would handle NaNs incorrectly.
13353        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13354          break;
13355        Opcode = X86ISD::FMAX;
13356        break;
13357      case ISD::SETOLE:
13358        // Converting this to a max would handle comparisons between positive
13359        // and negative zero incorrectly, and swapping the operands would
13360        // cause it to handle NaNs incorrectly.
13361        if (!DAG.getTarget().Options.UnsafeFPMath &&
13362            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13363          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13364            break;
13365          std::swap(LHS, RHS);
13366        }
13367        Opcode = X86ISD::FMAX;
13368        break;
13369      case ISD::SETULE:
13370        // Converting this to a max would handle both negative zeros and NaNs
13371        // incorrectly, but we can swap the operands to fix both.
13372        std::swap(LHS, RHS);
13373      case ISD::SETOLT:
13374      case ISD::SETLT:
13375      case ISD::SETLE:
13376        Opcode = X86ISD::FMAX;
13377        break;
13378      }
13379    }
13380
13381    if (Opcode)
13382      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13383  }
13384
13385  // If this is a select between two integer constants, try to do some
13386  // optimizations.
13387  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13388    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13389      // Don't do this for crazy integer types.
13390      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13391        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13392        // so that TrueC (the true value) is larger than FalseC.
13393        bool NeedsCondInvert = false;
13394
13395        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13396            // Efficiently invertible.
13397            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13398             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13399              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13400          NeedsCondInvert = true;
13401          std::swap(TrueC, FalseC);
13402        }
13403
13404        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13405        if (FalseC->getAPIntValue() == 0 &&
13406            TrueC->getAPIntValue().isPowerOf2()) {
13407          if (NeedsCondInvert) // Invert the condition if needed.
13408            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13409                               DAG.getConstant(1, Cond.getValueType()));
13410
13411          // Zero extend the condition if needed.
13412          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13413
13414          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13415          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13416                             DAG.getConstant(ShAmt, MVT::i8));
13417        }
13418
13419        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13420        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13421          if (NeedsCondInvert) // Invert the condition if needed.
13422            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13423                               DAG.getConstant(1, Cond.getValueType()));
13424
13425          // Zero extend the condition if needed.
13426          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13427                             FalseC->getValueType(0), Cond);
13428          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13429                             SDValue(FalseC, 0));
13430        }
13431
13432        // Optimize cases that will turn into an LEA instruction.  This requires
13433        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13434        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13435          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13436          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13437
13438          bool isFastMultiplier = false;
13439          if (Diff < 10) {
13440            switch ((unsigned char)Diff) {
13441              default: break;
13442              case 1:  // result = add base, cond
13443              case 2:  // result = lea base(    , cond*2)
13444              case 3:  // result = lea base(cond, cond*2)
13445              case 4:  // result = lea base(    , cond*4)
13446              case 5:  // result = lea base(cond, cond*4)
13447              case 8:  // result = lea base(    , cond*8)
13448              case 9:  // result = lea base(cond, cond*8)
13449                isFastMultiplier = true;
13450                break;
13451            }
13452          }
13453
13454          if (isFastMultiplier) {
13455            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13456            if (NeedsCondInvert) // Invert the condition if needed.
13457              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13458                                 DAG.getConstant(1, Cond.getValueType()));
13459
13460            // Zero extend the condition if needed.
13461            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13462                               Cond);
13463            // Scale the condition by the difference.
13464            if (Diff != 1)
13465              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13466                                 DAG.getConstant(Diff, Cond.getValueType()));
13467
13468            // Add the base if non-zero.
13469            if (FalseC->getAPIntValue() != 0)
13470              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13471                                 SDValue(FalseC, 0));
13472            return Cond;
13473          }
13474        }
13475      }
13476  }
13477
13478  // Canonicalize max and min:
13479  // (x > y) ? x : y -> (x >= y) ? x : y
13480  // (x < y) ? x : y -> (x <= y) ? x : y
13481  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13482  // the need for an extra compare
13483  // against zero. e.g.
13484  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13485  // subl   %esi, %edi
13486  // testl  %edi, %edi
13487  // movl   $0, %eax
13488  // cmovgl %edi, %eax
13489  // =>
13490  // xorl   %eax, %eax
13491  // subl   %esi, $edi
13492  // cmovsl %eax, %edi
13493  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13494      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13495      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13496    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13497    switch (CC) {
13498    default: break;
13499    case ISD::SETLT:
13500    case ISD::SETGT: {
13501      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13502      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13503                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13504      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13505    }
13506    }
13507  }
13508
13509  // If we know that this node is legal then we know that it is going to be
13510  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13511  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13512  // to simplify previous instructions.
13513  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13514  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13515      !DCI.isBeforeLegalize() &&
13516      TLI.isOperationLegal(ISD::VSELECT, VT)) {
13517    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13518    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13519    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13520
13521    APInt KnownZero, KnownOne;
13522    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13523                                          DCI.isBeforeLegalizeOps());
13524    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13525        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13526      DCI.CommitTargetLoweringOpt(TLO);
13527  }
13528
13529  return SDValue();
13530}
13531
13532/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13533static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13534                                  TargetLowering::DAGCombinerInfo &DCI) {
13535  DebugLoc DL = N->getDebugLoc();
13536
13537  // If the flag operand isn't dead, don't touch this CMOV.
13538  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13539    return SDValue();
13540
13541  SDValue FalseOp = N->getOperand(0);
13542  SDValue TrueOp = N->getOperand(1);
13543  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13544  SDValue Cond = N->getOperand(3);
13545  if (CC == X86::COND_E || CC == X86::COND_NE) {
13546    switch (Cond.getOpcode()) {
13547    default: break;
13548    case X86ISD::BSR:
13549    case X86ISD::BSF:
13550      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13551      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13552        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13553    }
13554  }
13555
13556  // If this is a select between two integer constants, try to do some
13557  // optimizations.  Note that the operands are ordered the opposite of SELECT
13558  // operands.
13559  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13560    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13561      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13562      // larger than FalseC (the false value).
13563      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13564        CC = X86::GetOppositeBranchCondition(CC);
13565        std::swap(TrueC, FalseC);
13566      }
13567
13568      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13569      // This is efficient for any integer data type (including i8/i16) and
13570      // shift amount.
13571      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13572        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13573                           DAG.getConstant(CC, MVT::i8), Cond);
13574
13575        // Zero extend the condition if needed.
13576        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13577
13578        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13579        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13580                           DAG.getConstant(ShAmt, MVT::i8));
13581        if (N->getNumValues() == 2)  // Dead flag value?
13582          return DCI.CombineTo(N, Cond, SDValue());
13583        return Cond;
13584      }
13585
13586      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13587      // for any integer data type, including i8/i16.
13588      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13589        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13590                           DAG.getConstant(CC, MVT::i8), Cond);
13591
13592        // Zero extend the condition if needed.
13593        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13594                           FalseC->getValueType(0), Cond);
13595        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13596                           SDValue(FalseC, 0));
13597
13598        if (N->getNumValues() == 2)  // Dead flag value?
13599          return DCI.CombineTo(N, Cond, SDValue());
13600        return Cond;
13601      }
13602
13603      // Optimize cases that will turn into an LEA instruction.  This requires
13604      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13605      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13606        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13607        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13608
13609        bool isFastMultiplier = false;
13610        if (Diff < 10) {
13611          switch ((unsigned char)Diff) {
13612          default: break;
13613          case 1:  // result = add base, cond
13614          case 2:  // result = lea base(    , cond*2)
13615          case 3:  // result = lea base(cond, cond*2)
13616          case 4:  // result = lea base(    , cond*4)
13617          case 5:  // result = lea base(cond, cond*4)
13618          case 8:  // result = lea base(    , cond*8)
13619          case 9:  // result = lea base(cond, cond*8)
13620            isFastMultiplier = true;
13621            break;
13622          }
13623        }
13624
13625        if (isFastMultiplier) {
13626          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13627          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13628                             DAG.getConstant(CC, MVT::i8), Cond);
13629          // Zero extend the condition if needed.
13630          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13631                             Cond);
13632          // Scale the condition by the difference.
13633          if (Diff != 1)
13634            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13635                               DAG.getConstant(Diff, Cond.getValueType()));
13636
13637          // Add the base if non-zero.
13638          if (FalseC->getAPIntValue() != 0)
13639            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13640                               SDValue(FalseC, 0));
13641          if (N->getNumValues() == 2)  // Dead flag value?
13642            return DCI.CombineTo(N, Cond, SDValue());
13643          return Cond;
13644        }
13645      }
13646    }
13647  }
13648  return SDValue();
13649}
13650
13651
13652/// PerformMulCombine - Optimize a single multiply with constant into two
13653/// in order to implement it with two cheaper instructions, e.g.
13654/// LEA + SHL, LEA + LEA.
13655static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13656                                 TargetLowering::DAGCombinerInfo &DCI) {
13657  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13658    return SDValue();
13659
13660  EVT VT = N->getValueType(0);
13661  if (VT != MVT::i64)
13662    return SDValue();
13663
13664  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13665  if (!C)
13666    return SDValue();
13667  uint64_t MulAmt = C->getZExtValue();
13668  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13669    return SDValue();
13670
13671  uint64_t MulAmt1 = 0;
13672  uint64_t MulAmt2 = 0;
13673  if ((MulAmt % 9) == 0) {
13674    MulAmt1 = 9;
13675    MulAmt2 = MulAmt / 9;
13676  } else if ((MulAmt % 5) == 0) {
13677    MulAmt1 = 5;
13678    MulAmt2 = MulAmt / 5;
13679  } else if ((MulAmt % 3) == 0) {
13680    MulAmt1 = 3;
13681    MulAmt2 = MulAmt / 3;
13682  }
13683  if (MulAmt2 &&
13684      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13685    DebugLoc DL = N->getDebugLoc();
13686
13687    if (isPowerOf2_64(MulAmt2) &&
13688        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13689      // If second multiplifer is pow2, issue it first. We want the multiply by
13690      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13691      // is an add.
13692      std::swap(MulAmt1, MulAmt2);
13693
13694    SDValue NewMul;
13695    if (isPowerOf2_64(MulAmt1))
13696      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13697                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13698    else
13699      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13700                           DAG.getConstant(MulAmt1, VT));
13701
13702    if (isPowerOf2_64(MulAmt2))
13703      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13704                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13705    else
13706      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13707                           DAG.getConstant(MulAmt2, VT));
13708
13709    // Do not add new nodes to DAG combiner worklist.
13710    DCI.CombineTo(N, NewMul, false);
13711  }
13712  return SDValue();
13713}
13714
13715static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13716  SDValue N0 = N->getOperand(0);
13717  SDValue N1 = N->getOperand(1);
13718  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13719  EVT VT = N0.getValueType();
13720
13721  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13722  // since the result of setcc_c is all zero's or all ones.
13723  if (VT.isInteger() && !VT.isVector() &&
13724      N1C && N0.getOpcode() == ISD::AND &&
13725      N0.getOperand(1).getOpcode() == ISD::Constant) {
13726    SDValue N00 = N0.getOperand(0);
13727    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13728        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13729          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13730         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13731      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13732      APInt ShAmt = N1C->getAPIntValue();
13733      Mask = Mask.shl(ShAmt);
13734      if (Mask != 0)
13735        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13736                           N00, DAG.getConstant(Mask, VT));
13737    }
13738  }
13739
13740
13741  // Hardware support for vector shifts is sparse which makes us scalarize the
13742  // vector operations in many cases. Also, on sandybridge ADD is faster than
13743  // shl.
13744  // (shl V, 1) -> add V,V
13745  if (isSplatVector(N1.getNode())) {
13746    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13747    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13748    // We shift all of the values by one. In many cases we do not have
13749    // hardware support for this operation. This is better expressed as an ADD
13750    // of two values.
13751    if (N1C && (1 == N1C->getZExtValue())) {
13752      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13753    }
13754  }
13755
13756  return SDValue();
13757}
13758
13759/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13760///                       when possible.
13761static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13762                                   TargetLowering::DAGCombinerInfo &DCI,
13763                                   const X86Subtarget *Subtarget) {
13764  EVT VT = N->getValueType(0);
13765  if (N->getOpcode() == ISD::SHL) {
13766    SDValue V = PerformSHLCombine(N, DAG);
13767    if (V.getNode()) return V;
13768  }
13769
13770  // On X86 with SSE2 support, we can transform this to a vector shift if
13771  // all elements are shifted by the same amount.  We can't do this in legalize
13772  // because the a constant vector is typically transformed to a constant pool
13773  // so we have no knowledge of the shift amount.
13774  if (!Subtarget->hasSSE2())
13775    return SDValue();
13776
13777  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13778      (!Subtarget->hasAVX2() ||
13779       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13780    return SDValue();
13781
13782  SDValue ShAmtOp = N->getOperand(1);
13783  EVT EltVT = VT.getVectorElementType();
13784  DebugLoc DL = N->getDebugLoc();
13785  SDValue BaseShAmt = SDValue();
13786  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13787    unsigned NumElts = VT.getVectorNumElements();
13788    unsigned i = 0;
13789    for (; i != NumElts; ++i) {
13790      SDValue Arg = ShAmtOp.getOperand(i);
13791      if (Arg.getOpcode() == ISD::UNDEF) continue;
13792      BaseShAmt = Arg;
13793      break;
13794    }
13795    // Handle the case where the build_vector is all undef
13796    // FIXME: Should DAG allow this?
13797    if (i == NumElts)
13798      return SDValue();
13799
13800    for (; i != NumElts; ++i) {
13801      SDValue Arg = ShAmtOp.getOperand(i);
13802      if (Arg.getOpcode() == ISD::UNDEF) continue;
13803      if (Arg != BaseShAmt) {
13804        return SDValue();
13805      }
13806    }
13807  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13808             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13809    SDValue InVec = ShAmtOp.getOperand(0);
13810    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13811      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13812      unsigned i = 0;
13813      for (; i != NumElts; ++i) {
13814        SDValue Arg = InVec.getOperand(i);
13815        if (Arg.getOpcode() == ISD::UNDEF) continue;
13816        BaseShAmt = Arg;
13817        break;
13818      }
13819    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13820       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13821         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13822         if (C->getZExtValue() == SplatIdx)
13823           BaseShAmt = InVec.getOperand(1);
13824       }
13825    }
13826    if (BaseShAmt.getNode() == 0) {
13827      // Don't create instructions with illegal types after legalize
13828      // types has run.
13829      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
13830          !DCI.isBeforeLegalize())
13831        return SDValue();
13832
13833      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13834                              DAG.getIntPtrConstant(0));
13835    }
13836  } else
13837    return SDValue();
13838
13839  // The shift amount is an i32.
13840  if (EltVT.bitsGT(MVT::i32))
13841    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13842  else if (EltVT.bitsLT(MVT::i32))
13843    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13844
13845  // The shift amount is identical so we can do a vector shift.
13846  SDValue  ValOp = N->getOperand(0);
13847  switch (N->getOpcode()) {
13848  default:
13849    llvm_unreachable("Unknown shift opcode!");
13850  case ISD::SHL:
13851    switch (VT.getSimpleVT().SimpleTy) {
13852    default: return SDValue();
13853    case MVT::v2i64:
13854    case MVT::v4i32:
13855    case MVT::v8i16:
13856    case MVT::v4i64:
13857    case MVT::v8i32:
13858    case MVT::v16i16:
13859      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
13860    }
13861  case ISD::SRA:
13862    switch (VT.getSimpleVT().SimpleTy) {
13863    default: return SDValue();
13864    case MVT::v4i32:
13865    case MVT::v8i16:
13866    case MVT::v8i32:
13867    case MVT::v16i16:
13868      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
13869    }
13870  case ISD::SRL:
13871    switch (VT.getSimpleVT().SimpleTy) {
13872    default: return SDValue();
13873    case MVT::v2i64:
13874    case MVT::v4i32:
13875    case MVT::v8i16:
13876    case MVT::v4i64:
13877    case MVT::v8i32:
13878    case MVT::v16i16:
13879      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
13880    }
13881  }
13882}
13883
13884
13885// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13886// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13887// and friends.  Likewise for OR -> CMPNEQSS.
13888static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13889                            TargetLowering::DAGCombinerInfo &DCI,
13890                            const X86Subtarget *Subtarget) {
13891  unsigned opcode;
13892
13893  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13894  // we're requiring SSE2 for both.
13895  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13896    SDValue N0 = N->getOperand(0);
13897    SDValue N1 = N->getOperand(1);
13898    SDValue CMP0 = N0->getOperand(1);
13899    SDValue CMP1 = N1->getOperand(1);
13900    DebugLoc DL = N->getDebugLoc();
13901
13902    // The SETCCs should both refer to the same CMP.
13903    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13904      return SDValue();
13905
13906    SDValue CMP00 = CMP0->getOperand(0);
13907    SDValue CMP01 = CMP0->getOperand(1);
13908    EVT     VT    = CMP00.getValueType();
13909
13910    if (VT == MVT::f32 || VT == MVT::f64) {
13911      bool ExpectingFlags = false;
13912      // Check for any users that want flags:
13913      for (SDNode::use_iterator UI = N->use_begin(),
13914             UE = N->use_end();
13915           !ExpectingFlags && UI != UE; ++UI)
13916        switch (UI->getOpcode()) {
13917        default:
13918        case ISD::BR_CC:
13919        case ISD::BRCOND:
13920        case ISD::SELECT:
13921          ExpectingFlags = true;
13922          break;
13923        case ISD::CopyToReg:
13924        case ISD::SIGN_EXTEND:
13925        case ISD::ZERO_EXTEND:
13926        case ISD::ANY_EXTEND:
13927          break;
13928        }
13929
13930      if (!ExpectingFlags) {
13931        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13932        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13933
13934        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13935          X86::CondCode tmp = cc0;
13936          cc0 = cc1;
13937          cc1 = tmp;
13938        }
13939
13940        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13941            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13942          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13943          X86ISD::NodeType NTOperator = is64BitFP ?
13944            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13945          // FIXME: need symbolic constants for these magic numbers.
13946          // See X86ATTInstPrinter.cpp:printSSECC().
13947          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13948          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13949                                              DAG.getConstant(x86cc, MVT::i8));
13950          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13951                                              OnesOrZeroesF);
13952          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13953                                      DAG.getConstant(1, MVT::i32));
13954          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13955          return OneBitOfTruth;
13956        }
13957      }
13958    }
13959  }
13960  return SDValue();
13961}
13962
13963/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13964/// so it can be folded inside ANDNP.
13965static bool CanFoldXORWithAllOnes(const SDNode *N) {
13966  EVT VT = N->getValueType(0);
13967
13968  // Match direct AllOnes for 128 and 256-bit vectors
13969  if (ISD::isBuildVectorAllOnes(N))
13970    return true;
13971
13972  // Look through a bit convert.
13973  if (N->getOpcode() == ISD::BITCAST)
13974    N = N->getOperand(0).getNode();
13975
13976  // Sometimes the operand may come from a insert_subvector building a 256-bit
13977  // allones vector
13978  if (VT.getSizeInBits() == 256 &&
13979      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13980    SDValue V1 = N->getOperand(0);
13981    SDValue V2 = N->getOperand(1);
13982
13983    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13984        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13985        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13986        ISD::isBuildVectorAllOnes(V2.getNode()))
13987      return true;
13988  }
13989
13990  return false;
13991}
13992
13993static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13994                                 TargetLowering::DAGCombinerInfo &DCI,
13995                                 const X86Subtarget *Subtarget) {
13996  if (DCI.isBeforeLegalizeOps())
13997    return SDValue();
13998
13999  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14000  if (R.getNode())
14001    return R;
14002
14003  EVT VT = N->getValueType(0);
14004
14005  // Create ANDN, BLSI, and BLSR instructions
14006  // BLSI is X & (-X)
14007  // BLSR is X & (X-1)
14008  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
14009    SDValue N0 = N->getOperand(0);
14010    SDValue N1 = N->getOperand(1);
14011    DebugLoc DL = N->getDebugLoc();
14012
14013    // Check LHS for not
14014    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
14015      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
14016    // Check RHS for not
14017    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
14018      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
14019
14020    // Check LHS for neg
14021    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
14022        isZero(N0.getOperand(0)))
14023      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
14024
14025    // Check RHS for neg
14026    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
14027        isZero(N1.getOperand(0)))
14028      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
14029
14030    // Check LHS for X-1
14031    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14032        isAllOnes(N0.getOperand(1)))
14033      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
14034
14035    // Check RHS for X-1
14036    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14037        isAllOnes(N1.getOperand(1)))
14038      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
14039
14040    return SDValue();
14041  }
14042
14043  // Want to form ANDNP nodes:
14044  // 1) In the hopes of then easily combining them with OR and AND nodes
14045  //    to form PBLEND/PSIGN.
14046  // 2) To match ANDN packed intrinsics
14047  if (VT != MVT::v2i64 && VT != MVT::v4i64)
14048    return SDValue();
14049
14050  SDValue N0 = N->getOperand(0);
14051  SDValue N1 = N->getOperand(1);
14052  DebugLoc DL = N->getDebugLoc();
14053
14054  // Check LHS for vnot
14055  if (N0.getOpcode() == ISD::XOR &&
14056      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
14057      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
14058    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
14059
14060  // Check RHS for vnot
14061  if (N1.getOpcode() == ISD::XOR &&
14062      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
14063      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
14064    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
14065
14066  return SDValue();
14067}
14068
14069static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
14070                                TargetLowering::DAGCombinerInfo &DCI,
14071                                const X86Subtarget *Subtarget) {
14072  if (DCI.isBeforeLegalizeOps())
14073    return SDValue();
14074
14075  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14076  if (R.getNode())
14077    return R;
14078
14079  EVT VT = N->getValueType(0);
14080
14081  SDValue N0 = N->getOperand(0);
14082  SDValue N1 = N->getOperand(1);
14083
14084  // look for psign/blend
14085  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
14086    if (!Subtarget->hasSSSE3() ||
14087        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
14088      return SDValue();
14089
14090    // Canonicalize pandn to RHS
14091    if (N0.getOpcode() == X86ISD::ANDNP)
14092      std::swap(N0, N1);
14093    // or (and (m, y), (pandn m, x))
14094    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
14095      SDValue Mask = N1.getOperand(0);
14096      SDValue X    = N1.getOperand(1);
14097      SDValue Y;
14098      if (N0.getOperand(0) == Mask)
14099        Y = N0.getOperand(1);
14100      if (N0.getOperand(1) == Mask)
14101        Y = N0.getOperand(0);
14102
14103      // Check to see if the mask appeared in both the AND and ANDNP and
14104      if (!Y.getNode())
14105        return SDValue();
14106
14107      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
14108      // Look through mask bitcast.
14109      if (Mask.getOpcode() == ISD::BITCAST)
14110        Mask = Mask.getOperand(0);
14111      if (X.getOpcode() == ISD::BITCAST)
14112        X = X.getOperand(0);
14113      if (Y.getOpcode() == ISD::BITCAST)
14114        Y = Y.getOperand(0);
14115
14116      EVT MaskVT = Mask.getValueType();
14117
14118      // Validate that the Mask operand is a vector sra node.
14119      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
14120      // there is no psrai.b
14121      if (Mask.getOpcode() != X86ISD::VSRAI)
14122        return SDValue();
14123
14124      // Check that the SRA is all signbits.
14125      SDValue SraC = Mask.getOperand(1);
14126      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
14127      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
14128      if ((SraAmt + 1) != EltBits)
14129        return SDValue();
14130
14131      DebugLoc DL = N->getDebugLoc();
14132
14133      // Now we know we at least have a plendvb with the mask val.  See if
14134      // we can form a psignb/w/d.
14135      // psign = x.type == y.type == mask.type && y = sub(0, x);
14136      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
14137          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
14138          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
14139        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
14140               "Unsupported VT for PSIGN");
14141        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
14142        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14143      }
14144      // PBLENDVB only available on SSE 4.1
14145      if (!Subtarget->hasSSE41())
14146        return SDValue();
14147
14148      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
14149
14150      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
14151      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
14152      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
14153      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
14154      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14155    }
14156  }
14157
14158  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
14159    return SDValue();
14160
14161  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
14162  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
14163    std::swap(N0, N1);
14164  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
14165    return SDValue();
14166  if (!N0.hasOneUse() || !N1.hasOneUse())
14167    return SDValue();
14168
14169  SDValue ShAmt0 = N0.getOperand(1);
14170  if (ShAmt0.getValueType() != MVT::i8)
14171    return SDValue();
14172  SDValue ShAmt1 = N1.getOperand(1);
14173  if (ShAmt1.getValueType() != MVT::i8)
14174    return SDValue();
14175  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
14176    ShAmt0 = ShAmt0.getOperand(0);
14177  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
14178    ShAmt1 = ShAmt1.getOperand(0);
14179
14180  DebugLoc DL = N->getDebugLoc();
14181  unsigned Opc = X86ISD::SHLD;
14182  SDValue Op0 = N0.getOperand(0);
14183  SDValue Op1 = N1.getOperand(0);
14184  if (ShAmt0.getOpcode() == ISD::SUB) {
14185    Opc = X86ISD::SHRD;
14186    std::swap(Op0, Op1);
14187    std::swap(ShAmt0, ShAmt1);
14188  }
14189
14190  unsigned Bits = VT.getSizeInBits();
14191  if (ShAmt1.getOpcode() == ISD::SUB) {
14192    SDValue Sum = ShAmt1.getOperand(0);
14193    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14194      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14195      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14196        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14197      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14198        return DAG.getNode(Opc, DL, VT,
14199                           Op0, Op1,
14200                           DAG.getNode(ISD::TRUNCATE, DL,
14201                                       MVT::i8, ShAmt0));
14202    }
14203  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14204    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14205    if (ShAmt0C &&
14206        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14207      return DAG.getNode(Opc, DL, VT,
14208                         N0.getOperand(0), N1.getOperand(0),
14209                         DAG.getNode(ISD::TRUNCATE, DL,
14210                                       MVT::i8, ShAmt0));
14211  }
14212
14213  return SDValue();
14214}
14215
14216// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
14217static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
14218                                 TargetLowering::DAGCombinerInfo &DCI,
14219                                 const X86Subtarget *Subtarget) {
14220  if (DCI.isBeforeLegalizeOps())
14221    return SDValue();
14222
14223  EVT VT = N->getValueType(0);
14224
14225  if (VT != MVT::i32 && VT != MVT::i64)
14226    return SDValue();
14227
14228  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
14229
14230  // Create BLSMSK instructions by finding X ^ (X-1)
14231  SDValue N0 = N->getOperand(0);
14232  SDValue N1 = N->getOperand(1);
14233  DebugLoc DL = N->getDebugLoc();
14234
14235  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14236      isAllOnes(N0.getOperand(1)))
14237    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14238
14239  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14240      isAllOnes(N1.getOperand(1)))
14241    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14242
14243  return SDValue();
14244}
14245
14246/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14247static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14248                                   const X86Subtarget *Subtarget) {
14249  LoadSDNode *Ld = cast<LoadSDNode>(N);
14250  EVT RegVT = Ld->getValueType(0);
14251  EVT MemVT = Ld->getMemoryVT();
14252  DebugLoc dl = Ld->getDebugLoc();
14253  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14254
14255  ISD::LoadExtType Ext = Ld->getExtensionType();
14256
14257  // If this is a vector EXT Load then attempt to optimize it using a
14258  // shuffle. We need SSE4 for the shuffles.
14259  // TODO: It is possible to support ZExt by zeroing the undef values
14260  // during the shuffle phase or after the shuffle.
14261  if (RegVT.isVector() && RegVT.isInteger() &&
14262      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14263    assert(MemVT != RegVT && "Cannot extend to the same type");
14264    assert(MemVT.isVector() && "Must load a vector from memory");
14265
14266    unsigned NumElems = RegVT.getVectorNumElements();
14267    unsigned RegSz = RegVT.getSizeInBits();
14268    unsigned MemSz = MemVT.getSizeInBits();
14269    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14270    // All sizes must be a power of two
14271    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
14272
14273    // Attempt to load the original value using a single load op.
14274    // Find a scalar type which is equal to the loaded word size.
14275    MVT SclrLoadTy = MVT::i8;
14276    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14277         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14278      MVT Tp = (MVT::SimpleValueType)tp;
14279      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
14280        SclrLoadTy = Tp;
14281        break;
14282      }
14283    }
14284
14285    // Proceed if a load word is found.
14286    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
14287
14288    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14289      RegSz/SclrLoadTy.getSizeInBits());
14290
14291    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14292                                  RegSz/MemVT.getScalarType().getSizeInBits());
14293    // Can't shuffle using an illegal type.
14294    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14295
14296    // Perform a single load.
14297    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14298                                  Ld->getBasePtr(),
14299                                  Ld->getPointerInfo(), Ld->isVolatile(),
14300                                  Ld->isNonTemporal(), Ld->isInvariant(),
14301                                  Ld->getAlignment());
14302
14303    // Insert the word loaded into a vector.
14304    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14305      LoadUnitVecVT, ScalarLoad);
14306
14307    // Bitcast the loaded value to a vector of the original element type, in
14308    // the size of the target vector type.
14309    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
14310                                    ScalarInVector);
14311    unsigned SizeRatio = RegSz/MemSz;
14312
14313    // Redistribute the loaded elements into the different locations.
14314    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14315    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
14316
14317    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14318                                DAG.getUNDEF(SlicedVec.getValueType()),
14319                                ShuffleVec.data());
14320
14321    // Bitcast to the requested type.
14322    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14323    // Replace the original load with the new sequence
14324    // and return the new chain.
14325    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14326    return SDValue(ScalarLoad.getNode(), 1);
14327  }
14328
14329  return SDValue();
14330}
14331
14332/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14333static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14334                                   const X86Subtarget *Subtarget) {
14335  StoreSDNode *St = cast<StoreSDNode>(N);
14336  EVT VT = St->getValue().getValueType();
14337  EVT StVT = St->getMemoryVT();
14338  DebugLoc dl = St->getDebugLoc();
14339  SDValue StoredVal = St->getOperand(1);
14340  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14341
14342  // If we are saving a concatenation of two XMM registers, perform two stores.
14343  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14344  // 128-bit ones. If in the future the cost becomes only one memory access the
14345  // first version would be better.
14346  if (VT.getSizeInBits() == 256 &&
14347    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14348    StoredVal.getNumOperands() == 2) {
14349
14350    SDValue Value0 = StoredVal.getOperand(0);
14351    SDValue Value1 = StoredVal.getOperand(1);
14352
14353    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14354    SDValue Ptr0 = St->getBasePtr();
14355    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14356
14357    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14358                                St->getPointerInfo(), St->isVolatile(),
14359                                St->isNonTemporal(), St->getAlignment());
14360    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14361                                St->getPointerInfo(), St->isVolatile(),
14362                                St->isNonTemporal(), St->getAlignment());
14363    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14364  }
14365
14366  // Optimize trunc store (of multiple scalars) to shuffle and store.
14367  // First, pack all of the elements in one place. Next, store to memory
14368  // in fewer chunks.
14369  if (St->isTruncatingStore() && VT.isVector()) {
14370    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14371    unsigned NumElems = VT.getVectorNumElements();
14372    assert(StVT != VT && "Cannot truncate to the same type");
14373    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14374    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14375
14376    // From, To sizes and ElemCount must be pow of two
14377    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14378    // We are going to use the original vector elt for storing.
14379    // Accumulated smaller vector elements must be a multiple of the store size.
14380    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14381
14382    unsigned SizeRatio  = FromSz / ToSz;
14383
14384    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14385
14386    // Create a type on which we perform the shuffle
14387    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14388            StVT.getScalarType(), NumElems*SizeRatio);
14389
14390    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14391
14392    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14393    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14394    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14395
14396    // Can't shuffle using an illegal type
14397    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14398
14399    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14400                                DAG.getUNDEF(WideVec.getValueType()),
14401                                ShuffleVec.data());
14402    // At this point all of the data is stored at the bottom of the
14403    // register. We now need to save it to mem.
14404
14405    // Find the largest store unit
14406    MVT StoreType = MVT::i8;
14407    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14408         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14409      MVT Tp = (MVT::SimpleValueType)tp;
14410      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14411        StoreType = Tp;
14412    }
14413
14414    // Bitcast the original vector into a vector of store-size units
14415    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14416            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14417    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14418    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14419    SmallVector<SDValue, 8> Chains;
14420    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14421                                        TLI.getPointerTy());
14422    SDValue Ptr = St->getBasePtr();
14423
14424    // Perform one or more big stores into memory.
14425    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14426      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14427                                   StoreType, ShuffWide,
14428                                   DAG.getIntPtrConstant(i));
14429      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14430                                St->getPointerInfo(), St->isVolatile(),
14431                                St->isNonTemporal(), St->getAlignment());
14432      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14433      Chains.push_back(Ch);
14434    }
14435
14436    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14437                               Chains.size());
14438  }
14439
14440
14441  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14442  // the FP state in cases where an emms may be missing.
14443  // A preferable solution to the general problem is to figure out the right
14444  // places to insert EMMS.  This qualifies as a quick hack.
14445
14446  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14447  if (VT.getSizeInBits() != 64)
14448    return SDValue();
14449
14450  const Function *F = DAG.getMachineFunction().getFunction();
14451  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14452  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14453                     && Subtarget->hasSSE2();
14454  if ((VT.isVector() ||
14455       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14456      isa<LoadSDNode>(St->getValue()) &&
14457      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14458      St->getChain().hasOneUse() && !St->isVolatile()) {
14459    SDNode* LdVal = St->getValue().getNode();
14460    LoadSDNode *Ld = 0;
14461    int TokenFactorIndex = -1;
14462    SmallVector<SDValue, 8> Ops;
14463    SDNode* ChainVal = St->getChain().getNode();
14464    // Must be a store of a load.  We currently handle two cases:  the load
14465    // is a direct child, and it's under an intervening TokenFactor.  It is
14466    // possible to dig deeper under nested TokenFactors.
14467    if (ChainVal == LdVal)
14468      Ld = cast<LoadSDNode>(St->getChain());
14469    else if (St->getValue().hasOneUse() &&
14470             ChainVal->getOpcode() == ISD::TokenFactor) {
14471      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
14472        if (ChainVal->getOperand(i).getNode() == LdVal) {
14473          TokenFactorIndex = i;
14474          Ld = cast<LoadSDNode>(St->getValue());
14475        } else
14476          Ops.push_back(ChainVal->getOperand(i));
14477      }
14478    }
14479
14480    if (!Ld || !ISD::isNormalLoad(Ld))
14481      return SDValue();
14482
14483    // If this is not the MMX case, i.e. we are just turning i64 load/store
14484    // into f64 load/store, avoid the transformation if there are multiple
14485    // uses of the loaded value.
14486    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14487      return SDValue();
14488
14489    DebugLoc LdDL = Ld->getDebugLoc();
14490    DebugLoc StDL = N->getDebugLoc();
14491    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14492    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14493    // pair instead.
14494    if (Subtarget->is64Bit() || F64IsLegal) {
14495      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14496      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14497                                  Ld->getPointerInfo(), Ld->isVolatile(),
14498                                  Ld->isNonTemporal(), Ld->isInvariant(),
14499                                  Ld->getAlignment());
14500      SDValue NewChain = NewLd.getValue(1);
14501      if (TokenFactorIndex != -1) {
14502        Ops.push_back(NewChain);
14503        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14504                               Ops.size());
14505      }
14506      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14507                          St->getPointerInfo(),
14508                          St->isVolatile(), St->isNonTemporal(),
14509                          St->getAlignment());
14510    }
14511
14512    // Otherwise, lower to two pairs of 32-bit loads / stores.
14513    SDValue LoAddr = Ld->getBasePtr();
14514    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14515                                 DAG.getConstant(4, MVT::i32));
14516
14517    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14518                               Ld->getPointerInfo(),
14519                               Ld->isVolatile(), Ld->isNonTemporal(),
14520                               Ld->isInvariant(), Ld->getAlignment());
14521    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14522                               Ld->getPointerInfo().getWithOffset(4),
14523                               Ld->isVolatile(), Ld->isNonTemporal(),
14524                               Ld->isInvariant(),
14525                               MinAlign(Ld->getAlignment(), 4));
14526
14527    SDValue NewChain = LoLd.getValue(1);
14528    if (TokenFactorIndex != -1) {
14529      Ops.push_back(LoLd);
14530      Ops.push_back(HiLd);
14531      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14532                             Ops.size());
14533    }
14534
14535    LoAddr = St->getBasePtr();
14536    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14537                         DAG.getConstant(4, MVT::i32));
14538
14539    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14540                                St->getPointerInfo(),
14541                                St->isVolatile(), St->isNonTemporal(),
14542                                St->getAlignment());
14543    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14544                                St->getPointerInfo().getWithOffset(4),
14545                                St->isVolatile(),
14546                                St->isNonTemporal(),
14547                                MinAlign(St->getAlignment(), 4));
14548    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14549  }
14550  return SDValue();
14551}
14552
14553/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14554/// and return the operands for the horizontal operation in LHS and RHS.  A
14555/// horizontal operation performs the binary operation on successive elements
14556/// of its first operand, then on successive elements of its second operand,
14557/// returning the resulting values in a vector.  For example, if
14558///   A = < float a0, float a1, float a2, float a3 >
14559/// and
14560///   B = < float b0, float b1, float b2, float b3 >
14561/// then the result of doing a horizontal operation on A and B is
14562///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14563/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14564/// A horizontal-op B, for some already available A and B, and if so then LHS is
14565/// set to A, RHS to B, and the routine returns 'true'.
14566/// Note that the binary operation should have the property that if one of the
14567/// operands is UNDEF then the result is UNDEF.
14568static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14569  // Look for the following pattern: if
14570  //   A = < float a0, float a1, float a2, float a3 >
14571  //   B = < float b0, float b1, float b2, float b3 >
14572  // and
14573  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14574  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14575  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14576  // which is A horizontal-op B.
14577
14578  // At least one of the operands should be a vector shuffle.
14579  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14580      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14581    return false;
14582
14583  EVT VT = LHS.getValueType();
14584
14585  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14586         "Unsupported vector type for horizontal add/sub");
14587
14588  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14589  // operate independently on 128-bit lanes.
14590  unsigned NumElts = VT.getVectorNumElements();
14591  unsigned NumLanes = VT.getSizeInBits()/128;
14592  unsigned NumLaneElts = NumElts / NumLanes;
14593  assert((NumLaneElts % 2 == 0) &&
14594         "Vector type should have an even number of elements in each lane");
14595  unsigned HalfLaneElts = NumLaneElts/2;
14596
14597  // View LHS in the form
14598  //   LHS = VECTOR_SHUFFLE A, B, LMask
14599  // If LHS is not a shuffle then pretend it is the shuffle
14600  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14601  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14602  // type VT.
14603  SDValue A, B;
14604  SmallVector<int, 16> LMask(NumElts);
14605  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14606    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14607      A = LHS.getOperand(0);
14608    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14609      B = LHS.getOperand(1);
14610    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14611    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14612  } else {
14613    if (LHS.getOpcode() != ISD::UNDEF)
14614      A = LHS;
14615    for (unsigned i = 0; i != NumElts; ++i)
14616      LMask[i] = i;
14617  }
14618
14619  // Likewise, view RHS in the form
14620  //   RHS = VECTOR_SHUFFLE C, D, RMask
14621  SDValue C, D;
14622  SmallVector<int, 16> RMask(NumElts);
14623  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14624    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14625      C = RHS.getOperand(0);
14626    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14627      D = RHS.getOperand(1);
14628    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14629    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14630  } else {
14631    if (RHS.getOpcode() != ISD::UNDEF)
14632      C = RHS;
14633    for (unsigned i = 0; i != NumElts; ++i)
14634      RMask[i] = i;
14635  }
14636
14637  // Check that the shuffles are both shuffling the same vectors.
14638  if (!(A == C && B == D) && !(A == D && B == C))
14639    return false;
14640
14641  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14642  if (!A.getNode() && !B.getNode())
14643    return false;
14644
14645  // If A and B occur in reverse order in RHS, then "swap" them (which means
14646  // rewriting the mask).
14647  if (A != C)
14648    CommuteVectorShuffleMask(RMask, NumElts);
14649
14650  // At this point LHS and RHS are equivalent to
14651  //   LHS = VECTOR_SHUFFLE A, B, LMask
14652  //   RHS = VECTOR_SHUFFLE A, B, RMask
14653  // Check that the masks correspond to performing a horizontal operation.
14654  for (unsigned i = 0; i != NumElts; ++i) {
14655    int LIdx = LMask[i], RIdx = RMask[i];
14656
14657    // Ignore any UNDEF components.
14658    if (LIdx < 0 || RIdx < 0 ||
14659        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14660        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14661      continue;
14662
14663    // Check that successive elements are being operated on.  If not, this is
14664    // not a horizontal operation.
14665    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14666    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14667    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14668    if (!(LIdx == Index && RIdx == Index + 1) &&
14669        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14670      return false;
14671  }
14672
14673  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14674  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14675  return true;
14676}
14677
14678/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14679static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14680                                  const X86Subtarget *Subtarget) {
14681  EVT VT = N->getValueType(0);
14682  SDValue LHS = N->getOperand(0);
14683  SDValue RHS = N->getOperand(1);
14684
14685  // Try to synthesize horizontal adds from adds of shuffles.
14686  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14687       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14688      isHorizontalBinOp(LHS, RHS, true))
14689    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14690  return SDValue();
14691}
14692
14693/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14694static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14695                                  const X86Subtarget *Subtarget) {
14696  EVT VT = N->getValueType(0);
14697  SDValue LHS = N->getOperand(0);
14698  SDValue RHS = N->getOperand(1);
14699
14700  // Try to synthesize horizontal subs from subs of shuffles.
14701  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14702       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14703      isHorizontalBinOp(LHS, RHS, false))
14704    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14705  return SDValue();
14706}
14707
14708/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14709/// X86ISD::FXOR nodes.
14710static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14711  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14712  // F[X]OR(0.0, x) -> x
14713  // F[X]OR(x, 0.0) -> x
14714  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14715    if (C->getValueAPF().isPosZero())
14716      return N->getOperand(1);
14717  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14718    if (C->getValueAPF().isPosZero())
14719      return N->getOperand(0);
14720  return SDValue();
14721}
14722
14723/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14724static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14725  // FAND(0.0, x) -> 0.0
14726  // FAND(x, 0.0) -> 0.0
14727  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14728    if (C->getValueAPF().isPosZero())
14729      return N->getOperand(0);
14730  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14731    if (C->getValueAPF().isPosZero())
14732      return N->getOperand(1);
14733  return SDValue();
14734}
14735
14736static SDValue PerformBTCombine(SDNode *N,
14737                                SelectionDAG &DAG,
14738                                TargetLowering::DAGCombinerInfo &DCI) {
14739  // BT ignores high bits in the bit index operand.
14740  SDValue Op1 = N->getOperand(1);
14741  if (Op1.hasOneUse()) {
14742    unsigned BitWidth = Op1.getValueSizeInBits();
14743    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14744    APInt KnownZero, KnownOne;
14745    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14746                                          !DCI.isBeforeLegalizeOps());
14747    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14748    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14749        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14750      DCI.CommitTargetLoweringOpt(TLO);
14751  }
14752  return SDValue();
14753}
14754
14755static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14756  SDValue Op = N->getOperand(0);
14757  if (Op.getOpcode() == ISD::BITCAST)
14758    Op = Op.getOperand(0);
14759  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14760  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14761      VT.getVectorElementType().getSizeInBits() ==
14762      OpVT.getVectorElementType().getSizeInBits()) {
14763    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14764  }
14765  return SDValue();
14766}
14767
14768static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
14769                                  TargetLowering::DAGCombinerInfo &DCI,
14770                                  const X86Subtarget *Subtarget) {
14771  if (!DCI.isBeforeLegalizeOps())
14772    return SDValue();
14773
14774  if (!Subtarget->hasAVX())
14775    return SDValue();
14776
14777  // Optimize vectors in AVX mode
14778  // Sign extend  v8i16 to v8i32 and
14779  //              v4i32 to v4i64
14780  //
14781  // Divide input vector into two parts
14782  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
14783  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
14784  // concat the vectors to original VT
14785
14786  EVT VT = N->getValueType(0);
14787  SDValue Op = N->getOperand(0);
14788  EVT OpVT = Op.getValueType();
14789  DebugLoc dl = N->getDebugLoc();
14790
14791  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
14792      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
14793
14794    unsigned NumElems = OpVT.getVectorNumElements();
14795    SmallVector<int,8> ShufMask1(NumElems, -1);
14796    for (unsigned i = 0; i < NumElems/2; i++) ShufMask1[i] = i;
14797
14798    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14799                                        ShufMask1.data());
14800
14801    SmallVector<int,8> ShufMask2(NumElems, -1);
14802    for (unsigned i = 0; i < NumElems/2; i++) ShufMask2[i] = i + NumElems/2;
14803
14804    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14805                                        ShufMask2.data());
14806
14807    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
14808                                  VT.getVectorNumElements()/2);
14809
14810    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
14811    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
14812
14813    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14814  }
14815  return SDValue();
14816}
14817
14818static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
14819                                  const X86Subtarget *Subtarget) {
14820  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14821  //           (and (i32 x86isd::setcc_carry), 1)
14822  // This eliminates the zext. This transformation is necessary because
14823  // ISD::SETCC is always legalized to i8.
14824  DebugLoc dl = N->getDebugLoc();
14825  SDValue N0 = N->getOperand(0);
14826  EVT VT = N->getValueType(0);
14827  EVT OpVT = N0.getValueType();
14828
14829  if (N0.getOpcode() == ISD::AND &&
14830      N0.hasOneUse() &&
14831      N0.getOperand(0).hasOneUse()) {
14832    SDValue N00 = N0.getOperand(0);
14833    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14834      return SDValue();
14835    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14836    if (!C || C->getZExtValue() != 1)
14837      return SDValue();
14838    return DAG.getNode(ISD::AND, dl, VT,
14839                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14840                                   N00.getOperand(0), N00.getOperand(1)),
14841                       DAG.getConstant(1, VT));
14842  }
14843  // Optimize vectors in AVX mode:
14844  //
14845  //   v8i16 -> v8i32
14846  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
14847  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
14848  //   Concat upper and lower parts.
14849  //
14850  //   v4i32 -> v4i64
14851  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
14852  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
14853  //   Concat upper and lower parts.
14854  //
14855  if (Subtarget->hasAVX()) {
14856
14857    if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16))  ||
14858      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
14859
14860      SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
14861      SDValue OpLo = getTargetShuffleNode(X86ISD::UNPCKL, dl, OpVT, N0, ZeroVec, DAG);
14862      SDValue OpHi = getTargetShuffleNode(X86ISD::UNPCKH, dl, OpVT, N0, ZeroVec, DAG);
14863
14864      EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
14865        VT.getVectorNumElements()/2);
14866
14867      OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
14868      OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
14869
14870      return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14871    }
14872  }
14873
14874
14875  return SDValue();
14876}
14877
14878// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14879static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14880  unsigned X86CC = N->getConstantOperandVal(0);
14881  SDValue EFLAG = N->getOperand(1);
14882  DebugLoc DL = N->getDebugLoc();
14883
14884  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14885  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14886  // cases.
14887  if (X86CC == X86::COND_B)
14888    return DAG.getNode(ISD::AND, DL, MVT::i8,
14889                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14890                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14891                       DAG.getConstant(1, MVT::i8));
14892
14893  return SDValue();
14894}
14895
14896static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14897                                        const X86TargetLowering *XTLI) {
14898  SDValue Op0 = N->getOperand(0);
14899  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14900  // a 32-bit target where SSE doesn't support i64->FP operations.
14901  if (Op0.getOpcode() == ISD::LOAD) {
14902    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14903    EVT VT = Ld->getValueType(0);
14904    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14905        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14906        !XTLI->getSubtarget()->is64Bit() &&
14907        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14908      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14909                                          Ld->getChain(), Op0, DAG);
14910      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14911      return FILDChain;
14912    }
14913  }
14914  return SDValue();
14915}
14916
14917// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14918static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14919                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14920  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14921  // the result is either zero or one (depending on the input carry bit).
14922  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14923  if (X86::isZeroNode(N->getOperand(0)) &&
14924      X86::isZeroNode(N->getOperand(1)) &&
14925      // We don't have a good way to replace an EFLAGS use, so only do this when
14926      // dead right now.
14927      SDValue(N, 1).use_empty()) {
14928    DebugLoc DL = N->getDebugLoc();
14929    EVT VT = N->getValueType(0);
14930    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14931    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14932                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14933                                           DAG.getConstant(X86::COND_B,MVT::i8),
14934                                           N->getOperand(2)),
14935                               DAG.getConstant(1, VT));
14936    return DCI.CombineTo(N, Res1, CarryOut);
14937  }
14938
14939  return SDValue();
14940}
14941
14942// fold (add Y, (sete  X, 0)) -> adc  0, Y
14943//      (add Y, (setne X, 0)) -> sbb -1, Y
14944//      (sub (sete  X, 0), Y) -> sbb  0, Y
14945//      (sub (setne X, 0), Y) -> adc -1, Y
14946static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14947  DebugLoc DL = N->getDebugLoc();
14948
14949  // Look through ZExts.
14950  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14951  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14952    return SDValue();
14953
14954  SDValue SetCC = Ext.getOperand(0);
14955  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14956    return SDValue();
14957
14958  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14959  if (CC != X86::COND_E && CC != X86::COND_NE)
14960    return SDValue();
14961
14962  SDValue Cmp = SetCC.getOperand(1);
14963  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14964      !X86::isZeroNode(Cmp.getOperand(1)) ||
14965      !Cmp.getOperand(0).getValueType().isInteger())
14966    return SDValue();
14967
14968  SDValue CmpOp0 = Cmp.getOperand(0);
14969  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14970                               DAG.getConstant(1, CmpOp0.getValueType()));
14971
14972  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14973  if (CC == X86::COND_NE)
14974    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14975                       DL, OtherVal.getValueType(), OtherVal,
14976                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14977  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14978                     DL, OtherVal.getValueType(), OtherVal,
14979                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14980}
14981
14982/// PerformADDCombine - Do target-specific dag combines on integer adds.
14983static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14984                                 const X86Subtarget *Subtarget) {
14985  EVT VT = N->getValueType(0);
14986  SDValue Op0 = N->getOperand(0);
14987  SDValue Op1 = N->getOperand(1);
14988
14989  // Try to synthesize horizontal adds from adds of shuffles.
14990  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14991       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14992      isHorizontalBinOp(Op0, Op1, true))
14993    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14994
14995  return OptimizeConditionalInDecrement(N, DAG);
14996}
14997
14998static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14999                                 const X86Subtarget *Subtarget) {
15000  SDValue Op0 = N->getOperand(0);
15001  SDValue Op1 = N->getOperand(1);
15002
15003  // X86 can't encode an immediate LHS of a sub. See if we can push the
15004  // negation into a preceding instruction.
15005  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
15006    // If the RHS of the sub is a XOR with one use and a constant, invert the
15007    // immediate. Then add one to the LHS of the sub so we can turn
15008    // X-Y -> X+~Y+1, saving one register.
15009    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
15010        isa<ConstantSDNode>(Op1.getOperand(1))) {
15011      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
15012      EVT VT = Op0.getValueType();
15013      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
15014                                   Op1.getOperand(0),
15015                                   DAG.getConstant(~XorC, VT));
15016      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
15017                         DAG.getConstant(C->getAPIntValue()+1, VT));
15018    }
15019  }
15020
15021  // Try to synthesize horizontal adds from adds of shuffles.
15022  EVT VT = N->getValueType(0);
15023  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15024       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15025      isHorizontalBinOp(Op0, Op1, true))
15026    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
15027
15028  return OptimizeConditionalInDecrement(N, DAG);
15029}
15030
15031SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
15032                                             DAGCombinerInfo &DCI) const {
15033  SelectionDAG &DAG = DCI.DAG;
15034  switch (N->getOpcode()) {
15035  default: break;
15036  case ISD::EXTRACT_VECTOR_ELT:
15037    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
15038  case ISD::VSELECT:
15039  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
15040  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
15041  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
15042  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
15043  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
15044  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
15045  case ISD::SHL:
15046  case ISD::SRA:
15047  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
15048  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
15049  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
15050  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
15051  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
15052  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
15053  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
15054  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
15055  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
15056  case X86ISD::FXOR:
15057  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
15058  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
15059  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
15060  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
15061  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, Subtarget);
15062  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
15063  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG, DCI);
15064  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
15065  case X86ISD::SHUFP:       // Handle all target specific shuffles
15066  case X86ISD::PALIGN:
15067  case X86ISD::UNPCKH:
15068  case X86ISD::UNPCKL:
15069  case X86ISD::MOVHLPS:
15070  case X86ISD::MOVLHPS:
15071  case X86ISD::PSHUFD:
15072  case X86ISD::PSHUFHW:
15073  case X86ISD::PSHUFLW:
15074  case X86ISD::MOVSS:
15075  case X86ISD::MOVSD:
15076  case X86ISD::VPERMILP:
15077  case X86ISD::VPERM2X128:
15078  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
15079  }
15080
15081  return SDValue();
15082}
15083
15084/// isTypeDesirableForOp - Return true if the target has native support for
15085/// the specified value type and it is 'desirable' to use the type for the
15086/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
15087/// instruction encodings are longer and some i16 instructions are slow.
15088bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
15089  if (!isTypeLegal(VT))
15090    return false;
15091  if (VT != MVT::i16)
15092    return true;
15093
15094  switch (Opc) {
15095  default:
15096    return true;
15097  case ISD::LOAD:
15098  case ISD::SIGN_EXTEND:
15099  case ISD::ZERO_EXTEND:
15100  case ISD::ANY_EXTEND:
15101  case ISD::SHL:
15102  case ISD::SRL:
15103  case ISD::SUB:
15104  case ISD::ADD:
15105  case ISD::MUL:
15106  case ISD::AND:
15107  case ISD::OR:
15108  case ISD::XOR:
15109    return false;
15110  }
15111}
15112
15113/// IsDesirableToPromoteOp - This method query the target whether it is
15114/// beneficial for dag combiner to promote the specified node. If true, it
15115/// should return the desired promotion type by reference.
15116bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
15117  EVT VT = Op.getValueType();
15118  if (VT != MVT::i16)
15119    return false;
15120
15121  bool Promote = false;
15122  bool Commute = false;
15123  switch (Op.getOpcode()) {
15124  default: break;
15125  case ISD::LOAD: {
15126    LoadSDNode *LD = cast<LoadSDNode>(Op);
15127    // If the non-extending load has a single use and it's not live out, then it
15128    // might be folded.
15129    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
15130                                                     Op.hasOneUse()*/) {
15131      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
15132             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
15133        // The only case where we'd want to promote LOAD (rather then it being
15134        // promoted as an operand is when it's only use is liveout.
15135        if (UI->getOpcode() != ISD::CopyToReg)
15136          return false;
15137      }
15138    }
15139    Promote = true;
15140    break;
15141  }
15142  case ISD::SIGN_EXTEND:
15143  case ISD::ZERO_EXTEND:
15144  case ISD::ANY_EXTEND:
15145    Promote = true;
15146    break;
15147  case ISD::SHL:
15148  case ISD::SRL: {
15149    SDValue N0 = Op.getOperand(0);
15150    // Look out for (store (shl (load), x)).
15151    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
15152      return false;
15153    Promote = true;
15154    break;
15155  }
15156  case ISD::ADD:
15157  case ISD::MUL:
15158  case ISD::AND:
15159  case ISD::OR:
15160  case ISD::XOR:
15161    Commute = true;
15162    // fallthrough
15163  case ISD::SUB: {
15164    SDValue N0 = Op.getOperand(0);
15165    SDValue N1 = Op.getOperand(1);
15166    if (!Commute && MayFoldLoad(N1))
15167      return false;
15168    // Avoid disabling potential load folding opportunities.
15169    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
15170      return false;
15171    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
15172      return false;
15173    Promote = true;
15174  }
15175  }
15176
15177  PVT = MVT::i32;
15178  return Promote;
15179}
15180
15181//===----------------------------------------------------------------------===//
15182//                           X86 Inline Assembly Support
15183//===----------------------------------------------------------------------===//
15184
15185namespace {
15186  // Helper to match a string separated by whitespace.
15187  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
15188    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
15189
15190    for (unsigned i = 0, e = args.size(); i != e; ++i) {
15191      StringRef piece(*args[i]);
15192      if (!s.startswith(piece)) // Check if the piece matches.
15193        return false;
15194
15195      s = s.substr(piece.size());
15196      StringRef::size_type pos = s.find_first_not_of(" \t");
15197      if (pos == 0) // We matched a prefix.
15198        return false;
15199
15200      s = s.substr(pos);
15201    }
15202
15203    return s.empty();
15204  }
15205  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
15206}
15207
15208bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
15209  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15210
15211  std::string AsmStr = IA->getAsmString();
15212
15213  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15214  if (!Ty || Ty->getBitWidth() % 16 != 0)
15215    return false;
15216
15217  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
15218  SmallVector<StringRef, 4> AsmPieces;
15219  SplitString(AsmStr, AsmPieces, ";\n");
15220
15221  switch (AsmPieces.size()) {
15222  default: return false;
15223  case 1:
15224    // FIXME: this should verify that we are targeting a 486 or better.  If not,
15225    // we will turn this bswap into something that will be lowered to logical
15226    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
15227    // lower so don't worry about this.
15228    // bswap $0
15229    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
15230        matchAsm(AsmPieces[0], "bswapl", "$0") ||
15231        matchAsm(AsmPieces[0], "bswapq", "$0") ||
15232        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
15233        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
15234        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
15235      // No need to check constraints, nothing other than the equivalent of
15236      // "=r,0" would be valid here.
15237      return IntrinsicLowering::LowerToByteSwap(CI);
15238    }
15239
15240    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
15241    if (CI->getType()->isIntegerTy(16) &&
15242        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15243        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
15244         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
15245      AsmPieces.clear();
15246      const std::string &ConstraintsStr = IA->getConstraintString();
15247      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15248      std::sort(AsmPieces.begin(), AsmPieces.end());
15249      if (AsmPieces.size() == 4 &&
15250          AsmPieces[0] == "~{cc}" &&
15251          AsmPieces[1] == "~{dirflag}" &&
15252          AsmPieces[2] == "~{flags}" &&
15253          AsmPieces[3] == "~{fpsr}")
15254      return IntrinsicLowering::LowerToByteSwap(CI);
15255    }
15256    break;
15257  case 3:
15258    if (CI->getType()->isIntegerTy(32) &&
15259        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15260        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
15261        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
15262        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
15263      AsmPieces.clear();
15264      const std::string &ConstraintsStr = IA->getConstraintString();
15265      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15266      std::sort(AsmPieces.begin(), AsmPieces.end());
15267      if (AsmPieces.size() == 4 &&
15268          AsmPieces[0] == "~{cc}" &&
15269          AsmPieces[1] == "~{dirflag}" &&
15270          AsmPieces[2] == "~{flags}" &&
15271          AsmPieces[3] == "~{fpsr}")
15272        return IntrinsicLowering::LowerToByteSwap(CI);
15273    }
15274
15275    if (CI->getType()->isIntegerTy(64)) {
15276      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
15277      if (Constraints.size() >= 2 &&
15278          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
15279          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
15280        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
15281        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
15282            matchAsm(AsmPieces[1], "bswap", "%edx") &&
15283            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
15284          return IntrinsicLowering::LowerToByteSwap(CI);
15285      }
15286    }
15287    break;
15288  }
15289  return false;
15290}
15291
15292
15293
15294/// getConstraintType - Given a constraint letter, return the type of
15295/// constraint it is for this target.
15296X86TargetLowering::ConstraintType
15297X86TargetLowering::getConstraintType(const std::string &Constraint) const {
15298  if (Constraint.size() == 1) {
15299    switch (Constraint[0]) {
15300    case 'R':
15301    case 'q':
15302    case 'Q':
15303    case 'f':
15304    case 't':
15305    case 'u':
15306    case 'y':
15307    case 'x':
15308    case 'Y':
15309    case 'l':
15310      return C_RegisterClass;
15311    case 'a':
15312    case 'b':
15313    case 'c':
15314    case 'd':
15315    case 'S':
15316    case 'D':
15317    case 'A':
15318      return C_Register;
15319    case 'I':
15320    case 'J':
15321    case 'K':
15322    case 'L':
15323    case 'M':
15324    case 'N':
15325    case 'G':
15326    case 'C':
15327    case 'e':
15328    case 'Z':
15329      return C_Other;
15330    default:
15331      break;
15332    }
15333  }
15334  return TargetLowering::getConstraintType(Constraint);
15335}
15336
15337/// Examine constraint type and operand type and determine a weight value.
15338/// This object must already have been set up with the operand type
15339/// and the current alternative constraint selected.
15340TargetLowering::ConstraintWeight
15341  X86TargetLowering::getSingleConstraintMatchWeight(
15342    AsmOperandInfo &info, const char *constraint) const {
15343  ConstraintWeight weight = CW_Invalid;
15344  Value *CallOperandVal = info.CallOperandVal;
15345    // If we don't have a value, we can't do a match,
15346    // but allow it at the lowest weight.
15347  if (CallOperandVal == NULL)
15348    return CW_Default;
15349  Type *type = CallOperandVal->getType();
15350  // Look at the constraint type.
15351  switch (*constraint) {
15352  default:
15353    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15354  case 'R':
15355  case 'q':
15356  case 'Q':
15357  case 'a':
15358  case 'b':
15359  case 'c':
15360  case 'd':
15361  case 'S':
15362  case 'D':
15363  case 'A':
15364    if (CallOperandVal->getType()->isIntegerTy())
15365      weight = CW_SpecificReg;
15366    break;
15367  case 'f':
15368  case 't':
15369  case 'u':
15370      if (type->isFloatingPointTy())
15371        weight = CW_SpecificReg;
15372      break;
15373  case 'y':
15374      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15375        weight = CW_SpecificReg;
15376      break;
15377  case 'x':
15378  case 'Y':
15379    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
15380        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
15381      weight = CW_Register;
15382    break;
15383  case 'I':
15384    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15385      if (C->getZExtValue() <= 31)
15386        weight = CW_Constant;
15387    }
15388    break;
15389  case 'J':
15390    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15391      if (C->getZExtValue() <= 63)
15392        weight = CW_Constant;
15393    }
15394    break;
15395  case 'K':
15396    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15397      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15398        weight = CW_Constant;
15399    }
15400    break;
15401  case 'L':
15402    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15403      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15404        weight = CW_Constant;
15405    }
15406    break;
15407  case 'M':
15408    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15409      if (C->getZExtValue() <= 3)
15410        weight = CW_Constant;
15411    }
15412    break;
15413  case 'N':
15414    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15415      if (C->getZExtValue() <= 0xff)
15416        weight = CW_Constant;
15417    }
15418    break;
15419  case 'G':
15420  case 'C':
15421    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15422      weight = CW_Constant;
15423    }
15424    break;
15425  case 'e':
15426    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15427      if ((C->getSExtValue() >= -0x80000000LL) &&
15428          (C->getSExtValue() <= 0x7fffffffLL))
15429        weight = CW_Constant;
15430    }
15431    break;
15432  case 'Z':
15433    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15434      if (C->getZExtValue() <= 0xffffffff)
15435        weight = CW_Constant;
15436    }
15437    break;
15438  }
15439  return weight;
15440}
15441
15442/// LowerXConstraint - try to replace an X constraint, which matches anything,
15443/// with another that has more specific requirements based on the type of the
15444/// corresponding operand.
15445const char *X86TargetLowering::
15446LowerXConstraint(EVT ConstraintVT) const {
15447  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15448  // 'f' like normal targets.
15449  if (ConstraintVT.isFloatingPoint()) {
15450    if (Subtarget->hasSSE2())
15451      return "Y";
15452    if (Subtarget->hasSSE1())
15453      return "x";
15454  }
15455
15456  return TargetLowering::LowerXConstraint(ConstraintVT);
15457}
15458
15459/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15460/// vector.  If it is invalid, don't add anything to Ops.
15461void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15462                                                     std::string &Constraint,
15463                                                     std::vector<SDValue>&Ops,
15464                                                     SelectionDAG &DAG) const {
15465  SDValue Result(0, 0);
15466
15467  // Only support length 1 constraints for now.
15468  if (Constraint.length() > 1) return;
15469
15470  char ConstraintLetter = Constraint[0];
15471  switch (ConstraintLetter) {
15472  default: break;
15473  case 'I':
15474    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15475      if (C->getZExtValue() <= 31) {
15476        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15477        break;
15478      }
15479    }
15480    return;
15481  case 'J':
15482    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15483      if (C->getZExtValue() <= 63) {
15484        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15485        break;
15486      }
15487    }
15488    return;
15489  case 'K':
15490    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15491      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15492        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15493        break;
15494      }
15495    }
15496    return;
15497  case 'N':
15498    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15499      if (C->getZExtValue() <= 255) {
15500        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15501        break;
15502      }
15503    }
15504    return;
15505  case 'e': {
15506    // 32-bit signed value
15507    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15508      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15509                                           C->getSExtValue())) {
15510        // Widen to 64 bits here to get it sign extended.
15511        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15512        break;
15513      }
15514    // FIXME gcc accepts some relocatable values here too, but only in certain
15515    // memory models; it's complicated.
15516    }
15517    return;
15518  }
15519  case 'Z': {
15520    // 32-bit unsigned value
15521    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15522      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15523                                           C->getZExtValue())) {
15524        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15525        break;
15526      }
15527    }
15528    // FIXME gcc accepts some relocatable values here too, but only in certain
15529    // memory models; it's complicated.
15530    return;
15531  }
15532  case 'i': {
15533    // Literal immediates are always ok.
15534    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15535      // Widen to 64 bits here to get it sign extended.
15536      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15537      break;
15538    }
15539
15540    // In any sort of PIC mode addresses need to be computed at runtime by
15541    // adding in a register or some sort of table lookup.  These can't
15542    // be used as immediates.
15543    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15544      return;
15545
15546    // If we are in non-pic codegen mode, we allow the address of a global (with
15547    // an optional displacement) to be used with 'i'.
15548    GlobalAddressSDNode *GA = 0;
15549    int64_t Offset = 0;
15550
15551    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15552    while (1) {
15553      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15554        Offset += GA->getOffset();
15555        break;
15556      } else if (Op.getOpcode() == ISD::ADD) {
15557        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15558          Offset += C->getZExtValue();
15559          Op = Op.getOperand(0);
15560          continue;
15561        }
15562      } else if (Op.getOpcode() == ISD::SUB) {
15563        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15564          Offset += -C->getZExtValue();
15565          Op = Op.getOperand(0);
15566          continue;
15567        }
15568      }
15569
15570      // Otherwise, this isn't something we can handle, reject it.
15571      return;
15572    }
15573
15574    const GlobalValue *GV = GA->getGlobal();
15575    // If we require an extra load to get this address, as in PIC mode, we
15576    // can't accept it.
15577    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15578                                                        getTargetMachine())))
15579      return;
15580
15581    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15582                                        GA->getValueType(0), Offset);
15583    break;
15584  }
15585  }
15586
15587  if (Result.getNode()) {
15588    Ops.push_back(Result);
15589    return;
15590  }
15591  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15592}
15593
15594std::pair<unsigned, const TargetRegisterClass*>
15595X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15596                                                EVT VT) const {
15597  // First, see if this is a constraint that directly corresponds to an LLVM
15598  // register class.
15599  if (Constraint.size() == 1) {
15600    // GCC Constraint Letters
15601    switch (Constraint[0]) {
15602    default: break;
15603      // TODO: Slight differences here in allocation order and leaving
15604      // RIP in the class. Do they matter any more here than they do
15605      // in the normal allocation?
15606    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15607      if (Subtarget->is64Bit()) {
15608	if (VT == MVT::i32 || VT == MVT::f32)
15609	  return std::make_pair(0U, X86::GR32RegisterClass);
15610	else if (VT == MVT::i16)
15611	  return std::make_pair(0U, X86::GR16RegisterClass);
15612	else if (VT == MVT::i8 || VT == MVT::i1)
15613	  return std::make_pair(0U, X86::GR8RegisterClass);
15614	else if (VT == MVT::i64 || VT == MVT::f64)
15615	  return std::make_pair(0U, X86::GR64RegisterClass);
15616	break;
15617      }
15618      // 32-bit fallthrough
15619    case 'Q':   // Q_REGS
15620      if (VT == MVT::i32 || VT == MVT::f32)
15621	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15622      else if (VT == MVT::i16)
15623	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15624      else if (VT == MVT::i8 || VT == MVT::i1)
15625	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15626      else if (VT == MVT::i64)
15627	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15628      break;
15629    case 'r':   // GENERAL_REGS
15630    case 'l':   // INDEX_REGS
15631      if (VT == MVT::i8 || VT == MVT::i1)
15632        return std::make_pair(0U, X86::GR8RegisterClass);
15633      if (VT == MVT::i16)
15634        return std::make_pair(0U, X86::GR16RegisterClass);
15635      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15636        return std::make_pair(0U, X86::GR32RegisterClass);
15637      return std::make_pair(0U, X86::GR64RegisterClass);
15638    case 'R':   // LEGACY_REGS
15639      if (VT == MVT::i8 || VT == MVT::i1)
15640        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15641      if (VT == MVT::i16)
15642        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15643      if (VT == MVT::i32 || !Subtarget->is64Bit())
15644        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15645      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15646    case 'f':  // FP Stack registers.
15647      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15648      // value to the correct fpstack register class.
15649      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15650        return std::make_pair(0U, X86::RFP32RegisterClass);
15651      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15652        return std::make_pair(0U, X86::RFP64RegisterClass);
15653      return std::make_pair(0U, X86::RFP80RegisterClass);
15654    case 'y':   // MMX_REGS if MMX allowed.
15655      if (!Subtarget->hasMMX()) break;
15656      return std::make_pair(0U, X86::VR64RegisterClass);
15657    case 'Y':   // SSE_REGS if SSE2 allowed
15658      if (!Subtarget->hasSSE2()) break;
15659      // FALL THROUGH.
15660    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15661      if (!Subtarget->hasSSE1()) break;
15662
15663      switch (VT.getSimpleVT().SimpleTy) {
15664      default: break;
15665      // Scalar SSE types.
15666      case MVT::f32:
15667      case MVT::i32:
15668        return std::make_pair(0U, X86::FR32RegisterClass);
15669      case MVT::f64:
15670      case MVT::i64:
15671        return std::make_pair(0U, X86::FR64RegisterClass);
15672      // Vector types.
15673      case MVT::v16i8:
15674      case MVT::v8i16:
15675      case MVT::v4i32:
15676      case MVT::v2i64:
15677      case MVT::v4f32:
15678      case MVT::v2f64:
15679        return std::make_pair(0U, X86::VR128RegisterClass);
15680      // AVX types.
15681      case MVT::v32i8:
15682      case MVT::v16i16:
15683      case MVT::v8i32:
15684      case MVT::v4i64:
15685      case MVT::v8f32:
15686      case MVT::v4f64:
15687        return std::make_pair(0U, X86::VR256RegisterClass);
15688
15689      }
15690      break;
15691    }
15692  }
15693
15694  // Use the default implementation in TargetLowering to convert the register
15695  // constraint into a member of a register class.
15696  std::pair<unsigned, const TargetRegisterClass*> Res;
15697  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15698
15699  // Not found as a standard register?
15700  if (Res.second == 0) {
15701    // Map st(0) -> st(7) -> ST0
15702    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15703        tolower(Constraint[1]) == 's' &&
15704        tolower(Constraint[2]) == 't' &&
15705        Constraint[3] == '(' &&
15706        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15707        Constraint[5] == ')' &&
15708        Constraint[6] == '}') {
15709
15710      Res.first = X86::ST0+Constraint[4]-'0';
15711      Res.second = X86::RFP80RegisterClass;
15712      return Res;
15713    }
15714
15715    // GCC allows "st(0)" to be called just plain "st".
15716    if (StringRef("{st}").equals_lower(Constraint)) {
15717      Res.first = X86::ST0;
15718      Res.second = X86::RFP80RegisterClass;
15719      return Res;
15720    }
15721
15722    // flags -> EFLAGS
15723    if (StringRef("{flags}").equals_lower(Constraint)) {
15724      Res.first = X86::EFLAGS;
15725      Res.second = X86::CCRRegisterClass;
15726      return Res;
15727    }
15728
15729    // 'A' means EAX + EDX.
15730    if (Constraint == "A") {
15731      Res.first = X86::EAX;
15732      Res.second = X86::GR32_ADRegisterClass;
15733      return Res;
15734    }
15735    return Res;
15736  }
15737
15738  // Otherwise, check to see if this is a register class of the wrong value
15739  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15740  // turn into {ax},{dx}.
15741  if (Res.second->hasType(VT))
15742    return Res;   // Correct type already, nothing to do.
15743
15744  // All of the single-register GCC register classes map their values onto
15745  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15746  // really want an 8-bit or 32-bit register, map to the appropriate register
15747  // class and return the appropriate register.
15748  if (Res.second == X86::GR16RegisterClass) {
15749    if (VT == MVT::i8) {
15750      unsigned DestReg = 0;
15751      switch (Res.first) {
15752      default: break;
15753      case X86::AX: DestReg = X86::AL; break;
15754      case X86::DX: DestReg = X86::DL; break;
15755      case X86::CX: DestReg = X86::CL; break;
15756      case X86::BX: DestReg = X86::BL; break;
15757      }
15758      if (DestReg) {
15759        Res.first = DestReg;
15760        Res.second = X86::GR8RegisterClass;
15761      }
15762    } else if (VT == MVT::i32) {
15763      unsigned DestReg = 0;
15764      switch (Res.first) {
15765      default: break;
15766      case X86::AX: DestReg = X86::EAX; break;
15767      case X86::DX: DestReg = X86::EDX; break;
15768      case X86::CX: DestReg = X86::ECX; break;
15769      case X86::BX: DestReg = X86::EBX; break;
15770      case X86::SI: DestReg = X86::ESI; break;
15771      case X86::DI: DestReg = X86::EDI; break;
15772      case X86::BP: DestReg = X86::EBP; break;
15773      case X86::SP: DestReg = X86::ESP; break;
15774      }
15775      if (DestReg) {
15776        Res.first = DestReg;
15777        Res.second = X86::GR32RegisterClass;
15778      }
15779    } else if (VT == MVT::i64) {
15780      unsigned DestReg = 0;
15781      switch (Res.first) {
15782      default: break;
15783      case X86::AX: DestReg = X86::RAX; break;
15784      case X86::DX: DestReg = X86::RDX; break;
15785      case X86::CX: DestReg = X86::RCX; break;
15786      case X86::BX: DestReg = X86::RBX; break;
15787      case X86::SI: DestReg = X86::RSI; break;
15788      case X86::DI: DestReg = X86::RDI; break;
15789      case X86::BP: DestReg = X86::RBP; break;
15790      case X86::SP: DestReg = X86::RSP; break;
15791      }
15792      if (DestReg) {
15793        Res.first = DestReg;
15794        Res.second = X86::GR64RegisterClass;
15795      }
15796    }
15797  } else if (Res.second == X86::FR32RegisterClass ||
15798             Res.second == X86::FR64RegisterClass ||
15799             Res.second == X86::VR128RegisterClass) {
15800    // Handle references to XMM physical registers that got mapped into the
15801    // wrong class.  This can happen with constraints like {xmm0} where the
15802    // target independent register mapper will just pick the first match it can
15803    // find, ignoring the required type.
15804    if (VT == MVT::f32)
15805      Res.second = X86::FR32RegisterClass;
15806    else if (VT == MVT::f64)
15807      Res.second = X86::FR64RegisterClass;
15808    else if (X86::VR128RegisterClass->hasType(VT))
15809      Res.second = X86::VR128RegisterClass;
15810  }
15811
15812  return Res;
15813}
15814